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Abstract

The thesis is on Hessian estimation based adaptive and cooperative extremum local-
ization via a single mobile sensory agent as well as a network of multiple such agents.

First, we develop a continuous time adaptive extremum localization of an arbitrary
quadratic function F (·) based on Hessian estimation, using the measured signal intensity
via a single mobile sensory agent. A gradient based adaptive Hessian parameter estimation
and extremum localization scheme is developed considering a linear parametric model of
field variations.

Next, we extend the proposed single agent based Hessian estimation and extremum
localization scheme to consensus based cooperative distributed scheme to be implemented
by a network of such sensory agents.For the networked multi-agent case, a consensus term
is added to the base adaptive laws to obtain enhanced estimation cooperatively. Stability
and convergence analysis of the proposed scheme is studied, establishing asymptotic con-
vergence of the Hessian parameters and location estimates to their true values robustly,
provided that the motion of agent(s) satisfies certain persistence of excitation(PE) condi-
tions. Furthermore, we show that for a network of connected agents, the PE requirements
can be distributed to the agents so that the requirement on each agent is more relaxed and
feasible.

Later, we design an adaptive motion control scheme for steering a mobile sensory agent
in 2D toward the source of a signal field F (·) using the signal intensity the agent contin-
uously measures at its current location. The proposed adaptive control design is based
on the Hessian estimation based adaptive extremum localization. Results are displayed to
verify that the proposed scheme is stable, provides asymptotic convergence of the Hessian
parameter and extremum location estimates to their true values and the agent location to
the source location, robustly to signal measurement noises.
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Chapter 1

Introduction

1.1 Scope and Motivation

Extremum localization is a fundamental problem in nature that is relevant to many complex
applications, such as environmental monitoring [1], search and rescue operations [2], odor
source detection [3], and pollution sensing [4]. The problem of localizing the source of a
signal has been approached in the manner of deploying a fixed network of sensors that
collect measurements to cooperatively estimate the source location.

In the existing literature, extremum localization is achieved by computing the sensory
measurements of a group of mobile robots. The gradient of these signals gathered by
the agents are estimated by different methods such as extremum seeking techniques, least
square methods, etc. Existing approaches fail to do error analysis by considering the quality
of the estimation algorithm and do not consider the effect of measurement noise and the
performance is analyzed only in simulation. Also, only few sources explore the problem of
multirobot source seeking in three dimensional space.

The aim of this thesis is to overcome the main drawbacks of related works following
a new approach based on estimation of the gradient and the Hessian matrix of unknown
signal fields from the signal strength measurements by sensory agents.

1.2 Objectives and Contributions

A set of novel solutions to the extremum seeking problem where an autonomous vehicle (or
group of vehicles) is required to locate the source of a certain signal based on measurements
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of the signal’s strength at different positions will be studied in the thesis research. As
the first step of this research, an adaptive Hessian estimation based source localization
algorithm has been developed for a mobile sensory agent with guaranteed accuracy. As
the second step, utilizing a consensus protocol, the single agent localization scheme design
is extended to a multi-sensory-agent adaptive localization scheme in order to have a faster
and more accurate estimate of the source location. Later the effects of signal field modeling
uncertainties and measurement noises will be studied.

1.3 Thesis Outline

This thesis is organized as follows: Chapter 2 provides background information and liter-
ature review on extremum localization. The chapter explains the objectives of extremum
localization, its application areas and the related problems, and surveys the proposed so-
lutions in the literature. Chapter 3 presents the proposed adaptive Hessian estimation
and extremum localization scheme for a single agent case. In Chapter 4, extension of this
scheme to multi agent networks is introduced. Single-agent and multi-agent cases are com-
pared based on their accuracy and convergence rate of the estimation of the extremum
location. In Chapter 5, an adaptive steering control scheme of agents toward the source is
introduced. The conclusions are presented in Chapter 6
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Chapter 2

Background and Literature Review

For more than a decade, source localization has been extensively studied, motivated by its
promising applications, see e.g., [5, 6, 7, 8]. The general undertaking in these problems is
that at least one sensory agent finds the location of a signal source with the assistance of
sensory measurement. To pinpoint the source, various types of estimation schemes have
been proposed relying upon the setting and limitations of the specific localization task.

2.1 Target Localization Problems and Measurement

Technologies

Generally, localization is achieved utilizing some information about the relative position of
a single agent or a network of multiple agents to a source such as time of arrival (TOA)
[9, 10], bearing / angle of arrival (AOA) [11, 12], time difference of arrival (TDOA) [13, 14],
received signal strength(RSS) [15, 16].

The TOA principle is a method for measuring the distance between a sensor and an
object, based on the time difference between the emission of a signal and its return to the
sensor, after being reflected by an object. In the TOA approach [17, 18], the local clock
at the target and those at the sensors are assumed to be synchronized so that the TOA
information can be locally obtained at each sensor using time stamps. Various types of
signals (also called carriers) can be used with the TOA principle. A common application
is for positioning system in industrial environment [19].

The AOA measurements are also known as the bearing measurements or the direction
of arrival measurements. In the AOA approach, each sensor node is equipped with an
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antenna array which can be used to estimate the angle of arrival of the target signal.
With multiple AOA estimates from different sensor locations, it is possible to determine
the location of the target. In [20], authors propose a localization and orientation scheme
based on angle of arrival information between neighbor nodes. In [21], a technique based
on antenna arrays and AOA measurements is carefully discussed.

TDOA approach refers to determining the difference in arrival times of a signal received
at two spatially separated sensors. In contrast to TOA, the TDOA approach does not
rely on the sensor clocks to be synchronized with that of the target. It has applications
in direction finding and source localization [22, 23, 24, 25]. For example, in the [25],
multiplying the TDOA by the signal propagation speed gives the range difference between
the source and two receivers. Each range difference defines a hyperbola on which the target
must lie in the two-dimensional space, and thus the source position can be obtained from
the intersection of at least two hyperbolas.

Localization task can be conveniently accomplished using a small number of measure-
ments without noise. But, noise in signals is inevitable in practice, hence, agents need to
possess an estimator to compensate the uncertainties due to measurement noise as well as
the source’s motion, which can be studied under adaptive target localization. A source
position estimation algorithm is proposed in [26, 27, 28], where the agent is able to measure
its distance to the source location. It is shown that this estimation algorithm is exponen-
tially stable under a persistent excitation (PE) condition and robust to drifts in the source
location. It is also demonstrated in the simulation results of [26, 27, 28] that the algorithm
operates well in presence of sensor noise as well.

In [29], to compensate uncertainties in signal permittivity and path loss coefficients for
the electromagnetic signal based distance measurement, the authors propose a geometric
cooperative technique with RSS and TOF based range sen- sors. The introduced technique
is combined with a recursive least squares (RLS)-based adaptive localization scheme and
an adaptive motion control law, in order to perform adaptive target localization robust
to uncertainties in environmental signal propagation coefficients. This approach is applied
to the problem of tracking biomedical robotic capsules for gastro-intestinal endoscopy and
medication applications in [6].

The above approaches all utilize sensor units providing geometric measurements, such
as distance, bearing, distance difference, directly related to relative position of the target
or the signal source. In many applications, as opposed to distance/direction measurement,
RSS is used to estimate the gradient of the unknown signal field of interest and locate the
extremum point where the gradient of the field is zero. RSS approach can be defined as
measuring the signal strength emitted by the source. The source could be a point of chemi-
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cal contamination and the signal would be the chemical’s concentration in the environment,
for instance. Alternatively, the source could be a radio transmitter and the signal would
be a radio frequency transmission. In [1], control of a mobile sensor network is studied to
perform a gradient climbing task in an environment with an unknown potential field using
noisy measurements of the field partially decoupling the formation stabilization problem
from the gradient climbing mission. In [30] control laws are proposed to distributively
self-steer a circular vehicle formation towards the source of a signal field using only direct
measurements of that signal at individual locations of the vehicles. In [31], similar to [30],
the authors propose a combination of a cooperative control law to stabilize the agents to a
circular formation and a distributed consensus-based source-seeking algorithm and exam-
ine the performance of algorithm for different cases such as asynchronous communication
between agents, noisy measurements, multiple or time-varying sources. In [32], the authors
study a combined formation acquisition and cooperative extremum seeking control scheme
for a team of three robots moving on a plane in order to find the extremum point of an
unknown signal field by on-board signal measurement.

2.2 Extremum Localization

Localization task can be conveniently accomplished using a small number of measurements
without noise. But, noise in signals is inevitable in practice, hence, agents need to possess
an estimator to compensate the uncertainties due to measurement noise as well as the
source’s motion, which can be studied under adaptive target localization. A source position
estimation algorithm is proposed in [26, 27, 28], where the agent is able to measure its
distance to the source location. It is shown that this estimation algorithm is exponentially
stable under a persistent excitation (PE) condition and robust to drifts in the source
location. It is also demonstrated in the simulation results of [26, 27, 28] that the algorithm
operates well in presence of sensor noise as well.

In [29], to compensate uncertainties in signal permittivity and path loss coefficients for
the electromagnetic signal based distance measurement, the authors propose a geometric
cooperative technique with RSS and TOF based range sensors. The introduced technique
is combined with a recursive least squares (RLS)-based adaptive localization scheme and
an adaptive motion control law, in order to perform adaptive target localization robust
to uncertainties in environmental signal propagation coefficients. This approach is applied
to the problem of tracking biomedical robotic capsules for gastro-intestinal endoscopy and
medication applications in [6].

The majority of the extremum localization strategies proposed in the current literature
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exploit the measurements collected by a group of mobile robots to estimate properties of
the signal, such as the model parameters of the scalar field of interest or its gradient. There
are several approaches to estimate the gradient of a signal, such as extremum seeking tech-
niques [33], least-squares methods [34, 35], consensus-based parametric algorithms [36],
and cooperative Kalman filters [37]. However, all these strategies do not explicitly quan-
tify the quality of the estimation algorithm nor the impact of measurement noise and at
best, the performance is analyzed only in simulation. Such error analysis is of paramount
importance in practical applications to properly design formation shapes or exploration
strategies [38]. Such analysis is often avoided in the literature since no specific formation
patterns of the robots are enforced, thus resulting in algorithms that are highly nonlinear
in the relative distance measures with high communication and computational complexity.
Only few works addressed the problem of multirobot source seeking in three-dimensional
(3-D) scenarios [39, 40] or proposed strategies to estimate the Hessian of the unknown
signal from noisy measurements [34, 41, 42].

In this master thesis, we first develop an adaptive Hessian estimation based extremum
localization scheme for a single sensory agent. Then, we extend the design for networks
of multiple sensory agents. The goal is adaptive Hessian estimation and extremum lo-
calization of a (signal) field F using (i) a single sensory agent that consistently measures
the intensity of F at its current location while moving and (ii) a network of multiple
such sensory agents. Beyond the existing literature, including [1, 30, 31, 32] , the aimed
contribution of these designs is three-folds: (1) On-line identification of more detailed in-
formation about the signal field F than just the extremum of it. (2) More accurate and
faster localization of the extremum utilizing this extra information. (3) Using multiple
agents, to distribute the motions to satisfy PE condition and to reduce the convergence
time. A more realistic scenario that includes the effects of modelling uncertainties in the
signal field and measurement noises will also be studied. Indoor experiments using a fleet
of ground mobile robots and an indoor localization system will be conducted to evaluate
the performance of the proposed adaptive localization algorithms.
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Chapter 3

Single Agent Adaptive Source
Localization

3.1 The Extremum Localization Problem

The main objective of the adaptive estimator design in this thesis is to produce an accurate
estimate of the location of the extremum(maximum) of a quadratic (signal field) function
F (·) : D −→ R, for a compact state (or location) domain D ⊂ Rm, formulated by

F (y) = c1 −
1

2
(y − x)T H (y − x) (3.1)

where c1 is an unknown positive constant and H is an unknown m×m positive definite
matrix. For m ∈ {2, 3}, (3.1) typically represents the strength of a signal emitted by a
source at location(state) x ∈ Rm measured by a sensory node at location (state) y ∈ Rm

[43, 44, 45]. The idea for using a quadratic function as a profile of the signal field is rooted
in the fact that any smooth function can be approximated locally by its Taylor expansion
near each extremum point. For a general nonlinear smooth function Fg(·), the gradient
∇Fg(y) will vanish at the extremum point y = x, we can write [46] :

Fg(x+ yr) = Fg (x) +
1

2
yTr ∇2Fg(x)yr + h.o.t (3.2)

where yr = y − x. The approximation (3.2) enables us to extract the gradient of the field
using averaging methods [47] and find the location of the extremum point. Assuming that
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Fg(·) is a positive concave signal field function, ∇2Fg(x) is negative definite and c1 and H
in (3.1) matches, respectively, with Fg(x) and −∇2Fg(x) in (3.2). For brevity, neglecting
the higher order terms ( h.o.t. ) in (3.2), we focus on the representation (3.1) in this thesis,
and formally define the extremum localization problem for this representation.

In order to devise an adaptive localization algorithm, we use the adaptive parameter
identification based framework proposed in [26, 27, 28]. We use the notation in [26] for
derivative operation and asymptotically equal signals: s denotes the derivative operator,
i.e., given a function f of time t, sf := ḟ = df/dt. 1

s+a
f(t) :=

∫ t
0
e−aτfτdτ . For two

vector functions f, g of the same dimension, f(·) ≈ g(·) if there exist λ,M such that
‖f(t) − g(t)‖ ≤ Me−λt for all t ≥ 0. Moreover, we use the following assumption for the
estimation of Hessian matrix parameters;

Assumption 3.1 The Hermitian matrix H satisfies the following:

1. Hii > 0 for all i = 1, · · · ,m.

2. H is strictly diagonally dominant which means |Hii| >
∑

i 6=j |Hij| for all i, j =
1, · · · ,m.

Lemma 3.1 The set SH of m×m symmetric real matrices P satisfying the two conditions
of Assumption 3.1 is convex. Furthermore, any P ∈ SH is positive definite.

Proof : For any arbitrary matrix pair P1, P2 ∈ SH , P = P1 + P2 satisfies both conditions
of Assumption 3.1, hence, P ∈ SH , establishing convexity of SH . For any given arbitrary
P ∈ SH , Theorem 6.1.10 of [48] implies that P is positive definite.

For the drift analysis, we utilize the following assumption;

Assumption 3.2 The agent trajectory y : R → Rm is twice differentiable, the source
trajectory x : R→ Rm is differentiable and there exist M1,M2,M3,M4, ε > 0 such that for
all t ∈ R

||y(t)|| ≤M1, ||ẏ(t)|| ≤M2, ||ÿ(t)|| ≤M3, (3.3)

||x(t)|| ≤M4, ||ẋ(t)|| ≤ ε. (3.4)

Problem 3.1 Consider the quadratic signal field function in (3.1). Suppose that a sensory
agent has access to the field measurement F (y) at its current location y. Design an adaptive
identification scheme to estimate the target location x at which F takes its maximum value,
and derive the conditions under which the estimate x̂(t) converges to x asymptotically.

8



3.2 The Adaptive Hessian Estimation and Localiza-

tion Scheme

In order to devise an adaptive localization algorithm, we use the adaptive parameter iden-
tification based framework proposed in [26, 27, 28]. We use the notation in [26] for the
derivative operation and asymptotically equal signals: s denotes the derivative operator,
i.e., given a function f of time t, sf := ḟ = df/dt. 1

s+a
f(t) :=

∫ t
0
e−aτfτdτ . For two

vector functions f, g of the same dimension, f(·) ≈ g(·) if there exist λ,M such that
‖f(t) − g(t)‖ ≤ Me−λt for all t ≥ 0. We derive a parametric model that is linear in
unknown parameters of the system, i.e., the elements of Hessian matrix H and the loca-
tion(state) x of the extremum. Noting that (3.1) is not linear parametric, we take time
derivative of (3.1) for this purpose. Assuming that x is constant, i.e., ẋ = 0, we obtain

Ḟ (y) =− ẏTH(y − x)

=− ẏTHy + ẏTHx

=− 1

2

d

dt

(
yTHy

)
+
d

dt

(
yT
)
Hx

=− 1

2

d

dt

(
H11y

2
1 + 2H12y1y2 + · · ·+H22y

2
2 + 2H23y2y3 + · · ·+Hmmy

2
m

)
+
d

dt

(
yT
)
Hx

(3.5)

which can be written as

Ḟ (y) = θ∗T
dΨ

dt
, (3.6)

θ∗ =

[
H11, H12, · · · , H1m, H22, · · · , Hmm, x

TH1, · · · , xTHm︸ ︷︷ ︸
xTH

]T
∈ R

m(m+3)
2 , (3.7)

Ψ =

[
−1
2
y21,−y1y2, · · · ,−y1ym, −12 y

2
2, · · · , −12 y

2
m, y

T

]T
∈ R

m(m+3)
2 , (3.8)

where Hi denotes the ith column (= transpose of the ith row) of H. In order to eliminate
need for explicit differentiation of the available signals, z(·) and φ(·) are introduced as the
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state variable filtered versions of F (·) and Ψ(·), respectively, as follows;

ξ̇1(t) = −aξ1(t) + F (y(t)), (3.9)

ξ1(0) = 0, (3.10)

z(t) = −aξ1(t) + F (y(t)), (3.11)

ξ̇2(t) = −aξ2(t) + Ψ(t), (3.12)

ξ2(0) = [0, . . . , 0]T ∈ R
m(m+3)

2 , (3.13)

φ(t) = −aξ2(t) + Ψ(t), (3.14)

for some a > 0. It can be seen in (3.9)–(3.14) that the measurements of the location (state)
y(t) of the sensory agent and the field intensity F (y(t)) at that location are sufficient to
generate the signals z(t) and φ(t).

Lemma 3.2 Suppose θ∗ ∈ R
m(m+3)

2 is a constant, and z(t), φ(t) are defined by (3.9)–(3.14)
with a > 0. Then there holds:

z(·) ≈ θ∗Tφ(·). (3.15)

Proof : Using (3.9)–(3.11), we obtain;

ż(t) + az(t) =
d

dt
{F (y (t))} , (3.16)

where a > 0. With operator notation, i.e., using s to denote the differentiator operator,

z(·) ≈ s

s+ a
{F (·)} . (3.17)

Similarly,

φ(·) ≈ s

s+ a
{Ψ(·)} . (3.18)

Therefore,

z(·) ≈ s

s+ a
{F (·)} ≈ 1

s+ a

{
θ∗T Ψ̇(·)

}
≈ θ∗T

s

s+ a
{Ψ(·)} ≈ θ∗Tφ(·). (3.19)

Using (3.15) as the linear parametric model, and (3.9)–(3.14) to generate the regressor
signals in this model, we design the following gradient based adaptive estimation algorithm
[49, 50] to identify θ∗:

10



˙̂
θ = γφ(z − θ̂Tφ), (3.20)

where θ̂ denotes the estimate of θ∗ and γ > 0 is a scalar design constant. To be able to
extract the information of the elements of H and the location(state) of the source (x) from
the estimation of θ∗, we consider the following partitioning of θ∗ and θ̂ :

θ∗ =

[
θ∗H
θ∗x

]
, θ̂ =

[
θ̂H
θ̂x

]
(3.21)

where θ∗H ∈ R
m(m+1)

2 is composed of the entries of θ∗ that are independent of x, θ∗x = Hx ∈
Rm, θ̂H and θ̂x are the estimates of θ∗H and θ∗x, respectively. Since all the elements of H

exist in θ∗H , we can form Ĥ (the estimate of H) from θ̂H . In order to obtain the estimate
x̂ of the source location (state) x, we utilize the definition of θ∗x to form the adaptive law

x̂ = Ĥ−1θ̂x. (3.22)

In order to implement (3.22), Ĥ needs to be guaranteed to be invertible. We guarantee
invertibility of Ĥ applying parameter projection to (3.20), utilizing Assumption 3.1.

Lemma 3.3 The set SH of m×m symmetric real matrices H satisfying the two conditions
of Assumption 3.1 is convex. Furthermore, any H ∈ SH is positive definite.

Proof : For any arbitrary matrix pair H1, H2 ∈ SH , H = H1+H2 satisfies both conditions
of Assumption 3.1, hence, H ∈ SH , establishing convexity of SH . For any given arbitrary
H ∈ SH , Theorem 6.1.10 of [48] implies that it is positive definite. �

To assure Ĥ is non-singular, we apply parameter projection on the elements of θ̂H in
consideration of Assumption 3.1 and (3.20) with the parameter projection is re-designed
as;

˙̂
θ = Proj

θ̂H∈SH

{γφ(z − θ̂Tφ)}, (3.23)

where the convex set SH is defined as the set of all vectors θ̂H such that the corresponding
m×mmatrix Ĥ satisfies Assumption 3.1, and Proj

θ̂H∈SH

{·} is the parameter projection operator

[49, 50] defined to maintain θ̂H in SH .
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Remark 3.1 If H is a diagonal matrix, the vectors θ∗ and Ψ in (3.7)–(3.8) can be redefined
in reduced form as follows:

θ∗ =

[
H11, · · · , Hmm, x

TH

]T
∈ R2m (3.24)

Ψ =

[
−1

2
y21, · · · ,

−1

2
y2m, y

T

]T
∈ R2m (3.25)

For a general case, since H is a symmetric matrix with real elements, we can deduce that
by choosing appropriate coordinates, we can diagonalize the matrix H and hence, design
the identification algorithm based on the reduced order model (3.15),(3.24),(3.25).

In the next section, we analyze the stability of the proposed adaptive estimation and
localization scheme.

3.3 Stability and Convergence

3.3.1 Stationary Extremum Localization

Note that the base adaptive law (3.20) and the adaptive law (3.23) with parameter pro-
jections can be rewritten, respectively, as

˙̃θ =
˙̂
θ = −γφφT θ̃, (3.26)

˙̃θ =
˙̂
θ = Proj

θ̂H∈SH

{−γφφT θ̃}, (3.27)

where θ̃ = θ̂−θ∗. Hence, the aimed convergence of the estimate θ̂ to actual θ∗ is equivalent
to the convergence of θ̃ to zero.

Theorem 3.1 Suppose θ∗ ∈ R
m(m+3)

2 is a constant. Consider z(t) and φ(t) defined in
(3.9)–(3.14), with a > 0. Then for each of the base adaptive law (3.26) and the adaptive
law (3.27) with parameter projection , there exist ρ1, ρ2, λ > 0 such that for all t ≥ 0 and
||θ∗(0)||

||θ̃(t)|| ≤ (ρ1||θ∗(0)||+ ρ2)e
−λt (3.28)

if and only if there exist α1 > 0, α2 > 0, T > 0 such that for all t ≥ 0

α1I ≤
∫ t+T

t

φ(τ)φ(τ)Tdτ ≤ α2I. (3.29)
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Proof : It is established in the literature (see, e.g., [51]) that (3.26) is exponentially asymp-
totically stable if and only if (3.29) holds. Moreover, it is proven in [50] that the parameter
projection does not affect the properties of the gradient adaptive laws deducted on the
Lyapunov analysis and it can only make the time derivative of Lyapunov function more
negative. Hence, (3.27) is also exponentially asymptotically stable if and only if (3.29)
holds. �

3.3.2 Drift in Extremum Location

The drift analysis in [26] can be applied here as well, without requiring significant modifi-
cations. Making the Assumption 3.2, we can introduce the following lemma.

Lemma 3.4 Under Assumption 3.2, for z(t) and φ(t) defined in (3.9)–(3.14), there exists
M5 : R≥0 → R≥0 such that for a suitable K1 depending only on M1,M2,M4 and a,

|z(t)− θ∗Tφ(t)| ≤M5(t), ∀t ≥ 0 (3.30)

and

M5(·) ≈ K1ε. (3.31)

Proof : Using the operator notation in the proof of Lemma 3.2, it is achieved that

z(·) ≈ s

s+ a
{F (·)}

≈ 1

s+ a

{
− (ẏ(·)− ẋ(·))T H (y(·)− x(·))

}
≈− s

s+ a

{
1

2
yT (·)Hy(·)

}
+

1

s+ a

{
1

2
ẏT (·)Hx(·)

}
+ f(·) (3.32)

where

f(·) =
1

s+ a

{
1

2
ẋT (·)H (y(·)− x(·))

}
. (3.33)

In consideration of Assumption 3.2, there exists a F ;R≥0 → R≥0, such that for all
t ≥ 0,

|f(t)| ≤ F (t) (3.34)
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and

F (·) ≈ M1 +M4

a
ε. (3.35)

Now, consider the second term in (3.32)

1

s+ a

{
1

2
ẏT (·)Hx(·)

}
≈ Q(·) (3.36)

where with C ∈ Rm,

Q(t) =e−at
∫ t

0

eaτ ẏT (τ)Hx(τ)dτ

=e−at

[(∫ τ

0

easẏ(s)ds+ C

)T
Hx(τ)

]t
0

− e−at
∫ t

0

(∫ τ

0

easẏ(s)ds+ C

)T
Hẋ(τ)dτ

=

[(∫ τ

0

e−a(t−s)ẏ(s)ds+ Ce−at
)T

Hx(τ)

]t
0

−G(t), (3.37)

G(t) =e−at
∫ t

0

(∫ τ

0

easẏ(s)ds+ C

)T
Hẋ(τ)dτ. (3.38)

Thus, as a > 0, and adding the first term in (3.32), we obtain

− s

s+ a

{
1

2
yT (·)Hy(·)

}
+Q(·) ≈ θ∗Tφ(·)−G(·). (3.39)

Moreover, from (3.38), it is obtained that

|G(t)| ≤ e−atM2λmax(H)ε

[
eat − 1

a2
+ t

(
||C|| − 1

a

)]
(3.40)

Then the result follows from (3.30)–(3.40). �

Then in the view of Theorem 3.1, we have the following result.

Theorem 3.2 Suppose Assumption 3.2 holds, and there exist α1, α2, T > 0 such that
∀t ≥ 0. Consider z(t) and φ(t) defined in (3.9)–(3.14). Then θ̂(t) in (3.23) obeys for some
K obtained from M1,M2,M4, γ, a, T, α1 and α2, lim supt→∞|θ̂(t)− θ∗(t)| = Kε.
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Proof : Due to (3.23) there holds

˙̃θ(t) =
˙̂
θ(t)− θ̇∗(t)

=γφ(t)(z(t)− θ̂T (t)φ(t))− θ̇∗(t)
=− γφ(t)φT (t)θ̃(t) + γφ(t)(z(t)− θ∗T (t)φ(t))− θ̇∗(t)
=− γφ(t)φT (t)θ̃(t) +G2(t) (3.41)

where

G2(t) = γφ(t)(z(t)− θ∗T (t)φ(t))− θ̇∗(t). (3.42)

Then because of Lemma 3.4, (3.4) and the fact that φ̂(·) is bounded, there exists a
K5 > 0 obtained from M1,M2M4, γ and a, and an M6 : R≥0 → R≥0, obeying M6(·) ≈ K5ε
such that |G2(t)| ≤M6(t)∀t ≥ 0. Hence the result follows from the exponential asymptotic
stability of (3.23). �

3.4 Simulation Results

In this section, we provide simulation results to exhibit the performance of the proposed
scheme in Section 3.2. For all examples, the state number, the adaptation gain and the
filter pole are selected as m = 2(considering the localization of extremum in 2-D plane.),
γ = 1 and a = 0.5, respectively and the signal field is formed as F (y) = 3−(y−x)H(y−x)

where the Hessian matrix is H =

[
1 0.2

0.2 2

]
.

Scenario 3.1 Assume the extremum location is at x =
[
1 2

]T
and the sensory agent’s

trajectory is given by y =
[
sin(4t) + sin(5t) sin(2t) + sin(3t)

]T
. Using the adaptive esti-

mation algorithm (3.23), the Hessian matrix and the source location estimates converge to
their actual values exponentially as seen in Figure 3.1.

Scenario 3.2 Consider the same conditions in Scenario 3.1, but with white noise with
variance(0.05) on F (t) measurement of the sensory agent. Figure 3.2 displays that the
localization is accomplished with some errors scaled with the noise magnitude.
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Scenario 3.3 There is a slow drift movement in the location of extremum as x(t) = [1 +
0.5 sin π

750
t, 2 + 0.5 sin π

750
t]T . As expected from Subsection 3.3.2, the simulation results in

Figure 3.3 show that the adaptive estimation algorithm in (3.23) is applicable for the drift
case.

Scenario 3.4 Combine the two circumstances in Scenarios 3.2 and 3.3. There is F (t)
measurement noise with variance(0.05) and drift in the location of extremum point as
x(t) = [1 + 0.5 sin π

750
t, 2 + 0.5 sin π

750
t]T . The simulation results in Figure 3.4 demonstrate

the adaptive estimation algorithm in (3.23) works well despite the extremum location drift
and noise in sensing.

3.5 Summary and Concluding Remarks

In Chapter 3, we have designed an adaptive scheme for Hessian estimation and extremum
localization of quadratic signal field functions by a sensory agent measuring the signal
intensity. The proposed scheme is effective in extracting more detailed information about
such signal fields and utilizes this information for more accurate and faster localization of
the extremum. The stability of the proposed adaptive estimation and localization scheme
has been proven for both stationary and slowly drifting extremum cases. Simulation results
are presented in the presence of realistic measurement noise and drift in extremum location
that exhibit the performance of the proposed scheme.

Implementation of the proposed scheme on cooperative systems of multiple mobile
sensory agents is studied in the next chapter.
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Figure 3.1: Location estimation for x(t) = [1, 2]T , y(t) = [sin(4t) + sin(5t), sin(2t) +
sin(3t)]T , a = 0.5.
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Figure 3.2: Location estimation for x(t) = [1, 2]T , y(t) = [sin(4t)+sin(5t), sin(2t)+sin(3t)].
Noise in sensing the signal intensity with variance(0.05).
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Figure 3.3: Location estimation for x(t) = [1+0.5 sin π
750
t, 2+0.5 sin π

750
t]T , y(t) = [sin(4t)+

sin(5t), sin(2t) + sin(3t)]T , a = 0.5.
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Figure 3.4: Location estimation for x(t) = [1+0.5 sin π
750
t, 2+0.5 sin π

750
t]T , y(t) = [sin(4t)+

sin(5t), sin(2t)+sin(3t)]T , a = 0.5. Noise in sensing the signal intensity with variance(0.05).
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Chapter 4

Multi Agent Adaptive Source
Localization

Before presenting the algorithm for the multi sensory agents, we introduce the graph the-
oretical notions, define the localization problem of interest, and review the PE property
in parameter identification. Here, we state the theorems and definitions in abridged form
and refer to [52] for full versions of these theorems. We represent a network of n agents
by a directed graph G = (V, ε) of order n, which consists of a vertex set V of n elements
and another set of edges, ε ⊂ V × V . We index the elements of the vertex set with
{1, ..., n}. A graph is called undirected if (j, i) ∈ ε whenever (i, j) ∈ ε. A weighted graph
is a triplet D = (V, ε, A) where A stands for weighted adjacency matrix which has the
following properties: for each i, j in the index set the entry aij = aji = 1 if (i, j) ∈ ε, and
aij = 0 otherwise. Furthermore, we assume that aii = 0 for all vertices. di denotes the
number of edges which is connected to the ith vertex. We introduce the following lemma
to use in the stability analysis.

Lemma 4.1 The Laplacian Matrix

L = diag(d1, · · · , dn)− A (4.1)

has the following properties

1. L1n = 0n, i.e. 1n is an eigenvector of matrix L which is associated with the zero
eigenvalue.

2. For a connected graph G, the eigenvalues λi, i ∈ {2, · · · , n} are strictly positive.
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Problem 4.1 Consider the quadratic signal field function in (3.1) and a network of N
sensory agents which communicate through an undirected network graph G = (V, E) with
vertex set V and edge set E. Suppose that each agent i = {1, · · · , N} has access to the
measurement F (yi) of the target field at its current location yi. Design a distributed identi-
fication scheme to estimate the target location x at which F takes its maximum value, and
derive the conditions under which the estimates x̂i(t) converges to x asymptotically.

4.1 The Adaptive Hessian Estimation and Localiza-

tion Scheme

The proposed distributed estimation algorithm is composed of n individual estimators,
each in the form of Section 3.2, and a distributed consensus algorithm to produce a single
common estimate x̂ of the target location x, based on the indivudual estimates x̂i, i =
1, . . . , N , of the agents.

To generate the individual estimates, the parametric modeling in Section 3.2 is followed.
For each agent i ∈ {1, . . . , N} similarly to (3.9)-(3.14), the regressor signals are generated
as follows:

ξ̇1i(t) = −aξ1i(t) + F (yi(t)), (4.2)

ξ1i(0) = 0, (4.3)

zi(t) = −aξ1i(t) + F (yi(t)), (4.4)

ξ̇2i(t) = −aξ2i(t) + Ψi(t), (4.5)

ξ2i(0) = [0, . . . , 0]T ∈ R
m(m+3)

2 , (4.6)

φi(t) = −aξ2i(t) + Ψi(t). (4.7)

The parametric models are obtained similarly to (3.15) as

zi(·) ≈ θ∗Tφi(·). (4.8)

Without introducing consensus,the individual estimator of agent with and without pro-
jection would be, respectively

˙̂
θi =γφi(zi − θ̂Ti φi), (4.9)

˙̂
θ = Proj

θ̂H∈SH

{γφi(zi − θ̂Ti φi)}, (4.10)
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In order to produce a common reliable estimate for all the agent, consensus is introduced
to (4.9) and (4.10), leading to the distributed estimator without parameter projection and
the distributed estimator with parameter projection

˙̂
θi = γφi

(
zi − θ̂>i φi

)
+
∑
j∈Ni

(θ̂j − θ̂i) (4.11)

where Ni denotes the set of neighbors of Agent i.To extract information of the elements

of H and the extremum location x, we partition θ̂i =
[
θ̂Hi θ̂xi

]T
same as in (3.21), hence,

we obtain the estimate of the extremum location as;

x̂i = Ĥ−1i θ̂xi, (4.12)

where Ĥi is built using the entries of θ̂Hi Similar to the single agent case, a parameter
projection is used to guarantee that Ĥi is always invertible and (4.11) is modified as
follows:

˙̂
θi = Proj

θ̂Hi∈SH

{
γφi

(
zi − θ̂>i φi

)
+
∑
j∈Ni

(θ̂j − θ̂i)

}
. (4.13)

In the next section, we analyze the convergence properties of (4.13).

4.2 Stability and Convergence Analysis

(4.11), (4.13), respectively, imply

˙̃θi =− γφiφ>i θ̃i +
∑
j∈Ni

(θ̃j − θ̃i), (4.14)

˙̃θi = Proj
θ̂Hi∈SH

{
−γφiφ>i θ̃i +

∑
j∈Ni

(θ̃j − θ̃i)

}
, (4.15)

where θ̃i = θ̂i − θ∗. Next, using the stack vector Θ̃ = [θ̃>1 , · · · , θ̃>n ]> and the definition of
the Laplacian matrix, (4.14), (4.15), respectively, can be rewritten as
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d

dt
Θ̃ = −(L⊗ In)Θ̃− γΩΘ̃, (4.16)

d

dt
Θ̃ = Proj

θ̂H∈SH

{
−(L⊗ In)Θ̃− γΩΘ̃

}
, (4.17)

where

Ω =

 φ1φ
>
1 · · · 0

... · · · ...
0 · · · φnφ

>
n

 . (4.18)

The following lemma summarizes the main results we establish for (4.16):

Lemma 4.2 Suppose that the directed graph G is connected and Assumption 3.2 holds.
Then the adaptive law (4.11) guarantees the following:

1. The signals θ̂i are bounded for all i = 1, . . . , n and for all t ≥ 0.

2. For all i, j, θ̂j(t)− θ̂i(t) converges to 0 as t→∞.

3. If there exist positive real numbers α1, α2 > 0, T > 0 such that for all t ≥ 0

α1I ≤
∫ t+T

t

n∑
i=1

φi(τ)φ>i (τ)dτ ≤ α2I (4.19)

holds, then θ̃i(t) = θ̂i(t)− θ∗ asymptotically converges to 0 as t→∞.

Proof The result is a direct corollary of Theorem 1 of [53].

Conjecture 4.1 The estimation algorithm (4.13) with the defined projection possesses all
the properties of (4.11) that are established in Lemma 4.2 and in addition guarantee that
θ̂Hi(t) ∈ SH for all t ≥ 0, provided θ̂Hi(0) ∈ SH and θ∗H ∈ SH

Proof The proof will be along the relevant analyses in [49, 50]. The effect of consensus
however needs to be studied yet.

Remark 4.1 (4.19) forms an idea of collective PE. For the network with a single agent,
(4.19) reduces to (3.29) which is adequate to achieve θ∗ convergence as in (3.23) where the
extra consensus term in (4.13) has no role.

Remark 4.2 Even if not all φi are persistently exciting, a few of them are sufficient for
(4.19) to hold due to its linearity of the integral. Moreover, persistence of excitation for
(4.19) can be achieved when sum of each agent’s motion satisfy the case for a single agent.
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4.3 Simulation Results

In this section, we present the simulation results of the proposed adaptive Hessian esti-
mation algorithm for both single and multi sensory agents. We first set up the simulation
using a field function with elliptical level sets of the form in plane (m = 2);

F (y) = F ∗ − (y − x)>H (y − x) . (4.20)

where F ∗ = 3, x =

[
3
2

]
, H =

[
1 0.2

0.2 2

]
.The control gains values used for all simulations

are a = 0.5, Γ = 5I. There are different scenarios we simulate to compare the performances
of the single agent and the multi-agent cases.

Scenario 4.1 (single-agent): Assume the sensory agent’s trajectory is as following

y1 =
[
sin 2t+ 1 sin 3t+ 1

]>
.

Using the adaptive estimation algorithm (3.23), the Hessian matrix and the source location
estimates converge to their actual values exponentially as seen in Figure 4.1.
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Scenario 4.2 (multi-agent): Assume a sensory agent moves in a trajectory as in Scenario
4.1. Now, we add 2 sensory in the network of agents where all the agents are connected each

other. The trajectories of those agents are as y2 =
[
−1 sin 4t+ 1

]>
, y3 =

[
sin t− 1 1

]>
.

Figure 4.2 displays that the localization is accomplished. When the results of the sim-
ulations for Scenarios 4.1 and 4.2 are compared, it can be seen that using multi-agent
algorithm helps to localize the extremum faster.

Scenario 4.3 (single-agent): Assume the sensory agent’s trajectory is as following

y1 =
[
sin 2t+ 1 1

]>
.

Since the P.E. condition is not satisfied for the algorithm (3.23), the Hessian matrix and
the source location estimates do not converge to their actual values as seen in Figure 4.3.

Scenario 4.4 (multi-agent): Assume a sensory agent moves in a trajectory as in Scenario
4.3. Now, we add 2 sensory in the network of agents where all the agents are connected each

other. The trajectories of those agents are as y2 =
[
−1 sin 4t+ 1

]>
, y3 =

[
sin t− 1 1

]>
.

Figure 4.4 displays the results of the simulation. Contrary to Scenario 4.3, the localization
task is accomplished due to the fact that the P.E. condition is distributed among the
agents.

Scenario 4.5 (single-agent): Assume the same case in Scenario 4.1.Now, there is a slow

drift movement in the location of extremum as x(t) =
[
3 + 0.5 sin π

1000
t, 2 + 0.5 sin π

1000
t
]>

.
As expected from Subsection 3.3.2, the simulation results in Figure 4.5 show that the
adaptive estimation algorithm in (3.23) is applicable for the drift case.

Scenario 4.6 (multi-agent): Assume the same case in Scenario 4.2.Now, there is a slow

drift movement in the location of extremum as x(t) =
[
3 + 0.5 sin π

1000
t, 2 + 0.5 sin π

1000
t
]>

.
The simulation results in Figure 4.6 show that the adaptive estimation algorithm in (4.13)
is applicable for the drift case.
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Figure 4.1: Simulation Results of Scenario 4.1
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Figure 4.2: Simulation Results of Scenario 4.2
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Figure 4.3: Simulation Results of Scenario 4.3
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Figure 4.4: Simulation Results of Scenario 4.4
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Figure 4.5: Simulation Results of Scenario 4.5
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Figure 4.6: Simulation Results of Scenario 4.6
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4.4 Summary and Concluding Remarks

In Chapter 4, we have studies continuous time distributed adaptive extremum localization
of an arbitrary quadratic function F (·) via a network of multiple mobile sensory agents
based on Hessian estimation, as an extension of Chapter 3. A consensus term is added to
the base adaptive laws, distributed implementation of the estimation scheme introduced in
Chapter 3, to obtain enhanced estimation cooperatively. Stability and convergence analysis
of the proposed scheme is discussed, focusing on the effects of use of the cooperative multi-
agent setting on persistence of excitation of the regressor signals and robust convergence of
the Hessian parameter and location estimates to their true values. In particular, we have
shown that for a network of connected agents, the persistence of excitation requirements
can be distributed to the agents so that the requirement on each agent is more relaxed and
feasible.

Ongoing and future related research directions include experimentation of the proposed
scheme on indoor mobile robots, particularly QBot-2 ground robots [54].
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Chapter 5

Adaptive Steering Control of Agents
Towards the Source

In this chapter, we design an adaptive motion control scheme for steering a mobile sensory
agent moving in 2D towards the source of a signal field F (.) using the signal intensity the
agent continuously measures at its current location. The signal field F (.) is modeled to
be a quadratic function of location, and has its extremum (maximum) at the signal source
location x. The proposed adaptive control design is based on on-line estimation of the
Hessian parameters of F (.) and the extremum location in Chapter 3. Some simulation test
results are displayed to verify the established properties of the proposed scheme as well as
robustness to signal measurement noise.

5.1 Problem Definition

The main task of this chapter is to have a sensory agent A search for and move on the
plane towards a signal source located at an unknown position x ∈ R2. For the sake of
the extremum seeking algorithm, we consider a velocity integrator kinematic model of the
agent motion for the purpose of a control design to produce the required velocity v, as

ẏ(t) = v(t) (5.1)

where y(t), v(t) ∈ R2 are the position and velocity vectors of the agent, respectively.

The signal strength at any point y(t) due to the signal source at x is denoted by F (y),
where F (·) : R→ [0,∞) is an unknown function which satisfies the following assumptions,
similar to [32].
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Assumption 5.1 i The function F , its gradient ∇F =
[
∂1F ∂2F

]T
=
[
∂F
∂yx

∂F
∂yy

]T
,

and its Hessian ∇2F =

[
∂xxF ∂xyF
∂yxF ∂yyF

]T
=

[
∂2F
∂y2x

∂2F
∂yx∂yy

∂2F
∂yy∂yx

∂2F
∂y2y

]T
are continuous and the

entries of ∇2F are continuously differentiable.

ii The function F has a single maximum at point x ∈ R.

iii There exists a scalar MH > 0 s.t. ∀y ∈ R2, ||∇2F (y)|| ≤MH .

iv At x, ∇2F (x) is negative definite.

v There exists a scalar LH > 0 s.t. ∀y1, y2 ∈ R2, ||∇2F (y1)−∇2F (y2)|| ≤ LH ||y1 − y2||.

vi There exists a scalar GH > 0 s.t. ∀y1, y2 ∈ R2, ||∇2F (y1)−∇2F (y2)|| ≤ GH .

Next, we formulate the adaptive steering control problem explained above.

Problem 5.1 Consider a signal field F (·) which satisfies Assumption 5.1. Suppose that a
sensory agent A with motion kinematics (5.1) has continuous access to the field measure-
ment F (y) at its current location y. Design an adaptive identification scheme to estimate
the target location x at which F takes its maximum value, and an adaptive motion con-
trol scheme to steer the agent A to the target location x, i.e., to have y(t) asymptotically
converge to x.

5.2 Proposed Adaptive Extremum Seeking Control

Scheme

We approach Problem 5.1 using a parameter identifier based adaptive control framework
[50], formulating the localization of the source by the mobile agent A as a parameter iden-
tification problem and designing gradient and RLS based adaptive localization algorithms
to produce the estimate x̂ of the source location of x, as in [55]. This estimate is fed to
the adaptive motion control law of the agent A, which is designed in a way to move the
mobile agent towards x̂.

The structure of the proposed extremum seeking control scheme is shown in Figure
5.1. Designs of the two key components of the proposed scheme, the adaptive extremum
localization algorithm and the motion control law, are explained in detail in Section 5.3
and Section 5.5, respectively.

35



Agent Kinematics &
Signal Measurement

Adaptive Extremum
Localization

Motion
Control Law

F (y)
v

y

x̂

F (y)

y

Figure 5.1: Structure of the proposed extremum seeking control scheme.

5.3 Adaptive Extremum Localization

For adaptive extremum localization, we use the adaptive Hessian estimation and local-
ization scheme designed in Chapter 3. For a general nonlinear smooth function F (·), its
gradient ∇F (y) will vanish at the extremum point, we can write [46]:

F (y) = F (x) +
1

2
(y − x)T∇2F (x)(y − x) + h.o.t. (5.2)

where y and x are the locations of the agent and the source, respectively. Using (5.2) and
neglecting the h.o.t. , we derive a parametric model that is linear in unknown parameters
of the system, i.e., the elements of Hessian matrix H and the location(state) x of the
extremum as in [55]. Approximating F (y) as a quadratic function such that

F (y) ≈ c1 −
1

2
(y − x)T H (y − x) (5.3)

and taking time derivative of (5.3) with the assumption of constant x, we get

Ḟ (y) ≈− ẏTH(y − x) = −ẏTHy + ẏTHx

=− 1

2

d

dt

(
yTHy

)
+
d

dt

(
yT
)
Hx

=− 1

2

d

dt

(
H11y

2
1 + 2H12y1y2 +H22y

2
2

)
+
d

dt

(
yT
)
Hx (5.4)

which can be written as

Ḟ (y) ≈ z̄(t) = θ∗T
dΨ

dt
, (5.5)
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θ∗ =

[
H11, H12, H22, x

TH1, x
TH2︸ ︷︷ ︸

xTH

]T
∈ R5, (5.6)

Ψ =

[
−1
2
y21,−y1y2, −12 y

2
2, y

T

]T
∈ R5, (5.7)

where Hi denotes the ith column (= transpose of the ith row) of H. We propose the
following base gradient algorithm to generate the estimate θ̂ of θ∗:

˙̂
θ(t) = γ

(
z̄(t)− ˆ̄z(t)

)
φ̄(t)

ˆ̄z(t) = θ̂>(t)φ̄(t) (5.8)

It is well known that in (5.8), θ̂(t) converges exponentially to θ∗, provided φ̄(t) is sufficiently
persistently exciting. In order to eliminate need for explicit differentiation of available
signals, z(·) and φ(·) are introduced as the state variable filtered versions of F (·) and Ψ(·),
as given in (3.9)–(3.14), but constrained to the specific case for ”m=2”.

Using (3.15) as linear parametric model, and (3.9)–(3.14) to generate the regressor
signals in this model, we design the following gradient based adaptive estimation algorithm
[50, 49] to identify θ∗:

˙̂
θ = γφ(z − θ̂Tφ), (5.9)

where θ̂ denotes the estimate of θ∗ and γ > 0 is a scalar design constant. To extract
the information of the elements of H and the location(state) of the source (x) from the
estimate of θ∗, we consider the partitioning of θ∗ and θ̂ in (3.21) ;

We generate the estimate x̂ of the source location x, utilizing the equality θ∗x = Hx, as

x̂ = Ĥ−1θ̂x. (5.10)

In order to implement Ĥ in (5.10), Ĥ is required to be non-singular. This requirement is
met applying parameter projection, assuming that H satisfies Assumption 3.1 for m = 2.

To assure that Ĥ is non-singular, we apply parameter projection on the elements of θ̂H
based on Assumption 3.1, and (5.9) is modified to apply parameter projection as;

˙̂
θ = Proj

θ̂H∈SH

{γφ(z − θ̂Tφ)}, (5.11)
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where the convex compact set SH is defined as the set of all vectors θ̂H = [Ĥ11, Ĥ12, Ĥ22]
T

such that the corresponding 2 × 2 matrix Ĥ satisfies Assumption 3.1 for m = 2, and
Proj
θ̂H∈SH

{·} is the parameter projection operator [49, 50] defined to maintain θ̂H in SH .

In the next section, we introduce an alternative adaptive extremum seeking scheme
which uses Least Square(LS).

5.4 LS-based Extremum Seeking

In the alternative to the gradient based adaptive estimation algorithm (5.9) and (5.11), we
propose the one based on LS as follow;

˙̂
θ(t) = P (t)φ(z(t)− θ̂Tφ(t)), (5.12)

Ṗ (t) = ΓP (t)− P (t)φ(t)φ(t)>P (t) (5.13)

where Γ > 0 is the fixed forgetting factor and P (0) > 0 is the design matrix defining the
scake of the pnalty on deviation from the initial estimate.

The LS based algorithm has the same stability and convergence properties as a gradient
algorithm in Section 5.3. Its main advantage is to be capable of being fine-tuned for faster
settling and or being less sensitive to measurement noises which make it more useful for
the motion control law defined in the next section.

5.5 The Motion Control Law

The motion control law of the proposed extremum seeking control scheme depicted in
Figure 5.1 is designed similarly to [27], with one main component aiming to drive y(t) to
the estimate x̂(t) of the target location x and one auxiliary component used to provide the
PE level required in Theorem 3.1, as follows:

ẏ(t) = ˙̂x(t)− β (y(t)− x̂(t)) + ε (F (y)) ya(t) (5.14)

where x̂ is the position estimate of the source generated by (5.10) in Section 5.3 together
with (5.9) or (3.23), or (5.12) β > 0 is a control gain constant. The auxiliary control signal
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is formed as

ε (F (y)) ya(t) ∈ R2, (5.15)

ya(t) = σ̇1(t) + σ̇2(t) + σ̇3(t), (5.16)

with

σ̇i(t) = Aiσi(t) for i = 1, 2, 3,

Ai = ci

[
0 1
−1 0

]
, (5.17)

where c1, c2, c3 are distinct positive numbers defining 3 distinct frequencies of ya(t), making
it sufficiently rich of order 6 [50] which is one more than the size of the unknown constant
parameter vector θ∗, so that the PE condition (3.29) of Theorem 3.1 is satisfied and

ε(F (y)) = F̄ − F (y) (5.18)

is used to attenuate the effect of the auxiliary signal as the agent comes closer to the
source, where F̄ is a known upper bound of F (y(t)) satisfying F̄ ≥ F ∗ = F (x). with the
assumption that such upper bound is known.

The design idea of (5.14), (5.16) and (5.18) are inspired from Eqs. (3.1), (3.2) and
(3.3) of [27], the difference comes from the kind of measurement, such that [27] uses the
measurement of relative distance ‖y − x‖ to the source, while we use the signal strength
F (y) measured at agent location y.

The selection of the auxiliary signal ya(t) in the form of (5.16) is to provide PE for
estimation of θ∗. This is guaranteed along the following properties of (5.16), (5.17).

Lemma 5.1 The auxiliary signal components (5.16), (5.17) satisfy the following:

1. Ai is skew-symmetric.

2. σ̇i in (5.17) is PE for any arbitrary nonzero initial value σi(0) such that there exist
positive T, α1, α2 > 0 for all t ≥ 0 to hold

α1||σ(0)||2I ≤
∫ t+T

t

σ̇(τ)σ̇(τ)>dτ ≤ α2||σ(0)||2I. (5.19)

3. For every θ ∈ Rn, and every t ∈ R+, there exists t1(t, θ) ∈ [t, t+ T1], dependent on θ
and t, such that θ>σ̇(t1(t, θ)) = 0.

4. Along Lemma 3.1 of [27], considering Ai is skew-symmetric, ||σ(t)|| = ||σ(0)|| for all
t ≥ 0.
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5.6 Simulation Results

In this section, we provide simulation results to exhibit the performance of the proposed
scheme in Section 5.2. For all examples, γ = 1 and a = 0.5, respectively and the signal

field is formed as F (y) = 3− (y−x)H(y−x) where the Hessian matrix is H =

[
1 0.2

0.2 2

]
.

Scenario 1: Assume the extremum location is at x =
[
1 2

]T
. Using the adaptive

estimation algorithm (5.11), and the motion control law in (5.14), the sensory agent can
be steered to the source’s location as seen in Figure 5.2.

Scenario 2: Consider the same conditions in Scenario 1, but with white noise with vari-
ance(0.05) on F (t) measurement of the sensory age. Again, using the adaptive estimation
algorithm (5.11), and the motion control law in (5.14), the sensory agent can be steered to
the source’s location as seen in Figure 5.3.

5.7 Summary and Concluding Remarks

In Chapter 5, we have designed an adaptive motion control scheme for steering a mobile
sensory agent in 2D toward the source of a signal field F (·) using the signal intensity the
agent continuously measures at its current location. The use of the localization scheme
designed in Chapter 3 and its least-squares version is effective in extracting more detailed
information about such signal fields and utilizing this information in more accurate and
faster steering of the agent to the extremum. The stability of the proposed adaptive esti-
mation and localization scheme and motion control law has been justified by the presented
simulation results, as well as the robustness to measurement noises and the performance
of the proposed scheme.

Ongoing and future related research directions include implementing the proposed
scheme on autonomous vehicle and cooperative extensions of the design where more than
one sensory agent are utilized.
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(b) The position y of the agent A

Figure 5.2: Location estimation for x(t) = [3, 2]T , a = 0.5.
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Figure 5.3: Location estimation for x(t) = [3, 2]T , a = 0.5. Noise in sensing the signal
intensity with variance(0.05).

42



Chapter 6

Conclusion

In this thesis, robust and practical adaptive extremum localization algorithms have been
proposed for extremum localization of an arbitrary quadratic function F (·) based on Hes-
sian estimation, using the measured signal intensity via a single mobile sensory agent as
well as a network of multiple such agents. The function F (·), in practice, represents a
signal field with a source located at the maximum point of F (·). Gradient and least-
squares based adaptive Hessian parameter estimation and extremum localization schemes
have been developed considering a linear parametric model of field variations. For the
networked multi-agent case, a consensus term is added to the base adaptive laws to obtain
enhanced estimation cooperatively. Stability and convergence analysis of the proposed
scheme is provided for the single agent case, establishing asymptotic convergence of the
Hessian parameters and the location estimate to their true values robustly, provided that
the motion of the agent satisfies certain persistence of excitation (PE) conditions. For the
case with a network of connected agents, similar results are partially established formally
and justified via numerical solutions. Further for the multi-agent setting, it is demon-
strated that the PE requirements can be distributed to the agents so that the requirement
on each agent is more relaxed and feasible.

The potential future research directions include formal proof of the conjectural analysis
results for multi-agent settings, further study of the optimality and optimization of the
proposed adaptive algorithms and schemes, analysis of the effects of non-ideal character-
istics of real-life signal fields and uncertainties and deviations from the assumed models.
Another particular future research topic is real-time experimentation with mobile ground
vehicles, particularly QBot-2 ground robots [54].

Later, an adaptive motion control scheme has been designed for steering a mobile
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sensory agent in 2D toward the source of the signal field modeled by F (·), using the
signal intensity the agent continuously measures at its current location. The Hessian based
localization scheme designed in the earlier part of the thesis is utilized to effectively extract
more detailed information about such signal fields and to provide accurate and faster
steering of the agent to the extremum. Simulation results are presented in the presence of
realistic measurement noise that exhibit the performance of the proposed scheme.
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[6] Ilknur Umay and Barış Fidan. Adaptive wireless biomedical capsule tracking based on
magnetic sensing. International Journal of Wireless Information Networks, 24(2):189–
199, 2017.

[7] Ali H Sayed, Alireza Tarighat, and Nima Khajehnouri. Network-based wireless loca-
tion: challenges faced in developing techniques for accurate wireless location informa-
tion. IEEE Signal Processing Magazine, 22(4):24–40, 2005.

[8] Adrian N Bishop, Baris Fidan, Brian DO Anderson, Kutluyil Dogancay, and Pub-
udu N Pathirana. Optimality analysis of sensor-target localization geometries. Auto-
matica, 46(3):479–492, 2010.

[9] Hyeonwoo Cho and Sang Woo Kim. Mobile robot localization using biased chirp-
spread-spectrum ranging. IEEE Trans. Industrial Electronics, 57(8):2826–2835, 2010.

45



[10] Ulf Larsson, Johan Forsberg, and Ake Wernersson. Mobile robot localization: inte-
grating measurements from a time-of-flight laser. IEEE Trans. Industrial Electronics,
43(3):422–431, 1996.

[11] Dragos Niculescu. Positioning in ad hoc sensor networks. IEEE Network, 18(4):24–29,
2004.

[12] Richard Klukas and Michel Fattouche. Line-of-sight angle of arrival estimation in the
outdoor multipath environment. IEEE Trans. Vehicular Technology, 47(1):342–351,
1998.

[13] Li Cong and Weihua Zhuang. Hybrid tdoa/aoa mobile user location for wideband
cdma cellular systems. IEEE Trans. Wireless Communications, 1(3):439–447, 2002.

[14] William A Gardner and Chih-Kang Chen. Signal-selective time-difference-of-arrival
estimation for passive location of man-made signal sources in highly corruptive en-
vironments. i. theory and method. IEEE Trans. Signal Processing, 40(5):1168–1184,
May 1992.

[15] Xinrong Li. Rss-based location estimation with unknown pathloss model. IEEE Trans.
Wireless Communications, 5(12), 2006.

[16] Dan Li, Kerry D Wong, Yu Hen Hu, and Akbar M Sayeed. Detection, classification,
and tracking of targets. IEEE Signal Processing Magazine, 19(2):17–29, 2002.

[17] Wade H Foy. Position-location solutions by taylor-series estimation. IEEE Transac-
tions on Aerospace and Electronic Systems, (2):187–194, 1976.

[18] Julius Smith and Jonathan Abel. Closed-form least-squares source location estimation
from range-difference measurements. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 35(12):1661–1669, 1987.

[19] Vue Qi, Pan Luo, XU Cheng, Jiawang Wan, and Jie He. Target localization in indus-
trial environment based on toa ranging. In 2019 28th Wireless and Optical Commu-
nications Conference (WOCC), pages 1–5. IEEE, 2019.

[20] Peng Rong and Mihail L Sichitiu. Angle of arrival localization for wireless sensor
networks. In 2006 3rd annual IEEE communications society on sensor and ad hoc
communications and networks, volume 1, pages 374–382. Ieee, 2006.

46



[21] Pawe l Ku lakowski, Javier Vales-Alonso, Esteban Egea-López, Wies law Ludwin, and
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