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Summary

We consider the setting in which a categorical exposure variable of interest can only be measured
subject to misclassification via surrogate variables. These surrogate variables may represent the
classification of an individual via imperfect diagnostic tests. In such settings, a random number
of diagnostic tests may be ordered at the discretion of a treating physician with the decision to
order further tests made in a sequential fashion based on the results of preliminary test results.
Because the underlying latent status is not ascertainable these cheaper but imperfect surrogate test
results are used in lieu of the definitive classification in a model for a long-term outcome. Naive
use of a single surrogate or functions of the available surrogates can lead to biased estimators
of the association and invalid inference.Wepropose a likelihood-based approach for modeling the
effect of the latent variable in the absence of validation data with estimation based on an expec-
tation–maximization (EM) algorithm. The method yields consistent and efficient estimates and is
shown to out-perform several common alternative approaches. The performance of the proposed
method is demonstrated in simulation studies and its utility is illustrated by applying the proposed
method to the stimulating study on breast cancer.
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1 INTRODUCTION

Many scientific questions in medical research involve examining the association between an individ-
ual’s disease status, possibly given other covariates, on a longer-term response. Often, however, the
precise disease status can be difficult to determine and hence may be subject to misclassification.
Examples arise in psychiatry where mental disorders are difficult to classify (Grove et al., 1981),
rheumatology where joint and bone destruction can arise from different kinds of arthritis (Perrot et al.,
2012), and radiography where there can be poor images which made definitive diagnoses challeng-
ing (Meade et al., 2001). Approaches for dealing with misclassified covariates are well established
(Gustafson, 2003; Carroll et al., 2006; Buonaccorsi, 2010; Yi, 2016) but most methods require the
use of either a validation study (Greenland, 1988; Marshall, 1990; Holcroft and Spiegelman, 1999;
Morrissey and Spiegelman, 1999; Spiegelman et al., 2000) or a replication study (Rindskopf and
Rindskopf, 1986; Liu and Liang, 1991; Chu et al., 2009; Yi and He, 2017).

We consider the setting in which there is no formal validation or replication study in the tradi-
tional sense. In the setting of interest several diagnostic tests, each with non-zero false positive and
false negative error rates, may be ordered in a sequential stochastic manner. The outcomes of prior
diagnostic test results influence the probability that further diagnostic tests are ordered. Since they
are error-prone, naive use of any one of the test results in lieu of the true disease status, or use of a
classification rule based on the collection of error-prone test results, can lead to biased estimates of
the association between disease and the response. To address this, we jointly model the latent variable
for the disease status, the misclassification rates of the imperfect diagnostic tests, and the response
of interest. This multi-part model can lead to insight into the prevalence of the disease, the oper-
ating characteristics (i.e. sensitivity and specificity) of the different diagnostic tests, and consistent
estimates of the effects of interest.

The proposed method involves the conceptualization of a complete data set which contains infor-
mation on the latent covariate for the disease status; while this may be categorical we focus on the
case of a latent binary covariate. Conditional independence assumptions are carefully described along
with assumptions about the mechanism leading to the availability of the surrogate variables based on
the imperfect diagnostic test results. An expectation-maximization (EM) algorithm (Dempster et al.,
1977) is developed to facilitate estimation, where the maximization step can be easily implemented
using standard software provided that it can accommodate weights. This method yields consistent
and efficient estimates of the covariate effect, the operating characteristics of the diagnostic tests, and
the prevalence of the disease.

We organize the remainder of the paper as follows. In Section 2, we define the notation, write
the complete data likelihood function, and describe the details of the expectation step (E-step) and
maximization step (M-step) of the EM algorithm. The formulation can handle the setting in which
some diagnostic test results are not observed in some individuals. We also describe an alternative
two-stage estimation approach in which the first stage is directed at estimation of what may be viewed
as nuisance parameters related to the diagnostic test performance and the probability model for the
latent disease status. In Section 3, we assess the empirical performances of the estimators arising
from possible naive analysis along with those from the proposed method. In Section 4, we provide an
illustrative application on breast cancer data. Concluding remarks and topics for further research are
provided in Section 5.
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2 LIKELIHOOD, ESTIMATION AND INFERENCE

2.1 GENERAL MODEL FORMULATION

In what follows, we omit the subscript i indexing individuals and consider the contributions from
a single individual. Let Y denote a response of interest and consider the aim to model E(Y |Z,W )
where the response Y is an outcome observed after some specified period of follow-up, Z is a discrete
latent variable of prime interest which is defined at a baseline assessment, and W are additional
fixed covariates which are always observed and measured without error. The variable Z is taken
to be categorical here and may represent, for example, an indicator of the presence of a disease, or
the extent of damage resulting from disease. Such variables are often latent when it is difficult to
diagnose individuals or when the definitive diagnostic test is prohibitively expensive for routine use.
We consider the case in which there are potentially K surrogate variables available; we refer to these
as surrogates for Z since they may be helpful in inferring the latent state Z. They may represent the
results of screening tests, different physicians’ assessments, or random variables reflecting the results
of any other error-prone attempt at diagnosis. Let Xk denote the kth such variable, k = 1, . . . , K and
X = (X1, . . . , XK)′ denote the full K × 1 vector of potential surrogates for Z. Here, we assume X
and W do not share any elements; that is, while the latent Z and W may be associated and this may
induce an association between X and W , the model forX is specified conditionally only on the latent
value of Z under the assumption X ⊥ W |Z.

We consider the setting where the decision to take the particular surrogate measurements (i.e.
the elements of X) is made based on available information at the point when the covariates are
available. Since some elements of X may be unobserved we let Rk = I(Xk is observed), define
R = (R1, . . . , RK)′, and we use X◦ to denote the observed elements of X and Xm for the unob-
served elements of X . The complete data is denoted by D = {R, Y, Z,X,W} where Z and all
elements of X are observed, and D◦ = {R, Y,X◦,W} denotes the observed data.

Since W is always observed we can condition on it and define the observed data likelihood for a
generic individual as L ∝ P (R, Y,X◦|W ) which can be written using a selection model factorization
as

L =
∑
z

P (R|Y, Z,X◦,W )P (Y |Z,X◦,W )P (Z,X◦|W ) . (1)

We next lay out some conditional independence assumptions which lead to the models and likelihoods
of interest.

Assumption A1: R ⊥ Z,Xm|Y,X◦,W .

Assumption A1 allows us to factor the term P (R|Y, Z,X◦,W ) out of the sum in (1). This is a
reasonable assumption in the present setting since the decision to record values for additional elements
of X will typically be based on observable quantities recorded in the available Xk terms and W . We
discuss this further in Section 2.2 where we consider a further simplification. We also assume the
missing data process is non-informative in the sense that it shares no parameters with the models of
interest. Taken together these assumptions enable one to avoid modeling the missing data process.

Assumption A2 Y ⊥ X|Z,W .

Assumption A2 implies that if Z andW were observed, thenX would convey no additional useful
information for the model Y |Z,W ; this reflects the fact that X may be viewed as surrogates for Z.

Under these assumptions, we can focus on the partial likelihood obtained from (1) and given by

L ∝
∑
z

P (Y |Z,W )P (X◦|Z,W ) · P (Z|W ) , (2)
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which can be expressed alternatively as

L ∝ EZ{P (Y |Z,W )|X◦,W}P (X◦|W ) . (3)

The complete data log-likelihood ` = logL corresponding to (2) is∑
z

I(Z = z) [logP (Y |Z = z,W ) + logP (X◦|Z = z,W ) + logP (Z = z|W )] . (4)

We let β index the response model P (Y |Z,W ), ξ index the surrogate variable model P (X|Z,W ), ζ
index the model for the latent state P (Z|W ), and θ = (β′, ξ′, ζ ′)′. The contribution to the observed
data score vector from an individual can be written as

S(θ; θ) = (S ′1(β; θ), S ′2(ξ; θ), S
′
3(ζ; θ))′ ,

where

S1(β; θ) = EZ {∂ logP (Y |Z,W ; β)/∂β|D◦; θ} ,
S2(ξ; θ) = EZ {∂ logP (X◦|Z,W ; ξ)/∂ξ|D◦; θ} ,

and
S3(ζ; θ) = EZ {∂ logP (Z|W ; ζ)/∂ζ|D◦; θ} .

An expectation-maximization algorithm (Dempster et al., 1977) can be carried out by solving the
score equations iteratively so that if θr−1 is the estimate at the (r−1)st iteration, the following system
of equations is solved to obtain θr

S1(β; θr−1) = EZ

{
∂ logP (Y |Z,W ; β)/∂β|D◦; θr−1

}
= 0 ,

S2(ξ; θ
r−1) = EZ

{
∂ logP (X◦|Z,W ; ξ)/∂ξ|D◦; θr−1

}
= 0 ,

S3(ζ; θr−1) = EZ

{
∂ logP (Z|W ; ζ)/∂ζ|D◦; θr−1

}
= 0 ,

where the sum of contributions from individuals is taken to be implicit here. These expectations
require computation of P (Z|Y,X◦,W ; θ), which is given by

P (Z|Y,X◦,W ; θ) =
P (Y |Z,W ; β)P (X◦|Z,W ; ξ)P (Z|W ; ζ)

EZ{P (Y |Z,W ; β)|X◦,W ;ψ}P (X◦|W ;ψ)
,

where ψ = (ξ′, ζ ′)′.
When all models are in the exponential family existing software can be used to solve the observed

data score equation with respect to θ to obtain θr. We repeat this iterative procedure until a pre-
specified convergence criterion is met, say, ‖θ̂r+1 − θ̂r‖ ≤ ε, where ε is a pre-defined tolerance. The
value at the last iteration is the maximum likelihood estimator (MLE) θ̂. The variance of θ̂ can be
estimated using the approach of Louis (1982) which allows us to extract the observed information
matrix from functions related to the complete data log-likelihood employed in the EM algorithm.
To be more specific, we let S(θ) and I(θ) denote the complete data score vector and information
matrix respectively based on the log-likelihood function ` in (4). We then note that since I(θ) =
E {I(θ)|D◦} − E {S(θ)S(θ)′|D◦}, we can estimate the covariance of θ̂ based on the observed data
information matrix I(θ) upon inserting the maximum likelihood estimate θ̂.
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2.2 THE MODEL FOR THE SURROGATE VARIABLES

We now discuss the process leading to the availability of surrogate measurements in more detail. We
suppose that the decision to observe more components of X depends on the observed components to
that point. This corresponds to the situation in which an individual may receive imperfect diagnostic
tests in an effort to determine their likely underlying state Z; investigators may choose to order more
imperfect tests depending on the outcome of previous tests but this can be done in an ad hoc manner
warranting a probability model for the process.

Under Assumption A1, P (R|Y, Z,X◦,W ) = P (R|Y,X◦,W ) but further simplifications may be
warranted. Since the decision on how many components of X should be measured is made at study
entry, the following stronger assumption is often reasonable.

Assumption A3: R⊥Y |X◦,W .

Under Assumptions A1-A3, (1) can be rewritten as

L ∝
∑
z

P (R|X◦,W )P (Y |Z = z,W )P (X◦|Z = z,W )P (Z = z|W )

=
∑
z

P (Y |Z = z,W )P (R,X◦|Z = z,W )P (Z = z|W ) .

Note that we have re-introduced consideration of the missing data vector R to outline further assump-
tions and give a careful presentation of the assumptions for the missing data process for the surrogate
variables. We assume that the surrogate variables are ordered corresponding to, for example, a se-
quence of diagnostic tests that may be requested by a treating physician. In particular, to reflect the
sequential nature of the testing, if we let R̄k = (R1, . . . , Rk)′ and X̄k = (X1, . . . , Xk)′, we assume that
the decision to order the kth test is based on a model of the form P (Rk = rk|R̄k−1 = 1k−1, X̄k−1,W )
where P (R1 = 1) = 1 and 1k−1 is a (k − 1)× 1 vector of ones. We may then write P (R,X◦|Z,W )
as

P (X1|R1 = 1, Z,W )
K∏
k=2

[
P (Xk|R̄k = 1k, X̄k−1, Z,W )RkP (Rk|R̄k−1 = 1k−1, X̄k−1, Z,W )

]Rk−1

from which we can focus on the partial likelihood

L(X◦, Z|R,W ) ∝
K∏
k=2

P (Xk|R̄k = 1k, X̄k−1, Z,W ; ξ)RkP (X1|R1 = 1, Z,W ; ξ)P (Z|W ; ζ) .

We may then write the partial likelihood as

L ∝
∑
z

P (Y |Z = z,W )L(X◦, Z = z|R,W ) . (5)

We explore the use of this likelihood in the simulation studies of Section 3 and the application in
Section 4. We first briefly discuss an alternative two-stage estimation procedure.

2.3 AN ALTERNATIVE TWO-STAGE ESTIMATION PROCEDURE

Note that we can also consider a two-stage estimation procedure in which the data from the surrogate
variables are used alone for estimation of ψ = (ξ′, ζ ′)′. For the measurements made on the elements
of X , we adopt a further conditional independence assumption.

Assumption A4: P (Xk|R̄k = 1k, X̄k−1, Z,W ) = P (Xk|Z,W ).
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This states that the latent state determines the marginal distribution of each element of X , that
there is conditional independence in the elements of X given Z, and that the availability of the pre-
ceding measures X̄k−1 does not affect the conditional probability P (Xk|Z,W ).

By Assumption A4, we can write

L(X◦|R,W ;ψ) ∝
∑
z

K∏
k=2

P (Xk|Z,W ; ξ)RkP (X1|Z,W ; ξ)P (Z|W ; ζ) . (6)

This partial likelihood does not attempt to exploit information from the response when estimating ψ
where ψ = (ξ′, ζ ′)′.

As pointed out by Walter and Irwig (1988) and Liu and Liang (1991), at least three surrogate
variables are required for some individuals for the parameters to be identifiable under the conditional
independence Assumption A4. In such a setting, an EM algorithm based on (6) is straightforward to
implement to obtain ψ̃. That is, one could focus on the complete data log-likelihood corresponding to
L(X◦|R,W ) in (6) as

∑
z

I(Z = z)

[
K∑
k=2

Rk logP (Xk|Z,W ) + logP (X1|Z,W ) + logP (Z|W )

]

and iterate following the EM algorithm to maximize L(X◦|R,W ) with respect to ψ and obtain its
MLE ψ̃. The E-step requires computation of P (Z|X◦,W ;ψ) which is given by

P (Z|X◦,W ;ψ) =
P (X◦|Z,W ; ξ)P (Z|W ; ζ)∑

z

P (X◦|Z = z,W ; ξ)P (Z = z|W ; ζ)
.

Again one can use the approach of Louis (1982) to get a covariance matrix for ψ̃.
The estimate ψ̃ can then be inserted in (5) to give L(β, ψ̃) which may be maximized with respect

to β to give a two-stage estimator β̃; variance estimation can be carried out as in Shih and Louis
(1995). Alternatively an EM algorithm could also be used for estimation to obtain β̃ by inserting ψ̃
into (5) and using the corresponding complete data likelihood to iteratively update βr by applying this
to S1(β; βr−1, ψ̃), where the E-step involves the computation of

P (Y |Z,W ; β)L(X◦, Z|R,W ; ψ̃)∑
z P (Y |Z = z,W ; β)L(X◦, Z = z|R,W ; ψ̃)

.

There would be efficiency and robustness tradeoffs with this approach, and we have focussed on
maximum likelihood estimation in this manuscript for reasons of efficiency.

3 SIMULATION STUDIES

Not all individuals in a study will be measured by a minimum ofK = 3 instruments. That is, Ki ≤ K
for some i = 1, . . . , n. It is easy to see that there are in total seven possible missing patterns for the
three surrogates of Zi. Here, we focus on a general scenario that often arises in clinical studies
representing a sequential missing pattern as in the stimulating study on breast cancer to be discussed
in Section 4. That is, response Yi, precisely observed covariate vector Wi and measurement by first
instrument Xi1 are observed for all subjects, i = 1, . . . , n. However, the probability of being assessed
by the second instrument and observing Xi2 depends on the observed data Xi1 and Wi. If a subject is
not assessed by the second instrument, they will not be measured by the third instrument. If a subject is
measured by the second instrument, the probability of being assessed by the third instrument depends
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on Xi1, Xi2 and Wi. This describes a missing at random mechanism for the surrogates (Rubin, 1976).
Here, a subject may have a higher probability of being measured by the other instruments when
the subject is measured positive or negative according to the previous instruments depending on the
particular study design and clinical practice. It results in a biased sub-sample if we restrict attention
to individuals measured by all instruments.

3.1 SIMULATION STUDIES INVOLVING COMPLETE SURROGATE DATA

Here, we conduct simulation studies to evaluate the empirical performances of the proposed method
for fitting logistic regression models involving misclassified covariates in the absence of validation
data where the surrogates are all available. Without losing generality, here we do not consider an aux-
iliary variable Wi, but focus on a regression model for Y |Z. For subject i, we first generate the binary
latent variable Zi as a Bernoulli random variable with P (Zi = 1) = exp(ζ)/(1 + exp(ζ))=0.25,0.50,
0.75. We then generate the binary response Yi with conditional probability P (Yi = 1|Zi = zi) =
exp(β0 + β1zi)/(1 + exp(β0 + β1zi)). We set β1 = log 1.5 so that the odds that the response is 1 is
50% higher when Zi = 1 vs Zi = 0. We determine the value of β0 to ensure P (Yi) = 0.25, 0.50, 0.75.
Let K = 3, we generate three conditionally independent surrogate values Xik, k = 1, 2, 3, given
Zi with specified sensitivity P (Xik = 1|Zi = 1) = αk and specificity P (Xik = 0|Zi = 0) = γk
which can be parameterized by vector ξk = (ξk0, ξk1)

′ through another logistic regression model
logitP (Xik = 1|Zi = zi; ξk) = ξk0 + ξk1zi; we let ξ = (ξ′1, ξ

′
2, ξ
′
3)
′. We investigate performance

with different misclassification rates for the surrogate variables. For simplicity, we set the same
sensitivity and specificity for all three surrogate measures (αk = α, γk = γ), k = 1, 2, 3 and set
α=γ=0.95,0.85,0.75.

Table 1: Empirical bias (EBIAS), empirical standard error (ESE), average model-based standard
error (ASE) and empirical coverage probability (ECP) for the estimates of β and ζ based on different
analysis with complete data on the surrogate variables when P (Y = 1) = 0.5, P (Z = 1) = 0.5,
n = 1000, nsim = 500.

β0 = −0.203 β1 = 0.405 ζ = 0

Method Detail EBIAS ESE ASE ECP EBIAS ESE ASE ECP EBIAS ESE ASE ECP

sensitivity = specificity = 0.95

ORACLE True Z 0.000 0.086 0.090 95.4 -0.003 0.125 0.127 95.2 -0.000 0.061 0.063 96.4

EM Full -0.000 0.087 0.091 96.2 -0.002 0.127 0.129 95.6 -0.001 0.063 0.065 96.2
EM Two-Stage 0.005 0.086 0.090 95.8 -0.013 0.124 0.127 95.4 -0.001 0.063 0.065 96.2

Naive X1 0.018 0.085 0.090 96.8 -0.040 0.123 0.127 93.8 -0.001 0.059 0.063 95.4
Ad Hoc Z∗ = I(X· ≥ 1) -0.000 0.092 0.097 96.6 -0.053 0.125 0.129 93.8 0.287 0.062 0.064 0.4

Z∗ = I(X· ≥ 2) 0.003 0.087 0.090 95.8 -0.008 0.126 0.127 95.0 -0.001 0.061 0.063 96.2
Z∗ = I(X· = 3) 0.049 0.080 0.084 92.0 -0.051 0.128 0.129 94.6 -0.287 0.062 0.064 0.6

sensitivity = specificity = 0.85

ORACLE True Z 0.000 0.086 0.090 95.4 -0.003 0.125 0.127 95.2 -0.000 0.061 0.063 96.4

EM Two-Stage 0.041 0.083 0.090 95.0 -0.085 0.114 0.127 92.0 0.001 0.096 0.092 94.2
EM Full -0.001 0.093 0.096 96.0 -0.000 0.144 0.143 94.6 0.000 0.095 0.092 94.6

Naive X1 0.060 0.087 0.090 91.4 -0.123 0.128 0.127 83.0 0.001 0.059 0.063 96.4
Ad Hoc Z∗ = I(X· ≥ 1) 0.002 0.108 0.115 97.4 -0.118 0.133 0.138 85.8 0.807 0.065 0.068 0.0

Z∗ = I(X· ≥ 2) 0.023 0.088 0.090 95.4 -0.049 0.128 0.127 92.6 -0.000 0.063 0.063 95.2
Z∗ = I(X· = 3) 0.113 0.075 0.076 69.2 -0.119 0.139 0.138 85.2 -0.808 0.067 0.069 0.0
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Five hundred datasets of size 500 or 1000 were simulated for each parameter configuration. Here,
the naive methods refer to the scenario that we simply ignore the issue of misclassification in the sur-
rogates and takeXik as the true latent variable Zi, k = 1, 2, 3, or naively consider them jointly to reach
a consensus to create a new ad hoc and fit the regression models directly. For example, researchers
may naively take the unknown Zi as positive if at least k of the three surrogate values are positive,
and otherwise negative, denoted by Z∗i = I(Xi· ≥ k), k = 1, 2, 3, where Xi· =

∑3
k=1Xik. The

proposed method in Section 2 is denoted by EM-Full, where the standard errors (SEs) are obtained
using Louis’s method (Louis, 1982). The performances of the different estimators are summarized
in Tables 1 to 2 in terms of the empirical bias (EBIAS), empirical standard error (ESE), average
model-based standard error (ASE) and empirical coverage probability (ECP), defined as the fraction
of simulations for which the sample confidence interval (CI) contains the true parameter value. Here,
Table 1 summarizes the simulation results for the parameter vector estimation corresponding to the
regression model and latent variable distribution. Table 2 is for the accuracy of the instruments.

If the instruments are relatively accurate, say, with 0.95 sensitivity and specificity, as shown in
the upper panel of Table 1, naively using one of them as the latent variable may provide only slighted
biased estimates of β and ζ indexing the regression coefficient and latent variable distribution, re-
spectively, but the estimates of ζ representing the evaluation of the instruments are severely biased
as shown in the left panel of Table 2. Given that we set the accuracy of all three participating instru-
ments the same and here we consider the case that all the surrogate values are available, only results
when naively treating X1 as Z are included in the tables. When the instruments are less accurate,
say, with 0.85 sensitivity and specificity as noted in the lower panel of Table 1 and the right panel
of Table 2, the estimates of β and ζ are more appreciably biased. Either way, naively assembling
the surrogate values accordingly to certain rules to reach a consensus and serve as the latent variable,
generally produces biased estimates of the parameters of interest especially when the accuracy of the
instruments are lower based on the results in Tables 1 and 2. The proposed full EM algorithm, is rel-
atively robust to the accuracy of the instruments. It gives comparable results to the analysis based on
the true latent variable with slightly larger standard errors. The empirical biases are generally small
though the standard errors increase slightly when the accuracy of the instruments decreases, and there
is good agreement between the empirical and average model-based standard errors and the empirical
coverage probabilities are compatible with the nominal 95% level.

3.2 SIMULATION STUDIES INVOLVING INCOMPLETE SURROGATE DATA

When simulating the missingness in the surrogate values, we mimic the sequential missing pattern as
discussed in the motivating study; see Section 4. That is, in a sample with n independent individuals,
we have three subsets

S1 = {i : D3i = (Yi, X
◦
i = Xi1, Ri = (1, 0, 0)′)′} ,

S2 = {i : D2i = (Yi, X
◦
i = (Xi1, Xi2)

′, Ri = (1, 1, 0)′)′} ,
S3 = {i : D1i = (Yi, X

◦
i = (Xi1, Xi2, Xi3)

′, Ri = (1, 1, 1)′)′} ,

with size n1, n2 and n3 and proportion p1, p2 and p3 respectively, where pj = nj/n, j = 1, 2, 3. To
be specific, we let P (Ri1 = 1) = 1, and logit P (Ri2 = 1|Ri1 = 1, Xi1 = xi1; a) = a0 + a1xi1
where a = (a0, a1)

′, a1 = log 1.50 so that when Xi1 is observed, the odds of having Xi2 observed
are 50% higher in the group where Xi1 = 1. We can determine a0 so that the proportion of subset
S3 and S2 is p3 + p2. Similarly, we set P (Ri3 = 0|Ri1 = 1, Ri2 = 0) = 1, and logit P (Ri3 =
1|Ri1 = 1, Ri2 = 1, Xi1, Xi2; b) = b0 + b1xi1 + b2xi2, where b = (b0, b1, b2)

′, b1 = b2 = log 1.25 so
that when Xi1 and Xi2 are both observed, the odds of having Xi3 observed are higher when at least
one of the first two instruments test positive. We solve for b0 to ensure the proportion of subset S3 is
p3, i.e., P (Ri3 = 1|Ri2 = 1, Ri1 = 1) = p3/(p3 + p2). We can set (p3, p2, p1) to different values to
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represent different amounts of missingness of the surrogates, say (0.50, 0.25, 0.25), (0.40, 0.30, 0.30)
and (0.30, 0.35, 0.35), or (1, 0, 0) to represent the case that there are no missingness in surrogates.

Table 3: Empirical bias (EBIAS), empirical standard error (ESE), average model-based standard
error (ASE) and empirical coverage probability (ECP) for the estimates of β and ζ based on differ-
ent analysis with incomplete surrogate data when P (Y = 1) = 0.5, P (Z = 1) = 0.5, sensitiv-
ity=specificity=0.95, n = 1000, nsim = 500.

β0 = −0.203 β1 = 0.405 ζ = 0

Method Detail EBIAS ESE ASE ECP EBIAS ESE ASE ECP EBIAS ESE ASE ECP

(p3, p2, p1) = (0.5, 0.25, 0.25)

Complete Case True Z 0.005 0.135 0.135 95.2 -0.008 0.181 0.181 95.4 0.226 0.086 0.090 27.4
Complete Case EM 0.004 0.136 0.136 94.8 -0.007 0.184 0.184 95.2 0.224 0.090 0.092 30.2
Full Data EM -0.000 0.088 0.092 96.4 -0.002 0.132 0.133 96.4 -0.002 0.071 0.070 95.0

(p3, p2, p1) = (0.4, 0.3, 0.3)

Complete Case True Z 0.003 0.150 0.154 96.6 -0.007 0.198 0.204 95.6 0.282 0.101 0.101 20.8
Complete Case EM 0.002 0.150 0.155 97.2 -0.004 0.200 0.207 96.0 0.279 0.105 0.103 21.8
Full Data EM -0.000 0.088 0.093 96.0 -0.002 0.132 0.134 95.8 -0.002 0.072 0.072 95.0

(p3, p2, p1) = (0.3, 0.35, 0.35)

Complete Case True Z 0.005 0.180 0.181 94.6 -0.001 0.240 0.236 95.4 0.338 0.116 0.117 17.4
Complete Case EM 0.005 0.183 0.182 94.8 -0.000 0.245 0.240 95.4 0.336 0.121 0.120 19.2
Full Data EM -0.001 0.087 0.093 96.6 -0.001 0.129 0.135 97.2 0.000 0.073 0.076 95.8

Table 4: Empirical bias (EBIAS), empirical standard error (ESE), average model-based standard
error (ASE) and empirical coverage probability (ECP) for the estimates of β and ζ based on differ-
ent analysis with incomplete surrogate data when P (Y = 1) = 0.5, P (Z = 1) = 0.5, sensitiv-
ity=specificity=0.85, n = 1000, nsim = 500.

β0 = −0.203 β1 = 0.405 ζ = 0

Method Detail EBIAS ESE ASE ECP EBIAS ESE ASE ECP EBIAS ESE ASE ECP

(p3, p2, p1) = (0.5, 0.25, 0.25)

Complete Case True Z 0.003 0.133 0.133 96.2 -0.008 0.179 0.181 95.4 0.175 0.086 0.090 48.2
Complete Case EM 0.004 0.147 0.144 95.0 -0.010 0.211 0.205 95.2 0.172 0.137 0.132 74.6
Full Data EM 0.001 0.096 0.101 97.4 -0.003 0.156 0.155 95.0 -0.004 0.128 0.120 94.4

(p3, p2, p1) = (0.4, 0.3, 0.3)

Complete Case True Z 0.003 0.147 0.151 96.4 -0.010 0.199 0.203 95.8 0.219 0.100 0.101 40.6
Complete Case EM 0.002 0.160 0.163 95.6 -0.005 0.230 0.230 95.6 0.214 0.156 0.148 68.2
Full Data EM 0.001 0.096 0.102 96.8 -0.004 0.157 0.157 94.8 -0.003 0.138 0.132 94.2

(p3, p2, p1) = (0.3, 0.35, 0.35)

Complete Case True Z 0.007 0.176 0.177 95.6 -0.010 0.240 0.235 95.4 0.265 0.116 0.117 37.8
Complete Case EM 0.006 0.200 0.192 93.4 -0.007 0.285 0.267 93.4 0.264 0.177 0.173 67.6
Full Data EM 0.000 0.099 0.104 97.2 -0.005 0.160 0.160 94.6 0.006 0.144 0.149 95.0

When surrogates are missing with a sequential pattern, different proportions of S1, S2 and S3
are set as in Tables 3, 4 and 5. The analysis based on the individuals with complete information
of all surrogates and the true latent variable information, confirms that the subset of complete cases
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represents a biased sub-sample. This is reflected by the biases in the parameter vector indexing the
latent variable distribution ζ and assessment of the instrument accuracy ξ. Here, higher accuracy of
the instruments and/or bigger missing proportions lead to bigger biases in the estimates of ζ as shown
in Tables 3 and 4, which is clear to see in Figure 1. Similarly, the proposed EM algorithm based
on the complete cases results in biased estimates of ζ and ξ. The biases for ζ are noticeably larger
with bigger missingness proportion when the accuracy of the instruments is fixed, so are they if the
identification tools are more accurate when the missing percentage is held the same. The proposed
method applied on the full data including individuals with missing surrogates, successfully resolves
the issue. It produces generally small empirical biases, closely agreed empirical and average standard
errors and empirical coverage probabilities around the nominal level of 95% though the associate
standard errors increase accordingly when the proportion of missingness increases with the same sets
of instruments. The bigger bias in ζ based on complete cases when the instruments are more accurate
is successfully addressed in the proposed method dealing with missingness in surrogates. Figure 1
gives clear visual display of the comparisons and good performance of the proposed method on the
estimation of the latent variable distribution in the absence of missingness in surrogates and in the
presence of it.
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Figure 1: Box plots of the estimates of ζ corresponding to the distribution of the latent variable from
different analysis in the absence or presence of missing data when P (Y = 1) = 0.5, P (Z = 1) = 0.5,
sensitivity=specificity=0.95 (upper panel) or 0.85 (lower panel), n = 1000, nsim = 500. Here, the
horizontal red lines running across the sub-figures correspond to true value ζ and solid blue dots show
the averages of the estimates.
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4 APPLICATION TO AN OBSERVATIONAL BREAST CANCER STUDY

A study of patients with breast cancer was carried out at the Tom Baker Cancer Centre, Calgary,
Canada (Feng et al., 2015, 2016). A sub-analysis involves a group of 235 individuals who were
diagnosed with early-stage breast cancer (stage I, II or III), had no chemotherapy and were treated
with Tamoxifen for hormone-receptor positive breast cancer (estrogen receptor positive or proges-
terone receptor positive) with negative human epidermal growth factor receptor 2 (HER2) status.
The goal is to investigate the association between potential risk factors and clinical outcomes in the
subgroup. In particular, researchers are interested in knowing whether the expression of a particu-
lar serine/threonine protein kinase ataxia telangiectasia mutated (ATM) in both tumor and cancer-
associated stromal is significant when adjusting for other prognostic factors including tumor grade,
tumor size, lymph node (LN) status, lymphovascular invasion (LVI) and age at cancer diagnosis. The
status outcomes of interest is whether patients die of breast cancer within five years of diagnosis. The
distribution of patients’ characteristics with respect to the outcome is summarized in Table 7. The
protein expression of ATM in both malignant tumor and stromal compartments are measured using
fluorescent immunohistochemistry and automated quantitative analysis (AQUA). The biomarkers are
measured by different number of labs in Alberta Health Service: three times on 80 (34.0%) patients,
twice on 80 (34.0%) patients and only once on 75 (31.9%) patients. The resulting continuous mea-
surements are discrepant and subject to measurement error. An AQUA score of 72.2 is used to further
dichotomize the patients into ATM high or lower groups. This cut-point is independently identified
by X-Tile software to avoid potential human bias (Camp et al., 2004). However, misclassification
and missingness in surrogates arises consequently: according the first lab, 123 (52.3%) are high ATM
and 112 (47.7%) are low ATM; according the second lab, 80 (34.0%) are high ATM, 80 (34.0%)
are low ATM and 75 (31.9%) are missing; according the third lab, 36 (15.3%) are high ATM, 44
(18.7%) are low ATM and 155 (66.0%) are missing. Table 6 further displays the joint results of the
ATM assessments from three labs indicating the sequential missing data pattern discussed before. The
methodology proposed in Section 2 is therefore suitable to address this challenge.

Tables 8 and 9 give the results of fitting multivariate models and applying different analysis on
complete cases (CCs) only without missingness in surrogates and available cases (ACs) including
subjects who are not measured by all three labs. The naive analysis considered include treating the
kth misclassification as the true classification and the ad hoc approach takes it as positive when at
least k surrogate values are positive otherwise negative, k = 1, 2, 3. We present the results based
on complete cases following the proposed EM algorithm in Section 2. We also follow the procedure
described in Section 2 on full data involving missingness in the surrogate values. The estimated odds
ratio with respect to patient status (deceased vs alive) and corresponding 95% CI are presented in
Table 8 where the significant effects are highlighted in boldface. We find that LN status is statistically
significantly associated with the outcome when adjusting for other risk factors in all analysis. The
effects of ATM and/or age at diagnosis are statistically significant in addition in some of the naive
analysis involving complete case analysis or available case analysis. ATM is not significant after
adjusting for all other five risk factors when applying the proposed method to complete case analysis
or available case analysis. The estimated proportion of high ATM, sensitivity and specificity of each
lab and the corresponding 95% CIs based on different approaches are available in Table 9. The
proposed method based on available case analysis produces narrower 95% CIs than those on complete
case analysis as shown in both tables. The point estimates of sensitivity of all three labs are high and
those of specificity are moderate, and they are associated with large variability possibly due to small
sample size and patient heterogeneity.
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Table 6: A 2× 3× 3 table on the joint results of the three labs providing some data on ATM assess-
ments.

Lab 1

Negative Positive
Lab 2 Lab 2

Lab 3 Negative Positive Missing Total Negative Positive Missing Total Total

Negative 34 3 0 37 5 2 0 7 44
Positive 6 3 0 9 3 24 0 27 36
Missing 28 9 29 66 4 39 46 89 155
Total 68 15 29 112 12 65 46 123 235

Table 7: Summary of patients’ characteristics with respect to status within 5 years of cancer diagnosis
due to breast cancer.

Death

Variable Category Yes No Overall

Tumor grade 1 or 2 180(86.1%) 16(61.5%) 196(83.4%)
3 29(13.9%) 10(38.5%) 39(16.6%)

Tumor size < 5cm 204(97.6%) 22(84.6%) 226(96.2%)
≥ 5cm 5(2.4%) 4(15.4%) 9(3.8%)

LN absent 166(79.4%) 10(38.5%) 176(74.9%)
present 43(20.6%) 16(61.5%) 59(25.1%)

LVI absent 173(82.8%) 12(46.2%) 185(78.7%)
present 36(17.2%) 14(53.8%) 50(21.3%)

Age at diagnosis < 65 years 110(52.6%) 5(19.2%) 115(48.9%)
≥ 65 years 99(47.4%) 21(80.8%) 120(51.1%)

Overall 209(88.9%) 26(11.1%) 235
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5 DISCUSSION AND FUTURE WORK

Here, we considered the issues in the analysis with misclassified covariates when there is no valida-
tion data and surrogate covariate data are incompletely observed. We proposed a likelihood-based
approach to jointly modeling the response, surrogate covariates, and the latent covariate of interest.
This likelihood is naturally optimized with an EM algorithm which yields estimates of the parameters
of primary interest as well as the parameters for the operating characteristics of the diagnostic tests
and the parameters indexing the probability model for the latent covariate. The proposed approach
offers an efficient and straightforward approach to estimation and inference and the performance is
relatively robust to the misclassification rates of the surrogate covariates and the sample size. The
simulation studies demonstrated that the methods we proposed out-performance naive analyses based
on the sub-sample of individuals with complete data on the surrogate methods since this results in a
biased sub-sample even under the missing at random mechanism we have formulated for the surrogate
covariates.

In the simulation studies, we have focused on the setting with a binary response and one binary co-
variate subject to misclassification. The proposed framework can be generalized naturally to accom-
modate different types of outcomes (e.g. censored or recurrent event responses) and multi-category
latent variables if there are several diseases that may be represented in a sample. In more complex
survival settings data may be truncated or there may be a cured fraction of individuals. Methods for
handling such complications are also naturally cast into the framework of an EM algorithm and so the
proposed methods can naturally be adapted to handle these complications. Finally, more elaborate
regression models could also be formulated if there were interest in examining possible interaction
effects between the disease status and auxiliary covariates.

The literature on methods for handling incomplete data has been burgeoning in recent years with
much of the work involving methods which differ in their robustness and efficiency. The mean score
method of Reilly and Pepe (1995) is a robust approach designed to weaken modeling assumptions
about the covariate process typically through stratification on the available data including the re-
sponse. This could be adopted in the present setting but challenges arise in defining strata when the
data on the surrogate variables are incomplete. Use of inverse probability weighted complete case
analyses (Rotnitzky et al., 1998) is often useful but in the present setting the latent variable is never
known definitively; this likewise makes the use of augmented inverse probability weighted estimat-
ing functions (Bang and Robins, 2005) less natural. Multiple imputation (Schafer, 1999), however,
could be adapted quite naturally for the current setting and it represents a convenient alternative to
the likelihood-based procedure we describe. Future work would be worthwhile to explore the use of
multiple imputation for the present problem.
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