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State of affairs 

Polymers, gigantic natural and synthetic molecules with a vast variety of intricate micro-

molecular and architectural characteristics, play key roles in our daily life. This class of materials 

is not only massively utilized for general purposes, like packaging and consumer products, but 

also frequently applied to almost all hi-tech engineering applications. Nowadays, elaborate 

manipulation of microstructural features to produce very specific macromolecules with 

outstanding final properties is of great importance to address and meet ever-increasing market 

demands for smart materials and technologies. To achieve this, ‘pioneer’ companies attempt to 

move forward from passive to dynamic and even adaptive selection, design and manufacturing 

of polymeric materials. More interestingly, leading research centers have stepped into new 

grounds enlivening the ‘futuristic’ dream of living and thinking synthetic macromolecules [1,2]. 

Over the past few decades, some cutting-edge techniques, for instance, controlled living radical 

(co)polymerizations [3,4], click polymerizations [5], and chain shuttling reactions [6] capable of 

synthesizing sequence-controlled macromolecules have been proposed and successfully put into 

practice. The newly developed techniques have been widely applied by several leading 

companies and many internationally recognized research groups to welcome the advent of 
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‘advanced macromolecules’. However, an important question arises: Is the development of novel 

sophisticated polymerization mechanisms/systems the only appropriate option on the table to 

address all rapid growth demands of the market for specifically tailored polymeric materials with 

desirable properties? 

The question can be properly addressed considering the amount of data on macromolecular 

chemistry generated daily, and subsequently reported and published worldwide by many 

different companies and research groups in lab-, pilot- and industrial-scales. Is ‘big data’ 

appropriately processed to enhance our knowledge on various aspects of the complex world of 

macromolecules? Like in many other disciplines, the answer is the same (and quite clear). The 

fact is that a huge amount of data on polymerization kinetics, macromolecular reaction 

engineering, process monitoring, and characterization of polymers is routinely generated and 

reported, which is not thoroughly and effectively analyzed applying advanced data 

processing/refinement tools and techniques. Some claim that about 60-75% of the data 

points/information collected is ignored (not analyzed or taken into account). Hence, managing 

the explosive growth of data not only in polymerization systems but also in all other aspects of 

human endeavors is a perplexing challenge. In fact, we are drowning in data, but we are still 

starved for knowledge that would help our diagnostic skills. 

 

Data mining 

Nowadays, ‘Data mining’ is widely proposed by data scientists as the most accepted and powerful 

approach to properly handle the information explosion. Data mining is defined as the extraction 

of interesting patterns and knowledge from huge amounts of data. It should be noted that the 

word ‘interesting’ refers to ‘non-trivial’, ‘implicit’, ‘previously unknown’, and ‘potentially useful’. 

Generally, data mining projects are composed of three essential steps including data pre-

processing, processing, and post-processing. The first step, i.e. data pre-processing, is mostly 

applied for data cleaning, data integration, data transformation, and also dimensionality 

reduction. Data processing, the heart of all data mining projects, results in knowledge discovery 

as the main outcome of data mining, applying powerful modeling and optimization techniques. 
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Post processing, the last step of data mining, is mostly employed to appropriately interpret, 

visualize, and present the processed outputs. 

The main functions of data mining are generalization, pattern discovery, classification, clustering, 

outlier analysis, time and ordering (sequential pattern, trend, and evolution analysis), and 

structure/network analysis. Data mining is the confluence of multiple disciplines including 

Statistics, visualization technology, high-performance computing, database technology, 

algorithm design, machine learning, and pattern recognition, with a wide variety of applications. 

It is mostly due to (1) a tremendous amount of data being generated (i.e. ‘big data’), (2) the high-

dimensionality of data, (3) the high-complexity of data, and (4) the emergence of new novel and 

sophisticated applications. Today, data mining has been implemented and applied over a vast 

range of applications, like web page analysis, market basket analysis, fraud and intrusion 

detection, banking, telecommunication, customer relationship management, bioinformatics, 

educational technology, software engineering, criminal investigation, medical and health 

systems, text analysis, voice recognition, social and information networks, and the analysis of 

large amounts of unstructured information in the oil and gas industry. 

Polymerization data mining, like in other disciplines, can be considered as the measurement, 

collection, analysis, and reporting of data about polymerization systems for purposes of 

understanding, controlling, and optimizing macromolecular reactions and the environments in 

which they occur. In fact, polymerization data mining is an effective and intelligent 

processing/analysis of massive datasets frequently generated in polymerization systems. 

In general, for all macromolecular reaction engineering projects, several polymerization recipes 

are predefined applying experimental design techniques first. Then, the polymerization 

processes are separately performed for each recipe. Afterwards, the produced macromolecules 

are precisely analyzed applying available experimental techniques to determine their 

micromolecular characteristics and also final properties. The microstructure and architecture of 

the synthesized chains is precisely quantified by well-defined micromolecular indices either as 

average or distributional properties. Also, the final properties including chemical, physical, 

thermal, mechanical, optical, and/or biological properties determine the appropriateness of the 

produced macromolecules in different applications. Undoubtedly, understanding the intricate 
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interrelationships between polymerization recipe, microstructure, and ultimately the polymer 

properties is the key to tailor-make complex macromolecules. Hence, the ultimate goal of 

polymerization data mining is to ‘crack’ the complexity of recipe-architecture-property 

interrelationships via masterful processing of the collected data. 

 

A bit of history 

Over the past decades, classical computational techniques as the most available processing tools 

have frequently been applied to polymerization systems. Considering the stochastic nature of 

macromolecular systems/processes, classical stochastic mathematical tools including the 

method of Moments, method of Markovian chains, and Monte Carlo methods have mostly been 

employed to handle modeling, simulation, and optimization in macromolecular processes. In 

fact, Statistics and Probability have been considered as the main computational framework to 

monitor, predict, and fine-tune the quality of the produced polymers. Whatever occurs in 

macromolecular systems, however, is so perplexing to be thoroughly grasped merely by classical 

techniques. In other words, classical computational tools are not powerful enough to effectively 

challenge extremely complex macromolecular systems and appropriately handle the generated 

information and collected data in such perplexing systems. The huge numbers of macromolecular 

species involved and the corresponding distributional properties and architectures make these 

days the use of classical techniques rather limited. 

Basically, there exist two main data generation sources in polymerization systems resulting in 

experimental and theoretical datasets. In experimental datasets the information is either 

collected during the course of polymerization (mostly on polymerization kinetics) or reflects the 

outcomes of all experimental characterization analyses/measurements on synthesized 

macromolecules and/or the corresponding final products. For instance, the reaction time, the 

feeding policies and reactants’ consumption rates, the conversion, and the rate of 

incorporation/propagation reaction channels are some variables monitored and reported as 

useful information during the course of polymerization. On the other hand, molecular weight 

distribution, sequence length distribution, branching density/frequencies (and distribution), melt 

flow properties, infrared spectra, and molecular weight averages/polydispersity index are some 
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typically measured variables applying well-developed techniques like GPC, NMR, and FTIR to 

uncover micro-molecular (micro-structural) characteristics, while some others like crystallization, 

glass transition temperature, melting point, solubility, filmability, phase separation patterns, 

creep and stress relaxation plots, roughness, and rheological behavior are  distinguished 

instances of the experimental datasets measured/collected to quantify the final properties of the 

produced macromolecules. 

In contrast, theoretical datasets are mostly gathered applying either available 

algebraic/differential equations or in-house modelers/simulators along with commercial 

software packages. Nowadays, there exist many mathematical equations to study the 

polymerization kinetics and the micro-molecular and final properties of produced 

macromolecules. For instance, in macromolecular reaction engineering, the most widely 

accepted approach for kinetic studies and determination of average micro-molecular 

characteristics is the method of Moments. Also, many in-house modelers and simulators have 

been developed mostly based on classical stochastic mathematical models, e.g. molecular 

simulation techniques like Molecular Dynamics and Kinetic Monte Carlo approaches, to study 

polymerization systems and polymer processing properties in detail. Furthermore, several 

software packages have been successfully commercialized to model/simulate the polymerization 

kinetics/processes (e.g. PREDICI and Aspen Polymers) or predict the processability and final 

properties of produced macromolecules (e.g. ABAQUS, ADF Modeling Suite, LAMMPS, BIOVIA 

Materials Studio, COMSOL Multiphysics, ANSYS, and CheFEM). 

Both experimental and theoretical datasets can be of different types, including numerical, text, 

graph (e.g. stress-strain curves, FTIR spectra), image (e.g. SEM images), video (e.g. the nano-

/micro-structure evolution during phase separation), etc. Among all, numerical data are the 

simplest ones to handle. Other data types should be decoded/translated into standard formats 

first in order to be understood by the processing units. This can be managed by 

developing/applying appropriate image/video processing techniques and/or text/pattern 

recognizing algorithms. Both powerful image/video processors and text/pattern recognizers can 

be designed/established applying well-developed approaches based on Computational 

Intelligence techniques like Deep Learning algorithms. After being well-trained, they will be 
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capable of effectively decoding complex images, patterns, spectra, plots, etc. as the main outputs 

of polymerization processes and/or polymer characterization/processing into comprehendible 

datasets. The tabulated numerical datasets are the most acceptable types which can be of 

different discrete or continuous attributes, including binary, nominal, ordinal, and 

numeric/quantitative interval-scaled and ratio-scaled. 

 

What we can do currently 

After translating the raw data into standard formats and extracting the most important 

information, the obtained datasets are pre-processed by a Data Refinery unit to enhance the 

quality of the experimental/theoretical datasets before being challenged by the processing unit. 

Pre-processing consists of different statistical techniques/modules, as follows [7-9]: 

1. ‘Data cleaning’: Data cleaning handles missing data, smoothes noisy data, identifies or removes 

outliers, and resolves inconsistencies.  Real-world data points are ‘dirty’ as lots of potentially 

incorrect data are generated daily due to faulty measuring processes/instruments, personal 

biases, human/computer errors, and transmission errors. Missing data may be observed due to 

equipment malfunction, deletion because of being inconsistent with other recorded data, not 

considered at the time of entry, not entered because of misunderstanding, and not 

registered/updated history or changes of data. Noisy data as random errors or variances in a 

measured variable, however, may occur due to faulty data collection instruments, data entry 

problems, data transmission problems, technology limitations, duplicate records, incomplete 

data, and inconsistent data. Binning, regression, clustering, and semi-supervised (combined 

computer and human inspection) methods are the most important techniques to handle noisy 

data. 

2. ‘Data integration’: Data integration as a data pre-processing technique is responsible for 

combining multiple databases, data cubes, or files, and providing a unified view of these data. 

3. ‘Data reduction’: Dimensionality reduction, numerosity reduction, and data compression are 

performed by data reduction module. Data reduction is mostly applied whenever a dataset may 

store terabytes of information and/or when a complex analysis may take a very long time to run 

on the complete dataset. Nowadays, there exist several methods for data reduction including 
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regression, data cube aggregation, data compression, histograms, clustering, and sampling 

techniques. The main advantages of data reduction can be summarized as avoiding the ‘curse of 

dimensionality’, helping eliminate irrelevant features and reducing noise, optimizing time and 

space required in data mining projects, and allowing easier presentation/visualization of data 

mining outcomes. 

4. ‘Data transformation’: The data transformation module maps the entire set of values of a given 

attribute to a new set of replacement values so that each old value can be identified with one of 

the new values. Smoothing, attribute/feature generation, aggregation, normalization, and 

discretization are the most important methods widely applied for data transformation. Also, 

binning, histogram analysis, clustering analysis, decision-tree analysis, and correlation analysis 

are the most popular techniques for data discretization. 

Principally, accuracy, completeness, consistency, timeliness, believability, and interpretability are 

the main indices utilized to measure the quality of pre-processed data before entering into the 

processing unit. 

Processing is the most important unit in polymerization data mining projects. Pattern discovery, 

classification, clustering, outlier analysis, association and correlation are the main functions of 

the processing unit [10]. In other words, modeling and optimization of received datasets are 

handled in the processing unit. Modeling ‘cracks’ the complex interrelationships between input 

variables and corresponding responses/outputs in a given dataset, while optimization explores 

and returns the optimal solution(s) capable of satisfying predefined target(s). Over the last 

decades, a vast variety of classical deterministic and stochastic modelers and optimizers have 

been utilized to process the collected information in polymerization systems. However, the 

advent of novel polymerization mechanisms/systems along with new developments and 

applications of novel monitoring and characterization instruments/equipment to address the 

market’s increasing demands to tailor-make engineering polymeric products, have made it 

difficult, if not impossible, to appropriately process a large volume of data of different types 

continuously generated and collected. Undoubtedly, more powerful, robust, and versatile data 

processing techniques are required to effectively model and/or optimize experimental and 

theoretical datasets in novel polymerization systems. 
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In the past few years, effective modelers as the main data processors in almost all data mining 

projects have been mostly established based on the implementation and application of 

classification and clustering techniques. Classification is defined as a supervised learning, i.e. 

learning by example, while clustering is considered as an unsupervised learning or learning by 

observation. In the former case, the training datasets including observations, measurements, etc. 

are accompanied by labels indicating the class of the observations, while in the latter case the 

class labels of training datasets are unknown. A cluster is a collection of data objects that are 

similar to one another within the same group and dissimilar to the objects in other groups. 

Decision tree algorithms, rule-based and pattern-based classification methods, Bayesian 

classification methods, lazy learning and active learning techniques, and also support vector 

machines (SVM) are the most popular classifiers capable of extracting powerful models to 

describe important data classes [11]. The main clustering techniques consist of partitioning 

methods (e.g. K-means and K-medoids algorithms), hierarchical methods (especially BIRCH and 

CHAMELEON algorithms), density-based methods (e.g. DBSCAN, OPTICS, and DENCLU 

algorithms), and grid-based methods (e.g. STING and CLIQUE algorithms), which are capable of 

finding similarities between data according to the characteristics found in the data and grouping 

similar data objects into clusters [12]. 

Nowadays, Computational Intelligence techniques are emerging as serious competitors to well-

established classical modeling approaches [13]. They have recently been implemented and 

applied in a large variety of disciplines as unique solutions. Computational Intelligence-based 

classifiers and clusterers are able to model/optimize all received datasets of any type, size and 

complexity with no need to take into account common simplification assumptions of classical 

modeling. All Artificial Intelligence techniques enjoy essential components of ‘intelligence’ 

including learning, generalization, and decision-making, for modeling and optimization of 

complex nonlinear problems. Artificial Neural Networks (ANNs) and fuzzy logic systems are very 

powerful intelligent modelers, while the most popular intelligent optimizers include swarm 

intelligence, simulated annealing, particle swarm optimization (PSO), and genetic algorithms 

(GAs). 
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Conceptual examples 

As can be observed in Figure 1, the refined datasets can be properly processed with Artificial 

Intelligence-based classifiers/clusterers to establish intelligent modelers. Although the responses 

can be intelligently modeled with a single ANN or fuzzy logic system altogether, it is 

recommended to model each response with a separate intelligent modeler. The developed 

intelligent modeler(s) either can be directly sent to the post processing unit to decode/visualize 

the complex interrelationships between input variable and responses or can be hybridized with 

an appropriate optimizer. In the former case, the modeler can be used to either predict the 

outputs for any given set of input variables or represent the variations of responses via 2D graphs 

or 3D surfaces/contour plots. In the latter case, however, the modeler is in synergistic interplay 

with an appropriate optimizer in an attempt to find optimal solutions capable of satisfying preset 

target(s). To amalgamate the established intelligent modeler(s) with potential optimizers, a well-

designed communicator capable of appropriately interconnecting the modeler and optimizer 

should be developed. In fact, the synergistic interplay between the modeler and optimizer is 

taking place through the communicator. Whenever the optimizer requires recalling the modeler, 

the encoded information is sent to the communicator first and then translated and forwarded to 

the modeler. Afterwards, the intelligent modeler handles the modeling process for the received 

information and returns the outcomes. The processed data are translated again by the 

communicator to be comprehended by the optimizer. 

As mentioned earlier, there exist several Artificial Intelligence-based optimization techniques to 

establish an effective intelligent optimizer. Contrary to classical optimizers, which mostly make 

use of random or exhaustive search strategies, intelligent optimizers are equipped with powerful 

heuristic evolutionary search algorithms. They are population-based optimizers utilizing 

stochastic intelligent exploitation and exploration operators. Considering the multi-

dimensionality of almost all polymerization systems, professional intelligent optimizers should 

be inevitably implemented and applied to precisely handle multi-objective optimization 

problems. Among all proposed intelligent optimizers, Non-dominated Sorting Genetic Algorithm 

(NSGA-II), the multi-objective version of Genetic Algorithms, is one of the most popular and 

powerful intelligent processors to effectively handle a vast variety of optimization problems in 
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polymerization data mining. Briefly, the input variables to be optimized are encoded into a 

chromosome-like structure first. Then, a preset number of chromosomes (as initial population) 

are generated in a stochastic manner. The degree of goodness of each chromosome is separately 

determined recalling the intelligent modeler(s). Having evaluated the fitness of each 

chromosome, the optimizer evolves the potential solutions towards the global optimum applying 

selection, mating, crossover, and mutation operators as intelligent genetic manipulators. 

Obviously, the modeler(s) is responsible for precisely translating the genotypes (i.e. the 

chromosomes transferring the encoded input variables) into phenotypes (i.e. the corresponding 

responses). The outcomes, mostly as tabulated optimal Pareto fronts, are then transferred to the 

post-processing unit for further evaluation, quantitative analyses, and decision making. 

As mentioned above, the available equations, modelers, and simulators specifically 

proposed/developed to study polymerization systems and polymer characterization/processing 

can be employed in an offline mode to generate theoretical datasets required for polymerization 

data mining purposes. In fact, in the offline mode, theoretical datasets are produced first. Then, 

they are utilized for knowledge discovery applying the polymerization data mining techniques 

described above. Micromolecular landscape of olefin block copolymers, for instance, has been 

comprehensively patterned and reported, amalgamating a well-established Kinetic Monte Carlo 

(KMC) simulator and several well-trained Artificial Neural Networks (ANNs) [14]. To put this 

concept into practice, theoretical data on chain microstructure have been obtained by an in-

house KMC simulator first. Then, the complex interrelationships between microstructure and 

polymerization recipes of chain shuttling copolymerization of ethylene with a-olefins have been 

disclosed constructing several ANNs in an offline mode. Furthermore, a new paradigm for inverse 

macromolecular engineering has recently been proposed developing a hybrid intelligent data 

processing technique [15]. In reference [15], the established molecular simulator has been 

applied to calculate/predict the microstructural features of all predefined virtual 

scenarios/experiments separately, and the results have subsequently been employed to train 

several intelligent modelers (ANNs). Obviously, the chain shuttling reaction simulator and the 

intelligent modelers interact in an off-line manner. Then, a well-designed communicator has 

been utilized to interconnect the trained intelligent modelers, as computationally cost-effective 
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versions of the molecular simulator, and the developed heuristic optimizer (NSGA-II), in an 

attempt to discover optimal recipes capable of suggesting OBC chains having predefined 

micromolecular structures. It is worth mentioning that both ‘algebraic/differential equations’ 

and ‘commercial/in-house simulators/modelers’ can be utilized in an online mode as well. In this 

case, the available theoretical/empirical equations can be directly recalled by the intelligent 

optimizer. Recently, an intelligent search strategy based on the NSGA-II technique has been 

successfully implemented and examined to heuristically translate microstructural patterns to 

optimal copolymerization recipes/operating conditions in the case of metallocene-based 

copolymerization of ethylene with α-olefins containing multisite catalytic systems [16]. In fact, 

the proposed intelligent multi-objective optimizer is able to frequently recall well-known 

algebraic equations tracking molecular weight distribution and chemical composition distribution 

changes, all in an online mode to transform predefined microstructural profiles back to optimal 

copolymerization recipes. Also, commercial or in-house developed simulators/modelers can be 

directly amalgamated with the intelligent optimizer considering proper (1) image 

possessing/pattern reorganization, and (2) communication units to reformat and translate the 

outcomes of the simulators/modelers into understandable information for the intelligent 

optimizer and vice versa. For instance, Mohammadi et al. have developed a hybrid reciprocating 

technique, referred to as Optimulation algorithm, capable of simultaneously 

simulating/optimizing complicated chemical, biological, and macromolecular reaction 

engineering problems [17]. This makes use of an online communication of an in-house developed 

molecular simulator (a KMC-based chemical reaction simulator) with a heuristic multi-objective 

optimizer. Although the proposed computational tool has initially been successfully implemented 

to ‘optimulate’ the oxidative coupling of methane (OCM) as a complex chemical reaction case 

study, it can be effectively utilized to handle a wide range of multi-objective optimization 

problems for other complex reacting systems. 

In the online mode, not only there exist more flexibility and opportunities but also potential 

computational errors are considerably decreased as constructing and training intelligent 

modeler(s) inevitably lead to a built-in error. The offline mode, however, has the benefit of being 

computationally more cost-effective. 
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In general, data post-processing methods are divided into two main categories, including data 

visualization and data summarization. After knowledge extraction, it is necessary to visualize the 

discovered knowledge in such form so that the end user can gain perfect insight into processed 

data for better interpretation and decision making. Hence, pattern evaluation, pattern selection 

and interpretation, and pattern visualization are the most important responsibilities of a post-

processing unit. In fact, not only does it provide a visual overview of derived computer 

representations but also simplifies searching for patterns, trends, potential irregularities, and 

relationships among processed data. 

Even though there has been ample evidence with respect to applying data mining approaches in 

polymer science and technology [18-20], effective and comprehensive 

development/implementation of advanced data ‘refinery’/processing techniques in 

macromolecular reaction engineering are still worth pursuing and/or improving. Recently, we 

have successfully developed, implemented and applied data mining techniques employing 

Artificial Intelligence-based modelers and multi-objective optimizers to appropriately handle 

several typical complex polymerization systems [14-17]. To achieve this, we have generated 

theoretical datasets applying available algebraic/differential equations and also in-house 

simulators. The generated datasets on polymerization kinetics and polymer microstructure have 

subsequently been effectively refined and processed applying data mining techniques, and 

intelligent modelers and optimizers followed suit. It has been clearly shown that the developed 

tools are powerful enough to (1) precisely monitor, control, and optimize complex polymerization 

reactors, (2) tailor-make the microstructure and architecture of produced macromolecules, and 

(3) simultaneously satisfy all predefined final properties. 

 

The near future 

All in all, polymerization data mining is a necessity in modern macromolecular reaction 

engineering to comprehensively analyze generated complex ‘big data’ and effectively ‘crack’ the 

recipe-microstructure-property interrelationship. Definitely, the development and 

implementation of computationally cost-effective (1) virtual polymer synthesizers, (2) intelligent 

modelers/optimizers, and also (3) virtual simulators for polymer characterization/processing are 
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of paramount importance to guarantee the success of polymerization data mining projects. 

Although advanced virtual synthesizers and versatile intelligent modelers and optimizer have 

recently been developed and successfully put into practice [14-17] applying molecular simulation 

approaches and Artificial Intelligence techniques, the design and establishment of powerful 

simulators for characterization and processing of virtually synthesized macromolecules are open 

to future developments, being of paramount importance to both industry and academia. 
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Figure 1. Polymerization Data Mining. 
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