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Rainfall is often the largest component of the water budget and even a small uncertainty 

percentage may lead to challenges for accurately estimating groundwater recharge as a calculated 

residual within a water budget approach. Watersheds are a common scale for water budget 

assessment, and rainfall monitoring networks typically have widely spaced gauges that are 

frequently outside the watershed of interest. The effects of rainfall spatial variability and 

uncertainty on groundwater recharge estimates have received little attention and may influence 

water budget-derived recharge estimations. In the present study, the influence of spatial density 

in rainfall measurement on the numerical estimation of groundwater recharge was investigated 

through a series of modelling scenarios utilizing field data obtained from progressively denser 

rain gauge networks associated with a typical watershed in southern Ontario. The uncertainty of 

the recharge component of the water budget was used as a metric to aid interpretation of results. 

The scenarios employed networks composed of: 1) one nearby national weather station (within 3 

km), 2) a regional network of six stations (within 30 km), and 3) a local network of six stations, 

five of which were within the selected watershed. A coupled and fully distributed hydrologic 

model (MIKE SHE) was used in the scenario analysis and applied to the Alder Creek watershed 

on the Waterloo Moraine near Kitchener-Waterloo, Ontario. Rainfall showed poor spatial 

correlation, even at the daily time scale. Average annual results over a three-year period showed 

that recharge rates varied up to 140 mm per year (~40 % of previously estimated annual 

recharge) among scenarios, with differences between scenarios greater than the water budget 

uncertainty during one of the years. These findings suggest that the availability of local rainfall 
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measurements has the potential to influence the calibration of transient watershed 

hydrogeological models. 
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1.0 INTRODUCTION 45 

46 

The estimation of groundwater recharge is a challenging task at any scale of consideration. With 

the emergence of regional scale groundwater models, often applied at a watershed scale, the 

seasonality and spatial variability of recharge has become a hydrologic component of significant 

importance. This is particularly the case when considering its role as a forcing function in water 

budgets and contaminant transport processes. Recharge magnitude and distribution is frequently 

estimated by numerical models that employ a water balance approach, where the magnitude of 

the recharge is calculated as a residual of the other measured or estimated components of the 

overall water budget (Healy, 2010). The calculated recharge distributions are then used as 

boundary conditions in modelling exercises related to watershed-scale assessments of water 

resources, regional impacts of non-point source contaminants, and changing land-use impacts. 

The rainfall data that are required for the water budget estimations are often derived from local 

weather stations that vary in spatial proximity to the study area. 

While the scales at which rainfall measurements are made are known to influence their 

spatial accuracy over regional scales, the impact of measurement density on the spatial 

distribution of calculated groundwater recharge rates has received little attention (Hess et al., 

2016; Sapriza-Azuri et al., 2015; Villarini et al., 2008; Winter, 1981). In many environments, 

precipitation (P) tends to be the largest component of the water budget (Dingman, 2015). Thus, 
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small percentage uncertainties associated with P will lead to large magnitudes of uncertainty for 

smaller components of the overall hydrologic flow system – such as groundwater recharge or 

discharge – that are often estimated as residuals of the total water budget (Thodal, 1997; Wiebe 

et al., 2015; Winter, 1981).  The optimal measurement scale required for rainfall measurements 

to ensure a particular degree of confidence in the estimation of groundwater recharge for a 

particular area is largely unknown and dependant on local conditions. 

Many studies focused on the spatial variation of rainfall and the uncertainty associated 

with a particular network density have been undertaken to illustrate the significance of 

precipitation measurement (e.g., Dingman, 2015; Hess et al., 2016; Huff, 1970; Huff and 

Schickedanz, 1972; Linsley and Kohler, 1951; Villarini et al., 2008; Winter, 1981). The impact 

of spatial rainfall variability on streamflow has also been addressed, and it is well known that the 

number of rain gauges and their locations impact the accuracy of modelled hydrographs (e.g., 

Andréassian et al., 2001; Bell and Moore, 2000; Faurès et al., 1995; Obled et al., 1994; Zhao et 

al., 2013). Villarini et al. (2008) found that spatial correlation among rain gauges tends to 

increase, and spatial sampling errors tend to decrease, for increasing data accumulation times 

(e.g., 15 min, hourly, and daily). The authors do note, however, that the transferability of specific 

rainfall uncertainty results to other areas may not be directly applicable due to local site 

conditions. 

Previous numerical studies addressing the influence of spatial rainfall variability on 

recharge have identified that interpolation techniques and the model’s spatial grid size are 

important factors. Mileham et al. (2008) used a semi-distributed, soil-water budget model for a 

humid, tropical watershed in Uganda (2,098 km ) over 15 years and found that cumulative2

recharge estimates differed by a factor of about 1.5 between a scenario interpolating precipitation 
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via Thiessen polygons and one using inverse distance weighting with 20 rain gauges. Sapriza-

Azuri et al. (2015) used a fully distributed model with stochastic rainfall distributions generated 

from rain gauges at 151 weather stations and found that recharge estimates varied based on the 

scale of the interpolated rainfall data (2.5 km by 2.5 km, or 50 km by 50 km, or lumped over the 

entire 16,000 km  watershed). Applying rainfall at the smallest grid cell size over four decades2

resulted in 1.5 to 2 times the recharge estimated when rainfall was applied at the other two 

scales. Recommendations for both the spatial density of observation points and selection of grid 

sizes for model input are needed for other geographical contexts. 

Precipitation is frequently measured by rain/snow gauge networks, and ground-based 

radar methods rely on these for calibration (e.g., Dingman, 2015). The density of Canada’s rain 

gauge network is less than 1 gauge per stream watershed in southern Ontario, where watersheds 

2are on average about 300 km  in size (Adam and Lettenmaier, 2003; OMNR, 2007; OMNRF, 

22016). Extreme summer rainfall events in this area may occur over 100 km  (Paixao et al., 2015), 

and convective summer storms can be as small as 5 to 8 km  2 in size (Singh, 1992; Tsanis and 

Gad, 2001). Such events could easily evade detection by existing rain gauge networks, and these 

may become increasingly important due to climate change (Collins et al., 2013; Cubasch et al., 

2001; Jyrkama and Sykes, 2007). This is a potential concern for groundwater recharge estimation 

under both long-term and event-based conditions. The sustainable management of integrated 

water supplies depends on accurate quantitative estimates derived from precipitation 

measurements. Accurate precipitation estimates are also essential for assessing regional-scale 

water quality vulnerability related both to non-point contaminants and local, extreme hydrologic,

event-based conditions near critical receptors such as public supply wells (e.g., Christie et al., 

2009; the May 2000 Walkerton tragedy – O’Connor, 2002).
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The objective of the present study was to assess the spatial correlation among point 

rainfall measurements, and to explore the sensitivity of modelled recharge estimates to spatial 

variations in rainfall in the vicinity of a typical watershed in southern Ontario. The watershed 

selected for this study represents watersheds where municipal water sources rely on glacial 

moraine aquifers, and agricultural activities and urban expansion present challenges related to 

water quality and quantity. It was hypothesized that recharge estimates in scenarios employing 

different rainfall networks’ interpolated data would differ to a degree that could significantly 

impact regional water management decisions. The uncertainty associated with the recharge 

component of a near-surface water budget was employed as a metric of significance. Differences 

in recharge between scenarios were assessed based on: 1) visual analysis of the spatial 

distributions of total recharge, 2) the frequency of cell-by-cell differences in modelled total 

recharge, and 3) changes in water budget components such as cumulative streamflow. Three 

different spatial scales of rain gauge networks were used for the assessment: i) one national 

station located within 3 km of the watershed, ii) six regional stations within 30 km of the 

watershed, and iii) six local stations, five of which were within the watershed. The sensitivity 

was addressed by comparing the magnitude and spatial distribution of recharge results from three 

corresponding scenarios: (1) spatially uniform rainfall from the national network, and spatially 

variable rainfall interpolated from the (2) regional and (3) local networks. Spatially uniform 

reference evapotranspiration (ETo) derived from the national network station was used for all 

scenarios, and spatial variations in snowfall were held constant in order to isolate rainfall as the 

variable of comparison. 

For this investigation, field data collected from the local rain gauge network within the 

study region over a three-year period were utilized to illustrate natural precipitation variability. 
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We specifically addressed this relatively short temporal period because this is the time scale at 

which fully-coupled models may be used in practice by environmental consultants to study the 

impacts of dynamic hydrological events on city water supply systems (Meyer et al., 2017). There 

could be different results over a longer time scale. 

133 
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2.0 METHODS 138 

2.1 SITE DESCRIPTION 139 

2 2The Alder Creek watershed (78 km ; Figure 1) within the Grand River watershed (6,700 km ) is

located on the regional upland of the Waterloo Moraine (GRCA, 1998). Located adjacent to the 

cities of Kitchener and Waterloo, ON, this watershed’s glacial sands and gravels cover over half 

of its surficial area and facilitate recharge for about seven municipal well fields operated by the 

Regional Municipality of Waterloo (Brouwers, 2007; CH2MHILL and SSPA, 2003; OGS, 

2010). Due to its importance for water supply, the watershed and its surrounding area have been 

the subject of detailed hydrologic modelling in the past (e.g., CH2MHILL and SSPA, 2003; 

Martin and Frind, 1998; Matrix and SSPA, 2014a, 2014b; Sousa, Frind, et al., 2013). The 

availability of extensive subsurface geology data and hydrogeological interpretations derived 

from previous work in the area provides a valuable foundation for the current modelling 

exercises within the multi-aquifer system of the Waterloo Moraine (e.g., Bajc et al., 2014; 

Blackport et al., 2014; CH2MHILL & SSPA, 2003; Martin and Frind, 1998). 

Total annual precipitation is around 900 mm in this region, varying between 600 and 

1100 mm at the nearby Environment Canada weather station at Roseville, ON, which is located 

less than 3 km outside the watershed (Government of Canada, 2019; OMNR, 2007). Actual ET 
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(AET) for the region has been estimated at generally around 540 mm per year (Sanderson, 1998), 

and streamflow is on average around 140 mm per unit area at the gauging station within the 

watershed (Figure 1; based on daily data, 1975-2015; WSC, 2017). The average baseflow index 

(i.e., the fraction of total streamflow constituted by groundwater baseflow) for this station is 

about 0.6, according to quarter-year PART hydrograph separation results (based on daily data, 

1966 to 2016; Rutledge, 2007; WSC, 2017). 

National network daily precipitation and temperature data were obtained for the Roseville 

weather station noted above and shown in Figure 1 (Government of Canada, 2019); this is the 

closest national station to the Alder Creek watershed. Rainfall data were recorded using a 

Canadian Type B rain gauge (113 mm diameter) at a height of 0.4 m and available on a daily 

timescale, while snow depths were manually measured each day and converted to snow water 

equivalent using a ratio of 0.1 (Government of Canada, 2013, 2019). Daily maximum and 

minimum temperatures were obtained from the Roseville station for ETo calculations. 

Regional network rainfall data were obtained from six stations operated by the Grand 

River Conservation Authority (GRCA) and shown on the inset map of Figure 1. Rainfall data 

were available at an hourly time scale from a network of tipping-bucket gauges installed for the 

purposes of flood forecasting (GRCA, 2017a; Shifflett, pers. comm., 2018). 

Local network rainfall data were obtained from the Alder Creek field observatory of the 

Southern Ontario Water Consortium (SOWC; Wiebe et al., 2019). This network of weather 

stations (Figure 1) employed tipping bucket rain gauges (200 mm diameter) recording data every 

15 min. Each of the six gauges was installed at a height of 1 m above the ground surface and 

surrounded by an Alter-type wind shield. Data were available for January 2014 onward for all 
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stations except WS5, where data records began in June 2014. Annual rainfall totals are shown in 

Table 1 for each of the three rain gauge networks. 

2.2 SPATIAL CORRELATION 

Spatial correlation for rainfall was assessed using Spearman’s rank correlation coefficient for 

several accumulation times (Gibbons and Chakraborti, 1992; Villarini et al., 2008; Villarini et 

al., 2010). Each coefficient was generated by comparing the data from a pair of stations. For each 

accumulation time (1 hr, 3 hr, 24 hr, 1 month), the sum of the data within each time interval of 

that size was compared. Each correlation coefficient measures the strength of the linear 

relationship between ranked data at a pair of stations. The Spearman rank correlation coefficient 

was used instead of the Pearson coefficient because the Pearson method assumes that the data are 

normally distributed, while the Spearman coefficient does not (Gibbons and Chakraborti, 1992). 

Rainfall data were assessed for the combined stations of the local and regional networks. The 

overall time period for this correlation analysis was three years, except for correlations involving 

station WS5, which employed 2.5 years of data. An exponential model (Villarini et al., 2008) 

relating the correlation coefficient,  , to the separation distance, h, was employed to fit the data 

and show general trends in correlation for the different accumulation times (Eqn. 1): 

(1) 

The parameters c1, c2, and c3 represent the nugget, correlation distance, and shape factor, 

respectively (Villarini et al., 2008). Following Villarini et al. (2010) and based on arguments by 
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Krajewski et al. (2003) that a traditional network of rain gauges (one gauge per location) is 

insufficient to estimate c1, a nugget value of c1 = 1.0 was chosen in all cases. The correlation 

distance and shape factor for the field data were determined via the Levenberg-Marquardt 

algorithm in the scientific computation program GNU Octave (Eaton et al., 2011; Gavin, 2009, 

2019).  

197 

198 

199 

200 

201 

202 

2.3 WATER BUDGET AND UNCERTAINTY 203 

Context for the recharge differences between scenarios was portrayed by calculating the 

uncertainty from an annual vadose zone water budget (Eqn. 2), 

204 

205 

(2) 

206 

 where R is recharge, P is total precipitation, AETVZ is actual evapotranspiration from the vadose 

zone, QSW is the surface water fraction of streamflow (i.e., 1 – baseflow index), and ΔSVZ is net 

storage change in the vadose zone. This water budget assumes that recharge occurring from 

surface water bodies directly connected to the water table is negligible, i.e., that all recharge 

migrates through the unsaturated zone. AET derived from the saturated zone is excluded from 

this water budget because the domain for this budget is the vadose zone; AET derived from the 

saturated zone has already become recharge (R) and thus should not be counted twice. 

Uncertainty on recharge (δR) was calculated under the assumption that the individual 

uncertainties are independent (e.g., Dingman, 2015) via (Eqn. 3), 
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(3)
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216 

where δP is precipitation uncertainty, (~10%, Dingman, 2015); δAET is AET uncertainty, 

(~10%, Kristensen and Jensen, 1975); δQ is streamflow uncertainty, (~5%, Herschy, 1973; 

Winter, 1981); and δ∆SVZ is uncertainty related to vadose zone storage change, (~5%, assumed 

similar to streamflow). Spatial interpolation errors for P and AET were not included. The 

uncertainty of the water budget components in Eqn. (3) was calculated using the input data and 

results for a scenario and year with a percentage uncertainty on R that was similar to the average 

from all annual simulations, as an example of a typical case.

217 
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224 

2.4 NUMERICAL MODEL 225 

The fully distributed MIKE SHE software code (Abbott et al., 1986; Graham and Butts, 2005; 

Refsgaard and Storm, 1995) was used to conceptually explore the sensitivity of recharge 

estimates to spatial variations in rainfall. This code internally couples the saturated zone (3D), 

unsaturated zone (1D), overland flow (semi-distributed), and streamflow (1D) processes, with 

surface boundary inputs and outputs such as P and ETo. The ground surface topography and 

seven geological layers for the model were imported from an existing three-dimensional 

groundwater flow model (Region of Waterloo Tier Three water budget and risk assessment; 

Matrix and SSPA, 2014a) and interpolated onto a grid with 50 m by 50 m cells that composed 

the domain for the present study. This included hydraulic conductivity values that had been 

calibrated for steady state conditions in the existing model, which used the finite element-based 

FEFLOW code (DHI-WASY, 2011). Hydraulic head values from the existing model were 

applied at the boundaries of the Alder Creek watershed and specified as the initial conditions 
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within the domain. The boundary of the domain (Figure 1) was designed to coincide with the 

New Dundee dam at the outflow of Alder Lake, about 8 km upstream from the actual outflow of 

Alder Creek into the Nith River. This allowed for a well-defined hydraulic head boundary in the 

2surface water portion of the model. The resulting model domain area was 68 km , and the revised 

boundaries adjacent to the dam followed local topographic ridges to the watershed divide 

(GRCA, 1998). 

Precipitation inputs to the model were developed from daily national data, hourly 

regional data, and 15 min local rainfall data. Rainfall data for the regional and local scenarios 

were aggregated to the daily time scale and interpolated onto a 250 m by 250 m grid using the 

inverse distance squared technique. Rainfall data for the national scenario were applied at the 

daily time scale in a spatially uniform manner. All scenarios employed daily snowfall data from 

the Roseville station. The model used the average daily air temperature at the Roseville station to 

calculate the accumulation and melting of snow, based on a modified degree day method (DHI, 

2017a; Government of Canada, 2019). 

Drainage of water in the unsaturated zone was represented by the 1D Richards’ Equation 

option (DHI, 2017a). Soil columns for each grid cell were composed of one single soil type 

corresponding to the surficial soil because the model framework did not allow automated 

incorporation of the detailed geological layering into the unsaturated zone. Each column was 

discretized with 0.1 m cells down to 10 m, then 0.2 m cells to 30 m, and then 1 m cells to 55 or 

80 m depth. The spatial distribution of nine surficial soil types (Figure 2) was based on OGS 

(2010). Saturated hydraulic conductivity, porosity, and residual moisture content parameters for 

the van Genuchten curves were based on literature values (D. Graham, pers. comm., 2017; 

Schaap et al., 1999; Sousa, Jones, et al., 2013), and the n, alpha, and Green and Ampt suction at 
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the wetting front parameters were selected in order to vary in a conceptually reasonable manner 

in comparison with the UNSODA soil types (D. Graham, pers. comm., 2017; Leij et al., 1996; 

Table 2). No macropore flow was simulated. The default pressure head values for field capacity 

and wilting point (-1 m H2O, and -100 m H2O, respectively), and the default shape factor for 

unsaturated hydraulic conductivity (0.5) were selected based on DHI (2017b) recommendations.

Daily ETo inputs to the model were calculated based on the Penman-Monteith method for 

reference ET, using the UNFAO56 ETo Calculator (Allen et al., 1998; Raes, 2009). The 

maximum and minimum daily temperatures at the Roseville station were used to calculate ETo

for all three scenarios. The “light to moderate winds” option (2 m/s at a height of 2 m above 

ground surface) was selected to fill in missing wind speed data in the ETo calculations. 

The upper three geological layers that were imported from the existing model were 

merged into one computational layer for the saturated zone simulation. This ensured that the 

water table would be present in the uppermost saturated zone cell, improving the stability of the 

model. The minimum geological layer thickness was set to match the input layers from the 

existing model (0.1 m). The finite difference option was used to represent flow in the saturated 

zone (DHI 2017a). Public supply wells within the watershed were incorporated into the model 

and their average 2008 pumping rates were employed (total extraction: 23,000 m /d; Matrix and3

SSPA, 2014b). 

Land use and vegetation data (Figure 3) were compiled from ROW (2010) and from the 

Ontario Ministry of Natural Resources (OMNR, 2008). The sparse paved areas were not treated 

specially beyond maintaining an assigned background rooting depth, as required by the model, 

though the urban areas were assigned a leaf area index (LAI) value representing grass. Maximum 
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LAI and root depths were obtained from the literature (Canadell et al., 1996; Scurlock et al., 

2001). The LAI values for agricultural areas were assigned a linear increase from zero up to the 

respective literature value for each cell during the month of May; rooting depths linearly 

increased during the growing season (May to mid-September). LAI was specified to linearly 

increase for forest areas during May, be held constant during the growing season, and then 

linearly decrease during the last two weeks of September. No irrigation was included in the 

model. 

Overland flow was represented using a semi-distributed approach via the finite difference 

-1/3method (DHI 2017a). A Manning’s n value of 0.3 m s was applied throughout the domain to

represent the majority agricultural land use with a value for light brush, and detention storage 

was specified based on literature values for five of the land cover types (Chin, 2006), excluding 

wetlands and open water. 

Stream channels were generated based on the pre-processed (interpolated) model 

topography to obtain more reasonable agreement between the streamflow and overland flow 

processes, and cross-sections were generated every 200 m. Manning’s n values for the channel 

-1/3 -1/3were based on GRCA (2017b): 0.035 m s for the channel thalweg, and 0.05 m s otherwise.

The model employs independent, automatically adjusted time steps for its overland flow, 

unsaturated zone, and saturated zone processes (DHI, 2017c; Graham and Butts, 2005). 

Groundwater recharge is calculated iteratively as an internal flux from the unsaturated zone to 

the saturated zone during simulations (Graham and Butts, 2005); the accumulated amount for a 

single cell or the entire watershed was obtained via post-processing. 
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2.5 COMPARISON OF MODEL SIMULATIONS 305 

The scenarios were simulated one year at a time for the years 2014 to 2016. The 2014 

simulations followed a three-year model spin-up period that employed spatially uniform daily 

rainfall and snowfall data from the Roseville station. Scenarios 2 and 3 were started from the 

same initial conditions as Scenario 1 in all three years. The method of comparing simulations 

with different rainfall inputs that start from identical initial conditions has been used in other 

studies (e.g., Schuurmans and Bierkens, 2007; Sapriza-Azuri et al., 2015). Our study differs from 

Schuurmans and Bierkens (2007) by focusing on groundwater recharge rather than hydraulic 

heads and discharge, and from Sapriza-Azuri et al. (2015) by addressing a much smaller 

2 2watershed (~70 km  vs. 16,000 km ) using rainfall interpolated from observations within

different networks rather than stochastic values derived from the overall network. Results from 

the numerical model were saved on a weekly basis, so each year was represented by 52 weeks 

during analysis of the simulations. The results were compared based on maps of the spatial 

distribution of total recharge, the frequency of cell-by-cell differences in total recharge, the 

visual match between observed and modelled cumulative streamflow, and differences in overall 

water budget components. 

None of the three simulations were calibrated. This study compared the impacts of the 

different rainfall input data on the precision of the estimated recharge distributions. Each set of 

input data would result in a different calibrated model, but modifications to the parameters of the 

model (e.g., hydraulic conductivity values) would obscure the effects of the input data on 

recharge rates. Using the same starting point for each 52-week simulation allows the differences 

in recharge rates to be compared for a model domain structure that is identical in all cases (i.e., 

the same set of hydraulic conductivity values for the geological layers). The comparison of 
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modelled streamflow for each scenario provides a sense of the degree of calibration that would 

be required. 

Observed and simulated rainfall amounts were compared as follows. The spatial 

correlation of the numerical model’s interpolated rainfall datasets was assessed by selecting 36 

uniformly spaced cells from the grid, extracting their precipitation time series, and calculating 

Spearman correlation coefficients for days with no Roseville snowfall. Days with snowfall were 

omitted because the observed and simulated daily snowfall amounts differed slightly due to the 

model’s partitioning of rain and snow based on temperature. Rainfall frequency distributions for 

these 36 cells were also compared with the observed distributions. 

328 
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3.0 RESULTS 338 

339 

The spatial correlation of rainfall was found to vary substantially at both the regional and local 

scales. Figure 4 suggests a continuum in the spatial correlation relationships as distance increases 

from the local to the regional scale. Daily Spearman correlation coefficients ranged between 

approximately 0.4 and 0.8 (Figure 4). Correlation distances and shape factors for the combined 

stations of the local and regional networks are shown in Table 3 for different time scales. 

Correlation distances associated with the fitted curves on Figure 4 ranged from about 90 to 110 

km. The best-fit curve for monthly coefficients showed lower correlation than the daily curve. 

Correlation coefficients in the local network were substantially lower than those reported for a 

2dense monitoring network (50 gauges in 135 km , 6 years of data) in the Brue Watershed, SW

England (Villarini et al., 2008). Daily (Pearson) coefficients were ≥ 0.85 in that study, while 
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these varied between roughly 0.6 and 0.9 for the local network in the present study. The spatial 

correlation analysis indicates that: 1) rainfall may not be sufficiently uniform temporally and 

spatially in the region around Alder Creek to justify either reliance upon a single rain gauge to 

represent the watershed or the neglect of rainfall variation within the watershed itself, and 2) the 

local network is providing additional rainfall information not captured by the regional network. 

The inverse distance squared interpolation technique was found to increase the spatial 

correlation of the interpolated daily precipitation distributions for the regional and local rainfall 

scenarios. All Spearman cofficients among 36 uniformly spaced sample points for both 

Scenarios 2 and 3 were between 0.7 and 1.0, a higher range than observed. Appendix A includes 

examples of the rainfall interpolation for four representative days with a range of rainfall rates. 

The interpolated daily rainfall frequency distributions at these 36 points for Scenarios 2 and 3 

were similar to those observed within the local and regional networks (Appendix A). 

A simple, annual water budget for the vadose zone provided a metric for the differences 

in recharge between scenarios. Figure 5 shows that typical instrument and method uncertainty 

values on these components lead to a substantial accumulated percentage uncertainty on recharge 

(±27%), prior to accounting for spatial interpolation uncertainties for P or ET. The uncertainty on 

recharge (δR) could be at least ±100 mm per year (using Scenario 3 data for 2015; Table 4), with 

precipitation measurement uncertainty as the largest contributor. Analysis of error for small 

groundwater components is often disregarded when conducting calibration and water budget 

uncertainty estimations (Wiebe et al., 2015). 

The water budget results from the three scenarios are listed in Table 4, along with other 

relevant values for the watershed: the observed streamflow totals from the WSC gauge, and a 
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regional, steady state model’s estimate of average recharge (M.H. Brouwers, pers. comm., 2017; 

Matrix and SSPA, 2014a; WSC, 2017). The average total precipitation driving the water budget 

in the numerical model was different in each of the three rainfall scenarios, and the direction of 

change from year to year sometimes differed. Table 4 shows that average total precipitation 

increased from 2015 to 2016 in both Scenarios 1 and 2, while it decreased for Scenario 3. 

Precipitation differences between scenarios for a given year were up to about ±20% of the long-

term average from Roseville. Differences in average recharge varied up to around 140 mm per 

year, or 44% of average steady state recharge (321 mm; M.H. Brouwers, pers. comm., 2017; 

Matrix and SSPA, 2014a), although Scenarios 1 and 3 showed nearly equivalent average 

recharge for 2016. Differences in average recharge with respect to Scenario 3 were greater than 

the magnitude of the water budget δR for both comparisons in 2014, and for the comparison with 

Scenario 2 in 2015. Vadose zone AET rates were similar (within ±11 mm of Scenario 3) in 2014 

and 2015; AET for Scenarios 1 and 2 differed from Scenario 3 by +106 mm or +44 mm in 2016, 

respectively, despite having identical ETo input values. This shows a “cascade” effect of the 

variation of rainfall on other water budget parameters calculated by the numerical model: 

Differing rainfall inputs can influence AET rates which in turn influence recharge rates. Figure 6 

shows the spatial distribution of recharge rates for the three rainfall scenarios. Net groundwater 

discharge conditions are generally present along the Alder Creek channel and tributaries. The 

2014 maps (a, d, and g) show similar recharge distributions for Scenarios 1 and 2, and higher 

recharge rates everywhere except near the stream channels for Scenario 3. The 2015 maps (b, e, 

and h) particularly show differences in recharge rates between different scenarios in the sand and 

gravel soil types. The 2016 maps (c, f, and i) show similar spatial recharge patterns for Scenario 

1 and Scenario 3 and lower recharge for Scenario 2, reflecting the lower precipitation in Scenario 
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2 (Table 4). While general spatial differences in recharge rates may be observed in the Figure 6

information, Figure 7 presents the frequency of cell by cell differences between scenarios.

Despite the similar overall average recharge in the local and national rainfall scenarios in 2016 

(Table 4), the frequency plot (Figure 7c) shows that this is the result of a balancing of increases 

and decreases in recharge across the domain. Comparisons involving the local rainfall scenario 

produced a broader distribution of cell by cell differences in recharge, while the differences 

between the regional and national scenarios resulted in a more general shift that affected more 

cells similarly. That is, a greater number of cells changed by differing amounts of recharge when 

the local rainfall scenario was compared with either of the other two rainfall scenarios. 

Figure 8 shows that the cumulative streamflow results for the scenario employing local 

rainfall were closer to the observed streamflow in all three years simulated. Scenario 3 

streamflow was about 3% lower than the observed cumulative flow at the WSC gauge at the end 

of 2014, about 10% lower at the end of 2015, and about 20% lower at the end of 2016. 

Cumulative streamflow results from Scenario 1 were between 25 and 31% lower during the three 

years, whereas Scenario 2 results were between 27 and 43% lower. Because Scenario 3 provided 

closer agreement with recorded values in all three years, the local rainfall scenario could be 

interpreted as requiring less extensive calibration than the other two. However, the baseflow 

indices at the node representing the WSC gauge were between 0.21 and 0.31 for all scenarios. 

Scenario 3 had the lowest baseflow values. The model predicted a larger overland flow 

component of streamflow and much lower baseflow than observed (~0.6; Rutledge, 2007; WSC, 

2017). 

Overall, the poor spatial correlation in rainfall near the study area resulted in differences 

in recharge rate estimates for 2014 to 2016 that were largest when the local rainfall scenario was 
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compared with either the regional or national network scenarios. Local rainfall interpolations 

generally led to recharge and streamflow results that were markedly different than those 

associated with rainfall from the regional or national networks, suggesting a high degree of 

sensitivity of recharge rates to the scale of rainfall input data. 

418 

419 
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 422 

4.0 DISCUSSION 423 

 424 

The results suggest that recharge distributions estimated through numerical modeling can be 

quite sensitive to the spatial variability of rainfall, as characterized by the spatial correlation 

analysis. While longer term monitoring followed by modelling would provide a more complete 

evaluation of the issue, this study suggests that the significant investment required for that 

research would likely produce non-trivial differences in modelled recharge rates for watersheds 

similar to Alder Creek for some years. Annual recharge rates could differ by a considerable 

percentage of the average long-term recharge (e.g., 40%). Local rainfall measurements are 

frequently unavailable at the scale of watersheds used for public water supply, yet models are 

frequently used for water management at this scale and in similar settings. The implications of 

the results are discussed below, following discussion of several aspects of the study itself. 

The four main factors that could have influenced the recharge results of this study are: 1) 

the uncertainty associated with measured rainfall amounts, 2) the frequency of applied rainfall 

intensities in the model, 3) the increased correlation of rainfall caused by the interpolation 

method, and 4) the rainfall regimes sampled by the short-term monitoring of the local rainfall 

network (3 years). First, the accuracy of the readings at the individual rain gauges could 
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influence the interpolated rainfall distribution applied to the model, and therefore recharge. All 

rainfall measurements are susceptible to human and instrument errors. The local network rain 

gauges were observed to have instrument errors up to ±10% on average when tested. The wind 

screens around the local network’s gauges reduce the degree to which wind effects are expected 

to bias the data, while the regional network likely has a higher level of uncertainty due to 

infrequent calibration and a typical lack of wind screens. The daily volumetric capture of the 

Roseville rain gauge was likely to be measured quite accurately, though the wind effects would 

be different because the gauge type differs from the other two networks. 

Second, Mileham et al. (2008) found that the frequencies of interpolated daily rainfall 

amounts impacted recharge rate estimates. In contrast to the Mileham et al. (2008) study, 

interpolated daily frequencies of rainfall amounts for the regional and local rainfall scenarios in 

the present study were similar to each other and to the frequencies observed at the local rain 

gauges (Appendix A). The lack of noteworthy frequency differences between the interpolated 

and measured amounts suggests that variations in the rainfall frequency distribution are not a 

major factor. 

Third, recharge rates could have been influenced by the increased spatial correlation of 

rainfall caused by the inverse distance squared interpolation technique. Interpolation shifted the 

entire range of Spearman correlation coefficients upward by about 0.2, from about 0.4 to 0.8 for 

the observed rainfall to about 0.7 to 1.0 for the simulated. Two related issues are: 1) software 

packages used for fully distributed watershed modelling typically restrict the user to the choice 

of a small number of interpolation methods, and 2) a more advanced method such as kriging may 

require a larger number of observation points than are frequently available. 
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Fourth, the short-term nature of data collected by the local rain gauge network may have 

biased the recharge results by limiting the period of analysis to three years. Thus, the concern is 

that the limited analysis may not be representative of the actual long-term data. However, the 

dataset does include two of the types of years that would be desirable in a more extensive study: 

the rainfall at Roseville in 2016 was essentially equal to the long-term average rainfall over 1973

to 2018, and the rainfall in 2014 and 2015 was lower than average (by about 12 and 9%, 

respectively). Though the recharge modelling is missing a comparative, higher than average 

rainfall amount for Roseville, the results do suggest that drier years (at the national station) may 

be more interesting in terms of greater variability in rainfall and recharge (Table 4). While 

modelling longer-term impacts of the choice of rain gauge measurement network on recharge 

variability would be preferable, the purpose of present study was to conduct an initial assessment 

and suggest whether investments in local rainfall monitoring might improve confidence in 

groundwater recharge estimates. 

The results of this study have implications for the calibration of hydrogeological models, 

and therefore implications for the delineation of wellhead protection areas (capture zones), the 

estimation of groundwater contribution areas for stream reaches, the quantification of the 

groundwater volume available for long-term extraction, and the assessment of contaminant 

loadings and transport. The results also provide advice on hydrological monitoring investments. 

While boundary conditions such as spatial variation in rainfall rates could be estimated during 

the calibration process (e.g., Anderson and Woessner, 1992), it is common in practice to apply 

whatever precipitation data are available to fully distributed models and focus calibration efforts 

on modifying hydraulic conductivity values in order to match observed hydraulic heads and 

streamflow (Kampf and Burges, 2010). This is a potential concern. In either transient or steady 

 

 

 

 

462 

463 

464 

465 

466 

467 

468 

469 

470 

471 

472 

473 

474 

475 

476 

477 

478 

479 

480 

481 

482 

483 

484 



23 

state calibration, a lack of precision in the rainfall distribution will be compensated for by 

adjustments of the hydraulic conductivity and other soil parameters, potentially mis-representing 

the actual geology and biasing infiltration and drainage rates. Steady state models would be 

unable to incorporate repeating rainfall patterns that may exist at small scales without being 

captured by existing national networks. Such patterns could be caused by trends in wind 

direction and rainfall distributions associated with evaporation from large lakes (Dingman, 2015) 

or a heat-island effect near cities (Renard, 2017). The sustainable management of groundwater 

resources could be impaired by water budget errors related to the precision of rainfall data. For 

instance, a recharge uncertainty of ±100 mm (Figure 5) over the 68 km2 model domain in the

present study is roughly equivalent to ±50% of the adjacent City of Kitchener’s (population ~ 

230,000) annual groundwater extraction (Matrix and SSPA, 2014b). 

The magnitude and spatial distribution of recharge is a significant uncertainty for steady 

state capture zone delineation (Sousa, Frind, et al., 2013). This would be further pronounced for 

transient capture zones (e.g., Graham and Butts, 2005). Precise rainfall measurements could also 

affect the recharge rates used to delineate areas of groundwater contribution for stream reaches, 

which could be an important aspect of land use planning and low impact development strategies 

aimed at maintaining baseflow to streams (e.g., Chow et al., 2016). 

Contaminant loadings and transport depend on accurate recharge rates. Recharge 

distributions also affect the flowpaths of contaminants to receptors such as wells and wetlands 

and their associated reaction potential (e.g., Loschko et al., 2016). In addition to the potential 

amount of dilution experienced by contaminants based on recharge rate variation due to the 

rainfall input data employed, the estimation of dispersion coefficients could also be affected (Yin 

et al., 2015). Factors such as rainfall amounts, timing, and intensity that could influence recharge 

485 

486 

487 

488 

489 

490 

491 

492 

493 

494 

495 

496 

497 

498 

499 

500 

501 

502 

503 

504 

505 

506 

507 



24 

rates have been found to influence pesticide leaching rates in the vadose zone (Isensee and 

Sadeghi, 1995; Sadeghi and Isensee, 1994). 

Spatial correlation information for rainfall could be used to enhance groundwater 

modelling. Correlation statistics could guide the design of rainfall monitoring networks used to 

collect model input data. Comparison of the spatial correlation coefficients for rainfall in the 

Brue watershed (Villarini et al., 2008) and the Alder Creek watershed suggests that Alder Creek 

requires relatively more rainfall observation points to capture the spatial variability over small 

distances (< 15 km). Correlation could also be used to interpret how well sparse rainfall 

observation stations represent an area, or discrepancies between sparse rainfall data and water 

table responses. 

While long-term, high quality records at national weather stations such as Roseville are 

invaluable, watershed studies at shorter time-scales (transient as opposed to steady state) in 

certain regions are likely to benefit from more spatially precise rainfall data. The results of the 

present study suggest that the scale of available data could bias hydraulic conductivity values as 

calibration compensates for a lack of precise rainfall observations, thus mis-representing 

recharge and discharge in the near-surface environment. Increasing the density of rain gauges 

may also be the most cost-effective way to reduce uncertainty associated with recharge 

estimates, when compared with the cost of collection of subsurface information at the point 

scale, such as drilling more wells, analyzing soil samples, and conducting hydraulic tests. 
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The results of this study indicate that rain gauge network scale can have a significant impact on 

recharge rate estimates at the watershed scale during short (annual) time scales. Daily Spearman 

spatial correlation coefficients between gauges of the local and regional networks were typically 

< 0.8. These correlations show that rainfall is not uniform in the vicinity of the Alder Creek 

watershed. Simulation of the three rainfall networks resulted in differences in overall average 

recharge of up to 140 mm, or around 40% of previously estimated steady state recharge (M.H. 

Brouwers, pers. comm., 2017; Matrix and SSPA, 2014a). Differences in recharge rates between 

the scenario employing local rainfall and each of the other two rainfall scenarios were more 

variable than comparisons between the national and regional scenarios, and cumulative 

streamflow for the local rainfall scenario visually appeared to provide a closer match with 

observed streamflow. The overall conclusion is that in a setting such as the one described by the 

observed ranges of local and regional spatial rainfall correlation coefficients, fully distributed, 

transient models may frequently be compensating for actual rainfall inputs via adjustment of 

hydraulic conductivity values during calibration. This is a concern for land use planning with the 

goal of maintaining baseflow to streams, for long-term water resources projections, for 

representing transient hydrological events, and for contaminant transport models that rely on 

accurate recharge rate estimates. 

Future work should address the impact of radar rainfall data and snowfall distributions on 

recharge estimates at the watershed scale. 
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APPENDIX A 

One supplementary information file contains: a brief description of one additional model 

scenario, examples of the interpolated rainfall distributions, and a comparison of observed and 

modelled rainfall frequency distributions. 
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Tables 

Table 1. Annual rainfall* (mm) recorded at stations of the local, regional, and national networks. 

 Rainfall 

Weather Station 2014 2015 2016 

WS2 987 839 371 

WS3 794 784 797 

WS4 892 853 665 

WS5 N/A† 725 746 

WS6‡ 800 927 414 

WS7 560 673 789 

Wellesley§ 849 690 888 

Baden§ 731 626 537 

Laurel Creek§ 701 612 605 

Cambridge§ 677 464 747 

Paris§ 597 759 892 

Burford§ 432 641 329 

Roseville** (755) 665 689 746 

* Snowfall data are not included. Roseville snowfall amounts were 183 mm, 111 mm, and 153 

mm for 2014, 2015, and 2016, respectively (Government of Canada, 2019). 

† N/A – not available. WS5 data collection started in June 2014. Jun to Dec 2014: 600 mm. 

‡ The rainfall time series at WS6 is a composite from two gauges at this station. 

§ Grand River Conservation Authority weather station (GRCA, 2017a). 

** Environment Canada Weather station (Government of Canada, 2019). The amount in brackets 

is the average rainfall from 1973 to 2018. 

  



 

 

Table 2. Unsaturated soil properties (D. Graham, pers. comm., 2017; Leij et al., 1996; Schaap et 

al., 1999; Sousa, Jones, et al., 2013). 

Soil Unit 
Ksat

* 

(m/s) 

θsat
**

 

(-) 

θres
*** 

(-) 

n† 

(-) 

α†† 

(cm-1) 

Outwash gravel 5x10-4 0.28 0.04 4.0 0.040 

Ice-contact gravel 3x10-4 0.33 0.04 3.3 0.040 

Outwash sand 6.5x10-5 0.43 0.05 3.2 0.035 

Ice-contact sand 7x10-5 0.35 0.05 3.3 0.035 

Bog/swamp deposits 1x10-5 0.60 0.20 3.0 0.030 

Stream alluvium 1x10-6 0.41 0.07 1.5 0.010 

Port Stanley Till 5x10-6 0.40 0.06 1.5 0.020 

Maryhill Till 1x10-6 0.45 0.06 1.2 0.021 

Lacustrine deposits 1x10-6 0.45 0.09 1.3 0.020 

 

* Ksat = saturated hydraulic conductivity 

 ** θsat = saturated moisture content 

*** θres = residual moisture content 

† n = van Genuchten fitting parameter 

†† α = inverse air entry pressure for van Genuchten curve 

 

  



 

 

Table 3. Fitting parameters for the spatial correlation best-fit curves. 

Network Method Time scale 
Nugget 

(c1; -) 

Correlation Distance 

(c2; km) 

Shape Factor 

(c3; -) 

Local 

with 

Regional 

Spearman 

1 hr 1.0 88.4 0.21 

3 hr 1.0 113.3 0.24 

24 hr 1.0 91.2 0.39 

1 month 1.0 87.5 0.27 

 

  



 

 

Table 4. Numerical model water budget results and comparisons (results in mm per m2 per yr). 

Year Component Scenario 

  1 2 3 

2014 

Precipitation 849 895 1048 

Evapotranspiration* 392 376 381 

Overland Runoff† 91 96 124 

Storage change‡  -53 -33 -20 

Recharge§ 421 456 562 

Streamflow at node representing WSC gauge** 107 112 148 

Total Streamflow†† 121 127 157 

2015 

Precipitation 789 714 897 

Evapotranspiration* 425 421 428 

Overland Runoff† 68 61 85 

Storage change‡  7 -9 20 

Recharge§ 288 241 364 

Streamflow at node representing WSC gauge** 84 75 101 

Total Streamflow†† 97 88 116 

2016 

Precipitation 879 756 771 

Evapotranspiration* 444 382 338 

Overland Runoff† 78 64 93 

Storage change‡  13 25 -10 

Recharge§ 344 285 349 

Streamflow at node representing WSC gauge** 96 79 112 

Total Streamflow†† 107 91 122 

Recharge Estimate from Previous Study (Tier Three‡‡) 321 

Streamflow estimates from WSC 

gauge§§ 

2014 153 

2015 112 

2016 135 



 

 

* AET excluding AET from the saturated zone. Total AET values were: 493, 476, and 496 mm 

for Scenarios 1 to 3 for 2014; 521, 505, and 533 mm, respectively, for 2015; and 540, 466, and 

439 mm, respectively, for 2016. 

† Overland flow into stream. 

‡ Includes storage change (unsaturated, snow, and overland flow zones), and boundary flows out 

of the unsaturated zone (~5 mm/yr/scenario). Boundary flows into the unsaturated zone: 0 mm. 

§ Recharge can be calculated via Eqn. (3). 

** Area above gauge = 47.4 km2 (WSC, 2017). 

†† Area of model domain = 68.2 km2 (GRCA, 1998). 

‡‡ Annual results from calibrated, steady state, saturated zone FEFLOW simulation for Regional 

Municipality of Waterloo Tier Three Assessment (M.H. Brouwers, pers. comm., 2017; Matrix 

and SSPA, 2014a). 

§§ WSC (2017). The sums here are based on the 52-week periods of the simulations. There were 

twelve days with missing data at the start of 2016. 

 



Figures 

Figure 1: The Alder Creek watershed, with Environment Canada, GRCA, and SOWC 

weather station locations (DMTI, 2011; Esri et al., 2019; Government of Canada, 2019; 

GRCA, 1998, 2017a; WSC, 2017). The Water Survey of Canada (WSC) stream gauging 

station location is also shown near WS3. 



Figure 2: Surficial soils in the model domain (DMTI, 2011; GRCA, 1998; OGS, 2010). 



Figure 3: Land use in the model domain (DMTI, 2011; GRCA, 1998; OMNR, 2008; ROW, 

2010). The “Agriculture” category includes minor areas of recreation and open land. 



 

 

 

 

 

 

  

 

Figure 4: Spatial correlation between rainfall measurements for the combined

stations of the local and regional networks.



 

 

 

 

Figure 5: Instrument and method uncertainty for the Scenario 3 (2015) overall, near-surface 

water budget. 

 

  



Figure 6: Recharge estimates for the three rainfall scenarios (GRCA, 1998; DMTI, 2011). 

Maps show results as follows: Scenario 1 (national), (a) 2014, (b) 2015, and (c) 2016; 

Scenario 2 (regional), (d) 2014, (e) 2015, and (f) 2016; and Scenario 3 (local), (g) 2014, (h) 

2015, and (i) 2016. The local weather stations are shown as black triangles. 



 

 

 

Figure 7: Frequency of differences in recharge rates between the three rainfall scenarios. “S3 

- S1” implies a cell-by-cell subtraction of Scenario 1 from Scenario 3, etc. 

 

  

 

 



Figure 8: Comparison of cumulative streamflow results for the three simulations with 

recorded flows at the Water Survey of Canada (WSC) gauge. The WSC gauge was missing 

12 days of data at the start of 2016. 
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Appendix A: Supplementary information 

This supplementary information file contains: a brief description of one additional model 

scenario, examples of the interpolated rainfall distributions, and a comparison of observed and 

modelled rainfall frequency distributions. 

One scenario was considered in addition to the national, regional, and local rainfall 

scenarios presented. This scenario was conceptualized as a reference scenario in which rainfall 

was interpolated from the set of all thirteen available rain gauges (Table 1). Interpolations were 

made at the daily time scale using the inverse distance squared method. 

Figure A.1 suggests that the reference scenario results were very similar to those of the 

local scenario for several larger rainfall events and contain only minor differences. Table A.1 

shows the individual stations’ readings for these examples. The cumulative streamflow results of 

the reference scenario were similar to (within about 20 mm per unit area of) the cumulative 

streamflow results of the regional and national scenarios in 2014, and very similar to (within a 

few mm per unit area of) those from the local rainfall scenario in 2015 and 2016 (Figure A.2). 

Results for the water balance components of the reference scenario were intermediate values 

between the local and regional scenarios’ results, but the values were generally closer to the local 

scenario. This is likely because of the immediate impacts of the local gauges within the 

watershed through the interpolated precipitation distribution. The minimal differences between 

the reference scenario and the local rainfall scenario, and the poorer match between the reference 

scenario and the observed streamflow results suggest that this reference scenario does not 

constitute an improvement with respect to the results of the local scenario. 

 



2 

 

 

Figure A.1: Examples of rainfall interpolations for 20 May 2014 (a, b, c), 15 Jul 2014 (d, e, f), 

24 Nov 2014 (g, h, i), and 20 Apr 2015 (j, k, l). The first column (a, d, g, j) shows results for 

the local network, the second column (b, e, h, k) shows results for the regional network, and 

the third column (c, f, i, l) shows results for the reference scenario (all networks). 
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Table A.1. Daily rainfall (mm) on the four days portrayed in Figure A.1 (GRCA, 2017a; 

Government of Canada, 2019).  

 Rainfall 

Weather 

Station 
20-May-14 15-Jul-14 24-Nov-14 20-Apr-15 

WS2 16.8 42.8 35.6 15.8 

WS3 21.2 0.0 42 0 

WS4 0.0 1.6 50.2 15.6 

WS5 N/A 26.0 35.8 14 

WS6 0.0 2.2 41 15.4 

WS7 15.2 0.6 25.6 11 

Wellesley 22 14.6 34.2 17.2 

Baden 0 31.4 39.2 17.2 

Laurel 10 18.6 34.4 20.8 

Cambridge 6.2 0.4 26.2 14.4 

Paris 0.8 0.6 25.6 22.8 

Burford 0 0.6 20.4 19 

Roseville 15.2 0 3.7 0.6 

 

 

Figure A.2: Cumulative streamflow results from all scenarios including the reference scenario. 
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Figure A.3 shows the simulated and observed rainfall frequencies for depths less than 20 mm. 

The simulated frequencies tend to be similar or slightly higher than the observed regional and 

local values. The simulated frequencies follow the same pattern as the local and regional 

frequencies, unlike what was observed during spatial rainfall distribution analysis by Mileham et 

al. (2008), where the simulated and observed frequency patterns differed to a greater extent. 

 

 
Figure A.3: Frequency distributions of observed and simulated daily rainfall: a) log scale for 

frequency, b) linear scale for frequency (Government of Canada, 2019; OMNR, 2007; GRCA, 

2017a; Wiebe et al., 2019). The simulated rainfall time series were extracted from 36 grid cells 

for both the regional and local rainfall scenarios. 
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