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Abstract 

 In recent times, with the increasing availability of large datasets, applications of 

machine learning techniques have grown at a rapid speed. However, due to the black-

box nature of these tools, it can be hard for model builders to understand the detailed 

structure of the system that machine learning models simulate. Agent-based modelling 

(ABM) is a popular approach to studying complex systems., One of the challenges for 

this technique is to design the decision making processes of the agents in the model. 

As machine learning tools have a strong ability to transform the information from the 

raw data into a functional model as the decision making processes for agents in 

ABMs. Because an ABM can provide a detailed structure for the system that the 

machine learning model simulates, it is reasonable to combine the two kinds of 

models. However, although in previous studies, some researchers combine the two 

models, most of them use one of the two models as a validation tool for the other, 

rather than to integrate the machine learning model into the decision making 

processes of agents in ABMs. Therefore, this thesis focuses on integrating a machine 

learning model into the ABM, and contrast it with the ABMs with two traditional 

decision making models, including an optimal model and a stochastic model.  

 To compare the three decision making models, we use farmers’ BMP adoption 

case in the Upper Medway subwatershed, and contrast the three models through three 

metrics, including the percentage of BMP adoption, size of agricultural land of BMP 

adoption, and the correlation between BMP adoption and landuse types. As a result, 
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the ABM with the machine learning model presents a high level of accuracy 

compared with the other two traditional models, but its adaptability to other cases and 

the robustness to uncertainties still require a further study. 
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Chapter 1 Introduction 

 The study of complex systems has been applied in various fields like global 

climate change, transportation planning, and market dynamics. These complex 

systems are comprised of interacting parts that generate collective behavior at the 

system level (Commendatore et al., 2018; Robinson & Brown, 2016; Chen et al., 

2013; Gilli & Rossier, 1979). Many studies of complex systems have employed agent-

based modelling (ABM) to describe the system and explore the dynamics of its 

behavior (Miller & Page, 2009; Heckbert et al., 2010). ABM is a computational 

modelling method that describes the entities or individual elements of a system as 

agents that take decentralized actions to interact and communicate with each other and 

their environment (Wilensky & Rand, 2015). With these actions, the model of a whole 

system can generate some global properties and patterns that could be difficult to 

discover by studying the system at the individual level (Lai & Liao, 2013). Therefore, 

the ABM method is an ideal tool for simulating the complex system, since the 

computational model consists of heterogenous and interactive agents, and can 

generate nonlinear dynamics, especially compared with traditional mathematical and 

statistical methods (Parker & Robinson, 2017). 

 In an ABM, it is important to define an agent and its possible actions. The agents 

can be heterogenous representatives of some abstract entities with microscopic 

motives. The agent has the ability to make decisions autonomously, interact with each 

other and the environment, and respond to them. The actions of agents will lead to a 
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macroscopic pattern (Handel, 2016), which is also how the results of a model are 

presented. Therefore, it is significant for a model builder to design the actions of 

agents, and hence, the decision models or structures can be introduced into ABMs to 

achieve this. According to Groeneveld et al. (2017), these decision making models are 

commonly implemented by optimization, heuristics, and the process with stochastics 

parts, which means a stochastic modification of the optimal models. For all these 

methods, it is usually difficult to determine the optimal initial settings for model 

parameters, and sometimes it is strongly influenced by personal perceptions (Hayashi 

et al., 2016). As a result of the personal perceptions, sometimes the information and 

relationship in the dataset can be easily ignored, e.g. the first version of the model that 

simulates the European beech forest ignores the vertical patterns, which was 

questioned by beech forest scientists, for it is a significant factor in forest structure, 

but it satisfied the demands of landscape ecologists (Railsback & Grimm, 2019). One 

possible approach to addressing this problem could involve the introduction of 

machine learning methods into ABMs. 

Machine learning in recent times grows in a rapid speed due to the large amount 

of online data collected (Jordan & Mitchell, 2015). It is a study of algorithms that has 

the ability to automatically learn and improve from experience and data (Mitchell, 

1997). As we discussed above, for ABM, it is not easy to design the decision making 

processes of agents, and personal perceptions have a strong influence. Compared with 

ABM, Machine learning techniques can take advantage of the data collected and use 

the experience derived from data to make decisions, but it can hardly present the 
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heterogeneity among agents or parts of systems and predict the dynamic influence of 

actions of them as it is sometimes a black-box method (Hayashi et al., 2016), while 

ABM can provide an opportunity for model builders to check the detailed structures 

inside the whole complex system. As we discussed above, in the machine learning 

model, there is a difficulty with explaining the detailed structure of the simulated 

system, and in ABMs, it is hard to design the actions of agents. Therefore, an 

integration of ABM and machine learning can be an alternative to solve the problems 

in both of ABMs and machine learning, because machine learning model can use the 

data more efficiently to get the action rules of agents, while ABMs can provide a clear 

structure of the system that the machine learning method sometimes has difficulty 

with.  

However, the integration of the two models is not widely discussed. Although 

some researchers provide some examples (Wojtusiak et al., 2012; Lamperti, 2018; 

Torrens et al., 2011), most of their research are not published in a peer-reviewed 

journal (Hayashi et al., 2016; Raman & Leidner, 2019; Furtado, 2017; Rand & 

Stonedahl, 2007; Sheikhha, 2009; Zhou, 2018; Rand, 2006). Furthermore, these 

research findings mainly only focus on the specific case of the integration of the two 

models, instead of the comparison of a machine learning model and other decision 

models in ABM. For those research findings that focus on different performances of 

decision models in ABM, the involvement of machine learning is not usually 

mentioned (Groeneveld et al., 2017). Consequently, comparing the decision models in 

ABMs, including a machine learning model based one, remains a research gap. To fill 



4 

 

the research gap, this project attempts to answer the primary research question: 

To what degree do the performance of ABMs with different types of decision making 

models, especially for the machine learning based heuristic one, differ by patterns in a 

practical case, and what is the main characteristic of the involvement of machine 

learning models in ABMs? 

In order to answer these research questions, this project focuses on a case study 

that explores farmer’s adoption of agricultural Best Management Practices (BMP) 

designed to improve water quality in agricultural watersheds. These BMPs include 

several effective, practical and affordable approaches to prevent or reduce the 

pollution on farms’ soil and water resources, like building a windbreak or retiring 

fragile land. Since the BMP adoption is determined by farmers, and each farmer that 

is affected by others or the environment can make their own decision, it can be 

generalized as a complex system. Hence, ABM can be implemented in this farmers’ 

BMP adoption case. Guo (2018) built an ABM for this case with an optimized 

decision making structure, and this provides a general structure for this project to 

build other comparable ABM with different decision making models. 

 Additionally, this project can also be a part of the Agricultural Water Futures 

(AWF). The AWF is a seven-year and pan-Canadian project funded by a $77.8-million 

grant from the Canada First Research Excellence Fund. The goal of this project is to 

investigate how agriculture will change in response to climate factors or socio-

economic drivers and help to improve the current and future water sustainability 

(University of Waterloo, n.d.). Especially, this study is a part of Work Package 3 in 
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AWF, strengthening capacity for adaptation in agricultural water decision making, as 

through the comparison of these decision making structures, future model builders can 

also get some insights about which decision model is suitable for their purpose.  

In conclusion, this project aims to achieve the following goals and objectives to 

answer the research question above: 

1. Examining the previous ABMs with different decision making structures that 

simulates farmers’ BMP adoption by conducting a literature review and searching 

related projects and papers in the journal database including Scopus, Google 

scholar and the University library database. 

2. Building a general framework of ABMs that make the decision making models of 

the previous ABMs possible to be implemented in a practical case and making 

them comparable. 

3. Building a machine learning model based on empirical data and integrating it as 

heuristic rules of agents in the general structure. 

4. Contrasting the results of the ABM with these decision making models and 

analyzing the characteristics of them. 

During the processes of this project, there are limitations caused by time and 

limitations in available empirical data. This project only tries to focus on filling the 

research gap and answering the questions mentioned previously by achieving the 

research objectives above, so other objectives, particularly related to the practical case 

like making the results of models more realistic and analyzing the impacts of factors 

on farmers are not considered here.  
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There are 4 other chapters after the introduction in this thesis. In the literature 

review section, we will review the background knowledge about the decision making 

structure in ABMs, machine learning models, and BMP in the previous related 

literature, In the methodology section, we will introduce the main ABM structure used 

in this project, and the details about the practical case. The results chapter will 

introduce some metrics to evaluate and compare the ABMs with different decision 

making structures, and try to analyze the characteristics of them. The last chapter is 

the discussion, and we will discuss the achievements, limitations, and future possible 

work about this project. 
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Chapter 2 Literature review 

 This section will start by introducing the definition and importance of complex 

systems, and then discuss the background of ABM. Next, pattern oriented modelling 

will be introduced to examine whether the ABM is acceptable. Since one challenge 

for ABM is to design the actions of its agents, machine learning is introduced as a tool 

to inform the design of agent decision making algorithms. After discussing the general 

design of ABMs, we introduce the background of the specific case study used here, 

which serves as the proof-of-concept, in this thesis. Therefore, the knowledge about 

BMP and their previous implementation are also provided. Particularly, in one of 

these previous projects, the integration of farmers’ typology is highlighted, for in this 

thesis, it is also a significant difference in decision making models, so the relevant 

information is also included. 

2.1 Complex systems 

 Complexity exists in a variety of research fields, including computer design, 

social organization, ecology research, and even astronomy (Booch, 2008, pp. 8-10). 

However, the concise definition of a complex system remains a problem (Ladyman & 

Lambert, 2011). Since the concept of a complex system is widely used in multiple 

fields, social scientists and philosophers utilize various definitions. For example, 

Arthur (1999) claimed that the complex system is a system “with multiple elements 

adapting or reacting to the pattern these elements create”, while Rind (1999) defines a 

complex system as a system “in which there are multiple interactions between many 
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different components”. Because researchers in multiple fields have different 

approaches to define this concept, it is hard to explain a complex system in a 

definition form. However, these researchers still provided some ideas about the 

characteristics of this concept. According to Ladyman & Lambert (2011), there are 

five main features of the complex system: nonlinearity, feedback, not centrally 

controlled, emergence, and hierarchy.  

Nonlinearity is a corresponding concept to linearity. In a linear system, 

researchers can add any two solutions or multiply factors to get another, while 

nonlinearity indicates that this principle cannot be applied to the kind of nonlinear 

system. The attribute of feedback means that the actions of a member of the system 

respond to the earlier decisions made by its neighbors, and this requires a way to 

simulate the interactions among parts of the system. For most complex systems, they 

are not controlled by a central entity, which means that in the system there are no 

elements that can obtain all the information and guide or restrict all the other parts of 

the system. Simon (1991) suggests that the complex systems usually have several 

levels of organizations like some ecological systems, in which each level of structures 

can have its own functions and interact with the upper and lower structures. 

Additionally, as described by Anderson (1972), “more is different”, and this points out 

the limitation of reductionism, which means a complex system can usually generate 

some emergence, which means that the whole system has the properties that its parts 

do not own. Therefore, only focusing on the microlevel entities or studying on the 

macrolevel system can neither capture these emergent outcomes. For example, only 
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focusing on individual farmers’ decision making will make it hard to analyze the 

whole pattern, while only considering the change in the whole study area will lack the 

decision making processes of each farmer.  

According to Shalizi (2006), complex systems can be studied by some modelling 

techniques, including cellular automata and agent based models (ABM), to make the 

systems easier to be understood. In these techniques, Shalizi (2006) believes that the 

ABM is the most frequently associated modelling techniques with complex systems. 

For example, in the research of coupled human and natural systems (CHANS), which 

focus on the interconnection of human and natural systems, the ABM is the major tool 

(An, 2012). Therefore, since a complex system exists in many fields and the features 

of complex systems require researchers to use some special methods to study it, rather 

than the traditional linear model, the agent based model can be a significant 

alternative.  

2.2 Agent based models 

 ABM is a computational modelling tool in which the key actors or individual 

components of the system being studied are directly simulated (Parker & Robinson, 

2017). These components are referred to as unique and autonomous agents that can 

interact with each other or the environment created within the model. The uniqueness 

indicates that each agent can be specified with its own characteristics, while being 

autonomous implies that agents can make decisions and take actions independently 

with the aim of achieving their own goals (Railsback & Grimm, 2019). 
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The capability of ABMs to respond to the features of complex systems makes 

them as a useful tool in understanding the complex systems. According to Dong et al. 

(2010), the ABM structure can represent the nonlinearity dynamics, which respond to 

the nonlinearity feature of a complex system as we mentioned above. In addition, the 

interactions between agents and the environment allow the model to represent the 

feedback and decentralization attributes of complex systems (Robinson & Brown, 

2016). Furthermore, studying the connection between the systematic behaviors and 

characteristics of individual agents provides the opportunity to get some emergent 

results for researchers (Railsback & Grimm, 2019). Since the ability of ABM structure 

can satisfy the demands arise from the features of a complex system as we mentioned 

in the last section, including nonlinearity, feedback, not centrally controlled, 

emergence, and hierarchy, it is a powerful tool to simulate the complexity and multi-

level problems in models (Van Dam et al., 2012).  

ABMs are widely used for analyzing complex human decision making and 

behavior. Klabunde & Wilekens (2016) used the ABM structure to simulate the 

decision-making rules in migration. Miksch et al. (2019) applied the ABM to simulate 

the impacts of human interactions on the spread of infectious diseases. Fabian Adelt et 

al. (2014) involved the ABM structure to simulate different modes of governance. 

However, identifying the decision making structure of individual agents is still a 

challenge for designing the ABMs (Zeman, 2019). According to Groeneveld et al. 

(2017), three main decision-making techniques are used in the ABM structure: 

optimization, stochastics, and heuristics. Some researchers have studied the 



11 

 

comparison of these models, especially for optimization and heuristic models. For 

example, Grovermann et al. (2017) and Schreinemachers & Berger (2006) discussed 

the advantages and disadvantages of optimization and heuristic decision making 

structures. Additionally, researchers like Cabrera et al. (2010) provided some case 

studies for presenting the performance of these decision making models. However, as 

described by Robinson et al. (2007), heuristics models are often described as 

“IF…THEN” structures, while some statistic models and the black-box approaches 

are ignored, because it does not present a clear “IF... THEN” conditional relationship.  

The agents in optimization models usually rely on solving mathematical 

programming models to make their decisions, which is based on the idea that agents 

are always rational actors, able to evaluate all possible alternatives and find the choice 

that can maximize their utility (Schreinemachers and Berger, 2006). This is the most 

commonly used decision structure in ABMs (Groeneveld et al., 2017). For instance, 

Miller et al. (2010) used an optimization-based ABM, in which the agents, farmers, in 

this model use a calculated net income as the utility value to drive their decisions, to 

simulate the livelihoods of the population and the resulting landcover dynamics in the 

Galápagos Islands. This optimization-based structure is usually criticized as being 

unrealistic as choices are often affected by imperfect resources and bounded 

rationality (Simon, 1997). However, this model also has advantages, in that it is clear 

to monitor the economic trade-offs, and the factors driving the decision making 

processes can be easily tracked to inform policy making (Schreinemachers and 

Berger, 2006).  
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The stochastic structure, as the name suggests, implies that there are stochastic 

elements in the decision making processes. According to Groeneveld et al. (2017), 

models with stochastic elements are classified as an independent category of optimal 

and heuristics models. For example, Hoertel et al. (2020) developed a stochastic ABM 

to study the COVID-19 epidemic in France. In this model, the stochastic elements 

allow it to simplify the simulation of population social contacts and virus propagation 

dynamics. Additionally, the stochastic elements can also be used to investigate 

heterogeneity among agents, as the agents have the ability to have different 

preferences or follow divergent decision making rules (Ligmann-Zielinska, 2009).  

 If in a model, agents make decisions based on some rules that are derived from 

empirical data without a strong theoretical basis, we can define this type of model as 

the heuristic model (An, 2012). Compared with the optimization-based models, this 

approach allows one to simulate the bounded rationality of individual agents 

(Schreinemachers and Berger, 2006). According to Groeneveld et al. (2017), it is the 

second most popular decision-making structure used in ABMs, and it is very close to 

the optimization-based models (77 cases of heuristic rules vs 91 cases of optimal 

models). For example, Cabrera et al. (2010) implemented a heuristic-based structure, 

which is performed by a decision tree, ABM to simulate farming household behavior 

in the Brazilian Amazon. According to An (2012), statistical models like logistic 

regression or some black-box machine learning models like neural networks can be 

regarded as a tool to derive rules from empirical data. Therefore, although these 

black-box approaches are different from some theoretically guided methods, they can 



13 

 

be also used to derive heuristic rules for ABMs, and this provides an opportunity to 

introduce some machine learning models in the ABM decision making structure. 

Since the heuristic structure usually uses empirical data to derive a rule for model 

design, the models may be regarded as more realistic compared with the optimal 

structure, because in the optimal structure, agents are usually assumed to be rational 

while the heuristic structure can present the bounded rationality of agents 

(Schreinemachers and Berger, 2006). However, it has a disadvantage that this 

structure can hardly explain the reasons or mechanism of decision making processes 

(Evans et al., 2006). Nevertheless, even though the reasons for decision making 

remains an unanswered question, these derived rules can explore some knowledge or 

information underlying the empirical data (An, 2012).  

2.3 Pattern Oriented Model 

 Models can be regarded as a simplified representation to answer some research 

questions (Starfield et al., 1990), so there is still a significant problem that is 

necessary to be highlighted: how can a model both provide a response to the research 

questions and keep its characteristics as simple as possible, since the higher 

complexity will lead to increased difficulty in understanding the behavior of the 

model and reduced the generalizability of the implementation of models? For 

example, the additional information and submodels can make the models focus more 

on a specific case, and it may not be suitable for a different case. Therefore, a concept 

called structurally realistic is used to describe models that satisfy this requirement that 
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means the model can present the essential elements to answer the research question, 

but it is not necessary to include everything we know to make it “realistic” (Railsback 

& Grimm, 2019). To decide whether the ABM is structurally realistic, an approach 

named pattern oriented model (POM) is an alternative.  

 The POM idea is mainly to design and analyze models based on multiple patterns 

from the real systems (Wiegand et al., 2003), in which patterns are “small numbers of 

weak and qualitative but diverse” stylized facts (Railsback & Grimm, 2019). Each 

pattern can work as a filter, and usually three to five patterns can help the models to 

become structurally realistic. It can mainly be used for designing the model structure, 

testing the agent behavior, and determining the appropriate parameter values 

(Railsback & Grimm, 2019).  

 Especially, as it is usually hard to determine the agent behaviors, POM can be 

very helpful for theory development, which means the agent behaviors serve as a 

theory described by submodels and researchers can examine possible theories by 

contrasting the levels of pattern-matching of the reproductions of these submodels 

(Railsback & Grimm, 2019), where ABMs work as virtual laboratories. For example, 

Huth & Wissel (1992) used an ABM structure to simulate and compare two theories 

for how fish moves in a school. One is to react with the nearest other fish, and the 

other one is to move based on the average direction of several neighbors. They used 

the mean distances between fish and the nearest neighborhood, the mean angle 

between each fish and the school, and the root mean square distance from individuals 

to the centroid of the school as patterns (Grimm et al., 2005). With this comparison, 
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the second theory performed better when it came to reproducing fish schooling 

patterns. Therefore, POM can serve as a tool to compare different agent behaviors or 

decision making structures.  

2.4 Machine learning models 

 Machine learning, or statistical learning, is an algorithm that has the ability to 

learn to solve a particular problem like driving or chess, from data automatically, and 

it usually relies on the sample data to train and build the model, and aims to make 

decisions or predictions (Goodfellow et al., 2016). As heuristics models require one to 

derive rules from empirical data, a machine learning model can be a good tool for 

turning the empirical data into useful rules or information (Mitchell, 1997), e.g. the 

machine learning model can be used to derive a rule for detecting the spam email 

based on the empirical records of spam email (Dada et al., 2019).  

Based on the difference that whether the datasets have both inputs and outputs or 

only have the inputs, the machine learning model can be divided into supervised 

learning and unsupervised learning. Specifically, for the supervised learning models, 

in the raw dataset, there are model builders’ expected values or classes, and the 

models are expected to produce results with these determined classes, while in the 

unsupervised learning, this expected information is not in the raw datasets, and model 

builders often seek the similarity or clusters in the datasets. As in the ABM, the 

machine learning model is expected to be used for decision making, and this means 

that a determined decision is necessary, only the supervised learning is related, since it 
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can produce a determined result.  

Moreover, supervised learning consists of two categories: classification for 

classifying the samples into discrete categories and regression for generating 

continuous numerical results, and since the decisions or choices can be regarded as 

several discrete values, classifiers, which means the models are used for classification, 

are more important here.  

Specifically, logistic regression, k-nearest neighbors (KNN), naïve Bayes, 

decision trees and random forests, support vector machines (SVMs), and the neural 

networks are the most used classifiers, and the comparison of these classifiers are 

conducted in some past studies. Manzouri et al. (2018), Lorena et al. (2011), and Ul 

Hassan et al. (2018) used different case studies to examine the performance of these 

machine learning classifiers, and among them, random forest neural network, and 

SVM have the highest accuracy, while the random forest can also have a quick 

training speed and requires a smaller amount of data than neural networks, although 

the overfitting problem is necessary to be highlighted (Hastie et al., 2009).  

 Random forest is an ensemble learning method based on decision trees (Ho, 

1998). As its name represents, it is just like a “forest” of decision trees. It combines 

multiple decision trees to predict the results. In this model, multiple decision trees are 

created by the bootstrap aggregating technique. Specifically, the algorithm chooses 

several samples in the training data without replacement to build decision trees. In 

these decision trees, at each split only a random subset of features in the training data 

are selected for enhancing the influence of strong predictors. Finally, the random 
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forest model will use the average of predictions as the results (Hastie et al., 2009). 

Therefore, three parameters are the most important to be tuned, including the number 

of decision trees, the number of the random subsets of features at each split, and the 

minimum terminal node size (Koehrsen, 2018).  

 The overfitting problem is another significant challenge for machine learning 

models. It implies that the statistical model is too close to fit the training data, and 

therefore with the additional data, the model may not predict the results successfully 

(Santos et al, 2018). Due to the errors and noises in the training dataset, the ability of 

generalization will be reduced and leads to a big problem if the model is aimed to be 

used in another dataset, especially for the low-quality training data. To solve this 

problem, cross-validation can be a good technique. This technique chooses to split the 

input training dataset several times, and each time it uses one split for validation, the 

other splits are used for training the model. Then, it uses the averaging results as the 

output of this statistical learning model. Hence, this technique reduces the impacts of 

training data, and further reduces the overfitting effects caused by them. 

 There are some previous studies in which the machine learning models are 

integrated into ABMs. Most of them used the ABMs for the validation of the machine 

learning models, or used machine learning models to evaluate the performance of 

ABMs. Rand (2006) provided an integrated structure for both ABM and machine 

learning models, applied to the El Farol Bar Problem. In this structure, the results of 

machine learning models are used for updating the decision making processes of the 

ABM, while the running results are used as the observations to train the machine 
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learning models. Lamperti et al. (2018) also introduced machine learning for ABM 

calibration to the real-world data. Wojtusiak et al. (2012) provided another perspective 

that regards the ABMs as an ideal platform for intelligent agents to simulate learning 

procedures. Each time the model runs, agents can use the results of machine learning 

models to learn, or in other words, to update its original behavior rules. Additionally, 

Hayashi et al. (2016) used the customer churning case for the comparison of the ABM 

and machine learning model, and the results of machine learning models were used 

for improving the prediction accuracy of ABM. However, to my knowledge, these 

projects usually focus on calibrating the results of ABMs or machine learning models 

by each other, instead of integrating the machine learning model into the decision 

making procedures of ABMs.  

Therefore, the fact that few of these studies focus on integrating the machine 

learning model into an ABM for defining the decision making processes provides an 

opportunity to examine the effects of this kind of model, for one of the big challenges 

for ABM building is to design the action of agents. One of the examples is a 

framework provided by Jäger (2019). In this project, neural networks were used to 

replace manual rules in the case of reproducing Schelling’s model, although the data 

train the machine learning model are collected from randomized ABM first. Since few 

researchers study the ABM with a machine learning model as the behavior structure, 

to my knowledge, the comparison of it and other decision making models are hardly 

performed. 

 As described, few researche focus on integrating machine learning models into 
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ABM as submodels to design actions of agents, which is a challenge in ABM 

building. Although An (2012) mentioned this technique as a subgroup in heuristic 

models, the practical implementation and its characteristics still remain a gap. In this 

thesis, we choose BMP adoption as a proof-of-concept to examine the difference 

between this type of ABM and ABM with other decision making structures. 

Particularly, since BMP adoption can be influenced by interactions of other agents, 

and can also interact with the environment, it is a good case for ABM application, and 

can also be used for contrasting ABMs with different decision making models.  

2.5 Best management practices in agriculture 

 Best management practices (BMPs) are the descriptions of approaches that are 

devoted to managing human activities for reducing the pollution of surface and 

groundwater. These approaches can be implemented in agricultural, urban and 

forestry land (Utah State University, n.d.). Specifically, for the agricultural BMP, it 

implies a practical and affordable approach for farmers to conserve their soil and 

water with the guarantee of the productivity (Ontario Ministry of Agriculture, Food 

and Rural Affairs [OMAFRA], n.d.). The Clean Water Program is a program that aims 

to provide technical and financial assistance to protect the rural water quality. 

According to Clean Water Program (n.d.), there are totally 12 eligible BMP projects 

for its funding in the installation dataset, which is also the training dataset used for the 

machine learning model in this thesis. However, most of them cannot be easily 

adopted by farmers like septic systems, which require special eligibility and the 
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assessment of experts. Additionally, there are other classification methods for BMP 

types as described by Upper Thames River Conservation Authority [UTRCA] (n.d. a), 

and OMAFRA (n.d.), but due to the limit from the availability of datasets, this thesis 

will only focus on the following four types of BMPs. 

 Grassed waterways are broad, shallow channels that are designed to convey local 

runoff without soil erosion (OMAFRA, 2009). The vegetation cover can serve as a 

protector to retard the flow of surface water and reduce the erosion of soils (Alberta 

Government, 2015). A number of factors should be considered before designing the 

grassed waterways, including the slope of the waterway, the vegetation suitable, and 

the size of the waterways like length and width (United States Department of 

Agriculture [USDA], 2007). According to Schroter and Kansas (n.d.), the grassed 

waterway has a minimum lifespan of ten years. 

 Water and Sediment Control Basin (WASCob) refers to an embankment built 

across a depression area to store the runoff water (Natural Resources Conservation 

Service [NRCS], n.d. a). It can improve the water quality by trapping and collecting 

sediment. Since it can also control the flow within a drainage area, the gully erosion 

can be further reduced. Usually, the slope, the area watershed, and the soil 

characteristics should be considered before designing the WASCob (NRCS, 2010).  

 According to NRCS (n.d. b), “buffer strips” can refer to riparian buffers, filter 

strips, grassed waterways, and windbreaks. However, since these approaches are quite 

different in terms of installation and life span, here the buffer strip only implies the 

riparian buffers. The riparian buffer strips are the area of permanent vegetation that 
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can serve as the barriers between water bodies and farming areas (UTRCA, n.d. b). As 

a result, it can usually protect the water bodies from the influence of land use in the 

neighborhood, and thus protect and improve the water quality. Slope, soil texture, 

vegetation types can all have an impact on the effectiveness of the buffer strips 

(Hawes & Smiths, 2005).  

 Field windbreaks are a linear vegetative barrier in one or two rows for reducing 

the impacts of excessive wind speed in the fields (OMAFRA, n.d.). They can reduce 

the erosion caused by the wind, improve the crop quality by reducing the wind 

damage (UTRCA, n.d. c), and since the decreased wind speed can enhance the 

pollutant filtering capacity of soils, it can also be used to protect the water quality 

(Lower Thames Valley Conservation Authority [LTVCA], 2015). Additionally, the 

windbreak can serve to moderate the soil temperature, increase the soil moisture, and 

change the distributions of snow. According to Essex Region Conservation (ERCA) 

(n.d.) and Clean Water Program (n.d.), both projects aim to improve the water quality 

have listed the windbreak installation as an alternative. Before the installation of 

windbreaks, the density, height and species are all necessary factors, which can have 

impacts on their effectiveness, to be determined based on the local conditions 

(Brandle, n.d.).  

 There are also some other types of agricultural BMP used widely, such as changes 

in tillage systems, manure management, and the pesticide storage. The model in this 

project provides a possible interface for various BMP types if the model users can 

assess the adequate local observations and the cost data about these BMP types. 
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Nevertheless, in the proof of concept, only the above four BMP types can be used, in 

order to make the decision making models comparable with the limited available data. 

The model does not prohibit other BMP cases used for the proof of concept. The 

reason for the BMP choices in this thesis is mainly two-fold. One main reason is the 

limitation of raw datasets, and even the four BMP types will be recategorized as two 

large groups for the comparability of the decision making structures in ABMs. The 

other reason is that since the goal of this project is to provide a practical case to 

examine the performance of decision making structures in ABMs, especially for the 

machine learning model, some model structures and elements mainly inherits from the 

previous work that focuses on farmers’ BMP adoptions. Hence, in the following 

section, we will try to introduce some previous work using ABM to simulate this case, 

which serves as an important basis for the practical implementation in this project. 

2.6 ABMs to simulate the BMP adoption of farmers 

 In this project, the main modelling structure inherits from two ABMs that 

simulate the adoption of farmers, Guo (2018)’s optimizing ABM in the Upper 

Medway Creek and Zeman (2019)’s typology-based ABM in an Iowa watershed. 

 Guo (2018) aims to analyze the different impacts of socio-economic conditions 

on farmers’ BMP adoption processes in the Medway Creek subwatershed, and provide 

some insights for policymakers to make strategies. In Guo (2018)’s project, there are 

totally six BMP types used as the potential outcomes, while these BMPs are organized 

as eleven BMP scenarios, and these scenarios serve as the alternatives for farmer 



23 

 

agents. For the decision making processes, this model introduced a weighted sum 

equation to evaluate farmers’ preferences for economic, environmental, and social 

factors based on Brown and Robinson’s (2006) work. Especially, the cost and 

effectiveness of each BMP type, which is an important factor of the generation of 

economic and environmental scores, is calculated in detail based on previous surveys 

and literature. Additionally, farmers’ knowledge levels and the subsidy rates of BMPs 

are involved in the decision making processes and examined by the sensitivity 

analysis. However, this model assumes that all the agents follow the same decision 

making processes, and the heterogeneity among farmer groups is not illustrated.  

 Therefore, Zeman (2019)’s model can be a good supplement for this. Similar to 

Guo (2018), this project also focuses on building an ABM to examine the influences 

of different factors, but it introduces farmers with different attitudes and preferences 

to perform the heterogeneity in farmers’ decision making processes. In this model, 

only three BMP types are used, including cover cropping, nutrient management, and 

drainage water management, and the cost and effectiveness of these BMPs are 

collected from literature, which is relatively simple compared with Guo’s (2018) 

calculation. However, although both the two models used the weighted sum function 

to calculate the utility value, besides economic, social and environmental factors, this 

model especially introduces other two factors, risk aversion and interest in innovation. 

Particularly, the risk aversion is evaluated by the income growth rate every year, and 

the innovation is presented by the amount of work of different BMPs, which is 

assigned by the modeler. Unlike Guo (2018)’s model, the impacts of subsidy rates and 
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knowledge levels of farmers on BMP are not the concerns of this model. Instead, the 

sensitivity analysis used in this model is aimed at studying the influence of farmer 

demographics, which are represented by the typology of farmers, change in BMP 

adoption. In this model, the farmers are divided into six groups that have different 

preferences to social, economic, and environmental concerns, risk aversion, and 

interests in innovation these five factors, including business, conventional, 

environmental, innovative, supplemental, and investor farmers. This group 

categorization can introduce the heterogeneity among farmer agents and serve as an 

alternative way to simulate the decision making processes.  

 In this thesis, the main ABM structure is the integration of the simplified two 

models in order to make the decision making models comparable. Specifically, since 

the study area of the proof of concept is the same as Guo (2018)’s model, the BMP 

categorizations and economic score calculation mainly inherit from it. In addition, to 

make the decision making model comparable, the utility function only takes the 

economic, environmental, and social factors into considerations. Correspondingly, the 

farmers’ typology is simplified into four types: business, environmental, conventional, 

and hobby farmers. According to Railsback & Grimm (2019), the sensitivity analysis 

is aimed at examining whether the results are sensitive to parameters and structure 

change. As in both of the two models, the sensitivity analysis has already been 

performed, and the objectives of this thesis are to contrast the decision making 

processes, the sensitivity analysis will not be a major concern in this project. 

 As mentioned before, the main difference of Zeman’s work from Guo (2018)’s 
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project is to introduce farmers’ typology, which is a way to creating distinct groups of 

farmers that have different characteristics, to perform different decision making 

processes and reactions, and this can present the heterogeneity among the agents’ 

group. Therefore, it is necessary to provide some information and background about 

farmers’ heterogeneity and typology. 

2.7 Farmers’ typology 

 Heterogeneity among agents is still a significant concern in decision making 

processes of ABMs (Brown & Robinson, 2006), since it can have a marked impact on 

the agent behaviors and the model output (Uchmański, 2000). Therefore, it is 

important to figure out an appropriate approach to represent the heterogeneous agents. 

As many researchers have studied the typology of farmers, which divides farmers into 

different types with distinct attitudes towards their land, it provides an opportunity to 

involve it into the decision making processes to represent the heterogeneity among the 

farmer agents. For different types of farmers, they can have distinct preferences 

towards factors.  

 Based on the analysis of data and the Zeman’s(2019) previous work about 

farmers’ typology, to make it appropriate with the possible BMP choices, there are 

four groups of farmers that will be simulated in the model: business, conventional, 

environmental, and the hobby farmers.  

 Business farmers are those who mainly tend to maximize their farm economic 

profits, and these farmers are also called “profit maximizer” farmers (Malawska & 
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Topping, 2016). They are the most common groups of farmers, and according to 

Guillem et al. (2012), they usually have a negative attitude towards ecological 

farming. Therefore, it is reasonable to assign this group of farmers the highest 

economic preference values, while they have the lowest environmental preferences.  

 Conventional farmers, or traditional farmers, are the second large group. These 

people have a higher concern about the social and environmental aspects than the 

business farmers. They tend to maximize their yield and use more fertilizer and 

preserve their rural lifestyle (Malawska & Topping, 2016; Daloğlu et al., 2014). 

Additionally, compared with the environmental factors, they are more concerned 

about the social factors (Guillem et al., 2012). Therefore, they have the highest social 

preference, high environmental importance, and low economic concern.  

 The environmental farmers, as its name shows, have the highest concern about 

the environmental aspects. Compared with the above two groups, these people have a 

smaller proportion. (Guillem et al., 2012) In addition, this group has a strong 

willingness to reducing the harmful impacts of agricultural activities on the 

environment (Malawska & Topping, 2016).  

 Hobby farmers are a small proportion of the farmer population (Guillem et al., 

2012). The main income resource for them is off-farm, and this means they show a 

relatively low interest to maximize their economic farm profit. They usually own a 

small size farm and have an interest in improving the environmental conditions. Since 

their main income is not from farming activities, they tend to use less labor on 

farming (Daloğlu et al., 2014).  
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2.8 Summary 

 This section starts from introducing the features of complex systems and their 

importance. Due to the special features, ABMs can respond to them and work as an 

alternative to study the systems with complexity. Additionally, three decision making 

structures of agents in ABM are introduced and will be further discussed in this thesis. 

However, it is still a challenge to decide whether the ABM is acceptable, the POM can 

a useful tool for this. Especially for examining agents’ behavior based theory, the 

POM can work as a virtual laboratory, and this can be helpful to contrast decision 

making structures of agents in ABMs. The most special decision making structures 

examined in this thesis is a machine learning model. Based on its strong ability to get 

the underlying information for raw data, it can satisfy the requirements of heuristic 

models, whose characteristic is also to make decisions based on empirical data. 

However, there are few examples that integrate machine learning models into ABM, 

and this thesis can try to fill this gap.  

After we introduce the background of modelling, the information of BMP and its 

adoption, which is the proof-of-concept case used for our model to implement, is 

introduced. Because the BMP has different kinds of categorizations, only the BMP 

used in this thesis is described. Next, two previous projects that simulate farmers’ 

BMP adoption developed by Guo (2018) and Zeman (2019), are introduced in the 

following part, and this thesis mainly inherits from these two projects, especially for 

Guo (2018)’s work, including the study area, environment design, and value 

calculations. However, Zeman (2019)’s work is also important since it introduces 
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farmers’ typology to present the heterogeneity among farmers, and this is what the 

stochastic model in this thesis relies on. To provide some information and 

backgrounds about this, farmers’ typology is also introduced, while since there are 

many methods to conduct the categorization, we only introduced the classification 

method used in this thesis like in the BMP part.  
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Chapter 3 Methodology 

 In this section, the main method used in this thesis will be introduced. There are 

two topics that will be discussed in this chapter, including the model structure and the 

practical case works as the proof-of-concept to examine and compare the three 

decision making structures, optimal model, stochastic model, and the heuristic model. 

The main reason to divide the methodology into the two parts is to emphasize the 

main goal of this thesis is not to analyze a specific case, but to contrast the three 

different decision making models that can guide the actions of agents. Hence, the 

model structure is a major part of this section, and it will describe the ABM with the 

Overview, Design Concepts, and Details protocol (ODD). Next, this section will 

introduce the information about the practical case used in this thesis. In addition, with 

the model documented, we will discuss the approaches that can describe and evaluate 

the results of our models. 

To make the three decision making models comparable, we used the same ABM 

framework to implement them. The main difference among the three ABMs is the 

decision-making part. To achieve that, the ABM to simulate farmers’ decision-making 

process on BMP selection and adoption is used based on Guo (2018) and Zeman 

(2019)’s work. Some sensitivity analysis and optimizations of variables are conducted 

in their paper, which provides an additional reference for this model to focus on the 

comparison of the decision-making methods.  

 The computational model is implemented in the Repast Simphony 2.7 platform. 
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Repast Simphony is a Java-based agent based modelling system on Windows, Mac OS 

X, and Linux. The various and large amounts of Java libraries make it convenient to 

implement complex sub-model, import different kinds of data, and other features, 

especially for the machine-learning model in this project. The performance of machine 

learning models relies on the Weka 3 library. Weka is an open source machine learning 

software with a Java API. The import of Weka library helps to integrate the machine 

learning model in the Repast Simphony platform. The optimization of variables in the 

model inherits from historical data and ABMs of Farmers’ adoption of BMP designed 

by Guo (2018) and Zeman (2019). The machine learning model used in this project is 

the random forest, and the dataset on which random forest is based is from the Clean 

Water Program (n.d.).  

3.1 The overview of the model process 

 Before we start to go into the detailed stage documented by the ODD protocol of 

this ABM, to have a better understanding of the model process in this project, we can 

first introduce the overall workflow of this ABM as in Figure 3-1. 

As shown in Figure 3-1, the geography context which contains the environment 

of this model and agents is created in the first stage. There are two types of agents in 

this thesis work, including the farmer agent and the fieldcell agent. The fieldcell 

agents represent the agricultural land parcels, while the farmer agents represent the 

owner of these fieldcells. Both farmers and fieldcells have their own attributes. 

With the generated agents, the initialization of the landcover and BMP adoption 
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will be started in the model. Since the fieldcells are agricultural land parcels, the 

landcover here represents the crop types in the fieldcells, and the BMP adoption on 

this fieldcell will also be initialized randomly. After these initialization processes, we 

can start the model runs.  

 The time step in this ABM is one single year, and in each time step, the landcover 

of fieldcells will be updated following a given landcover scenario. The landcover 

scenario is based on the landcover change patterns in the Upper Medway 

subwatershed analyzed by Guo (2018). There are three major land cover change 

patterns in this area, including the corn-soybean rotation, corn-soybean-wheat 

rotation, and hay with no change. The proportions of the three landcover change 

patterns are respectively about 30.1%, 29.1%, and 40.8%. Hence, we build the 

landcover scenarios based on these three landcover change patterns, and the landcover 

scenarios also follow the proportions of these landcover change patterns.  

 In each time step, after the landcovers of the fieldcells are updated, the current 

BMP adoption of fieldcells will be examined. If the current BMP adoption reaches its 

lifespan, the agent will start to use the decision making models to decide the BMP 

adoption, while if the current BMP adoption does not reach its lifespan, we can 

examine whether the model reaches its time span. If so, the model will be stopped, 

while if the model does not reach its time span, another time step will be run.  

There are three decision making models in this ABM, including the optimal 

model, stochastic model, and the heuristic model as demonstrated by Table 3-1. As 

shown in the table, both the optimal model and stochastic model rely on the score 



32 

 

calculation of the economic, environmental, and social factors, while the machine 

learning model depends on the training dataset. Compared with the optimal model, the 

main difference of the stochastic model is to introduce a stochastic element to 

represents farmers categorizations, including the business, conventional, 

environmental, and hobby farmers. The hobby farmers' income is mainly composited 

by the off-farm income, while the others rely on the on-farm income. Since the 

decision making models are the main objectives to be compared, in this overview we 

will not go into the detailed descriptions of them. The detailed description of the 

decision making models will be described in the submodel part of the ODD protocol. 

In the next section, we will start to describe the details and elements of the ABM by 

the ODD protocol. 
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Figure 3-1 The overall workflow of the ABM in this project 
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Table 3-1 The characteristic of the three decision making models 

Decision making models Main evaluation approaches of 

possible choices of agents 

Factors/data used for the 

evaluation 

Optimal model 

Stochastic model 

Utility function based on score 

calculation 

Economic scores 

Environment scores 

Society scores 

Heuristic model Machine learning model 

(Random Forest) 

Training dataset 

 

3.2 ODD protocol 

The ODD protocol is a widely used and standard protocol to describe and 

document the ABM model, and it leads to more efficiency for readers to understand 

the structure and the details of models (Grimm et al., 2020). Although there are also 

some updated versions of this protocol like ODD+D or ODD+2D, the examples of 

these documentation methods are not so adequate, and the ODD protocol can satisfy 

the need of this model. Hence, we choose to use the ODD protocol, and describe the 

decision making structures in the submodel part. Generally, it consists of three main 

sections: overview, design concepts, and details. Particularly, the ODD protocol in 

this section mainly describes the ABM structure that aims to simulate farmers’ BMP 
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adoption, while the goal of the whole thesis project is to contrast the decision making 

structures through this ABM documented by the ODD protocol. 

 

 

3.2.1 Purpose 

The model is designed to provide an opportunity to simulate the BMP adoption 

decisions of farmers with three alternate decision making models, including the 

optimal model, the stochastic model, and the machine learning based heuristic model. 

All these three decision making models are documented in the submodel part of this 

ODD protocol, as they are used for simulating the agents’ actions and decisions. The 

optimal model depends on a weighted sum utility function based on the economic, 

environmental, and social factor scores, and the stochastic model only adds a 

stochastic element to simulate farmers’ typology to the optimal model. As both of the 

two models are based on the utility function, and the utility function is calculated by 

three factor scores, including the economic, environmental, and social factors, both of 

the two utility-based models depend on the calculation of these three scores, as shown 

in Table 3-1. For the machine learning based heuristic model, it works in a different 

way by introducing a random forest model for agents’ decision making. To examine 

the difference among these three models, we set four different scenarios, including the 

agents with the three decision making structures, and a baseline case in which agents 

make decisions randomly. Specifically, what types of BMP will farmers choose to 
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adopt in their farmland? What patterns will be generated with three types of decision 

making models, in terms of spatial analysis and categorical statistics? With the 

comparison of the pattern generated, the project tries to explore the suitable cases for 

the implementation of three decision making models, and the appropriate model to be 

used for studying the farmers’ dynamics of BMP adoption. 

 

3.2.2 Entities, state variables, and scales 

Entities 

The entities in this model consist of two types: farmers and fieldcells. Fieldcells 

are agents that represent agricultural land parcels, while farmers are their managers. 

Every farmer and their fieldcell follows a one-to-one correspondence to simplify the 

model structure and reduce the complexity in model running.  

 The fieldcell has the following attributes: current year, area, length, current BMP 

adoption, corresponding farmer and availability for grassed waterway, buffer strip, 

Wascob, and the windbreak, which means whether a certain BMP can be adopted on 

the fieldcell, which is calculated before model building based on the standard 

provided by Guo (2018). Since this model has three types of decision making 

structures as the submodels, and among them, the machine learning model depends on 

a training dataset that includes some attributes that are not important to the other two 

utility-based models, to make these models comparable, both these data and the 

attributes which the utility calculation relies on are integrated into the fieldcell.  
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 For the first two decision making models, the optimal model and the stochastic 

model, the current crop type on this land, and the land cover change scenario are 

represented as two attributes in the fieldcell agents. Moreover, to get the social 

information, the neighbor fieldcell list and the corresponding BMP adoption are also 

necessary. The neighbor fieldcell stores the fieldcell ID in the neighborhood, and the 

neighborhood is defined as the fieldcell within the 30m buffer of the fieldcell agents. 

For further analysis, the maximum utility score is also stored in the fieldcell agent. As 

for the machine learning model, since the fieldcell agent has all the attributes that are 

used for training the random forest, the details of these attributes will be described in 

the submodel part.  

 Farmer agents are relatively less complicated than the fieldcell, only the farmer 

type, their off-farm income, and the economic, environmental, and social preference 

weights. For this type of agent, the difference between the optimal model and the 

stochastic model has the most significant impacts. When the optimal model randomly 

assigns the preference weights, the stochastic one generates the preference weights 

based on the categorization of farmers. 

State variable 

 There are two kinds of agents in this project, including farmer agents and the 

fieldcell agents. For the farmer agents, the agent state variables include farmer ID and 

its preference type. Both of the two variables are represented by integers. For the 

fieldcell agents, there are multiple state variables as shown in Table 3-2. 
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Table 3-2 The state variable of the current BMP 

State variable Description Type 

ID The id of the fieldcell Integer 

BMP availability list What kind of BMP can be applied to this land List 

Farmer The landowner of this fieldcell Farmer 

agent 

Landcover scenario The landcover scenario of the fieldcell List 

Neighbor list The lists of neighbor fieldcells of this agent, and neighbor is 

defined as other fieldcells within 30m distance of the agent 

List 

BMP adoption The current BMP adoption BMP 

Year How many time steps after the model running Integer 

 

Scale 

 The temporal resolution of this model is one year. Every year the crop type of the 

fieldcell will change following the corresponding landcover scenario. Moreover, since 

the lifespan of most BMP is 10 years long or its multiples, every ten years the farmer 

will choose to adopt a BMP based on the decision making model. The temporal extent 

is not necessarily restricted, but in this model, we choose 100 years as the whole time 

period, although 100 years are too long and unrealistic for the practical case. The 
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reason for choosing 100 years is that the model starts from a random state, while 50 

years is the longest lifespan for BMPs, so 100 years can fully capture the 2 cycles, 

including the initial choice of BMP adoption and the decision made after an initial 

choice. Therefore, we have to assume that farmers or the family of farmers always 

work on their fields during the model running. Fieldcells in this model are GIS vector 

data, and as a result, no minimum cell size is necessarily defined.  

3.2.3 Process overview and scheduling 

 The processes in the model mainly include two stages: the change of crop type 

landcover and the adoption of BMP. Every time step the crop type will change based 

on the corresponding landcover scenario, while every time the current BMP reaches 

its lifespan, the farmers will change their BMP adoption based on the decision making 

models. Although for the Fieldcells that has no BMP employed, farmers can choose to 

implement BMPs, in this thesis, for the reason that there are not so many No BMP 

cases and to simplify the complexity in terms of computation, this case is not taken 

into consideration. Particularly, because the machine learning models depend on its 

training dataset, and in that training dataset, there are not No BMP cases, it would be 

more complicated to simulate this case in this decision making structures. The 

decision making models will be described more clearly and in detail in the submodel 

section below. The change of crop type is ahead of the BMP adoption here, as the 

farmers usually have a plan that what crop will be planted in the next years. 
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3.2.4 Design concepts 

Basic principles 

 As described in the literature review, the ABM can be divided into three 

categories in terms of decision making structure, including optimal model, stochastic 

model, and the heuristic model. Because the farmer agents will select the BMP to 

adopt in their farmland in the model, economic concern, social influence and 

environmental factors can drive farmers’ decision making, which can support us to 

involve a utility function to calculate the utility value for farmers based on these 

factors as an optimal model (Guo, 2018). However, farmers can have various 

categorizations as discussed in the farmers’ typology topic of literature review, and 

this can have an impact on their perspectives on BMP adoption. As a result, a 

stochastic element can be introduced in this project to simulate the heterogeneity 

among these categories. Moreover, the real-world BMP installation of farmers dataset 

can provide an opportunity to involve some data-based machine learning model to 

predict the BMP adoption, and use the machine learning model as a heuristic rule for 

ABMs. Particularly, in this thesis, a random forest model is used for this type of 

decision making. 

Adaptation 

 For the optimal and the stochastic model, there are five types of BMP as the 

alternatives of decisions: grassed waterway, buffer strip, WASCoBs, windbreak, and 

no BMP adoption. In these two models, the farmers’ decision making is driven by the 
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change of crop type landcover and adoption of BMP in the neighborhood every time 

the current BMP lifespan is reached. The machine learning model can have two types 

of decisions, erosion control structures and fragile land retirement, which inherits 

from the dataset (Clean Water Program, n.d.), because there are no detailed categories 

like the five types listed above in this training dataset. According to Clean Water 

Program(n.d.), erosion control structures consist of the grassed waterway and buffer 

strip, while WASCoBs and windbreak belong to the fragile land retirement category, 

for it is listed in the description of fragile land retirement of Clean Water Program, 

even though it may not be so reasonable. There are only few No BMP cases, so it does 

not make a strong difference in the comparison. To make the three decision making 

models comparable, we regroup the four BMP into the two classes as mentioned 

above. Particularly, here the fragile land retirement type actually does not include the 

land retirement, and this results from the difficulty to simulate the economic revenue 

to make it as a possible alternative for agents. All the decision making models will be 

described in detail in the submodel section. 

Objectives 

 The farmers will tend to maximize their utility-based on the function, in which 

economic, environmental, and the social factors are taken into consideration, in the 

optimal and stochastic models. This allows farmers to evaluate driving factors from 

economic, environmental, and social aspects and make a decision. However, in the 

heuristic model, the result is generated by the trained random forest model based on 
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the installation dataset, and the data mining method can take an advantage of using 

some information underlying the data. As mentioned in the adaption section, the 

results of the two utility-based models will be regrouped into two classes as same as 

the results of the heuristic model. Therefore, through the three decision making 

models, we can compare the results of the ABMs with them.  

Sensing 

 In this model, all the decision making structures rely on sensing, which means 

farmer agents will make their decision based on the attributes of the fieldcells they 

manage and their preference weights or characteristics. Even for the machine learning 

model, it is necessary to get the attributes of fieldcells to predict the result of the 

trained model. This means that the farmer agents are supposed to get the information 

from their own Fieldcells. Additionally, the optimal model and stochastic model also 

sense the number of same BMP adoption in their neighborhood as a social factor as 

shown in Table 3-1, and this means that in these two submodels, farmer agents should 

also collect information from the neighbor Fieldcells. 

Interaction 

The interactions of agents are represented in different ways for the three decision 

making models. For all kinds of the model, since the landcover scenarios are 

distributed proportionally, mediated interactions among are represented. Since if one 

agent is assigned with a particular landcover scenario, other agents will have a lower 

possibility to be assigned with the same landcover scenario.  
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For the optimal model, the interactions among agents are mainly represented by 

the social factor. As the social factor is represented by the percentage of neighborhood 

similarity, the actions of agents will have a direct impact on the decision making 

processes of the neighbor agents. 

For the stochastic model, besides the social factor, farmers’ typology can also 

represent the mediated interactions among agents. Similar to the distribution of 

landcover scenarios, if one farmer agent is assigned with a particular type, other 

farmers will have a lower possibility to be assigned as this type. 

Therefore, in terms of the interactions, all the three models can represent the 

interactions among agents, while compared with the heuristic model, the interactions 

of the optimal model and the stochastic model are represented directly, and the 

interactions of the stochastic model are stronger than the optimal model due to the 

introduction of farmers’ typology. 

Stochasticity 

 The stochasticity used in this model mainly is for two reasons, to simulate the 

variability and the proportion. Most randomness in this model is used to simulate the 

variability, including the initialization part, scores of factors calculation as shown in 

Table 3-1, and the preference weight assignment for each farmer.  

In all the decision making models, the randomness of landcover scenario 

distribution represents the proportion. In addition, in the stochastic model, to assign 

the categorization of farmers, the randomness that represents the proportion is also 
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used. This stochastic element can reflect the proportion of different types of farmers, 

and further becomes the main difference of the stochastic model from the optimal one. 

3.2.5 Details 

Initialization 

 In this model, firstly, a geography context is built for model graphical display, 

and farmers are created in the geographical context for fieldcell initialization. Each 

farmer is assigned with a categorization based on the proportion of the typology of 

farmers as described in the stochasticity section. Although many farmers have off-

farm jobs, in this thesis, to present the difference among types of farmers, only every 

hobby farmer will get an off-farm income, while other types of farmers will have a 0 

off-farm income. For the optimal model and stochastic model, farmers' preference 

weights for factors will be generated in different ways. Next, the model starts to read 

the vector files of agricultural parcels in the study area. Each agricultural parcel, 

whose features will be imported as attributes of fieldcells, in the file is loaded as a 

fieldcell agent, and it will be assigned with a farmer agent as the manager from the 

farmer created earlier. To initialize the land cover information, the crop type scenario 

file is loaded into the model, and the fieldcell randomly picks a scenario to guide the 

landcover change during the model processes. Although some crop type inventories 

can be collected year by year, the actual temporal information about the observation 

data from Clean Water Program (n.d.) is not clear, and the actual date for these BMP 

adoptions are not fully recorded, and not at the same year. Hence, we have to use a 
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random selection to initialize land cover. In the input vector data, the neighbor 

fieldcells and the availability of BMP types have been already calculated and 

recorded, so the fieldcell saves these available BMPs and the neighbor fieldcells id 

into two lists. Based on the availability of the BMP, the initialized BMP adoption is 

randomly generated from these available BMP in the list of fieldcell. After that, the 

fieldcells get all the current BMP adoption information in the neighborhood based on 

the neighbor cell list. After all the 167 fieldcell go through all these steps, the 

initialization process is finished. 

Input data 

 The input data can be categorized into three main types: the data used for creating 

the environment, the data used for training the machine learning based heuristic 

model, and the data used for score calculation in the optimal and stochastic models. 

Hence, this part will introduce these three types respectively. Additionally, because we 

want to keep the adaptability of this model structure to different cases, the study site, 

the practical data used in the proof-of-concept will not be introduced here, but in the 

proof-of-concept section after the ODD protocol. 

 The data used for compositing the environment mainly refer to the GIS land 

parcel data and the corresponding attributes to the parcels. The GIS parcel data 

represent the modelling world and entities of field cells. Since these data are GIS 

polygon data, parcel ID, the area and perimeter of each polygon will be recorded. To 

reduce the running time of computational models, the availability of each BMP is 
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defined for each parcel. For simulating landcover change in the model processes, 

model builders can introduce some crop type change scenarios, and assign these 

scenarios to the land parcels. In addition, since the model introduces the machine 

learning model as one of the submodels, all the attributes within the training dataset 

are supposed to be also included in the parcels. 

 The data used in machine learning submodels are actually the attributes of 

training datasets. Since the agents in this project are expected to choose a BMP type, 

which requires the machine learning submodels to produce a specific type as the 

results, these training data have to include the BMP types for supervised learning. 

Additionally, other information about the records in the datasets that can be used for 

training, but in this project, due to the limitation of lack of other information in the 

dataset, we try to join other datasets to introduce enough information for training 

models, and these datasets will be introduced in the proof-of-concept part as they are 

used in the practical case. The other information is not limited, but in this project what 

we used for training the models will be included in the submodel part. As mentioned 

previously, the GIS parcel data should also include these attributes, for the trained 

machine learning model also requires the corresponding information to generate the 

results.  

 The data used for score calculation have three parts corresponding to the three 

factors in the score calculation. For the calculation of economic scores, the cost of 

each BMP and the cost, yield and price data of different crops per area unit are 

supposed to be included. For the environmental factors, the effectiveness of each 
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BMP is required. Since most of these kinds of data are collected from surveys and 

statistics, these data are described as mean and standard deviation values. In addition, 

for the social factors, it is necessary to get the information about the neighbors of each 

parcel. 

Submodels 

 As shown in Table 3-1, both of the optimal model and the stochastic model 

require the score calculations of the three factors, including the economic, 

environmental and social factors. Therefore, before we describe the details of the 

three decision making models, we will first introduce the way of the score 

calculations. 

Score calculation 

Economic score 

 In both the optimal model and the stochastic model, the model needs to quantify 

the economic, environmental, and social factors. Therefore, it is necessary to involve 

a submodel to calculate these three scores. 

 To calculate the economic score SEco, the following equation is used: 

𝑺𝑬𝒄𝒐 = 𝑰𝑶 + 𝑰𝑭 − 𝑪𝑭 ∗ 𝑨 − 𝑪𝑩 ∗ (𝟏 − 𝑹𝒔) 

In this equation, the income is summed by Io, the off-farm income collected from the 

farmer agent, and IF, the farm income. The cost includes the cost in the farm, which is 

calculated by multiplying the unit cost of the crop type, CF, and the area of the parcel 

A, and the cost for BMP adoption, CB. Since some institutions can provide some 
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subsidies for farmers, the RS is used to describe the share rate for the BMP adoption. 

The economic score can be calculated by the total income minus the cost finally like 

previous farmers’ BMP adoption simulation work (Guo, 2018; Zeman, 2019).  

 To get the farm income IF for each parcel, the equation is used: 

𝑰𝑭 = 𝑨 ∗ 𝑵𝒐𝒓𝒎𝒂𝒍(𝝁𝒑, 𝜹𝒑
𝟐) ∗  𝑵𝒐𝒓𝒎𝒂𝒍(𝝁𝒚, 𝜹𝒚

𝟐) 

 The farm income is calculated by multiplying A, which is the area of fieldcell, 

price, and the yield. Price and yield are generated by normal distributions based on 

their average μ and standard error δ. 

 For grassed waterway, buffer strip, and WASCoBs, the BMP adoption cost CB is 

calculated in a relatively direct way, multiplying the area A of fieldcells, the adoption 

cost per unit CBU, and LS, the lifespan of the BMP: 

𝑪𝑩 = 𝑨 ∗ 𝑪𝑩𝑼 ∗ 𝑳𝑺 

 The cost per unit CBU can be calculated by the sum of lower ranges of the unit 

cost CL and the difference between CL and the upper range CU. To involve some 

variance, a uniform distribution random generator is used for the difference: 

𝑪𝑩𝑼 = 𝑹𝒂𝒏𝒅𝒐𝒎(𝟎, 𝑪𝑼 −  𝑪𝑳) +  𝑪𝑳 

 Although the CBU calculation for the windbreak is the same as other BMP types, 

the total CB is generated in a different way: 

𝑪𝑩 = 𝑳 ∗  𝑪𝑩𝑼 +  𝑳 ∗  𝑪𝑩𝑼 ∗ 𝑹𝑴 ∗ 𝑳𝑺 

 In this equation, the length L of fieldcells works as the unit to calculate the cost. 

CBU means the cost per unit like other BMP types. The main difference between 

windbreak and other BMP types is that the maintenance fees are much less than the 



49 

 

installation fees. Therefore, the rate of maintenance Rm is used here to represent this, 

and the result of multiplying of this and the lifespan LS denotes the maintenance fees. 

As a result, CB is generated by the sum of installation fees and the maintenance fees. 

Environmental score 

 The environmental score calculation three aspects, the phosphorus loss reduction, 

sediment removal, and the soil erosion control effectiveness, according to Guo (2018). 

Similar to the generation of costs per unit CBU for BMP adoptions, these three factors 

are quantified by these equations: 

  

𝑷 = 𝑹𝒂𝒏𝒅𝒐𝒎(𝟎, 𝑷𝑼 −  𝑷𝑳) +  𝑷𝑳 

𝑺𝒆𝒅 = 𝑹𝒂𝒏𝒅𝒐𝒎(𝟎, 𝑺𝒆𝒅𝑼 −  𝑺𝒆𝒅𝑳) +  𝑺𝒆𝒅𝑳 

𝑬𝒓𝒐 = 𝑹𝒂𝒏𝒅𝒐𝒎(𝟎, 𝑬𝒓𝒐𝑼 −  𝑬𝒓𝒐𝑳) +  𝑬𝒓𝒐𝑳 

 In these equations, P, Sed, Ero means the phosphorus loss reduction, sediment 

removal, and the soil erosion control effectiveness, while the subscript U represents 

the upper level, and L means the lower level. Hence, the environmental score is 

directly calculated by the following equation (Guo, 2018): 

𝑺𝑬𝒏𝒗 = (𝑷 + 𝑺𝒆𝒅 + 𝑬𝒓𝒐) ∗ 𝑺𝒄𝟏 

In this formula, SEnv represents the environmental score for fieldcells, and the Sc1 

means the scaling factor. The scaling factor is used for solving the problems of unit. 

Since the unit of economic scores is a dollar, this can be a large number and dominate 

the whole decision making processes. Therefore, if the preference weights to the 

economic, environmental, and social indicators are the same, the involvement of 
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scaling factors can rebalance the value of the three scores to make them balanced.  

Social Score 

The social score is mainly presented as the proportion of neighbors that adopt the 

same kind of BMP in all the neighbors of fieldcells suggested by Zeman (2019). To 

make the results of the optimization models and the machine learning model 

comparable, as mentioned in the adaptation section, the grassed waterway and buffer 

strips are reorganized as the erosion control structure, and the WASCoBs and 

windbreak are regarded as the fragile land retirement type. Therefore, the social score 

Ssoc can be generated by this equation: 

𝑺𝒔𝒐𝒄 =
𝑵𝒔

𝑵𝒕
∗ 𝑺𝒄𝟐 

 As described, the proportion is calculated by Ns, the number of neighbors that 

adopt the same type of BMP, divided by the number of neighbors, Nt. For the same 

reason as the environmental indicator, a scaling factor Sc2 is used to balance the 

magnitude of all the three factors. 

 With the economic, environmental, and social scores, the utility value for 

different BMP types can be calculated as suggested both by Guo (2018) and Zeman 

(2019): 

𝒖 = 𝑺𝑬𝒄𝒐 ∗  𝑾𝑬𝒄𝒐 +  𝑺𝑬𝒏𝒗 ∗  𝑾𝑬𝒏𝒗 +  𝑺𝒔𝒐𝒄 ∗  𝑾𝒔𝒐𝒄 

In this function, WEco, WEnv, and WSoc represent the farmers’ preference weights of 

economic, environmental, and social aspects. Additionally, the farmers will choose the 

one with the highest utility value from the available BMPs or no BMP, if the utility 

value is negative. However, the determination of preference weights is still a problem, 
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while it is also the main difference between the optimization model and the stochastic 

model. 

Decision making model 1: the optimal model 

 This model is generally inherited from Guo’s (2018) decision making structure. 

In this model, the farmer agents have the ability to evaluate the three main factors 

including economy, environment and society, and use a weighted sum model to 

optimize the best actions for agents. However, to make these submodels comparable, 

it is still necessary to change some elements.  

  In this model, the only impact of the typology of farmers is the determination of 

off-farm income, which means the preference weights to three factors are chosen in a 

more homogenous way, and the reason for this assumption is to highlight the 

difference among groups of farmers. In this model, the preference weights of all the 

farmers are generated following one rule: the economic preference weights are always 

the highest one among the three factors (Guo, 2018). Specifically, the economic 

weight WEco is generated by uniformly distributed random numbers in the region 

[0,10] firstly, and then the environmental WEnv and social weights WSoc are generated 

by a uniform distribution in [0, WEco]. After three weights are determined, a 

normalization method is used to restrict the sum of three weights to 1 by dividing 

each weight by their sum. 

Every time when the BMP of the fieldcell reaches its lifespan, the fieldcell will 

evaluate the three scores and calculate the utility values for each type in their 
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available BMP list. If the highest utility value is positive, the agent will choose the 

corresponding BMP. While the utility value is negative, agents will not adopt any 

BMP type, which is performed by choosing the “No BMP” type. 

Decision model 2: the stochastic model 

 This model is inspired by Zeman (2019), and it is also an improvement to the 

optimal model. Although this model also relies on the utility calculation to adopt the 

most appropriate BMP as described in Table 3-1, the typology of farmers works as a 

stochastic element to determine the preference weights. Hence, in the optimal model, 

the preference weights for different factors of all the agents are generated by the 

single method described in the previous part, even though the involvement of 

randomness will increase some variations, while in the stochastic model, all the agents 

will be firstly divided into several types, and for each type, they will have different 

priority to factors, so the preference weights are generated in different ways. 

 Before generating the preference weights for different categories of farmers, it is 

necessary to get the categorizations and their proportions. The typology of farmers is 

generally inherited from Zeman’s (2019) work, although similarly, to make these 

models comparable, there are some changes made in this model. For example, in 

Zeman (2019)’s work, besides economic, environment, and society, there are still two 

kinds of factors that are supposed to be evaluated, including risk aversion and 

innovation, and the BMP used and the way of calculating the scores are also different 

from what in this project. As the risk aversion and innovation factors require some 



53 

 

data to evaluate the risks and the innovation of BMPs, and we do not have this kind of 

data, these two factors are not concerned in this model. In this model, there are four 

categories of farmers: business farmers, conventional farmers, environment farmers, 

and hobby farmers. Farmers from different categories have divergent perspectives to 

these three factors. The preference rank suggested by Zeman (2019) is presented in 

Table 3-3, and in this table, the highest rank is 1, and the lowest rank is 3.  

Table 3-3 The preference rank for different types of farmers 

 Economics Environment Social 

business farmers 1 3 2 

conventional 

farmers 

2 3 1 

environment 

farmers 

2 1 3 

hobby farmers 2 2 2 

 With the rank of preference for different categories of farmers, the preference 

weights of three factors can be generated by uniformly random distribution. To restrict 

the differential degree of these weights, the uniform distribution is performed in the 

fixed region for divergent levels of preference. Similarly, the utility will be calculated 

based on the preference weights and factor scores, and the BMP with the highest 

utility value can be picked from the available BMP list every time when the current 

BMP reaches its lifespan.  
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Decision model 3: the machine learning based heuristic model 

 The third decision making model is quite different from the first two models in 

input data, model structures, and adaptive choices. As mentioned previously, although 

the statistical method like machine learning model is a possible alternative used as a 

heuristic rule in ABMs, few researchers practically implemented it with ABMs in this 

way, and its performance compared with other decision making structures is still not 

clearly examined, which composite the gaps that this thesis tends to fill, so this 

decision model is the most important one in this thesis. The input data of this model 

are collected from the real-world case rather than the calculation results from 

literatures. Since the objective of this ABM is to predict the adoption of farmers on 

BMP types, it can be transformed into a classification problem: with the given 

information in the fieldcells, how can we classify the land into several BMP types? 

Therefore, some machine learning models that solve the classification problems can 

be introduced into the ABM as submodels. Among a variety of machine learning 

classifiers, the random forest is chosen for this. The reasons for choosing the random 

forest can be explained in four reasons:  

(1) Since there are 733 records in the dataset, and the data quality is not at a high 

level, a classifier that has a high fitting ability is supposed to be used for higher 

accuracy. Although this may also lead to high overfitting, a cross validation can be 

used to solve this.  

(2) There are only two categories as results of the classification, as described in the 

adaption part of the ODD protocol previously, and this low complexity allows the 
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implantation of classifiers with a relatively low generalization capability.  

(3) The types of attributes to train the model are various, including the numerical, 

ordinary, and string types, and this makes it hard to use some classifiers like logit 

regression, since they cannot directly deal with the categorical data like the string 

types.  

(4) Compared with other classifiers with similar high accuracy like SVMs, the 

execution speed of random forests is significantly rapid, and its parameter tuning 

processes are relatively simple. Especially, since all the 167 agents have to use it 

every time when they make decisions, the time has been attached to great importance. 

 Hence, the random forest is a good choice here as it can satisfy these 

requirements. In the random forest model, there are 16 attributes used as explanatory 

variables, and the attribute of type is the response variable. The name and descriptions 

of these attributes are shown in Table 3-4. The reason for choosing these attributes is 

based on the availability of BMP as described by Guo (2018). The detailed source of 

these attributes will be described in the proof of concept section, as they are 

practically used in this case. 
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Table 3-4 The descriptions and types of the training data for the random forest 

ATTRIBUTES DESCRIPTION TYPE 

PRECITIPATIONINTER The indicator of precipitation collected by spatial interpolation   Numeric 

TEMPINTER The indicator of temperature collected by spatial interpolation Numeric 

SPIINTER The SPI collected by spatial interpolation Numeric 

SLOPE1 The slope collected from DEM Numeric 

CROPVALUE The crop type collected from the annual crop inventory String 

SOIL_COMPLEXITY The number of associated soil components Numeric 

SOIL_PERCENT The percentage of the polygon that the dominant components represent Numeric 

CLI1 The soil capability for the production of crops String 

DRAINAGE How wet the soil drains String 

DR_DESIGN The drainage design code reflects the soil drainage characteristics String 

HYDRO Estimation of runoff from precipitation String 

ATEXTURE Soil texture of the surface String 

K_FACTOR Soil erodibility factor Numeric 

POLY_AREA_ACRE The area of the land parcel Numeric 

WATER_AREA The area of land influenced by water body or water courses Numeric 

WATER_PERCENTAGE The percentage of WATER_AREA in the total area Numeric 

TYPE The adopted BMP types, 1 means the erosion control structure; 2 means 

the fragile land retirement 

1 or 2 
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As mentioned in the literature review part, there are three main parameters that 

need to be tuned: the maximum number of features that can be used in a single tree, 

the number of estimators in the forest, and the size of the terminal nodes. Particularly, 

increasing the number of estimators can improve the ability of prediction, while it also 

leads to a long running time of the model, while decreasing the size of terminal nodes 

will also increase the accuracy of the model, but is possible to cause the overfitting 

problem. As the size of the dataset is relatively small, the accuracy has a higher 

priority than the overfitting issue. Therefore, the size of terminal nodes is set to 1, and 

the number of estimators is set to 100 to get a more accurate result, while the 

maximum number of features is the logarithm of the amount of all the features to the 

base 2, which is the default and fixed option of Weka. Additionally, to reduce the 

complexity in terms of computation, the random forest model is trained only at the 

beginning, rather than for every agent, since we only have one training dataset, and 

this dataset is the same for all the agents, so it is not necessary to train the model for 

every individual agent. 

To reduce the overfitting and test the accuracy of this model, the 10-fold cross 

validation is used. This method allows to divide the training data into 10 folds 

randomly, and totally build 10 random forest models. Each time when one model is 

trained, only 9 of 10 folds of data are used, and the other one is used to test the result. 

As a result, the average result of the 10 models is used as the output, and the accuracy 

of the prediction can also be collected.  

Therefore, when the current BMP reaches its lifespan, the agent will make a 
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decision based on the trained random forest model. To reduce the processing time, the 

random forest model is trained and used before the running of ABM, and when the 

decision making stage starts, the agent will just directly implement the random forest 

to classify their future BMP type.  

3.3 Proof-of-concept 

 The proof-of-concept is mainly inherited from Guo (2018)’s work, and this means 

we adopt the same study area and input setting about the model environment for the 

evaluation of economic, environmental, and social factors and resources. However, 

the main modelling structure follows the one described in the ODD section. 

Therefore, this part will mainly introduce the study area and the practical input data in 

the proof-of-concept. 
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Figure 3-2 The boundary map of Upper Medway Creek subwatershed (Guo, 2018) 
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3.3.1 Study Area 

 The study area of the proof of concept is the same as Guo (2018)’s work, and it is 

presented in Figure 3-2. The Medway Creek watershed is used for the environment of 

model simulation. It is one of the subwatersheds in the Upper Thames Watershed in 

southwestern Ontario, Canada. The Medway Creek covers the area of 205 km2, 

including parts of the City of London, the Municipalities of Middlesex Centre, 

Thames Centre, and the Township of Lucan Biddulph (UTRCA, n.d. d). It takes about 

6% of the Upper Thames River watershed. According to 2017 Watershed Report Card 

(2017). The dominant land use in this area is the agricultural type, and it accounts for 

82% of the whole land use type. Additionally, there are three main soil types in the 

Medway Creek watershed, including clay loam, silty loam, and silty clay loam.  

 According to UTRCA (n.d. e), the Medway Creek watershed is identified by 

UTRCA as a priority for environmental enhancement in 2007, and the surface water 

quality has remained steady at the grade of D (2017 Watershed Report Card, 2017). 

Phosphorus concentrations, which is one of the major factors influencing the surface 

water quality, have been improved over the long term, and reach a lower level than 

the Upper Thames average, but still remains at 2 times the provincial aquatic life 

guideline (2017 Watershed Report Card, 2017). To further improve the surface water 

quality, some projects have been implemented in this region. For example, the 

watershed owners have completed 34 Clean Water Program projects that help them to 

adopt BMPs, which are also the resources of the training data of the machine learning 

models. According to 2017 Watershed Report Card (2017), in these Clean Water 
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Program BMP projects, fragile land retirement and the erosion control measures are 

the main types.  

 Since we choose the Upper Medway Creek subwatershed as the study area of our 

proof-of-concept, to have a clear description of the case, next we will introduce the 

practical data used in this proof-of-concept to adapt the study area. Particularly, the 

structure to introduce the practical data will follow the input data part in the ODD 

section. 

3.3.2 Practical Input Data 

 As described in the input data part of the ODD section previously, the input data 

can be divided into three categories: data used for compositing the environment, data 

used for training the machine learning submodel, and data used for score calculation.  

 The data used for compositing the environment mainly refers to the GIS parcel 

data. In this project, the GIS parcel data are mainly inherited from Guo (2018)’s work. 

There are 176 parcels digitized as agricultural land by this work, and the availability 

of each BMP is also determined. Additionally, Guo provided some land cover change 

scenarios in this region, and this makes it easier to simulate the change of crop types 

for each agricultural parcel. Nevertheless, since the machine learning submodel will 

also be examined in this project, other attributes in the training data will also be joined 

to the GIS parcels. As most of them come from the same resources, we will discuss 

them in the following part. 

 The data used for training the machine learning models are mainly based on the 
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funded BMP implementation data collected by Clean Water Program(n.d.). In that raw 

dataset, there are totally 2910 records, and 17 types of BMP. However, due to the lack 

of data description, some of the BMP types are not clearly described like the BMP 

type called GPS, and some of them are strongly limited by the local conditions, such 

as the BMPs like wellhead protection and decommissioning unused wells. In addition, 

according to 2017 Watershed Report Card (2017), fragile land retirement and erosion 

control measures are the two main types in the Medway Creek watershed. As a result, 

we finally choose these two types as the possible choices for agents, and in the raw 

datasets, only records that adopt these two types are kept in the dataset. After 

removing some missing values, there are still 733 records for our training work. 

However, in the raw dataset, only geographical coordinates and adopted BMP types 

can be used for model building, and this is obviously not adequate to train a model. 

Hence, we used spatial join to link attributes from other sources with these records as 

shown in Table 3-5. Particularly, the description of all these attributes in Table 3-5 is 

recorded in Table 3-4.  
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Table 3-5 The sources of the attributes used in the training data of the random forest. 

ATTRIBUTES SOURCES 

PRECITIPATIONINTER Interpolated based on Weather Station data in southwestern Ontario 

TEMPINTER 

SPIINTER Interpolated based on Standardized Precipitation Index (Ontario Ministry of 

Natural Resources and Forestry [OMNRF],2016) 

SLOPE1 Interpolated based on Ontario Digital Elevation Model (OMNRF, 2019) 

CROPVALUE Collected from Annual Crop Inventory 2011(Agriculture and Agri-Food Canada 

[AAFC], 2011) 

SOIL_COMPLEXITY Collected from Soil Survey Complex (OMNRF, 2015)  

SOIL_PERCENT 

CLI1 

DRAINAGE 

DR_DESIGN 

HYDRO 

ATEXTURE 

K_FACTOR 

POLY_AREA_ACRE Calculated from Regional Municipality of Waterloo Property Parcels (Teranet 

Incorporated, 2018) 

WATER_AREA Calculated from Ontario Hydro Network (OMNRF, 2020) 

WATER_PERCENTAGE 
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 The data used for score calculation in optimal and stochastic models as described 

in the ODD sections are corresponding to three factors in the calculation. Therefore, 

the cost and effectiveness of BMP, yield, cost and price of crops, and the neighbors of 

each land parcel are required. In this project, due to the same study area, these data 

are mainly inherited from Guo (2018)’s work. For example, the neighbors of each 

parcel are collected from that work. Other sources of these data are recorded in Table 

3-5. 

Table 3-6 The sources of data used for score calculation in the proof-of-concept 

Data Sources 

Cost of BMPs   

 Grassed waterway  Kansas (1989) 

 Buffer strip Mtibaa et al. (2018) 

 WASCoBs Kansas (1989) 

 Windbreak Kansas (1989) 

Effectiveness of BMPs   

 Grassed waterway  Kansas (1989) 

 Buffer strip Hawes and Smith (2005) 

 WASCoBs Kansas (1989) 

 Windbreak López et al. (2017) 

Yields of Crops OMAFRA (2017) 

Costs of Crops OMAFRA (2016) 
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Price of Crops OMAFRA (2018) 

 With the three types of data, we can input them into the ODD structure described 

previously and build the computational models to produce some results for the 

analysis of differences among optimal model, stochastic model, and the heuristic 

model in this proof-of-concept. In the next part, we will introduce the scenarios and 

metrics used in this thesis for comparison and the way to analyze the results. 

3.4 The approaches to analyze results 

 In this part, we will firstly introduce the modelling scenario we run and what 

metrics used for evaluating the performance of BMPs with different decision making 

submodels. In addition, we will use the coefficient of variation to examine whether 

the model can produce a stable result in the given times of running.  

 To contrast the three decision making models as described in the submodel part of 

the ODD protocol, there are totally four scenarios used in this thesis, including the 

ABMs with the three decision making models, and the null model in which the 

decisions of agents are made by a uniform distribution to reject the null hypothesis 

that the agents made their decision randomly. For the three decision making model 

scenarios, the only difference among them is the decision making models that work as 

the action rules of agents, and the other parts of the models are kept the same. For the 

model in which decisions of agents are made randomly, it works as a baseline for the 

comparison, and in this scenario, it can illustrate the impacts of the involvement of 

decision making models.  
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 Since to my knowledge, although there is some literature focusing on farmers’ 

decision making processes on BMP adoption (Liu et al., 2018), most of them focus on 

the microlevel, which means the individual farmer, while it is not very common to 

have a clear description of the macrolevel, which refers to the pattern in the whole 

study area, especially for the case in which there are interactions among individual 

farmers. In addition, the contrast of decision making models are usually conducted in 

a theoretical framework, especially for a machine learning based heuristic model, 

(Schreinemachers and Berger, 2006; Groeneveld et al., 2017; An, 2012), and this 

leads to the challenge that few metrics can be considered appropriate to describe the 

comparison results of models, especially in a specific case of farmers’ BMP adoption. 

As a result, the only reference for the model comparison is the original observations 

that trained the random forest model. However, due to the different scales in the study 

area and the uncertainties among the observations data from Clean Water Program 

(n.d.), it is hard to compare the results in the quantitative levels. 

To solve this problem, as discussed in the literature review part, the POM can be 

an alternative for the theory test and further development. Therefore, in this project, 

the POM will be implemented as a tool for the analysis of results from the three 

decision making structures. According to Railsback and Grimms (2019), the patterns 

used in the POM usually are 3 to 5, qualitative and diverse characteristics. Ideally, if 

there is any material that focuses on the macrolevel patterns of farmers’ BMP 

adoption, these results can be used as patterns that describe a system. However, as 

mentioned, most of the literature, to my knowledge, paid more attention to the 
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individual factors, we have to analyze some metrics from the model results and regard 

them as the patterns in the POM. Specifically, the percentage of different BMP 

adoption, the size of agricultural land by different BMP, and the correlation between 

the land use type and the BMP adoption class are selected as the pattern to describe 

and contrast our results. Since the main question of this model is to predict farmers’ 

BMP adoption, the percentage of different BMP adoption is a straightforward metric 

to describe the general pattern. Additionally, because some literature (Baumgart-Getz 

et al., 2012; Pannell et al., 2014) support that farm size has an impact on farmer’s 

decision making on BMP adoption, the size of agricultural land by BMP class is an 

alternative to describe the pattern of results. Moreover, as the land use type, or the 

crop type, is the main change in each step of this model, the correlation between this 

and the BMP classes is very possible to help to analyze the dynamic mechanism 

during model running. Hence, the three metrics are selected for describing the 

characteristics of the three decision making structures. 

 However, before we analyze the results of the model running, it is important to 

make a decision on how many running times can provide us an acceptable and 

meaningful result. To solve this problem, we used the coefficients of variation. The 

coefficients of variation cv can be calculated by the following equation: 

𝒄𝒗 =  
𝑺𝒅.

𝑴𝒆𝒂𝒏
 × 𝟏𝟎𝟎 % 

 In this equation, Sd. refers to standard deviation, and Mean represents the mean 

value of a series of data. Although its acceptable level differs in different fields, 

according to Gomez & Gomez (1984), in the agriculture field, a cv lower than 20% can 
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be acceptable. Hence, we check the cv of three metrics, and all of them are lower than 

20%, so it is reasonable to accept the 20 running times in this thesis.  

Therefore, with the scenarios, metrics, and running times that can make sure these 

scenarios can produce stable results, we can start to compare the results of the ABMs 

with these decision making models. In the following section, we will use these metrics 

to examine and contrast the results, and expect to get some insights about them. 
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Chapter 4 Results 

 In this section, we will present the results of the scenarios mentioned previously 

in terms of three metrics we introduced, including the percentage of BMP adoption, 

size of the agricultural land, and the correlation between the landuse and BMP 

adoption type. We will first present the whole results of the scenarios by these 

metrics, and then contrast these models in two aspects. One is to examine the impacts 

of stochastic elements by comparing the optimal model and the stochastic model, and 

the other one is to examine the impacts of decision making structures by comparing 

the optimal model and the heuristic model. Therefore, in the part of presenting the 

whole results, we will not analyze the results in detail, and will leave this to the part in 

which we compare these models in the two aspects as described previously.  

4.1 Percentage of BMP adoption 

 As shown in Table 4-1, similar to the observation data, all the models except the 

null model, provide a pattern that the fragile land retirement is the dominant class in 

the results. This can illustrate that all the models can represent this pattern. However, 

the variance within the results and the differential values between the two classes are 

not at the same level. Specifically, the random forest based heuristic model, have the 

highest contrast between the two classes, and the stochastic model, have the highest 

variance in model running processes. Therefore, through the percentage of BMP 

adoption, we can analyze that both the stochastic model and the heuristic model can 
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produce a similar pattern as the observation, but as shown by the standard deviation, 

the stochastic model is more unstable even than the null random scenario. Relatively, 

the pattern produced by the optimal model although cannot be so similar to the 

observation, can still capture the main trend that the fragile land retirement is the 

dominant class, and as indicated by the standard deviation, the optimal model is stable 

as the same level as the heuristic model. 

Table 4-1 The percentage of BMP adoption 

 

Model  Optimal Stochastic Heuristic Null 

Model 

Observations 

EC 

 

FR 

 

Mean 

Std. 

Mean 

Std. 

30.03 

2.23 

65.78 

2.24 

21.20 

3.96 

75.03 

3.89 

19.67 

2.29 

80.33  

2.29 

49.34  

3.38 

50.66  

3.38 

21.68  

 

78.32 

Diff. Mean 35.75 53.83 60.66 1.32 56.64 

 Std. 4.43 7.85 4.58 6.76  

In this table, Mean represents the mean percentage of the adoption of specific BMP 

types, while the std represents the standard deviations of the percentage in the 20 

running times. The fragile land retirement class and the erosion control measures will 

be presented as FR and EC. 
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4.2 Size of agricultural land 

 The mean and standard deviation values are presented in Table 4-2. Each time the 

model runs, the average agricultural land size is firstly calculated by class. After all 

the running test is over, the class mean values and standard deviations are calculated. 

According to the results, it is clear that the optimal model and stochastic model have a 

similar pattern in terms of the size of agricultural land by classes, which means that 

farmers who adopt the fragile land retirement usually have a larger agricultural land 

than those who adopt the erosion control measures. Even at the quantitative level, the 

class distributions of the agricultural land size of the first two models are very similar. 

However, the heuristic model shows a very different pattern from the utility-based 

models. In the results of the heuristic model, the large agricultural land owners 

usually prefer to adopt the erosion control measures rather than the fragile land 

retirement, although the difference between the two classes is not so distinct as the 

utility-based models. Since the spatial scale of the observation is the southwestern 

Ontario, while the ABM simulates only the Upper Medway Subwatershed, they are 

not comparable quantitively. The results of the heuristic model, instead of the utility-

based models, can reflect the general pattern in the observations, where farmers that 

adopt BMP in the erosion control measures usually have a larger agricultural land, and 

the ratio of the size of agricultural land of erosion control measures to the fragile land 

retirement type is at the similar level to the observation. 
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Table 4-2 The average size of agricultural land by BMP adoption classes 

 

Model  Optimal Stochastic Heuristic Null Model Observations 

EC 

 

FR 

 

Mean 

Std. 

Mean 

Std. 

19.24 

3.08 

42.71 

1.72 

18.29 

3.21 

40.17 

1.13 

44.29 

4.98 

31.82 

1.25 

33.88 

3.34 

34.61 

3.38 

106.69 

 

86.14 

In this table, Mean and std. represents the mean and standard deviation values of the 

20 running times. The fragile land retirement class and the erosion control measures 

will be presented as FR and EC. 

4.3 Correlation between landuse and BMP adoption type 

 There are usually three main approaches to evaluate the correlation between two 

or more variables, including Pearson, Kendal, and Spearman correlation tests. 

However, since these three correlation tests have some requirements on the types of 

variables, and the land use and BMP adoption types are all unordered categorical 

variables that do not meet the demands of the three tests, it is hard to introduce the 

correlation tests for the two attributes. Nevertheless, the chi-square test of 

independence can be used to measure the significant relationship between the two 

nominal variables as a metric to represent the correlation. Since the chi-square test of 

independence can only provide the significance that whether the correlation exists 

between the two variables, Cramer’s V is used for discussing the strength of the 
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association. 

 As shown in Table 4-3, compared the baseline null model, in both of the utility-

based models, it is not statistically significant to determine there is a correlation 

between the two attributes, although compared with the optimal model, the stochastic 

model shows a relatively higher correlation between land use and the BMP type. As 

for the machine learning based heuristic model, it is very clear that in all the running 

times, it shows a significance that the two attributes are correlated, and the strength of 

the correlation is at a high level. Compared with the observation data, it also shows a 

significance that the two attributes are not independent, but the strength of the 

correlation is not as high as the results in the heuristic model. Therefore, in the results 

of the heuristic model, it shows there is a correlation between the landuse type and 

BMP adoption choices as the observation data illustrates. However, optimal and 

stochastic models cannot present this relationship. 

Table 4-3 The correlation between land use and BMP adoption type 

 

Model Optimal Stochastic Heuristic Null Model Observations 

No. of significant tests 

 

Cramer’s V 

1 

 

0.198 

3 

 

0.217 

20 

 

0.689 

0 

 

null 

Yes 

 

0.232 

No. of significant tests represents the amount of significant case (p < 0.05) in 20 

running times. Cramer’s V represents the average Cremer’s V value in all the 



74 

 

significant cases. The fragile land retirement class and the erosion control measures 

will be presented as FR and EC. 

4.4 Impacts of the Stochastic elements: Comparison of the optimal and stochastic 

model 

Since the optimal model and the stochastic model use the same utility function 

but different categorical groups of farmers, a comparison of the results of the two 

models will reflect the impacts of the stochastic elements. The first step of the 

comparison is a student t-test to check whether there is a significant difference 

between the two groups of results. Because the requirement of the t-test is that the 

samples should follow the normal distribution, for each metric, a Shapiro-Wilk test is 

performed, and all the three metrics of two results are normally distributed. The 

difference in the percentage of BMP types is significant, while for the other two 

metrics, the two models perform a similar pattern. For the percentage of the BMP 

types as illustrated in Table 4-1, even though the optimal model can also perform the 

general pattern, where the fragile land retirement is the dominant type, the difference 

between the two classes is much smaller than the results of the stochastic model. 

Compared with the observation data, the difference between the two types in the 

stochastic model is very close to the observation data, although for both of the utility-

based models, the observation dataset is not used to train or build them. Additionally, 

the large standard deviations show that there is a large variance among the results of 

the stochastic model. For the other two attributes as shown in Table 4-2 and Table 4-3, 
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the patterns are similar. Therefore, the main impacts of introducing the stochastic 

elements are illustrated in the percentage of the two BMP classes, and the similar 

pattern with the observation can be assumed as the influence of introducing some 

heterogeneity within the real-world data, especially when we consider that the 

observation data are not used in model building.   

 As a result, the involvement of the stochastic elements, which is the main 

difference of the stochastic model from the optimal model, can increase more 

similarity to the observation data in terms of the percentage of BMP adoption. 

However, the difference is not so strong in terms of other metrics. Hence, the 

stochastic elements can slightly improve the accuracy of the model results to the real-

world case. 

4.5 Impacts of the decision making structure: Comparison of the optimal and 

heuristic model 

The main reason for comparing the heuristic model with the optimal model rather 

than the second model is in both of the heuristic and optimal models, farmers’ 

typology structure is not implemented, and the main difference is the decision making 

approaches. Similarly, the normality and student t-tests are used to examine the 

significant differences between the two kinds of models, and all the three metrics of 

the two models are significantly different.  

 Similar to the comparison of the optimal and stochastic models, although the 

optimal model presents the pattern that the fragile land retirement is the dominant 
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type, in the results of the heuristic model, the difference between the two classes is 

much larger than that in the results of the optimal model as illustrated in Table 4-1. 

Generally, like the results of the stochastic model, the percentage of BMP adoption 

types in the results of the heuristic model is quantitatively similar to the observations. 

Additionally, the variance of percentage in the heuristic model is much smaller than 

that in the stochastic model.  

 For the class average of agricultural land sizes, the two models have very 

different patterns. As shown in Table 4-2, in the optimal model, farmers that own 

larger land usually adopts the fragile land retirement, while in the heuristic model, 

those farmers usually adopt the erosion control measures BMP. However, the two 

classes average of agricultural land sizes are very close, and although due to 

differences in the spatial scale, the results of the heuristic model are quantitatively 

different from the observations, the general pattern is similar, which means that the 

larger land owners usually adopt the erosion control measures. 

 The most significant difference is in the correlation between land use type and the 

BMP adoption. As illustrated in Table 4-3, the results of the heuristic model are 

significantly different from the other two. In all the 20 tests, the p-value is lower than 

the threshold 0.05, and even very close to 0, and this means there is strong confidence 

to determine the two variables are dependent. With a further Cramer’s V test, the 

average value of the 20 tests is 0.689, which shows a very strong correlation. Since 

the main dynamic mechanism for the three models is the change of crop type, and 

every year the land use is updated, it means the results of the heuristic model is very 
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sensitive to the change during the model running stage. Compared with the 

observation data, although it is also significantly different, the strength of the 

correlation, described by the Cramer’s V, is not so large. However, it still presents the 

pattern within the observation data, even in a different study area.  

 As a result, the stochastic elements, which refers to farmers’ typology, introduce 

more heterogeneity among the agents by increasing the difference in the percentage of 

land parcels between the two BMP adoption classes. However, compared with the 

change in decision making structure, the impacts of the stochastic elements are not so 

strong. For the ABM that integrate the random forest as agents’ decision making 

structure, it can successfully generate a similar macrolevel pattern with the microlevel 

training data, even not in the same study area and spatial scales. Nevertheless, the 

results of this kind of model tend to excessively follow the trend or patterns within the 

training datasets, and this can an interesting topic for further study.  

 In conclusion, the results of the machine learning based heuristic model show a 

high similarity to the observation data, and this similarity cannot be captured in the 

results of the optimal model. Therefore, we assume that the machine learning based 

heuristic model can capture the patterns in the observation data, and if the model 

builders aim to predict the future pattern of a system, and have a reliable dataset, the 

machine learning based heuristic model will be a satisfying alternative. However, due 

to the black box characteristics of the machine learning model, if the goal of the 

model is to examine the impacts of factors in agents’ decision making, this type of 

heuristic model is not an acceptable choice. Under this circumstance, the stochastic 
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model, which means an optimal model with the stochastic elements, can be a good 

choice, as it still slightly improves the optimal model. However, if the model builders 

have no knowledge about the stochastic elements like farmers’ typology in this thesis, 

the optimal model is still acceptable as it can still capture some important features of 

the system, such as the percentage of BMP adoption in this project.  

  



79 

 

Chapter 5 Discussion 

 In this section, we will start to discuss what this project achieves and what it can 

provide for model designers and builders. Next, we will talk about the limitations and 

problems in this project, and in the future work, what is expected to be conducted and 

which direction can be followed further. 

5.1 Achievement 

 This project tried to fill the gap that to my knowledge, there are not so many 

researches focusing on the comparison of decision making structures in ABMs, 

especially for the heuristic way in the form of machine learning models. Through this 

comparison, we can gain some understanding of the characteristics and differences 

among the decision making models. Furthermore, based on these characteristics and 

differences, we can provide some suggestions for general model builders and policy 

makers who want to develop the BMP adoptions. 

Based on the previous analysis of results, it is clear that the design of decision 

making structure in terms of introducing the machine learning model has a stronger 

impact on the model patterns than the stochastic elements that represent farmers’ 

typology in agents’ design. However, stochastic elements of the farmers’ typology can 

still increase the heterogeneity in the model, and make some patterns more similar to 

the observation dataset.  

For the machine learning model, although restricted by the black-box design to 

some degrees, it is hard to explain why the decision made and the detailed decision 
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making processes of agents, can represent the bounded rationality of agents, and 

predict the results at a better level of accuracy compared with the optimal and 

stochastic models. Specifically, in this project, even the machine learning model is 

trained to simulate the behavior of agents rather than the whole system, and used in 

different study areas and temporal-spatial scales, the ABM can still produce very 

similar patterns as the observation data in the macro level.  

Nevertheless, there are still some disadvantages and risks of introducing the 

machine learning model. Since this kind of model will excessively present the trends 

in the training dataset, it may lead to some analogous problems to overfitting. 

However, because in this project we only have one source of data to train the model, it 

is hard for us to determine whether there is an overfitting problem, but as shown in 

the results, the machine learning model is too close to the observation data. 

Additionally, although introducing machine learning models to represent the decision 

making processes of the agents in ABMs rather than the whole system makes it easier 

to understand the elements and structures of the system, the interpretation of agents’ 

behavior still remains a problem due to the black-box feature. Furthermore, the 

interactions among agents are also hard to be presented directly and explicitly in the 

machine learning based heuristic model, compared with the optimal model and the 

stochastic model. 

 Therefore, because this project provides a general idea about the difference of 

agents’ action rules and with this, we can generalize a preliminary suggestion on the 

choices of these decision making models for model builders, as illustrated in Table 5-
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1. If the aim of the ABMs is to examine the decision making processes and important 

factors to individual agents, it is better to use the optimal models to get some insights 

about them. In addition, the stochastic elements and detailed agents’ typology will 

increase the heterogeneity and make a more similar pattern to the observation and 

calibration data. If the goal of ABMs is to predict some patterns or future change and 

the model builders have access to a reliable dataset, the machine learning model can 

be an appropriate alternative. However, the risk of overfitting problem, the 

interpretability problem, and the difficulty to represent the direct interactions should 

be also be taken into the consideration. 
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Table 5-1 The summary of characteristics of decision making models based on the results of this thesis 

 Strengths Weaknesses Conditions that are suitable to use 

Optimal model Relatively easy to be implemented  

Producing an acceptable result 

Remaining opportunity to analyze the factors that drive agents’ behavior 

Results of the model may not meet the demand in 

accuracy compared with observations 

 

Analyzing the factors that affect agents’ behavior 

with no specific knowledge about the agent and 

the system 

Stochastic model Additional improvement on the optimal model 

More similar to the real-world circumstance than the optimal model 

Remaining opportunity to analyze the factors that drive agents’ behavior 

Still requires knowledge about the agent and the 

system that the model simulates 

Compared with the heuristic model, the similarity 

to the real-world observation is still lower 

Analyzing the factors that affect agents’ behavior 

Heuristic model High similarity to the observation data Relying on an appropriate dataset 

Not suitable for interpreting the agents’ decision 

The overfitting risks 

The difficulty to represent the interactions among 

agents 

Predicting the future possible pattern of the 

system 
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 In addition, the improvement of stochastic elements that represents farmers’ 

typology to the optimal model allows us to provide some suggestions on the 

development and implementation of BMP. Since the introduction of farmers’ typology 

makes the model has more similarity with the observations, it is very possible that 

different groups of farmers may have different preferences and priority for BMP 

adoption. Hence, if the policymakers expect to develop the BMP adoption, concerning 

about the heterogeneity among farmers, and providing different inspiring plans for 

them can be helpful. 

5.2 Limitation 

 The limitation of this work can be discussed in two aspects, the data used in 

model building and the method to design and compare the models. For the data 

limitation, it comes from three main aspects: data dimension and description, data 

quality, and the spatial-temporal scales in the datasets. The limitation in the method 

mainly results from the two aspects, including the assumptions, and the stationary 

state of the decision making. 

Specifically, the data dimension refers to the number of attributes and information 

within the dataset. In the observation dataset, only five categories of information are 

provided, including the BMP adoption type, geographical coordinates, project years, 

funding resources, and the final costs. Additionally, all these attributes lack detailed 

descriptions. For example, the locations represented by these geographical 
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coordinates are still unclear, and it is still unknown for us that whether the points 

represent the centroid of land parcels or just a nearby place on the road. In addition, 

this dataset does not provide detailed information about the landowners’ information 

and the characteristics of the agricultural land. To overcome the limitation of lacking 

data dimension, many external data are joined from other datasets based on the spatial 

location. However, the lack of the data dimension and data description leads to many 

uncertainties for this project. When we tried to join external information from other 

datasets for training a model, the lack of description of the features increases another 

level of uncertainties since what the geographical locations represent is not so clear.  

Additionally, there are some errors in the datasets, and this indicates the low 

quality of the dataset. For instance, for some records in the data, there are attributes 

containing the missing information, and several geographical coordinates are 

incorrect, and some of the coordinates of raw data are just located in Peru or the 

Pacific Ocean. To overcome this challenge, we examined and cleaned the dataset, and 

removed these wrong records. However, because we want to deal with the data 

dimension problem by joining many attributes from other datasets by geographical 

locations, and the low data quality brings more uncertainties for the joining process.  

Another problem in the dataset is the spatial-temporal scales. As mentioned, 

although there is an attribute called project year that provides the temporal 

information, the description of this attribute is not so clear and has some missing 

values, and this makes it hard to filter the records that may not meet the temporal 

demand. For the spatial scales, since the study area of the observation dataset is across 
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the whole southwestern Ontario, while the spatial extent of the proof-of-concept is 

only the Upper Medway Creek subwatershed. Although the different spatial scales 

make it possible to examine the performance of the trained model, it is still hard to 

use it for quantitative comparison, for the different spatial scales make it hard to get 

evaluated metrics at the same level. To overcome the temporal limitation, we select 

the data records attached project year, and use the median of the total period as the 

representative. To overcome the limitation of the spatial scale, as we performed in the 

result section, we focused on the ratio among the two BMP adoption classes rather 

than the actual number.  

For the method used in this model, the assumption is a significant limitation. As 

described in the methodology section, there are many assumptions introduced, e.g. the 

farmers and fieldcells follow a one-to-one correspondence relationship, and the 

impacts of the topology and non-contributing areas are not concerned in this model. 

These assumptions are helpful in the model design to reduce the complexity of the 

model designs and the computation, but sometimes these assumptions can be arguable 

that it cannot capture the characteristics of the system (Railsback& Grimm, 2019). 

Therefore, model builders can be aware of the problems that the assumptions may 

lead to. To overcome this problem, the POM, while it is also used in this project to 

evaluate the models, can be an alternative. Based on the goal of the model, model 

builders can define and examine whether the model is structurally realistic to check 

the suitability of assumptions. 

Another limitation of the method resides in the stationary design of the agents. In 
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this thesis, in all the decision making models, the agents will follow the same decision 

making structure during the model running, while in the real world, agents can change 

their decision making processes. To overcome this problem, introducing the learning 

mechanism to agents can be an alternative, e.g. Gimona & Polhill (2011) included a 

learning mechanism by storing the memory of agents’ actions in the previous model 

running to make decisions. In addition, there are three decision making models in this 

thesis, and this can further provide an opportunity to use the results of other models as 

the observations to train or design the model. However, because the goal of this thesis 

is to compare, and introducing this will increase the difficulty to compare the decision 

making models, the learning mechanism is not included in this thesis. Furthermore, if 

the model builder thinks it is important to represent the change of decision making 

processes, the learning mechanism of agents can still be an alternative. 

5.3 Future possible research 

 Due to the limitation in the datasets as mentioned, there is an opportunity to 

improve the project structure with a dataset that contains more information like the 

joined external data in the proof-of-concept. Additionally, the introduction of local 

data or working with experts in this field can provide a baseline for the validation. 

Moreover, since the comparison is not limited to a specific case, in future work, 

researchers can choose ABMs that have reliable calibration data or patterns that are 

cleared determined by previous experts to change the performance of different 

decision making models, and have more detailed or quantitative descriptions of the 
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difference. 

 Additionally, this project also provides a simple structure for the future research. 

Specifically, since there is a distinct difference between the results of the optimal 

models and ABMs that integrate the machine learning model. It would be interesting 

to check the representativeness and whether the achievements of this project can be 

adapted in other model design cases. Due to the time limit in this project, we have to 

only compare the three ABMs in this BMP adoption case. With further research, we 

can contrast the characteristics of decision making models in different cases, such as 

market share forecasting. Introducing different cases would be useful to provide some 

insights about the optimal choice on decision making models for various purposes.  

 In conclusion, this project focuses on comparing and contrasting the differences 

of decision making models, especially for the machine learning based heuristic model, 

in a proof-of-concept of farmers’ BMP adoption case. Next, we further analyzed the 

results of these decision making models based on the three metrics. According to the 

analysis of the results, we provide some suggestions on the model and policy choice 

based on the characteristics of the three models. Additionally, this project also 

provides a practical case of integrating machine learning model into ABMs as the 

decision rules of agents to fill the gap that few researches compare the decision 

making structures in ABMs, especially for the machine learning model integrated as a 

heuristic model.  
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