
 

 

Is competition sufficient to drive observed retail location and revenue patterns? 

An agent-based case study. 
 

 

 

by 

 

Jiaxin Zhang 

 

 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Science 

in 

Geography and Environmental Management 

 

 

 

 

 

 

Waterloo, Ontario, Canada, 2020 

 

© Jiaxin Zhang 2020 

 

 



   
 

 
 

ii 

Author’s Declaration 

This thesis consists of material all of which I authored or co-authored: see Statement of 

Contributions included in the thesis. This is a true copy of the thesis, including any required 

final revisions, as accepted by my examiners.  

I understand that my thesis may be made electronically available to the public.  



   
 

 
 

iii 

Statement of Contributions 

This thesis consists of three chapters all of which I have been the lead author. While my 

supervisor (Dr. Robinson) has provided comments and edits on Chapters 1 and 3, he has 

taken a more collaborative role as coauthor on Chapter 2. As lead author of Chapter 2, I 

conceptualized the study design, conducted all computer coding and model creation, 

conducted all data analysis and reporting, wrote the majority of the texts, and created all 

figures and tables.  



   
 

 
 

iv 

Abstract 

Agent-based models (ABMs) have been widely used to represent and investigate complex 

systems and are a contemporary modelling approach used in the study of land-use and land-

cover change. While many ABMs have been constructed to address research questions 

associated with residential land development and human choices, agricultural land transition 

and farmer decision-making, and transportation networks and planning, less attention has 

been given to improving our understanding about the drivers and agent behaviours associated 

with commercial and retail competition, which subsequently affects land-use change. Among 

existing ABMs that represent the retail system, the focus has been on understanding 

consumer behaviours, but the inclusion of the store competition is lacking, and most retail 

competition models still use a top-down modelling framework. The thesis herein provides a 

new contribution to retail competition literature through the development and use of a retail-

competition agent-based model (RC-ABM). Utilizing previous empirical research on 

consumer expenditures and retail location site selection, competition for home-improvement 

expenditures is simulated within the home-improvement retail system in the Region of 

Waterloo, Ontario, Canada. Results exhibit a high level of alignment between the RC-ABM 

and a traditional Location-Allocation Model (LAM) in estimating a market capture and store 

revenue acquisition. In addition, while modelled competition itself cannot reproduce the 

observed spatial pattern of home-improvement stores in our study area, results from the 

model can be used to identify path dependencies associated with retail success generated by 

competition and factors affecting retail store survival. Lastly, the presented RC-ABM 

provides the potential to enrich future land-use and land-cover change models by better 

representing commercial development. 
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Chapter 1 A Primer on Modelling Retail Location Patterns 

The retail sector plays a critical role in most developing (e.g., India, Guruswamy et al. 2005) 

and developed (e.g., UK, Rhodes and Brien 2014) countries (Siebers et al. 2010). For 

example, retail constituted over seven percent of total US economic activity every year for 

almost 50 years before 2000 and over six percent annually from 2000 to 2014 (Hortaçsu and 

Syverson 2015). Similarly, in Canada, approximately 5.5% ($97.8 billion) of the country’s 

GDP ($1.79 trillion) was generated by the retail sector in August 2018 (Statistics Canada 

2018a). In addition to its contributions to GDP, retail has been a leading sector of 

employment. During the 1980s, retail industries contributed over 12% of the total 

employment in the US, notwithstanding a slight decrease in the 21st century, it still occupies 

a large proportion (over 11%) of the US’ total employment (Hortaçsu and Syverson 2015). In 

Canada, retail plays a more prominent employment role with about 15% of the total 

employment among all industrial sectors provided by its retail from 2015 to 2019. The 

importance of the retail sector to a nation’s economy (GDP) and social stability (the 

employment rate) should not be underestimated. 

Despite the valuable economic and social role of retail, retail is a vulnerable 

commercial sector, especially when encountering Black Swan (e.g., economic crisis, Davies 

2000) events. For example, in Canada, the global financial crisis (started in 2008) led to a six 

percent decline in the number of retail stores from 2008 to 2011 (Statistics Canada 2020). 

While the number of stores increased thereafter, as of 2012, the number of stores remained 

less than existed prior to the financial crisis (Statistics Canada 2020). Although the Canadian 

retail sector experienced a sales growth from 2012, the rate of the growth was unstable, 

which fluctuating from 2% to 7% (CBRE 2019). In particular, Canada’s annual retail sales 

growth rate in 2019 reached its lowest point (2.1%) since 2009. According to these data, 

retail plays a prominent role in the economy and social fabric of a country, but its 

vulnerability suggests that a more rigorous investigation into the conditions that derive 

success is needed. In most cases, these conditions (e.g., accessibility, market share, and 

competition) are a function of the retail store location. Despite a variety of approaches used to 

select a store location, there are novel approaches that have yet to be adopted that could 

benefit a variety of actors (e.g., retail companies, local economic development teams). 

Historically, retail site selection commonly used heuristics (i.e., “rule of thumb”) 

(Hernandez and Bennison 2000) embedded in corporate or real-estate agent experiential 
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knowledge. However, more recently, efforts have been taken to formalize site location 

strategies to avoid failure (Moore 2005). Formalization of location decisions has become 

essential since several new types of retail-store formats have evolved to capture market share 

and ensure success (McArthur et al. 2016). Among revenue streams, e-commerce has been 

occupying an increasing proportion of market shares in the retail business (Nisar and 

Prabhakar 2017). Although the evolution of retail site selection, formats, and revenue streams 

may result in various operational and strategic modes, there are two goals shared by all 

retailers: to launch a long-living profitable business (Ghosh and MacLafferty 1987; Colla and 

Dupuis 2002; Eisenmann 2006) and mitigate and avoid obstacles, which are derived from 

both stores’ internal and external environments, to achieve that goal.  

Internal environmental challenges include failures caused by the store’s self-

management strategies, such as the business mode, staff hiring and training management, 

inventory or supply chain management, and so among others (e.g., Ghosh and MacLafferty 

1987). A small failure with choosing a proper self-management strategy might lead the 

company to crumble from within (Gaskill et al. 1993). Complementing internal challenges 

are external environmental challenges that may impose negative pressures on a store’s 

survival. These challenges are mainly generated by unpredictable policy changes by local 

governments, competitors’ actions, the complex socio-demographic environment of the local 

markets, and emergent incidents among others (Hernandez et al. 1998; Hu and Ansell 2007). 

For example, many “big brand” retail companies experience expansion failure in new 

countries despite success or even dominance in their origin countries, e.g., Target’s failure in 

entering the Canadian market (Hoffman and Gold 2015; Yoder et al. 2016), Best Buy’s 

failure in entering the Chinese market (Feng 2013).  

           Given that the customer is the fundamental source of profit for retailers, understanding 

customer behaviour is a major concern for retail companies (Verhoef et al. 2009) and 

customer behaviors are sensitive to a store’s external environments (Chen 2015). Store or 

brand loyalty may change due to competition-oriented actions, like new special offers (Clarke 

et al. 2004). Completion of a new highway may lead a customer to switch his first-ranked 

store to a competitor due to a change in travel time. A new store entering the local market 

may cause many existing stores to lose customers, especially those who live near the new 

store (Clarke 2000). Overall, for retailers, it can be inferred that most challenges derived from 

the external environment will ultimately be rendered into the stress of keeping its current 

customers and attracting new customers from its competitors.  
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On the customer side, choosing a destination store to purchase commodities is usually 

not simple and straightforward. Literature shows a multitude of factors affecting store 

evaluation and destination choice (Ghosh and MacLafferty 1987) such as: 1) customers are 

more likely to shop at a store which has an assortment and variation in quality of merchandise 

(Koelemeijer and Oppewal 1999.); 2) the overall atmosphere (Sharma and Stafford 2000; 

Gowrishankkar 2017), and aesthetics of a store can influence customers’ expectations and 

shopping experience; 3) the service mode of a store comprising the attitude of staff toward 

customers and the quality of post-sale services are important to the perception of store image 

by customers (Gagliano and Hathcote 1994; Sharma and Stafford 2000); and 4) pricing, plays 

a critical role where for some target markets the lowest price dominates purchasing decisions, 

while for others it is not always the case (Grewal et al. 2009) such that some brands’ success 

is derived by selling higher-quality goods at higher prices (Moore and Carpenter 2006). 

Nevertheless, ceteris paribus, most customers would be attracted by 5) location and 

convenience. A more accessible store can save a customer commuting time, commuting cost, 

and create a more convenient shopping experience (Grewal et al. 2009; Swoboda et al. 2013). 

Among these five factors, price and location are regarded as the most important drivers of 

retail competition (Ghosh and MacLafferty 1987). However, location has a lower fault-

tolerance given that the decision is relatively irreversible, involves sunk costs, and changes 

carry negative social consequences.  

On the one hand, a store’s location is a huge and risky one-off investment from the 

aspect of both money and time. On the other hand, the location strategy is also a prerequisite 

to other retail strategies. A store’s location also determines the socio-demographic 

characteristics (e.g., purchasing power and disposable income) of its service area, which are 

essential references to strategies associated with merchandise assortment and quality. 

Additionally, a store’s location also determines its competition. Hence, it can be said that the 

location “unintentionally” helps the store to select both its existing customers and 

competitors.  

Furthermore, the location is also an immutable factor to a store when trying to 

respond to future changes in its nearby competition context.  When a competitor locates a 

new store near an existing competitor, the existing competitor can launch any type of strategy 

such as lowering prices and enriching merchandise categories, but it is difficult for a large 

store (e.g., Walmart) to relocate. Contrary to other strategies that are revisable, if a wrong 

choice of location has been initiated, its negative impacts will be perpetual until the close of 



   
 

 
 

4 

the store. Consequently, the location could be treated as one of the most important factors to 

be finalized. 

           To reduce the risk of locating a store, retail companies typically use a series of 

methods to evaluate possible storing locations (Ghosh and MacLafferty 1987; Ken and 

Simmons 1993). For each possible location, the evaluation should not only help retailers to 

forecast a store’s operational performance using available data with consideration of 

influences exerted by some possible future changes within the local market. It is almost 

impossible to make an absolutely accurate prediction about the future in any scientific field 

(Scriven 1959) including retailing. However, by making some assumptions, models can 

provide a powerful tool to simulate and predict plausible futures (Schichl 2004; Page 2018). 

  

1. Traditional Methods and Models for Retail Site Selection 

Retail site selection initially involved a simple “checklist” approach (Hernandez and 

Bennison 2000). Popularized in the 1960s (Ghosh and MacLafferty 1987), checklists consist 

of multiple factors used to evaluate (or rank) the anticipated retail performance of a potential 

site(s) (Ciari et al. 2008). While the factor values of interest (e.g., target customer) may vary 

by retail brand and sector, factor selection should be rigorous, accurate, and the data 

collection supporting the factor analysis is often labor- and time-consuming. Moreover, 

although the suitability of potential sites can be evaluated, the potential profit of each site 

cannot be predicted using a checklist approach and therefore the approach lacks quantitative 

evidence for site selection.  

Similar to a checklist, an analog approach is a simple and commonly used method 

(Clarke et al. 2003). An analog approach estimates the performance of a future store based on 

a reference (i.e., existing) store. The characteristics of a new site and projected new store are 

matched with existing stores with similar conditions and the existing store(s) revenue and 

profit are assumed to be achievable at the potential location (Applebaum 1966). The 

simplicity and low cost of an analog approach has made it prevalent in site location. 

However, if there are no reference stores with similar characteristics, or the influence of some 

factors are not well known, then predicted and actual revenues may have substantial 

differences.  
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The incorporation of data or information from existing stores to predict potential store 

performance using statistical models provides a quantitative approach not captured by 

checklists and analogues (Clawson 1974; Olsen and Lord 1979; Dibb and Simkin 1994). 

Statistical models assume that a store’s sales performance (dependent variable) is related to 

measurable factors (independent variables) in a way that can be represented by mathematical 

equations (e.g., linear regression, multinomial relationship), and the coefficient of each factor 

can be estimated based on existing stores’ data (Agrawal and Schorling 1996). Statistical 

modelling techniques can provide accurate predictions about store profits and to some extent 

become the foundation for more advanced models in the future (Hernandez and Bennison 

2000). Nevertheless, statistical approaches are often incorrectly used and multicollinearity 

among independent factors require advanced approaches (Suarez Alvarez et al. 2007; Keener 

2013). Furthermore, most independent variables used in statistical retail models are estimated 

from aggregated data, which embeds the assumption of consumer homogeneity across a 

population of consumers (Ghosh and MacLafferty 1987) and the issues with what is known 

as the ecological fallacy (Steel and Holt 1996).  

The impacts of customers’ spatial distribution and transportation cost on a store’s 

location strategy became more prominent in the 1930s (e.g., Hotelling 1929). Then, in the 

1960s, the first Spatial-Interaction Model (SIM) was developed, whereby modelled customers 

evaluated a store based on the store size and the distance to store (Huff 1964). However, 

SIMs are limited in the representation of consumer heterogeneity as customers are aggregated 

by location (e.g., census unit). For example, customers in the same census unit are assumed to 

have the same value of factors (e.g., location, disposable income).  

The factors included in SIMs (e.g., Huff defines store size and customers’ distance to 

store as factors) are used to calculate the utility acquired by a customer who patronizes a 

store. For each customer, each store will have an expected utility value and a customer will 

typically choose to patronize the store with the highest utility. By using a utility function, 

customers’ shopping patterns in different geographical areas are represented in the SIMs, 

enabling models to better represent customer catchment areas and estimate profits (Yrigoyen 

and Otero 1998; Dramowicz 2005). From the 1980s, an increasing number of SIMs, 

including gravity models have emerged and are used in retail site-selection (Hernandez and 

Bennison 2000; Drezner 2009; Clarke and Birkin 2018).  
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A specific version of SIM, the location-allocation model, has made tremendous 

contributions to exploring location-oriented retail strategies (Goodchild 1984; Russell and 

Urban 2010). In the location-allocation model, customers are aggregately represented as 

demand points, which indicate the level of demand available for geographical zones. For 

instance, each Census Dissemination Area has an estimated demand for goods that can be 

calculated and represented by its centroid. In addition to demand points, the model 

uses feasible sites, determined a priori as potential new store sites. Stores’ site selection 

processes are constrained by an objective function, which can be modified to maximize 

market share (Goodchild 1984), minimize the average distance between customers and stores 

(Baray and Cliquet 2013), or other objectives that affect model behaviour (Yeh and Chow 

1996). Then, based on the distance relationships between feasible sites (stores) and demand 

points (customers), customers are allocated to stores to meet the requirements of the objective 

function. In the location-allocation model, the customer behaviors are determined by the 

analysis of real-world customer shopping patterns and needs, and represented by allocation 

rules.  

Spatial interaction models, including the location-allocation model, have advanced the 

quantitative modeling capabilities used to evaluate retail location problems. However, like 

the statistical model, the heterogeneity of stores or customers are crudely at best represented 

by SIMs. In these models, store or customer behaviors are derived from analyzing existing 

and aggregated data. The heterogeneity of customer behaviors of different geographical areas 

is depicted by the utility function in SIMs, e.g., customers in different zones have 

heterogenous shopping patterns, but individuals within the same zone are all assigned 

homogenous (stationary) behaviors, which deviate from reality. Although the existence of 

SIMs, gravity model and location-allocation models have advanced the methods applied to 

site location and integrated spatial data, alternative models are needed to better represent a 

heterogenous population of consumers, stores, their interactions, and the non-stationary and 

evolving decisions of both actors.  

 

2. Complexity Science and Agent-Based Modelling: a way forward 

Most traditional retail model building mechanisms follow the logic of analyzing the causal 

mechanisms of a phenomenon from the macro-level patterns and observations (Crooks and 

Heppenstall 2012; Railsback and Grimm 2019). In many cases, customers’ shopping patterns 
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can be quantified and modelled based on empirical observations, which are then used to 

assess the outcomes of alternative scenarios. However, in these models, individual customer 

behavior is “constrained” by the macro-level phenomena and they fail to represent the 

interactions and adaptive behaviours of heterogenous individuals. For instance, in a utility-

oriented model, although the utility of Store A is maximal to a customer, he might still go to 

Store B because Store A is out of stock of his target goods. Such circumstances occur 

frequently in the real world because the retailing system comprises a multitude of 

heterogeneity and interactions that cannot be represented using traditional modelling 

approaches (Macal and North 2009). 

Like Stephen Hawking who stated, “I think the next century will be the century of 

complexity” (Wilensky and Rand 2015), more researchers have realized the importance of 

taking a complex systems perspective to scientific inquiry. A complex system is 

conceptualized as a system comprising multiple components that interact with each other and 

take adaptive actions in response to those interactions (Dooley 1996). This notion of 

complexity is often confused with and used interchangeably with complicated. However, in a 

complicated system, which also has connections between components, there is a high degree 

of independence across the whole system and the system can still function in the absence of 

certain components (Miller and Page 2009). In contrast, components in a complex system are 

more tightly connected and losing one component can lead the whole system to collapse 

(Miller and Page 2009). Considering each component of a system as one dimension, 

the complicated system is dimension reducible whereas the complex system is not. For 

example, in a Retailer-Consumer system, the merchandise categories of retailers can be 

simplified, e.g., decrease merchandise types from 5 to 4, but “the retailer” as the component 

cannot be abandoned, i.e., cutting off connections between retailers and consumers makes the 

system meaningless. 

           Another important concept in the study of complex systems is emergence (Nicolis and 

Nicolis 2012; Janssen 2020). Most traditional models use a “top-down” logic or approach 

(from macro-level to meso-level and micro-level) that derives relationships from an outcome 

(e.g., dependent variable) based on a set of drivers (e.g., independent variables). In contrast, 

the complex system uses the “bottom-up” logic to build models (Srbljinović and Škunca 

2003), in which only individual components’ behaviors and action rules are defined without 

considering the potential macro-level outcomes (e.g., dependent variable) or patterns of the 

model. By representing and enabling individuals to autonomously and dynamically perform 
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actions and interactions, some unpredictable patterns might emerge from the model running 

(Miller and Page 2009; Nicolis and Nicolis 2012). For instance, the phenomena of 

segregation have been shown to occur simply by having households move to be near other 

similar households with a very small preference threshold (Schelling 1971). In our study of 

retail, these patterns may have different target markets and subsequently affect different retail 

location choices. 

           Guided by a “bottom-up” model building logic, Agent-based Modelling is widely 

acknowledged as an appropriate and advancing technique to represent and explore problems 

residing within or comprising a complex system (De Marchi and Page, 2014). The approach 

is appealing because it can be used to represent adaptive behaviors, landscape and actor 

heterogeneity, and can model analytically intractable outcomes like emergence (De Marchi, 

2005). In an agent-based model (ABM), the elementary component is called an agent, which 

has been used to represent any type of entity for which some sort of decision-making process 

and capacity for interaction is assigned (e.g., an individual, a household, a retail store). 

Aligning with complex systems, ABMs distinguish themselves from other modelling 

approaches in their ability to represent 1) heterogeneity, instead of using a representative 

individual, an average individual, or a population of individuals as a whole, each agent can be  

assigned different characteristics that cause it to behave differently from other agents; 2) 

interaction, agents can make observations and choose to interact or avoid other agents; 3) 

adaptation, agents can take reactive actions and change their behaviour in response to 

feedback generated by interactions and changing circumstances; and 4) Autonomy, agent 

behaviours are not prescribed, instead agents are enabled to make decisions autonomously 

which endogenizes the processes of interaction and adaptation in a way that can not be 

represented with equation based modelling approaches.  

           In a broad view, agent-based modeling has been applied in solving problems under 

both natural science, social science, and engineering contexts (Epstein and Axtell 1996; 

Wilensky and Rand 2015). Based on literature the analytic data of the academic database 

(e.g., Web of Science), thousands of ABMs have been created to investigate topics ranging 

from biology (Gorochowski et al. 2012), chemistry (Pogson et al. 2006), ecology (Fitzpatrick 

and Martinez 2012), environmental science (Schwarz and Ernst 2009), urban planning 

(Arsanjani et al. 2013), and so on. However, within the land systems modelling community, it 

can be argued that the agent-based modeling community has not given the issue of retail 

location development enough attention as other land use and land cover (LULC)-oriented 
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problems. For example, under the context of urban issues, plenty of models have been created 

to answer questions about residential choices and decision making (Huang et al. 2014), 

housing market dynamics (Gauvin et al. 2013), transportation system simulation and planning 

(Bernhardt 2007). Under the rural or suburban contexts, topics like agricultural land use and 

land cover change (Millington et al. 2008), farmer decision making (Ng et al. 2011), policy 

analysis and impacts (Lempert 2002), forest management and risk estimation (Spies et al. 

2017) are also popular to be solved using the agent-based approaches.  

In comparison, possibly due to the difficulty of data acquisition (Sturley et al. 2018), 

retail-related data are usually confidential, which may explain why few ABMs exist that 

simulate any aspect of the retail system. Among the few ABMs that do exist in the domain of 

retail are investigations into supply-chain management problems (Verdicchio and Colombetti 

2001; He et al. 2013), pricing strategies (Yousefi et al. 2011) and stores’ internal 

management strategies (Siebers et al. 2010). Several, ABMs were developed to gain insight 

into customer behaviors like shopping patterns (Schenk et al. 2007) and mobilities 

(Vanhaverbeke and Macharis 2011). However, there are few ABMs that represent retail 

competition, instead the focus lies on the customer side (e.g., Sturley et al. 2018) with retail 

store agents rarely integrated into problem (Ciari et al. 2008). Despite acknowledging the 

need to model the dual representation of customers and retail stores in a process-oriented way 

nearly two decades ago (e.g., Baydar 2003), progress has been minor compared to advances 

in other fields. Instead, many retail competition models still reside in the abstract level, i.e., 

theoretically discuss the questions using mathematical derivations or an oversimplified model 

with assumptive agents (e.g., Xie and Chen 2004; Miura and Shiroishi 2018).  

Where retail competition has been modelled, using an ABM approach, involved the 

simulation petrol pricing behaviours in petrol retail system in the United Kingdom 

(Heppenstall et al. 2005; Heppenstall et al. 2007; Heppenstall et al. 2013). Using retailers as 

the major agent, Heppenstall’s model (named as “the petrol model” in the later description) 

demonstrated the ability of an agent-based approach to replicate realistic retail price changing 

patterns caused by competition and to distinguish observed differences among urban-rural 

regions (Heppenstall et al. 2005). The presented research within this thesis seeks to fill this 

gap in retail competition literature. In Chapter 2, a retail competition agent-based model (RC-

ABM) is presented that was constructed to 1) evaluate the degree of alignment between an 

ABM representation of competition and that represented using a spatial interaction model, 2) 

determine if the process of competition is sufficient to simulate observed patterns of retail 
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location and revenue acquisition, and 3) are there conditions of path dependence, whereby 

locations comprise stores with consistent success or failure and are their clear drivers of these 

outcomes. After presenting the results of RC-ABM and situating it in the broader literature, 

Chapter 3 identifies potential future research directions that build off the contributions of the 

RC-ABM. 
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Chapter 2 Is competition sufficient to drive observed retail location and 

revenue patterns? An agent-based case study. 

1. Introduction 

Retail firms are a critical component of the economy. Not only does retail influence 

economic productivity and growth (Kosová and Lafontaine 2010; Holmberg and Morgan 

2004), but it also stabilizes and catalyzes the employment market (Watson and Everett 1993; 

Miller et al. 2003). Over the past three decades, retail industries comprise approximately 6% 

of the U.S. GDP and over 10% of its labour force (Hortaçsu and Syverson 2015). A similar 

situation exists in Canada, whereby approximately 5.5% ($97.8 billion) of total Canadian 

GDP ($1.79 trillion) was generated by the retail sector in August 2018 (Statistics Canada 

2018a). Complementing the economic contributions of retail is a high risk of failure, e.g., in 

the 1990s, over 1.5% of the U.S. retailers failed annually while 9.7% of GDP were 

contributed by them (Mcgurr and Devaney 1998).  

Retail success is the product of a combination of business ideas, marketing and human 

resource management, pricing and merchandising, and business expansion and location 

selection strategies (Ghosh and MacLafferty 1987; Mou et al. 2018). Among these 

components of success, location is critically valued (Yang and Yang 2005; Reigadinha et al. 

2017) since it is a prerequisite assessment processes (e.g., sales forecasting) and tied to the 

socio-economic and demographic characteristics (e.g., population, average income, 

transportation context, land value) of a store’s service area (Ghosh and MacLafferty 1987). 

Furthermore, location investments are fixed and sunk costs, whereby commercial land is 

long-term leased (Goodacre 2003) and construction and renovation costs cannot be fully 

recovered. Despite the criticality of location, companies underutilise analytic and 

computational approaches and instead prefer intuition or experience-based methods for site 

selection (Hernandez and Bennison 2000; Ladle et al. 2009). 

Despite the lack of adoption of advanced site selection methods by retail companies 

(Hernandez and Bennison 2000), significant advances in site selection have been made 

beyond heuristics, checklists, and analog approaches (e.g., Durvasula et al. 1992). Regression 

(e.g., Ozuduru and Varol 2011), gravity (e.g., Merino and Ramirez-Nafarrate 2016) and 

spatial interaction models (e.g., Marceau and Benenson 2011), and machine learning models 

(e.g., Krause-Traudes et al. 2008) have all been used in association with retail site selection. 
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However, these approaches fail to represent many of the themes of complexity science such 

as heterogeneity, feedbacks, thresholds and tipping points, interaction, and emergence (e.g., 

Wilensky and Rand 2015).  

Instead of representing store and customer heterogeneity, most traditional approaches 

assume homogeneous decision-making or behavioral rules interpreted from survey or census 

data (e.g., Nakaya et al. 2007). While mathematical-based and spatial-interaction models 

perform well at sales forecasting (e.g., Merino and Ramirez-Nafarrate 2016) or trade area 

estimation (e.g., Wang et al. 2016), they typically act on a static representation of the 

economy and society. In cases where time has been incorporated, research has focused on 

strategic pricing (Voss and Seiders 2003; e.g., Warner and Barsky 1995; Matsui 2018), 

product entry (e.g., Green et al 1995; Radas and Shugan 1998), or crisis response strategies 

(e.g., Claeys et al. 2013). A clear gap remains in dynamic site selection under changing 

competition landscapes (i.e., spatial patterns) with heterogeneous competitors (e.g., store 

sizes).  

One approach capable of representing the themes of complexity science, including 

heterogeneous actors and landscapes, is agent-based modelling (ABM). The ABM approach 

is founded in the idea that by representing heterogeneous micro-level behaviours and 

interactions, one can simulate or grow system-level outcomes (Epstein and Axtell 1996). In 

an ABM, real-world actors are represented as computational agents in a one-to-one mapping 

(Rounsevell et al. 2012b), which facilitates participatory modelling (e.g., Zellner 2008; 

Voinov and Bousquet 2010) and knowledge transfer (Anzola 2019) in addition to scientific 

advances that cannot be achieved with equation-based modelling (Parunak et al. 1998). While 

ABM has been widely applied across a number of disciplines for decades (e.g., Gilbert and 

Troitzsch 2005, Gimblett 2002, Grimm and Railsback 2005, Robinson et al. 2007), its 

presence in retail research is almost nil. The exception being an ABM applied to understand 

the effects of pricing strategies in a competitive petrol-retail system (Heppenstall et al. 2005). 

We take a step toward filling the gap in retail science by presenting an agent-based 

model of retail competition, which explicitly represents store competition behaviour. The 

model exploits previous empirical research that quantified consumer expenditures at a high 

spatial resolution using census dissemination areas (populations of 400-700; Robinson and 

Balulescu 2018) and other spatial characteristics (e.g., service areas; Caradima 2015). The 

combination of empirical data and the presented ABM are used in a realistic setting to 
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simulate a local retail competition system and answer four questions: 1) What is the level of 

correspondence between market share and revenue acquisition for an agent-based approach 

compared to a traditional location-allocation-based approach? 2) To what degree can the 

observed store spatial pattern be reproduced by competition? 3) To what degree are their path 

dependent patterns of retail success? 4) What is the relationship between retail survival and 

the endogenous geographic characteristics of stores and consumer expenditures?  

 

2. Methods 

2.1 Study Area 

The Region of Waterloo (ROW) is a medium-sized (1384 km2) regional municipality located 

in Southern Ontario, Canada, which consists of 7 Census Subdivisions (CSDs) including 

three cities (Kitchener, Waterloo, and Cambridge), and four townships (Wellesley, Wilmot, 

Woolwich, and North Dumfries; Figure 1). Over the past 15 years, the population in the 

ROW has experienced a continuous increase with an average annual growth rate of 1.58% 

(Region of Waterloo n.d.a), resulting in a total population of 617,870 in 2019, which shared 

about 4.25% and 1.64% of the Ontario and Canada’s total population, respectively (Region of 

Waterloo 2020). As the 10th most populous Census Metropolitan Area (CMA) in Canada, it 

is projected to be one of the fastest-growing regions in Ontario (Region of Waterloo n.d.b). 

Among 7 CSDs, the tri-cities area is densely populated where over 88.53% of the regional 

population resides within 23.1% of the region’s areal coverage (Region of Waterloo 2020). 

Additionally, most of the regional population is classified as the population in regular 
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households (96.82%) versus those in temporary residences (3.18%), which includes but is not 

limited to student residences and group homes (Region of Waterloo 2020).  

 

Figure 1: The Region of Waterloo (lower left inset) within Southern Ontario, Canada, and the location of 4 relative Census 

Metropolitan Areas (CMAs), including Ottawa, Toronto, London, and Windsor. 

According to Statistics Canada (Table 36-10-0225-01), The home-improvement 

subsector is one of the most important retail trade subsectors which shared over 5% of the 

total annual consumer expenditures in Canada in recent decades. Since the 2008 economic 

depression, consumer expenditures on home-improvement products experienced flat growth 

(growth rate = 0.06%) but gradually recovered with an average annual growth rate of 4.1% 

since 2013. However, the home-improvement subsector is one of only two subsectors in 

which the number of stores quickly recovered from the depression within 4 years. Ontario 

owns the largest home-improvement retail market in Canada — over 38% of expenditures in 

home-improvement products are made by Ontarians. The strong continuous population 

growth in the Region of Waterloo raises the need to expand the local housing market thereby 

indicates a rising demand of home-improvement retail products as well (Caradima 2015). 
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Therefore, we choose the Region of Waterloo as a suitable study area to investigate the 

home-improvement retail competition system.  

 

2.2 The Model 

An agent-based model was created to simulate regional-scale retail market dynamics, with a 

focus on the role of local competition on store success and failure. In the retail competition 

agent-based model (RC-ABM), retail stores are represented as virtual retail store agents 

(RSAs) that interact with each other and their environment. The model environment, or the 

landscape with which RSAs interact, is represented as a spatially distributed population of 

consumers whose expenditures determine the success and failure of nearby stores.  

Inspired by ecological Niche theory (Vandermeer 1972), and the idea of Many-Model 

thinking (Page 2018), we analogize the RSAs as a species and consumer expenditures as 

environmental resources, whereby stores compete with each other for revenue derived from 

consumer expenditures. While a variety of ABM modelling packages are available for model 

creation (e.g., Railsback et al. 2006), RC-ABM was operationalized in NetLogo. NetLogo is 

a software platform designed for constructing agent-based models (Wilensky 1999) with an 

open access and active user-community. For example, the open access model library 

CoMSES contains 803 shared models of which 545 (67.9%) are programmed in NetLogo 

(CoMSES September 16, 2020). Furthermore, NetLogo incorporates native functions for 

working with spatial (e.g., shapefiles) and aspatial (e.g., csv and database connections; 

Gaudou et al. 2017) data as well as has been coupled with other scientific software and data 

analysis tools such as GIS (Walker and Johnson 2019), R (Thiele and Grimm 2010), and 

Python (Jaxa-Rozen and Kwakkel 2018) among others.   

 

2.2.1 The Consumer Expenditure Market 

The landscape of consumer expenditures of home-improvement products is generated 

from census data at the census dissemination area (CDA). Here we work with home-

improvement retail firms that predominantly reside within the North American Industry 

Classification System (NAICS) of 444, which defines retailers of “building material and 

garden equipment and supplies dealers” (Statistics Canada 2011). Twenty-three consumer’s 

home-improvement spending categories (Appendix 5, Table A5) were identified from the 
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National Household Survey and were aggregated and refined by household income for each 

of 755 CDAs in our study area (Robinson and Balulescu 2018). A CDA is the smallest 

geographic census unit, comprising a population of 400-700 individuals (Statistics Canada 

2018b) for which their estimated values of home improvement expenditures range from $0 to 

$5,611,832 (Figure 2).  

 

Figure 2: The map of the consumer expenditure value among 755 CDAs in the Region of Waterloo; the histogram in the 

bottom left corner shows the statistical distribution of the consumer expenditures; the table in the bottom right corner 

contains some basic statistics information of the consumer expenditures. 

The model’s landscape is composed of 70272 (288 × 244) square patches with a 

192m spatial resolution and a total of 37839 patches enclosed by the Region of Waterloo 

(ROW). A manual interpretation of residential Land Use (LU) by property parcel for the 
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ROW (Smith 2017; Sun and Robinson 2018) identified 137,283 residential LU parcels, 

whose centroids are used in the delineating consumer agent (CA) locations. Due to the 

mismatch between parcel sizes and patch resolution, only 7501 patches intersect parcel 

centroids (i.e., in many cases the area of the patch is greater than the area of a parcel). 

Therefore, the population of CA patches is 7501 and all other patches are null and void of 

expenditure or landscape information. Every CA possesses a number of home-improvement 

expenditures, determined by Equation (1): 

𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒!"($) =	
&'()*+$,-.)!"#(%&)

!/-*,!"#(%&)
              (1) 

where “𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒!"($)” is the total expenditures stored in CA(i), “𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒!0"(1$)” is 

the total amount of expenditures of CDA(j) which CA(i) belongs to, and “𝐶𝑜𝑢𝑛𝑡!0"(1$)” is the 

total number of CAs reside in CDA(j). Through Equation (1), the aggregated expenditures of 

the Region of Waterloo are distributed to individual CAs according to CAs’ locations and the 

region’s total expenditures’ realistic spatial distribution (Figure 3).  

 

Figure 3: The visualization of CAs in NetLogo; The study area is represented by patches with grey color, the CAs are 

patches with yellow color, and the white patches have Null data.  
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2.2.2 The Store Agent 

Each RSA has a location, a size (square feet), and a service area. Prior to 

commencement of a model run, each RSA is given a position (x- and y-coordinates and 

which CDA it resides within) and is assigned a fixed size. A service area (SA) is assigned 

based on the CDA centroid and was precalculated in ArcMap using the street network. 

The delineation of retail store service areas (SAs) remains an ongoing academic and 

industry challenge. While a variety of determinants and ranges can be found in retail 

literature (5 minutes to 19 minutes, Gordon and Richardson 1997; Önden et al. 2012; 

Caradima 2015), consumer sales data, acquired from a dominant home-improvement 

company, illustrated that consumers for stores in Ontario span both Canada and United 

States, including purchases from those living in Alaska. Despite these challenges a negative 

exponential distance decay function can be fit to consumer sales data showing a high degree 

of explanatory power. Using a large-sized SA (e.g., 19-minute drive time) and iteratively 

identifying services areas, their overlap, and the weighted distribution of expenditures by 

services area and store attractiveness for each of the 37,839 potential store locations exceeded 

the computational limits of NetLogo software used in this thesis. To reduce the computational 

load, and maintain performance and use of NetLogo, we instead used a 12-minute drive time 

SA and generated a service area for each of the 755 CDAs. Analysis of 23 home-

improvement stores annual customer sales data found that 69.6% of customers inside their 

corresponding Census Metropolitan Areas (CMAs) resided within a 12-minute SA.  

After initializing the location, size, and SA, an RSA receives expenditures revenue 

from CAs within its SA at each timestep of the model and remains or exits the landscape 

based on this revenue stream (see details in Section 2.2.4).  

 

2.2.3 Competition 

Retail store agents (RSAs) compete for revenue from consumer expenditures when a 

RSA’s service area (SA) overlaps with the SA of one or more other RSAs (Figure 4). When 

CA(i) resides within multiple SAs in a time step, it will firstly evaluate each store’s 

attractiveness based on the following utility function: 

𝑢$1 =	𝐷$123 × 𝐴1 															(2) 
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where 𝑢$1 is the expected utility that CA(i) will acquire from shopping at RSA(j), 𝐷$1 is the 

standardized distance between CA(i) to RSA(j), and 𝐴1 is the standardized size of RSA(j). 

Equation (2) is similar to the initial version of the Huff’s model (1962), which sets the 

exponent of 𝐷$1 to -2 and the exponent of 𝐴1 to +1 (Ghosh and MacLafferty 1987; Youn et al. 

2012). These settings define the importance of the distance between the customer and the 

store as twice that of the size of the store on a consumer’s evaluation of store attractiveness. 

We ensure this weighting by using a standardized distance and size that constrains the two 

variables range (0 to 1) using the following equations: 

𝐷$1 =	
(𝑑$1 + 	𝜀)

∑ (𝑑$1 + 	𝜀)4
156

															(3) 

𝐴1 =	
𝑎1

∑ 𝑎14
156

															(4) 

whereby assuming CA(i) is the target of total k stores, 𝑑$1 is the Euclidean distance between 

CA(i) and RSA(j), 𝜀 is a correction term to avoid having 0 in the denominator, and 𝑎1 is the 

actual size of RSA(j). In Equation (3) and Equation (4), we obtain the standardized distance 

and size by dividing a store’s actual distance to a CA and size by the sum of its competitors’ 

distances to the same CA and their sizes, respectively. 
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Figure 4: An example of competitors having the overlapping SAs 

With all utilities of potential destination stores generated, CA(i) will calculate the 

proportion of expenditures it will spend in each destination store using the following 

probabilistic function: 

𝑃$1 =	
𝑢$1

∑ 𝑢$14
156

															(5) 

where 𝑢$1 is the utility score of CA(i) to RSA(j), ∑ 𝑢$14
156  is the sum of utility scores of CA(i) 

to all destination stores, and 𝑃$1 is the probability of CA(i) to choose RSA(j). The probability 

value determines the number of expenditures that CA(i) sends to RSA(j) as follows: 

𝐸$1 = 𝑃$1 	× 𝐸$ 															(6) 

where 𝐸$1 is the money that CA(i) sends to RSA(j), and 𝐸$ is the total available expenditures 

of CA(i).  

Overall, the RSA’s pressure of competition is derived from its choice of location and 

size. An RSA’s location determines the number of its competitors and the maximum amount 
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of expenditure resources provided by consumers within its service area. In addition, a store’s 

size defines its maximum level of attraction in comparison with competitors. The combined 

effects of these two factors (location and size) generate a complex competition system where 

an unpredictable pattern of RSA’s success and failure emerge, e.g., a large store with 

relatively good location may fail whereas a small store in a consumer-deficiency has 

possibility to succeed. 

 

2.2.4 Retail Store Agent Exiting Rule 

The conditions of store closure or market exit are difficult to capture in the real-world. 

Low or unprofitable stores may remain open for a variety of strategic reasons that include 

being the first mover to an area and establishing brand presence (Patterson 1993), location 

with high visibility and marketing appeal (rule of thumb), avoidance of bad publicity, long-

term speculation, and for competitive purposes (Mayadunne et al. 2018) among other 

reasons. Furthermore, the lack of store operations costs data, due to the proprietary nature of 

business, also limits one’s ability to identify the conditions of closure.  

In the absence of store closure information, we used a simple heuristic rule to define 

store closure and market exit based on relative store performance. To evaluate store 

performance, we first calculate the revenue density (i.e., sales per square metre) for an RSA 

as follows: 

𝑅𝐷1 =	
𝐸1
𝑎1
															(7) 

where 𝐸1 is the gross revenue and 𝑎1 is the size of RSA(j). The revenue density offsets the 

larger gross revenues acquired by larger stores by the higher operational costs (e.g., labour, 

utilities, maintenance) by incurred larger stores. Hence, the revenue density requires larger 

stores to have higher gross revenues relative to smaller stores to cover their costs. 

Then, we use a probabilistic index, which we define as the exiting ratio, to determine 

a RSA’s probability of exiting the market: 

𝐸𝑅1 = @1 −	
𝑟1

𝑁78"9
−

𝑎1
∑𝑎1

D × 100															(8) 
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where 𝐸𝑅1 is the exiting ratio of RSA(j); 𝑟1 is rank of RSA(j)’s revenue density among all 

RSAs, following an incremental sequence; 𝑁78"9 is the total number of stores on the 

landscape; ∑𝑎1 is the sum of all store sizes. The exiting ratio is a percentage probability 

value, using this ratio, stores with lower revenue density have higher possibilities to exit the 

market. We added an error term “ :%
∑:%

” to adjust the ratio because larger stores typically are 

less likely than small stores to exit the market considering the huge investments and the 

company’s reputation (e.g., Lai et al. 2016). The 𝐸𝑅1 is only assigned to RSAs in a timestep 

if the RSA’s revenue density is among the lowest 10% of all RSA revenue densities.  

 

2.3 Validation 

Model validation is an important step in the accreditation of a model (Balci 1994). However, 

our lack of access to proprietary data (sales, costs, store closure) constrained our ability to 

conduct a standard comparison between model outputs and observational data (e.g., Bianchi 

et al. 2007). In lieu of these data, we validate the RC-ABM using a model-to-model 

comparison approach (Klügl 2008) with the widely used Location-Allocation Model (LAM), 

known as Huff’s Model, as implemented in ArcGIS v.12.4 (ArcMap n.d.a). 

The LAM is a spatial interaction model that simultaneously selects optimal locations 

for new stores or facilities while allocating demand for those facilities (Goodchild 1984). 

LAMs have been applied and validated across a variety of areas of interest, which include but 

are not limited to retail site selection (e.g., Goodchild 1984), public service facility planning 

(e.g., Rahman and Smith 2000), supply chain management (e.g., Rabbani et al. 2020), 

humanitarian logistics (e.g., Paul and Wang 2019). In a LAM, locations of the demand points, 

competitor points, and potential facility points are determined prior to the simulation.  

 A LAM requires a set of demand points to allocate demand (i.e., consumer 

expenditures) to stores. We initialize the LAM with the same CA locations as demand points 

weighted by their available expenditures on home improvement products. A second 

requirement of a LAM is a set of competitor points, which is given as the observed locations 

of home-improvement retailers in 2014 (Appendix 1, Figure A1). These same locations are 

also used for the RSAs in the RC-ABM for comparison. Finally, like the RC-ABM, the LAM 

is parameterized with the same 12-minute maximum drive-time and the same transportation 

network as the RC-ABM.  
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While we have tried to create similar parameters and initial conditions between the 

RC-ABM and the LAM, there is a clear structural difference in the allocation of consumer 

expenditures to retail stores. Although both models use the Huff model to determine the 

allocation of the amount of consumer expenditures to retail stores, the RC-ABM includes an 

additional parameter (𝜀 in Equation (3)) to ensure that the denominator is not equal to zero 

whereas the LAM function does not include this parameter (ArcMap n.d.b). To evaluate the 

effect of this functional change, we sweep five values (10, 1, 0.1, 0.01, 0.001) and assess the 

impact of those changes in our comparison with the LAM. 

To determine the level of correspondence between the RC-ABM and LAM we use the 

replication standard (Axtell et al. 1996). The replication standard defines the following three 

levels of increasing correspondence between two models: relational equivalence (RE), 

distributional equivalence (DE), and numerical identity (NI). RE indicates that two models 

produce the same relationship between a resultant variable and alternative internal variable, 

DE indicates that the distributions of results derived from two models are statistically 

identical, and NI indicates that the numeric results of both models are exactly the same 

(Axtell et al. 1996).  

To evaluate the level of replication between the RC-ABM and the LAM we first test 

for RE by fitting a linear regression between store revenues (model result) and store sizes 

(one model’s input variable) and if the coefficients in both regressions have the same sign 

(i.e., both positive or negative) then RE was achieved. To test for DE, we apply the 

Kolmogorov-Smirnov test (KS test), which is a statistical test to compare the similarity of 

two results based on their distributions (Lopes et al. 2007); if the distributions of store 

revenues calculated by two models are statistically the same then DE was achieved. Finally, 

if DE was achieved and two models’ results are numerically the same then NI was achieved.   

 

2.4 Computational Experiments 

We initialize the model with the observed distribution of consumer expenditure data (Section 

2.2.1) and randomly distribute retail store agents (RSAs) within the study area. In each 

timestep of a model run, the consumer agents (CAs) transfer their expenditures to target 

RSAs using a probabilistic utility function (Equation (6)). After all CAs have transferred their 

expenditures (i.e., made their retail purchases), each RSA evaluates whether to remain in the 
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market or exit. If an RSA decides to exit the market, a new RSA of the same size is generated 

(i.e., enters the market) and is randomly located within the study region. Using this approach, 

our computational experiments preserve the observed distribution of stores and store sizes.  

Each model run consists of 20 timesteps, representing a time span of 20 years. At the 

end of a model run, the pattern of store locations; the total market share captured by all stores 

of each timestep; the location (CDA id) of both dead stores and stores that survived for 15 

consecutive years; and duration, cumulative revenue, and average revenue of each store are 

recorded for analysis. Considering the model’s stochastic behavior, a Monte Carlo approach 

is used to generate a 1000 model runs and capture the variation in potential model outcomes 

for subsequent analysis. 

 

2.4.1 Replication of Observed Patterns 

Using the existing distribution of observed home-improvement stores to populate the 

RC-ABM, we first answer the question to what degree can competition reproduce the 

observed spatial pattern and revenue of home-improvement retail stores? To assess the 

similarity between the observed and modelled spatial patterns we use the Spatial Point 

Pattern test (SPPT) (Andresen and Malleson 2011), which compares the similarity of two 

spatial point patterns based on a geographic unit (e.g., CDA).  

The SPPT produces an S-index, which is a measurement of the similarity between two 

point patterns with a range of values from 0 (no similarity) to 1 (identical). Using an S-index 

threshold of >= 0.8 to indicate two patterns are similar (Boivin and de Melo 2019), we 

calculate the percentage of model runs that replicate the observed store spatial pattern. In 

addition to comparing the spatial pattern of RC-ABM generated store locations to the 

observed pattern, we also compare the amount of market share captured in each of our 1000 

model runs against an estimated observed market share. The results of this comparison enable 

us to evaluate how optimal the observed pattern is with respect to capturing market share and 

how many other configurations are capable of capturing more. Lastly, we compare the 

similarity in the distribution of RSA revenues using Kolmogorov-Smirnov and Spearman’s 

rank correlation coefficient tests. Again, we then determine the percentage of model runs that 

produce similar RSA revenues to the observed distribution. 
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2.4.2 Identifying Path Dependence 

The repeated random placement of stores and process of competition can be used to 

identify path dependencies associated with patterns of store success. Using the 1000 model 

runs we answer the question, what is the spatial distribution of areas that guarantee retail 

success and failure? To answer this question, we identify invariant and variant regions at the 

CDA level and then compute a number of simple landscape metrics (largest patch size, 

number of patches, and total area) to describe their spatial pattern.  

We identify a Successful Location in a single model run as a CDA that has a 

minimum of one store residing within it that persists for a minimum of 15 timesteps (>= 75% 

of the model run). We then identify locations as successfully invariant as those locations 

where the number of model runs for which there is a Successful Location occurs more than is 

expected by chance. The number of expected successes (48) is calculated as the probability of 

any one store (among n=48) locating in one of the 755 CDAs (0.0635%) times the number of 

model runs (1000), times a success threshold that we arbitrarily define as 75% to coincide 

with our 15 time-step threshold. Therefore, we expect any CDA to obtain an average of 48 

successful stores. Other CDAs that have no stores persist for 15 timesteps are considered 

Unsuccessful Locations and are unsuccessful invariant regions. All other areas are considered 

variant regions. 

 

2.4.3 Characteristics for Success 

Given the generation of a 1000 model runs and assessment of the distribution of 

revenue (Section 2.3), market share (Section 2.4.1), and invariant and variant regions (Section 

2.4.2), we evaluate what is the relative influence of store (size) and geographic characteristics 

(average nearest neighbour distance, and average number of competitor stores with 

overlapping service areas) as well as consumer expenditures (consumer expenditure density) 

on RSA survivability?   

Under the complex context of the competition system, a store’s revenue may not 

always have a monotonically positive correlation with its longevity, e.g., stores with lower 

revenues may exist longer. Hence, we define the RSA survivability in two dimensions, the 

duration of survival (DS) and the cumulative revenue (CR), and respectively analyze the 

influence of store, geographic and consumer characteristics on each dimension. Moreover, we 



   
 

 
 

26 

combine two dimensions into one using the store average revenue (AR), which is generated 

by dividing CR by DS.  

The DS, CR, and AR are calculated as follows: 

𝐷𝑆78"($) =	𝑇_𝐷𝑒𝑎𝑡ℎ78"($) −	𝑇&*,).78"($) + 1															(9) 

𝐶𝑅78"($) =	 L 𝑅$1

<_0):,>()#(&)

15<*+,-.()#(&)

															(10) 

𝐴𝑅78"($) =	
𝐶𝑅78"($)
𝐷𝑆78"($)

															(11) 

where 𝐷𝑆78"($) is the duration of survival of RSA(i), 𝑇_𝐷𝑒𝑎𝑡ℎ78"($) is the timestep when 

RSA(i) exits the market, and 𝑇&*,).78"($) is the timestep when RSA(i) enters the market; 

𝐶𝑅78"($) is the cumulative revenues of RSA(i) during its lifetime, 𝑅$1 is the revenue of RSA(i) 

at the timestep j; and 𝐴𝑅78"($) is the average revenue of RSA(i). 

An RSA(i)’s competitor is defined as other stores whose service areas are overlapping 

with the RSA(i)’s service area. The number of competitors (NC) of an RSA could be 

calculated and set to be an attribute of each RSA. 

The CDA’s consumer expenditure density (CED) is calculated using Equation (12): 

𝐶𝐸𝐷!0"($) =	
𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒!0"($)

𝑆!0"($)
															(12) 

where 𝐶𝐸𝐷!0"($) is the CED of CDA(i), 𝑆!0"($) is the size (square feet) of CDA(i). 𝐶𝐸𝐷!0"($) 

is a index by which the CDA’s consumer expenditure is normalized by the CDA size (in 

square feet).  

By setting the 𝐷𝑆78"($), 𝐶𝑅78"($), and 𝐴𝑅78"($) as dependent variables, we use the 

Ordinary Least Square (OLS) regressions to quantify the influence of store size, NC, and 

CED on the store survivability. Prior to the OLS regression analyses, we use the Min-Max 

normalization (Scikit-Learn n.d.) to rescale both dependent and independent variables from 0 

to 1, thereby ensuring the coefficient values can be constrained within a reasonable 

magnitude (from -1 to 1). 
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3. Results 

3.1 Validation 

We initiated the process of validation by evaluating if we could obtain Relational 

Equivalence (i.e., the same relationship) between inputs (store size) and outputs (store 

revenue) for the RC-ABM as acquired for the LAM. In our assessment of validation, we 

initialized both models with the same observed spatial pattern and distribution of store sizes 

as well as did not allow stores to exit and enter the market (Section 2.3). A linear regression 

was used to conduct this evaluation and determine if the correlation between store size and 

revenue was the same between the two models. Results showed a significant positive linear 

correlation between store size and revenue between the RC-ABM and LAM models (R2 > 

0.7, coefficient value > 0, p-value < 0.05; Table 1). Moreover, our sensitivity analysis of ε, 

which was included in the RC-ABM and does not exist within the LAM, showed only minor 

with ε < 1 – from 2.8% (when ε = 0.001) to 3.4% (when ε = 0.1). These results statistically 

demonstrate relational equivalence between the RC-ABM and LAM.  

Table 1: Coefficient values from linear regressions between store revenue (dependent variable) and store size (independent 

variable) generated by LAM and 5 RC-ABMs with different 𝜀 settings 

Model Name LAM 
RC-ABM 

𝜺 = 10 𝜺 = 1 𝜺 = 0.1 𝜺 = 0.01 𝜺 = 0.001 

coefficient  + 169.5 + 200.9 + 181.9 + 175.2 + 174.4 + 174.3 

p-value 2.963e-14 2.2e-16 1.083e-14 4.886e-14 5.832e-14 5.938e-14 

R2 0.71 0.79 0.72 0.71 0.70 0.70 

 

We extended our model-to-model comparison as part of our validation process by 

evaluating if the RC-ABM was able to achieve Distributional Equivalence with the LAM. 

This evaluation was conducted using a Kolmogorov-Smirnov (KS) test, which has a null 

hypothesis that the results of two models (in our case store revenues) have the same 

distribution of values. Using the LAM as the standard sample and the revenue generated by 

each of the 5 RC-ABMs as the replicated sample, we found no significant difference between 

the RC-ABM distributions and that produced by the LAM (Table 2). Results show that p-

values of 5 KS tests are all higher than 0.96, and as the ε value decreases to 1, the p-value 

increases to 0.997. Considering most alpha values used to reject the null hypothesis 

(significant differences) are 0.05 or less, we conclude that Distributional Equivalence was 

obtained between the revenues derived by the RC-ABM and the LAM.  
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With Distributional Equivalence achieved we looked to determine if Numerical 

Equivalence was possible. Detailed results of each store’s revenues by the LAM and the RC-

ABMs (Appendix 2) illustrates that Numerical Equivalence could not be achieved. Our 

inability to achieve Numerical Equivalence is not surprising given that hardware (Wilensky 

and Rand 2007), rounding (Polhill et al. 2005), and sequences of actions have also been 

shown to inhibit the ability to achieve Numerical Equivalence (Axtell et al. 1996). Despite 

our inability to obtain exact numerical equivalence, we demonstrated that alignment between 

the RC-ABMs and the location-allocation model (LAM) was achieved, which provides 

justification for the use of the RC-ABM for further scientific investigation. In addition, 

through our validation process we demonstrated that the RC-ABM results are not sensitive to 

ε as values spanning from 0.001 to 10 showed little-to-no difference in results and all ε 

achieved Distributional Equivalence. Nevertheless, since the fitness of linear regression by 

RC-ABM (R2 = 0.71) is the same as the value acquired for the LAM (R2 = 0.71) when ε is 

equal to 0.1, we use a value of ε = 0.1 for all subsequent computational experiments. 

Table 2: Results of Kolmogorov-Smirnov (KS) tests between store revenue predictions by the LAM and 5 RC-ABMs with 

different 𝜀 settings 

 LAM vs. RC-ABM by Store Revenues 

ABM 𝜺 value 𝜺 = 10 𝜺 = 1 𝜺 = 0.1 𝜺 = 0.01 𝜺 = 0.001 

KS-value 0.104 0.083 0.083 0.083 0.083 

p-value 0.960 0.997 0.997 0.997 0.997 

 

3.2 Replication of Observed Patterns 

The Spatial Point Pattern test (SPPT) was used to evaluate the degree of point pattern 

similarity between RC-ABM simulated patterns and observed patterns. The SPPT may be 

operationalized as either the standard or robust S-index. The standard S-index considers all 

areal units (e.g., CDA) regardless of whether stores reside within. In contrast, the robust S-

index only uses areal units that have at least one store within. Our Monte Carlo approach 

produced 1000 spatial patterns of store locations that were each compared to the observed 

pattern using both standard and robust S-indices. The standard S-index results showed 

reproduction of the observed pattern under the CDA-based context, whereby all 1000 

simulations (100%) yielded patterns with a standard S-index greater than 0.8, our similarity 

threshold value. Further strengthening these results, the variation of similarities remains at a 

very low level (mean = 0.95, S.D. = 0.00, maximum = 0.96, minimum = 0.95; Table 3).  
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In contrast, the robust S-index yielded no values greater than our similarity threshold 

value of 0.8.  The contradiction of results from the two indices suggest the differences may be 

due to an imbalance between the number of stores (48 stores) and number of areal units (755 

CDAs). In each spatial pattern, at least 94% (707 of 755) of CDAs have no stores. Hence, the 

similarity level is significantly improved by the inclusion of unoccupied CDAs, which 

resulted in a high standard S-index.  

Table 3: Mean, standard deviation (S.D.), maximum, and minimum of SPPT standard and robust S-index values between the 

observed spatial pattern and 1000 simulated patterns derived from the Monte Carlo experiment; And the percentage of 

patterns that have a S-index that is over 0.8. 

 Based on CDA Based on Hexagon 

 # of CDAs: 755 # of Hexagons: 50 

 Standard S-index Robust S-index Standard S-index Robust S-index 

Mean 0.95 0.57 0.74 0.30 

S.D. 0.002 0.021 0.033 0.096 

Maximum 0.96 0.63  0.82 0.57 

Minimum 0.95 0.50 0.66 0.06 

% over 0.8 100.00 0.00 8.60 0.00 

 

To further investigate the reproducibility of spatial store patterns, we uniformly 

tessellated the study area with 40 km2 hexagons (Figure 5) and conducted the same SPPT 

analysis using the hexagon boundaries. Results from this evaluation revealed that only 8.6% 

of the patterns generated by the RC-ABM had a degree of similarity with the observed 

pattern above our similarity threshold using the Standard S-index (Table 3). Nevertheless, 

results using the Robust S-index again produced no simulated patterns that corresponded to 

the observed patterns. Therefore, we conclude that competition alone does not capture a 

sufficient amount of variation in home improvement retail market to generate the observed 

spatial distribution of store locations. 
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Figure 5: Map of the artificially generated hexagons based on the Region of Waterloo boundary 

Despite the inability of the RC-ABM to replicate the observed retail location patterns, 

we sought to evaluate the degree to which the RC-ABM captured home-improvement market 

share relative to the observed pattern. However, since market share data are proprietary and 

unavailable, we generated market share capture (MSC) from the observed store locations 

using the LAM. Simulated MSC was calculated at the end of each of the 1000 runs by the 

RC-ABM (MSC1) as well as for each time step for each model run (MSC2, comprising 

20000 spatial patterns; Table 4; Appendix 3, Figure A3). The observed store pattern captured 

more of the market (MSC 99.92%) than the mean of both our simulated measurements of 

MSC1 97.52% and MSC2 97.81% (Table 4; Appendix 3, Figure A3). The standard 

deviations of MSC1 (1.49%) and MSC2 (1.43%) are small and the minimum values are over 

92% market capture. 

Given the similar market share capture of the simulated spatial patterns to the 

observed, we evaluated the ability of the RC-ABM to reproduce the distribution of store 

revenues. However, like the market share data, store revenue data are proprietary and 
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unavailable. In lieu of these data, store revenues assigned by the LAM were used. We 

compared the RC-ABM generated store revenue data to the LAM data using the Spearman 

Rank Correlation test and the Komogorov-Smirnov (KS) test. The hypothesis when using the 

Spearman’s Rank Correlation is that the simulated store’s revenue does not covary with the 

rank of observed revenues. Results of these tests show that all simulated patterns produce a 

similar distribution of store revenues with the observed pattern, e.g., 0% of Spearman’s p-

values and 100% of KS p-values are over 0.05 (Table 5). Although the RC-ABM was not 

able to reconstruct the spatial pattern of home-improvement stores within our study area, the 

RC-ABM was able to reproduce the observed distribution of store revenues. 

The combination of market share capture, as an aggregate measurement of retail store 

coverage, and rank order distribution of store revenues illustrates that regardless of simulated 

spatial patterns, the study area home-improvement market is likely saturated.  

Table 4: Mean, Standard Deviation (S.D.), maximum, and minimum of the total market share captured (MSC) at only the 

final timestep and the MSC of all appeared patterns; And the percentage of MSCs that is lower than the observed MSC 

(99.92%). 

 Total Market Share Captured (%) 

 MSC 1 (only final timestep) MSC 2 (all patterns appeared) 

Mean 97.52 97.81 

S.D. 1.49 1.43 

Maximum 99.96 99.98 

Minimum 92.92 92.76 

% lower than 99.92% 99.70 99.52 

 

Table 5: Mean and Standard Deviation (S.D.) of 1000 Spearman’s test’s rho and p-value, and KS test’s statistics and p-

value; And the percentage of results that have a p-value that is over 0.05.  

 Spearman's Test Kolmogorov-Smirnov (KS) Test 

 rho p-value statistics p-value 

Mean 0.83 2.1E-10 0.11 0.92 

S.D. 0.04 1.9E-09 0.02 0.10 

% over 0.05 N/A 0.00 N/A 100.00 

 

3.3 Identifying Path Dependence  

Our analysis of path dependence involved segmenting patterns of retail location into 

those that had a persistent store located for > 75% of a model run (i.e., 15 years; Successful 

Invariant), those that had no persistent stores (Unsuccessful Invariant), and those that had 
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variable store presence (Variant). Overlaying these areas generated from 1000 model runs 

illustrates that a small percentage of the CDAs are invariant (34.44%) relative to those that 

are Variant (65.56%). Breaking down the invariant CDAs into those that are successful and 

unsuccessful locations for store longevity, we found that 96.92% invariant CDAs were 

Successful Invariant and only 3.08% were Unsuccessful Invariant. These results suggest that 

all CDAs have the potential to house a successful home-improvement retail store. However, 

there are a limited number of CDAs that are more likely to guarantee longevity. 

An assessment of the areal representation of the CDAs further emphasizes the 

differentiation between Invariant and Variant regions. The proportion of the study area 

classified as invariant comprises on 9.01% compared to 90.99% classified as variant (Table 

6). The wider margin in areal coverage, compared to CDA counts, occurs because 251 of the 

252 Successful Invariant CDAs reside within the cities of Kitchener, Waterloo, and 

Cambridge (KWC). These CDAs are densely populated and therefore relatively small in area 

(Figure 6). In contrast, the less densely populated and larger CDAs around the periphery of 

these three connected cities are either Unsuccessful Invariant or Variant (Figure 6, Table 6). 

An evaluation of the Unsuccessful Invariant CDAs suggests that edge effects are likely 

playing a role since five of the eight unsuccessful CDAs are located along the border of the 

study area.  
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Figure 6: Census dissemination areas (CDAs) classified as Successful Invariant, Unsuccessful Invariant, and Variant within 

the Region of Waterloo, Ontario, Canada. The subregion of Kitchener, Waterloo, and Cambridge (KWC) represents an 

urban corridor within which 88.53% of the population of the Region of Waterloo. 

Looking beyond the composition of Successful Invariant, Unsuccessful Invariant, and 

variant regions, the configuration of these classes shows that, within the Region of Waterloo, 

the Unsuccessful Invariant region has a low level of fragmentation (i.e., few number of 

patches) with an intermediate mean patch size (Table 6). In contrast, the Successful Invariant 

class is the most fragmented of the three classes comprising 31 patches, the smallest average 

patch size, smallest largest patch, and covers the smallest area. Thirty of the 31 patches reside 

within the KWC area, leaving just 1 small successful patch (16.74 ha) in the peripheral 

regions (Figure 6, Table 6). In contrast, Variant patches are few, but have the largest mean 

patch size, largest patch, and occupy the largest area within both the region and KWC. The 

standard deviation in patch size for the Variant class is substantially larger than the 

Successful and Unsuccessful Invariant classes because it is composed almost solely by a 

single patch comprising 99.93% of the Variant area (Table 6, Figure 6). 
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Our invariant and variant mappings identify a clear path dependency in the KWC 

corridor, whereby it is highly likely that store located in the Invariant Successful patches have 

the opportunity for success and longevity. This outcome can be partly explained by the 

composition of the corridor which includes 88.53% of the Region’s population and 87.3% 

(119844 over 137283) of the Region’s residential land-use parcels despite covering only 

23.1% (31912.91ha over 138428.78 ha) of the Region’s area. The path dependency results 

utilize the same number and distribution of store sizes as were observed. Therefore, when 

combined with the previous finding that the region is saturated, it suggests that new entrants 

must find strategic locations within Successful Invariant regions along with other competitive 

strategies (e.g., pricing and service) to achieve success.  

Table 6: Summary of the composition and configuration of Unsuccessful Invariant, Successful Invariant, and Variant census 

dissemination areas (CDAs) in the Region of Waterloo (ROW), the subregion of Kitchener, Waterloo, and Cambridge 

(KWC), and the peripheral region.  

 

 

3.4 Characteristics for Success 

 We conducted three regression analyses to identify the relative influence of store size, 

number of competitors, nearest neighbour (competitor) distance, and consumer expenditure 

density (CED) on the duration of survival (DS), cumulative revenue (CR), and average 

revenue (AR) of a store. Our results found that the DS was negatively affected by increasing 

store size in the RC-ABM (coef.size = -0.73, Table 7). This result contrasts with what we 

expected and what others have shown, i.e., that big-box stores negatively impact smaller 

individual or chain stores (e.g., Haltiwanger et al. 2010). The negative impact of size could 

have been an artifact of our representation of revenue; however, store size has relatively no 

effect on CR and has a positive effect on AR. We then evaluated the existing rule (Section 

Region Area (ha)

Total CDA Numbers

Unsuccess Success Variant Unsuccess Success Variant Unsuccess Success Variant

Number of CDAs 8 252 495 3 251 401 5 1 94

Percent of CDAs (%) 1.06 33.38 65.56 0.46 38.32 61.22 5 1 94

Total Area (ha) 7552.96 4924.16 125951.66 1358.72 4907.42 25646.77 6194.24 16.74 100304.9

Percent Area 5.46 3.56 90.99 4.26 15.38 80.36 5.82 0.02 94.17

Largest Patch Size (ha) 5551.8 1382.94 125860.16 916.48 1382.94 25555.26 5551.8 16.74 100304.9

Mean Patch Size (ha) 1510.59 158.84 25190.33 452.91 163.58 5129.35 3097.12 16.74 100304.9

S.D. Patch Size (ha) 2041.06 284.81 50334.91 359.81 288.32 10212.96 2454.68 0 0

Number of Patches 5 31 5 3 30 5 2 1 1

n = 755 n = 655 n = 100

Region of Waterloo KWC Peripheral Region

Area = 138428.78 Area = 31912.91 Area = 106515.87
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2.2.4) and quantified the frequency of large versus small stores existing the market. Using a 

threshold of 60,000 square feet, whereby the 12 stores larger than the threshold are 

considered large stores and the 36 stores less than the threshold are considered small stores, 

we identified that large stores more frequently exit the market relative to small stores.  

 While store size had the largest effect on DS, our regression analysis also found that 

the number of competitors significantly influenced the DS of a store. While a higher number 

of competitors increases the DS of a store (coef.NOC = 0.43), it has little effect on the 

cumulative and average store revenue. However, DS of a store decreases as competitor 

distance increases (coef.NND = -0.07), which corroborates similar findings in the literature 

that retail stores benefit by locating nearer to competitors (e.g., Schmidt and Lee 1979, cited 

in Karande and Lombard 2005). Correspondingly, the NND also has a negative impact on the 

cumulative and average revenues of a store (Table 7).  

Among our four independent variables, CED held the strongest positive influence on 

duration of survival and the cumulative revenue of a store. This outcome also corroborates 

literature that suggests that the most important factor driving retail success is high consumer 

purchasing power. 

Table 7: The R2, coefficient value and p-value of the intercept and 4 independent variables (store size, Nearest Neighbour 

Distance (NND), Number of Competitors (NOC), and Consumer Expenditure Density (CED)) derived from 3 OLS 

regressions between 3 dependent variables (Duration of Survival (DS), Cumulative Revenue (CR), and Average Revenue 

(AR)) and 4 independent variables. 

 

 Collectively the four independent variables were significant for all three independent 

variables. The goodness of fit, as represented by R2, was highest for explaining the variance 

in the average revenue of stores (R2 = 0.75) followed by the cumulative revenue of stores (R2 

= 0.46). The linear regression had the least (and low) explanatory power for cumulative 

revenue (R2 = 0.04). In contemplation as to why this was the case, we realized that the 

Dependent Variable R2 
Intercept 

Independent Variables 

Size NOC NND CED 

coef. p-value coef. p-value coef. p-value coef. p-value coef. p-value 

Duration of Survival (DS) 0.46 0.27 0.00 -0.73 0.00 0.43 0.00 -0.07 0.00 0.52 0.00 

Cumulative Revenue (CR) 0.04 0.02 0.00 -0.01 0.00 0.07 0.00 -0.02 0.00 0.18 0.00 

Average Revenue (AR) 0.75 0.04 0.00 0.36 0.00 0.02 0.00 -0.20 0.00 0.15 0.00 
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inclusion of all stores regardless of their DS likely obfuscated the relationship between 

cumulative revenue and our independent variables.  

We subsequently conducted an iterative regression analysis starting with all stores 

from all 1000 model runs (Table 8). Then we systematically removed stores based on their 

DS to evaluate changes in model fit and the influence of the independent variables on 

cumulative revenue. A total of 17 regressions were conducted, with model fit (i.e., R2) 

increasing from R2 = 0.04, when all stores with all DS are included, to R2 = 0.93 when only 

stores that survived for 17 timesteps are analysed. Hence, it can be inferred that the OLS 

model has a better performance in investigating the relationship between CR and independent 

variables of stores with a longer lifespan.  

Based on Table 8, we find that when the instant-exit stores (duration = 1) are 

considered, store size has little influence on cumulative revenues (coef.Size = -0.01). After 

eliminating the instant-exit stores, a positive impact of store size exists and continuously 

becomes stronger, i.e., the coef.Size increases from 0.09 to 0.78, and the store duration 

increases (Table 8). A similar situation is present with our NND variable, whereby exclusion 

of the instant-exit stores changes the NND to positively affect cumulative revenues. In 

contrast, the positive effect of NOC is reduced as we eliminate stores that have a short time in 

the market and becomes negative when a store’s duration is greater than 5 years in the 

market. Ultimately, we can see that stores lasting over 5 timesteps can have a higher 

cumulative revenue by keeping away from their competitors (coef.NOC < 0 and coef.NND > 

0, Table 8). While obtaining a foothold in a dense and high-expenditure area is always a 

better choice for stores seeking to accumulate more revenue, stores which persist for a longer 

term are less dependent on such type of advantages, i.e., coef.CED decreases from 0.18 to 

0.04 as duration increases (Table 8). 
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Table 8: The R2, coefficient value and p-value of the intercept and 4 independent variables (store size, Nearest Neighbour 

Distance (NND), Number of Competitors (NOC), and Consumer Expenditure Density (CED)) derived from OLS regressions 

between Cumulative Revenue (CR) as the dependent variable and 4 independent variables under different requirement of 

store durations. 

 

Without considering other factors like the management strategy and store expenses, 

we can simply evaluate the store’s average gravitational pull and attraction of consumer 

expenditures reflected by the AR. According to Table 7, a larger store locating in a densely-

expenditure (higher CED) area has a higher potential to absorb more money. Moreover, store 

size is the most important factor and its influence on AR is over twice of alternative three 

factors (coefficient value, Table 7). Similar to results of the DS, the retail clustering effect 

(closer to competitors) can be an accelerating factor for stores to earn more average revenues 

(negative coef.NND and positive coef.NOC, Table 7). 

 

4. Discussion 

4.1 Modelling the Retail Competition System 

In recent decades, the demand to investigate wicked problems (Game et al. 2014) and 

understand the interactions and behaviours driving complex systems (Miller and Page 2009) 

has fostered a growing use of agent-based modelling (ABM) applications to advance science 

(An et al. unpublished). However, due in part to the difficulty of acquiring and collecting 

proprietary retail data (Sturley et al. 2018), there remains a gap in our understanding of retail 

coef. p-value coef. p-value coef. p-value coef. p-value coef. p-value

All results 131258 0.04 0.01 0 -0.01 0 0.07 0 -0.02 0 0.18 0

Duration > 1 89360 0.09 0.01 0.01 0.09 0 0.06 0 0.09 0 0.16 0

Duration > 2 75455 0.2 0.02 0 0.16 0 0.04 0 0.17 0 0.13 0

Duration > 3 66886 0.31 0.04 0 0.22 0 0.02 0 0.17 0 0.12 0

Duration > 4 60401 0.41 0.05 0 0.27 0 0 0.24 0.17 0 0.1 0

Duration > 5 55250 0.5 0.06 0 0.32 0 -0.01 0.04 0.17 0 0.09 0

Duration > 6 50882 0.59 0.07 0 0.37 0 -0.02 0 0.18 0 0.08 0

Duration > 7 47235 0.65 0.08 0 0.41 0 -0.03 0 0.18 0 0.07 0

Duration > 8 43917 0.71 0.09 0 0.46 0 -0.05 0 0.19 0 0.07 0

Duration > 9 41085 0.76 0.09 0 0.5 0 -0.05 0 0.19 0 0.07 0

Duration > 10 38507 0.8 0.09 0 0.54 0 -0.06 0 0.19 0 0.06 0

Duration > 11 36174 0.84 0.1 0 0.58 0 -0.06 0 0.2 0 0.06 0

Duration > 12 34026 0.86 0.1 0 0.62 0 -0.07 0 0.2 0 0.05 0

Duration > 13 32074 0.89 0.1 0 0.66 0 -0.07 0 0.21 0 0.05 0

Duration > 14 30332 0.9 0.1 0 0.69 0 -0.08 0 0.21 0 0.04 0

Duration > 15 28654 0.91 0.1 0 0.72 0 -0.08 0 0.22 0 0.04 0

Duration > 16 27043 0.92 0.1 0 0.75 0 -0.08 0 0.22 0 0.04 0

Duration > 17 25455 0.93 0.1 0 0.78 0 -0.09 0 0.23 0 0.04 0

O LS Version # of data R2
Intercept

Independent Variables

Size NOC NND CED
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site selection and subsequently behaviour models of retail location. Our retail competition 

agent-based model (RC-ABM) provides an initial foundation for the exploration of retail 

competition through a variety of perspectives that is not possible using equation-based 

models and traditional spatial interaction models. 

 A model-to-model validation approach was used in the absence of empirical data 

(Klügl 2008) and demonstrated relational equivalence between the RC-ABM and a widely 

used location-allocation model (LAM). By demonstrating a high level of correspondence 

between the two models, we accredit the fundamental behaviour of the RC-ABM to that 

literature and to the best of the authors knowledge provide the first comparison of an ABM 

approach to a GIS model.  

 While the formation of the observed spatial store pattern is a long-term accumulation 

of complicated and continuous agent interactions in the retail system, we randomly 

distributed stores and enabled their spatial pattern and revenue acquisition to dynamically 

evolve solely based on spatial competition. Using a Monte Carlo approach, we simulated 

retail competition over twenty time-steps and compared the final generated pattern over 1000 

model runs and found that competition alone was insufficient to replicate the observed spatial 

pattern of store locations. Despite this finding, we did not interrogate the RC-ABM at all 

timesteps (i.e., 19000 additional spatial patterns) due to the temporal requirements of 

exporting spatial patterns from NetLogo. Therefore, it is possible that the observed patterns 

were achieved but did not remain stable until the end of the model run. Further investigation 

among intermediate timesteps of the RC-ABM as well as the duration of longevity of the 

observed pattern, which was taken for a single year (2014), would provide additional 

evidence to support or refute the ability for competition alone to generate the observed spatial 

patterns. 

Despite differences in modelled versus observed spatial patterns of store locations, the 

RC-ABM demonstrated that the model produced similar levels of market capture and 

distributional equivalent levels of store revenues. The level of market capture achieved 

suggests that the region’s home-improvement market is likely saturated, and the level of 

market capture should be noted by local economic development initiatives and potential 

market entrants. However, the entry of a single big-box chain can significantly change the 

context of competition (Gonzalez-Benito 2005), thereby reshaping the patterns of home-

improvement retail. 
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In our evaluation of store success, we explored the concept of path dependence as 

represented by invariant and variant regions similar to Brown et al. (2005). Aside from 

literature focusing on a firm’s strategic management behaviors (e.g., Lamberg and Tikkanen 

2006), to the best of the author’s knowledge, the relationship between path dependence and 

retail behaviour is void from the literature. As a step to filling this gap, we identified regions 

that were Successful Invariant (as those comprising one or more stores that survived for 15 or 

more years) and Unsuccessful Invariant (as those areas with no stores surviving 15 or more 

years) across all 1000 model runs. Variant regions comprised locations that had some stores 

last 15 years but not in all 1000 model runs.  

Our results showed that approximately one-third (34.44%) of the CDAs in the study 

area are path-independent within the retail competition landscape. The location of path 

independency almost exclusively resides within the Kitchener-Waterloo-Cambridge cities 

corridor and the Successful Invariant CDAs are configured as multiple small clusters. New 

entrants or policies to encourage new entrants would have increased success despite higher 

levels of competition by locating in these areas. Furthermore, our analysis of drivers of 

duration of survival and cumulative and average store revenues showed that locating closer to 

a competitor and having more competitors in proximity increased the duration of survival and 

cumulative and average store revenues.  

An artifact of restraining our analysis to the Region of Waterloo is demonstrated by 

the presence of Unsuccessful Invariant regions primarily along the regional boundary. Edge 

effects typically occur when arbitrary finite boundaries are used (Griffith 1983), but they can 

also occur due to geographic boundaries (e.g., coastal boundaries, Chen 2017). To coincide 

with our data and software limitations we did not add a guard zone (e.g., Chen 2017) or 

complicate the model with some type of spatial weighting (Kenter and Elhorst 2012).  

 

4.2 GIS and ABM Integration 

 The presented research validated the behaviour of an agent-based model (ABM) 

against a location-allocation model (LAM) that is widely used within the GIScience 

community (e.g., Mestre et al. 2015). The RC-ABM also utilized geospatial data (the 

residential land use parcel data) to more accurately position consumer agents, similar to 

dasymetric modelling approaches (e.g., Briggs et al. 2007). While it has been argued that the 
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generative (i.e., bottom-up) approach of ABMs (Gilbert and Troitzsh 2005) align more 

closely to real-world systems relative to statistical and system dynamics approaches 

(Wilensky and Rand 2015), the integration of GIS data and spatial behaviors (e.g., searching, 

topology, distance weighted interactions) are typically required to move from an existence 

proof (Waldrop 1993) to high-fidelity models (e.g., Gehlot et al. 2019). Movement along this 

spectrum toward higher fidelity data informed ABMs may also enable ABMs to overcome 

their historical challenges associated with calibration and validation (e.g., Ligtenberg et al. 

2010). 

The integration of agent-based modelling and Geographic Information System (GIS) 

commenced decades ago with GRASS GIS (Westervelt 1999) and has continued to rise as an 

integrated approach for scientific inquiry (Sengupta and Sieber 2007) with contributions from 

Gimblett (2002), Brown et al. (2005), and Robinson and Brown (2009) among others. While 

the integration of GIS and ABM has not achieved ubiquitous support and use, the integration 

is imperative to extend the static data management, analysis, and visualization capabilities of 

GISystems to incorporate time and process, which have historically been difficult to represent 

in GISystems (Andris et al. 2018). Furthermore, the anthropocentrism of ABM also 

emphasizes the role of humans in shaping and responding to natural processes and their 

configurations in the landscapes within which humans interact and are supported.   

With the increase in spatial functions and methods of analysis in R (e.g., spatstat, 

Baddeley and Turner 2013), python (e.g., PySAL, Rey and Anselin 2010), and C++ (e.g., 

GDAL, Warmerdam 2008), as well as the availability to work with open source GISystems 

(e.g., QGIS, Graser 2016), GIS and ABM integration will comprise an assemblage of 

libraries rather than interacting platforms (e.g., Agent Analyst; Choi and Lee 2009). This 

movement is required since the most widely used ABM development platforms (e.g., 

NetLogo, Wilensky 1999; Repast, Collier 2003) have support for GIS data (Liebert et al. 

2008), but lack the fluidity of working with spatial data in R or Python and are restricted in 

the size of data with which their models can operate (e.g., Sturley et al. 2018). Contemporary 

tools like PyNetLogo (Jaxa-Rozen 2018) and RNetLogo (Thiele 2014) provide wrapper 

functions to facilitate a more flexible integration between spatial data and processes with 

ABMs, the workflow and knowledge requirements remain inhibiting to novice modellers and 

coders.  
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In addition to the benefits of integration of GIS and ABM for scientific applications, 

are insights into data collection and representation. While the former is relatively 

straightforward, whereby the incorporation of process and behaviour identifies a gap in our 

empirical data and collection approaches, the latter may contribute to theory and how data is 

represented in the future. For example, a historical challenge among users of spatial data 

resides in the selection of how to conceptualize spatial data model (e.g., field- and object-

based, Bian 2000; relative and absolute space, Couclelis 1997). However, there are unknown 

representations of data, yet to be discovered, that may fuse these models with process 

representations to generate a data model that is more continuous, fluid, and overcomes the 

spatio-temporal limitations of current GISystems. 

Lastly, it is also worth noting that ABMs not only offer a descriptive modelling 

approach but have also been used as a solution modelling approach known as software agents 

(e.g., Sengupta and Sieber 2007). In this case, there are a variety of standard spatial data 

functions derived from equation-based approaches that could be compared to agent-based 

solutions and with observations similar to algorithmic comparisons (e.g., slope, Jones 1998).  

 

4.3 Representing Commercial Land-use Behaviours in Land Use Models 

Land use change (LUC) modelling is widely used across a variety of disciplines to 

understand human-environment interactions (e.g., da Silva et al. 2016), evaluate the 

influences of land transitions on local ecological function (e.g., carbon storage, Robinson 

2009) and Earth system processes (e.g., climate change) (Dale 1997), inform policy makers 

and increase their capacity for decision making (e.g., Zellner 2007), and plays a critical role 

among a variety of other social, economic, and environmental scientific investigations. While 

statistical models of land-use change have been the historical approach of choice (e.g., 

Arowolo and Deng 2018), contemporary LUC models have used cellular automata (CA, 

Stevens and Dragićević 2007) and agent-based modelling (ABM, Rounsevell et al. 2012a) 

approaches to advance the science of LUC modelling.  

Despite the role of commercial land development as a driver of employment (Fragkias 

and Geoghegan 2010), economic development (e.g., Sun et al. 2016), and residential land 

development (e.g., Jjumba and Dragićević 2012). Commercial land development is one of the 

most important LUCs in the past decades (Verburg 2004a); however, few models have been 
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built to explicitly simulate actor behaviours within the commercial system, which is a clear 

gap within the land use modelling community. A large proportion of existing LUC studies, 

which take commercial land or development into consideration, quantify the impacts of 

driving factors from socio-economic, demographic, or geographic disciplines on the 

possibility of commercial land development using statistical models (e.g., multinomial logit, 

Fragkias and Geoghegan 2010; logistic regression, Braimoh and Onishi 2007). However, 

these approaches lack the behavioural representation required to evaluate different 

perturbations to the system such as thresholds induced by policy (e.g., Gollnow and Lakes 

2014), non-linear feedbacks induced by changing development densities (e.g., Marshall et al. 

2016), or changing societal preferences due to social norms and learning (e.g., Xu et al. 

2020). 

To overcome the limitations of statistical approaches CA and ABM-based LUC 

models have been created, some of which consider commercial land use agents, to answer 

questions such as the influence of different planning policies on LUC patterns (Jjumba and 

Dragićević 2012), neighbourhood interactions or characteristics of LUC (Verburg et al. 

2004b), and measurements of urban sprawl (Sun et al. 2007) and urban renewal (Zheng et al. 

2015). Many of these models are spatial explicit and have included the interactions between 

commercial and alternative land use classes, however, the internal competition between 

commercial agents has rarely been accounted (e.g., Bone et al. 2011). 

The RC-ABM, as a spatially explicit model focused on evaluating retail competition 

within a realistic landscape has the capacity to be expanded to address a host of new types of 

questions. For example, the timing of one or more store entries into the market, how format 

(small versus big box) enables success and changes with market maturation, and how land 

use change affects store revenue acquisition over time have little-to-know presence in the 

literature. Furthermore, characteristics on both the consumer and retail actors can be 

deepened by representing social norms, preferences, and loyalty on the consumer side as well 

as dynamic service areas, pricing strategies, and market segmentation or micromarketing on 

the retail store side. Lastly, while the presented research was operationalized at the census 

metropolitan level, frameworks for generating large scale behavioural models that act out 

across large spatial extents (e.g., provincial and national) are currently under development 

(e.g., Murray-Rust et al. 2014) and can facilitate regional assessments of retail competition 

and success. 
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5. Conclusion 

The RC-ABM was operationalized for the Region of Waterloo using local and 

observed consumer expenditures and store location information. Our results could provide 

utility to existing home-improvement stores, alternative retail companies aiming to enter the 

market, and local-economic development teams. For example, our invariant-variant maps 

(Section 3.3) and quantification of drivers of success (Section 3.4) could be used as a tool for 

existing home-improvement stores to qualitatively evaluate the relative impact of their 

location against their merchandise assortment, advertising, and store atmosphere (Ghosh and 

MacLafferty 1987). New market entrants may use those same outputs to identify market 

saturation and that entry will require highly competitive pricing, sales, and marketing to out-

compete established stores. Finally, local-economic development teams, may use the 

aforementioned outputs to identify complementary firms and economic opportunities rather 

than put effort into a saturated home-improvement market.  

The bottom-up individual-based structure of the RC-ABM has the capacity to 

dynamically monitor changes in market share, revenue acquisition, competitive stress, and 

store entry and exit in every timestep, which cannot be done using equation-based modelling 

(Parunak et al. 1998). Therefore, the RC-ABM is capable of generating a large volume of 

data that can be analyzed to better understand the drivers of retail success and the impacts of 

location based and other retail strategy decisions of a host store as well as of its competitors. 

An interesting output of the approach is the endogenous generation of retail clustering, which 

has both theoretical (e.g., Hotelling 1929) and empirical support (e.g., Sevtsuk 2014). In 

development of this simple model, we balanced parsimony and realism (Manson 2007). 

However, a multitude of extensions are possible, such as dynamic generation of consumer 

expenditures. To facilitate these extensions the RC-ABM has been made available on 

COMSES.net (Zhang and Robinson 2021) for others to further advance the science 

associated with land use change and retail location
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Chapter 3 Future Directions 

1. Integrated Urban System Modelling 

The urban system can be conceptualized as a complex system (Barros and Sobreira 2002) 

comprising a variety of land uses and complicated human activities. The interactions among 

different land users (due in part to their different land-use types) and the unpredictability of 

human behaviours create a system of actors and interactions that is challenging to accurately 

represent in a computational model (Carley 2009) and very difficult to validate against 

observational data (Shelton et al. 2018). Since the 1970s, researchers have developed 

different modelling techniques to gain insight about urban systems and through this process 

increase decision making capacity associated with policy generation and master planning 

(e.g., Long et al. 2009). While Chapter 2 presented a retail competition agent-based model 

(RC-ABM) and highlighted the extensions of an ABM approach over a traditional spatial 

interaction model, the focus was situated strictly on competitive site selection behaviour. As 

previously noted, behavioural models of retail and commercial actors are not typically 

represented in ABMs. However, the RC-ABM may be integrated into other land-use change 

models or other modelling frameworks focused on the urban system (e.g., ILUTE, Miller et 

al. 2004; MATSim, Horni et al. 2012).  

An integrated modelling framework, utilizing an agent-based approach empirically 

informed with substantial data, is the Integrated Land Use, Transportation, Environment 

(ILUTE) model, which is a microsimulation modelling framework developed by a research 

team at the University of Toronto (Perveen et al. 2017). According to Miller et al. (2004) and 

Salvini and Miller (2005), in the ILUTE model, interactions between residential and 

commercial housing agents are emphasized. These agents are represented abstractedly, 

whereby, a residential agent could represent a household or an individual and the commercial 

agent could be a firm. Agent behaviours and decision-makings are represented by 

encapsulating other modelling methods (e.g., random utility choice models) and statistically 

analyzing the empirical data. Moreover, agent interactions are established by incorporating 

realistic spatial transportation data (i.e., road networks, public transit lines, and commuting 

data), which increases the fidelity of the ILUTE model and enables its use for real-world 

applications. 

The ILUTE model has been used to simulate urban commercial real estate market 

dynamics and validated against empirical data (Rosenfield et al. 2013). However, given that 
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the home-improvement retail market serves a variety of residential activities including home 

renovation, decoration, and construction which are correlated with the housing market (e.g., 

Balulescu 2015) and the current version of the ILUTE model does not consider the home-

improvement commercial land use, the incorporation of the RC-ABM into the ILUTE could 

increase the breadth of applications and the types of research questions the framework can 

answer. For example, in the ILUTE model, if the residential agents determine to enter the 

housing market, they will have a chance to successfully purchase a new house and relocate. 

The RC-ABM can be utilized as a sub-model. The commercial retailers (home-improvement 

retailers) could interact with the residential agents, and the geographical characteristics 

(location, size) of the retailer agents should be represented on the model’s virtual landscape. 

Inclusion of retail behaviour would endogenize a critical driver of home selection and market 

valuation related to shopping amenities as well as enable the ILUTE to represent many of the 

concepts formalized in planning literature such as leap frogging (Andris et al. 2018).  

While inclusion of the RC-ABM within can be mostly preserved in the ILUTE 

framework, consideration of integration suggests several improvements that would enable 

new investigations into how retail affects and is affected by land use change and 

transportation. For example, the housing market offers the potential to generate a typology of 

home-improvement retail agents associated with those making recent purchases versus those 

remaining at their home. In this example, the new home purchases in older neighbourhoods 

could have increased allocation of their income to home improvement purchases relative to 

those acquiring new-build homes. Moreover, as the residential agents in the ILUTE model 

also are heterogenous in vehicle ownerships, which means their tolerance of the distance to 

stores might be constrained by their mobilities (Ghosh and MacLafferty 1987). Therefore, 

residential agents could have different ranges of maximal acceptable commuting distance, 

e.g., a longer distance for consumers with vehicle and a shorter distance for those without 

vehicle (Ghosh and MacLafferty 1987), to better address the consumer’s behaviors in 

estimating the potential stores’ attractiveness.  

 Overall, we believe that the ILUTE model’s structure and its advanced design in 

integrating urban land use with transportation networks offers an opportunity to better 

understand the effects of large-scale retail competition on transportation and land use change 

as well as how these processes affect retail success.  
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2. RC-ABM – Model Design 

There are two major components of the RC-ABM, the store and consumer agents. To 

advance the model towards a more wholistic representation of commercial land use change 

and activities would not only fill a gap in large-scale land use change modelling, but it would 

also enable new scientific contributions to business and retail sciences. In the remainder of 

this section, I note areas that could move the RC-ABM to a more wholistic representation of 

a commercial or retail agent and in doing so touch on some of the shortcomings of the initial 

version of the model presented in Chapter 2. 

Retail store agents. The store agent, as the driving force of the competition process, 

can be regarded as the most important part in the RC-ABM. In Chapter 2, the store agent 

comprises only two characteristics: store size and geographic location. A more sophisticated 

representation of store characteristics may expand the opportunity for model use. For 

example, store format has been realized as an important factor that affects consumer 

behaviours. Many studies evaluate the effect of asymmetric inter- and intra-store format 

competition (e.g., Gonzalez-Benito et al. 2005, Cleeren et al. 2010). Classification of store 

format is not a difficult task as store size is commonly used to classify store formats as big-

box stores or small-format stores (e.g., Balulescu 2015). After grouping store agents by 

formats, more complicated behavioral rules can be applied to describe a more realistic 

relationships between consumer and store agents. For example, consumer agents have 

heterogeneous price expectations to different formats (e.g., size) of stores (Koschmann and 

Isaac 2018). 

Another potential area for improvement of store agent behaviour is associated with 

comes from its financial and operation strategy. In Chapter 2, retail store agents receive 

money from consumer agents and stay or exit the market based on a probabilistic function 

(Equation 8) of revenue density rank and store size. In the real-world, the store’s exiting 

decision is a composition of complex considerations and is not determined by only the 

financial incompetence that extend beyond financial performance and include strategic 

decisions, qualitative reasoning, and for retail chains regional representation and success. 

Therefore, retail companies may not close a store even it has experienced revenue losses in 

successive years due to other executive considerations such as first to market, generating 

customer loyalty, avoiding bad publicity, anticipated future revenues, and among other 

reasons, for marketing purposes associated with visibility. Therefore, it is possible to 
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represent a more accurate and nuanced decision-making strategy associated with a store’s 

market exist decision.  

The first solution is to improve upon the representation of the market existing rule 

deployed by retail store agents. The financial well-being of a store could be better represented 

by including net revenue (gross revenue - expense) as the determinant factor of store failure 

because it captures store profits and losses than the revenue density. We opted not to take this 

approach in Chapter 2 because store expense data like labor and utility costs are difficult to 

acquire because they are highly confidential and there is poor availability and lack of archival 

data (e.g., Thomas et al. 1998). In the absence of these data, alternative solutions may be 

possible with the creation of spatio-temporal data about store closures, openings, and other 

site and situation characteristics. With these data it may be possible to thresholds for 

competition and expenditure that when crossed lead to store closure similar to how Robinson 

et al. (2012) estimated the number of households associated with low-, medium-, and high-

density residential land uses. With these spatio-temporal data, the relationship between a 

store’s closure and its site and situation characteristics could be analyzed using advanced 

statistical methods (e.g., machine learning) to develop an existing rule that accounts for more 

drivers of closure than was incorporated in the RC-ABM.  

 Consumer agents. The consumer agent is where the store revenue comes from, 

therefore the allocation of consumer agents and their expenditures are critical to the 

performance of RC-ABM. The current version of RC-ABM distributes consumer 

expenditure, estimated at the CDA level, evenly to all residential land use (LU) parcels that 

reside within it. This simplification could be ameliorated by at least two methods. Firstly, the 

residential LU parcel data could be further classified as low-, medium-, and high-density 

residential parcels based on the residential building type and parcel size (Sun and Robinson 

2018), which means the number of expenditures of each consumer agent could also be 

apportioned by sub-residential land-use type. Specifically, the high-density residential parcels 

typically have much more consumers to live within than the medium- and low-density 

parcels. Therefore, consumer agents in different types of residential parcels could have 

diverse weights of the expenditure allocation. Through this approach, the heterogeneity of 

consumer agents can be better represented, and the entire consumer market landscape might 

be re-established. 
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 In addition to reclassifying consumer agents using the LU parcels, the high-precision 

residential land cover (LC) data could be helpful for a more accurate spatial distribution of 

consumer expenditures. Unlike the residential LU parcel data which contains not only 

residential buildings but other LCs like greenspace (Sun and Robinson 2018), the LC data 

can exclusively tell us where and what type the residential building is, which may lead to a 

higher accuracy of consumer expenditure allocations. However, this approach is 

recommended for studies with relatively small spatial scales because accurately extracting 

residential LC data from aerial images is a labor-intense and time-consuming task, which 

might be significantly challenging for large-scale land use modelling. 

 If the RC-ABM is further developed to include not only the home-improvement but 

other types of retailers like grocery stores, the original locations of consumers might include 

both residential and workplaces (Sturley et al. 2018). Redistributing a portion of consumer 

expenditures from residential locations to workplace zones (e.g., Heppenstall et al. 2013) 

could represent trip chaining (e.g., Brooks et al. 2008) and other related concepts that could 

better reflect the potential impact of store location choice on revenue generation.  

 Agent interactions. Compared to traditional modelling approaches, one of the major 

advantages of agent-based modelling is its ability to represent interactions among agents. 

There exist three types of agent interactions in the RC-ABM, including the consumer-store, 

consumer-consumer, and store-store interactions, that might be developed in the subsequent 

models. 

 The consumer agents interact with store agents by evaluating each store’s 

attractiveness and proportionally spending money at different stores as a function of their 

distance and size, which collectively represent a store’s attractiveness to potential consumers. 

The influence of distance is set to twice that of store size based on settings from the original 

Huff’s model (Huff 1962). However, if we treat the weights on distance and store size as 

adjustable parameters then they can be calibrated to our study area (e.g., Suárez-Vega et al. 

2015), which may enhance model performance and its application to alternative case studies 

in other similar regions in North America. Moreover, instead of only using the outlet size and 

distance, the parking lot size, merchandise average price, and the store atmosphere may also 

become potential supplement factors to be considered in the utility function.  

 Distance interactions between consumer and store agents are constrained to those 

consumers residing within a 12-min drive-time service area (SA). However, for simplicity, 
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the RC-ABM uses Euclidean distance, rather than street-network distance, which was chosen 

due to the relatively large number of agents, complicated transportation network, and the 

limited running capacity of NetLogo. By integrating RC-ABM and some transportation 

network ABMs (e.g., Démare et al. 2017), it is possible to achieve the use of realistic 

commuting distances and travel impedances at the cost of run time and computational load. 

Therefore, such attempts should be started from small-scale studies.  

 An additional interactive action that could be incorporated between consumer and 

store agents involves representing consumer loyalty. With an agent-based approach, modelers 

can create agents that have learning behaviors (e.g., Kirman 2011), like brand loyalty 

shopping. Incorporating brand loyalty creates an opportunity to examine to what degree store 

success is correlated with different levels of consumer loyalty shopping behaviors and if a 

brand is first to market. Specifically, the consumer agent can be programmed to have 

experiential learning and dynamically adjust its preferences for different stores based on its 

experiences. To achieve this, alternative techniques like machine learning methods can be 

utilized as an embedded model (Abdulkareem et al. 2019) to enhance the consumer agent 

decision-making rules.  

 A better store performance (higher product quality and better advertising strategies) 

may increase the consumer’s brand loyalty (Bell and Mgbemena 2018) (positive feedbacks 

from store-consumer interactions), whereas the consumer-consumer interaction (word-of-

mouth) may decrease consumers’ loyalty and makes their behaviors more complex and 

unpredictable (Zhang and Zhang 2007). The RC-ABM does not account for interactions 

among consumer agents, but could, by adding the effect of neighborhood similarity or social 

norms. Technically, the utility function (Equation 2, Chapter 2), used to estimate store’s 

attractiveness could be extended by adding a neighborhood similarity score as follows: 

𝑢𝑡𝑖𝑙𝑖𝑡𝑦 = 𝑓(𝐷, 𝐴, 𝑁𝑆)															(13) 

where D is the inverse distance, A is the store size, and NS is the neighborhood similarity 

index. 

 The store-store interaction is indirectly defined in the RC-ABM, e.g., through the 

retail competition process. However, we do not construct any adaptive behaviors related to 

the competition, which might become another potential research objective: the comparison 

between effects of store’s different adaptive behaviors on the resultant spatial distribution of 
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stores. Specifically, three types of store’s adaptive behaviors can be defined: (1) stores 

randomly select locations; (2) stores prefer locations which are away from competitors; (3) 

stores choose locations which are near to competitors. Based on these, we can artificially 

define store agents with different behavioral rules and evaluate whether some emergent 

patterns can be generated from the model run. 

 Overall, it is my hope that the RC-ABM is extended in the directions proposed in this 

chapter or alternative directions by others such that it may become a more advanced and 

flexible tool that is used to solve broader research questions.  
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Appendices 

Appendix 1 – The observed spatial pattern of home-improvement stores in the study area 

 

Figure A1: The observed spatial pattern of the 48 home-improvement retailers in the Region of Waterloo 
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Appendix 2 – Results of the store revenue estimation generated by the Location-allocation 

Model (LAM) and 5 RC-ABMs 

Table A2: The simulated revenue of 48 home-improvement stores generated by the LAM and 5 RC-ABMs with different 𝜺 
value settings in the Model Validation experiment 

 

 

 

Ꜫ  = 10 Ꜫ  = 1 Ꜫ  = 0.1  Ꜫ = 0.01  Ꜫ = 0.001
13153 14463.29 5626198.51 5629768.59 5715979.33 5723165.17 5723841.07 5723908.22
13409 6102.91 2498211.55 1138502.88 1847836.18 2403141.06 2476555.1 2484083.57
13421 13200 5705874.2 4370116.45 5425848.5 5922058.99 5983297.9 5989547.85
16571 13655.88 7764529.93 5095864.98 5087239.21 5084268.54 5083947.63 5083915.33
17320 132469.08 22747610.45 19445596.08 16080575.43 15370991.59 15291320.07 15283265.16
17591 34520.12 11286100.68 9671084.17 10503664.01 10895593.26 10942835.73 10947640.03
17600 4188.3 2258160.83 1368701.3 1706317.24 1979807.48 2016762.36 2020563.76
17662 11587.11 3382389.2 2710069 4325799.04 4960703.8 5036334.07 5044019.91
17739 4920.13 2552114.86 1186203.06 2428906.7 2995489.74 3067301.03 3074650.29
17850 90608.69 28298535.39 26625734.15 26360058.53 25954434.8 25902539.76 25897225.41
18109 33651.98 16443944.28 12549353.26 15079309.14 15834150.91 15919101.18 15927694.28
18140 31736.14 8768561.61 6783721.06 8529030.67 8980054.67 9030444.18 9035537.61
18529 20147.08 7292054.66 6655857.83 7712830.43 7853507.49 7867447.08 7868832.01
18798 28713.75 11520577.25 9155971.27 9028923.09 8970512.99 8963152.04 8962414.47
19230 105211.48 17393201.98 17031807.07 15386312.78 14990404.76 14943478.17 14938706.6
19451 106302.93 32102198.19 32825293.93 31217982.61 30583263.48 30506917.7 30499416.62
20012 4313.15 8732293.78 9867648.57 10236166.23 10287191.4 10292420.59 10292944.71
20329 107156.32 15438157.67 33287356.77 31174607.5 30345521.01 30245662.19 30235519.47
20584 3735.56 1898131.81 1372577.28 1837941.37 2170137.89 2216996.39 2221849.1
21103 80000 19384937.92 24166651.76 25275056.49 25313537.19 25314892.02 25315002.54
22742 139880.91 26683840.95 24484512.94 25289385.98 25094129.05 25065022.32 25062007.09
22778 26553.69 7947885.76 7342550.82 7445107.13 7415115.38 7409956.54 7409414.75
22837 18007.34 3854752.49 3682657.55 3692746.09 3734035.45 3738088.22 3738491.01
23293 32266.76 6597894.71 5888023.51 6175567.63 6182302.79 6183090.71 6183153.54
23299 93124.08 21530991.48 27756397.73 26722644.93 25998079.13 25908310.27 25899153.12
23449 5290.83 1196905.29 746394.91 889926.14 934945.38 939724.53 940204.73
23493 128474.66 13175109.65 20715677.35 19212139.74 18857104.08 18816951.08 18812949.76
23646 11674.83 3259855.73 3679932.92 3795681.29 3771962.81 3769537.53 3769301.96
24027 12398.72 5367605.55 3873757.06 3976366.8 4207983.77 4236768.58 4239666.9
24037 14890.66 6087414.29 4746047.22 4773077.56 4800046.39 4805614.23 4806229.41
24042 5637.81 3262836.57 2043755.94 2834342.53 3326504.59 3390277.57 3396817.88
24059 27510.02 6949762.19 5293722.31 6497449.33 6779289.42 6808727.07 6811680.46
24095 36174.72 8177345.91 8058948.15 8491435.61 8555141.38 8561891.72 8562572.62
24101 15824.46 2880450.18 2679396.84 2519015.21 2491759.21 2489404.14 2489179.43
24116 46855.42 9623605.45 8268647.58 8273143.48 8105722.4 8083300.73 8081012.43
24153 6773.53 1592043.41 1928676.36 1873428.24 1870270.22 1869988.24 1869960.39
24187 50408.16 6441679.65 8266587.57 7757723.97 7678666.47 7667603.11 7666343.93
24191 24090.23 7106672.69 6484818.04 6331472.93 6215044.4 6199527.75 6197933.02
24195 59146.28 22081057.22 18956261.78 22219888.25 22767503.26 22824175.58 22829859.28
24199 55520.64 17095320.02 13248832.3 13856304.29 13875013.88 13874250.21 13874145.23
24235 119969.19 31295076.26 32656749.28 30108852.49 29625631.3 29573513.9 29568275.37
32021 5329.98 1983988.54 1632715.96 1548290.48 1603904.5 1608525.15 1608640.78
34019 94000 15664389.18 15323096.13 13957879.33 13621726.9 13583232.06 13579375.29
34103 40109.71 6665651.72 6534399.03 6268178.37 6297662.04 6304023.8 6304708.36
34114 112190.15 12924599.51 16768101.67 12928058.47 12207799.18 12127885.77 12119813.69
34240 17267.66 3426280.29 4241618.47 3899399.75 3865350.03 3862605.67 3862341.51
34251 44753.57 11610846.36 10760545.23 11040668.62 11014580.81 11010096.97 11009631.92
34273 57851.29 15722493.78 14445463.72 14107608.73 13930957.4 13908828.13 13906567.04

Store ID Store Size LAM
RC-ABM
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Appendix 3 – The distribution of the two types of the market share captured (MSC1 and 

MSC2) generated by RC-ABMs 

 

Figure A3: The plot of kernel density estimate based on the total market share captured by (A) store patterns produced by 

only the last timestep of each model run (1000 patterns) and (B) all store patterns appeared during all 20 timesteps in each 

of the 1000 model runs (20000 patterns); The red dotted line indicates the observed MSC generated by the LAM 
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Appendix 4 – Supplementary results of the path dependency analysis 

The Region of Waterloo has 7 Census Subdivisions (CSDs), including three cities (Kitchener, 

Waterloo, and Cambridge) and four townships (Woolwich, Wellesley, Wilmot, and North 

Dumfries). In addition to the analysis of path dependency in Section 3.3, we have done a 

further analysis based on each of the 7 CSDs. According to Table 7.4.1, results exhibit a 

higher variation of path dependence patterns in tri-cities where all types of path dependencies 

(Unsuccessful Invariant, Successful Invariant, and Variant) occur. Moreover, stores’ success 

can hardly be guaranteed in either of the 4 townships, where over 96% of CDAs and over 

99% of areal coverages are occupied by Unsuccessful Invariant or the Variant regions. In 

contrast, stores randomly residing within Kitchener or Waterloo have the highest probability 

of success (i.e., higher percentage in number of Successful Invariant CDAs and areal 

coverage). 
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Table A4. Summary of the composition and configuration of Unsuccessful Invariant, Successful Invariant, and Variant 

census dissemination areas (CDAs) in the City of Kitchener, Waterloo, and Cambridge, and in the Townships of Wellesley, 

Woolwich, Wilmot, and North Dumfries. 

Region Area (ha)

Total CDA Numbers

Unsuccess Success Variant Unsuccess Success Variant Unsuccess Success Variant

Number of CDAs 1 144 168 1 61 91 1 46 142

Percent of CDAs (%) 0.32 46.01 53.67 0.65 39.87 59.48 0.53 24.34 75.13

Total Area (ha) 402.83 2789.15 10644.15 39.41 1350.72 5118.37 916.48 767.54 9884.24

Percent Area 2.91 20.16 76.93 0.61 20.75 78.64 7.92 6.63 85.44

Largest Patch Size (ha) 402.83 1382.94 10572.42 39.41 628.56 5047.25 916.48 321.96 9884.24

Mean Patch Size (ha) 402.83 199.23 2661.04 39.41 168.84 1706.12 916.48 76.75 9884.24

S.D. Patch Size (ha) 0 372.48 4567.67 0 214.17 2362.57 0 95.78 0

Number of Patches 1 14 4 1 8 3 1 10 1

Region Area (ha)

Total CDA Numbers

Unsuccess Success Variant Unsuccess Success Variant Unsuccess Success Variant

Number of CDAs 0 0 19 0 0 35 1 1 27

Percent of CDAs (%) 0 0 100 0 0 100 3.45 3.45 93.1

Total Area (ha) 0 0 27848.11 0 0 32979.87 642.43 16.74 25940.57

Percent Area 0 0 100 0 0 100 2.42 0.06 97.52

Largest Patch Size (ha) 0 0 27848.11 0 0 32979.87 642.43 16.74 25940.57

Mean Patch Size (ha) 0 0 27848.11 0 0 32979.87 642.43 16.74 25940.57

S.D. Patch Size (ha) 0 0 0 0 0 0 0 0 0

Number of Patches 0 0 1 0 0 1 1 1 1

Region Area (ha)

Total CDA Numbers

Unsuccess Success Variant

Number of CDAs 4 0 13

Percent of CDAs (%) 23.53 0 76.47

Total Area (ha) 5551.8 0 13536.35

Percent Area 29.09 0 70.91

Largest Patch Size (ha) 5551.8 0 13536.35

Mean Patch Size (ha) 5551.8 0 13536.35

S.D. Patch Size (ha) 0 0 0

Number of Patches 1 0 1

The Township of North Dumfries

Area = 19088.15

n = 17

Area = 27848.11 Area = 32979.87 Area = 26599.74

n = 19 n = 35 n = 29

n = 313 n = 153 n = 189

The Township of Wellesley The Township of Woolwich The Township of Wilmot

City of Kitchener City of Waterloo City of Cambridge

Area = 13836.14 Area = 6508.51 Area = 11568.26
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Appendix 5 – Home-Improvement Spending Categories 

Table A5. Consumer’s home-improvement spending categories in Ontario used to generate consumer expenditures by 

Census Dissemination Area (CDA) (Table 2, Average household spending on home improvement spending categories in 

Ontario, 2011, source Robinson and Balulescu, 2018, p.1067) 

 


