Correlated Data Analysis with
Copula Models or Bayesian
Nonparametric Methods

by

Haoxin Zhuang

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Statistics

Waterloo, Ontario, Canada, 2020

(© Haoxin Zhuang 2020



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Dr. Radu V. Craiu
Professor, University of Toronto

Supervisor(s): Dr. Liqun Diao
Research Assistant Professor, University of Waterloo

Dr. Grace Y. Yi
Professor, Western University (2019-Present)
University of Waterloo (before 2019, now Adjunct Professor)

Internal Member: Dr. Cecilia Cotton
Associate Professor, University of Waterloo

Internal Member: Dr. Leilei Zeng
Associate Professor, University of Waterloo

Internal-External Member: Dr. Yaoliang Yu
Assistant Professor, University of Waterloo

11



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

111



Abstract

Different types of correlated data arise commonly in many studies and present considerable
challenges in modeling and characterizing complex dependence structures. This thesis
considers statistical issues in analyzing such kinds of data. Chapters 2-4 of the thesis
aim to develop models to account for complex dependence structures and propose new
statistical inference methods. In particular, our attention focuses on using copula models
and their variants to delineate association structures for dependent data. As “big data”
has increasingly versatile applications in many fields, more and more data with irregular
distributions emerge, which calls for more flexible and robust nonparametric statistical
methods. Chapters 5 and 6 of the thesis develop novel Bayesian nonparametric methods
on sampling algorithms and regression models.

More specifically, in Chapter 2, we consider longitudinal data with a time-span, of which
common examples include temperature and precipitation data. We utilize a vine copula
model to account for the dependence among longitudinal responses; the joint distribution
of responses is factorized as a product of marginal distributions and bivariate conditional
copulas. To release the computational burden and concentrate on the structure of interest,
we propose composite likelihood methods which divide the responses into time blocks and
leave the connecting structure between time blocks unspecified. We explore the efficiency,
robustness, model selection and prediction of our proposed methods by simulation studies.
The proposed model is applied to analyze an Ontario temperature dataset.

In Chapter 3, we consider dependent data with a hierarchical structure. Analysis of
such data is often challenging due to the complexity in modeling different dependence
structures as well as the demand of intensive computation sources. To alleviate these
issues, we propose a Bayesian hierarchical copula model (BHCM) to accommodate the
hierarchical structures of the dependent data, where the subject-level dependence is facili-
tated by the copula-based model and the hierarchical structure is described using random
dependence parameters. We introduce a layer-by-layer sampling scheme for conducting
inferences. Our proposed BHCM enjoys the flexibility of modeling various complex asso-
ciation structures, while retaining manageable computation. Extensive simulation studies
show that our proposed estimators outperform conventional likelihood-based estimators in
finite sample settings. We apply the BHCM to analyze the Vertebral Column dataset from
the UCI Machine Learning Repository.

In Chapter 4, we consider dependent data coming from multiple sources where we aim
to group similar dependence structures together and then conduct model selection and
parameter estimation based on copula models. We propose a mixture of Dirichlet process
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mixture copula model (M-DPM-CM) to identify similar dependence structures and select
copula models, in which the model selection parameters and copula parameters are assigned
a Dirichlet process prior. Simulation studies and data analysis are conducted to compare
the M-DPM-CM to the conventional copula selection method using the AIC criterion.
The results show that the M-DPM-CM can accurately recover the true grouping structure
with a moderate sample size, and achieve a more accurate model selection results than
the conventional AIC method. The M-DPM-CM is also applied to analyze the Vertebral
Column dataset used in Chapter 3 to obtain more insights into the dependence structures.

In Chapter 5, we focus on developing sampling algorithms from a complex distribution.
To remedy the limitations of Markov Chain Monte Carlo (MCMC) algorithms, we propose
a novel sampling method, called Polya tree Monte Carlo (PTMC). Our proposed PTMC
method can feasibly approximate the posterior Polya tree by the Monte Carlo method,
which is justified theoretically that the approximated Polya tree posterior converges to the
target distribution under regularity conditions. We further propose a series of simple and
efficient sampling algorithms which are useful for different scenarios. Extensive numerical
studies are conducted to demonstrate the appealing performance of the proposed method,
including its superiority to the usual MCMC algorithms, under various settings. The
evaluation and comparison are carried out in terms of sampling efficiency, computational
speed and the capacity of identifying distribution modes.

In Chapter 6, we consider the topic of nonparametric regression models. The Polya
tree (PT) based nearest neighbor regression model is introduced as a fully nonparamet-
ric regression method. To approximate the true conditional probability measure of the
response given the covariate value, we construct a PT-distributed probability measure of
the response in the nearest neighborhood of the covariate value of interest. Our proposed
method gives consistent and robust estimators, and has a faster convergence rate than
the kernel density estimation. We conduct extensive simulation studies and analyze the
Combined Cycle Power Plant dataset to compare the performance of our method to other
nonparametric or semi-parametric methods.

Summary remarks and discussion of future research topics are presented in Chapter 7.
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Chapter 1

Introduction

1.1 Background

In this thesis, we concentrate on exploring topics regarding correlated data modeling with
copula-based models and Bayesian nonparametric methods on sampling and regression
problems. More specifically, the thesis is divided into two parts. The first part investigates
copula-based models on correlated data, including parameter estimation, model selection
and similar dependence structure grouping. The second part is devoted to the Bayesian
nonparametric methods on sampling and nonparametric regression.

Correlated data of multiple types are more than common in real life and the analyses of
such data are also thriving topics in statistical science. Many researchers proposed different
modeling methods to account for dependence in different areas, such as survival analysis
(e.g., Andersen, 2005; Braekers and Veraverbeke, 2005; Bogaerts and Lesaffre, 2008; Geer-
dens et al., 2016) and longitudinal data analysis (e.g., Diggle et al., 2002; Hedeker and
Gibbons, 2006; Fitzmaurice et al., 2009; Verbeke and Molenberghs, 2009; Verbeke et al.,
2014). A large part of the literature utilized dependence modeling as an extension of the
original marginal models, yet still considered the marginal models of prime interest. Focus-
ing on multivariate dependence modeling, we use copula models and vine copula models as
fundamental building blocks to investigate new estimation procedures and propose valid
model selection and grouping methods for dependent data analysis.

Since the concept of “big data” becomes popular, more and more data with irregular
distributions, often featured with strong skewness and/or multiple modes, emerge. For
example, many machine learning models, especially neural networks, create irregular and



multi-modal parameter spaces, which are difficult to be characterized by a parametric form.
In comparison, nonparametric methods, requiring less model assumptions, provide more
robust results for statistical modeling and inference on such kinds of data. In this thesis,
we propose Bayesian nonparametric sampling algorithms and regression models to explore
and describe data with irregular distributions.

For the rest of the chapter, we review the topics related to the thesis. In Section 1.2, we
introduce the basic formulation of copula models and relevant topics, including estimation
and model selection. In Section 1.3, we introduce the vine copula models and relevant
topics. In Sections 1.4 and 1.5, we summarize the basic theory for longitudinal studies
and composite likelihood, respectively, which will be explored in depth in Chapter 2. In
Section 1.6, we discuss hierarchical models from the frequentist’s viewpoint and as well
as the Bayesian perspective. In Section 1.7, we introduce two Bayesian nonparametric
models, Dirichlet Process and Polya Tree. In Section 1.8, nonparametric regression models
are introduced and briefly reviewed. In Section 1.9, we provide the outline of the thesis.

1.2 Copula

1.2.1 Definition

For n random variables Xi,...,X,, the dependence between them can be described by
their joint distribution function, denoted F(z1,...,z,). Copula models were proposed by
Sklar (1959) to separate the joint distribution into a part that represents the dependence
structure and other parts that describe the marginal distributions of the random variables.
The formal definition of a copula (Kolev et al., 2006) is given as follows.

Definition 1.1 (Copula). An n-dimensional copula is a function C: [0,1]™ — [0, 1] with
the properties:

1. For every u = (uy,...,u,)" € [0,1]", C(u) = 0 if there is at least one index i =
1,...,n such that u; = 0;

2. For every u € [0,1]" and v € [0,1]" with u; < v; for j = 1,...,n, the C-volume
Vo([u, v]) is non-negative (see Nelsen (2007), Definition 2.10.1 for the definition of
C-volume);

3. C(1,...,Lu;,1,...,1) =u; for allu; € [0,1) with j =1,...,n.



The copula function can be equivalently defined as a multivariate distribution with
uniform margins, with the copula density calculated by

O"C(u, ..., up)

ooy tn) = ouy...0u,
Theorem 1.1 (Sklar’s Theorem (Sklar, 1959)). Let F' be an n-dimensional distribution
function with margins Fyx,, ..., Fx,. Then there exists an n-dimension copula C such that

for all (xq,...,2,)" € (—00,00)",

F(xy,...,x,) = C(Fx,(z1),..., Fx,(x,)). (1.1)
Conversely, if C' is an n-dimension copula and F,, ..., Fx, are distribution functions, the
function F in (1.1) is an n-dimension distribution function with margins Fx,, ..., Fx,.

Furthermore, if the marginals are all continuous, C' is unique. Otherwise, C' is uniquely
determined on Ran(Fx,) x --- x Ran(Fx, ), where Ran(Fx,) represents the range of Fx, for
j=1...,n.

Using the Sklar’s Theorem, the density of an n-dimensional distribution function can
be expressed as

Floy, ... zn) = [H Fx, (@) | e(Fx,(21), ..., Fx, ().

where fx,(-) is the marginal density function of X; and () is the copula density.

Sklar’s Theorem ensures the existence of copula functions, serving as the core of copula
theory. Many useful parametric forms for copula functions are available, especially for
describing bivariate data. Commonly used parametric forms include Gaussian copula, ¢
copula, which are derived from the multivariate Gaussian distribution and the multivariate
t distribution, and the Archimedean family, in which the copulas assume the form

C(“’l? s ,Un) = ¢[_1](¢(U1) +eeet @Z)(Un)),

where ¢ : [0,1] — [0,00), called the generator function, is a continuous and strictly
decreasing function such that ¢(1) = 0, and the pseudo—inverse of ¥, 1)[=1  is a continuous
and non-increasing function defined on [0, 00) such that

Ly JUTHR), 0 << 9(0),
v = {0, ¥(0) < t < oo.



where ¢~!(+) is the inverse function of ¥(-). Commonly used copulas in the Archimedean
family include the Clayton, Gumbel, Frank and Joe copulas. More details can be found in
Nelsen (2007).

Copula has been widely applied in finance and econometrics (Cherubini et al., 2004;
Van Den Goorbergh et al., 2005; Chen and Fan, 2006b; Hu, 2006; Jondeau and Rockinger,
2006; Aas et al., 2009; Chollete et al., 2009; Patton, 2012), survival analysis, especially
in semi-competing risk modeling (Andersen, 2005; Brackers and Veraverbeke, 2005; Jiang
et al., 2005; Romeo et al., 2006; Huang and Zhang, 2008; Bogaerts and Lesaffre, 2008;
Geerdens et al., 2016), spatial analysis (Staicu et al., 2012; Boehm et al., 2013; Erhardt
et al., 2015; Krupskii and Genton, 2017), and genetic data analysis (He et al., 2012). In
most of these papers, bivariate or tri-variate copulas were employed to model the depen-
dence, mainly because multivariate copulas are not flexible enough to describe complex
dependence structures and the interpretation of the model parameters becomes difficult.
In the case of three dimensions or higher, vine copula models were introduced to circumvent
those issues, which will be elaborated in Section 1.3.

1.2.2 Model Selection and Parameter Estimation

The selection of copula functions and the estimation of copula parameters are thriving re-
search topics. Fermanian (2005) and Genest et al. (2006) proposed two different goodness-
of-fit tests for copula models, mainly focusing on the bivariate case. Genest et al. (2009)
provided a comprehensive review and studied the possible types of goodness-of-fit tests
on copula. Besides the goodness-of-fit tests, Chen and Fan (2005) proposed a pseudo-
likelihood ratio test for copula model selection, and Chen and Fan (2006a) introduced a
model selection and estimation method for copula models with misspecification. A method
of combining the traditional model selection criterion, such as AIC and BIC, with the cop-
ula model selection was used by Hans (2007), which has remained to be the most prevailing
method in copula model selection.

Several methods of estimating the copula parameters are available in the literature. The
maximum likelihood (ML) method (Joe, 1997; Dissmann et al., 2013; Stober and Schep-
semeier, 2013) is the most commonly-used. However, it requires a lot of computational
resources when a large number of parameters appear. A computationally friendly but less
efficient alternative is the inference functions for margin (IFM) method, which was pro-
posed by Joe and Xu (1996) and whose asymptotic properties was studied by Joe (2005).
Another estimation method, the ranked-based method, estimates copula parameters by
utilizing its relationship with Kendall’s 7. The method is restrictive to single-parameter



copula functions for the problems with an explicit form linking the dependence parameter
and Kendall’s 7. Despite the popularity of copula in dependency modeling, applications of
the Bayesian theory to the copula field are relatively limited, briefly summarized by Smith
(2011).

1.3 Vine Copula

1.3.1 Definition

Compared to the bivariate case, using multivariate copulas to describe multivariate dis-
tributions seems relatively limited. Multivariate versions of Gaussian and ¢ copulas usu-
ally fail to model the possible tail dependence in real life. Multivariate copulas in the
Archimedean family are difficult to interpret as they use only one association parameter to
describe complex multivariate dependence. In order to flexibly model dependence struc-
tures in high dimensional settings using copula models, Bedford and Cooke (2002) proposed
the concept of vine copula. With the pair-copula construction proposed by (Aas et al.,
2009), regular vine (R-Vine) copulas can be used to decompose an n-dimensional multi-
variate distribution into n(n — 1)/2 bivariate distributions, where n is a positive integer
greater than 2. This kind of decomposition enjoys the convenience of parameter estimation
and the flexibility of modeling the dependence structure among random variables. Bedford
and Cooke (2002) gave the definition of vine and R-Vine.

Definition 1.2 (Vine Copula). V = (11,...,T,,) is a vine on n elements with m vine
trees if:

1. Ty is a tree with nodes Ny € {1,...,n} and a set of edges, denoted Ey, containing
edges that connect two nodes;

2. Fori=2,...,m, T; is a tree with nodes N; C NyUFE;UFEyU---UFE; 1 and the edge
set E; containing edges that connect two nodes.

A wvine V is a regular vine on n elements if:

1. m=n—1;

2. T; is a connected tree with the edge set E; and the node set N; = FE;_1, with the
cardinality of N; equal ton — (i — 1) fori=1,...,n, where Ey is the null set;



3. The prozimity condition holds: fori=2,...,n—1, ifa = {a1,as} andb = {by, by} are
two nodes in N; connected by an edge, with ay,as,by,bs € N;_1, then the cardinality
of anNb equals 1.

In this thesis, we only consider the regular vine (R-Vine), in which an n-dimensional
copula is decomposed into n(n — 1)/2 bivariate (conditional) copulas. With the decompo-
sition of the R-Vine model, the joint density is divided into (n — 1) vine trees and in tree

Ty for k = 1,...,n — 1, there are (n — k) edges, representing the bivariate (conditional)
dependence of any two random variables in (ug,...,u,)". The joint density is given as
n—1

C(ub s aun) = H H Ceies (uel|Dea ueg|DE; 06162)7

k=1 (e1,e2)€Ey

where e1, €5 can be any two random variables in (uq,...,u,)", Ey is the set of edges in
vine tree T}, D, is the conditioning set for the edge (e, €2) including all random variables
connected with eq, e5 in the previous vine trees, and (e;|D,, e2|D.) is an edge in the edge
set [, with the copula density c,, (-, -) and parameters 0,,.,. The conditional terms ., p,
and u.,|p, are calculated by applying the following formulas iteratively,

OCyq(up, uy) OCpq(up, uq)_

Uplg = and  u,, =
plq 8uq qlp 3up

(1.2)

1.3.2 Canonical Vine and D-Vine

We now introduce two most commonly used vine copula forms, Canonical vine (C-Vine)
and D-Vine. C-Vine is a special case of R-Vine such that each vine tree has a dominating
variable connected with the remaining variables. A 4-variable C-Vine is illustrated in
Figure 1.1. For i = 1,...,n — 1, T; has (n + 1 — i) nodes and (n — 7) edges. In T}, the
(n — 1) edges represent the dependence between random variable u; and other (n — 1)
random variables. In Ty, the (n — 2) edges represent the conditional dependence relation
between random variable uy and other remaining (n — 2) random variables, given random
variable w;. Similarly, for T}, the (n—i) edges represent the conditional dependence relation
between random variable u; and other remaining (n — i) random variables, given random
variables uy,...,u;—1. As a result, the n-dimensional joint density function c(uy, ..., u,)
of Uy, ..., U, € [0,1]" can be decomposed as

n—1 n
C(U/l) ey un7 H H Cik U”'le, uk’|'DLk7 Hlk‘)



where ¢;x (-, -) denotes the bivariate copula density of random variables u; and uy, conditional
on the conditioning set Dy, = {u1,...,u;—1}, and 0 = (O, : 1 = 1,....,.n — 1;k = i +
1,...,n)" denotes the parameter vector. Note that when i = 1, the conditioning set is
empty.

Figure 1.1: An illustration of a C-Vine with 4 random variables

D-Vine is another special case of R-Vine that in each vine tree, a variable is connected
with the two closest variables. A 4-variable D-Vine is illustrated in Figure 1.2. In T},

for Kk = 1,...,n — 1, random variable u; is connected with variable wug,;. In 75, for
k=1,...,n—2, random variable u is connected with variable o conditional on random
variable Dy, 1o = 1. Similarly, for 7;, random variable u; is connected with variable
ug+; conditional on random variables Dy pyi = {ugs1,...,Ugri—1}. As a result, the n-
dimensional joint density function c(us, ..., u,) of Uy,..., U, can be decomposed as
n—1n—i
C(ulv ey Unj ‘9) = H H Ck7k+i(uk|pk,k+i7 Uk+i[ Dy joges 3 ek,kﬂ')’
i=1 k=1

where ¢ 44(+,-) denotes the bivariate copula density of random variables uy and wuy.;
conditional on the conditioning set Dy y4;, and 0 = (0 :i=1,...,n—1;k=i+1,...,n)"
denotes the parameter vector. Note that when ¢ = 1, the conditioning set is a null set.

It is worth mentioning that the order of listing the random variables matters in de-
termining the dependence structure. In practice, the orders of the random variables are
usually set based on the context of the problem. For example, for longitudinal data, we
can label the variables based on the temporal order, and for spatial data, we can label the
variables based on the spatial distance.
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Figure 1.2: An illustration of a D-Vine with 4 random variables

1.3.3 Model Selection and Parameter Estimation

The selection of bivariate copula functions for each (conditional) bivariate dependence
in the R-Vine structure is commonly done through a sequential way (Dissmann et al.,
2013). The copula forms are first selected for each bivariate dependence relation in tree
T separately in the same way as discussed in Section 1.2.2. After obtaining the selected
copula forms and the corresponding estimates, we calculate the transformed copula inputs
for Ty, (te,|D. , Ues|p. ), through (1.2). We proceed to select the copula forms for bivariate
dependence in tree T5. The selection of the remaining bivariate dependence is done through
a similar tree-by-tree way. Dissmann et al. (2013) also proposed the sequential estimation
method for vine copula models, which is a fast estimation method for high dimensional
data compared to the ML method at the price of losing efficiency. For more details, refer
to Dissmann et al. (2013).

Likelihood methods can also be applied to estimating parameters in vine copula mod-
els. But as the dimension increases, the number of parameters in an R-Vine increases
quadratically, which makes the implementation of likelihood based methods prohibitive in
high dimensional settings. Brechmann et al. (2012) proposed the truncated and simplified
vine copula based on the Vuong test to reduce computation burdens. From the Bayesian
viewpoint, Smith et al. (2010) used the Bayesian model selection methods to identify pos-
sible independent (conditional) bivariate copulas in the vine copula model. Min and Czado
(2010) suggested using Bayesian inference on the pair-copula constructions (PCC). Gruber
and Czado (2015) and Gruber and Czado (2018) discussed both sequential and simulta-
neous methods for selecting copula forms in a regular vine structure using reversible jump
Markov Chain Monte Carlo (MCMC). Generally speaking, the fast and robust inference
on vine copula model is a key concern in the literature of vine copulas.



1.4 Longitudinal Data Analysis

Longitudinal data analysis, which studies the change of repeated observations of the same
subjects over time, has long been a thriving topic in statistical research. There have
been a large body of books, papers and reviews in this field, such as Diggle et al. (2002),
Hedeker and Gibbons (2006), Fitzmaurice et al. (2009) and Verbeke et al. (2014). Linear
mixed effects (LME) models (Verbeke and Lefaffre, 1996, 1997; Muthén and Shedden, 1999;
Heagerty and Zeger, 2000; Zhang and Davidian, 2001; Ghidey et al., 2004; Litiere et al.,
2008; Verbeke and Molenberghs, 2009) are one of the commonly-used models for continuous
repeated observations:

Y =XB+ Zu+e,

where X and Z are design matrices featuring fixed effects and random effects, respectively,
and u is the vector of subject-wise random effects which is often assumed to have mean 0,
and ¢ is the vector of random error terms assumed to have mean 0. In LME models, subject-
specific random effects are mixed with the fixed effects to account for the within-subject
variability and the between-subject variability. LME models usually lead to analytically
intractable likelihood functions, except for the case where both u and varepsilon follow a
normal distribution. .

Generalized linear mixed effects (GLME) models can be seen as a combination of LME
models and generalized linear models. GLME models are constructed by introducing ran-
dom effects in the linear predictor of a generalized linear model. GLME models and their
extensions are widely discussed in the literature, including Breslow and Clayton (1993),
Breslow and Lin (1995), McCulloch (1997), Natarajan and Kass (2000), Raudenbush et al.
(2000), Duchateau and Janssen (2005), Lee et al. (2006), Ng et al. (2006), Craiu et al.
(2011), Goldstein (2011), and Yi et al. (2017).

Introduced by Liang and Zeger (1986), generalized estimating equations (GEE) have
become one of the most popular methods to estimate marginal model parameters. Lipsitz
et al. (1991), Becker and Balagtas (1993), Miller et al. (1993), Kenward et al. (1994), Lipsitz
et al. (1994), Molenbergh and Lesaffre (1994), Heagerty and Zeger (2000), Qu et al. (2000),
Wang and Carey (2004) and Ye and Pan (2006) are also important references on this topic.
Estimating equations are constructed without specifying the complete joint distribution of
the repeated responses, but they provide consistent estimators of the marginal parameters,
provided the correct specification of the mean structure, together with other regularity
conditions.

To model longitudinal discrete data, transitional models are proposed to character-
ize the alteration of responses over time and the influence of the covariates on the tran-
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sitional probabilities under the usual Markov assumption. Transitional models concen-
trate on the conditional expectation of current observation Y;;, given the past observations
Yii—1,...,Ya. From Diggle et al. (2002), a simple example of logistic regression on longi-
tudinal binary data is

o P(Y;; = 1Y -1, ..., Y, Xij)
Sl1- P(Y;; =11Yi;-1,..., Y, Xy)

} - XZTJB + Oé)/i,j—la

where 8 and a are model parameters associated with covariates and past observations,
respectively. Conventionally, transitional models are employed to study the covariate effects
on transition probabilities for univariate longitudinal data, in which a single longitudinal
sequence of responses is analyzed. Related works include Muenz and Rubinstein (1985),
Lee and Kim (1998), Cook (1999), Albert (2000), Heagerty (2002), Koru-Sengul et al.
(2007), Zeng and Cook (2007) and Cheon et al. (2014).

1.5 Composite Likelihood

First coined by Lindsay (1988), composite likelihood is a pseudo-likelihood which is defined
by multiplying a collection of component likelihoods. The set of variables included in the
composite likelihood is often determined by the particular context of the problems. Al-
though composite likelihood may not be as efficient as the ordinary likelihood, it provides
estimators that are consistent and have asymptotic normal distributions under regular-
ity conditions. Moreover, composite likelihood is generally perceived as a more robust
estimation method than the ordinary likelihood (though there are exceptions), because
it reduces the risk of model misspecification by leaving the part of less interest in full
likelihood unspecified. In addition, composite likelihood also reduces the computational
burden significantly when we leave high-order association structures unspecified. Generally
speaking, composite likelihood is a trade-off between estimation efficiency and robustness.
For a comprehensive review of composite likelihood, see Varin (2008), Varin et al. (2011),
Lindsay et al. (2011) and Yi (2017a).

For a given k = 1,...,d, let S be the collection of subsets of k elements of a set of
random variables {Y7, ..., Yy} with {y;,...,yq} for i =1,... n to be the realization. For
S € Sy, let f(s;60s) be the corresponding k-dimensional probability density function of
S, where 0g is the vector of parameters of interest. Let s; denote a realization of S for
i=1,...,n. Then for a given subset K € {1,...,d}, a composite likelihood is defined as

CLi(0) = [T T f(si:09).

ke s; €Sy

10



where 0 = (0 : S € Si; k € K)", and the parameters 6 can be estimated as
6 = Argmax 11 CL;(0).
Following Varin et al. (2011), under regularity conditions, the following asymptotic results
of 6 hold:
(1) 56 asn— oo,

(2) Vn(0 — 6) % MVN(0, G71(6)) as n — oo,

where G(0) = H(0)J '(0)H"(0) is the Godambe information matrix, and the sensitivity
matrix H(6) and the variability matrix J(6) are of the forms

62
0000"

J(0) =E { [%og(e)} [a%oLi(e)]T} .

H(0) =E [ cg(e)} :

1.6 Hierarchical Models

Multilevel models, also known as hierarchical linear models, are multi-stage statistical
models used for modeling nested data with hierarchical structures. A commonly used
example for nested data or hierarchical data in literature is school data. Students in a
school belong to different classes in different grades. As a result, the individual measure
of a certain student has a hierarchical structure, which can be described by a multilevel
model. Multilevel models extends linear regression models with the hierarchical structures
incorporated; they can also be generalized to nonlinear problems. In multilevel models, the
regression models in a certain stage are constructed based on the regression parameters in
the previous stage, which allows the parameters to vary at multiple levels. A simple form
of multilevel model is as follows:

Level 1: Yj; = Bio + B8 Xij + €ij;
Level 2: ﬁiO = Qg + Oz(nZZ' + €0 (13)
Bi1 = aio + anZ; + eir;
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where X;; and Z; are covariates for level 1 and level 2, respectively, and ¢;; and {e;o, €1}
are random error terms of level 1 and level 2, respectively. Raudenbush and Bryk (2002),
Tabachnick et al. (2007), Goldstein (2011) and Garson (2012) provided comprehensive
discussions on the multilevel models.

Bayesian hierarchical models (Congdon, 2010, 2014) are used to analyze nested data
with hierarchical structures in the Bayesian framework. By assuming exchangeability be-
tween parameters, Bayesian hierarchical models place prior distributions on the parameters
and hyperprior distribution on parameters in the prior distribution, which is a sensible way
to model the hierarchical structure of the data. A simple 3-stage Bayesian hierarchical
model is

Stage 10 v;;]0; ~ F(vi519;);
Stage 2:  0;|¢ ~ F(0;|¢); (14)
Stage 3: ¢~ F(9);

where 0; and ¢ are parameters in the prior and hyperprior distribution representing dif-
ferent levels of hierarchies in the data. Bayesian hierarchical models are widely applied in
genetic studies (Broét et al., 2002), spatial temporal analysis in epidemiology and ecology
(Wikle et al., 1998; Borsuk et al., 2001; Wikle et al., 2001; Lawson, 2013), longitudinal and
survival analysis (Brown and Ibrahim, 2003), and machine learning (Fei-Fei and Perona,
2005; George and Hawkins, 2005).

1.7 Bayesian Nonparametric Methods

1.7.1 Dirichlet Process

The Dirichlet process (DP) prior is a Bayesian nonparametric model introduced by Fergu-
son (1973), which was originally used to approximate certain probability density functions.
From Miiller et al. (2015), the formal definition of a Dirichlet process is given as follows.

Definition 1.3 (Dirichlet Process). Let « > 0 and Gq be a probability measure defined
on probability space S. A DP with parameters (o, Go) is a random probability measure
G defined on S which assigns probability G(B) to every set B such that for each finite
partition (Bu, ..., By) of S, the joint distribution of the vector (G(B1),...,G(Bx)) is the
Dirichlet distribution with parameters (aGo(B1), .. .,aGo(By)).

12



A Dirichlet process DP(«, Gy) consists of two components: a positive tuning parameter
a and a base distribution Gy. The tuning parameter « controls the closeness of the gen-
erated distribution G to the base distribution Gy in a way that as a« — 0o, G — Ggy. The
tuning parameter a also controls the degree of discreteness of the generated probability
distribution G such that as @ — oo, the distribution G becomes continuous and approaches

Go.

Ferguson (1973) proved the existence of the process and the conjugacy of the DP prior
on independent and identically distributed (i.i.d.) samples. Blackwell and MacQueen
(1973) proposed the Pdlya Urn sampling scheme for the DP prior to induce the marginal
distribution for certain samples. Sethuraman (1994) provided the “Stick Breaking Con-
struction” of the Dirichlet process, which offered more insights into the Dirichlet process.

Definition 1.4 (Stick Breaking Construction). For h =1,2,..., let wy, = v, [[,.,(1 —v)
with vy, ~ Beta(1, ), and my, ~ Go, where v, and my, are independent. Then

G() = wibum, (") (1.5)

defines a DP(a, Gy) random probability measure, where 0y, (+) is a Dirac measure defined
on my,.

Since the DP generates discrete distributions, sometimes it is mixed with some simple
continuous parametric functions to accommodate the continuous data, which is called the
Dirichlet process mixture (DPM) model (Ferguson, 1983; Lo, 1984; Escobar, 1994; Escobar
and West, 1995). A simple example of the DPM model is

Y05 ~ F(yi;105);

1.6

where G ~ DP(a, Gg). Neal (2000) introduced several efficient sampling algorithms for
inference with both the conjugate and non-conjugate DP or DPM models. If we further
assume that the prior parameters in DP to be random parameters with a prior distribution,
we can obtain the mixture of DPM as:

Yisl 05 ~ F(yi;105);
G|Oé,’l7 ~ DP(a7Gﬁ)
a,n ~ m(a,n)
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Due to the discrete nature in (1.5), DP or DPM models are widely applied in many
clustering research problems, such as Kim et al. (2006), Dahl (2006), Vlachos et al. (2009),
and Yu et al. (2010). For details, refer to Miiller et al. (2015).

1.7.2 Polya Tree

The discrete nature of the Dirichlet process refrains its performance on distributions with
continuous densities. An attractive alternative of the Dirichlet process on low-dimensional
sample space is the Polya tree (PT). The Polya tree includes the Dirichlet process as its
special case, but with an appropriate setting of the PT parameters, the PT will generate
continuous distribution with probability one (Miiller et al., 2015).

Essentially defining a random histogram, the PT was first introduced and studied by
Ferguson (1973) and Blackwell and MacQueen (1973). Mauldin et al. (1992) and Lavine
(1992, 1994) provided more systematic research of the property of PT. Mauldin et al.
(1992) proved that PT can be viewed as the De Finneti measure in a generalized Polya urn
scheme. PT was connected with the Pélya Urn scheme (e.g., Monticino, 2001), which led
to the proof of many properties. A complete introduction of the Polya tree can be found
in Miiller et al. (2015).

A Polya tree distribution, denoted PT(IL, .A4), is indexed by a sequence of partitions II,
which is of the form of nested binary trees, and a set of parameter A. Before introducing
the definition of the Polya tree, two important components of the Polya tree, IT and A,
are first discussed. In the following discussion, the univariate or one-dimensional sample
space is first considered, and the extension of the Polya tree to a higher dimensional space
will be discussed later.

Without loss of generality, we assume that Y is a random variable with domain S.
Let T = 8, T = {80,81}, g = {800,801,810,811}, vy Ty = {le.usm C &y S {0, 1},] =
1,...,m}, ..., beasequence of nested partitions of S such that U, ,—01B8c,c5..c.. = Beyes..e s
and M., —01Bc,c5..c,, = O for every ¢; € {0,1} with j = 1,...,m and m € NT. In other
words, the m-level partition m, splits the domain space & into 2™ subsets B;,.,. ., with
g; € {0,1}, for j = 1,...,m; and m,,11 is a refined partition of the domain by further
splitting each subset B.,.,. ., into B.,c, .0 and B, ..1. Therefore, the sequence of
partitions is formed by binary splitting of subsets from the previous level of partition and
assumes a nested tree structure. The collection of the partitions forms IT = {m,,, : m € N*}.
An illustration of the first two levels of II for an interval space S = [a, b] with equal-sized
partitions is provided in Figure 1.3.
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Figure 1.3: The first two levels of the sequence of the nested partitions of an interval space

S = [a,b]

Next, we assign a random probability to the subset B.,.,. ., through a sequence of
conditional random probabilities. Let G¢,.,. ., denote the conditional probability that Y
falls in the subset B;,c,. e, iem, given that Y falls in the subset B.,.,. ., ,:

Gslsg...sm,ﬁm = P(Y S leez...em,1€m|Y S Belsz...smfl)-

In a Polya tree distribution, the conditional probabilities G.,., ., 0 from different
levels are commonly assumed to be mutually independent Beta random variables

Galag...am_lo ~ Beta(aalag...am_m, aalag...am_ﬂ)) (18)

where A,, = {a .., 1 ¢ € {0,1},j = 1,...,m} is a set of positive parameters for
the m-level partition. A = {A4,, : m € N1} is the collection of the parameters for all
levels of partitions. Kraft (1964) proved that a.,.,. ., = m? is a sufficient condition to
guarantee probability one assigned to the set of continuous distributions, and m? becomes
the canonical choice for o, ., . Schervish (1995) proved the more general conditions
that aee,.c,, = cp(m?) with > p(m) < oo is sufficient to guarantee that the Polya
tree generates continuous distributions. Following Walker and Mallick (1997), the default
choice is ., ., = ¢m?, with ¢ > 0.

Therefore, the probability that Y falls in the subset B.,., .,,, denoted G(B;,e,. ,,), can
be expressed as the product of the sequence of conditional probabilities

G(Bercyen) = [ [ Gernoc

which is a random probability.

Definition 1.5 (Polya Tree). Let I be a sequence of nested binary partitions defined above
and let A = {A,, : m € Nt} be a collection of non-negative numbers. A random probability
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measure G on S is said to be a Polya tree with parameters (11, A) if for everym = 1,2,. ..
and every Bee,. .. € Tm

m

G(BE1€2.-.€m> = H GEl...Ej)

j=1

where the conditional probabilities G, . ., are mutually independent Beta random variables
with

Gslu.sj_lo ~ Beta(ael...ej_ma asl...sj_ll)

and Gey..e; 10 =1—Gey.c;_ 1. We write G ~ PI(11, A).

Polya trees are used as conjugate priors in Bayesian nonparametric statistics in the
following sense. If the random variable Y follows a random probability measure G, of
which the prior distribution is assumed to be a PT distribution, i.e.,

YIG ~ G
G ~ PT(IIA),

then the posterior distribution of probability measure G, given the data Y, still follows a
PT distribution with

GlY ~ PT(II, A(Y)), (1.9)
where A(Y) ={A,(Y):me NT}, A, (V) ={a., ., (Y):¢;,€{0,1},j=1,...,m}, and

Oy e +1 Y €B. ..,
Qey.em otherwise.

) = {

In other words, if we have n ii.d. random copies of Y, denoted (Y3, ...,Y,), the random
conditional probabilities, given the sample, are updated as

Gal...€m710|(}/17 cee 7Yn> ~ Beta (ael..‘em,10 + Nsl‘..sm,107 a€1..‘6m711 + Nslu.sm,ll) ) (110)

where N, . denotes the number of the sample points in (Y;,...,Y;) that fall in the
subset B, ... .

Sampling from a PT distribution might be hindered by the need to update an infinite
number of parameters which characterize the tree structure. We consider a finite PT
(FPT), denoted by FPT(IL, A, M) (Lavine, 1994) by only updating parameters up to level
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M. Under the FPT(II, A, M), for partition level m < M, the expectation of the posterior
probability of falling into a certain subspace is

a€1.~.€j + Nslu.z-:j
1 .
j:1 El:() asl...sjfll + Nsl...sjfll

For partition level m > M, the expectation of the posterior probability of falling into a
certain subspace becomes

E[G(Bﬂ...emﬂm,...,yn*)]:(ﬁ etV J(f] s )

1 1
ZZ:O Qeq.gj_ql + N€1---€j—1l j=M Zl:() Aey.ejql

j=1

Next, we discuss the extension of PT to a higher dimensional sample space. The
formulation of the two-dimensional Polya tree is discussed, and the construction on higher
dimensions can be derived in a similar way.

Under the two-dimension case, the quaternary partition, illustrated in Figure 1.4, is
considered. In the quaternary partition, each subspace of S in the previous level will
be partitioned into 4 parts. Let mo = {S}, m1 = {Bo, B1, B2, Bs},. ... = {B-y..c0 -
g; = 0,1,2,3;5 = 1,...,m}, ..., be a sequence of nested partitions of S such that
U?:o B cpi = Beyen and Bey i\ Beyenj = 0 for @ # j. In other words, the m-

level partition 7, splits the domain space S into 2*™ subsets B., ., with ¢; € {0,1,2,3},

for 5 = 1,...,m. The nested partition set II is defined as the collection of all levels of
partition IT = {m,, : m € n*}. The prior parameter set A = {A,, : m € NT} with
Ay ={0e e, 16;=0,1,2,3;j=1,...,m} is defined similarly as the 1-dimension case.

Instead of the Beta distribution, the (conditional) probability of the subspace B;,.,. ..,
given the (m — 1)-level of partition B. ., ., _,, is assumed to be,

(Gelsg...smflo7G€1€2...Em,117 G51€2...€m7127 Gelsg...sm,ﬁ)

~ DlrlChlet(aalag...am_loa Meiey..epm_11) Neyea..em_12> a€182...8m_13) (111)

As the multivariate counterpart of the Beta distribution, the conjugacy property of the
Polya tree is retained. Moreover, Ning and Shephard (2018) proved the continuous condi-
tion and the consistency of the proposed Dirichlet-based Polya tree. It is noteworthy that
the Dirichlet-based Polya tree can be naturally extended to dimensions greater than two.
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Figure 1.4: Quaternary partition of S = [aq, by] X [asg, bo]

1.8 Nonparametric Regression

Regression analysis is a powerful statistical method for delineating the relationship between
responses and covariates of interest. In parametric or semi-parametric regression models
(e.g. Kleinbaum and Klein, 2002; Ruppert et al., 2003; Seber and Lee, 2012), specific
parametric forms are given to the regression function and/or the error distribution, which
are subject to the risks of model misspecification. To mitigate this potential issue, the
nonparametric regression models are often considered, which make no assumptions on
the form of the regression function and/or the error distribution. The nonparametric
regression in the literature often focuses on either the regression function or the random
error distribution. There are rich studies on methods of nonparametrically formulating
the regression function in the frequentist’s literature including kernel method (Gasser and
Miiller, 1979; Wand and Jones, 1994), spline method (Reinsch, 1967; Eubank, 1999; Wahba,
1990; Schumaker, 2007), and regression trees (Breiman et al., 1984). Under the Bayesian
framework, one commonly used Bayesian nonparametric prior for a regression function is
the Gaussian process prior (O’Hagan, 1978). It is also common to model the regression
function using basis expansions, including the wavelets basis (Chui, 2016), neural network
(Hansen and Salamon, 1990; Demuth et al., 2014) and B-splines (De Boor, 1978). Chipman
et al. (2010) proposed Bayesian regression trees, which aggregate single regression trees
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to approximate the regression function. On the other hand, nonparametric modeling of
the random error distribution essentially reduces to nonparametric density estimation.
The kernel density estimation (Davis et al., 2011) is the most popular approach in the
frequentist’s framework. The Dirichlet process (DP) prior (Hanson and Johnson, 2004),
or the Polya tree (PT) prior (Walker and Mallick, 1999; Miiller et al., 2015) are attractive
choices as Bayesian nonparametric priors for the random error distribution in the Bayesian
framework.

As opposed to parametric regression or semi-parametric regression, fully nonparamet-
ric regression characterizes the conditional probability measures of the responses given
covariates. A fully nonparametric regression is often formulated as

Y|z ~ Gy, (1.12)

where G, is a conditional probability measure of the response variable Y given the covari-
ate value X = x. Fully nonparametric regression is usually studied in the framework of
Bayesian nonparametric analysis, where Bayesian nonparametric priors serve as the build-
ing blocks in the models. For instance, MacEachern (1999) extended the Dirichlet Process
(DP) prior to a regression setting and modeled {G, : = € S,} jointly using a dependent
DP (DDP) prior, where each G, follows a DP marginally. Noting that a DP-distributed
measure (G, indexed by the concentration parameter a > 0 and the base distribution H,
can be expressed by a stick-breaking construction (Sethuraman, 1994) as G = >_,~ | w0, ,
where wy, = 7y, H;:ll(l - M), Yn RS Beta(1l, a), &y denotes the Dirac measure at 6, and
0, " H. MacEachern (1999) replaced 6, with stochastic processes {0,(x) : = € S,},
and De Iorio et al. (2004) introduced ANOVA DDP by assuming 6, = x" /3. Griffin and
Steel (2006) and Dunson et al. (2007) further considered models in which the weights wy,
are dependent on the covariates. Chung and Dunson (2011) proposed the “local Dirich-
let Process” to aggregate sample points that are close in the covariate space. The Polya
tree (PT) prior, like the DP prior, was also extended to model G, and the dependent PT
(DPT) was proposed parallel to DDP by allowing the random splitting probabilities in
a PT distribution to depend on z. Trippa et al. (2011) proposed one such construction
by expressing the Beta prior of the random splitting probabilities as a ratio of Gamma
random variables, which are modeled by Gamma processes for an area centered around
x. Jara and Hanson (2011) proposed the linear dependent tail-free process (LDTFP) and
modeled the logistic transformation of the random splitting probabilities by a regression
function of covariates x. Generally speaking, the fully nonparametric regression methods
are distinguished by the prior adopted for GG, and how G, is connected with x, which
usually demand tremendous computational resources for inferences. In our view, not all
aforementioned methods are “fully” nonparametric. For instance, the ANOVA DDP and
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LDTFP models assume a regression form of covariates as part of their formulations and
thus their performance may be compromised if the assumption is violated.

1.9 Outline of the Thesis

In this section, we briefly introduce the backgrounds and topics for each chapter of the
thesis. In Chapter 2, we consider longitudinal data, and incorporate vine copula mod-
els together with the regression model to account for the temporal dependence between
observations. Chapter 3 studies the modeling of dependent data exhibiting hierarchical
structures. Chapter 4 discusses the topics related to identifying similar dependence struc-
tures and performing model selection for dependent data from multiple sources using DP
process. In Chapter 5, sampling algorithms based on PT are proposed to provide more
efficient and powerful alternatives for MCMC in handling complex distributions. Chap-
ter 6 discusses a fully nonparametric regression model based on the Polya tree and the
nearest neighbor method. Finally, Chapter 7 presents the concluding remarks of the thesis
and some possible working directions for future research. Summaries of Chapters 2-6 are
provided below.

Chapter 2: Composite Likelihood Methods for Analyzing Longi-
tudinal Data with a Time-Span under Vine Copula Models

In longitudinal data analysis, modeling temporal dependence among observations is an
important topic as reviewed in Section 1.4. Before the development of copula and vine
copula models, multivariate normal distributions were usually used to describe the tem-
poral dependence of continuous longitudinal data, of which the dependence is completely
determined by the covariance matrix. Using the multivariate normal distributions can
greatly simplify the likelihood function in many circumstances. However, as a symmetric
distribution, multivariate normal distributions fail to address the possible tail dependence
of observations at different time points.

In this chapter, we model longitudinal responses with a time-span using vine copula
models to address the temporal dependence between different observations. The temporal
length of the longitudinal data determines the number of parameters in regular vine mod-
els, which increases quadratically as the time length increases. Thus, directly using vine
copula model for longitudinal data with a large time-span will introduce a large number
of parameters and hence create difficulties for parameter estimation. As a result, we use
composite likelihood to simplify the inference procedures and concentrate on the param-
eters of primary interest. We also compare different estimation procedures, simultaneous
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estimation and two-stage estimation, in terms of efficiency and robustness. Moreover, we
find in simulation studies that the composite likelihood is robust to misspecification of
the structure linking between time blocks, achieves accurate selection of the (conditional)
bivariate copulas, and provides a convenient structure for prediction. The material in this
chapter has been wrapped up as a paper submitted for publication and will appear in the
Journal of Data Science.

Chapter 3: A Bayesian Hierarchical Copula Model

Complex data structures arise commonly in modern scientific research. Examples in-
clude data with a hierarchical nesting structure, data collected from different research
centers, studies or resources, and data configured at multiple locations or multiple time
points, etc. In this chapter, we are interested in studying dependent data with hierarchical
structures, and analysis of such data is often challenging due to the complexity in modeling
different dependence structures and computation intensity.

To account for the dependence relations and the hierarchical structure, we propose
a Bayesian hierarchical copula model (BHCM), which combines the ideas of the copula
models and the Bayesian hierarchical models. Different copula models are used to describe
the dependence structures of different clusters, and the Bayesian hierarchical model, which
is built on the copula parameters, is used to describe between cluster relations of different
dependence structures. The model can be applied to settings, such as the time varying
dependence modeling and clustered dependence modeling. The material in this chapter has
been wrapped up as a paper submitted for publication and will appear in the Electronic
Journal of Statistics.

Chapter 4: Grouping Dependence Structure and Selection of Copula-
Based Models Using Bayesian Nonparametric Methods

When analyzing dependent data, an insufficient sample size can lead to inaccurate
model selection of dependence structures and estimation of the dependence parameters.
Some bivariate pairs in multivariate data may share the same dependence structure, or
dependent data that arises from multiple sources may share the same dependence structure,
thus grouping the data according to the similarity in their dependence structure is a natural
way to increase the sample size and carry out valid and efficient inferences.

In this chapter, we still consider data arising from multiple sources as we assume in
Chapter 3, and we are interested in modeling subject-level dependence using copula-based
models. Instead of focusing on parameter estimation with given copula forms as we do
in Chapter 3, we mainly focus on selection of copula forms. We propose a copula-based
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model with copula selection indicators and dependence parameters following a DP prior,
and we call this model the mixture of DPM copula model (M-DPM-CM). The M-DPM-CM
is able to group the clusters with similar dependence structures together. The grouping of
clusters sharing similar dependence relations can benefit the copula selection and parameter
estimation by facilitating a larger sample size. The material in this chapter has been
wrapped up as a paper submitted for publication.

Chapter 5: Polya Tree Monte Carlo Method

In this chapter, we investigate the problem of sampling from a distribution, which
has been an important research topic in statistics and enjoys broad applications in differ-
ent contexts, including the Bayesian framework and the machine learning paradigm(e.g.,
Goodfellow et al., 2014). Markov Chain Monte Carlo (MCMC) is the dominating algorithm
for sampling from distributions, but it suffers from emerging difficulties, such as correlated
samples and inefficiency in exploring multi-modal distributions. Motivated by this, we
propose the Polya tree Monte Carlo (PTMC) method, which is based on the approximated
Polya tree posterior using the Monte Carlo method.

In our proposed PTMC method, we first approximate the posterior Polya tree by the
Monte Carlo method and prove theoretically that this approximated Polya tree posterior
converges to the target distribution, provided regularity conditions. Based on this result, we
further propose a series of simple, efficient and computational friendly sampling algorithms
for sampling from the approximated posterior Polya tree. The proposed algorithms provide
independent samples from the target distribution and exhibit superior performance in
discovering modes for multi-modal distributions as we illustrate in the numerical studies.
The material in this chapter has been wrapped up as a paper submitted for publication.

Chapter 6: Polya Tree Based Nearest Neighbor Regression

Regression analysis is a powerful statistical method for delineating the relationship
between responses and covariates of interest and has become one of the most thriving
topics in statistics. In this chapter, we propose a fully nonparametric regression model to
provide robust description of highly irregular regression relations.

As opposed to parametric regression or semi-parametric regression, fully nonparamet-
ric regression characterizes the conditional probability measures of the responses given
covariates. A fully nonparametric regression is often formulated as

Y|x~G,,
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where (G, is a conditional probability measure of the response variable Y, given the covari-
ate value X = z. The key component in a fully nonparametric regression model is to build
the connection between G, and =x.

In this chapter, we introduce a new fully nonparametric regression model, called the
Polya tree based nearest neighbor (PTNN) regression, which constructs a PT-distributed
probability measure of the responses in a “nearest” neighborhood of the covariates of
interest. Here “a nearest neighbor” is loosely used in the same way as the nearest neighbor
method (Cover and Hart, 1967; Beyer et al., 1999), though strictly speaking, there is no
“nearest” neighborhood of a center in a continuous metric (unless the center itself is taken
as its nearest neighborhood). The constructed probability measure well approximates the
true probability measure of the response given covariates, and the resulting nonparametric
estimates are easy to obtain based on a sample from the constructed PT distribution.
The model enjoys several merits including simple formulation, consistent estimates of the
conditional distribution G, and computational efficiency. The proposed method does not
require any parametric model assumption and thus possesses the robustness property. The
material in this chapter has been wrapped up as a paper submitted for publication.
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Chapter 2

Composite Likelihood Methods for
Analyzing Longitudinal Data with a
Time-Span under Vine Copula

Models

2.1 Introduction

Longitudinal data analysis, which studies the change of repeated observations of the same
subjects over time, has long been a thriving topic in statistical research. Longitudinal data
with a long time span, such as temperature data or precipitation data, imposes challenges to
conventional methods for longitudinal data analysis in modeling the temporal dependence.
In this chapter, the objective of our research is to develop a new statistical model to better
characterize and forecast such kinds of data.

With the increasing focus on dependence modeling with copula models, applications
of copulas and vine copulas to longitudinal data are relatively limited. Lambert and
Vandenhende (2002) introduced copula to model the multivariate non-normal longitudinal
data. Smith et al. (2010) considered using D-Vine copula to model the serial dependence in
time series, but they focused more on the estimation of the vine copulas and did not include
covariates into the model. Killiches and Czado (2018) considered modeling the repeated
measurements with a homogeneous vine copula model under a unbalanced design. Each
bivariate copula in the vine structure is assumed to be Gaussian copula, so that the model
can be used to make prediction easily. Other studies include Frees and Wang (2006),
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Domma et al. (2009), Madsen and Fang (2011), and Ruscone and Osmetti (2016). Most
of the studies focused more on estimation instead of prediction, and the time ordering of
the longitudinal data did not receive much attention.

Applying vine copula models to longitudinal data with a long time span can be pro-
hibitive, since the number of parameters in the model will increase considerably as time
length increases. In Chapter 2, we propose a special R-Vine structure to describe the
temporal dependence of longitudinal data that exhibits periodic patterns. The R-Vine
structure can be easily combined with composite likelihood ideas to simplify the estima-
tion procedure and reduce the computation burden. It also provides a convenient structure
for prediction of future observations. Furthermore, we consider using composite likelihood
to simplify inference procedures and concentrate on the parameters of primary interest.
We also compare different estimation procedures, simultaneous estimation and two-stage
estimation, to further facilitate the fast inference of our proposed model.

The rest of the chapter is organized as follows. In Section 2.2, we discuss the model
formulation, including marginal and association models. In Sections 2.3, we describe how to
estimate the parameters, and in Section 2.4, we give the procedure for copula selection and
prediction. In Sections 2.5 and 2.6, simulation studies and analysis of Ontario temperature
data are provided, respectively.

2.2 Model Formulation

Suppose that we are interested in a particular type of longitudinal data which exhibits a
periodic pattern, such as longitudinal data of temperature and precipitation. To feature
periodic patterns, we examine the data by periods, called time blocks in what follows,
and let b denote the number of time points in each time blocks. Suppose that we have a
time blocks, let m = ab denote the total number of observed occasions, and n subjects are
observed at the m occasions. For longitudinal data with no periodic pattern, we set a = 1.
Let Y;i; be the continuous response for the ¢th subject at the [th time point in the kth time

block, and let x;; be the associated covariate matrices. Let Yir = (Yik1, ..., Yiw)" be the
vector of responses of the ith subject in the kth time block, and let Y; = (Y;],...,Y,>)" be
the full vector of responses of subject ¢ for i = 1,....,n and k = 1,...,a. Let lower case

letters y;. and y; denote the realizations of of Y, and Y, respectively, and let x;; and x;
denote the corresponding covariates.

We now introduce the joint model for Y; which shows the dependence of Y; on z;. It
is difficult to directly specify a meaningful joint distribution of Y;, given z;, to account for
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the dependence structure of the components of Y;. To come up with an interpretable joint
model for Y; given x;, we take two steps. In the first step, we characterize the dependence
of Y; on z; via regression models, which contain random errors; in the second step, we
further delineate the dependence structures of the components of Y; by characterizing the
dependence structures of the random errors resulted from the first step.

Specifically, for i =1,...,n, k=1,...,a,and [ = 1,...,b, we assume that
Yiee = pirt + €int, (2.1)

where pi = E(Yi|Ti), and € is the associated random error term. We further assume
that

gl(,uikl) = xiTk:lﬁb

where g¢;(+) is the link function and f; is the parameter vector associated with time [. Let
B =B ....0)" Fori=1...,nand k = 1,...,a, we let g = (€ig1,...,cmp)" and
ei= (e, ..., eb)"

To reflect that responses from the same subject across time points are possibly asso-
ciated, in the next step, we focus on characterizing the dependence structure among the

components of ¢; using vine copula models.

2.2.1 Joint Distribution of ¢;
Marginal Distribution of ¢;

For [ = 1,...,b, we assume that marginally, the random errors {e;,; : i = 1,...,n; k =
1,...,a} share the same distribution function and let Fj(-;w;) and f(-;w;), respectively,
denote their cumulative distribution function (CDF) and the density function indexed by
parameter vector wy, i.e.,

girt ~ Fi(eipr; wi), (2.2)

fori=1,....,n; k=1,...,a. Let w = (w],...,wy)" and let n = (f",w")" denote the
parameter vector associated with the marginal distribution of the Y.
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Dependence Structure of ¢;

We employ vine copula models (Bedford and Cooke, 2002) to delineate the dependence
structures of the random vector ¢;. In particular, D-Vine and Canonical vine (C-Vine) are
two useful cases of regular vine copula models, which pertain to pair-copula constructions
(Aas et al., 2009).

As longitudinal data has a natural temporal order, Smith et al. (2010) and Killiches and
Czado (2018) both considered modeling longitudinal data using a D-Vine structure under
different settings. However, in the second or higher levels of D-Vine trees, describing the
stochastic behavior of the current responses needs to be conditional on future responses,
which creates difficulties in interpreting the copula parameters. As a result, we adopt a
C-Vine to model the dependence structure between different time points within a block to
avoid this problem and yield an interpretable model.

Specifically, we propose to use an R-Vine structure to model the dependence structures
within €;. Within each time block, the dependence structure between time points is as-
sumed to be identical and modeled with a C-Vine structure; and different time blocks are
connected by a D-Vine structure. To illustrate this idea, in Figure 2.1 we present an exam-
ple with 4 time blocks and 4 time points within each block, where T}, T5 and Tj represent
the first three levels of trees in the vine copula model, and the nodes in the (blue) boxes
represent the error terms of time points within time blocks, which have a C-Vine model
structure.

We first introduce necessary notation before we give the mathematical form of the R-
Vine structure. For c =1,...;aand d =2,...,b+ 1, let Gjog = {€sa : L = 1,...,d — 1}.
For s,g € {1,...,a} and h,r € {1,...,b}, let

g—1
{ U gic(b+1)} U gish U gigr7 if s < g—- L
Dish,igr - c=stl
Gish U Gigr, if s=g—1;
Gishs ifs=gandh <r.
Furthermore, for a random variable Z;, a random vector Zy = (Za1, ..., 22, )" and a

random vector Zs = (Zs1,. .., Z3ay)" with 1 +dy +dy = m, let F,,,,,.(21, 22, 23) denote the

joint CDF of Z;,7Z5 and Z3, with f;,,,,, as the corresponding density function. As a result,

the joint density of the random vector Zs is derived as f,,(22) = [ [ faizozs (21, 22, 23)d21dz3,

and the conditional CDF of Z;, given Z, is

ad1F21Z2<21,22> % 1
8221 e aZle fZ2 (Zg) ’
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Figure 2.1: A R-Vine structure for 4 time blocks and 4 time points within each block

where Fy,,,(21,22) = lim Fy,4,4,(21, 22, 23) is the joint CDF of Z; and Z,.
Z3— 00

For e;x;, and e, with h < r in the same time block k, let cgp (-, -) denote the con-
ditional copula density function between e;, and e;x,, given the conditioning set Digp ik,
where the first and second arguments in the copula density are given by wirnpi, i1,
FEikh\Dikh,ikT (Eikh‘DikhﬂkT) and Wikr|Dinikr — FEikrlDikh,im (gikT‘rDikh,ik?") respectively, and Fsikh|Dikh,ikr
and I, D, .. are the conditional CDF's of ;45 and €4, given the conditioning set Dixp, ik
respectively, which are obtained from (2.3) by letting Z; = e;xp Or €y Zo = Digpikr and
Z3 = €i\{€ikh U Dighikr } o €:\{€itr U Dikn ik }-

For e;5, and €, in different time block with s < g, let cg, 40 (+,-) denotes the condi-
tional copula density function between e;5, and €;4,, given the conditioning set Djgp igr,
where the first and second arguments in the copula density are given by winp,,, ..
F&shmish,igr (giSh‘DiSh,igT) and Wigr|Disn,igr — nggrlpish,igr (8igT|DiSh,i9T) respectively, and FEish|Dish,igr
and F, cigrDishiigr A€ the conditional CDF's of €5, and &;4,, given the conditioning set Disp, igr
respectively, which are obtained from (2.3) by letting Z; = e;4, or €igr, Z2 = Djspigr and
Z3 = gi\{gish U Dish,igr} or €i\{5igr U Dish,igr}-

Combining the marginal model and the dependence structures specified, we write the
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joint density function of ¢; as

fleizw, 0,4) = {HHfl ikl Wi }

k=11=1

a b—1
H H H Ckh,kr uzkh\Dmh ikr s Wik | Digh it s Okn kr)

k=1 h=1r=h+1

a—1l a b b
X { H H H H CSh’gT (ui5h|Dish,igr7 uigr‘Dish,igr; wSh:gT) }7 (24>

s=1 g=s+1 h=1r=1

where the product in the first set of brackets corresponds to the marginal densities of the
g:x1, the product in the second set of brackets corresponds to the C-Vine structure within
time blocks indexed by the dependence parameter vector 0 = {Ogppr - k= 1,...,a;h =
L,....,b—1;7r = (h+1),...,b}, and the product in the third set of brackets corresponds
to the D-Vine structure connecting the time blocks indexed by the dependence parameter
vector ¥ = {Ygpgr :s=1,...,a—1;g=s+1,...,a;h,r =1,...,b}. Let ¥ = (6", ¢")"
denote the vector of dependence parameters.

We comment that although in formulating the sequence of bivariate conditional copula
density functions for (2.4), we employ an m-dimensional joint CDF via (2.3), the de-
termination of the joint density function g; is done through the density decomposition in
combination with the componentwise specification via (2.4), which is different from directly
specifying an m-dimensional joint distribution of ¢;.

2.2.2 Joint Model of the Responses Y;

Applying the one-to-one transformation to the random variables defined by (2.1) in com-
bination with the joint density function (2.4) for ¢;, we obtain the joint distribution of
responses Y;, given by

f yi;n, U {HHfl yzkl zklﬁl) wz)}

k=11=1

{H

k=1h=

1
1r=h+1
a—1 a b b
X H H H H CShvg’r (uishlpish,igr7 uigT‘Dish,igr; wShagr) (25>
s=1 g=s+ r=1

1h=17r=

b
H Ckh,kr(uz'khm,.kh,ikr, Wikr| Digh ikr s ekh,kr)
h
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where snp = I, Dinigr (Eish| Dishigr) in (2.4) is now expressed as uisup

ish,igr sh,gr

F 1 Disniar (yish — gl(x;fshﬁhﬂDiSthT) by using (2.1). Here g~'(-) represents the inverse
function of g(+).

2.3 Estimation Methods

Given the availability of the joint distribution of Y;, it is natural to use the likelihood
method to estimate the marginal parameters 7 and dependence parameters ¥ simultane-
ously. Let

Lz(na 19) = f(yilh ey Yiabs 1)y 7’9)

be the likelihood contributed from subject 7. Then the full likelihood is

n

L(n, ) = [ [ Li(n, ). (2.6)

=1

Maximizing the likelihood function (2.6) with respect to 1 and ¥ gives the maximum
likelihood estimator of (n™,9")", denoted by (7", 9")".

The likelihood method is conceptually easy to implement, and it yields consistent and
efficient estimators if the associated models are correctly specified. However, this method
has two major limitations. Computationally, when the dimension of Y; increases, the
number of parameters in the likelihood function will increase dramatically, and thus, using
the likelihood for estimation can be computationally prohibitive. Theoretically, the validity
of the maximum likelihood estimator hinges on the correctness of all the assumed models.
Any model misspecification may result in biased results.

To overcome the weakness of the likelihood method, we explore the alternative esti-
mation methods using the composite likelihood framework (Lindsay, 1988; Varin, 2008;
Varin et al., 2011; Lindsay et al., 2011; Yi, 2017b), of which the details are elaborated in
following sections.

2.3.1 Simultaneous Estimation with Composite Likelihood

Rather than working with the joint distribution of Y; in (2.5), we ignore the dependence
structure between time blocks. This ignorance is driven by the fact that the parameters v,
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which consists mostly of the parameters in high levels of R-Vine tree, are not of primary
interest (Brechmann et al., 2012).

Let ¢ = (n™,0")", we consider the joint distribution of Y, for subject i within the kth
time block

b
FWirts -y @) = [ [ filwin — 97 (@B 1)
=1

b—1 b
X A TT II cmnrCuinnpnn i e Dy e, Onir) (2.7)

h=1r=h+1

fori=1,...,nand k =1,...,a. This distribution form is simpler than (2.5).

Next, we formulate a composite likelihood for the parameters ¢ using (2.7) and ignoring
the dependence among different time blocks:

Lei(9) = [ [ fWirs - viwws );
k=1

L.(¢) = H Lei(9). (2.8)

Maximizing (2.8) with respect to ¢ yields a composite maximum likelihood estimator of ¢,
denoted by ¢cs.

The asymptotic results of composite likelihood have been discussed by Varin (2008),
Varin et al. (2011), and Yi (2017a) among others. Under regularity conditions, the esti-

~

mator ¢s has the following asymptotic properties:
(1) qgcsi>¢asn%oo;
(2) Vi(des — ¢) = MVYN(0,G7(9)) as n — oo,

where G(¢) = H(¢)J(¢)H(¢) is the Godambe information matrix, H(¢) is the sensitivity
matrix, and J(¢) is the variability matrix, defined, respectively, as

ot 0= { (557 (%557)
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Inference about ¢ can be carried out by using the asymptotic distribution of $ When
doing so, it is necessary to estimate G(¢) consistently, which is available from consistent
estimators of H(¢) and J(¢), given by

62 C'L
Cbcs B Z aﬁbaQbT p= ¢cs

1S (0Lu(d)\ [0La(0)\
and J%):ﬁZ( 9 )( 9 )‘Ws’

=1

respectively.

2.3.2 Two-Stage Estimation with Composite Likelihood

To further ease computation burdens, we treat n and 6 differently when employing (2.8)
for estimation. Specifically, we estimate 1 using a simpler formulation than (2.8) and then
use (2.8) to estimate € only. We now describe a two-stage estimation procedure. In the
first stage, for [ = 1,...,b we construct the marginal likelihood functions for marginal
parameters 7, = (5, w)",

Ly 771 Hfl (yzkl gl zkzﬁl);wl>>

and

n

Li(m) = [ ] Lau(m)- (2.9)

i=1
Maximizing (2.9) with respect to n; yields an estimator of 7;, denoted by 7, for [ = 1,...,b.
Let fjer = (0], ..., )"

In the second stage, we plug 7cr into (2.8) and obtain L.(fcr,¢). Then maximiz-
ing L (ﬁCT,G) with respect to 6 provides an estimator of 6, denoted by fcr. Let ¢CT =

(e 082)™
Let Qi(n) = a% S0 log[Li(m)] and Ui(n,0) = 2 10g[Lci(n, 0)]. Define

a7 Qi(n) 0
H<¢>:E(&%Ui<n,e> Ui e)) and
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J(¢) = E{Wi(n, O)Wi(n,0)"},

where Wi(n,0) = (Qi(n)*,Ui(0,7)")". Similarly, based on the results of Varin (2008),
Varin et al. (2011) and Yi (2017a), under regularity conditions, the estimator ¢, has the
asymptotic results

(1) &CTi>¢asn—>oo;
(2) Va(dor — ¢) —= MVN(0,G(9)) as n — oo,

where G(¢) = H(¢)J ' (¢)H(¢) is the Godambe information matrix. H(¢) and J(¢) can
be consistently estimated by

R 1 - a%@z’(ﬁ) 0
H<¢CT>—;;(8%UZ-@,0> 00,0 oien 20

90T

p=dcr ’

JGer) =+ S Wil 6)Wiln,0)7)

respectively.

2.4 Copula Selection and Prediction

Dissmann et al. (2013) proposed a sequential procedure which selects copula forms for
each of the (conditional) bivariate copulas level by level, where the selection is carried out
with a prespecified vine structure from a set of candidate copula functions. The sequential
procedure facilitates a fast model selection process by considering each (conditional) pair
separately. In the same spirit of the composite likelihood formulation (2.8), we assume the
same dependence structures within time blocks and ignore the dependence between blocks.
Pretending to have n x a independent time blocks, we apply sequential selection procedure
of Dissmann et al. (2013) to select copula functions in the C-Vine structure within blocks.

We are interested in predicting the observations for a subject in the study for a fu-
ture time point (i.e., time extrapolation) or for some new subjects at a given time point
(i.e., subject extrapolation). Please see supplementary materials for our discussion on sub-
ject extrapolation through simulation studies and data analysis. We focus on the time
extrapolation in this subsection.
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Suppose that for subject 7, at time block £, the observations for all time points j < h
have been observed, and we would like to predict the observation at time (h + 1), where h
is a given time point. First, the estimate of the mean for the marginal model is calculated
as

fiiw = g7 (1)

forl =1,...,(h+1). Then, the error terms of the h observed time points can be calculated
and transformed as “pseudo-observations”, i.e., for [ =1,..., h,

Eikl = Yikl — [l and Uy = Fi(Eas ).

Next, the conditional distribution of the error term at time (h + 1) can be approximated
as

fe é Ean) = F(Eikts - s Eikhs Eik(hi1))
ik(h+1)|Eikls - - - Eikh) = - -
eIk o f(€ik1,---,€ikh)

which by (2.4), is equal to

~ ~ h ~
fCirrs o Einn) frv1 (Cinnn)) Tloz Crrb(nat) (Qinr Doy, insny » Wik(ht D) [ Digringnasy)

f(éikla cee 7éikh)

h
= fh+1(5ik(h+1)§ wh+1) X H Ckr,k(h+1)(uikr\Dikr,ik(Hl)uuik(h+1)|DikT7ik(h+1))a (2-10)
r=1
where the conditional terms aikrlpikr,ik(h . and Wik (h 1) [Digorin (1) AT€ calculated by applying

Ocpq(up,uq) Ocpq (Up,uq)
Oug

unconditional label, such as 7kr, or conditional label, such as ikr|Dikr7ik(h+1). As a result,
the predicted outcome Ji(n+1) for subject 7 at time point (h + 1) in time block k is given
by

the formulas ), = and g, = iteratively, in which p and ¢ can be any

Uik(h+1) = E(Eik(hs1)|Eik1y - - -5 Eikn) F flik(ht1)

:/ Eikha1) S (Eik(hr1) | Eikts - - - Eikn) dEik(ha1) + flik(ht1)

—00

with f(€ixns1)|€ikts - -+, Eirn) determined by (2.10). The prediction variance of Jn1) is
calculated as

Var(Yirnt1)) = Var(ewn1))/(k — 1) + Var(eipnin) [éirt, - - - Eirn),

where the first component is related to the marginal model at time A + 1, and the second
component can be calculated from the conditional density f (5ik(h+1) |Eik1y - - Eikn)-
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2.5 Simulation Studies

In this section, we conduct simulation studies to examine the finite sample performance of
the proposed composite likelihood under simultaneous and two-stage estimation procedures
in terms of efficiency, robustness, mis-selection rate and prediction accuracy, which will be
elaborated in Sections 2.5.1, 2.5.2, 2.5.3 and 2.5.4, respectively.

2.5.1 Validity and Efficiency

In this subsection, we explore the validity and efficiency loss of the proposed composite
likelihood method relative to the likelihood-based methods. We first introduce various
simulation settings, describe evaluation metrics, and finally report the simulation results.

Simulation Settings

We consider scenarios where the sample size n = 500 or 1000, the number of time blocks

is a = 4 and the number of time points in each time block is b = 4. The covariates

x;r are independently generated from a uniformly distribution on [0,5] for i = 1,...,n,
=1,...;,aand [ =1,...,b. Suppose that the marginal model is

Yiie = Boi + Buxirg + Bark + €is (2.11)

where g, ~ N(0,07), fori=1,...,n, k=1,2,3,4and [ = 1,2,3,4. We set the values of
the marginal parameters as 1, = (8o, fu, B, 00)" = (L, 1+ 1,14+ 2,2)" for 1 = 1,2, 3,4.

In this subsection, we assume the error terms bear the R-Vine structure as demonstrated
in Figure 2.1 and we further assume the conditional independence in tree structure 7 and
beyond for simplicity. We consider two scenarios where the dependence is either strong or
moderate. For the scenario of strong or moderate dependence, the (conditional) bivariate
copulas connecting the time blocks in T3, Ty and T3 are all Gaussian(0.8) or Gaussian(0.5).
More specifically, the bivariate copula functions and their corresponding parameter values
for the C-Vine structure within each time block are given in Table 2.1. In the scenario of
strong dependence, the Kendall’s Taus of the bivariate copulas in T3, T; and T3 are set to
be 0.7, 0.6 and 0.5, respectively; in that of moderate dependence, they are set to be 0.4,
0.3 and 0.2, respectively. The values of the dependence parameters are set to reach the
desired degree of dependence. We generate the error terms ¢; from joint density (2.4), in
which the marginal distribution is normal and the dependence structure is the previously
specified R-Vine; the values of Yj;; are determined by (2.11).
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Table 2.1: Copula functions and the values of the dependence parameters in the dependence
structure within each time block

Bivariate Variable Eikl, Eik2 Eikl, Eik3 Eikl, Eikd  Eik2 Eik3|Sikl ik SikalEik1  Eik3s EikalEik1, Eika
Copula Function Clayton Gumbel Gaussian Frank Gaussian Frank
Strong Dependence
Kendall’s Tau 0.7 0.7 0.7 0.6 0.6 0.5

Dependence Parameter 01 5o = 4.67 0103 = 3.33  Op10a = 089 Opop3 =793 O pa = 0.81 Orspa = 5.74
Moderate Dependence
Kendall’s Tau 04 04 04 0.3 0.3 0.2
Dependence Parameter g1 p0 = 1.33 gz = 1.67 Opipa =059 Opops =292 Opops = 0.45 Ok s = 1.86

The simulation is repeated 500 times. We compare the performance of the following
four estimation methods:

(1) Method 1: full likelihood using simultaneous estimation procedure,
(2) Method 2: full likelihood using two-stage estimation procedure,

(3) Method 3: composite likelihood using simultaneous estimation procedure described
in Section 3.1,

(4) Method 4: composite likelihood using two-stage estimation procedure described in
Section 3.2.

Note that the first stage of Method 2 and 4 are both using the marginal likelihood (2.9)
and essentially provide the same estimates for marginal parameters.

Evaluation Metrics

The following five evaluation metrics are used to evaluate different aspects of the estimators
obtained by using the four estimation methods.

e Empirical Bias (EBias): The difference between the average of the estimated values
from 500 simulations and the true value of the parameters;

e Empirical Standard Error (ESE): The sample standard deviation of the 500 estimates;

o Asymptotic Standard Error (ASE): The average of 500 estimated asymptotic stan-
dard deviation of the estimators;

36



e Empirical Coverage Probability (ECP): The proportion of the 500 confidence intervals
that contain the true parameter value;

o Asymptotic Efficiency (Efficiency): The ratio of the asymptotic variance of an esti-
mator obtained from Methods 2, 3 or 4 relative to those of Method 1.

Simulation Results

We report the simulation results which include EBias, ESE, ASE, ECP and Efficiency for
the four estimation methods. For the setting of strong dependence and n = 500, Table 2.2
summarizes the results for marginal parameters and dependence parameters. The results
for strong dependence and n = 1000 are reported in Table A.1 and those for moderate
dependence and n = 500, 1000 are summarized in Tables A.2 and A.3 in Appendix A.1.1.

The results in Table 2.2 show that when dependence is strong and sample size is 500,
the finite sample biases for the estimates of the marginal parameters 7 obtained from all
four estimation methods are fairly small, ASEs and ESEs are close to each other, and
ECP is close to the 95% nominal level. These results suggest that the proposed composite
likelihood methods (i.e. Method 3 and 4) yield consistent estimates. However, these
methods may incur noticeable efficiency loss; Method 3 is more efficient than Method 4,
as expected. Similar patterns are observed for the estimates of the dependence parameters
within blocks 6, as shown in Table 2.2.

As expected, the performance of the four methods becomes better as the sample size
increases, as displayed in Tables A.1 and A.3. The efficiency loss incurred by the com-
posite likelihood methods becomes less severe when the dependence among the response
components is weaker, as illustrated in Tables A.2 and A.3. We notice that the efficiency
loss remains stable as the sample size increases by exploring the performance under the
settings with n = 1000. Generally speaking, the efficiency loss of using the simultaneous
composite likelihood (i.e., Method 3) is mild to moderate for within-block parameters 6,
while the computational time is significantly reduced compared to using the simultaneous
full likelihood (i.e., Method 1). The efficiency loss of coefficient estimators  using the
two-stage estimation procedure is obviously more severe by further ignoring dependence
structure within blocks. In Table 2.2, the two-stage estimation procedures based on full
likelihood and composite likelihood (Method 2 and 4) suffer from a similar amount of ef-
ficiency loss when estimating the dependence parameters 6, suggesting that the efficiency
loss is mainly due to the variation introduced from the first stage when estimating marginal
parameters, and is not aggravated much by making working conditional independence as-
sumptions. Under the moderate dependence setting, the two-stage procedure still leads to
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significant efficiency loss on marginal parameters, but comparable and mild efficiency loss
on dependence parameters using both full likelihood and composite likelihood as shown in
Tables A.2 and A.3.

In summary, all four methods are valid and provide consistent results for the estimation
of parameters of the models. Simultaneous composite likelihood provides consistent esti-
mates for all within-block parameters with moderate efficiency loss, even when the sample
size is small and dependence is strong, while the two-stage estimation procedure of full
likelihood and composite likelihood could introduce biases and significant efficiency loss
under the strong dependence structure, although it can greatly speed up the estimation
process.

2.5.2 Robustness

In this section, we examine the robustness of the simultaneous and two-stage composite
likelihood estimation procedures (i.e., Method 3 and Method 4 in Section 2.5.1) in contrast
to the counterparts based on full likelihood formulation (i.e., Method 1 and Method 2 in
Section 2.5.1).

Simulation Settings

The simulation studies have the same settings as those in Section 2.5.1. To examine
how the four methods behave when the dependence structure connecting different time
blocks is misspecified, we simulate data from settings where all (conditional) bivariate
copulas connecting the time blocks are all specified as Frank(7.93) for strong dependence
and Frank(2.92) for moderate dependence setting, respectively, but we assume them to be
Gaussian copula functions for model fitting.

Simulation Results

We report the performance of the four estimation methods in terms of the same evaluation
metrics as described in Section 2.5.1. The results for the strong dependence or moderate
dependence and n = 500 or n = 1000 are summarized in Tables A.4, A.5, A.6 and A.7 in
Appendix A.1.2.

Under simultaneous estimation procedure, the full likelihood fails to provide consistent
estimators for both marginal and dependence parameters, with non-ignorable empirical
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biases, gaps between ASEs and ESEs, and discrepancies between the ECPs and the 95%
nominal level. These patterns are not improved by increasing the sample size, while they
are less severe for a weaker dependence. The full likelihood based two-stage estimation
provides inefficient yet valid estimators for marginal parameters but invalid results for the
dependence parameters. Both simultaneous and two-stage estimation procedures based on
the proposed composite likelihood function (Methods 3 and 4) provide valid results for
both marginal parameters (8", w™)" and dependence parameters 6 within time blocks. Es-
timators using Method 3 incur less finite sample biases and are more efficient than Method
4. The proposed composite likelihood provide robustness with respect to misspecification
of dependence structure linking time blocks.

2.5.3 Copula Selection

In this subsection, we aim to explore the capacity of the proposed copula selection proce-
dure in Section 2.4 and examine how frequently we can select the correct copula forms for
C-Vine structure within the time blocks.

Simulation Setting

We simulate data from the same setting as that in Section 2.5.1. We evaluate the perfor-
mance for copula selection under both the strong and moderate dependence settings, and
n = 500 or 1000. The simulation is repeated 500 times.

Copula Set and Evaluation Metrics

For simplicity, we construct a set of candidate copula functions including the commonly-
used copulas in the Archimedean family (Clayton, Gumbel, Frank and Joe copula), Gaus-
sian copula and t copula. The mis-selected rate of a copula function is used to evaluate
the copula selection performance, which is computed as the number of times for which the
copula function is incorrectly selected divided by the number of simulations.

Simulation Results

We report the mis-selected rates for the six (conditional) bivariate copulas in Table 2.3,
where the correct forms are specified in Table 2.1.
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Table 2.3: Mis-selected rates for copula functions within each block

Degree of Dependence  Sample Size €1, €k €ik1,iks  Cikt, Eika Eik2, Eiks|Eim1  Eik2 EikalCik1  Eiks, Eikal€ikn, Eino

Strong Dependence 500 0.264 0 0.008 0 0 0
rong Dependen 1000 0.192 0 0.006 0 0 0

500 0.182 0 0 0.002 0.002 0.024

Moderate Dependence 1000 0071 0 . ) bz 101

The mis-selected rates for all the (conditional) bivariate copulas are close to 0, except for
the bivariate copula between e;;; and €;;9, for which the true form is a Clayton copula. The
mis-selected rates of all (conditional) bivariate copulas drop, as the sample size increases
or the dependence becomes weaker. The mis-selected rate for the Clayton copula drops
from 26.4% to 19.2% by increasing the sample size from 500 to 1000 in the scenario of a
strong dependence and drops even more dramatically from 18.2% to 7.4% for the scenario
of a moderate dependence. Generally speaking, we are confident with the proposed copula
selection method with fairly low mis-selected rates.

2.5.4 Prediction

In this subsection, we evaluate the prediction performance of the proposed R-Vine model
and compare it to that of the conventional regression models and time-series models. We
consider various settings and evaluation metrics first. We described the two kinds of pre-
diction of interest: subject extrapolation and time extrapolation, respectively, and finally
report our findings.

Simulation Settings

We consider the following scenarios. For all the scenarios, we simulate 200 datasets of the
sample size n = 500. The covariates x;;; are generated independently from the uniform
distribution on [0,5] fori=1,...,n; k=1,...;a;and l = 1,...,b.

e Scenario 1. The first simulation setting is the same as that in Section 2.5.1 with
a =5 and b = 4. We consider both the strong dependence (S) and the moderate
dependence (M) settings.

e Scenario 2: We consider the same settings as those in Scenarios 1, except that we
restrict the parameters in the marginal model across different time points to be the
same. Specifically, we set n, = (Sor, Bu, B, 01)" = (2.5,3.5,4.5,2)" for [ = 1,2, 3, 4.
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e Scenario 3 We consider the same setting as those of Scenarios 1, except that the
dependence structures within each time block previously assumed to be the same are
allowed to be different from block to block. More specifically, the bivariate copulas
and the value of dependence parameters for the strong and the moderate dependence
settings are given in Table 2.4, in which the kth row corresponds to the set-up for
the kth time block for £ =1,2,3,4,5.

e Scenario 4: We consider the same settings as those of Scenarios 3, except that we
further restrict the parameters in the marginal model across different time points
to be the same parameters and their values are set to be n, = (So, B, B, 01)" =
(2.5,3.5,4.5,2)T for [ = 1,2, 3, 4.

e Scenario 5 The error terms ¢; are simulated from an AR(1) structure instead of a
R-Vine. We set p = 0.5 for m = ab = 20 time points. The marginal model is assumed
to be

Yij = 2.5+ 3.57;5 — 5082"@(%) + 50cos (%) + €45,

where ¢;; are independently generated from N(0,1) fori=1,...,nandj=1,...,m.
The sine and cosine functions are used to model the periodic trend.

e Scenario 6: We consider the same setting as that of Scenario 5, except that the
marginal model does not contain the periodic sine and cosine functions but is of the
form

Yj; = 2.5+ 3.5z + 4.5 + &5,

where ¢;; are independently generated from N (0,1) fori=1,...,nandj=1,...,m.
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Table 2.4: Copula functions and the values of dependence parameters in dependence struc-
ture within time blocks for strong and moderate dependence settings

Bivariate Variables €1, €12 &i11,&13 €l Eid €i2, 5i13|5i11 €i12, 51‘14’&'11 €i13, 51‘14,&11; €i12
Copula Function Clayton Gumbel Gaussian Frank Gaussian Frank
Strong Dependence 4.67 3.33 0.89 7.93 0.81 5.74
Moderate Dependence  1.33 1.67 0.59 2.92 0.45 1.86
Bivariate Variables Ei21,€22  €i21,&i23  Ei21,€i24 €22, 52‘23’61'21 €i22, 51'24’81‘21 €i23, 5124’&21, €i22
Copula Function Joe Clayton  Gumbel Joe Clayton Joe
Strong Dependence 5.46 4.67 3.33 3.83 3.00 2.86
Moderate Dependence — 2.22 1.33 1.67 1.77 0.86 1.44
Bivariate Variables €i31,€i32  €i31,&i33  €i31,Ei34  €i32, 5i33|5i31 €i32, 51‘34’&31 €i33, 51‘34’51'31, €i32
Copula Function Frank  Gumbel Gaussian Frank Gumbel Frank
Strong Dependence 11.41 3.33 0.89 7.93 2.50 5.74
Moderate Dependence  4.16 1.67 0.59 2.92 1.43 1.86
Bivariate Variables Eia1,€i42  €ia1,Ei43  Eial,Eiaa Eia2, 51’43’51'41 €i42, 51'44’52‘41 €i43, 51‘44,&41; €i42
Copula Function Joe Clayton  Gumbel Joe Clayton Joe
Strong Dependence .46 4.67 3.33 7.93 2.50 5.74
Moderate Dependence — 2.22 1.33 1.67 2.92 1.43 1.86
Bivariate Variables €i51,€i52  €i51,€i53  Eis1,Ei54 €452, 5i53|5i51 €i52, 51‘54’&51 €i53, 51‘54’51'51, €i52
Copula Function Clayton Joe Frank Joe Clayton Joe
Strong Dependence 11.41 3.33 0.89 3.83 3.00 2.86
Moderate Dependence — 4.16 1.67 0.59 1.77 0.86 1.44

Scenarios 3 and 4 are designed to evaluate the prediction performance of the proposed
R-~Vine model where the dependence structures within each time block are not identical.

We fit the following models and compare their prediction performance.

e VINE: The proposed R-Vine copula model is fitted using the proposed composite
likelihood method described in Section 2.3.1 and 2.3.2. For this model, we consider
the following four estimation procedures:

(1) VINE? : For Scenarios 1-4, the (conditional) bivariate copula functions are
assumed to follow the forms in Table 2.1. For Scenarios 5 and 6, the (conditional)
bivariate copula functions are all assumed to be the Gaussian copula. The
parameters are estimated using simultaneous estimation.
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(2) VINEZ2 : For Scenarios 1-4, the (conditional) bivariate copula functions are
assumed to follow the forms in Table 2.1. For Scenarios 5 and 6, the (conditional)
bivariate copula functions are all assumed to be the Gaussian copula. The
parameters are estimated using two-stage estimation procedure.

(3) VINES3 : The (conditional) bivariate copulas are selected using the methods
presented in Section 4 and the parameters are estimated under simultaneous
estimation presented in Section 2.3.1.

(4) VINE/ : The (conditional) bivariate copulas are selected using the methods pre-
sented in Section 4 and the parameters are estimated under two-stage estimation
presented in Section 2.3.2.

e MRM: We assume that the marginal model for the /th time point is identical across
time blocks. A marginal regression model of the form (2.11) is fitted. The dependence
structure is completely ignored.

e LRM: A linear regression model is fitted, which takes both time block k£ and time
point [ as covariates and is of the form

Yire = Bo + Brzaw + ok + B3l + cin,
where ;3 are assumed to follow N (0,02), fori =1,...,n;k=1,2,3,4,5;1 = 1,2,3,4

e AR: An AR model in time series analysis is considered. The model form and the
time lag are determined from the data.

Subject Extrapolation and Time Extrapolation

Two kinds of prediction are of our interest: subject extrapolation and time extrapolation.
We explain the meaning of two kinds of predictions, how we create the training and test
set and how we conduct prediction in both cases.

e Subject Fxtrapolation: We are interested in predicting the value of the response for a
new subject at a past or current time point. We partition the data by subjects, use
90% of the subjects as the training set, denoted by {(y;,z])" : i =1,...,450}, and
reserve 10% of the subjects as the test set, denoted by {(y;, z])" : i = 451,...,500}.
The training set is used to fit a model, which is utilized to predict y;;; for a subject
from the test set using its covariate information and responses from the first [ — 1
time points in the kth time block.
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e Time Extrapolation: We are interested in predicting the response value for a subject
at a future time point. We partition the data by time points, use the time points from
the first four blocks as the training set, denoted by {(y},, x},)" i =1,...,500;k =
1,2,3,4;1 = 1,2,3,4}, and reserve the time points in the fifth block as the test set,
denoted by {(y};, x5)" i =1,...,500;k = 5;1 =1,2,3,4}. The training set is used
to fit a model, which is utilized to predict y;; for a time point in time block k& = 5,
based on the covariate information and the first [ — 1 time points in the 5th time
block.

Evaluation Metrics

Let %(1:1) denote the response value of the ith subject at the /th time point in the kth time

block from the rth independent dataset and let gf};} be the corresponding predicted value.
We consider the following two evaluation metrics:

e Mean Absolute Error (MAE): the mean of the absolute difference between the pre-
dicted value and the true value over all time points in the test set across 200 simu-
lations. To evaluate subject extrapolation, the MAE is computed as

200 500 4

200><50><5><4ZZZZ yzkl_ymz

=11=451 k=1 [=1

to evaluate time extrapolation, it is computed by

200 500 4

200><500><4ZZZ\ =yl

r=1 =1 [=1

The model that provides a smaller MAE is preferred.

e Percentage Outperformance: Percentage outperformance of Model 1 versus Model
2 is calculated as the number of times that Model 1 provides a smaller MAE than
Model 2, divided by the number of time points in the test set and then averaged
over 200 simulations. If percentage outperformance is over 50%, Model 1 provides
better prediction accuracy than Model 2. Let ylk ) and yzkl ) be the predicted values
from Models 1 and 2, respectively. To evaluate subject extrapolation, percentage
outperformance is computed as

200 500 4

200 x 50 % 5 ><4Z > ZZI(@% — il <l — vinl);

=1 1=451 k=1 [=1
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to evaluate time extrapolation, it is computed as

200 500 4

1 ~(1r r ~(2r T
200 < 500 < 4 ZZZ[(%—);) —yis | < o — sl D)

r=1 =1 [=1

Percentage outperformance is more robust than the MAE, which may be sensitive to ex-
treme prediction values.

Prediction Results

We report simulation results for subject and time extrapolations using all candidate models.
The boxplots of MAEs of 200 simulations for subject and time extrapolation are given in
Figures 2.2 and 2.3, respectively. There are 10 sub-figures in both figures, corresponding to
each considered simulation scenario. In each subfigure, there are 7 boxplots corresponding
to the 7 models to be compared. From Figures 2.2 and 2.3, the boxplots of the four
vine-based methods do not differ noticeably. The biases of estimators of VINE2 and
VINEA4 using the two-stage estimation are larger than those obtained from the simultaneous
procedure, as we find in Section 2.5.1. The mis-selected rate of some copula functions can
be as high as about 26% when using VINE3 and VINE4, as we find in Section 2.5.3.
However, the prediction results are fairly robust with respect to estimation biases and
model misspecification.

Table 2.5: MAEs of different models for subject extrapolation under the proposed scenarios

VINEI VINE2 VINE3 VINE4 MRM LRM AR

Scenario 1(S)  0.761 (L.158) 0.762 (1.159) 0.767 (1.159) 0.767 (1.160) 1.598 (1.977) 2.249 (2.841) 5.331 (6.550)
Scenario 1(M) 1.145 (1.486) 1.145 (1.487) 1.147 (1.487) 1.147 (1.488) 1.604 (1.980) 2.252 (2.843) 5.332 (6.549)
Scenario 2(S)  0.761 (1.158) 0.762 (1.159) 0.767 (1.159) 0.767 (1.160) 1.598 (1.977) 1.598 (1.977) 1.599 (1.975)
Scenario 2(M) 1.145 (1.486) 1.145 (1.487) 1.147 (1.487) 1.147 (1.488) 1.604 (1.980) 1.604 (1.980) 1.606 (1.978)
Scenario 3(S)  0.871 (1.216) 0.889 (1.270) 0.831 (1.217) 0.834 (1.270) 1.599 (1.986) 2.248 (2.856) 6.098 (7.336)
Scenario 3(M) 1.232 (1555) 1.235 (1.572) 1.199 (1.555) 1.201 (1.572) 1.605 (1.986) 2.253 (2.858) 6.100 (7.337)
(1.216) (1.270) (1.217) (1.271) (1.986) (1.985) (1.985)

(1.555) (1.572) (1.555) (1.573) (1.986) (1.986) (1.985)

(1.038) (1.039) (1.038) (1.039) (1.153) (1.154) (1.152)

) (1.039) (1.153) (1.154) (1.152)

Scenario 4(S)  0.871 (1.216 0.831 (1.217)  0.835 (1.271) 1.600 (1.986) 1.600 (1.985) 1.601 (1.985
Scenario 4(M) 1.232 (1.555) 1.235 (1.572) 1.199 (1.555) 1.201 (1.573) 1.606 (1.986) 1.606 (1.986) 1.607 (1.985
Scenario 5 0.830 (1.038) 0.830 (1.039) 0.830 (1.038) 0.830 (1.039) 0.923 (1.153) 0.923 (1.154) 0.922 (1.152
Scenario 6 0.830 (1.038) 0.830 (1.039) 0.830 (1.038) 0.830 (1.039) 0.923 (1.153) 0.922 (1.154) 0.922 (1.152

S: strong dependence setting; M: moderate dependence setting

0.889 (1.270
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Table 2.6: MAEs of different models for time extrapolation under the proposed scenarios

VINEI VINEZ VINE3 VINEA MRM LRM AR
Scenario 1(S) 0.760 (1.076) 0.760 (1.082) 0.765 (1.076) 0.765 (1.083) 1.596 (1.954) 2.999 (2.823) 11.356 (7.681)
Scenario 1(M) 1.145 (1.344) 1.145 (1.352) 1.146 (1.345) 1.146 (1.352) 1598 (1.963) 3.002 (2.832) 11.360 (7.682)
Scenario 2(S)  0.760 (1.076) 0.760 (1.083) 0.765 (1.076) 0.765 (1.083) 1.596 (1.953) 1596 (1.953) 1.597 (1.951)
Scenario 2M) 1.145 (1.344)  1.145 (1.352) 1146 (1.344) 1.146 (1.353) 1.598 (1.963) 1.597 (1.963) 1.598 (1.962)
Scenario 3(S)  0.847 (0.663) 0.865 (0.675) 0.837 (0.664) 0.888 (0.675) 1.596 (1.942) 3.000 (2.818) 11.356 (7.665)
Scenario 3(M) 1.219 (1.168) 1222 (1.190) 1.230 (1.169) 1.232 (1.190) 1.599 (1.951) 3.002 (2.827) 11.359 (7.781)
Scenario 4(S)  0.847 (0.663) 0.865 (0.675) 0.837 (0.664) 0.888 (0.675) 1.596 (1.942) 1596 (1.942) 1.597 (2.976)
Scenario 4(M) 1.219 (1.168) 1222 (1.190) 1.230 (1.169) 1.232 (1.190) 1.599 (1.951) 1.598 (1.951) 1.599 (2.981)
Scenario 5 0.830 (1.040) 0.830 (1.040) 0.830 (1.040) 0.830 (1.040) 0.922 (1.154) 0.922 (1.154) 0.920 (1.153)
Scenario 6 0.830 (1.040) 0.831 (1.040) 0.831 (1.040) 0.831 (1.040) 0.923 (1.156) 0.923 (1.156) 0.922 (1.154)

S: strong dependence setting; M: moderate dependence setting

The four vine-based methods provide smaller and less variant MAEs across all the
considered scenarios and for both subject and time extrapolations, suggesting superiority
in prediction performance compared to other models. In Scenarios 1-4, it is not surprising
that the vine-based models outperform the other ones, since the true models hold a vine
structure. But the vine-based models still slightly outperform the AR model when the
true model holds an AR(1) structure in Scenarios 5-6. AR performs either comparably to
MRM and LRM or a lot worse (e.g., in scenarios 1 and 3). The four vine-based models
have smaller MAEs when the dependence is stronger while the MAEs are comparable in
the strong and moderate settings when using MRM, LRM and AR models.

VINE1 and VINE3 yield smaller prediction standard errors than VINE2 and VINEA4,
because the simultaneous estimation tends to be more efficient than the two-stage estima-
tion. However, factoring in the computation cost, the improvement of using the former
method over the latter one seems marginal; in applications, it may not always be worthwhile
to pursue the simultaneous estimation method due to its computation cost. Incorporat-
ing the observation history can greatly reduce the prediction standard errors. Moreover,
prediction standard errors decrease as the strength of dependence increases.

We report the MAEs of different models for subject extrapolation in Table 2.5, for time
extrapolation in Table 2.6, and percentage outperformance of VINE4 versus the other
models in Table A.8, which further supports our comments above. In Appendix A.1.3, we
report the boxplots of MAEs by time points for subject and time extrapolation, respec-
tively. We find the MAEs for a later time point are always smaller and less variant when
using the vine models, which is the benefit of taking into account the dependence structure
within time blocks.
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Figure 2.2: Boxplots of MAEs of different models for subject extrapolation

(i) Scenario 5
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2.6 Data Analysis

2.6.1 Dataset

We consider the climate data available publicly on the website of Government of
Canada. It is homogenized Canadian surface air temperature data (Vincent et al., 2012).
The data is available at https://www.canada.ca/en/environment-climate-change/
services/climate-change/science-research-data/climate-trends-variability/
adjusted-homogenized-canadian-data.html. The dataset we use contains monthly
mean of daily mean temperature in Celsius degree at 47 Ontarian observation stations from
January 1978 to December 2018. Figure 2.4 is a run chart of the monthly temperature of
the 47 stations from January 1978 to December 2018, which obviously exhibits a yearly
periodic pattern and a mild overall increasing trend.
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Figure 2.4: The monthly temperature of all 47 stations from Jan. 1978 to Dec. 2018

2.6.2 Statistical Models

In our analysis, the monthly temperature is used as the response variable, and the geo-
graphical information, latitude, longitude and elevation, and the time variables year
are covariates. It is natural to select a year as a time block, yielding a = 40 time blocks
(years) in total and b = 12 time points (months) in each block. We partition the 47 sta-
tions into a training group with 42 stations, and a test group with 5 stations, and we make
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a division in time by letting January 1978 to December 2008 be the training period and
January 2009 to December 2018 as the testing period. The station information and the
division of stations into training and test groups are given in Table A.9 in supplementary
materials. We use the data of the 42 stations from January 1978 to December 2008 to fit
a model.

Marginal Model

The temperature highly depends on the geographical information, i.e., latitude,
longitude and elevation, and tends to have an increasing trend with respect to year in
some months. Preliminary marginal regression analysis (not shown here) suggests that the
four covariates all have linear or quadratic relation with the responses, and the identity
link function seems to be adequate, and the error terms of each month are appropriate to
be modeled by a normal distribution with mean 0.

We assume that the marginal model for the /th month is of the following form: for
[=1,2,10,11,12,

Yire =Bor + Pu - Latitude + Py - longitude + (3, - elevation
+ B - year + gi; (2.12)

and for [ = 3,4,5,6,7,8,9,

Yi =P + Bu - latitude + By - longitude + By - Longitude?
+ (3 - elevation + [y - year + €, (2.13)

where the e;;; are marginally distributed as N(0,07), for [ =1,...,12.

Dependence Model

We ignore the dependence structure between years, model the dependence between months
within each year through a C-Vine. We first select the copula functions for the C-Vine
structure within each year by using the copula selection method we proposed in Section
2.4, which is implemented using the VineCopula package in R based on a dataset of 1260
years with each of the 42 stations in the training group contributing 30 years (the training
period). All copula functions available in the VineCopula package are included in the
candidate set for selection; the available copula functions, are described by Schepsmeier
et al. (2018). Table 2.7 summarizes the selected bivariate copula functions, where the
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[th row corresponds to the Ith level of tree in the C-Vine structure and variable [ is the
dominating variable in this level of tree. The [th tree and the I’th month in Table 2.7 gives
the selected (conditional) bivariate copula functions between variables e;,; and ;.. The
minimum (min(7)) and maximum (max(7)) values of the corresponding Kendall’s Tau for
each level of the tree are also provided in the last two columns in Table 2.7. We can see
that the dependence between time points are moderate, especially in higher level of trees.

Table 2.7: Summary of the selected bivariate copula functions for the C-Vine structure
within each year

Month 2 3 4 5 6 7 8 9 10 1 12 min(7) max(7)
1 RT1(180) T2 Ga Cl In SCI Cl Fr Ga In In -0.151  0.186
2 JFSCl In SCl SCI - SCI T1 Jo T2 T2 0.000  0.215
3 T ¢ W C RTI%) I SJC  RT2180) T 0054 0179
4 RT1(180) T Ga In In  RCI90)  SJF Ga  -0.089 0.165
5 In SCI RT2(180) In  SCI In Jo 0.000  0.076
6
7
8
9

Tree

Ga JC B RI) In 0048 0371
SJC SCI RJo(9)  Gu  RGu(%) -0081 0178

In RT2(180) In T 0109 0111

SGu  RT2(180) In 0000 0.180

10 RT2(180) RCI(90) -0.077  0.053
11 JFo0208 0208

Cl=Clayton, Fr=Frank, Ga=Gaussian, Gu=Gumbel, In=Independent, Jo=Joe, T=Student ¢, T1=Tawn
type 1, T2=Tawn Type 2. CG=Clayton-Gumbel mixed, JC=Joe-Clayton mixed, JF=Joe-Frank mixed.

R means rotated with rotated degree in the bracket and S means survival copula.

Model Fitting, Model Comparison and Prediction

Based on the selected copula functions, we perform composite likelihood estimation. The
total number of parameters, which is around 150, is too large for common optimization
algorithm to optimize simultaneously and obtain simultaneous estimators. The four vine-
based methods provide comparable prediction results by simulations, thus we implement
composite likelihood estimation under two-stage estimation procedures ( VINE4) here. The
estimation for marginal parameters are summarized in Table 2.8 and those for dependence
parameters are summarized in Tables A.10 and A.11 in supplementary materials.
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Table 2.8: The estimates of marginal parameters for each month under simultaneous es-

timation and two-stage estimation of composite likelihood method (standard error in the
bracket)

Two-Stage Estimation

month [ o Bu B [ o2t Bu 0
[ -135.740(62.240) -LOTS(0.041) -0.210(0.037) : 0.009(0.002)  0.101(0.030) 3.204(0.064)
2 -34.827(27.651) -1.739(0042) -0.256(0.039) - -0.008(0.003) 0.043(0.014) 3.164(0067)
3 22.785(89.626) -1.429(0.119) -44929(19.069) 16.994(5.543) -0.005(0.003) 0.021(0.044) 2.207(0.116)
4 2431(26704)  -1012(0.009) -28.691(12.179) 25.054(4627) -0.003(0.002)  0.025(0.133) 1.944(0.00)
5 44.601(6.172)  -0.708(0.100) -14.893(26.378) 25.789(6.031)  -0.002(0.007)  0.007(0.102) 1.939(0.034)
6 -100571(21824) 0.681(0.046) -17.278(12.666) 22.259(3.084) -0.002(0003) 0.075(0.010) 1.578(0.034)
7 30.540(45.497) -0.626(0036) -21546(5.831) 19.626(2.988) -0.004(< 0.001) 0.010(0.022) 1.417(0.034)
8 1.261(23.072) -0.685(0.032) -27.126(5479) 15.480(3.112) -0.006(0.001) 0.025(0.011) 1.482(0.032)
0 00.801(13507) -0.877(0.073) -27.676(10.608) S679(3121)  -0.007(0.001)  0.074(0.006) 1.335(0.063)
10 -54.479(10.110)  -0.918(0.020)  -0.117(0.012) - -0.008(< 0.001) 0.048(0.005) 1.518(0.029)
11 -28415(1L045) -1275(0.028)  -0.061(0.018) o L0.009(< 0.001) 0.042(0.006) 2.085(0.047)
12 -68.781(19.581) -1.764(0045) -0.112(0.028) - -0.008(< 0.001) 0.068(0.010) 3.324(0.067)

In the estimation results, (5y; is negative for all 12 months, which suggests high-latitude
areas tend to have lower temperature year around and this trend is more obvious in winter
months (i.e., | Sy is larger in months 1, 2, 3, 11 and 12). For winter months, i.e., months
1-2 and 10-12, the mean temperature has a linear negative relation with the longitude. For
months 3-9 in spring and summer, the mean temperature has a quadratic relation with the
longitude. (3 is negative but close to zero, suggesting that as the elevation increases, the
mean temperature will slightly decrease. [y;, the annual temperature increase of the [th
month in Celsius degree, is positive in all 12 months, which suggests a mildly increasing
trend of temperature change over years. The findings perfectly align with our expectations.

We are interested in both subject extrapolation (predicting temperature for a new
station based on geographical information and time) and time extrapolation (predicting
temperature for a future time). In practice, the former allows us to predict temperatures
for locations without a station and the latter allows us to forecasting future temperatures.
For subject extrapolation, we predict temperatures for the 5 stations in the test group
from January 1978 to December 2008, of which the results are provided in Section 4.3 in
Supplementary Materials. For time extrapolation, we predict for 37 stations in the training
group from January 2009 to December 2018. There are five stations closed after 2008 and
data from January 2009 to December 2018 are not available. We are interested in short-
term, mid-term and long-term prediction. For short-term prediction, the prediction for
the {th month is made based on information from previous [ — 1 months in the same year
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and the prediction of the first months is using the marginal distribution; in other words,
this is prediction for the next month. For mid-term prediction, the prediction for the [th
month is made based on the temperature in the first season (months 1-3) in the same year,
for [ = 4,...,12; in other words, this is the prediction made for the rest of the year. For
long-term prediction, we are predicting the change of the temperature in a decade.

We compare the prediction performance of VINE4 with MRM, LRM and AR using
the evaluation metrics MAE and Percentage Outperformance as we did in the simulation
studies:

e MRM: The monthly marginal regression model (2.12) and (2.13) without considering
the dependence structure.

e LRM: A linear regression model includes month x5 as a covariate to account for the
variation across months. The LRM model is selected by the AIC criterion and fitted
to be

Yir, =B + B1 - latitude + 35 - longitude + 3 - elevation
2

+ [y - year + Z Bs; - month’ + £,
=1

where g;; ~ N(0,0?).
e AR: A time series model, which is selected and fitted to be
Yit =00 + P1 - latitude + (s - longitude + (3 - elevation
it Tt
+ B4 - year + [5sin (E) + Bgcos (E) + i,
where g;; ~ AR(2) for t = 1,...,360.

e SARIMA: A seasonal autoregressive integrated moving average (SARIMA) model,
which is commonly used for seasonal time series data prediction:

Yii =00 + P1 - latitude + (5 - longitude + (3 - elevation + ey,

where £;, ~ SARIMA(3,1,3)(1,0,1,12) for t = 1, .., 360.
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Prediction Results

We evaluate the prediction performance of our proposed method for short-term, mid-term
and long-term prediction. Figure 2.5 contains two subfigures, which corresponds to the
prediction performance for short-term (on the left) and mid-term (on the right) prediction,
respectively. The mid-term prediction was made for months 4-12, but the short-term
prediction was made for all 12 months, little previous information is available for months
1-3 and it tends to have large prediction errors in the first three months. Therefore, the
short-term prediction has larger median MAEs across all methods.
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Figure 2.5: Boxplot of MAEs for the short-term (on the left) and mid-term (on the right)
time extrapolation

From the boxplots of both short-term and mid-term predictions, the VINE4 has a
smaller or comparable median MAEs compared to the other methods, and the MAEs of
VINE4 are the least variant. Since the dependence between months within each year
is moderate, the advantage of the VINE4 method versus the marginal model (MRM) is
limited, which agrees with our findings in Section 2.5.4.

The prediction results for subject extrapolation are summarized in Table 2.9. Both
MAESs and percentage outperformances suggest that the proposed R-Vine model estimated
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using the composite likelihood method can provide a lot more precise prediction than the
other three conventional models.

Table 2.9: Prediction results for subject extrapolation (prediction standard error in the
brackets)

MAE Percentage Outperformance
Name VINE4 MRM LRM AR VINE4 vs MRM  VINE4 vs LRM  VINE4 vs AR

BIG TROUT LAKE 1.916 (1.979) 2.085 (2.185) 4.127 (4.056) 3.144(2.673) 0.604 0.760 0.708
SIOUX LOOKOUT  1.908 (2.013) 2.243 (2.185) 3.840 (4.056) 2.901 (2.857) 0.642 0.7117 0.725
BEATRICE 1.441 (1.949) 1555 (2.185) 2.641 (4.056) 1.753 (2.557) 0.625 0.708 0.646
HARROW 1.568 (1.939) 1.658 (2.185) 2.798 (4.056) 1.683 (2.629) 0.563 0.667 0.542
ATITOKAN 1.685 (1.975) 1.923 (2.185) 3.582 (4.056) 2.304 (2.729) 0.646 0.792 0.646
Average 1.704 (1.971) 1.893 (2.185) 3.398 (4.056) 2.357 (2.689) 0.616 0.729 0.653

The prediction results of the 37 stations for time extrapolation in 2018 are summarized
in Table 2.10. The VINE4 method provides the smallest MAE for 14 stations, MRM for
16 stations and AR for 2 stations. The VINE4 has the smallest average MAE for all
the stations. Since the dependence between months within each year is moderate, the
advantage of the VINE4 method versus other models is limited, which agrees with our
findings in Section 5. We also find that the MAEs of VINE4 are less variant. However,
the MAEs based on other methods give prediction with extremely large MAEs in some
occasions (results not shown here).

In addition, we also try to predict the temperature value of the last three seasons in
a year, given the temperature values in the first season, i.e., months 1-3. The results
for time extrapolation and subject extrapolation are summarized in Tables 2.11 and 2.12,
respectively. For the prediction of temperature in the month [ > 4, we plug in our prediction
in months from 4 to [ — 1 and combine with the true temperature in months 1-3 to form
the temperature information in the previous months.
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Table 2.10: Prediction result for time extrapolation in year 2018 (prediction standard error
in the brackets)

MAE Percentage Outperformance

Name VINE4 MRM LRM AR SARIMA VINE4 vs MRM  VINE4 vs LRM  VINE4 vs AR VINE4 vs SARIMA
LANSDOWNE HOUSE 2.132 (2.064) 2222 (2193) 4.262 (4013) 3210 (2479) 2.3 (2.482) 0383 0.740 0.688 0.602
PICKLE LAKE 2.252 (2015)  2.218 (2.193) 4.085 (4.013)  3.256 (2.901)  2.406 (2.767) 0.583 0.726 0.726 0.627
RED LAKE 2233 (1998) 2154 (2.193) 3825 (4013) 3087 (2551) 2297 (2590) 0548 0.702 0.702 0.560
FORT FRANCES 2511 (1.956) ~ 2.636 (2.193)  3.330 (4.013) 2541 (2.957)  2.057 (2.596) 0.667 0.648 0.537 0.430
MINE CENTRE 2239 (1.961) 2.218 (2.193) 3.341 (4.013) 2.267 (2.649)  2.320 (2.431) 0.575 0.658 0.525 0.565
DRYDEN 2017 (1986) 2027 (2.193) 3785 (4013) 2735 (2816) 2387 (2578) 0491 0.713 0.620 0.600
KENORA 2.096 (1.997) 2.112(2.193) 3.684 (4.013) 2,573 (3.128)  2.538 (2.603) 0.567 0.725 0.600 0.594
CAMERON FALLS ~ 1.994 (1.954) 2.054 (2193) 3110 (4013) 2,002 (2578) 2479 (2.303) 0.611 0.648 0,50 0.702
GERALDTON 2.184(2.037) 2164 (2.193) 3.502 (4013) 2532 (2.722)  2.374 (2.545) 0.583 0.694 0.542 0.560
THUNDER BAY 1925 (1.040) 2006 (2193) 3255 (4013) 2,060 (3.162) 1.779 (2.258) 0.630 0.676 0.528 0475
SAULT STE MARIE 1961 (1988) 2048 (2193) 3211 (4013) 2311 (2643) 1799 (2.082) 0,567 0,502 0617 0.520
WAWA 1976 (1938 2210 (2193) 2882 (4013) 2333 (2802) 2452 (2.70) 0.702 0.583 0.619 0.635
CHAPLEAU 1.852 (1.960) 1.832 (2.193) 3.022 (4.013) 1.944(2.760)  1.958 (2.169) 0.597 0.667 0.528 0.550
SUDBURY 1.804 (2.038)  1.831(2.193) 3.118 (4.013) 1.823 (2.559) 2.005 (2.176) 0.467 0.692 0.467 0.642
EARLTON 1.912 (2.030) 1919 (2.193) 3203 (4.013) 2014 (2.594)  2.097 (2.302) 0.542 0.650 0.567 0.584
KAPUSKASING 1.953 (2.032)  1.888 (2.193) 3.523 (4.013) 2.192 (2.821) 2104 (2.413) 0.508 0.700 0.517 0.535
MOOSONEE 1974 (2.069) 2174 (2193) 4018 (4013) 2676 (2991) 2,075 (2.280) 0.643 0.702 0.607 0.552
TIMMINS 1985 (2.024) 1.913 (2.193) 3342 (1013) 2072 (3023) 2189 (2385) 0.500 0.675 0458 0.550
MADAWASKA 2221 (1.998)  2.472(2.193) 3.189 (4.013) 2.305 (2.589) 1.646 (2.053) 0.667 0.650 0.547 0.395
NORTH BAY 1.850 (1.921)  1.712(2.193) 2.675 (4.013) 1737 (2.945)  1.836 (2.050) 0.467 0.583 0.450 0.520
GOREBAY 1740 (2.002) 1776(2193) 3242 (4013) 2139 (2601)  2.196 (1.976) 0,536 0.667 0.631 0.675
BROCKVILLE ~ 1.674 (1.938) 1737 (2.193) 2814 (4013) 1889 (2796) 1952 (2137) 0512 0.690 0.528 0.550
CORNWALL 1676 (2.019) 1.632 (2.193) 2909 (4013) 1919 (2614)  2.018 (2.248) 0491 0.667 0.602 0.646
KINGSTON 1.776 (2.000) 1.805 (2.193) 2904 (4.013) 1.930 (2.769)  1.788 (1.905) 0.611 0.611 0.565 0.510
OTTAWA 1.737 (1.986)  1.687 (2.193) 2.728 (4.013) 1.734(2.689)  1.725(2.231) 0.509 0.648 0.463 0.476
RIDGETOWN ~ 2.004 (1.996) 2201 (2193) 3320 (4013) 2485 (2491) 2216 (2.010) 0573 0.677 0.604 0570
VINELAND 1.804 (2.003)  1.682 (2.193) 3.204 (4.013) 2.024 (2.712)  1.752 (1.768) 0.476 0.690 0.548 0.510
WELLAND 181 (2017) 1817 (2.193) 2985 (4013) 2203 (2657) 1821 (1871) 0533 0.617 0.383 0557
WINDSOR 2041 (2031) 1914 (2193) 2678 (4013) 1.864 (2.748) 1927 (2:338) 0.500 0537 0491 0520
LONDON 1.800 (2.023) 1.898 (2.193) 2700 (4.013) 1920 (2.624)  2.000 (1.925) 0.529 0.593 0.565 0.574
WOODSTOCK 1722 (1.961)  1.529 (2.193) 2.370 (4.013) 1.685 (2.731)  1.828 (2.018) 0472 0.556 0.536 0.545
BELLEVILLE ~ 1.885 (2.053) 2.023(2.193) 3160 (4013) 1922 (2600) 1949 (1911) 0.556 0.583 0.667 0.630
HAMILTON 1.801 (2.037)  1.778 (2.193) 2.809 (4.013) 2.009 (2.450) ~ 1.783 (1.902) 0.542 0.583 0.575 0.542
ORANGEVILLE 1748 (1.984) 1831 (2193) 2767 (4013) 1983 (2306)  2.035 (2412) 0.639 0.556 0.625 0.642
TORONTO 1788 (1.849)  1.755 (2.193) 2.828 (4.013) 2.016 (2.728)  1.958 (2.387) 0.556 0.648 0.546 0.520
HALIBURTON ~ 1.880(2.104) 1955 (2193) 2.888 (4013) 1922 (2512) 1939 (2104) 0,504 0.504 0.565 0.580
PETERBOROUGH ~ 1.880 (2.038) 2.010 (2.193) 2861 (4.013) 2085 (2.366)  1.998 (2.029) 0.583 0.575 0.550 0.545
Average 1951 (2.014) 1960 (2193) 3.179 (4013) 2202 (2707) 2036 (2.282) 0,360 0.616 0.368 0,362
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Table 2.11: Prediction results for subject extrapolation of month 4-12, given the first 3
months (prediction standard error in the brackets)

MAE Percentage Outperformance
Name VINE4 MRM LRM AR VINE4 vs MRM  VINE4 vs LRM  VINE4 vs AR

BIG TROUT LAKE 1.721 (1.599) 1.858 (1.907) 3.838 (4.056) 2.688 (2.739) 0.525 0.764 0.736
SIOUX LOOKOUT  1.836 (1.616) 2.010 (1.907)  3.629 (4.056) 2.777 (2.797) 0.578 0.711 0.789
BEATRICE 1.322 (1.584) 1.383 (1.907) 1.962 (4.056) 1.605 (2.629) 0.569 0.625 0.708
HARROW 1.586 (1.590)  1.524 (1.907) 2.151 (4.056) 1.571 (2.592) 0.458 0.611 0.472
ATITOKAN 1.500 (1.595) 1.612 (1.907)  3.055 (4.056) 2.027 (2.447) 0.556 0.792 0.681
Average 1.593 (1.597)  1.679 (1.907) 2.927 (4.056) 2.134 (2.641) 0.537 0.701 0.677
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Table 2.12: Prediction results for time extrapolation of month 4-12, given the first 3 months
(prediction standard error in the brackets)

MAE Percentage Outperformance

Name VINE4 MRM LRM AR SARIMA VINE4 vs MRM  VINE4 vs LRM  VINE4 vs AR VINE4 vs SARIMA
LANSDOWNE HOUSE 1.900 (1.564)  1.945 (2.541)  3.894 (4.013)  2.580 (2.710) 2498 (2.567) 0.514 0.764 0.694 0.665
PICKLE LAKE 2.027 (1.638)  1.999 (2.541) 3.976 (4.013) 2.976 (3.010)  2.357 (2.578) 0.508 0.746 0.730 0.654
RED LAKE 1867 (L549) 1.827 (2.541) 3581 (4013) 2701 (2507) 2250 (2487) 0524 0.730 0.683 0.625
FORT FRANCES 1.865 (1.550)  2.149 (2.541)  2.751 (4.013) 1.842 (2.878) 2.094 (2.733) 0.704 0.654 0.481 0.580
MINECENTRE 1764 (1562) 1852 (2541) 2826 (4013) 1.724 (2.659) 2122 (2559) 0.633 0.689 0478 0.657
DRYDEN 1052 (1568)  1.897 (2.541)  3.600 (L013) 2704 (3207) 2441 (2715) 0.556 0.741 0.679 0.634
KENORA 1.823 (1.566)  1.861 (2.541) 3386 (4.013) 2.246 (3.155)  2.408 (2.735) 0578 0.789 0.589 0.628
CAMERON FALLS 1795 (1572) 1826 (2541) 2500 (4013) 1740 (2.635) 1.730 (2.399) 0,580 0.580 0.506 0.480
GERALDTON 1798 (1679) 1.785 (2.541) 3.074 (4.013) 1.878(2.337)  2.145 (2.329) 0.593 0.685 0.444 0.575
THUNDER BAY 1736 (L367) 1841 (2541) 2573 (4013) 1776 (2.655) 1.627 (2.387) 0.605 0.642 0516 0.420
SAULT STEMARIE 1709 (L572) L7701 (2541) 2412 (4013) 2104 (2937) 1754 (2229) 0.600 0533 0.633 0547
WAWA 1912 (1. 701) 1991 (2541) 2131 (4013) 2,001 (2816) 2125 (2.248) 0.603 0476 0572 0.625
CHAPLEAU 1538 (1492) 1496 (2541) 2498 (4013) 1.479 (3.068) 1895 (2174) 0.611 0.685 0.426 0.615
SUDBURY 1.696 (1.577)  1.634 (2.541) 2531 (4.013) 1.592 (2.870) 2.064 (2.257) 0.556 0.656 0.456 0.585
EARLTON 1654 (L572) 1665 (2541) 2364 (4013) 1.583 (2.869) 2013 (2.367) 0522 0.622 0422 0.735
KAPUSKASING 1739 (1.569)  1.641 (2.541) 2.984 (4.013) 1.751 (2.668) ~ 2.097 (2.367) 0.500 0.733 0.500 0.685
MOOSONEE 1.822 (1.564)  1.980 (2.541) 3283 (4.013) 2.089 (2.623)  2.771 (2.405) 0.651 0.730 0.540 0.694
TIMMINS L727 (L574) 1683 (2541) 2755 (4013) 1.639 (3.061) 2201 (2.425) 0533 0.644 0467 0.605
MADAWASKA 2007 (L571) 2301 (2541) 2431 (4013) 2111 (2606) 1.749 (2.098) 0.644 0,589 0512 0.450
NORTH BAY 1577 (1603)  1.508 (2.541) 2.282 (4.013) 1.622 (2.808)  1.967 (1.857) 0.556 0.622 0.533 0.585
GOREBAY 1486 (L574) 1524 (2541) 2366 (4013) 1979 (2679) 1811 (2.03) 0524 0.587 0.608 0.628
BROCKVILLE 1481 (L562) 1513 (2541) 1984 (4013) 1711 (2974) 1823 (1987) 0528 0.604 0.540 0.580
CORNWALL LATO(L501) 1403 (2541) 2274 (L0I3) 1771 (2905) L89G (2030) 0457 0.654 0.503 0.632
KINGSTON 1561 (L576) 1583 (2541) 2214 (4013) 1801 (3006) 1626 (1972) 0,544 0.617 0.630 0.560
OTTAWA 1493 (L570)  1.388 (2.541) 2081 (4013) 1488 (2853) 1649 (2 105) 0.469 0.617 0.481 0,554
RIDGETOWN 1.740 (1.569)  1.784 (2.541)  2.608 (4.013) 2465 (2.655)  1.869 (2.136) 0.569 0.667 0.694 0.580
VINELAND 1.598 (1.563)  1.491 (2.541) 2.498 (4.013) 1838 (2.691)  1.563 (1.841) 0.429 0.746 0.540 0.510
WELLAND 1570 (L507) 1503 (2541) 2160 (4013) 2042 (3.126) 1.494 (1.924) 0.489 0.600 0.667 0.450
WINDSOR L740 (L620) 1547 (2.541) 1872 (4013) 1585 (2718) 1847 (L975) 0407 0444 0.506 0.550
LONDON 1604 (L578) 1746 (2541) 1915 (4013) 1719 (2.798)  1.820 (2.004) 0.644 0.580 0.556 0.575
WOODSTOCK 1437 (1491) 1411 (2.541) 1702 (4.013) 1.725(3.003)  1.928 (1.985) 0481 0.444 0.593 0.695
BELLEVILLE  1.687 (L576) 175 (2541) 2261 (4013) 1704 (2.853)  2.026 (1.967) 0519 0.556 0.503 0.610
HAMILTON 1538 (L577)  1.486 (2.541) 2.098 (4.013) 1.827(2.662)  1.769 (1.969) 0467 0.567 0.611 0.585
ORANGEVILLE 1438 (1520) 1475 (2541) 1887 (4013) 1602 (2728) 1958 (2.154) 0537 0.556 0.630 0.654
TORONTO 1527 (1.595)  1.466 (2.541) 1.983 (4.013) 1.685 (2.614)  2.035 (1.936) 0.543 0.630 0.556 0.620
HALIBURTON 1.651 (1.578)  1.750 (2.541)  2.105 (4.013)  1.760 (2.890)  2.066 (2.156) 0.569 0.556 0.500 0.615
PETERBOROUGH ~ 1.797 (1.588) 1813 (2.541) 2128 (4.013) 1.930 (3.258)  1.843 (2.079) 0.500 0.522 0.511 0.505
Average 1698 (L578) 1710 (2541) 2545 (4013) 1915 (2882) 1979 (2.221) 0547 0.620 0,561 0,503

2.7 General Remarks

In this chapter, we develop a regression model with a specific R-Vine structure to analyze
longitudinal data with a time span. One of the challenge in using vine copula model to
describe temporal dependence is that the number of parameters increases quadratically
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with the time length. Use of composite likelihood can help avoid the heavy computation
and provide model robustness at the price of some loss in efficiency. Moreover, the R-Vine
model can also provide a convenient prediction procedure to incorporate information from
the previous time points.

In simulation studies, the parameters are shown to be consistently estimated with
moderate efficiency loss using the composite likelihood procedure. In terms of prediction,
the prediction results of the proposed R-Vine model under both the full likelihood and the
composite likelihood have little difference, which further illustrate the advantage of the
composite likelihood procedure in computation.
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Chapter 3

A Bayesian Hierarchical Copula
Model

3.1 Introduction

In this chapter, we are interested in the scenario with hierarchical structured data as
illustrated in Figure 3.1. The nodes at the subject level represent subjects and those
at the intermediate level represent clusters which form the population level in the top
level. Data of this hierarchical structure arises commonly in practice. Examples include
multi-center medical studies conducted at m sites, meta-analyses of m studies, spatially
configured data of m locations, longitudinal data from m subjects, time series with time
varying dependence structures of m periods, etc. The Bayesian hierarchical approach can
adopt these complex data structure naturally, as reviewed in Section 1.6 of Chapter 1, and
our interest in this chapter is to study dependence modeling under the Bayesian hierarchical
framework.

To account for a more complex hierarchical structure, the three-level structure can be
easily extended by including more intermediate levels. Suppose that multivariate data are
collected from each subject and the dependence modeling of the subject-level multivariate
structure is of interest. We propose a Bayesian hierarchical copula model (BHCM) to
model the subject-level dependence by a copula-based model; and such a model accounts
for the hierarchical structure by allowing random dependence parameters and specifying
multiple layers of prior and hyperprior distributions. This model combines the ideas of the
Bayesian hierarchical approach and the copula-based dependence modeling, and it offers
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us great flexibility in facilitating various association structures and carrying out inference
in a straightforward manner.

The rest of the chapter is organized as follows. In Section 3.2, we describe the model
formulation of the proposed BHCM. In Section 3.3, we examine issues concerning infer-
ences, the sampling scheme, and the asymptotic properties of the resultant estimators.
In Section 3.4, we discuss the selection of transformation functions and associated scaling
parameters. In Section 3.5, we perform simulation studies to evaluate the finite sample
performance of the proposed methods. In Section 3.6, we analyze the Vertebral Column
Data (Dua and Graff, 2017) using the proposed BHCM.
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Figure 3.1: A three-level hierarchical structure

3.2 Model Formulation

We consider a three-level hierarchical structure as illustrated in Figure 3.1. The single
node at the top level represents the population level. The bottom level is the subject
level in which each node corresponds to the data from a subject. The intermediate level
contains m clusters to which the bottom-level subjects belong. Let Uj; = (Uji1, - .., Ujia)"
be the vector of d features, which are collected from the ith subject of the jth cluster,
where ¢ = 1,...,n;, 7 = 1,...,m, and n; is a positive integer that may depend on j.
Let U; = (Ufy,.... U} )" and U = (U, ..., Uy)". Let wjix, uji, u; and u represent the
observed counterparts of Ujix, Uji, U; and U, respectively, fori =1,...,n;, j =1,...,m,
and k=1,...,d.
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The copula formulation is advantageous in its separation of modeling marginal distri-
butions and dependence structures, and much attention has been directed to modeling
the dependence structures with a standard treatment of marginal distributions. Consis-
tent with many authors (e.g. Aas et al., 2009; Okhrin et al., 2013a,b), we assume that
Uji follows a uniform distribution on [0, 1] marginally and focus on dependence modeling
of the subject-level data Uj; using copula-based models. In Section 3.2.1, we first use a
copula-based approach to model the dependence structure among the d features of each
subject and allow different structures for different clusters. In Section 3.2.2, we account
for the hierarchical structure and continue our discussion in the framework of Bayesian
hierarchical models.

3.2.1 Copula-based Dependence Models

According to Sklar (1959), any joint cumulative distribution function (CDF') can be written
as a copula function of its univariate marginal CDFs. A copula function on [0, 1], denoted
by C, is defined as C(uq,...,uq) = P(U; < uy,...,Uy < ug), for uniformly distributed
random variables Uy, ..., Uy on [0,1]. If the marginal distributions are all continuous, the
copula C' always exists and is unique. Here we assume that the joint distribution of d
features in cluster j is governed by a multivariate copula function C;. Then the joint CDF
F; of Uj; can be written as

fori=1,...,n;, where 0; = (0;1,...,0;,)" is a vector of parameters indexing the copula
function Cj, p; is the number of parameters, and j = 1,...,m. Let 6 = (6],...,65)"

denote the vector of all copula parameters. Common choices of multivariate copula C}
include multivariate Gaussian copula and multivariate t-copula from the elliptical copula
family (Frahm et al., 2003), and multivariate Clayton, Frank and Gumbel copulas from
the Archimedean copula family (Genest and MacKay, 1986a,b). Copula functions in the
Archimedean family contain only one parameter, while those in the elliptical family may
contain multiple parameters. Let f; and ¢; denote the density functions corresponding to
F; and Cj, respectively, for j =1,...,m.

3.2.2 Bayesian Hierarchical Models

We construct a Bayesian hierarchical model to account for the 3-level hierarchical struc-
ture as illustrated in Figure 3.1 through the following 3-stage specifications of prior and
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hyperprior distributions (Gustafson et al., 2006; Lindley and Smith, 1972). The first stage
of the hierarchical model facilitates the vector U;; = (Uji, ..., Ujia)" by a copula-based
dependence model as described in Section 3.2.1, where §; is of dimension p;. As we allow
the dependence structures to be distinct and governed by the functions across clusters, the
association parameters ¢; may have different ranges for j = 1,...,m. Before we specity
a prior distribution for #;, we map each component 6;; of 0, into the range R through a
proper transformation. A natural way of reparameterizing the parameters 6;; is to invoke
the Kendall’s 7, together with the Fisher z-transformation (Schamberger et al., 2017), and
this is especially the case when there is an explicit expression of Kendall’s 7. In the de-
velopment here, we take an alternative by writing v; = a;g;(6;) for { = 1,...,p; and
j =1,...,m, where the transformation function g(-) is a monotonic function mapping the
parameter space, A, of the dependence parameter ¢ to R, and o;; is a non-zero scaling
parameter, whose inclusion helps reflect the magnitude of the variability across clusters.

The form of the transformation functions and the rational behind rescaling are discussed
in details in Section 3.4. Let v; = (vj1,...,7jp;)" denote the vector of transformed and
scaled dependence parameters in cluster j, and let v = (v{,...,70)".

At the second stage of the hierarchical model, we specify the prior distribution for the
parameters y; as

Vil (ke o0) ~ Nz, 05), (3.2)
where pj;; and o;; indicate the cluster location and variability of 7;;, respectively, for [ =
L,...,pjand j =1,...,m. Let p; = (i1, ..., fjp,)" be the vector of mean parameters, let
oj = (0j1,-..,05p,;)" be a vector of standard deviations (s.d.) of the jth cluster, and let

pw=(ul,...,ur)" and o = (of,...,08)". We further specify the prior distributions for
cluster-level location parameters pj as

1| (pr, 01) ~ N1, 67), (3.3)
and the hyperprior distributions for cluster-level variability parameters o as
041~ Tg,

for i =1,...,p; and j = 1,...,m, where ¢; and ¢; indicate the population location and
variability of pj; and 7, is the prior distribution of oj;.

Let ¢ = (¢1,...,¢p)" and 6 = (d1,...,6,)", where p* = max(pi,...,pn). This stage
characterizes the cluster-level parameters, which corresponds to the intermediate level of
the hierarchical structure in Figure 3.1.
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At the third stage, we specify the hyperprior distribution for the population-level pa-
rameters ¢ and ¢ as

o1 ~m, and O ~ T (3.4)

for i =1,...,p%, where m, and m; are prior distributions for ¢; and d;, respectively.

Combining (3.2) and (3.3) gives

Vil (@1, 00, 050) ~ N(pr, 05 + 07) (3.5)

for il =1,...,p; and j = 1,...,m, where the variance of 7; includes the within-cluster
variability 0% and between-cluster variability o7 .

For parameters (¢",6")" at the population level and o; at the cluster level, we select a
weak-informative prior, such as an Inverse Gamma(e, €) with small €, or a non-informative
prior, such as an improper uniform prior (Jeffreys, 1946). For the construction of the
Bayesian hierarchical model, we assume exchangeability for all levels of specification.

3.3 Bayesian Inference

Here we aim to make Bayesian inference for the vector of the dependence parameters
0 = (0],...,67)". Since we have worked with the transformed and scaled dependence
parameters v in Section 3.2.2, we will continue our discussion in terms of v and transform
them back to their original scale §. We first consider the posterior distribution of ~

f(yu) o< fluly)f(7),

where f(ul|y) stands for the copula density function with the data u and the transformed
parameters 7 specified as in Section 3.2.1, and f() is the prior distribution of 7, given
as in Section 3.2.2. The distribution of f(7) can be obtained by integrating the joint
distribution of f(v,o,p,d) with respect to o, ¢ and §, where f(v,0,p,d) is determined
by f(vlo,¢,8)m(a)m(p)m(d). This calculation involves integration of dimension > 7", p; +
2p*, which is generally difficult to implement. To overcome this difficulty, we employ an
alternative strategy and sample from the joint posterior distribution f(v,o, ¢, d|u). The
posterior distributions that are used in the sampling algorithm is provided in Section 3.3.1
and sampling algorithm is introduced in Section 3.3.2.
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3.3.1 Posterior Distributions
We start with the joint posterior distribution of (7, 0", ", ")",

f(vs0,0,0lu) oc f(uly)f(vlo, ¢, 0)m(a)m(p)m(d)

Ty

m by
=1 [Hfj(uﬂ;%) L1 oCiilen o5 + 67) | momems, (3.6)
j=1 =1

i=1
where ¢(+|a, b?) is the density function of the normal distribution with mean a and variance
b2

T

The joint posterior distribution of (¢,d",0")" can be obtained by integrating (3.6)

with respect to 7,

f(0.,6lu) = / £ (.0, 0, 8lu)dry

=11 [ TLstwin [T otulen ot + Bmmemsdy. (1)
j=1

i=1 =1

Finally, the conditional posterior distribution of parameters v;, given the all hyperprior
parameters and Y = (77, -+, Vi1, V41 - - » Ym), 18 of the form

f(7j|0', ®, 67 Y(=5)» u) = f(7j|0-7 ' 5’ u)
o< f(wslv) f(vsle, 0, 0)

g pj
= Hfj(uji;’Yj)HW’sz!@l,U?z +4), (3.8)
=1 =1

where the first equality comes from that given (¢*,6",0")", v; is independent of ;.

3.3.2 Sampling Scheme

To utilize the joint posterior distribution f(v, o, ¢, d|u) in (3.6), we let ( = (47, 0™, T, 07"
denote the vector of all the parameters. The Metropolis-Hasting (M-H) algorithm
(Metropolis et al., 1953; Hastings, 1970) can be employed, in principle, to sample from
f(C|u) directly. In the instance with a high dimensional (, directly applying M-H al-
gorithm to the joint posterior distribution (3.6) is challenging because it is not always
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straightforward to choose an appropriate proposal density function and tune the param-
eters in the proposal density to get a good acceptance rate, and therefore the M-H can
be inefficient or not even converge. Directly invoking a Gibbs sampler (Geman and Ge-
man, 1987; Gelman et al., 2013) to (3.6) is not a valid option here, since the conditional
distribution of hyper-parameters does not depend on the data, i.e.,

F(o,0,6 7V ) oc fF(v Vo, p, 8)momoms.

To cope with the issue, we consider the following “layer by layer” sampling procedure.

1. Sample hyperprior parameters (o*,¢",d")" from the posterior distribution
f(o,¢,0|u) in (3.7) using the M-H algorithm.

2. Calculate the sample means of the sampled vectors in Step 1 as Bayesian estimates
for o, ¢, and 9, denoted by &, ¢, and 9, respectively.

3. Sample parameters v; from the conditional posterior distribution f(v;|o, @, 5, u) in
(3.8) with the Bayesian estimates for the hyperprior parameters obtained from Step
2 plugged in. Applying the M-H algorithm to f(v;]6,¥,d,u). Repeat this step for
jg=1...,m.

4. Transform 7](.? back to obtain GJ(-? through a division by «a;; and the inverse transfor-
mation function gj’ll(~), forl=1,...,p;,j=1,...,m,andt=1,..., N.

5. Compute the quantities of interest that are related to the parameters 6;;, such as the
posterior mean.

In Steps 1 and 3, we apply the random walk Metropolis algorithm, of which the proposal
distribution is a normal distribution with mean determined as the sampled value from the
previous iteration of the M-H algorithm. Besides normal distribution, other distributions
can also be considered for proposal distributions. For variance parameters, ¢ and 9, a
truncated normal or a Gamma distributions can be good options as well Gelman et al.
(2013). If a range [a,b] of each parameter can be determined beforehand, a truncated
normal proposal can stabilize performance of the sampling procedure when the dependence
is extremely strong. Schamberger et al. (2017) and Schepsmeier et al. (2018) contain some
guidelines on determining the ranges for copula parameters.

In situations where the dimension of the parameters (", ¢",6")" is high and/or the
convergence of the sampling algorithm is a concern, one may adopt a Gibbs Sampler
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(Geman and Geman, 1987; Gelman et al., 2013) in Step 1 and further decompose the joint
posterior distribution (3.7) in the tth iteration as

Floslo 0, D, 507D ) = f(olpt, 507D, w)

n; pj
t—1 t—1
= / T £ TToCualel ™. 0% + (6 V) mo, mpmsdn;,
=1 =1

(3.9)
Flelo®, 6% u) o< f(o, 0,8V u),
F0o, 0" ) o fa, 0 blu),
where o(_j) = (of,...,07 1,05, ,...,04,)" for j = 1,...,m. Instead of sampling from the

joint posterior (3.7), sampling from each of the conditional distributions in (3.9) improves
the sampling efficiency in the sense that it facilitates a lower rejection rate yet a larger
effective sample size. This gain is at the price of increasing the computation time which is
basically caused by the calculation of the integration over ~.

While a large dimension of v can considerably increase the computation time of the
sampling procedure, Step 3 of the sampling procedure does not require an appreciable
computation time, as the sampling from (3.8) is conducted within each cluster j which
does not involve any integration. Although most of the computation time is consumed
by Step 1 for the case with a large number of parameters, applications of our sampling
algorithm are still feasible, because the most frequently-used copulas from Archimedean
and Extreme-value families contain one or two parameters; even for copulas from the
Elliptical family, such as Gaussian copula, which contain a high dimension of parameters,
it is often common to impose certain correlation structures to the copula to facilitate a
parsimonious model.

The evaluation of posterior density distribution in (3.7) involves the integrals which
generally do not have an analytically close form. To handle this issue, we suggest to use
the random walk Metropolis algorithm (Gilks et al., 1995) instead of the MCMC algo-
rithms which require the gradient of the posterior distribution, such as Langevin MCMC
or Hamiltonian MC (Radford et al., 2010).

3.3.3 Asymptotic Properties

The asymptotic properties of posterior distributions in Bayesian theory have been thor-
oughly discussed, see, for example, LeCam (1953), DeGroot (2005) and Shen and Wasser-
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man (2001). We consider the posterior distribution of v; taking the form,
f(vjlug) o |:Hf(uji|"7j)}f</7j>, (3.10)
i=1

where f(7;) is the marginal prior distribution of parameters ;, and f(u;;|v;) is the density
function of the data w;; and the parameter ;. If we let fr(uj;) denote the true distribution
of Uj;, we can define the Kullback-Leibler divergence (K-L) at v; as,

Jr(uji)

KL(~,) = /log (— fr(uji)dug;, (3.11)
! f(wil) ’ ’

to quantify the discrepancy between the model distribution f(u;;|v;) and the true distri-

bution fr(u;;). The value that minimizes the K-L divergence is labeled as 7;.

Under certain regularity conditions, we have the following asymptotic results for the
posterior distribution (see, for example, Gelman et al. (2013)):

e Consistency: For every cluster j = 1,...,m, the probability over any given neigh-
borhood of ’y} under the posterior distribution f(v;|u;1,...,u;,;) converges to 1 as
n; — 0.

e Asymptotic Normality: As n; — oo, the posterior distribution f(v;[u;1,. .., ujn,)
approaches the normal distribution with mean ’y; and covariance matrix J (’y;)_l,
where J(-) is the Fisher information function defined as (Gelman et al., 2013)

0*log f(Ujilv;) )
Vil

0;07;
where the conditional expectation is taken with respect to U;.

J(v5) = —”jE(

3.4 Transformation of the Dependence Parameters

3.4.1 Transformation Function
In this subsection, we discuss the selection of the transformation function g¢(-), which is

a monotonic function mapping A to R, where A is the parameter space for the depen-
dence parameter . In Table 3.1, we give examples of transformation functions for some
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commonly-used copula functions, where L and U are the lower and upper bounds of A,
respectively.

Table 3.1: Transformation functions for copula parameters

A Example of Copula Function | Tranformation Function
[L,U] Gaussian Copula g(z) =log (FL)
[L, 00) Clayton Copula g(x) =log(x — L)
(—o0, U] Rotated Clayton Copula g(x) =log(U — x)
(—o0,00) \ {0} Frank Copula g(x) ==

For copula functions with an infinite range, we can impose a certain finite range [L*, U*]
and use the transformation function g(z) = log (5‘2) For example, for the Frank copula,
we may impose the range [—100, 100] to cover the Kendall’s 7 from -0.96 to 0.96. In simula-
tion section, we compare the identity transformation function and the logit transformation
function with end points as [—100, 100] for the Frank copula.

3.4.2 Choice of Scaling Parameter

In this subsection, we discuss the choice of scaling parameter aj;. First, we define
Vi = gj1(0j1) as the dependence parameter mapped into R without scaling and write

*

v = (7;1, e ,7;pj)T. Then the scaled and unscaled parameters have the relationship
Vi =y, forl=1,....pjand j =1,...,m.

We impose a normal prior on «;; in Section 3.2.2 in the form of

Vit~ N(lu]lv 0-]21)7

and further impose a normal prior on the cluster mean p;; as

it ~ Ny, 67),

which is equivalent to imposing a normal prior on 77, of the form
2
* Mt 95
’}/jl ~ N _]7 _]2 )
Oéjl (6% jl
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together with the prior distribution for cluster mean

[ o7
2t =, L.
71} (671} ajl
As |ay| gets larger, both the within-cluster and between-cluster variances assumed in the

prior distributions become smaller. In other words, as |a;;| increases, we impose a stronger
3 *
prior on 7j.

Next we describe a method of choosing suitable values of the aj;. Suppose that we
obtain the maximum likelihood estimate (MLE) of 75, denoted by 47, by maximizing the
likelihood function

L(v;luy) = [ [ e (usil))-
=1

The asymptotic covariance matrix of 45 can be estimated by I~'(%}), where I(7;) is the
observed information matrix

2

0
TR = —— % oo L~ lw.
(’}/j) 8’7;8’}/;’11 og (7] |u])

;=

Let sAd(’y;l) denote the estimated asymptotic standard deviation of 77, which is calculated
as the square root of the [th diagonal element of I _1(’7;‘). By the invariance property of
MLAE, the MLE ofAyﬂ = a7}, denoted by 7j, is a7}, and its estimated asymptotic s.d.
is sd(¥;) = [az|sd(7;). We aim to choose the aj such that resultant 95% confidence
intervals of the 7; are of the same length, say, L, forall l =1,...,p; and j = 1,...,m,
where L =2 x 1.96 x sd(7;1) = 2 x 1.96 x |ay| x sd(7;,). Therefore, we set

L

3.92 x sd () )

Ozjl

which has the same sign as 7};; a; is the ratio of the target width of a 95% confidence
interval of 4;; to the width of the 95% confidence interval of ;- Consequently, the within-
cluster mean can be approximated by

L
3.92 x sd(7%)

Yii = agiyy = sign(7;) Vit
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and the within-cluster s.d. can be approximated by
L

sd(7j1) = |04Jl|3d(%l) 392

a constant value shared by all clusters. The population mean can be approximated by

) 1 m i m . . I »
=D A=) sign(i;) ~——7] (3.13)
j=1 j=1

m x 3.92 x sd(7;)

(3.12)

and the between-cluster s.d. can be approximated by
m 1 m N )
1 > =) = p—] [Z aq(77)? — mﬁz] : (3.14)
j=1 J=1

Scaling the transformed dependence parameters has the following effects. First, it
standardizes how much the subjects within the same cluster vary from the cluster mean. As
we derive in (3.12), all clusters share the same within-cluster s.d.. Secondly, the population
mean in (3.13) can be viewed as a weighted average of the unscaled ~j;’s. If a cluster has
a larger within-cluster variability in terms of 77, which has things to do with the sample
size, the shape of the copula function and the true parameter value (see Appendix B.1
for a detailed discussion), a smaller weight is then assigned to this cluster. Therefore,
the population mean will be less affected by the clusters with large variabilities and then
becomes more stable. The same argument applies to the calculation of between-cluster
variance in (3.14). Thirdly, the term sign(7;) in «; makes sure that all estimates of
scaled parameters are positive, which reduces the between-cluster variability. Based on the
simulation results in Section 3.5, we suggest to use L = 4 as “a rule of thumb” to avoid an
overwhelmingly strong or weak prior distribution.

3.5 Simulation Studies

In this section, we conduct simulation studies to examine the finite sample performance of
the Bayesian estimators of the dependence parameter # under the proposed BHCM; the
examination is taken in contrast to the performance of the likelihood-based estimators,
conventional estimators for the parameters of copula models. Though the interpretation
for Bayesian and likelihood estimators is not the same, such comparisons can shed lights
on the performance of our proposed BHCM, because with the noninformative priors for
the parameters, the Bayesian estimators would be numerically close to the likelihood esti-
mators.
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3.5.1 Simulation Settings

We consider a three-level hierarchical structure with m = 4 clusters at the intermediate
level, and the sample size is taken as n = 200 or 400. A vine copula structure (Bedford
and Cooke, 2002; Aas et al., 2009) is utilized to simulate dependent hierarchical data.
While various dependence structures can be obtained by choosing different types of vines,
changing the order of the nodes in the vine structure, and adopting different bivariate
copulas on different levels of the vine structure, here we generate data from a D-Vine
copula structure as illustrated in Figure 3.2, where the bivariate copulas in vine structure
higher than level 1 are all assumed to be independent. In Figure 3.2, the dependence
strength between Uj;; and Uj;s is of interest. The bivariate copula between Uy;o and Uy is
the connecting structure between clusters 1 and 2. Similarly, C'(ug;2, us;1) connects clusters
2 and 3, and C'(us;2, ugs1) connects clusters 3 and 4.

We consider five simulation settings. The copula forms and the parameter values are
summarized in Table 3.2. Settings 3.1 and 3.2 have the same copula forms for different
clusters, and Settings 3.3, 3.4 and 3.5 allow different dependence structures. In Settings
3.1 and 3.3, the difference between the strength of dependence is moderate across clusters,
while the difference is more obvious in Settings 3.2, 3.4 and 3.5. To demonstrate the
capability of our proposed BHCM in handling the setting with multiple copula parameters,
in Setting 3.5, we further consider copulas with a single parameter in clusters 1 and 2 and
copulas with two parameters in clusters 3 and 4. A moderate dependence between clusters
is introduced in all settings and the linking copulas are set to be Gaussian(0.71).

Level 1 [UuJ [Ulm} [UQil} [Uzm} [U:sﬂ} [Ualz} [Uzm} [Uuzj

Figure 3.2: The top level of a D-Vine structure

Table 3.2: Simulation settings: copula forms and parameters

Setting 3.1 7! Setting 3.2 T Setting 3.3 T Setting 3.4 T Setting 3.5 T
Cluster 1 Clayton(1.33)  0.40 Clayton(l 33) 040 Clayton(3.00) 0.60 Clayton(3.00) 0.60 Gumbel(2.50) 0.60
Cluster 2 Clayton(1.64) 045 Clayton(2.00) 0.50 Gumbel(2.50) 0.60 Gumbel(4.00) 0.75 Joe(2.50) 0.45
) )
) )

Cluster 3 Clayton(2.00) 0.50 Clayton(3.00) 0.60 Gaussian(0.81) 0.60 Gaussian(0.60) 0.41 BB1(5.00,3.00)* 0.90
Cluster 4 Clayton(2.44) 0.55 Clayton(4.67) 0.70  Frank(7.93)  0.60 Frank(13.00) 0.73 BB7(3.00,5.00)* 0.73
Between-cluster Gaussian(0.71) 0.50 Gaussian(0.71) 0.50 Gaussian(0.71) 0.50 Gaussian(0.71) 0.50 Gaussian(0.71) 0.50

! Kendall's 7
% Clayton-Gumbel Copula
3 Joe-Clayton Copula
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We construct the following BHCM. For ¢ = 1,...,n, j = 1,2,3,4 and | = 1,2 (for
setting 3.5), assume that

Uji = (Ujir, Ujiz) ~ Cj(ujin, wjiz; 0;)

Vit = ug;i(05),

’sz‘/ijl,sz ~ N(Mjl,%?z),

101, 01 ~ N (e, 07),
and all the hyperprior parameters have non-informative uniform priors. Sampling N =
6000 from the posterior distribution and setting the Normal density with mean (=" and
variance as the stepsize, as the proposal density ¢(¢’|¢%*~1), we use the M-H algorithm and
the layer-by-layer sampling strategy described in Section 3.3.2 to sample 6. The posterior

sample mean is used as the point Bayesian estimators for the parameters. In comparison,
we also obtain the MLE of # by maximizing the likelihood function

n 3

H |: H Cj u]zla u]z?v H Ck k+1(uk127 Uk+1 zl)

=1 k=1

where ¢; is the copula density governing the subject-dependence within cluster j for j =
1,...,4, and ¢ 41 denotes the copula densities that connect between clusters for £ = 1, 2, 3.

While the sampling algorithm is implemented on the R platform, we handle the integrals
in the posterior distribution (3.7) by employing C++ through Monte Carlo approximations
of size 15000, which is computationally fast yet the resulting approximation is fairly accu-
rate. Simulations are repeated 200 times for each setting.

3.5.2 Evaluation Metrics

We use the following metrics to evaluate the Bayesian estimators and MLEs.

1. Empirical Bias (EBias): The EBias is calculated as the average of the point estimates
obtained from 200 simulations subtracting the true parameter values.

2. Empirical Standard Error (ESE): The sample standard deviation of the 200 estimates.

3. Asymptotic Standard Error (ASE): The average of the estimated asymptotic standard
deviations obtained from the 200 simulations. The estimated asymptotic s.d. for a
Bayesian estimator is calculated as the sample s.d. of the sampled sequence, and that
of a maximum likelihood estimator is calculated from the inversion of the observed
information matrix.
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4. 95% Interval: Left and right endpoints of an equal-tailed 95% Bayesian credible
interval are computed as the 2.5th percentile and the 97.5th percentile of a sam-
pled sequence, respectively. A 95% confidence interval for the MLE is computed by
MLE=+1.96 xthe estimated asymptotic s.d.. 95% Interval is computed by averaging
the left and right endpoints of 200 simulations (Chen and Shao, 1999).

5. Empirical Coverage Probability (ECP): ECP is the percentage of the 95% credible
intervals or 95% confidence intervals that contain the true value of the parameter out
of 200 simulations.

3.5.3 Simulation Results

We summarize the simulation results for Setting 3.5 in Table 3.3, and those for Settings
3.1-3.4 in Tables B.2-B.5 in the Appendix.

Table 3.3: Simulation results for Setting 3.5

n=200 n=400
Cluster Copula Parameter L Ebias ESE ASE  95% interval ECP Ebias ESE ASE 95% interval ECP
Bayesian Estimation

1 Gumbel 2.5 4 0.020 0.150 0.133 (2.264,2.789) 0.940 0.003 0.093 0.095 (2.321,2.694) 0.950
2 Joe 2.5 4 -0.029 0166 0.158 (2.172,2.795) 0.950  -0.024 0.118 0.111 (2.263,2.701) 0.940
3 BBI 5.0 4 0111 0.617 0478 (4.116,5.998) 0.920  -0.141 0.383 0.316 (4.227,5.474) 0.925
3.0 4 0083 0.247 0.270 ( .552,3.617)  0.970 0.021  0.172 0.171 (2.689,3.364) 0.960
1 BBT 3.0 4 0.005 0279 0253 (2.551,3.550) 0.940 0.043 0232 0.185 (2.717,3.403) 0.905
5.0 4 0.038 0486 0.497 4.079,6.036) 0.970 0.021 0.364 0.347 (4.359,5.727) 0.940
1 Gumbel 2.5 20 -0.037 0.176 0.113 (2.249,2.694) 0.820  -0.015 0.087 0.072 (2.346,2.631) 0.870
2 Joe 25 20 -0.075 0191 0.133 (2.175,2.699) 0.845  -0.013 0.111 0.090 (2.315,2.669) 0.910
3 BRI 5.0 20 0.091 0.835 0407 (4.207,5.811) 0.765  -0.152 0.321 0.218 (4.401,5.262) 0.820
3.0 20 0.048 0.233 0.208 (2.647,3.469) 0.890 0.021 0.109 0.083 (2.860,3.188) 0.900
4 BBY 3.0 20 0.042 0.442 0228 (2.632,3.529) 0.780 0.113 0.198 0.126 (2.872,3.369) 0.810
5.0 20 0.051 0470 0451 (4.178,5.956) 0.950 0.053 0.322 0.250 (4.565,5.552) 0.920
Maximum Likelihood Estimation
1 Gumbel 2.5 - 0024 0141 0.147 (2.236,2.812) 0.960 0.020 0.106 0.104 (2.317,2.723) 0.950
2 Joe 2.5 - 0.036 0.169 0.178 (2.187,2.885) 0.960 0.030 0.126 0.131 (2.284,2.776) 0.940
3 BRI 5.0 - -0.373 0.541 0.863 (2.936,6.318) 0.940  -0.289 0.448 0.627 (3.483,5.940) 0.930
3.0 - 0234 0365 0472 (2.309,4.159) 0.960 0.178 0.300 0.332 2.527,3.830) 0.930
4 BB7 3.0 - 0.060 0.285 0.296 (2.479,3.640) 0.930 0.062 0.252 0.209 (2.654,3.471) 0.910
5.0 - 0072 0.520 0.547 (4.005,6.149) 0.980 0.060 0.389 0.384 (4.308,5.812) 0.920

The findings for all the settings reveal the consistent patterns, as commented below.
We tune L, the target length of a 95% confidence interval of ¥, to be 1, 4, 10 and 20
for comparison (results for L = 1 and 10 not shown). For the point estimates of the
copula parameters under all simulation settings, the EBias of estimates obtained from the
proposed BHCM are compatible with or smaller than those from the likelihood-based esti-
mates. The Bayesian estimators with L = 1 have similar ESE’s and ASE’s to those of the
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likelihood-based estimates; the standard error of the Bayesian estimators gets smaller, as L
gets larger. For interval estimates of the copula parameters, 95% Bayesian credible interval
of the proposed BHCM are shorter than the likelihood-based 95% intervals when L is set
to be 4, 10 or 20. When L is set to be a large number, there are unignorable gaps between
the ESE’s and ASE’s, and ECP deviates from the 95% nominal level. This is attributed to
the strong prior imposed on 7}, as we discussed in Section 3.4.2, so that the posterior distri-
bution may be highly peaked and deviated from the normal distribution. We recommend
against choosing L to be too small (close to 1) or too large (greater than 10). The former
imposes a weak prior and leads to results similar to maximum likelihood estimates, and
the latter imposes a too strong prior and leads to an underestimated standard deviation
and a possibly inflated bias.

As the sample size increases from 200 to 400, both the proposed BHCM and MLE
provide estimates with smaller bias, a better agreement between ESE’s and ASE’s and, the
coverage rates closer to the 95% nominal level. The improvement in the standard error of
BHCM estimates, compared to the likelihood-based estimates, is reduced, since Bayesian
estimation tends to perform better with a smaller sample size and the two estimation
methods have the same limiting distribution, which, therefore, have similar performance
as the sample size gets larger. The gaps between ESE’s and ASE’s of Bayesian estimates
with a large L are getting closer as the sample size increases, showing that the posterior
distributions get closer to normality with a larger sample.

For the Frank copula with the range (—oo,00)\{0} in Settings 3.3 and 3.4, we report
the results of two different choices of transformation functions in Tables B.4 and B.5 in
Appendix, respectively. The identity transformation function ¢g(f) = 6 performs poorly
with a small sample size, compared to the logit transformation function g(6) = log(%fz).
As the sample size increases from 200 to 400, the two transformation functions seem to

work equally well.

Above all, with L = 4 across all settings, the BHCM provides reasonable point estimates
and interval estimates of copula parameters, and smaller EBias and shorter 95% intervals
than those from maximum likelihood method. The benefit of using BHCM is more obvious
if the clusters share more similarity in the subject-level dependence structures (e.g., Setting
3.1). The BHCM exhibits capability of handling settings with copula structures containing
both one- and two-parameter copulas and large differences in dependence strength.

For the BHCM with L = 4 in Setting 3.5, we also report the sample trace plots and
sample density plots for the results of the mean parameters ¢; and p;; and those for the
copula parameters 6j; for j = 1,2,3,4 and [ = 1, 2, respectively, in Figures 3.3 and 3.4. In
all the sample trace plots, the samples of mean parameters and copula parameters vary
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closely around the posterior mean, and the sample densities are all close to a bell shape,
indicating the convergence of the M-H algorithm.
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Figure 3.3: Sample trace plots and sample density plots of mean parameters ¢; and pj; for
j=1,2,3,4and [ = 1,2 of the BHCM with L =4 in Setting 3.5
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Figure 3.4: Sample trace plots and sample density plots of copula parameters 6;; for j =
1,2,3,4 and [ = 1,2 of the BHCM with L = 4 in Setting 3.5

3.6 Data Analysis

We now apply the proposed BHCM to analyze the Vertebral Column dataset from UCI
Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets/vertebral+
column). This is a biomedical dataset collected by Dr. Henrique da Mota during a med-
ical residence at Lyon, France. The dataset contains the biomedical features of 60 pa-
tients with disk hernia, 150 patients with spondylolisthesis and 100 healthy volunteers.
The three groups of people are labeled as j = 1,2,3, respectively. Six biomechanical
features are collected, including angle of pelvic incidence (PI), angle of pelvic
tilt (PT), lumbar lordosis angle (LL), sacral slope (SS), pelvic radius (PR),
and degree of spondylolisthesis (DS), which are labeled as k =1,2,3,4,5 and 6, re-
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spectively. For j =1,2,3,¢=1,...,n;,and k = 1,2, 3,4, 5, let Y;;;, denote the kth biomed-
ical features of the ith subject from the jth group of people,where n; = 60, ny = 150, and

In medical research, PR describes pelvic lordosis angle and, PI, PT and SS describe the
shape and orientation of the pelvis. They represent two different approaches to characterize
the pelvis. For the latter one, PI is defined as “the angle between a line perpendicular to
the sacral plate and a line joining the sacral plate to the axis of the femoral heads” and is
the arithmetic summation of PT and SS (Berthonnaud et al., 2005). We are interested in
examining the dependence of PI versus PT and of PI versus SS. DS is the degree of slipping
and can take negative values. We are interested in understanding its dependence with
characteristics of pelvis including PI, PT and PR, and that of lumbar LL.

3.6.1 Marginal Model

The histograms of the six biomedical features in three groups are displayed in Figure B.2 in
Appendix B.3.1, all showing uni-modal but possibly skewed distributions. As a result, we
use a generalized skewed-t distribution to model the marginal distributions of the features
to account for the possible skewness.

The estimates of the marginal parameters are obtained by maximizing the marginal
likelihood function, and the results are summarized in Table B.6 in the Appendix B.3.
The six biomedical features are transformed to copula data w;; € [0,1] by applying the
fitted marginal CDF to the observed values of the corresponding feature. Let Uj;, denote
the transformed uniformed random variable for of the kth feature of the ith subject in
group j for 5 =1,2,3,i=1,...,njand k =1,...,6.

3.6.2 Dependence Model

We are interested in studying the dependence between the following 6 pairs of variables:
PI versus PT, PI versus SS, DS versus PI, DS versus PT, DS versus PR, and DS versus LL. The
scatter plots for those pairs are displayed in Figure B.4 in Appendix B.3.2.

We construct a set of parametric copula functions, including the commonly-used copulas
in the Archimedean family (Clayton, Gumbel, Frank and Joe copula), Gaussian copula and
their rotated versions. The specific copula function forms are selected based on the AIC
criterion (Akaike, 1998), which is conducted using the BiCopSelect function in the R
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package VineCopula Schepsmeier et al. (2018). For each bivariate feature, we construct a
BHCM for three groups of individuals.

For comparison, we consider two benchmark models. The first one is a multivariate
copula model (MCopula), which takes the same marginal and dependence models as the
BHCM, i.e., the marginals are generalized skewed-t distributions and copula models are
selected using AIC as reported in Table 3.5. The second one is a multivariate Gaussian
model (MVN), in which the marginal distributions are all specified as Gaussian distri-
bution and the copulas of the interested six pairs are also specified as Gaussian copula.
The parameters in both benchmark models are estimated using the maximum likelihood
method.

3.6.3 Results

We compare the performance of the three models, BHCM, MCopula and MVN;, in terms
of log-likelihood values and the Deviance Information Criterion (DIC) (Spiegelhalter et al.,
2014), and summarize the results in Table 3.4. The BHCM has the smallest overall DIC,
thus being the best to fit the data. For the clusters of patients with Spondilolisthesis and
being healthy, the marginal distributions of some features, for instance, DS, are highly
skewed as shown in Figure B.2, MVN provides a poor fit of the data, yielding the smallest
log-likelihood and the largest DIC. For the cluster of patients with Disk Hernia, the skew-
ness in the marginal distributions is mild and most of the bivariate copulas selected are
Gaussian copula as shown in Table 3.5. The BHCM and MCopula produce log-likelihood
values similar to that of MVN but smaller DIC than MVN does, which is partially at-
tributed to the fact that BHCM and MCopula are penalized by extra parameters in their
marginal generalized skewed-¢ distributions.

Table 3.4: Log-likelihood and DIC of three models for each cluster

Disk Hernia Spondilolisthesis Healthy Total
log-likelihood ~ DIC log-likelihood ~ DIC log-likelihood ~ DIC log-likelihood ~ DIC
BHCM -1209.79  2464.05 -3639.85 7322.6 -2060.90  4166.29 -6910.54  13952.96
MCopula ~ -1209.90  2467.78 -3637.70  7323.46 -2062.70 417345 -6910.34  13964.68
MVN -1212.80  2461.66 -3686.70  7409.31 -2079.30  4194.61 -6978.79  14065.58

Tables 3.5 shows the point estimates and interval estimates under the proposed BHCM
with L = 4 together with the results obtained from the likelihood-based method. Once a
Frank copula selected, we use the logit transformation function, which leads to more stable
results than the identity transformation function when the sample size is small, shown in
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the simulation studies. It is seen that PI has a positive dependence on PT and SS, which
aligns with the medical literature (Berthonnaud et al., 2005). Across different groups, the
dependence strengths of PI versus PT and PI versus SS show similar Kendall’s 7 ranging
from 0.4 to 0.6. The dependence between DS and other pelvic and lumbar characteristics
show an obvious distinction across groups. For patients with disease disk hernia and
healthy people, DS has a weak dependence on other four features. However, for patients
with Spondylolisthesis, DS has a much stronger positive dependence on the four features.

BHCM with L = 4 produces similar point estimates to those obtained from the
likelihood-based method, but smaller standard errors. The 95% credible interval of BHCM
with L = 4 are narrower than 95% confidence intervals obtained from the likelihood-based
method. For the cluster of patients with Spondilolisthesis, the DS feature is highly right-
skewed as shown in Figure B.2, thus MVN model fails to fit the data well.

3.7 General Remarks

In this chapter, the Bayesian hierarchical copula model (BHCM) is proposed to model
correlated data with a hierarchical structure, in which the copula model accounts for the
subject level dependence and the Bayesian hierarchical model is used to feature the hierar-
chical structure. In forming the copula models here, the marginal distributions are assumed
to be uniform over the unit interval [0, 1]. However, this assumption is not essential. Other
parametric models, such as the normal distribution and generalized skewed-¢ distribution,
can be considered to reflect various data features. Furthermore, nonparametric models can
also be considered as robust alternatives. It is interesting to extend the proposed method
to accommodate these settings.

We comment that our BHCM differs from the Hierarchical Archimedean Copula (HAC)
proposed by Okhrin et al. (2013a). Since an Archimedean copula function can be defined
through the generator function of the copula (e.g. Nelsen, 2007), an HAC is built by
applying the generator function to a lower level HAC in a recursive manner. An HAC
overcomes some disadvantages of a regular Archimedean copula. However, it is not designed
to handle a hierarchical structure as the one in Figure 3.1. Though our proposed BHCM
does not necessarily feature an HAC as the fundamental building block, our proposed
framework is general enough to cover the structures that the HAC can handle.

It is noteworthy that our proposed method has multiple sources of regularization. In
particular, the estimates of copula parameters are regularized by the tuning parameter L
and the estimates of the hyperprior parameters &, ¢, and 5. While the hyperprior parame-
ters bring in information “borrowed” from other clusters, the tuning parameter L controls
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the strength that the hyperprior parameters can influence the copula parameters. As dis-
cussed in Section 3.4 and shown in Section 3.5, with a larger value of L, the parameters 6
are more strongly regularized.
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Chapter 4

Grouping Dependence Structure and
Selection of Copula-Based Models

Using Bayesian Nonparametric
Methods

4.1 Introduction

The selection of copula forms and the estimation of corresponding parameters of dependent
data are highly related to the size of data. A small sample size can lead to inaccurate
model selection and parameter estimation. In real life, dependent data that arises from
multiple sources may exhibit a similar dependence structure, thus it is feasible to pool
the similar dependent data together. A Dirichlet process (DP) is a stochastic process
whose realizations are probability distributions. In other words, a DP is “a distribution
of distributions”. Due to its discrete nature, the DP approach is widely applied to solve
clustering problems, see Kim et al. (2006); Dahl (2006); Vlachos et al. (2009); Yu et al.
(2010). In Chapter 4, we consider using DP, in combination with copula-based models,
to identify similar dependence structures and group them together. We propose a copula-
based model with copula selection indicators and dependence parameters following a DP
prior, and we call this model the mixture of DPM copula model (M-DPM-CM). The M-
DPM-CM is able to group the clusters with similar dependence structures together. The
grouping of clusters sharing similar dependence relations can benefit the copula selection
and parameter estimation by facilitating a larger sample size.
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It is worth clarifying that the commonly-used terminologies “covariance-based cluster-
ing” and “copula-based clustering” in the literature are different from what we propose
here. The “covariance clustering” is a clustering method that distinguishes data by their
variability and quantifies the distances between two groups through the covariance matri-
ces to determine whether they should be put into the same cluster (see Ieva et al., 2016,
for example). Some works with the keyword “copula-based clustering” are further catego-
rized in Di Lascio et al. (2017) as “Dissimilarity-based clustering” and “likelihood-based
clustering”. The former measures the similarity between groups using concordance, tail-
dependence or risk measures, which all can be seen as a function of copula parameters. The
later makes the grouping based on the maximum likelihood estimation and the Bayesian
information criterion (BIC). Furthermore, Fern et al. (2005) used a mixture of local Canon-
ical Correlation Analysis (CCA) model to cluster different local correlations, which focused
primarily on the linear dependence relation. Klami and Kaski (2007) proposed a DP prior
Gaussian mixture model for dependency-seeking clustering, which “suffers from a severe
model mismatch problem” if the data is not normally distributed, as commented by Klami
et al. (2012). Rey and Roth (2012) proposed to use the DPM model to perform dependence
clustering with the dependence structure described by a Gaussian copula, but their study
is restricted to Gaussian copulas for bivariate case and does not involve copula selection.
Although their approach allows more general marginal models, they should suffer from the
same mismatch problem if the dependent structure is not Gaussian. To our best knowl-
edge, this is the first research that considers the clustering and copula model selection
simultaneously.

The rest of the chapter is organized as follows. In Section 4.2, we discuss the model
formulation and the construction of the DP prior. In Section 4.3, we describe the sampling
scheme and the sampling algorithm. In Section 4.4, we perform simulation studies to
evaluate the performance of the proposed M-DPM-CM and compare it with the model
selection procedure using AIC. Section 4.5 contains an application to the Vertebral Column
dataset.

4.2 Model Formulation

In this section, we introduce the formulation of the mixture of Dirichlet process mixture
copula model (M-DPM-CM), a model formulation different from the traditional copula-
based mixture models (e.g., Tewari et al., 2011; Rajan and Bhattacharya, 2016; Kosmidis
and Karlis, 2016; Kasa et al., 2020) which are mainly concerned with the characterization
of multimodal distributions and data clustering.
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Suppose that data arises from a hierarchical structure as illustrated in Figure 3.1. Let
Uji represent the data from the ith subject of jth cluster fori =1,...,n;and j =1,...,m.

Suppose a vector of d features are collected for each subject, i.e., Uj; = (Uji,...,Ujia)"
fori=1,...,n;and j = 1,...,m. Let U; = ( jTl,...,Uanj)T and U = (Uf,...,UM)".

Furthermore, let ik, u;i, u; and u denote the observed counterparts of Uj;,, Uj;, U; and
U, respectively, fori =1,...,n;,j=1,...,m,and k =1,...,d.

In copula-related literature, the inference functions for margin (IFM) method (Joe and
Xu, 1996) is commonly adopted to construct separate models for the marginal distributions
and the dependence structure, and focus on the dependence structure modeling in a margin-
free framework. Consistent with the copula-related literature (e.g. Aas et al., 2009; Joe,
2014), we assume that Uj;; marginally follows a uniform distribution on [0, 1], and focus
our discussion on dependence modeling of the subject-level data Uj;; using copula-based
models.

Assume that for each cluster j =1, ..., m, U; follows a distribution, which is postulated
by the copula model C}(-) with the associated dependent parameters suppressed in the no-
tation. Let {C,.(-) : » € F} denote the set of distinct copula functions with 7 = {1, ..., R}
recording the labels of distinct copula models. Common choices of copula functions include
Clayton, Frank and Gumbel copulas from the Archimedean family (Genest and MacKay,
1986a,b) and Gaussian and ¢ copula from the elliptical family (Frahm et al., 2003). To
highlight the idea, we restrict our attention to the single-parameter copula functions and
the bivariate scenario (i.e., d = 2).

To give a unified presentation for all clustered data, for j = 1,...,m, let \;, denote
the binary indicator taking value 1 if U; is modeled by the copula model C,(-) and taking
value 0 otherwise. Clearly, the constraint Zle Ajr = 1 holds for j =1,...,m. We let 6},
represent the associated dependence parameter for the copula model C,.(-) when referring
to the modeling for U;. Specifically, the joint cumulative distribution function (CDF) of
the random vector Uj; can be expressed as

R
F<Uji17 sz‘2) = ZAjrCr(ujilauin; ejr)a (4-1)
r=1
fori=1,...,n;.

Depending on the function form of the copula, the parameter range for 8}, is often one
of the following forms: (1) a bounded interval [L, U], (2) an interval [L, o), (3) an interval
(—o0,U] and (4) an infinite interval (—oo,00) \ {0}. To introduce a convenient prior for
the dependence parameter 0;,, we reparameterize 6}, via a linear transformation function
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9r(-): Vjr = g-(0;7). The third column in Table 4.1 summarizes the recommended forms of
transformation functions for four types of copula parameters.

For j = 1,...,m, let \j = (Mj1, ..., )" v = (W1, -5 %r)"s and oy = (A7, 7)".
Write A = (AT, ..., A) S vy=0F, ..., 70 )T and ¥ = (Y7, ..., ¢F)".

4.2.1 Bayesian Hierarchical Model with Dirichlet Process Prior

We construct a Bayesian hierarchical model for the random vector Uj; as follows
Ujilhj ~ F(Ujir, Ujins ¥5)
G|n,a ~ DP(a, G,),
(777 a) ~ 7T(77, a)a

(4.2)

for 5 = 1,...,m. In this model, ¢; has a prior distribution G, a discrete probability
measure, which is generated from a Dirichlet Process (DP) with a scale parameter a > 0
and a base probability measure G, indexed by parameters 1. G, can be understood as
the “center” of the DP and a indicates how much the DP concentrates around G, (Miiller
et al., 2015). The hyper-prior parameters (n",a)” have the joint density function = (-, ).

More specifically, we assume that the base measure of the DP is of the form
GT] - Gn)\ : Gﬂw (43)

in which G,,, indexed by parameter 7,, corresponds to the indicator vector \; =
(Aj1s -+, AjR)7T, and G, takes the form G, = Hle G, in which G, , indexed by n,,,
corresponds to the dependence parameters ~;, forr =1,..., R. Let n = (03,75, ---,15,)"
Specifically, we assume G, to be a measure corresponding to a Dirichlet-multinomial dis-
tribution with the total number of trial being 1, denoted by Dir-Mul(7,), where n, =
(Ma1s---,Mar)" is a vector of positive real parameters indexing the Dirichlet-multinomial
distribution. The last column of Table 4.1 provides recommended distributions for G, ,

corresponding to the four types of transformed parameters v. We let 1, = (a,,3,)", for
r=1,...,R.
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Copulas Range of 0;,  Tranformation Function Range of ;.  Distribution for G,

Gaussian [L,U] g(z) = 7o — 71 [0,1] Beta(ay, ;)
Clayton [L,0) gz)=2—-1L [0, 00) Gamma(a, 5,)
Rotated Clayton (=00, U] g(x)=U—x 0, 00) Gamma(a,, 3,)
Frank (=00,00) \ {0} glz) = (=00, ) N, 5)

Table 4.1: Transformation functions and distributions for an

For hyperprior distribution of a, we assume a ~ gamma(c,d) with mean ¢/d and
variance ¢/d?. The hyperprior distribution for 7 is assumed to be 7(-). To select weak-
informative or noninformative hyperprior distributions, small values of ¢, d are used for a
and uniform priors are set for 7.

4.2.2 Model Selection and Grouping under Dirichlet Process
Prior

While the formulation of copula model in (4.1) and the Bayesian hierarchical model in
(4.2) is natural to reflect our interest in using suitable copula models to group similar
dependence structures among different clusters, the derivation of the posterior distribution
of 1 is not straightforward. Alternatively, we consider an equivalent formulation of 1,
which will lead to convenient derivations of the posterior distribution of .

The DP prior distribution for ¢;, G, is discrete in nature. Such a property allows a
positive probability that two or more clusters can be modeled by the same copula function
with the same dependence parameter. We assume that there are h unique values of 1; for
jg=1,...,m, with h < m. Let ¢* = (¢f,...,¢5)". Forl=1,...,h, let S ={j: \; =
A,y =/} be the index set of the clusters with the Ith unique parameter vector, and let
ng, denote the number of elements in S;. Then the collection {5y, ..., Sy} is a partition of
{1,2,...,m}.

We further let z; = [ if j € S;, h; denote the number of unique models in the first j
clusters and h;; denote the number of clusters which select the Ith unique model in the
first j clusters, for j = 1,...,m. Let z = (#,...,2,)", and we have h; = Zlh:l hji,
for j = 1,...,m. When a = 0, all clusters take the same model. By the Pdélya Urn
sampling scheme (Blackwell and MacQueen, 1973), the conditional distribution of z;, given
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21,...,%j—1 and a is

M I=1,... h,
p(zj =1lz1,...,2j-1,0) = a+‘zb_1 (4.4)

—, l=h1 +1,

a+jg—1
for j = 1,...,m. This suggests that when the model assignment is completed for the first
j—1 clusters, the probability that the jth cluster is modeled by the [th model is proportional
to the number of clusters already being assigned to this model with [ = 1,...,h;_;, and
the probability of assigning cluster j to a new model is proportional to a. This sampling
scheme is a “winner-gets-more” mechanism. By the fact that z1,..., z,, are exchangeable,
the conditional distribution for z;, given z_; and a, is

he, B
p(zj =llz_ja) =g ¢ tm—1 (4.5)

where z_; = (21,...,2j-1,%j41,--.,%;)", h_; is the number of unique values in ¢_; =
(Y1, ¥y, ¥fyy, .. )" and h_j; is the number of the Ith unique value in _j, for
j=1...,m.

The proposed model has several advantages over the conventional copula model se-
lection and estimation methods. First, the M-DPM-CM performs model selection for m
clusters simultaneously. In contrast, conventional methods select the copula forms for each
cluster separately. Second, through the grouping effect of the DP prior, the clusters with
similar dependence relation will be postulated by the same model, thus reducing the num-
ber of parameters to be estimated and increasing the size for estimation of the associated
parameters, and eventually yielding more efficient inference results.

4.3 Bayesian Inference Process

4.3.1 Posterior and Hyper-Posterior Distribution

The proposed M-DPM-CM is a non-conjugate mixture of DPM model. The conditional
posterior distribution of z;, given {z_;, ¥*, a, n, u;} is

plz; = lz_j, 0% a,n,u;) o< f(ujlz; = 1,47 )p(z; = l]2—j, a)
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h_j7 ng 3 I
— {a+mil i=1 )\erT(uﬂh uJ127 elr) if l= 17 ceey h*ju (46)

ﬁ H f Z lrcr Uji1s Uji2; lr)dG (Q/Jl) ifl= h—j +1,

where 67, = g,'(v;.). Since the posterior distribution (4.6) involves analytically intractable
integrals, we take the approach of Neal (2000) to generate augmented parameters to obtain
a posterior distribution of no integration. We augment the sequence of unique parameters
by considering b additional latent parameters v, = (¥}, ,...,%5,,)", in which 94, is
independently generated from G, for v = 1,...,b. After the augmentation, the conditional
prior distribution in (4.5) becomes
b .
_'_—le, iflzl,...,h_j,
a+m—
Pz =Mz a) = a fl=h_;+1,... h,+b 0
- ifl=h_;+1,...,h_;+b.
bla+m—1) ! !

In other words, when model [ is not one of the h_; unique models that has already
been taken, instead of taking a new model generated from the DP process, we randomly
choose a model from one of the b augmented models with equal chances. The posterior
distribution of z; can be derived as

p(z = Uz, 0", ¥p, @, uy)
X a+;n”1H ZR )‘* C?”(u]llwuﬂ?’glr): if | = 1""7h—j’

sty L Doy A (wgan wjiai 05,), 1L =hoj+ 1, hoj+b,
eIl ZR Aocr(wjin, wyins 05),  ifl=1,...,h_j,

ST1 S Ar e (wjin, wiins 6),  ifl=h_j+1,... h j+b.

Then the parameter ¢1*7 conditional on z, n and wu, is

(4.8)

n; R
pi1zm,u) o< Gy() TT T A (wjin, wjin: 65,

jESl =1 r=1

Since ¢ = (A},7;) contains both discrete and continuous parameters, we further de-
compose the conditional distribution as

n; R
p(/\“za n,u, /YZ*) X GU(@Z}Z*) H H Z )‘Zkrcr(ujilﬁ Uji2; 9;)

je€S; 1=1 r=1

nj R
p(vi 12w AY) o< Go() TT T D2 A (wjin, wjin; 6,).

jeSs; i=1 r=1

(4.9)
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For hyperparameter 7, its conditional posterior distribution given ¢*, is

p(n7) ocw(n) [T Galwd). (4.10)

=1

4.3.2 Sampling Scheme

The following Gibbs sampler (Geman and Geman, 1987; Neal, 2000) algorithm is used
to obtain a sample of (2", ¢*", n" a)” from the joint posterior distribution f(z,v*,n,alu).
Let z® ¢*® pn® and a® denote the sampled values of the corresponding parameters in
the tth iteration. Let h®) denote the number of unique values in ¥*®. To simplify the
notation, we let z1.;_1) = (21,...,2j-1)" and z(i1):m = (Zj415- -5 Zm)"

In the algorithm, the posterior distribution of a, given hY) and the auxiliary parameter
#®, is a mixture of two gamma density functions with probabilities 7" and 1 — 7(®),
respectively. For details, refer to Escobar and West (1995). After the algorithm converges,
* provides the results of grouping and model selection.

We conclude this section with comments. The method developed here is scalable to
accommodating an increasing dimension of the features and the number of clusters. When
modeling data with more than two features, the commonly adopted copula forms from
Archimedean or Extreme-value families (Joe, 1997) contain only one or two parameters,
whereas copulas from the Elliptical family, such as Gaussian copula, often involve with
a larger dimension of parameters; certain correlation structures are usually imposed to
facilitate a parsimonious model. As a result, an increase in the dimension of features does
not necessarily lead to a dramatic increase in the dimension of copula parameters, thus not
bringing much challenge to the implementation of the algorithm. Moreover, when dealing
with a large number of clusters, the convergence of the algorithm is not compromised as
the sampling procedures for each cluster in Steps 2 and 3 are conducted separately. The
main paid price with a large number of clusters is the increase of the computation time
due to more iterations in each loop of the algorithm.
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Table 4.2: Sampling algorithm for M-DPM-CM

Algorithm: Gibbs sampler for sampling from the posterior distribution
f(z, 9%, m, alu)

Input: Initial values of parameters (9, ¢*© @ 40 RO m the number of
augmented parameters b and the prior parameters ¢, d for the scale
parameter a

1. Generate the additional latent parameters wét).

for v=1,...,b do

‘ Sample w,(f}rv independently from G, ¢-1).

end

2. Generate the grouping indicator z®.

for j=1,...,m do

Sample z}t) from the posterior distribution

P12 172 e 7 03,07, 5) s given in (4.8)

end

3. Generate the unique parameters ¢/*®)

for [=1,...,h" do

Sample 9} using a Gibbs sampler from the conditional posterior distribution
p(N |z, m,u, ) and p(y;|z,m, u, \f) as given in (4.9).

end

4. Update hyperparameters n* through p(n[¢*®) in (4.10)

5. Update the scale parameter a®) using an auxiliary sampler proposed by Escobar
and West (1995).

(1) Generate ¢! ~ Beta(a™1 +1,m).
(2) Solve /(1 —7) = (c+ h® —1)/{m(d — log(¢®))} to get 7.
(3) Generate

gamma(c + hY, d — log(¢")) with probability 7(*)

a|¢(t), K —
gamma(c + h® — 1,d —log(¢'!)) with probability 1 — 7®
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4.4 Simulation Studies

In this section, the performance of the M-DPM-CM is investigated through finite sample
studies from multiple perspective, in comparison with the conventional copula selection
using AIC (Akaike, 1998). Specifically, the AIC for each cluster j = 1,...,m and each
candidate model r = 1,..., R is calculated as

AICj, =2 —21In [H Cr (it Uji, éjr)] '

i=1

where éj,, is the maximum likelihood estimate of ¢}, obtained under the assumption that the
dependence structure is governed by the rth copula function from the candidate pool. The
model yielding the minimum AIC value is selected. Since only copulas with one parameter
are considered, the penalty term simplifies to a constant in the AIC formula.

4.4.1 Simulation Settings

Consider the case where we have m = 12 clusters and n; subjects in each cluster for
73 =1,...,m. We generate

sz‘ = (Ujib sz‘z) ~ Cj(ujil,uji2;9j)7

independently for ¢ = 1,...,n and 7 = 1,...,m. Four simulation settings are considered
here.

The first setting is a “high signal” setting in the sense that there are large differences
across clusters in terms of their dependence structures. We assume that the bivariate
variables (Uj;1,Uji2) are positively dependent in some clusters but negatively dependent
in others. In this setting, clusters with different dependence structures tend to be easily
differentiated and are postulated with different models. The second setting is a “low
signal” settings in which we assume that the bivariate variables (Uj;1, Uji2) hold positive
dependence in all m clusters. It is more challenging to differentiate dependence structures
across clusters. In the third setting, we let some clusters have the same parametric copula
form, but with different strength of dependence, i.e., different copula parameters. The
fourth setting facilitates a “nearly independent” structure where Kendall’s 7’s of all copulas
considered take the value of 0.1 or -0.1, characterizing an eminently weak dependence. The
copula forms C; and the corresponding parameters ; are summarized in Table 4.3.
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Table 4.3: Copula Forms and Parameter Values in Each Cluster in the Simulation Set-ups

High Signal Setting

Cluster 1 2 3 4 5 6
Copula(f;) | Clayton(3) R. Gumbel(-2.5)' Clayton(3)  Gaussian(-0.6)  Frank(6) Clayton(3)
Cluster 7 8 9 10 11 12

Copula(6;) | Clayton(3) R. Gumbel(-2.5)" Gaussian(-0.6) Frank(6) Clayton(3) Gaussian(-0.6)

Low Signal Setting

Cluster 1 2 3 4 5 6
Copula(¢;) | Clayton(3) Gumbel(2.5) Clayton(3)  Gaussian(0.6)  Frank(6) Clayton(3)
Cluster 7 8 9 10 11 12

Copula(6;) | Clayton(3) Gumbel(2.5) Gaussian(0.6) Frank(6) Clayton(3) Gaussian(0.6)

Common Copula Form Setting

Cluster 1 2 3 4 5 6
Copula(6,) | Clayton(2) Clayton(4) Clayton(2) Frank(8) Frank(5) Clayton(4)
Cluster 7 8 9 10 11 12

Copula(6;) | Clayton(2) Clayton(4) Frank(8) Frank(5) Clayton(2) Frank(8)

Nearly Independent Setting

Cluster 1 2 3 4 5 6
Copula(d;) ' Clayton(0.22) Gumbel(1.11) Clayton(0.22) Frank(0.91) Frank(-0.91) = Clayton(0.22)
Cluster 7 8 9 10 11 12

Copula(f;) ' Clayton(0.22) Gumbel(1.11) Frank(0.91) Frank(-0.91) Clayton(0.22) Frank(0.91)
! Rotated Gumbel Copula with 90 degrees

In the first, second, and the fourth settings, we assume that there are 4 unique depen-
dence models. Clusters 1, 3, 6, 7 and 11 share a common dependence structure (in blue),
clusters 2 and 8 share one (in red), clusters 4, 9 and 12 have a common model (in yellow),
and clusters 5 and 10 share another one (in green). In the third setting, clusters 1, 2, 3,
6, 7, 8 and 11 share the same copula form, but clusters 1, 3, 7, 11 have relatively weak
dependence (in blue), and clusters 2, 6, 8 have stronger dependence (in red). Clusters 4, 5,
9, 10 and 12 have a common copula model, but clusters 4, 9, 12 have a strong dependence
(in yellow), and clusters 5 and 10 share a weak dependence (in green).

For the first three settings, we perform simulations with the identical cluster size (n; =
n) and n = 50,100, 200, 400 or 1000. For the fourth setting, since every cluster holds a
highly similar and nearly independent dependence structure, it is challenging to conduct

94



model selection using the proposed method or other existing methods for cases with a small
sample size. Therefore, we perform simulations on sample sizes n = 100, 200,400 and 1000
in the fourth setting. A scenario with varied sample sizes across clusters is also considered
for the Common Copula Form Setting, with ny = ny = ng = 50, ngy = nz = ng = 100,
ny = ng = ng = 200 and nig = ny; = nip = 400, to demonstrate the capability of
M-DPM-CM to handle distinct cluster sizes.

We take b to be 2 in the Gibbs sampler, shown by Neal (2000) with simulations to
be sufficient for exploring the parameter space. The set of copula functions F includes
the one-parameter copulas in the Archimedean family (Clayton, Gumbel, Frank and Joe
copula), Gaussian copula and their rotated versions of copulas. In total, R = 14 copulas
can be selected for each cluster. The hyperprior distribution for a is set to be a weakly
informative prior, gamma(0.01,0.01), and the hyperprior distribution of 7 is assumed to be
a non-informative uniform prior. Three hundred simulations are repeated for each setting.

4.4.2 Evaluation Metrics

We consider different metrics to evaluate different aspects of the proposed M-DPM-CM.

m

1. Grouping Effects: For m clusters, there are (2) pairs. Let TP (true positive) denote
the number of pairs that belong to the same group under the true model and are
assigned to the same group by M-DPM-CM; let TN (true negative) denote the number
of pairs that do not belong to the same group under the true model and are assigned
to different groups by M-DPM-CM; let FN (false negative) denote the number of
pairs that belong to the same group under the true model but are assigned with the
different models by M-DPM-CM; and let FP (false positive) denote the number of
pairs that do not belong to the same group under the true model and are allocated
to the same group by M-DPM-CM. Consequently,

TP+TN+FP+FN = (?)

(a) Rate of False Positive (RFP) : To quantify how bad the grouping may have
been done, we give special attention to false positive rate, calculated as
RFP=FP/ (’;‘) We report the average RFP of 300 simulations.

(b) Rand Index (RI): Rand Index (named after Willam M. Rand) is a measure of
the similarity between two ways of grouping. Under the true model described
in Section 4.4.1, the 12 clusters are grouped into 4 sets. In each set, the clusters
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share the same dependence model (the same copula function and the same
parameter values). After applying M-DPM-CM, there are h unique models
which group the clusters. Here Rand Index is used to compare the groupings
under the true model and the M-DPM-CM. The Rand Index is computed as

(5)

with the range 0 <RI< 1. The greater the RI, the better the grouping resulted
from the M-DPM-CM. We report the average RI of 300 simulations.

(c) Correct Grouping Percentage (CGP) : If the M-DPM-CM gives the correct par-
tition of the 12 clusters, we say that the DPMCM leads to a “correct grouping”.
We report the percentage of correct groupings for those 300 simulations.

2. Copula Selection:

Mis-selected Percentage (MSP) : If the copula function selected by the M-DPM-CM
or AIC is different from the one under the true model for a particular cluster, we say
that the M-DPM-CM leads to a “mis-selected” copula function for the cluster. We
report the percentage of mis-selected copula functions for those 300 simulations for
each cluster.

3. Parameter Estimation: We perform parameter estimation based on the grouping
and copula selection results. If the copula form governing Uj;; and Uj;e is correctly
selected, the dependence parameter 6; of the copula function is then estimated from
maximum likelihood estimation (MLE) using the grouped data obtained from M-
DPM-CM. We also implement the conventional copula selection method AIC to select
copula function for each cluster and use MLE to estimate dependence parameters in
each cluster separately. For both methods, we consider the following four metrics
computed based on the simulations with correct selection of copula forms:

(a) Empirical Bias (EBias): The difference between the average of the estimated
values from simulations with correct selection of copula forms and the true value
of the parameters;

(b) Empirical Standard Error (ESE): The sample standard deviation of the esti-
martes;

(c) Asymptotic Standard Error (ASE): The average of estimated asymptotic stan-
dard deviations of the estimators;

(d) Empirical Coverage Probability (ECP): The proportion of the confidence inter-
vals that contain the true parameter values.
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4.4.3 Simulation Results

The results for grouping effects are summarized in Table 4.4. For the first three settings
and different sample sizes, RFPs are less than 4.4%, and Rls are all greater than 0.89.
When the sample size is equal to or greater than 200, the RFP gets close to 0, suggesting
that the M-DPM-CM rarely groups two clusters belonging to different groups as a single
one; the RI becomes close to 1, showing correct grouping. The CGP is over 84% when the
sample size reaches 200, suggesting that the M-DPM-CM nearly perfectly recovers the true
grouping of clusters with a moderate sample size. With a given sample size, the RFP is
the smallest, the RI and the CGP are the largest in the high signal setting. Unsurprisingly,
all grouping metrics are unsatisfying in the Nearly Independent Setting, since all clusters
hold highly similar structures, which are all close to independence. This is a challenging
scenario of a very low signal where the dependence structures are barely distinguishable,
and the M-DPM-CM tends to group the clusters together, especially in the cases of small
sample sizes, when information from data is too little to differentiate clusters. As the
sample size increases, the RFP shows an obviously decreasing trend with a dramatic jump
in the RI and CGP, demonstrating the capability of the M-DPM-CM to pick the weak
signals if fed with sufficient information.

Table 4.4: Simulation results for grouping effects

High Signal Setting Low Signal Setting
Sample Size 50 100 200 400 1000 50 100 200 400 1000
RFP 0.891%  0.030% 0.000% 0.000%  0.000% 4371% 2460% 0.586% 0.015%  0.000%
RI 97.008% 99.439% 99.747% 99.808% 99.863% 91.606% 96.455% 99.056% 99.793% 99.947%
CGP 55.779% 84.667% 93.333% 95.333% 96.000% 20.500% 50.667% 84.667% 94.667% 97.500%
Common Copula Form Setting Nearly Independent Setting
Sample Size 50 100 200 400 1000 Varied Size 100 200 400 1000
RFP 4106% 1.136% 0.096% 0.000% 0.000%  0.598% 58.076% 45.432% 31.667% 16.886%
RI 80.008% 96.949% 99.293% 99.343% 99.447%  96.848% 38.978% 50.742% 64.318% 81.242%
CGP 10.000% 59.667% 84.667% 87.333% 91.000%  57.500% 0.000% 0.500% 3.500% 38.500%

The results for copula selection and parameter estimation in the Common Copula Form
Setting are shown in Table 4.5, and those for High and Low Signal Settings and Nearly
Independent Setting are provided in Appendix C. We report the results of the proposed
M-DPM-CM and the conventional copula selection method using AIC. The results suggest
that the proposed M-DPM-CM has significantly lower MSP for all clusters in all signal
settings with all sample sizes than the AIC method does. For parameter estimation,
the MLEs under the model selected by the M-DPM-CM generally have smaller EBiases,
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ESEs and ASEs than those produced by AIC. In the case of varied sample sizes, the M-
DPM-CM handles this challenging scenario well by providing competitive model selection
and parameter estimation results, and the clusters with small sample sizes (clusters 1-6)
obviously have more substantial efficiency gain than the clusters with large sample sizes

(clusters 7-12).

The advantages of the M-DPM-CM in copula selection and parameter estimation is
largely attributed to its excellent grouping performance. The M-DPM-CM has more data
to work with and therefore has a greater chance to select the right copula form and obtain
more efficient estimates. The improvement in EBias and the efficiency gain are similar
in all settings, but more obvious when the sample size is smaller. The model selection
and estimation results in the Nearly Independent Setting deteriorate as the cluster size
gets smaller, as expected, due to the high RFP, but the M-DPM-CM provides competi-
tive results when the sample size is greater than 400. It is interesting that the results in
the Nearly Independent Setting does not compromise the usefulness of the M-DPM-CM.
In practice, it is usually of less interest to characterize dependence structure when it is
“nearly independent”. Moreover, one major motivation of dependence analysis is to im-
prove statistical efficiency of marginal analysis by borrowing information from associated
data. When data are “nearly independent”, the benefit of dependence modeling is fading
out as little information can be used to assist efficiency gain of marginal analysis.

The computation time and complexity of the M-DPM-CM depend on multiple factors,
including the number of clusters, the cluster sizes, and the candidate pool of copulas. For
the simulation studies considered, the convergence speed of the Gibbs sampler described
in Section 4.3 is fast and becomes faster as the sample size increases. For simulations with
the sample size 50, the Gibbs sampler converges within 200 iterations, and for those with
the sample size 1000, the algorithm converged within 50 iterations.

In summary, the simulation studies show that the M-DPM-CM can efficiently group
clusters with similar dependence relations when the within cluster dependence is not weak,
even with a small sample size, and thus, benefit model selection and parameter estimation,
especially for clusters with small sample sizes.
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4.5 Data Analysis

We continue to analyze the Vertebral Column dataset from UCI Machine Learning
Repository (http://archive.ics.uci.edu/ml/datasets/vertebral+column) as we do
in Chapter 3. We consider the same marginal models as we do in Section 3.6 of Chapter 3
and we are still interested in studying the dependence of same 6 pairs of features: PI versus
PT, PI versus SS, DS versus PI, DS versus PT, DS versus PR, and DS versus LL. Here we use
the M-DPM-CM to identify common dependence structures out of the 18 pairs of features
(6 pairs of features in 3 health groups) and select copula functions for the identified groups.
To do so, we imagine our data coming from a hierarchical structure with 18 clusters in the
intermediate level.

4.5.1 Marginal Model

The histograms of the five biomechanical features in the three groups are displayed in
Figure B.2 in Appendix B.3.1, all showing unimodal but possibly skewed distributions. As a
result, we use a generalized skewed-t distribution to model the marginal distributions of the
features to account for the possible skewness. The estimates of the marginal parameters are
obtained by maximizing the marginal likelihood function, and the results are summarized
in Table B.6 in the Appendix B.3.1. The five biomechanical features are transformed to
copula data w;;; € [0, 1] through applying the fitted marginal CDF to the observed values
of the corresponding feature.

4.5.2 Dependence Model

We consider the same set of copula functions used for the simulation studies in Section
4.4. We compare the performance of the M-DPM-CM and the AIC for copula selection
and conduct MLE under selected models. The results are reported in Table 4.6.

Empirical results for Kendall’s 7 of each pair of features from every health group are
reported in the last column in Table 4.6. Generally speaking, DS has mild dependence
versus the other four features in the patients with Disk Hernia and healthy people, but
stronger dependence in the group of patients with Spondilolisthesis.

M-DPM-CM divides the 12 pairs of features into three groups. The dependence struc-
tures of DS versus the other four features (PI, PT, PR and LL) for patients with Disk Hernia
and healthy people are identified to be the same by M-DPM-CM, and the common copula
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Table 4.6: Selected copula functions and estimated parameters for the dependence of six
pairs of interest in three health groups

M-DPM-CM AIC Empirical
Health Group  Pairs of Features Group Copula  Estimates s.d. Copula  Estimates s.d. Kendall's 7
DS v.s. PI 1 Gaussian ~ 0.128  0.024 Gaussian 0.150  0.125 0.076
Disk Hernia DS v.s. PT 1 Gaussian 0.128 0.024 Frank -0.226  0.753 -0.010
DS v.s. LL 1 Gaussian 0.128 0.024 Gaussian 0.246 0.118 0.149
DS v.s. PR 1 Gaussian 0.128 0.024 Gaussian ~ -0.060  0.128 -0.023
DS v.s. PI 2 Gumbel 1.437  0.029 Frank 3.453  0.535 0.355
Spondilolisthesis DS v.s. PT 2 Gumbel 1437 0029 S Clayton' 0.905  0.153 0.365
DS v.s. LL 2 Gumbel 1.437 0.029 Frank 3.155 0.527 0.328
DS v.s. PR 3 Joe 1.481 0.123 Joe 1.481 0.123 0.215
DS v.s. PI 1 Gaussian 0.128 0.024 Frank 1.714 0.628 0.179
Healthy DS v.s. PT 1 Gaussian ~ 0.128  0.024 Gaussian 0.244  0.091 0.172
‘ DS v.s. LL 1 Gaussian 0.128 0.024 Frank 1.511 0.600 0.157
DS v.s. PR 1 Gaussian ~ 0.128  0.024 Gaussian ~ -0.107  0.098 -0.095

! Survival Clayton Copula

form selected is a Gaussian copula. When pooling the data of four bivariate features (DS
versus PI, DS versus PT, DS versus PR, and DS versus LL) from two health group (patients
with Disk Hernia and healthy people) together, the empirical Kendall’s 7 is calculated
as 0.082 (with standard error 0.026), which suggests that DS is barely dependent to the
features characterizing pelvis and lumbar for patients with Disk Hernia and healthy peo-
ple. The dependence structures of DS versus PI, PT and LL in the group of patients with
Spondilolisthesis are grouped together by the M-DPM-CM with the selected copula form
as Gumbel and the empirical Kendall’s 7 is around 0.35 (with standard error 0.027). The
dependence of DS and PR is identified as a group itself with the selected copula form as Joe
copula.

In Figure 4.1, we report the scatter plots of DS versus other features based on the com-
bined datasets of the three groups identified by the M-DPM-CM. Subfigure (a) corresponds
to four pairs of features in patients with Disk Hernia and healthy people and exhibits pure
randomness; subfigures (b) and (c) correspond to the dependence in the group of patients
with Spondilolisthesis and show moderate positive dependence. The empirical findings,
grouping by M-DPM-CM and graphics tell the same story, which is also consistent with
the medical interpretation (Berthonnaud et al., 2005).

In summary, M-DPM-CM provides some insights of the dependence between different
features of three types of people. The estimation of dependence parameters is also more
efficient due to the grouping effect of M-DPM-CM.
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(a) Group 1 (b) Group 2 (c) Group 3

Figure 4.1: Scatter plots for the three groups identified by the M-DPM-CM

4.6 General Remarks

In this chapter, the mixture of DPM copula model (M-DPM-CM) is developed to identify
similar dependence structures for correlated data and group similar data together to obtain
better inference results. The M-DPM-CM can perform grouping and copula selection
simultaneously. The numerical results show that the M-DPM-CM can accurately recover
the true grouping structure with a moderate sample size, and in turn achieve a more
accurate model selection and more efficient parameter estimation than the conventional
AIC method. Moreover, the M-DPM-CM requires little tuning or user-specified parameters
compared with other commonly used models, such as Gaussian mixture model (Lindsay,
1995; McLachlan and Peel, 2004), so that it is easy to be applied in practice.
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Chapter 5

Polya Tree Monte Carlo Method

5.1 Introduction

Sampling from a distribution has been an important research topic in statistics and enjoys
broad applications in different contexts, including the Bayesian framework and the machine
learning paradigm(e.g., Goodfellow et al., 2014).

When the inverse of a cumulative distribution function (CDF) is available, sampling
from the distribution is commonly conducted through the “inversion method” (Devroye,
1986). In most situations where the explicit inverse of CDF is unavailable, Markov Chain
Monte Carlo (MCMC) methods are commonly invoked (Gelfand and Smith, 1990; Gilks
et al., 1995; Brooks et al., 2011; Craiu and Rosenthal, 2014). Commonly-used MCMC al-
gorithms include Metropolis-Hasting (MH) algorithm (Hastings, 1970), and Gibbs sampler
(Geman and Geman, 1987).

While MCMC algorithms are useful in applications, they have several limitations. Sam-
ples generated by MCMC can be highly correlated and may not be diverse enough to rea-
sonably reflect the domain space of the target distribution (Brooks et al., 2011). To reach
convergence, MCMC algorithms may require a large number of iterations (Gelman and
Rubin, 1992; Cowles and Carlin, 1996) and carefully tuned stepsizes to achieve an suit-
able acceptance rate (Graves, 2011). Furthermore, MCMC algorithms can be inefficient in
sampling from multi-modal distributions (Gelman and Rubin, 1992; Geyer and Thompson,
1995; Neal, 1996).

To overcome these limitations of the MCMC algorithms, various methods have been
proposed. For instance, to address the issues of correlated samples, it was suggested to use
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independent proposal density to approximate the target distribution, where approximations
may be conducted through multivariate normal distributions (Haario et al., 2001), finite
mixture distributions (e.g., Cappé et al., 2008; Keith et al., 2008; Holden et al., 2009;
Giordani and Kohn, 2010), piecewise approximating functions (Cai et al., 2008), or neural
networks (Neklyudov et al., 2018). Adaptive algorithms (Haario et al., 2001; Atchadé and
Rosenthal, 2005) and the Delayed Rejection Adaptive Metropolis (DRAM) (Haario et al.,
2006) were developed to achieve efficient sampling procedures. Methods concerning the
step-size tuning in MCMC were discussed by Graves (2011) and Kleppe (2016). Methods
of efficiently exploring the domain space were considered by Gelman and Rubin (1992),
Geyer and Thompson (1995), Neal (1996), Richardson and Green (1997), and Kou et al.
(2006) for sampling from multi-modal distribution. Under the adaptive MCMC framework,
Giordani and Kohn (2010), Andrieu and Thoms (2008), Craiu et al. (2009), Bai et al. (2011)
and Zhang et al. (2019) also extended the algorithms naturally to handle multi-modal
distributions.

As a complement to available methods, in this chapter, we propose a novel sampling
method, called Polya tree Monte Carlo (PTMC), to address the aforementioned limitations
of MCMC algorithms. Our proposed PTMC method approximates the posterior Polya tree
by the Monte Carlo method and it can be established theoretically that the approximated
Polya tree posterior converges to the target distribution under regularity conditions. We
further propose a series of simple and efficient sampling algorithms which are useful for
different scenarios. It is noteworthy that our proposed algorithm is completely different
from the “Polya tree sampler” discussed by Hanson et al. (2011). This method posteriorly
updates the Polya tree with a simulated sample via time-consuming iterative procedures,
while our PTMC method approximates the posterior Polya tree using the Monte Carlo
method in a fast and straightforward manner.

The rest of the chapter is organized as follows. In Section 5.2, we describe the proposed
Polya tree Monte Carlo (PTMC) method and several sampling algorithms. In Section 5.3,
we perform simulation studies to evaluate the finite sample performance of the proposed
PTMC method and compare it with the MCMC algorithm. In Section 5.4, we analyze two
heterogeneous datasets based on Gaussian mixture models, and examine the capacity of
the PTMC algorithms for sampling from complex multi-modal distributions.

5.2 Polya Tree Monte Carlo Method

In this section, we introduce a novel sampling method, the Polya tree Monte Carlo (PTMC)
method. The detailed review of the Polya tree can be found on Section 1.7.2. In Section
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5.2.1, we propose the Polya Tree Monte Carlo (PTMC) method, and provide theoretical re-
sults. In Section 5.2.2, we develop a variety of sampling algorithms based on the theoretical
results of the PTMC method.

5.2.1 Polya Tree Monte Carlo Method

As reviewed in Section 1.7.2, Polya trees are conventionally used as Bayesian nonpara-
metric priors when a random sample is available to make inference about the unknown
distribution. However, our interest is to sample from a known target distribution, and
it can be difficult under certain circumstances (e.g., when the target distribution has no
explicit inverse form of CDF). To resolve the difficulty, we consider sampling from the
empirical counterpart of the target distribution via the PT posterior distribution. Since
the PT posterior distribution is obtained from the samples from the target distribution,
we propose the Polya Tree Monte Carlo (PTMC) method to approximate the PT posterior
using the Monte Carlo (MC) method.

Suppose that we are interested in sampling from the distribution of the random variable
Y with domain S, probability measure F and density function f. As we eventually sample
from the empirical counterpart (a histogram) of the target distribution, it is convenient to
focus on a bounded sub-region. To this end, we define a “high probability region” §*, a
bounded space such that F(S§*) =1 —§ with a small 0 < § < 1; if S is bounded, then we
set §* = § and § = 0. Further, we consider a random variable Y* with domain &*, the
scaled probability measure F/(1 — §) and the density function f/(1 —0). A PT model is
assumed for Y*, such that the prior G* and the posterior G*|Y™* follow PT distributions
defined on S*, i.e.,

VIGr ~ G
G* ~ PT(II*, A",
G*lY* ~ PT(II*, A*(Y")),

where IT* = {7}, : m € N7} is a collection of nested partitions of the space S* with

= {B ce; €{0,1},7 = 1,...,m} being the m-level partition of space S*; A* =

€1...€Em
{A%, : m € N7} is a collection of positive parameters indexing the prior distribution
with Ar = {af . ¢ €{0,1},5 =1,....m}. A(Y*) = {A(Y") :m € Nt} isa

*

collection of parameters indexing the posterior distribution with A% (Y*) = {aZ . (Y):
e; €{0,1},7=1,...,m} and

€1...Em €1...€Em?
*

Qe otherwise.

on . (Y) =

€1.-.Em

{a* +1 ifY*eB*
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Let n* denote a user-specified positive integer related to the MC approximation to
be discussed later. Suppose (Y{*,...,Y%) is a i.i.d. random sample having the same
distribution as that of Y*. Analogous to (1.10), the random conditional probabilities,
given (Y*,..., V%), are of the form

y Itn*

*
Gsl...sm,10|

(Yy,....Y,) ~Beta (ol . o+ NZ T A

) fn* €1...6m—107 asl...s 51‘..sm,11) ’

(5.1)

where NZ is the number of sample points in (Y}, ..., V%) that falls in the subset

€1---Em ) T n*
B*

€1...€m "

Next, we consider a probability measure to approximate the posterior PT distribu-
tion PT(IT*, A*(Y*)). Suppose that Gy ~ PT(IT*, AT(U)) is a PT based on the same
collection of nested partitions IT* of §* but indexed by a different set of parameters
ANU) = {AL(U) : m € Nt} with Al (U) = {of, _ (U) : g; € {0,1},5 = 1,...,m}

and

T : % <
al (U) = { ol .+ fU) ifUeB; . andm < M,

£1...€ T :
m al .. otherwise,

where U is a uniform random variable on 8*, and M € N7 is a pre-specified “truncated
level” to approximate PT(IT*, A*(Y*)) up to a finite level. Suppose that U = (Uy, ..., Up-)
includes i.i.d. uniform random variables on S*. Let G.,., ., ,0 be the random conditional
probabilities from different levels based on U, which are assumed to be independent Beta
random variables with

g61~-€m710|(j ~ Beta (ail...smlo + Z ](UZ S 8:1.‘.sm,10>f<Ui)7
=1

oy e+ Ui € Bil‘..sm_ll)f(Ui)> (5.2)
=1
if m < M, and
g&‘l,,,sm,10 ~ Beta <Oéll...€m_107 ail...Em_11) (53)

if m > M. For the target distribution with dimension higher than 1, the PTMC method
can be constructed in a similar manner by replacing the Beta random variable in (5.2) and
(5.3) with the Dirichlet random variable. Let Gy (B; . ) denote the random probability

of the subset B _ from the PT constructed based on U. Then the expected value of

£
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Gy (B?, ., ), given the uniform sample U, is

E[QU(B:12m>] =k HgELuéj‘U
j=1

;

T n* *
ady ..o+ HUEBE o) f(Us) .
IIiL = Tl L= it m < M,
>i=0 [051‘_,5]._11""21:1 I(UiGB;r..sj_ll)f(Ui)}
= . 5.4
HM all...sj +2:?:1 I(UlEBe:ls])f(U’L) Hm allmsj ( )
i=1 n* « j=M-+1 1 T
st ol L, S Iwess L W) D=0y ej 1
if m > M.

\

To see the rationale of using PT(IT*, AT(U)) to approximate PT (IT*, A*(U)), we note that
the probability for Y* to fall in B*,, . is
F(B: . ) 1

€1...Em

1-0  1-6/)p

£1..-Em

P(Y* € B, . c,) f(y)dy (5.5)

n*

= ﬁ'ﬁ‘i*;I(UiGB;...EM)f<Ui)+Op(¢%), (5.6)

where wg+ is the volume of S* and (5.6) is a Monte Carlo (MC) approximation of (5.5)
(Gilks et al., 1995; Brooks et al., 2011). Since N7 = > I(Y;* € B*) with I(-) being

£1...Em
the indicator function, and

E[I(Y; € B)] = P(Y* € B)
Var[I(Y;" € B)] = P(Y* € BY)[1 — P(Y" € BY)],
by the Central Limit Theorem,

JrP( cBI- P eny ol e o

Combining (5.6) and (5.7) yields

Nien = WPYTEBY, L)+ 0,(Vi)
F(B:
= n*—(l 5_1~§m) + Op(Vn*)
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n*

= Y I B L (U + O, (V).

=1

thus the quantity N . in (5.1) can be approximated using Z?:l I(U; e B .. )f(Us)
to derive the distribution of the random conditional probabilities concerning U in (5.2)
naturally. The theoretical results stay unaffected if the constant term wg«/(1 — J) is
omitted as the proof in Appendix D.1.

The following theorems show the theoretical results for the Polya Tree Monte Carlo
method.

Theorem 5.1. (Pointwise Convergence of Polya-Tree Monte Carlo) For any measurable
set Bern: withm=1,...,M, and n* = O(M3*") with n > 0, then

(1) E[Gy(B)] 25 F(B)/(1=106) as M — oo;
(2) VarlGy(B)] = Op(15);

n*

(3) G(B) 2 F(B)/(1 —6) as M — oc.

Theorem 5.2. (Consistency of Polya-Tree Monte Carlo) Suppose F is the Lebesgue mea-

sure with the absolute continuous density f on 8*. Let &* = {B C §* : B is measurable},

¥ = {B; | B emy F(BE ) >0} and let (M) = %ng}"(B)/(l —0). Then the
€

E1.--EM 1.---EM E1...EM

following properties hold:

(1) sup BIGy(B)] - F(8)/(1 - 5) = mar( 0,(255). 0,25 )

BeG*

(2) sup VarlGy(B)] = Oyt

(3) Let gy be the density of Gy, and let D(Gy, F/(1=6)) = [5. |gp(x) — f(2)/(1—6)|dz
denote the distance between two probability measures Gg and F. Ifn* = O(2°M M3+)
with n > 0, then as M — oo,

PID(Gy, F/(1=0)) 2| =0

for any e > 0.
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The proofs of both theorems are provided in Appendix D.1. Theorems 5.1 and 5.2 show
that G converges to the scaled target distribution on the high probability region &*. If
the target distribution is defined on a bounded space S, then 6 = 0 and G; approximates
the target distribution well with a sufficiently large uniform sample. If the target distri-
bution has unbounded space S, the high probability space &* can be constructed with
an ignorably small 0, and G; can still provide a reasonably good approximation to the
target distribution. While the theoretical results are presented for one-dimension case for
notation simplicity, the results can be extended to settings with a higher dimension. The
relevant proof is analogous to the proofs regarding the Polya tree with a higher dimension
(Ning and Shephard, 2018).

5.2.2 Sampling Algorithms

To sample from G, we describe four algorithms. Algorithm 5.1 is outlined in Table 5.1.
The first M levels of the Polya tree correspond to a sequence of histograms with increasingly
finer bins. With the histogram corresponding to the M-level partition of the Polya tree,
Step 4 of Algorithm 5.1 elects the bin for generating samples. For any m > M it is easily
seen from (5.3) that

T

Qey . em_10 1

E(gal...am—ﬂ)) = T o -; = 57
Oéel...em_10 + aq...am_ll

when allmgm takes its default value ¢m? with ¢ > 0. In other words, a sample falling
in Bf . is uniformly distributed on B . . Thus, Step 5 further generates a uniform
random variable on a selected bin as a sample point.

Compared to the usual MCMC, which provides correlated samples, Algorithm 5.1 pro-
vides independent samples. Algorithm 5.1 requires to evaluate the density function f(-)
for a fixed number of times n*, whereas in MCMC, the number of evaluations of f(-) de-
pends on the convergence speed and the target sample size n. As a result, Algorithm 5.1 is
superior to the MCMC algorithm in terms of computational time when the evaluation of
the density function f(-) is time-consuming and/or a large sample needs to be generated.
Furthermore, the evaluation of the density function f(-) in Algorithm 5.1 can be acceler-
ated through parallel computing techniques, which is another advantage over the MCMC
algorithm.

Our discussion so far has been focused on the single-dimensional scenario. When Y is a
random vector of the dimension k£ > 2, as discussed in Section 1.7.2, the M-level partition
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Table 5.1: Algorithm 5.1: Polya Tree Monte Carlo algorithm

Input: Sample size n from f(y), the number of uniform samples n* and M = 9
(default).

1. Generate i.i.d. samples uq, ..., u,- from a uniform distribution on &*.
2. Evaluate the density value of the target distribution f(u;), fori=1,... n*.

3. For all B, . . € myy, calculate the expected probability E[Gg (B ., ., )] using
(5.4).

4. Sample n subspaces Bi\Y, .., with replacement based on ElGy(B: ., .,,)], for
1=1,...,n.

5. for iin 1:n do

‘ Generate y; from a uniform distribution on 8:1(2)25 -
end

of the Polya tree splits S* into 2" subsets. When k is large, it is computationally intensive
to evaluate the expected probabilities for 28 times in Step 4 of Algorithm 5.1. To cope
with this problem, we design Algorithm 5.2, which takes the strategy to examine the
multi-dimensional space dimension by dimension and sample directly from the marginal
density,

F(ye) = / FWne gy, (5.8)

where y, € S*1 and Yoy = W1, Yo1,Yeg1, -, y) " for £ =1,... k.

To be specific, we define IT*{¢ = {mﬁl{g} :m € N1} as a collection of nested and equal-
sized partitions of the space S*1¢, where P g {B:l{e}gm e, €{0,1},7=1,...,m}. For
subset B;{,li,}gm at the m-level partition of S*{E}, the probability that Y, falls in B;{,li,}gm is

/B*{l} f(yf>dy€ - /B*{Z} /f(yl, Ce 7yk)dy(_£)dy€7

£1---Em €1---Em

which can be approximated using the MC method by

* €1.-.Em
n

Ws* "
S ZI(UM c B )f (Ui, Uia, ..., Ui)
i=1

where U,y denotes the fth element of U; and U; represents a uniform sample from S&* for
1=1,...,n"%
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We propose a marginal measure g{é} ~ PTI*% A%(U,)), where A (U,) =
(AU m e MY, AR (0) = {alo,(U) 5, € (0.1, =1, m), and

¢ .
Yerem otd otherwise.

{0} . 0}
a8 () = { at e, + f(U) if U, € Bel e, and m < M,

The random conditional probabilities Qiﬁz._am_lo from different levels are assumed to be
mutually independent Beta random variables with

Qs{f.}..sm,lolﬁ ~ Beta (aif.}..emlo + ZI(UM < B;{.tlm,lo)f(Uz‘)a
i=1

oS (e Bfo}sm_ll)f(Ui)>
=1

if m < M, and

G0 o~ Beta (. ol )

£1...€ €1...€m—11
if m > M. The expected value of Qg} (B:;{Z}gm) can be similarly derived as in (5.4).

Table 5.2: Algorithm 5.2: Polya-Tree Monte Carlo algorithm for k& > 2

Input: Sample size n from f(y), the number of uniform samples n* and M = 9
(default).

1. Generate i.i.d. samples uq, ..., u,- from a uniform distribution on S&*.

2. Evaluate the density value of the target distribution f(u;), for i =1,... n*.
3. for /in1:kdo

(1) For all B:ff}gM € W}k\/{[ }, calculate the expected probability E[gg} (B;fg,,,aM)].

(2) Sample n subspaces Bgl{ﬁ,(f)gM with replacement based on F [gg} (BZ;{Q_,,EM)],

fori=1,...,n.

(3) for i in 1:n do

‘ Generate 1, from a uniform distribution on B;{Q Z)EM
end
end

111



In Algorithm 5.2, we sample from gff} for [ = 1,...,k sequentially. Algorithm 5.2
reduces the computational burden from 2¥ times in Algorithm 5.1 to k - 2™ calculations
of the expected probabilities. However, due to the “curse of dimensionality” suffered by the
Polya tree, both algorithms require a large uniform sample, i.e., a large n*, to achieve an
accurate approximation of the target distribution when k& is large. Therefore, we further
propose Algorithm 5.3 to combine the PTMC with Gibbs sampler in high-dimensional
settings to avoid massive computation in Algorithm 5.2.

In Algorithm 5.3, sampling from the conditional distribution in each iteration of Gibbs
sampler is conducted through the PTMC Algorithm 5.1, which is powerful in single-
dimensional scenario. Compared to the MCMC algorithm, the PTMC Gibbs sampler
is free of tuning parameters and enjoys high sampling efficiency and convergence rate to
the target distribution as illustrated through simulation studies.

Table 5.3: Algorithm 5.3: PTMC Gibbs sampler for a high-dimensional distribution

Input: Sample size n from f(y), the number of uniform samples n* = 500
(default), burn-in sample size by, initial values y* = (y1,...,y;)" and
M =9 (default)

fort in2:(n+b;) do
for ¢/ in1:kdo
Generate one sample from a single-dimensional distribution

Felvt, by, -y b for yo € 8*19, which is proportional to
FWh Y1 Yo Ypsts - - - Yp ) using Algorithm 5.1 and set it to be y.
end

end

The PTMC Gibbs sampler (Algorithm 5.3) cannot handle some complex multi-modal
distributions. A bivariate normal-mixture distribution with five modes can be considered
as an example, with a contour plot given in Figure 5.1 (a). The PTMC Gibbs sampler
updates the sample values through the horizontal and vertical lines (e.g., lines 1 and 2
in Figure 5.1 (a), respectively). The conditional densities of the PTMC Gibbs sampler is
provided in Figure 5.1 (b) and apparently, the algorithm is trapped in this mode. This
motivates us to propose Algorithm 5.4, which considers searching values through a general
linear line yo = ay; + b. If the line is y, = y; (i.e., a =1 and b = 0) as line 3 in Figure 5.1
(a) with the conditional density along the line provided in Figure 5.1 (c), the other modes
can be easily discovered.
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Figure 5.1: An example of a multimodal distribution

Algorithm 5.4 basically combines the PTMC and Metropolis-Hasting algorithms, and
we call it the PTMC-MH algorithm. For a k-dimensional target distribution with the den-
sity f(v1,---,yx), we select y; as the reference dimension, and assume a linear relationship
between y, and y; for £ = 2,... k. In the tth iteration of the PTMC-MH algorithm,
we assume that y, can be written as a linear transformation of y; with y; = aby} + 0},
where af, and b} denote the slope and intercept of the line, respectively. The slope a} will
be randomly generated in each iteration so that different directions of the domain space
will be explored. As the line y} = aly! + bl is required to cross the point (yi ™'y, ")
from iteration (¢t — 1), the value of b} is determined as b, = y/™' — alyl™". We let
AL = {yt € Syt = alyl + b} for yt € S*19} denote a set of values that y; can take,
restricted by the values that 1, can take for £ =2,... k; and let A" = ﬂif:Q Al denote the
values that y; can take jointly determined by the k£ — 1 lines and the space &* in the tth
iteration.

In the tth iteration, the proposal distribution for 3, € A is proposed to be

q(ylyt—1> _ f(yhaéyl +b§,...,a';€y1 +bllt<;)
fAt f(yla agyl + bga s ,aZyl + b};)dyf
o flyr,abyr + b5, ... aky, + bL). (5.10)

(5.9)

The proposed PTMC-MH algorithm searches for an update of yq,...,y, along the line
{1,y yk) = ye = abys + b, for yp € SH4 and ¢ = 2,...,k}. The denominator of (5.9)
is included so that (5.9) is a proper density. In each iteration, the PTMC-MH algorithm
draws a new value of y; from the proposal distribution and ys,...,yr are determined
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by their linear relationship with y;. As the proposal distribution in (5.10) is a single-
dimensional distribution, the sampling procedure can be implemented using Algorithm
5.1. The acceptance rate of the PTMC-MH algorithm is

FWa ™ y) _ fl)  frlaby by b))

fWYalyly=t)  fly*=) fyu, abyr + 05, ... alys +b})

Therefore, we always accept the proposal values drawn from the proposal distribution.

Table 5.4: Algorithm 5.4: PTMC-MH algorithm for a high-dimensional distribution

Input: Sample size n from f(y), the number of uniform samples n* = 500
(default), burn-in sample size by, initial values y* = (yi,...,y:)" and
M =9 (default)

fort in2:(n+b;) do
1. for £ in2:k do
(1) Generate 6 ~ Uniform([—7, 7]).
(2) Calculate a} = tan(6?) and b} =y, — alyi ™.
end
2. Determine the set A’.
3. Generate one sample y| from a single dimensional distribution
flyr,abys + b5, ... aky; +b) for y; € A" using Algorithm 5.1, and set

yt = (yg,aéyi + bt2> SERE) allffyll + bllff)T

end

The PTMC-MH algorithm is computationally faster and more powerful than the PTMC
Gibbs Sampler. More impressively, the PTMC-MH algorithm works well with complex
multi-dimensional distributions as the sample points from each iteration of the PTMC-MH
algorithm move according to lines with different slopes, and eventually reach all possible
modes of the distribution with sufficient iterations. It is noteworthy that although the
density function f(y) is assumed to be known in the algorithm, the four algorithms are
still working when the density function is partially known, such as a unnormalized density
function.
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5.3 Simulation Studies

We conduct extensive simulation studies to compare the performance of PTMC-based
algorithms with MCMC algorithms in terms of the capability of recovering the target
distribution, sampling efficiency, computational speed and inference performance.

5.3.1 Setting 5.1
In the first simulation, we compare the performance of the proposed PTMC algorithms
with the random walk MCMC algorithm and the Langevin Monte Carlo (LMC) algorithm

(Welling and Teh, 2011) when sampling from complex distributions. The simulation is
repeated nsim = 500 times. The “burn-in” sample size b; is set to be 1000.

Simulation Setting

We draw n = 5000 samples from each of the following three distributions:

(1) The dog bowl distribution with the density function:

[y, y2) = (271); exp [—0.5 <\/yf +y2 — 10)

(2) A 25-normal mixture distribution with the mixture density:

(v +y3) " for (y1,12) € R”.

fyr,p2) = 2—15 > oy ya i D),

HER

where ¢(+; u,X) is the density of a bivariate normal distribution with mean vec-

tor p and covariance matrix ¥ = <O'(())3 0%3), and Q@ = {(w,p2) @ p; €

{—4,-2,0,2,4},j = 1,2}.
(3) A 5-normal mixture distribution illustrated in Figure 5.1 (a), having the density:

1 5

fyr,2) = 5 Z¢(ylay2;m7 %),

=1



where the mean vectors are set as p; = (=4, —4)", g = (=2, —2)", u3 = (0,0)", py =
(2,2)", us = (4,4)", and the covariance matrix is the same as the one in setting (2).
The shapes of three target distributions are illustrated by the 3D density plots in
Figure 5.2.

uuuuu

(a) dog bowl distribution (b) 25-normal mixture (¢) 5-normal mixture

Figure 5.2: The 3-D density plots of target distributions

Evaluation Metrics

The following metrics are used to evaluate the performance of the PTMC algorithms versus
MCMC and LMC algorithms:

1. Quantiles: We calculate the average of the 2.5%, 50% and 97.5% empirical quantiles
of the sample points obtained from 500 simulations, and compare them to their
theoretical counterparts. This metric reflects how well the samples are representative
of the target distribution.

2. Effective Sample Size (ESS): The effective sample size for the jth dimension of the
target distribution is defined as

. n
1+2Z§:1ps7

where p; is the correlation coefficient between y§ and y§+s at lag s and S = min{s :
ps < 0.05}. ESS is calculated as the average effective sample sizes across the 500
simulations. This metric indicates the sampling efficiency of the algorithm.

ESS;

3. Computation Time (CT): CT is the average computation time for generating 5000
samples from an algorithm across the 500 simulations.
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All simulations are done in the R environment on Dell PowerEdge R630 computers with
two Intel Xeon E5-2667v4 8-core 3.2 GHz CPUs and 64G memory to ensure comparable
computation time across algorithms. For the PTMC algorithms, we use parallel computing
on density evaluations to achieve faster computation.

Simulation Results

We provide the scatter plots of the sample points drawn from the dog bowl, 25-normal
mixture and 5-normal mixture distributions in Figures 5.3, 5.4 and 5.5, respectively, each
figure including 8 subfigures. Subfigure (a) gives a contour plot of the target distribution;
subfigures (b), (c¢) and (d) correspond to the proposed Algorithms 5.1, 5.3 and 5.4, respec-
tively; subfigures (e) - (f) correspond to random walk MCMC with small and big stepsizes,
and subfigures (g)-(h) correspond to LMC algorithms with adaptive stepsize (stepsize is
set to be proportional to 0.05¢7%%5 with ¢ to be the sampling iteration) and cyclical stepsize
(Zhang et al., 2019), respectively. We also report the empirical quantiles versus theoretical
quantiles, ESS and CT for the three distributions in Tables D.1, D.2 and D.3, respectively,
in Appendix D.2.

(a) True (b) PTMC (¢) PTMC Gibbs (d) PTMC-MH

>

y2

15 10 5 0 5 10 15
y2

15 10 5 0 5 10 15

R T T T T T v T T T T
N om0 s ow o 45 40 5 0 5 10 15 45 0 5 0 5 10 15
v v

(e) MCMC with small step-  (f) MCMC with big stepsize ~ (g) LMC with adaptive step-  (h) LMC with cyclical stepsize
size size

Figure 5.3: Plots of samples from the dog bowl distribution using various algorithms
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Subfigures (b), (c¢) and (d) in Figure 5.3 give the scatter plots of samples drawn from the
dog bowl distribution obtained from the proposed Algorithms 5.1, 5.3 and 5.4, respectively.
The sample points in subfigures (b), (¢) and (d) evenly form a donut shape, exhibiting
consistent patterns with the target distribution as shown in subfigure (a). However, for
the MCMC with small stepsizes and LMC algorithms in subfigures (e), (g) and (h), the
sample points fail to recover the circle shape; for the MCMC with big stepsize in subfigures
(f), the sample points in the bottom-right corner are obviously denser than the top-left
corner, suggesting that the algorithm fails to “walk through” the domain space. Table
D.1 in SWA D.2 suggests that the MCMC or LMC algorithms have an extremely low ESS
(< 10), indicating an inappropriately high rejection rate and low sampling efficiency.

SRR N N SR B AL 3B U
BE A I B B
B R I O BRI B
B I O B I B
emaves esewe
() True (b) PTMC (c) PTMC Gibbs (d) PTMC-MH
L - .
s
‘ a
: : T T

y1

() MCMC with small stepsize (f) MCMC with big stepsize (g) LMC with small stepsize (h) LMC with cyclical stepsize

Figure 5.4: Plots of samples from the 25-normal mixture using various algorithms

Similar findings are obtained from Figure 5.4 with scatter plots of samples from the 25-
normal mixture distribution. All the three proposed algorithms recover all 25 modes but
MCMC with small stepsize and LMC algorithm with adaptive stepsize only successfully
recover one mode and MCMC with big stepsize or LMC with cyclical stepsize also perform
unsatisfactorily in terms of mode recovery.

In Figure 5.5, Algorithms 5.1 and 5.4 are the only ones that recover all five modes of
the 5-normal mixture distribution. The conclusion is corroborated by the results in Tables
D.1-D.3 in SWA D.2, in which the empirical quantiles of the PTMC and PTMC-MH
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Figure 5.5: Plots of samples from the 5-normal mixture using various algorithms

algorithms are closer to the theoretical quantiles of the corresponding target distributions.
As commented in Section 5.2, PTMC Gibbs sampler also fails to recover all modes in this
scenario as it iterates through coordinates and can easily get stuck in one mode.

Overall, PTMC (Algorithm 5.1) and PTMC-MH (Algorithm 5.4) have superior perfor-
mance in recovering complex distributions with multiple modes. The PTMC Algorithms
5.1 and 5.2 generate independent samples, providing samples with ESS much larger than
those of the MCMC and LMC algorithms. Finally, PTMC-MH (Algorithm 5.4) has com-
putational advantages over other PTMC algorithms for a large dimension k.

5.3.2 Setting 5.2

In the second simulation, we consider sampling from the posterior distribution under the
Bayesian inference framework and compare the inference performance between the PTMC-
based algorithms and random walk MCMC.
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Simulation Setting

Suppose that ™M, ... 2% are i.i.d. samples from the distribution with density f(x|3)
indexed by the parameter vector 5 = (f1,...,0,)". To make Bayesian inference aboutf,
we aim to sample 3 from the posterior distribution

400

FBl2M, a0 o T £(2)8).

We draw samples from one of the following different density functions of f(z|5):

(1) Setting 5.2.1: Low-dimensional distributions. We consider the following the one-
dimensional and two-dimensional distributions in Table 5.5 (i.e., ¢ =1 or 2):

Table 5.5: One- and two-dimensional distributions f(z|3) with parameter values

Distribution b1 Pa Distribution G Pa
Geometric 0.5 - Poisson 3 -
Gaussian copula 0.5 - Clayton copula 3 -
Beta 3 4 Gamma 3 4
Joe-Gumbel copula 3 4 Clayton-Gumbel copula 3 4
Joe-Clayton copula 3 4 Tawn Type I copula 4 0.5
Tawn Type II copula 4 0.5

The simulation is repeated nsim = 500 times for this setting, and we compare Al-
gorithm 5.1 with random walk MCMC (MH algorithm) where the sample size from the
target distribution is taken as n = 5000 or 8000, and the uniform sample size of the PTMC
method is set as n* = 500 or 1000 for dimension k£ = 1 and n* = 1000 or 2000 for dimen-
sions k = 2. For the MCMC algorithms, we set the “burn-in” sample size to be 500 for
the one-dimensional case, and 1000 for the two-dimensional scenario.

(2) Setting 5.2.2: Multi-dimensional distributions. We consider two distributions with 5
or 6 dimensions, respectively:

(i) Gamma-Normal mixture distribution: The density f(x|f3) is

B2 1

f(z]B) =P - %xﬁz—le—ﬂf +(1—=p)-

(i 222
€($ 184)/557
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which is essentially a mixture of a gamma distribution and a normal distribution with

B = (617 527 637 547 ﬁS)T = (057 47 27 _57 3)T

(ii) D-vine distribution: The density f(z|3) follows a D-Vine distribution, whose structure
is illustrated in Figure 5.6.

Joe(31) = Gumbel(s) = Clayton(fs3)

Level 1 @ 2] (3} @
Gaussiarl(,&)ﬁ Joe(S3s)
Level 2 (12) (23) (34
Gaussian(f)
Level 3 13]2 24|3

Figure 5.6: D-Vine structure and copula functions

The parameters of the D-Vine are given in Table 5.6.

Table 5.6: D-Vine copulas and the corresponding parameters

1,2 2.3 3,4 1,32 2,43 1,42,3
Copula Joe Gumbel  Clayton  Gaussian Joe Gaussian
Parameters (1 =3.83 [, =250 p3=3.00 (£,=0.70 pB5=2.86 [g=0.59
Kendall’'s 7 0.60 0.60 0.60 0.50 0.50 0.40

The simulation is repeated nsim = 100 times, and the comparison is conducted for the
following five algorithms: i) the PTMC Algorithm 5.2, ii) Algorithm 5.3, iii) Algorithm
5.4, iv) MCMC(0), and v) MCMC(500). For the two MCMC algorithms, MH algorithm
is embedded in each iteration of a Gibbs sampler used for sampling from the conditional
density f(BelBe, 2V, ..., 24 for £ = 1...,k. We consider no burn-in samples and
a 500 burn-in samples for MCMC(0) and MCMC(500) for the embedded MH algorithm,
respectively. We set b; of the PTMC Algorithms 5.3 and 5.4, the “burn-in” sample size for
the Gibbs sampler iterations of the MCMC(0) and MCMC(500) to be 1000. The sample
size simulated from the posterior distributions is set to be 5000.
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Evaluation Metrics

We consider the following metrics to evaluate the inference performance of the PTMC and
MCMC algorithms:

1. Empirical Bias (EBias)

2. Empirical Standard Error (ESE)

3. Awverage Standard Error (ASE)

4. Empirical Coverage Probability (ECP)

5. Ratio of Computation Time (RCT): RCT is calculated as

_ CT of MCMC
~ CT of PTMC’

RCT

where the details for the first four metrics can be found in Section 3.5.2.

Simulation Results

Simulation Setting 5.2.1 considers various low-dimensional distributions. The RCTs of the
MCMC MH algorithm versus PTMC Algorithm 5.1 are illustrated in Figure 5.7, where the
simulated sample size is set to be 5000 versus 8000, and the number of uniform samples in
our proposed Algorithm 5.1 is set to be 500 versus 1000 for single-dimensional distributions
(when k£ = 1) and 1000 versus 2000 for two-dimensional distributions (when k& = 2). A
larger RCT suggests a greater advantage of PTMC Algorithm 5.1 over MCMC MH in
terms of computation speed. The RCTs are always greater than 2 except for the gamma
distribution, and they are larger than 10 for Geometric, Poisson, Gaussian copula, Clayton
Copula, Tawn Type I copula when n* is set as a more conservative value with n* = 500 for
k =1 and 1000 for £ = 2. The RCTs become larger if sample size n increases from 5000 to
8000 as the number of evaluations of the target density is pre-determined and fixed as n* for
Algorithm 5.1, however, it increases as n gets larger for the MCMC algorithm. Generally
speaking, the advantage of PTMC Algorithm 5.1 over MCMC MH in computational time
reduces when sampling from a distribution with higher dimension, because a large n* is
usually required to guarantee valid inference performance.
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Figure 5.7: RCTs for different distributions in Setting 5.2.1

Table D.4 in Appendix D.2.2 reports the EBias, ESE, ASE, ECP, ESS and CT (in
minutes) of the PTMC Algorithm 5.1 with n* = 500, Algorithm 5.1 with n* = 1000 and
MCMC MH algorithm for sample sizes n = 5000 and 8000 from four one-dimensional
distributions. The same metrics of the PTMC Algorithm 5.1 with n* = 1000, Algorithm
5.1 with n* = 2000 and MCMC MH algorithm from seven two-dimensional distributions
are summarized in Table D.5. The PTMC Algorithm 5.1 generates independent samples,
therefore gives much larger ESS’s than the MCMC MH algorithm, suggesting that the
PTMC Algorithm 5.1 is a more efficient algorithm for low-dimensional sampling. The
Bayesian estimates of parameters § have ignorable biases, their ESE’s and ASE’s have
a reasonable match and the ECP’s are close to the 95% nominal level for all algorithms
under all scenarios. The PTMC Algorithm 5.1 with the more conservative uniform sample
size n* provides valid inference results and works as well as the one with larger n* in most
scenarios, except that the one with n* = 2000 leads to a better match between ESE’s and
ASE’s for the Gamma distribution.

In summary, the PTMC Algorithm 5.1 exhibits great advantages over the MCMC MH
algorithms in terms of both the sampling efficiency and the computational speed and
provides comparable inference performance in low-dimensional scenarios.

Simulation Setting 5.2.2 considers two multi-dimensional distributions. The numerical
results containing the same set of evaluation metrics for the Gamma-Normal mixture dis-
tribution and D-vine are provided in Tables D.6 and D.7, respectively, in Appendix D.2.2.
Five algorithms, PTMC Algorithms 5.2, 5.3, 5.4, MCMC(0) and MCMC(500), are com-
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pared. The PTMC Algorithm 5.2 provides independent samples and has the largest ESS’s
close to the sample size. The PTMC Gibbs sampler (Algorithm 5.3) and MCMC(500)
have comparable ESS’s, which are significantly larger than the ESS’s of the PTMC-MH
(Algorithm 5.4) and MCMC(0). The PTMC Algorithm 5.2 requires an incredibly large size
of uniform samples to achieve a precise approximation of the multi-dimensional target dis-
tribution. In the example of D-vine, a six-dimensional distribution, the PTMC Algorithm
5.2 with n* = 1500000, 2500000 and 5000000 fails to provide valid sampling results due to
large discrepancies between ASE’s and ESE’s as well as notably lower ECP’s than the 95%
nominal level. When the uniform sample size increases to n = 12500000, the results from
the PTMC Algorithm 5.2 look valid. As commented in Section 5.2, the PTMC method is
a Bayesian nonparametric approach and suffers from the “curse of dimensionality” which
motivates our Algorithms 5.3 and 5.4.

5.4 Data Analysis

We apply the proposed PTMC-based algorithms to analyze two heterogeneous datasets
having multiple modes: the Fishery data (Titterington et al., 1986; Frithwirth-Schnatter,
2006) consisting of the lengths of 256 snappers, and the Hidalgo Stamp data (Izenman and
Sommer, 1988) consisting of the thickness of 485 stamps. Based on the studies of Titter-
ington et al. (1986) and Izenman and Sommer (1988), both datasets can be reasonably
fitted by a Gaussian mixture model with the number of modes J = 3. Figure 5.8 displays
the histograms overlaid with Gaussian mixture densities.
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I —— |
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00 01 02 03 04 05 06
1

length of fish Stamp Size

(a) Fishery Data (b) Hidalgo Stamps Data

Figure 5.8: Histograms and 3-component Gaussian mixture density of two datasets
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5.4.1 Models

Suppose that there is a univariate dataset with i.i.d. data points z® for i = 1,...,n, from
a Gaussian mixture model with J components, such that the density is

fwil0) = Z)\]¢ il g, 05),

where 0 = (A, 11,0)" with A = (Ay,...,A;-)", 0< Ny <L j=1,..., -1, Y7 N\=1
p=(p,...,pn5)" 0= (01,...,05)", and ¢(+|p;,0;) denotes the normal den81ty Wlth mean
; and standard deviation o; for j = 1,...,J. The posterior distribution is

f(0]) o< f(B Hf z;6).

The Gaussian mixture model has identifiability issues, as the model is invariant under the
exchange of the J components. As a result, the posterior distribution f(|z) is always
a multi-modal distribution. For simplicity, we use noninformative uniform priors for all
parameters in 6. We sample from the posterior distribution using the following algorithms:
PTMC Gibbs Sampler (Algorithm 5.3), PTMC-MH (Algorithm 5.4), and MCMC with a
big or small stepsize. Each algorithm runs 10° iterations with the first 5000 iterations
removed as the burn-in period.

5.4.2 Sampling Results

For the Fishery data, the dataset is relatively small with 256 data points, which results in
a less peaked posterior distribution. The sampling results of the mean and the standard
deviation of the PTMC Gibbs, PTMC-MH, MCMC with big stepsize and with small
stepsize, and LMC with adaptive stepsize and cyclical stepsize, are provided in panels
(a)-(f), respectively, in Figure 5.9. As can be seen in subfigure (a) in Figure 5.8, the data
contains three modes roughly at 3.2, 5.2 and 7.2, therefore the number of modes in the
proposed Gaussian mixture models is set to be J=3. The posterior distribution of the
Gaussian mixture model should have 3! = 6 modes. In the left subfigures in Figure 5.9,
the mean values are roughly located at 3.2, 5.2 and 7.2, and lines in three colors represent
the trajectories of the population means from the three modes.
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Figure 5.9: The Fishery data: Sample plots of the means and standard deviations of the

Gaussian mixture model

If an algorithm is able to recover all six modes, we expect all three colored lines transit
frequently between and eventually get a reasonable large number of iterations at each
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location (i.e., around one of 3.2, 5.2 and 7.2). From Figure 5.9, PTMC Gibbs can frequently
transit between modes, PTMC-MH and MCMC with a big stepsize can occasionally transit
between different modes, however, MCMC with a small stepsize and LMC with adaptive
stepsize get stuck in one local modes. Similar patterns can be observed from the right
subfigures. Note that the LMC with cyclical stepsize cyclically explores the regions far
away from the current sample values, so that sometimes the sample values may enter the
regions with extremely low density values, especially for the parameters o and \ with some
boundary values. After entering the low density regions, the algorithm keeps rejecting the
new sample values, as illustrated by the straight horizontal lines in subfigure (f).

The Hidalgo Stamp Dataset contains 485 data points, for which the posterior distri-
bution of the Gaussian mixture model is more peaked. In this dataset, both MCMC
algorithms with a big or small stepsize fail to transit between modes and can no longer
discover all modes from the mixture models. The results of the LMC algorithms are sim-
ilar to those of the LMC algorithms in the Fishery dataset. However, both PTMC-based
Algorithm 5.3 and 5.4 perform very well in discovering possible modes.

Additional numerical sampling results including the Bayesian estimates (Estimate),
standard errors (SE), and ESS of the means and standard deviations of all modes for the
Fishery data are summarized in Table D.8 and those of the Hidalgo Stamp data are given
in Table D.9 in Appendix D.3.

5.5 General Remarks

In this chapter, multiple sampling algorithms are proposed based on the Polya tree Monte
Carlo method (PTMC) to sample from potentially multi-modal distributions. Compared
with the MCMC algorithms, the PTMC algorithms have several advantages in terms of
sampling efficiency and mode discovery. More specifically, for distributions in low di-
mensions, the PTMC algorithm 5.1 provides independent samples and fast computation
speed. For high-dimensional distributions, the Algorithm 5.4 is powerful in discover multi-
ple modes. The proposed algorithms also require little tuning or user-specified parameter,
thus enjoying broad applications.
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Figure 5.10: The Hidalgo Stamp data: Sample plots of of the means and standard devia-
tions of the Gaussian mixture model
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Chapter 6

Polya Tree Based Nearest Neighbor
Regression

6.1 Introduction

Regression analysis is a powerful statistical method for delineating the relationship be-
tween responses and covariates of interest. As more and more data with irregular dis-
tributions emerge, parametric or semi-parametric regression models are under the risk of
model misspecification. In this chapter, we introduce a new fully nonparametric regression
model, called the Polya tree based nearest neighbor (PTNN) regression, which constructs
a PT-distributed probability measures of the responses in a “nearest” neighborhood of
the covariates of interest. Here “a nearest neighbor” is loosely used in the same way as
the nearest neighbor method (Cover and Hart, 1967; Beyer et al., 1999), though strictly
speaking, there is no “nearest” neighborhood of a center in a continuous metric (unless the
center itself is taken as its nearest neighborhood). The constructed probability measure
well approximates the true probability measure of the response given covariates, and the
resulting nonparametric estimates are easy to obtain based on a sample from the con-
structed PT distribution. The model enjoys several merits including simple formulation,
consistent estimates of the conditional distribution G, and computational efficiency. The
proposed method does not require any parametric model assumption and thus possesses
the robustness property.

The rest of the chapter is organized as follows. We describe the Polya tree based
nearest neighbor regression model (PTNN) in Section 6.2. In Section 6.3, we provide
the asymptotic properties of the PTNN, and in Section 6.4.1, the selection of the tuning
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parameter and the sampling procedure of the PTNN are discussed. In Section 6.5, we
conduct simulation studies to compare the proposed PTNN method with some benchmark
nonparametric models. In Section 6.6, we apply the PTNN to the Combined Cycle Power
Plant dataset.

6.2 Model Formulation

Suppose that we have i.i.d. random variables Z; = (Y;, X]")", where for i = 1,...,n,
Y; € § C R is a response variable and X; = (X;1,...,X;,)" € S; C RP is a vector of
covariates. Let z; = (y;,2])" denote the observed counterparts of Z; for i = 1,...,n.

We now consider a formulation of a fully nonparametric regression model as indicated by
(1.12). Taking PT priors as the building blocks, we describe a strategy for connecting the
probability measure of Y to x.

To extend the PT prior reviewed in Section 1.7.2 to a regression setting, one may at-
tempt to assume a PT prior for G, and update the posterior random splitting probabilities
in (1.10) if repeated measurements of Y at some specific covariate value x are available.
This consideration is natural, especially when dealing with discrete covariates. However,
this procedure is not doable if some covariates are continuous. As a remedy, we develop a
nearest neighbor regression model based on creating a neighborhood of the covariate value
of interest, and abbreviate it as PTNN.

Suppose F) is the true probability measure of response Y given covariate value z and
our objective is to obtain a fully nonparametric estimate of F,. The basic idea of PTNN
regression is to construct a PT-distributed probability measure given data 7Z; = (Y;, X)),
1 =1,...,n, to provide a good approximation the true probability measure F, and then
to obtain a nonparametric estimate of F, using the samples from the constructed PT
probability measure. The PT-distributed probability measure is constructed in a manner
similar to the posterior PT in (1.10) but V., ... is updated as the summation of weighted
samples of which the response falls in the subset B., ., with covariates being in the
“nearest neighborhood” of x. The detailed formulation is as follows.

We consider a probability measure Gz, the probability measure of response given
covariate x obtained based on the data Z = (Y, X™)", which is assumed to follow a PT
distribution

Guz ~ PT(I, Ayz), (6.1)
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where II is a collection of partitions of S as defined in Section 1.7.2. Here A,z =
Unen+ Ame(Z) with Ay 2(Z2) = {ey..cp0(Z2) 165 €{0,1},j=1,...,m} and

oo o (7)) = { Qeyoe + H?:l w(X;) Y €eB,, ., XS ,andm<M

Qey.em otherwise,
where a., ., > 0, and its default choice is a, ., = ¢m? with ¢ > 0; w(-) is a weight
function; S, = {(z1,...,7,)" : @} € [v; — hj,x; + hyl,j = 1,...,p} is the “nearest

neighbor” of x, h; > 0 quantifies the width of neighborhood of z;, 7 = 1,...,p; and
M € N7 is a pre-specified “truncated level”, suggesting that the PT tree approximates
the true probability measure only to a finite level. If we have n i.i.d. copies of Z, denoted
7 = (ZF, ..., Z")7", the conditional random splitting probabilities of this PT distribution
given Z, denoted G.,. ., ,0.(Z), are

Gel...em,10,m(2) ~ Beta (a61...6m710 + Nal...amflo,x(Z% O{&‘l...am,11 + Nsl...€m711,x(2)> )
if m < M;and
Gal...amflo,x(z) ~ Beta (aal...am,ma O‘q...em,ll) 5
if m > M, where N., ., (Z) is a function of Z of the form:
Ny 2) =S [[w(X ) (Vi€ B, [HI Xy €l —hpa+hl) | (62)
=1 j=1 Jj=1

In (6.2), I(X;; € [x;—hj, xj+h;]) indicates whether X;; belongs to the subset (the “nearest”
neighbor) [z; — hj, z; + h;] of the covariate value z; for j = 1,...,p, and I(Y; € B, .,,)
indicates whether Y; belongs to Be, .,,. The weight function w(-) is built according to
the principle that larger weights should be assigned to the individuals whose covariate
values X;; are closer to the target value x;, and hence satisfied the following conditions for

=1,...,p:
1. w(-) is positive and bounded on [z; — h;, z; + h;];

2. w(-) is symmetric around x; on [z; — h;,x; + h;], e, w(z; —t) = w(x; + ) for
€ [0, hyl;

3. For w;j,x; € [x; — hj,x; + hj] with ¢ # k, if ||x;; — x4]]2 < ||zk; — 2|2, then
w(wij) = w(wg;).
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Let Wimax and Wy, denote the maximum and minimum values of w(-) over [x; — h;, z; +h;],
respectively, for j = 1,...,p. As a result, the weight function reaches the maximum at z;,
i.e., Wmax = w(z;), and comes to the minimum at x; — h; and z; + h;, i.e., Wyin = w(T; —
h;) = w(z;+ h;). Obviously, the uniform weight function, w(z) = 1, can be an option, and
symmetric kernel functions, such as Gaussian kernel function, can be considered. For the
prior parameters a., .. = ¢m?, we suggest to take ¢ = wy;, to formulate a weak prior of
the Polya tree.

i Let Gw‘ 7(Bzes..c, ) denote the random probability of the subset B.,.,. .,, given the data
Z and

Gz|Z<B€1€2~-~€m) = H G€1€2...€k,x(2)-

k=1

Then the expected value of G, 7(B:,c,..c,,) 18

E |:Gx|2(851€2...5m)i| —FE

[[G-e.c0(2)
k=1 B

ﬁ 10‘61.--6197161@ + N€1~~-5k715k’x<Z)~ i om < M
k=1 leo [asl...sk,ll + Nsl...sk,ll,m<Z):|
—\ M . m (6.3)

H 10431”,%_15,@ + Nﬁl---£k—15k7$(2)~ . H ?Elmfk—lak it m > M.
\ k=1 leo [aal...ak_ll + Nal...ak_ll,x(Z)} k=M+1 Zl:o Qey..ep 11

It is worth to clarify that the proposed PTNN is not a “posterior” distribution of Polya
tree, but a constructed PT distribution with good approximation to the true probability
measure. The theoretical properties of the PTNN are provided in the Section 6.3.

6.3 Asymptotic Properties

In this section, we provide the asymptotic properties of the proposed PT (6.1), which forms
the theoretical foundation of the PTNN. The following two theorems prove the pointwise
convergence and consistency of the proposed the proposed PT (6.1), and the proofs of the
theorems are provided in Appendix E.1.

Theorem 6.1. If the following conditions are satisfied:

132



1. hj =On™"P?) forn € (0,1) and j =1,...,p;

2. Geyens(T) = Fo(B:,..cy,) 15 @ smooth function with derivative g_ . (x);

then for any x € S, and any subset B. E T withm=1,... M,

1.--Em

1 -
_NEL..Em,Jt(Z) i) Fx(Bgl,,,gm) as n % OO’

xT

where wy, = 30 [[]_ w(Xiy)[(Xiy € [25 — hy, x5 + hy]) is the summation of the weights
in the “nearest” neighbor of x.

The first condition in Theorem 6.1 states that the window width of the nearest neighbors
decreases in a lower order as the sample size n increases, which serves as the criterion of
selecting h in Section 6.4.1. The second condition in Theorem 6.1 assumes the smoothness
of F,.(Be, .. e, ) with respect to x, which is commonly made in the nonparametric literature.
Theorem 6.1 can further lead to the following asymptotic results regarding the Polya tree
in PTNN.

Theorem 6.2 (Asymptotic Properties of the Polya Tree in PTNN). Assume that the
conditions in Theorem 6.1 hold and the joint density f(y,z) of (Y, X")" is smooth. Then
the following results hold for any x € S,:

(1) Let & = {B € S : B is measurable}. If n = max{O(MlanJrf),O(Ml/"*f)} for
& >0, then for any B € G,

G,z(B) == F.(B)  as M — oo
(2) If n = O(Q%Mni) for n* = min{n,1 —n}, then for any 6 > 0,

P[D(lez, F,) > 5} —0 as M — oo

where D(G 1z, F2) = [s

Junction of G 5.

9.2(y) — fy | 2)|dy with g, 5 representing the density
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6.4 Inference Procedures

6.4.1 Selection of Tuning Parameter h

In this subsection, we discuss the selection of the tuning parameters h = (hy,...,h,)",
which play a role similar to the bandwidth in the kernel method. The condition 1 of
Theorem 6.1 states that h; = O(n~"?), we propose to select hj as hj = cjn*"/p, where ¢;
is a positive constant for 7 =1,...,p.

We first discuss the selection of . In the proof of Theorem 6.1 provided in the Appendix
E.1, we have

1 7 1
sup w—rNa...sM,z(Z) - F (861 eM < 2P }_Il h: SUP|951 EM( )| + Op (\/—N_m) (6.4)
where N, = 377, I(X;; € [xj — hj,z; + h;]) denotes the number of data points

falling in the * nearest” ne1ghbor of z. In the Appendix E.1, it is shown that N, = O,(n'™")
with 1 € (0,1). Applying h; = ¢;n~"P to (6.4), we get

1 ~
sup _Nsl...aM,x(Z) - Fz(le--fM)
1
< (Moo 10,140 ) 69

= w0, ( )01} 0

n should be selected to minimize the upper bound of the difference of conditional proba-
bilities --N., . +(Z) and F,(B.,..,,) in (6.6), which can be achieved when n” = n(1="/2,

ie.,n= 1/3 Namely, the optimal pointwise convergence rate of PTNN is O,(n~%/3).

We next discuss the choice of the constant ¢; for 7 = 1,...,p. For a random
sample of covariate wyj,...,%,;, the sample range, denoted by r;, is defined as the
max{xy;, ..., Ty }—min{zy;,...,z,;}, for 7 = 1,...,p. The data with a larger range is

more sparse than a sample with a smaller range, thus h; should be set proportionally to
the sample range 7; so that the number of data points in the nearest neighbor maintains
at a similar scale. We suggest to use ¢; =1,/2, for j=1,...,p.
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Using (6.5) to find a value of 1 to minimize the upper bound, the value of sup |

gLy, () | is basically needed. However, calculating sup | g7, .. (z) | requires knowledge
TESy
about the unknown true underlying conditional probability. As a remedy, we suggest to

adopt a cross-validation procedure to select the optimal 7 that minimizes the average
absolute difference between the predicted responses and the true responses from a set of

candidate values. It is also worth to mention that sup | g/ _ () |is not always small in
TES,
practice as the response y can vary dramatically with the change of some covariate value

x. As a result, when sup | g/, . (z)|is large, suggesting that the change in the outcome

variable is very sensitive to the change in z, n should take values greater than 1/3, thus
leading to a narrower neighborhood of x.

6.4.2 Sampling Algorithm

In this subsection, we provide an algorithm to sample from the constructed PT distribution
given in Section 6.2, which has limiting distribution F} as shown in Section 6.3.

We briefly describe the steps of sampling algorithm here and provide the detailed
pseudo code in Table 6.1. For data Z = (z],...,z})" with 2z = (yi, T, .., %ip)"
for ©+ = 1,...,n, the data points in the “nearest neighbor” of a given covariate value
of interest x are identified by calculating the the product of the indicator functions

"1 (wij € [wj — hy, x5+ hy]) and reserving the ones with value 1. In the next step,
update N, .,, (%) using (6.2). After updating for all N;, ., .(2), m < M, the expected
probabilities, F[Gyz(B,. -, )] are calculated following (6.3). For any m > M, it is easily
seen from (6.3) that E(G.,. c, ,02(%)) = ey cpn 10/(Ceqocrn 10+ Qey e, 11) = 1/2, when
Q. ... takes its default value ¢m? with ¢ > 0. In other words, for the proposed Polya tree
beyond level M, a sample falling in B, _ is uniformly distributed on BZ _ . Thus, to
sample from the constructed PT distribution, a subset B;, .,, must be first sampled based

on E[Gy:(B., ., )], and then a sample of response is generated uniformly on B, .,,.
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Table 6.1: Sampling algorithm of PTNN Model

Input: Dataset Z = (=7, ..., 2z1)" with z; = (y;, 21, ..., Tp) fori=1,...,n,
covariate value z, tuning parameters h = (hy, ..., h,)", weight function
w(x), size of the sample to be sampled from the constructed PT
distribution nq;
Initiation: N, ., .(2) =0fore, € {0,1}, k=1,..., M;
Output: A sample from the constructed PT distribution of size n;.
1. for iin 1:n do
for jin 1:pdo
Calculate the indicator function I;;(z) = I (z;; € [x; — h;, z; + h;]) for the
Jth covariate of the ¢th data point.
end
end
2. Identify the index set of the data points in the nearest neighbor of x:
Z,={ie{l,...,n}: Hle Ij(z) =1},
for B., .,, in Ty do

for k in Z, do

Neyoerral(Z) = Nepoeyra(2) + 1y € Bey ) [ [ w(ang)

Jj=1

end
end
3. Setm=M —1
whilel1 <m < M —1do
for B., ., in m, do

M 1
Nsl..fm,z(g): Z ZNEL..EL,I(Z)-

l=m+1 ;=0

end

m<«—m—1

end

4. for B., ., in my do

Calculate the expected probability E[Gz(B.,..-,,)] using (6.3) by setting
m= M.

end

5. Sample n; subspaces BQEQ,,,EM with replacement based on E[Gy:(B;,. ,,)], for
1= 17 e, Ng.

6. for iin 1:n; do
‘ Generate Y@ ~ Uniform(Bé?eZ___gM).

end
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6.5 Simulation Studies

6.5.1 Simulation Settings

We consider four simulation settings, each containing six scenarios, as summarized in
Table 6.2. Five hundred simulations are repeated for each setting. Sample sizes n =
100, 250, 500, 1000 and 2500 are considered.

Suppose that the true regression model is of the form
Y = é(r) + &

for i = 1,...,n, where ¢(z) is a regression function of covariates and ¢4, ..., g, are i.i.d.
random errors. The covariate variable(s) z;, ¢ = 1,...,n, are generated independently
from the distributions in the second column of Table 6.2, the random errors are simulated
independently according to those in the last column, and the response is obtained as the
¢(+) functions in the third column evaluated at the generated z; plus the generated random
error term.

g

(a) Setting 6.1.1  (b) Setting 6.1.2  (c) Setting 6.1.3  (d) Setting 6.1.4  (e) Setting 6.1.5

(g) Setting 6.2.1  (h) Setting 6.2.2 (i) Setting 6.2.3 (j) Setting 6.2.4 (k) Setting 6.2.5

00 02 04 0 08 10 00 02 04 0 0p 10

00 02 04 0e e 10

(m) Setting  (n) Setting 6.3.2 (o) Setting 6.3.3  (p) Setting 6.3.4  (q) Setting 6.3.5 (r) Setting 6.3.6

Figure 6.1: A scatterplot of the response versus the covariate in Settings 6.1-6.3 (n = 500)
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Table 6.2: The distributions of the covariate(s), the regression function and the distribu-
tions of random errors of six scenarios in each of the four simulation settings

Setting X o(z) €
6.1.1 e N(0,1)
6.1.2 2z—1)%+2 N(O, (& +0.5)1)
6.1.3 . ) N(0,1)
6.1.4 Unif([0,1]) (4r —2)* 42 N(O, (2 +0.5)-1)
6.1.5 8z —2)2+2, <05 N(0,1) )
6.1.6 Bz —6)2+2, z>05 N(0, (= +0.5)71))
6.2.1 e N(0,1)
6.2.2 2z —1)"+2 N(O, (z +0.5)1))
6.2.3 e N(0,1)
624  Deta22) (4z—-2)%+2 N(O, (z +0.5)"1)
6.2.5 (8z—2)2+2, z<05 N(0,1) )
6.2.6 (85—6)2+2, ©>05 N(0,(z+0.5)71))
6.3.1 (22— 1)2 42 0.5(N(2.5,1) + N(=2.5,1))
6.3.2 0.5(N (2.5, (z 4+ 0.5)71) + N(—2.5, (z 4+ 0.5)71))
6.3.3 . o2 0.5(N(2.5,1) + N(—2.5,1))
634  ONif(01]) (42 —2)" +2 0.5(N (2.5, (z +0.5)"1) + N(=2.5, (z + 0.5)~1))
6.3.5 8z —2)2+2, <05 0.5(N(2.5,1) + N(—2.5,1))
6.3.6 Bz—6)2+2, ©>05 0.5(N(2.5,(z 4+ 0.5)71) + N(—=2.5,(z 4+ 0.5)71))
6.4.1 e e N(0,1)
6.4.2 (221 —1)% + (222 = 1)° +2 N(O, (21 + z2 + 0.3)~1)
6.4.3 o2 o2 N(0,1)
644 o 1) (421 = 2)" + (do2 = 2)7 42 N(O, (z1 + 22 +0.3)~1)
’ (8z1 —2)2 4+ (822 —2)2+2, 1 <0.5and z2 <0.5
6.4.5 (8z1 — 2)% + (8z2 — 6)2 +2, w1 < 0.5 and z2 > 0.5 N(0,1)
a2 _9\2
6.4.6 (821 —6) 4+ (8x2 —2)? +2, 1 > 0.5 and z2 < 0.5 N(O, (21 + 2 +0.3)"1)

(8z1 — 6)2 + (8z2 — 6)2 +2, z1 >0.5and x3 > 0.5

We consider a single covariate (p = 1) for Settings 6.1-6.3 and two covariates (p = 2)
for Setting 6.4. Setting 6.1 considers a uniform covariate and a normal distributed random
error term, Setting 6.2 considers a non-uniform covariate and random errors following
the same distributions as those in Setting 6.1, and Setting 6.3 considers random errors
following a mixture of normal distributions with uniform distributed covariates. Moreover,
the regression function is assumed to take a quadratic form for Scenarios 1-4 and a non-
smooth check function for Scenarios 5-6 in all settings. The distributions of the random
error term are set to be a normal distribution with a fixed variance in Scenarios 1, 3, and
5, and a normal distribution with a covariate-dependent variance in Scenarios 2, 4, and 6
across settings. Figure 6.1 contains a scatterplot of the response versus the covariate in
Settings 6.1-6.3 to show the shape of the data.

We compare the proposed PTNN model with the kernel density estimation (Kernel),
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Polya tree density estimation (PT), and the Linear Dependent Tail Free Process (LDTFP)
method (Jara and Hanson, 2011). The bandwidth of the kernel method is selected using
the Silverman’s rule of thumb (Silverman, 1986). The PT density estimation is conducted
directly to the joint density, f(y,x), of (Y, X™)T, and the truncation level M is set as 9.
The LDTFP model is implemented using the R package DPpackage. We consider linear
predictors and quadratic predictors, labeled as LDTFP1 and LDTFP2, respectively.

6.5.2 Evaluation Metrics

We employ the following two metrics to evaluate the performance of the proposed PTNN
model:

1. Kullback-Leibler Divergence (K-L): K-L divergence measures the difference between

the true conditional density f(y|z) and the nonparametric density estimate, denoted
as f(y|z), by the formula

f(y|z)
KL= log=—2—=~ x) f(x)dydz. .
/ m / 5 WD @y (6.7)

2. Mean Integrated Squared Error (MISE): To measure of the difference between the true
conditional density f (y|x) and the corresponding nonparametric density estimate
f(y|z), the Ly norm can be considered and the quantity

/S Fle) — F(ylo)dy (6.8)

is evaluated at the covariate value x. MISE integrates the quantity (6.8) over the
distribution of covariates

MISE = [ [ i) = fle)Fdys @) (6.9)

6.5.3 Simulation Results

We report the curves of the K-L divergences and the square roots of MISEs for various
nonparametric regression models as the sample size increases across the designed simulation
settings as given in Table 6.2.
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Monte Carlo Based Results

In this subsection, we calculate the K-L divergences in (6.7) and the MISEs in (6.9) using
the Monte Carlo method and report the results for Settings 6.1-6.4 in Figures 6.2-6.5,
respectively. Each figure contains 12 sub-figures. The 6 top figures correspond to the
K-L divergences and the 6 bottom ones correspond to the square root of MISEs. In each
subfigure, we report the desired metric changing with respect to the sample size for PTNN
using a Gaussian weight function with 7 = 0.1 (round symbol and blue line), 0.2 (triangle
up symbol with grey line), 0.3 (plus sign symbol with red line), 0.4 (X symbol with green
line), 0.5 (diamond with pink line), kernel density estimation (triangle down symbol with
black line) and PT density estimation (square with orange line). The numerical values of K-
L divergences and the square root of MISEs and their standard errors for PTNN using both
the uniform weight function and Gaussian kernel weight function with n = 0.1,0.2,0.3,0.4
and 0.5, kernel and PT density estimations are given in Sections E.2.1, E.2.3, E.2.4 and
E.2.6 in Appendix for Settings 6.1-6.4, respectively.

The PTNN models based on the Gaussian weight function are constantly better than
those based on uniform weight function in all settings as shown in Section E.2 in Appendix,
therefore, we only report the curves of the PTNN with Gaussian weights in Figures 6.2-6.5.
For the PTNN method, the K-L divergences and MISEs always decrease as the sample size
increases, corroborating the consistency results of the PTNN model proved in Section 6.3.
The performance of PTNN method varies with different choices of the tuning parameters 7.
For scenarios 1 and 2 across settings, the response changes rarely as the covariate changes
as seen in Figure 6.1, therefore, the best approximation to the true density occurs when
n = 0.1 or 0.2, a value smaller than the optimal value 1/3. For scenarios 3 and 4, the
response changes moderately as the covariate changes, PTNN with n = 0.3 or 0.4 usually
gives top performance. In scenarios 5 and 6 when the response changes more dramatically
as the covariate changes, the MISEs tend to identify PTNN with 7 = 0.4 or 0.5 as the best
performed PTNN method. These simulation results are consistent with our assessment in
Section 6.4.1 on the selection of the tuning parameter 7. As the performance of the PTNN
model highly depends on the choice of n, it motivates a procedure to select 7 in practice.
We discuss the use of a cross-valuation procedure in details when applying the propose
PTNN to analyze a real dataset in Section 6.6.

Comparing with the kernel density estimation, which is represented by the black curve
in each subfigure, the PTNN decreases faster than the kernel method as the sample size
increases, which suggests that the PTNN has a faster convergence rate than the kernel
method. The Polya tree density estimation generally performs poorly in most settings and
tends to provide the worst or the second worst results comparing with the other considered
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nonparametric methods. It is worth to note that the kernel density estimation performs
better than the PTNN method, especially with smaller sample size, in Setting 6.2, where
the covariate values are generated from a Beta distribution and hence more concentrated
to the midpoint of the [0, 1] interval. In this scenario, the PTNN method is undermined by
the sparsity of covariate values near 0 and 1. However, the PTNN method approximates
the true conditional distribution better than the kernel density estimation in all other three
settings, including Setting 6.3, of which the error distribution is a mixture of two normal
distributions, and Setting 6.4 with two covariates.

In summary, the consistency property the PTNN model is confirmed and the PTNN
generally outperforms the kernel and PT density estimation in terms of accuracy and
convergence rate with a well-selected tuning parameter 7. However, the kernel density
estimation may provide more accurate estimation of the true conditional density when
data are sparse near the boundary values of covariates and the sample size is not large.
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Figure 6.2: K-L divergences and square root of MISEs versus sample size for PTNN (Gaussian
kernel weight) when n = 0.1,0.2,0.3,0.4 and 0.5, kernel method and Polya tree density estimation
for Setting 6.1
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Figure 6.3: K-L divergences and square root of MISEs versus sample size for PTNN (Gaussian
kernel weight) when n = 0.1,0.2,0.3,0.4 and 0.5, kernel method and Polya tree density estimation
for Setting 6.2
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Figure 6.4: K-L divergences and square root of MISEs versus sample size for PTNN (Gaussian
kernel weight) when n = 0.1,0.2,0.3,0.4 and 0.5, kernel method and Polya tree density estimation
for Setting 6.3
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Figure 6.5: K-L divergences and square root of MISEs versus sample size for PTNN (Gaussian
kernel weight) when n = 0.1,0.2,0.3,0.4 and 0.5, kernel method and Polya tree density estimation
for Setting 6.4

Grid-Based Results

The LDTFP method is implemented using R package DPpackage, of which the output of
f (y|z) is only available at some grid points of z. Therefore, to compare the performance
of PTNN with different values of 7, kernel density estimation, PT density estimation with
LDTFP method, we compute the K-L divergences in (6.7) and MISEs in (6.9) using the
grid-based methods, which are conducted in the following way: (i) 100 evenly distributed
values are selected on [0, 1] for the covariate and another 100 evenly distributed values are
selected on the domain of response, which are combined to yield 10,000 grid points; (ii)
the K-L divergences or MISEs are obtained by evaluating their integrands at the 10,000
grid points and taking an empirical average.

We plot the grid-based K-L divergences and MISEs of the PTNN models with n = 0.1,
0.2, 0.3, 0.4, and 0.5, kernel density estimation, Polya tree density estimation, LDTFP1
(with linear predictor) and LDTFP2 (with quadratic predictor) for simulation Settings
6.1 and 6.3 in Figures 6.6 and 6.7. Figures are arranged in a similar manner as Figures
6.2-6.5, and the detailed numerical results are provided in Appendix E.2, with Setting 6.1
in Section E.2.2 and Setting 6.3 in Section E.2.5.
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The results of the PTNN models, the kernel and PT density estimation are similar to
those in Section 6.5.3, thus our discussion here mainly focuses on the results of LDTFP
models to avoid redundancy. As introduced in Section 6.1, the LDTFP method models the
random splitting probabilities by a logistic regression, in other words, a logistic transfor-
mation of the random splitting probabilities is linked to a regression function of covariates.
The regression function can assume a linear form of covariates (LDTFP1) or a quadratic
form (LDTFP2), which, in nature, makes the LDTFP not fully nonparametric. For Sce-
narios 1-4 of Settings 6.1 and 6.3, the true underlying regression function is quadratic,
thus the LDTFP2 with a correctly specified regression function outperforms all other non-
parametric methods in terms of estimation accuracy, as expected. The LDTPF1 behaves
reasonably well in Scenarios 1 and 2 in both settings when the response changes gently with
respect to the changes of the covariate and a linear regression function is sensible. How-
ever, both LDTFP methods fail for Scenarios 5-6 in both settings when the true underlying
relationship is a segmented model and the regression functions in LDTFP1 and LDTFP2,
assumed to be linear or quadratic, respectively, are deemed as misspecified models.

In summary, the LDTFP surely exhibits higher estimation accuracy when the para-
metric regression function is correctly specified, but suffers brutally when the parametric
assumption is violated. However, our proposed PTNN model enjoys the advantage of model
robustness compared to the LDTFP models. The proposed PTNN sacrifices some efficiency
in estimation to obtain robust performance under complicated regression relations.
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Figure 6.6: Grid-based K-L divergences and square root of MISEs versus sample size for PTNN
(Gaussian kernel weight) when n = 0.1,0.2,0.3,0.4 and 0.5, kernel method, Polya tree density
estimation, LDTFP1 with linear predictor and LDTFP2 with quadratic predictor for Setting 6.1
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Figure 6.7: Grid-based K-L divergences and square root of MISEs versus sample size for PTNN
(Gaussian kernel weight) when n = 0.1,0.2,0.3,0.4 and 0.5, kernel method, Polya tree density
estimation, LDTFP1 with linear predictor and LDTFP2 with quadratic predictor for Setting 6.3
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Figure 6.8: Scatter plots of the Net Hourly Electrical Energy Output (y) versus Tem-
perature (z7), Ambient Pressure (z3), Relative Humidity (z3) and Exhaust Vacuum (z),
respectively, and the plot of Exhaust Vacuum (z4) versus Ambient Pressure (x2)

6.6 Data Analysis

6.6.1 Dataset Description

We apply the proposed PTNN to analyze the Combined Cycle Power Plant dataset from
the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/
Combined+Cycle+Power+Plant). This is an electricity dataset, containing 9568 data points
collected from a Combined Cycle Power Plant, which works on full load over 6 years (2006-
2011). The response of interest is the Net Hourly Electrical Energy Output (y) of the
plant. There are four features in the dataset: Temperature (x;), Ambient Pressure (x3),
Relative Humidity (z3), and Exhaust Vacuum (z4). We aim to build a regression model
to understand the relationship between the electrical energy output and the four features.
Figure 6.8 contains the scatter plots of the electrical energy output versus each of the four
covariates in subfigures (a)-(d), respectively, and that of Exhaust Vacuum versus Ambient
Pressure in subfigure (e), all showing a linear relationship.

We aim at evaluating the prediction accuracy of our proposed PTNN regression model
and compare it to other benchmark nonparametric regression methods using the Combined
Cycle Power Plant dataset. We divide the dataset into two subsets: the training set of
the first 6000 data points Z; = (vi, Ti1, Ti2, Tiz, Tia)" for i = 1,...,6000, which is used to
fit the nonparametric models, and the test set of the last 3568 data points, which is used
to calculate the prediction errors and evaluate the prediction performance of the fitted
models.

Let y; and ; be the true value and the predicted value for the th subject in the test set,
respectively. The predicted value of the :th subject is calculated using the expected value of
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the response given covariate value x; based on the fitted nonparametric model. We use two
metrics to report the prediction performance: the Mean Absolute Error (MAE), MAE =

= 3" lyi— 9|, and the Root Mean Square Error (RMSE), RMSE = \/% S (i — )

i=1

where m is the size of the test set.

6.6.2 Selection of Tuning Parameter 7

The extensive simulation studies in Section 6.5 suggest that the performance of the PTNN
depends on the choice of n to a large degree. It is vital to develop a procedure to select
an “optimal” n when the underlying relationship between the response and covariates is
unknown. We propose to use the V-fold cross-validation procedure to select an optimal
value from a set of candidate values 7y, ...,nr, by minimizing the mean absolute error
which measures the distance between the true and predicted responses as described below.

In the V-fold cross-validation procedure, the training set is randomly divided into V
mutually exclusive subsets with an equal or nearly equal size; common choices of V' range
from 5 to 10. For v = 1,...,V, we fit PTNN models with different values of n using the
training data with subset v excluded. Thereby, for each v =1,...,V, a sequence of PTNN
models fv(m)(y|x) is obtained for [ = 1,..., L. Next, we define the cross-validated estimator
of the mean absolute error as

14 n

! ,
ROV () =~ > (Siw = Dlys = 9 (x:)].

where S;,, indicates whether subject ¢ belongs to subset v and Qf,m)(xi) is the predicted

value from model ﬁgm)(y]x) at the covariate value z;. For [ =1,..., L, calculate RCV (n;)

and the “optimal” 7 is the value which minimizes RC'V (;).

For the Combined Cycle Power Plant dataset, the size of training set is n = 6000 and
the 5-fold cross-validation procedure is conducted to select an “optimal” 7 from candi-
date values {0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95}. Figure 6.9
displays how the cross-validated mean absolute error changes with respect to the value of
1. The cross-validation error is minimized at n = 0.85. The value of 7 is fairly large as the
variability of the response for some particular values of xs, x3 or x4 can be quite large as
shown in Figure 6.8.
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Figure 6.9: The cross-validated mean absolute error changes with respect to the value of n

6.6.3 Models to Compare

We compare the prediction performance of the PTNN with n = 0.85 with the following
models:

1.

(KDE) Kernel density estimation: the bandwidth is selected using the Silverman’s
rule of thumb (Silverman, 1986);

(KR) Kernel regression: the multivariate Nadaraya-Watson estimator (Ruppert and
Wand, 1994) is used;

3. (LDTFP) Linear Dependent Tail Free Process.

(LM1) Linear model I: a simple linear regression model of the response over the four
features of interest in the dataset;

Y = b1+ Powin + Baiz + Paiz + BsTia + & (6.10)

for i =1,...,n, where g; ~ N(0,0?).

(LM2) Linear model II: a simple linear regression with the interaction between z,
and x4.

Yi = b1+ Boxin + Baxio + Baiz + Bsxia + BeTioTia + € (6.11)
for i =1,...,n, where g; ~ N(0,0?).

(PT) Polya tree density estimation: the truncation level M is set to be 8.
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6.6.4 Results

Table 6.3 summarizes the prediction results of MAEs and RMSEs for the PTNN versus
the kernel density estimation (KDE), kernel regression (KR), linear dependent tail free
process with a linear regression function (LDTFP1), linear model I (LM1) (6.10), linear
model IT (LM2) (6.11) and Polya tree density estimation (PT) methods described in Section
6.6.3. The PTNN provides the smallest MAE and RMSE, suggesting the best prediction
performance.

Table 6.3: Prediction performance of PTNN versus the kernel density estimation (KDE),
kernel regression (KR), linear dependent tail free process (LDTFP1), linear model I (LM1)
(6.10), linear model II (LM2) (6.11) and Polya tree density estimation (PT) methods

PTNN KDE KR LDTFP1 LM1 LM2 PT
MAE 3203 7.570 3.292 3.590 3.500 3.603 15.215
RMSE 4.115 9.569 4.193 4.496 4.379 4493 17.397

The histograms overlaid with the curves of the conditional density estimated by PTNN
model at 5 different covariate values are provided in Figure 6.10. With different covariate
values, the densities of conditional density exhibit a diversity of shapes, including a bi-
modal distribution in subfigure (a), and skewed shapes in subfigures (b) - (). The proposed
PTNN regression, as a fully nonparametric approach, provides decent fits to a variety of
complicated distributions.

(a) (b) () (d) ()

Figure 6.10: Histograms with superimposed curves of the estimated conditional densi-
ties by PTNN model at 5 different covariate values: (a) (20,40.36,1007.89,40.56)",
(b) (20, 40.36,1018.30,85.16)", (c) (19.69, 54.28,1013.20, 73.21)", (d)
(22.11,66.56, 1007.89, 40.56)", (e) (22.11,66.56,1018.30, 85.16)"
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6.7 General Remarks

In this chapter, we propose a fully nonparametric regression model, a Polya tree based
nearest neighbor regression, which provides consistent and robust performance in charac-
terizing complex relationship between responses and covariates. Since the PTNN requires
no parametric assumption on both the regression function or the error distribution, it
provides robust performance in different irregular regression relations, as illustrated in
the numerical studies. Furthermore, in the simulation studies, the results show that the
PTNN has a faster convergence rate than kernel density estimation. Generally speaking,
using PTNN to model the conditional density f(y|z) provides a comprehensive overview of
the regression relations, and many common interested quantities can be derived from the
conditional distribution, such as the response expectation, variance or confidence interval.
Compared with the nonparametric methods to model the regression functions, such as the
spline method or the wavelet method, the PTNN model can characterize the variations in
the response better.

It is noteworthy that the PTNN is different from the Bayesian nonparametric smoothed
density estimation method proposed by Hanson et al. (2018), in which attention was given
particularly on the spatial data. Our proposed PTNN features a “nearest neighbor” of
covariate values considered, which reduces the computational burden and facilitates desir-
able theoretical results of convergence. In Hanson et al. (2018), the weight function was
specified to be the Mahalanobis distance, a common choice in spatial analysis, while our
PTNN allow the weight function to adopt more flexible forms. Finally, Hanson et al. (2018)
can be extended to censored data, which is an interesting future direction for PTNN.
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Chapter 7

Discussion and Future Work

In this chapter, we present a summary and briefly mention some potential future work.
Chapter 2:

In this chapter, we propose a R-Vine based regression model for analyzing periodic
longitudinal data. We introduce composite likelihood methods which outperform the
likelihood-based methods in terms of robustness and computational efficiency. We con-
duct extensive simulation studies to evaluate the performance of the proposed methods.
The numerical studies suggest that the (conditional) bivariate copulas can still be accu-
rately selected and the parameters of interest can be consistently estimated with moderate
efficiency loss when simultaneous procedure is used. Moreover, the model provides more
precise prediction results than the conventional models in both the simulation studies and
the real data analysis. Time extrapolation is what we usually care about in prediction
problems, while subject extrapolation is valuable for imputing missing response values.

Chapter 3:

In this chapter, we propose a Bayesian hierarchical copula model to characterize the
subject-level dependency for data with a hierarchical structure. The model is flexible
enough to account for data coming from multiple sources with different sample sizes. We
use a “layer by layer” sampling scheme, combined with the Metropolis Hasting algorithm to
sample from the posterior distribution. Simulation studies and data analysis are conducted
to compare the estimators obtained from our proposed BHCM to the likelihood-based es-
timators. The results show that the BHCM outperforms the maximum likelihood methods
and this advantage gets more obvious when the sample size is small. The proposed model
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captures the between-cluster variability and facilitates information sharing across clusters
through delineating the hierarchical structures.

Our analysis under BHCM was conducted under correctly specified models. It will be
useful to understand the robustness of the proposed model. The effects of misspecification
of the copula function in one cluster on the estimation of parameters in another cluster
should be explored.

Chapter 4:

In this chapter, we propose a M-DPM-CM to identify similar dependence structures
for dependent data coming from a hierarchical structure. We construct a mixed copula
model for the subject-level dependence, in which the copula selection indicators and copula
parameters follow a DP prior. We can make inference on our proposed model by introducing
a Gibbs sampler algorithm with augmented parameters. The M-DPM-CM can perform
grouping and copula selection simultaneously. Simulation studies and data analysis are
conducted to compare the M-DPM-CM to the conventional copula selection method using
AIC. The results show that the M-DPM-CM can accurately recover the true grouping
structure with a moderate sample size, and in turn achieve a more accurate model selection
and more efficient parameter estimation than the conventional AIC method.

The M-DPM-CM can also be used for copula selection in vine copula models. Work-
ing with a given vine structure, a tree-by-tree selection of bivariate copulas can be done
by using M-DPM-CM and regarding each pair of bivariate data as a cluster. A more
sophisticated M-DPM-CM with an extra indicator corresponding to different vine struc-
tures can be developed to select the vine structure, copula functions and parameter values
simultaneously.

When performing model selection, it is common to introduce some penalty terms to
penalize on the number of parameters in the model, such as AIC or BIC. If we consider
including copula functions with different number of parameters in the set F, the proposed
M-DPM-CM can be easily extended by including some penalty terms in the Gibbs sampler.

Chapter 5:

In this chapter, we propose a Polya tree Monte Carlo method which utilizes the Polya
tree distribution in an innovative way. We describe multiple sampling algorithms to sample
from potentially complex multi-modal distributions. Our proposed PTMC algorithms have
several merits compared to the MCMC algorithms. When sampling from low-dimensional
distributions, our proposed Algorithms 5.1 is superior in computational speed and sampling
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efficiency. When sampling from multi-dimensional distributions, the proposed Algorithm
5.4 is free of the hassle to tune the stepsize and can recover multiple modes of the target
distribution. The proposed algorithms enjoy a broad scope of applications.

In the PTMC algorithms, only the density function of the target distribution is evalu-
ated. However, in the PTMC MH algorithm, the gradient information of density function
can also be incorporated to improve the sampling efficiency in a similar way as Langevin
MC (Radford et al., 2010), which is an interesting direction for the PTMC algorithms.

Chapter 6:

In this chapter, we propose a fully nonparametric regression model, a Polya tree based
nearest neighbor regression, which provides consistent and robust performance in charac-
terizing complex relationship between responses and covariates. Some fully nonparametric
regression methods, such as the LDTFP model (Jara and Hanson, 2011), make assump-
tions about the form of predictors, therefore, fail to provide desirable results when the form
of predictors is misspecified. Our proposed PTNN model literally makes no parametric as-
sumptions about the regression function or the error distribution, thus it exhibits more
robust performance across various designed simulation settings in terms of different forms
of covariate distribution, regression functions and error distributions. Another merit of our
proposed PTNN model is its faster convergence performance than other compared non-
parametric methods. As demonstrated by the simulation studies that the K-L divergence
and MISE are reduced faster for PTNN than for kernel density estimation as the sample
size increases. Moreover, the inference procedure of PTNN is computationally simple and
efficient. For future directions, the PTNN model can be extended to different types of
data, such as censored data, or data with mixed types.
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A.1.3 Prediction

Simulation Results for Prediction

Table A.8: Simulation results for subject extrapolation and time extrapolation in terms of
percentage outperformance VINE4 versus the other models

Subject Extrapolation Time Extrapolation

MRM LRM AR MRM LRM AR

Scenario 1(S)  0.618 0.814  0.909 0.868 0.847 0.938
Scenario 1(M) 0.558 0.725 0.874 0.761 0.780 0.937
Scenario 2(S)  0.618 0.744  0.745 0.868 0.776 0.836
Scenario 2(M) 0.558 0.637  0.665 0.761 0.636 0.745
Scenario 3(S)  0.611 0.807 0.945 0.868 0.840 0.919
Scenario 3(M) 0.552 0.719  0.904 0.748 0.764 0.938
Scenario 4(S)  0.611 0.725  0.725 0.868 0.707 0.710
Scenario 4(M) 0.534 0.665 0.665 0.748 0.618 0.620
Scenario 5 0.545 0.547  0.535 0.692 0.693 0.533
Scenario 6 0.545 0.536 0.534 0.692 0.550 0.534

S: strong dependence setting; M: moderate dependence setting

MAESs by Time Points for Subject Extrapolation

MAE by time points for subject extrapolation for the /th time point is computed by

200 500

2()0 50 - Z Z Z |yzkzl - yzkl

=451 k=1

(1) Scenario 1(S)
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MAESs by Time Points for Time Extrapolation

MAE by time points for time extrapolation for the [th time point is computed by
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A.2 Data Analysis

A.2.1 Dataset Description

Table A.9: Location information of 47 observation stations

ID Name Latitude Longitude Elevation Group ID Name Latitude Longitude Elevation Group

1 LANSDOWNE HOUSE 52.23 -87.88 255 Training 25 BROCKVILLE 44.60  -75.67 96 Training
2 PICKLE LAKE 51.45 -90.22 386 Training 26 CORNWALL 45.02 -T4.75 64 Training
3 RED LAKE 5107 -93.80 386 Training 27 KINGSTON 44.22 -76.60 93 Training
4 FORT FRANCES 4865  -9343 342 Training 28 MORRISBURG 4492 7518 82 Training
5 MINE CENTRE 43.80 -92.60 361 Training 29 OTTAWA 45.38 -75.72 79 Training
6 DRYDEN 49.78 -92.83 413 Training 30 OWEN SOUND 44.58 -80.93 179 Training
7 KENORA 49.78 9437 406 Training 31 RIDGETOWN 42.45 -81.88 206 Training
8  CAMERON FALLS 49.15 -88.35 233 Training 32 VINELAND 43.17 -79.42 79 Training
9  GERALDTON 49.78 -86.93 349 Training 33 WELLAND 43.00 -79.27 175 Training
10 THUNDER BAY 48.37 -89.33 199 Training 34 WINDSOR 42.27 -82.97 190 Training
11 HORNEPAYNE 49.20 8477 335 Training 35 LONDON 43.03 -81.15 218 Training
12 SAULT STE MARIE ~ 46.48 -84.52 192 Training 36 WOODSTOCK 43.13 -80.77 282 Training
13 WAWA 47.97 -84.78 287 Training 37 BELLEVILLE 44.15 -77.40 76 Training
14 CHAPLEAU 47.82 -83.35 47 Training 38 HAMILTON 43.17 -79.93 238 Training
15 SUDBURY 46.62 -80.80 348 Training 39 ORANGEVILLE 43.92 -80.08 412 Training
16 EARLTON 4770 -79.85 243 Training 40 TORONTO 4367 -79.40 113 Training
17 TROQUOIS FALLS 48.75 -80.67 259 Training 41 HALIBURTON 45.03  -78.53 330 Training
18 KAPUSKASING 49.42 -8247 221 Training 42 PETERBOROUGH 44.23  -7837 191 Training
19 MOOSONEE 5127 -80.65 10 Training

20 SMOKY FALLS 50.07 -82.17 183 Training 43 BIG TROUT LAKE 53.83 -89.87 224 Validation
21 TIMMINS 48.57 -81.38 295 Training 44 SIOUX LOOKOUT  50.12 -91.90 383 Validation
22 MADAWASKA 45.50 -77.98 316 Training 45 BEATRICE 45.13 -79.40 297 Validation
23 NORTH BAY 46.37 -79.42 370 Training 46 HARROW 42.03 -82.90 182 Validation
24 GORE BAY 45.88 -82.57 194 Training 47 ATITOKAN 48.8 -91.58 442 Validation
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A.2.2 Model Fitting Results

Table A.10: Estimates of first parameters of the copula functions in the C-Vine structure
obtained by the two-stage estimation procedure (standard error in the bracket)

Month

o ) 3 4 5 6 7 8 9 10 11 12
1 3035(25.076) L647(6.797) 0.311(0.063) 0.120(1.253) - 0253(0.922)  0.375(0.390) -0.735(1.636) -0.248(0.065) -
2 L804(5.513)  0.544(0.717) - 0101(0.136) 0.055(0.449) 0201(0.049) 1796(0.275) 1.152(0.267) 1519(0.268) 1,405(0201)
3 0.156(5.391)  0.419(1.622) - 0.100(3.417) -L728(2472) - L059(0.586)  1.392(0.432)  0.023(0.908)
4 1.934(10.769) 0.230(0.636) 0.268(0.254) - -0.188(0.563)  L678(1.094)  0.209(0.065)
5 0.191(2.059) 1461( 2m) - 0.106(0.421) - 1.080(0.045)
6 0548(0.077)  1352(0.254) 1.962(0.795) 0.884(0.583) -1.113(0.080)
7 1.108(0. 68) 0.316(0484) -1.133(0.222) 1.136(0.335) -1.037(0.184)
8 - 1.334(0.621) -0.224(0.158)
9 1.216(0.131) 1J8( 518) -
10 1.611(2412) -0.138(0.171)
1 1.688(0.570)

Table A.11: Estimates of second parameters of the copula functions in the C-Vine structure
obtained by the two-stage estimation procedure (standard error in the bracket)

Month

2 3 4 5 6 7 8 9 10 11 12
Tree
1 0.078(0.952)  0.263(3.607) - - - - - - - - -
2 0.860(1.060) - - - - - 0.115(0.069) - 0.256(0.301)  0.084(0.060)
3 3.674(28.822) - - - 0.075(0.081) - 0.164(0.888) 0.271(2.377)  5.077(9.447)
4 0.248(2.377) 12.932(56.992) - - - - 0,819(0 703) -
5 - - 0.168(0.578) - - -
6 - 0.525(0.329) - - - -
7 0.310(1.036) - - - -
8 - 0.348(0.702) - 10.113(24.569)
9 - 0.152(0.225) -
10 0.054(0.076) -
11 0.958(0.080)
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Appendix B

Appendix for Chapter 3

B.1 Variability of the Transformed Dependence Pa-
rameters

We now explore the within-cluster variability of 77, which relates to the choice of rescaling
parameter aj;. We use simulations to show how the standard error of the transformed
dependence parameter, s/a('?jl), varies with respect to the copula form, the sample size and
the strength of dependence. Five commonly-used copula forms, Clayton copula, Gumbel
copula, Joe copula, Frank copula and Gaussian copula, are considered with Kendall’s 7
varing from 0.1 to 0.9 and the sample sizes n = 200 or 400. In each scenario, simulation is
repeated 500 times, and the transformed dependence parameters are estimated using max-
imum likelihood estimation with standard errors calculated from the inverse of observed
information. We report the results in Table B.1.

The results show that the copula form, the true parameter values , the sample size, and
the transformation function affect the standard error of the transformed parameter 73.
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B.2 Additional Simulation Results

Table B.2: Simulation results for Setting 3.1

n = 200 n =400
Cluster Copula L EBias ESE ASE 95% Interval ECP EBias ESE ASE 95% Interval ECP
Bayesian Estimation
1 Clayton(1.33) 4 -0.001 0.125 0.127 (1.091,1.589) 0.950 -0.009  0.073 0.089 (1.154,1.503) 0.960
2 Clayton(1.64) 4 -0.002 0.140 0.157 (1.335,1.949) 0.970 -0.015  0.103 0.109 (1.413,1.839) 0.950
3 Clayton(2.00) 4 0.009 0.170 0.181 (1.665,2.373) 0.970 0.001  0.121 0.127 (1.756,2.253) 0.955
4 Clayton(2.44) 4 0.023 0.198 0.203 (2.081,2.876) 0.930 -0.010  0.155 0.145 (2.155,2.724) 0.940
1 Clayton(1.33) 20 0.039 0.070 0.058 (1.245,1.474) 0.850 0.013  0.044 0.037 (1.275,1.420) 0.905
2 Clayton(1.64) 20 -0.005 0.108 0.106 (1.432,1.848) 0.910 -0.014  0.085 0.070 (1.489,1.762) 0.890
3 Clayton(2.00) 20 0.003 0.150 0.147 (1.729,2.303) 0.890 <0.001 0.122 0.093 (1.820,2.185) 0.900
4 Clayton(2.44) 20 -0.024 0.172 0.181 (2.076,2.786) 0.865 -0.014  0.152 0.123 (2.197,2.680) 0.910
Maximum Likelihood Estimation
1 Clayton(1.33) - 0.021 0.147 0.158 (1.043,1.664) 0.970 -0.004  0.098 0.111 (1.112,1.547) 0.960
2 Clayton(1.64) - 0.023 0.165 0.176 (1.315,2.003) 0.955 -0.013  0.113 0.123 (1.382,1.864) 0.965
3 Clayton(2.00) - 0.012 0.191 0.196 (1.628,2.396) 0.965 0.006 0.127 0.139 (1.734,2.277) 0.945
4 Clayton(2.44) - 0.028 0.216 0.223 (2.035,2.908) 0.955 -0.007  0.155 0.156 (2.131,2.743) 0.950
Table B.3: Simulation results for Setting 3.2
n = 200 n =400
Cluster Copula L EBias ESE ASE 95% Interval ECP EBias ESE ASE 95% Interval ECP
Bayesian Estimation
1 Clayton(1.33) 4 0.020 0.147 0.150 (1.087,1.677) 0.940  -0.004 0.071 0.081 (1.174,1.490) 0.945
2 Clayton(2.00) 4 0.002 0.169 0.177 (1.665,2.358) 0.965  -0.012 0.115 0.127 (1.744,2.243) 0.960
3 Clayton(3.00) 4 -0.013 0.220 0.233 (2.543,3.456) 0.945 0.003 0.161 0.167 (2.682,3.337) 0.935
4 Clayton(4.67) 4 -0.041 0.346 0.319 (4.018,5.269) 0.945  -0.021 0.249 0.230 (4.203,5.104) 0.940
1 Clayton(1.33) 20 0.054 0.139 0.102 (1.195,1.595) 0.815 0.021 0.052 0.043 (1.265,1.403) 0.895
2 Clayton(2.00) 20 0.038 0.162 0.124 (1.806,2.260) 0.830 0.004 0.094 0.089 (1.834,2.183) 0.910
3 Clayton(3.00) 20 -0.047 0.204 0.178 (2.615,3.313) 0.845  -0.014 0.159 0.142 (2.721,3.279) 0.880
4 Clayton(4.67) 20 -0.071 0.338 0.283 (4.054,5.164) 0.810  -0.033 0.242 0.218 (4.216,5.069) 0.910
Maximum Likelihood Estimation
1 Clayton(1.33) - 0.017 0.148 0.158 (1.040,1.660) 0.965  -0.002 0.099 0.111 (1.113,1.548) 0.965
2 Clayton(2.00) - 0.009 0.191 0.196 (1.626,2.393) 0.950  -0.014 0.126 0.138 (1.716,2.256) 0.960
3 Clayton(3.00) - -0.010 0.232 0.253 (2.494,3.486) 0.950 0.004 0.168 0.179 (2.652,3.355) 0.955
4 Clayton(4.67) - -0.036 0.351 0.349 (3.947,5.316) 0.940 -0.019 0.253 0.248 (4.162,5.133) 0.940
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Table B.4: Simulation results for Setting 3.3

n = 200 n = 400
Cluster Copula L EBias ESE ASE 95% Interval ECP EBias ESE ASE 95% Interval ECP
Bayesian Estimation
1 Clayton(3) 4 0.004 0.215 0.218 (2.587,3.444) 0.955 0.011 0.141 0.154 (2.705,3.307) 0.945
2 Gumbel(2.5) 4 -0.002 0.140 0.128 (2.253,2.755) 0.920 -0.004  0.075 0.093 (2.321,2.686) 0.915
3 Gaussian(0.81) 4 -0.001 0.018 0.017 (0.772,0.840) 0.955 < 0.001 0.009 0.012 (0.784,0.833) 0.940
4 Frank(7.93) 4 0.011  0.571 0.542 (6.886,9.010) 0.925 0.020  0.406 0.395 (7.148,8.696) 0.930
1 Clayton(3) 4 0.012 0.182 0.219 (2.591,3.449) 0.965 0.001 0.149 0.157 (2.701,3.315) 0.970
2 Gumbel(2.5) 4 -0.010 0.135 0.129 (2.247,2.752) 0.935 -0.002  0.101 0.093 (2.319,2.684) 0.905
3 Gaussian(0.81) 4  -0.001 0.017 0.017 (0.772,0.840) 0.940 < 0.001 0.012 0.012 (0.784,0.833) 0.950
4 Frank(7.93)" 4 0.035  0.570 0.550 (6.931,9.088) 0.955 -0.017  0.440 0.394 (7.143,8.689) 0.925
1 Clayton(3) 20  -0.011 0.155 0.120 (2.761,3.231) 0.850 0.003  0.105 0.079 (2.853,3.161) 0.875
2 Gumbel(2.5) 20 -0.018 0.140 0.088 (2.312,2.657) 0.835 -0.011  0.098 0.064 (2.368,2.618) 0.860
3 Gaussian(0.81) 20 < 0.001 0.016 0.012 (0.788,0.832) 0.845 0.001  0.010 0.008 (0.795,0.826) 0.855
4 Frank(7.93) 20 0.040 0.558 0.341 (7.296,8.633) 0.850 0.015 0.419 0.315 (7.317,8.543) 0.855
1 Clayton(3) 20 -0.010 0.158 0.130 (2.738,3.250) 0.875 -0.008 0.102 0.081 (2.831,3.149) 0.905
2 Gumbel(2.5) 20 -0.014 0.136 0.100 (2.292,2.686) 0.850 -0.010  0.094 0.064 (2.360,2.610) 0.870
3 Gaussian(0.81) 20 0.001 0.015 0.013 (0.784,0.835) 0.845 0.001 0.011 0.008 (0.796,0.828) 0.855
4 Frank(7.93)" 20  0.024 0549 0.321 (7.325,8.583) 0.820 -0.009 0.404 0.312 (7.318,8.542) 0.860
Maximum Likelihood Estimation
1 Clayton(3) - 0.013  0.253 0.254 (2.515,3.511) 0.955 < 0.001 0.164 0.179 (2.649,3.351) 0.965
2 Gumbel(2.5) - -0.004 0.147 0.145 (2.211,2.781) 0.940 -0.003  0.105 0.103 (2.296,2.699) 0.920
3 Gaussian(0.81) - -0.001  0.019 0.019 (0.772,0.846) 0.960 < 0.001 0.013 0.013 (0.784,0.836) 0.950
4 Frank(7.93) - -0.016 0.643 0.643 (6.653,9.715) 0.960 -0.046  0.456 0.454 (6.995,8.774) 0.930
(1) Using transformation function g(0) = log (T;&Eg)
Table B.5: Simulation results for Setting 3.4
n = 200 n = 400
Cluster Copula L EBias ESE ASE 95% Interval ~ ECP EBias ESE ASE 95% Interval  ECP
Bayesian Estimation
1 Clayton(3) 4 0.015  0.224 0.229  (2.577,3.477)  0.955 0.012 0.160 0.164  (2.697,3.341)  0.950
2 Gumbel(4) 4 0.018 0.220 0.215 (3.609,4.452) 0.940 -0.021 0.151 0.153 (3.684,4.285) 0.940
3 Gaussian(0.6) 4 -0.006 0.034 0.035  (0.520,0.658)  0.950 -0.004 0.026 0.026  (0.543,0.643)  0.945
4 Frank(13) 4 0.016 0.865 0.804 (11.472,14.623) 0.940 0.087 0.651 0.613 (11.899,14.300) 0.930
1 Clayton(3) 4 0.021 0.225 0.227 (2.589,3.480) 0.955 0.012 0.162 0.163 (2.700,3.339) 0.965
2 Gumbel(4) 4 0.023  0.219 0.212  (3.620,4.450)  0.940 -0.022 0.151 0.152  (3.686,4.280)  0.940
3 Gaussian(0.6) 4 -0.006  0.035 0.035 (0.519,0.658) 0.945 -0.003 0.026 0.025 (0.545,0.643) 0.960
4 Frank(13)* 4 -0.010 0.856 0.786 (11.469,14.551) 0.930 0.090 0.651 0.577 (11.973,14.236) 0.920
1 Clayton(3) 20 0.008 0.189 0.165 (2.697,3.344)  0.905 0.003 0.135 0.116  (2.780,3.234)  0.925
2 Gumbel(4) 20 0.009 0.190 0.157 (3.710,4.327) 0.895 -0.020 0.131 0.117 (3.749,4.208) 0.900
3 Gaussian(0.6) 20 < 0.001 0.028 0.023  (0.552,0.643)  0.835 -0.003 0.021 0.017  (0.562,0.629)  0.895
4 Frank(13) 20 0.009 0.876 0.600 (11.844,14.197) 0.815 0.084 0.639 0.443 (12.220,13.958) 0.850
1 Clayton(3) 20 0.012 0.193 0.168 (2.693,3.350) 0.905 0.002 0.126 0.114 (2.780,3.228) 0.915
2 Gumbel(4) 20 0.005 0.186 0.159  (3.700,4.323)  0.890 -0.015 0.130 0.112  (3.770,4.209)  0.890
3 Gaussian(0.6) 20 -0.002 0.026 0.023 (0.551,0.641) 0.865 -0.002 0.020 0.017 (0.563,0.630) 0.905
4 Frank(l?))‘\ 20  -0.021 0.837 0.594 (11.828,14.155) 0.830 0.067 0.645 0.445 (12.204,13.955) 0.845
Maximum Likelihood Estimation

1 Clayton(3) - 0.026  0.242 0.254  (2.524,3.521)  0.960 0.013 0.171 0.180  (2.661,3.365)  0.960
2 Gumbel(4) - 0.022 0.234 0.236 (3.559,4.486) 0.960 -0.022 0.158 0.165 (3.654,4.302) 0.945
3 Gaussian(0.6) - -0.004 0.038 0.039  (0.519,0.673)  0.940 -0.003 0.028 0.028  (0.543,0.651)  0.960
4 Frank(13) - -0.076  0.869 0.908 (11.144,14.704) 0.960 0.054 0.658 0.647 (11.785,14.322) 0.935

0+100

(f) Using transformation function g(#) = log (41%)
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B.3 Additional Results for Data Analysis

B.3.1 Marginal Distribution of Six Features in Three Health
Groups

The marginal density of the k-th biomedical feature in the j-th group of people is given by

Pik
Fin i) = y | o —
. e— ikt Pik J
2kiwoingF B (L, q; Yk kT : 1)
kO kK pe Yok 4k (350 5k) 778 (N jrsign(yjix—pjn+rk) +1)P7F +

where B(:) is the Beta function, u is the location parameter, ¢ is the scale parameter,
A € (—1,1) is the skewness parameter, p and ¢ are kurtosis parameters, and 7;, and s
are given by
Ak gl B2, i — L)
LA ]kqjk ij’qjk

Dik
B(;ﬁvqjk)

1/pjk
ik
Sjk: - 3 ) 2 2 1 '
B(3_ g, 2 2 oo 1y2
(pjk’qjk ij) 5k pjk)

)\2 B(pjk
—4 2

2
1 .
B (P]‘k 7QJI€)

(3N%, + 1)—B(plk7ij)
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Table B.6: MLE of marginal parameters in the generalized skewed-t distributions

Skewed t distribution

Normal distribution

Groups Features 1 o A L o
PI 47.711  10.581 0.238 47.638 10.608
PT 17431  6.942 0.314 17.398 6.958
Disk Hernia LL 35.522  9.677 0.101 35.464 9.686
SS 30.261  7.495 -0.095 30.239 7.492
PR 116.337  9.237  -0.190 116.475 9.277
DS 2.470 5.483 -0.141 2.480 5.485
PI 71.538 15.056 0.065 71.514 15.059
PT 20.821 11.436 0.279 20.748 11.468
Spondylolisthesis LL 64.100 16.346 0.256 64.110 16.342
SS 50.993 12.207 0.204 50.766 12.278
PR 114.599 15.517 0.087 114.519 15.528
DS 51.897 35.119 0.629 51.897 39.974
PI 51.401 12.577 0.635 51.685 12.306
PT 12.789  6.739 -0.108 12.821 6.745
Healthy LL 43.643 12.239 0.392 43.543 12.299
SS 38.921  9.551  0.276 38.863 9.576
PR 123.893 8.969 0.015 123.891 8.969
DS 2583  6.043 0.410 2.187 6.276
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Figure B.2: Histograms of six biomedical features on three groups
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B.3.2 Dependence Model
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Figure B.4: Scatter plots of six pairs
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of bivariate dependence
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Appendix C

Appendix for Chapter 4

C.1 Additional Simulation Results
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Appendix D

Appendix for Chapter 5

D.1 Proofs of Theorems

D.1.1 Proof of Theorem 5.1

Let By, = 8" and By;, = BZ, . for j =1,2,---. Obviously, we have that By, > Bf;, D
B&} DD B?{‘M}. As U; is generated uniformly from S§*, from the property of Monte
Carlo integration (Gilks et al., 1995; Brooks et al., 2011), for any M > m > 0,

F(Biuy) = / 1wy
YE5Imy

The proof of Theorem 5.1 consists of the following three steps. In steps 1 and 2, we show
Theorem 5.1 (1) for the two cases with ]-"(Bfm}) > 0 and F(By,,) = 0, respectively. In
step 3, we present the derivations for Theorem 5.1 (2).

Step 1: We first prove Theorem 5.1 (1) for the case with F(Bj,,) >
It 7(B},,) > 0, then

g B ﬁ Oéil £ +E?*1 (U € le £ )f(uf)
U {m} = [a€1 Ej— 1Z+Zz 1 (U GB:1 Ej— 1l)f(u:<)}

J=1
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O‘il e T ws* *]:(B{]})“‘O (Vn¥)
T (Sl )+ et F (B ) + Op(Vin)
97 g +f(B;J}>+op(W)
- 23?2 ws- +]—“(B{] )+ 0p(=)
F(By) [ )]
F(By;_ 1})[2@ wg*(+1ﬁ1+0p( =3
F(Bi;))[65° - ws: g + 0" + Op (V')
L F By 1)) [2057 - ws- f(sz,lp +n* + 0, (Vn*)]

m 2, _ P2, ﬁ *
H { Bijy) <Z5J Ws+ = 20]° - Ws* 5 i Op(vn¥)
o LS (B 1}) 2052 - ws+ +nF(By; 1)) + Op(vnr) |

:'13

J

és

<
Il

ws*m+ 1+Op(

ég

<.
Il
—

53

.
Il

(D.2)

.

where the first equality is from (5), and the second equality is the application of (D.1).
Here we also use the default choice oy, ., = ¢m? as mentioned in Section 2.1 for prior
parameter o, ., ; further, ¢, ws« and ]:(Bf{kj}) for j = 1,...,m are constants with order

0(1).

B
It is obvious that f(;*“})) <1 Forr=1,...,2™ —1, let T, denote any non-empty
{7—-1}

subset of {1,...,m} and let TC denote its comphment. Then (D.2) becomes

m

gU B{m} *{]}
Hf (By,- 1})

S

heTg ‘F(B{h—l})

e 7 4 ey 0
€T 207 - ws- —i-n*]-"(B?{‘q 1}) +Op(\/_)

: 0 - ws: + 0, (V)
= F(B{m}>/(1 —O+ ; Lg 20¢% - ws+ + n*}-(qu 1}) + Op(\/n*):| (D-3)
B u ¢j° - ws- + Op(v'n) B
= FEBm)/l )+ H {1 i Cwse +n*F(BY;_yy) + Op(vn*)} : DY
_ . - ¢j° - ws + Op(Vn*) _
B A { ;10g [ cwse +n F(By,_,) + Op(\/ﬁ)} } :
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_ \ B - 5% - ws- + Op(vVn*)
= F(Bpuy)/(1=0) +exp { 2 2057 - wse + F(By;_yy) + Op(vi")

+g()p[<2¢j2-wij2+‘;;(;§ fﬁ)@;(ﬁ))z}} - (D:5)

= B <1_5)+O”(i 2¢j2-wij:vi‘;<;§ f@@xm) (D)
< F(Bi,,)/(1-06)+0, (Z@ s ;‘;18/_)) (D.7)
_ f(Bfm})/u—5)+max{0p(%),0p<f—j)}, (D.8)
)

where inequality(D.3) is obtained through omitting the negative term —2¢q? - wg- FE
{a-1}

in the previous step; equation (D.4) is due to the expansion of the product [[7_, (1 + a;)
for a series of scalar a; with j =1,... m:

m 2m_1
(ta)=Y {H] L1
j=1 r=1 q€Ty

in deriving equation (D.5) and (D.6), we use the Taylor expansions log(1 + a) = a + O(a)
and exp(a) = 1+ O(a), and inequality (D.7) is obtained through omitting the terms
2¢7? - ws+ and O,(v/n*) in the denominator of previous step.

Step 2: We now prove Theorem 5.1 (1) for the case with 7 (B}, ,) =

If F(Bj,,;) = 0, suppose I = max{ili < m;F(By;) > 0}, then similarly
. —ﬁ sy + Tl 0 € 51 0)

U m - N

{ } i—1 Zl 0[ €1...65— 1Z+Zz 1 (U € le 5 1l)f(Ul)}

il of w5*+f(6{j})+0( -) (1)m—ll—1
(BY-1y) + Op(777) \2

gf(B;H)/(l—é)(;)m . (%) N 1“”{ (%‘)O(Ajg)}
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-0 marf0,( 20 0,(2)) o3

where (D.9) is obtained by F(B;., ;) = 0.

Step 3: We now prove Var (QU(Bfm})) = O,,(nﬂ*) in Theorem 5.1 (2).
First, we present a fact that for independent Z; and Zs,
Var(Z,Z,) = E(Z173) — E*(Z,Z5)
= E(Z7)E(Z3) — E*(Z1)E*(Zs)
= [E(Z1)E(Z3) — EX(Z1)E(Z3)] + |[E*(Z)E(Z3) — E*(21) E*(Z))]
= Var(Z,)E(Z3) + E*(Z,)Var(Z,). (D.10)

Next, write G; = Ge,.., € [0,1]. By the definition of Polya tree, given U, the G, are
independent. Therefore, applying (D.10) gives that

Var (Qg(B?fm})) = Var < ﬁl gm?)

- [wmguﬁm(fl%@)+E<91|U>QVar(f:[2gj|U)} (D.11)
< [var(glyﬁ>+var(f:[29j|0>] (D.12)

< zz:\/'ar (gﬂU) (D.13)

(all..fj + Z:L:*l I((]z € B;1€J)f<Ul)) {ail..fj_l(l—&j) + Z?:*l [(U’L = Bglmaj—l(l_ej))f(Ui)}

2
i=1 { Yool A I e B ) f(U)] }
’ ; (D.14)
{ le:o [allmaj’ll + Z?:l I(Ul < B;‘kl-..&jfll)f(Ui)] + 1}
. 1
- i (D.15)
jz:; le:o [ail“'sj_ll T Zi:l [(UZ < B:l...aj—ll)f(Ui)] + 1
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Em: L <M, <M) (D.16)
= 2057 wse +n*F(Bj;_yy) + Op(vn*) — n* F (B, 1) "\

where inequality (D.12) is due to the fact that G;|U is a probability between 0 and 1 for

j =1,...,m. Further, (D.13) can be obtained by repeating the procedure of (D.11) and

(D.12) for Gi|U to G,|U for j = 2,...,m. (D.14) is obtained from the variance of Beta
distributions, as G;|U follows a Beta distribution. (D.15) is due to the fact that

0<af . +ZIU eB _)f(U) <

€1...€5

M-

[of o+ ZI (U; € B, ., . )f(U)]

OSaL...Ej,la_EﬁZI (Ui € B o a0 <Y ol . 1Z+Zf Ui e B . )fU)],
i=1

=0 =1

=0

—

and the inequality in (D.16) is due to the fact that

> : <35 :

~ 2057 - wse +nF (B ) + Op(Vn®) T 4= 2052 - wse +nF(By,, 1) + Op(Vi¥)

<.

M
1
<
- ]2_; 205 - ws+ + * F(By,,_1y) + O,(v/n*)

B M
wF(By, 1)  nF(By, 1)

E%g

1

j
where we use the fact that ¢ > 0.

Finally, for any measurable set B € =« with m = 1,..., M, if we consider n* =
O(M3) with n > 0, as M — oo, we have that

(1) by (D.8) and (D.9),

E[QU(B)] —F(B)/(1-96)= max{0p<\/]\%> : Op(]f) } 250,

(2) by (D.16),




(3) by Chebyshev’s Inequality,

EkﬁBwaﬂBvu—ﬁﬂ?+wHkaBﬂ

€2

o (1) 025} 2

D.1.2 Proof of Theorem 5.2

In Theorem 5.1, we have proved the result for any By, , = BZ, . with m < M. Now we
consider the case with m > M.

We first show the existence of y(M). Since F/(1 — §) is an appropriate probabil-
ity measure with a continuous density function on &* and the number of the subset
B .., 2", is finite, there exists a subspace B}, . such that F(B; EM)/(l —0)>0 and

|B:

(M) = gwg]:( )/(1 — 0) exists and is greater than zero, where U = {B; _ |B ..
s F (B2 ) > 0} is defined in Theorem 5.2 on the main text. Let Qy = {B{,,, : B{,, €

€1...€M
Tm;m > M}.
The proof of Theorem 5.2 consists of four steps. In steps 1 and 2, we show Theorem
5.2 (1) for two cases with F(B},) > 0 and F(B},) = 0, respectively. In step 3, we derive
Theorem 5.2 (2), and in step 4, we prove Theorem 5.2 (3).

Step 1: We first prove Theorem 5.2 (1) by finding sup
B €Qum
{m}

ElG5(Biny)] —
F(Bi)/(1— 6)‘ for the case that F(Bj,,) > 0.
If 7(Bj,,,) > 0, then

T ol + XL U EB (U ool
2160 Bim)] = 11 Lolal o X (U € B: vmn{HfJ

7=1 =0 €1...5-1l

(

)mMﬁ 9w + F(Byy) + Op (=)
L. 2¢;2 s WS +F(B*] 1})+Op(\/—n—*)

j=1 n*

DN | —
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<(3)" [FEupa -0 <o, (fﬁ s |

{7-1}

. (%)MM {ﬂszM}w(l —9)+ mX{O(%w) )O(n%@g}
D.

|
17)

Since F has an absolute continuous density on S&*, then

sup | BGy (Biy )] — F(Bi)/ (1 — 6)\

ey
)" F B/ -0 - F )01 - )+ maxf o, =)o

< o
) B{M})/(1—5)—f(Bfm})/(l—(S)‘—I—max{ (\/F]\j(M ,Op<

- (
By Sar

< — sup sup
2 6B{m}€QM yleB{M}

y2EBT

N | —

N | =

f(yl) - f(y2)

where the first inequality is the application of (D.17) and the second inequality holds by
the absolute value inequality, and the last inequality holds due to the fact that

(%)M inf f(y) < F(Bjyy) < (%)M sup f(y)

YEB vy vEB

(%)m inf f(y) < F(Bjy) < G)m sup f(y).

€B;
V=2 (my yeBY,,,

Let sup |f'(y)| represent the supreme value of derivative f(y) in the subset B} {ary» then

yEB{M}

from the mean value theorem, (D.18) becomes

sup

B,y €92m E[QU(BEm})] N F(Bj{ﬁm})/(l - 5)‘

<(3) ) L ot o () o (on )
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o) i)}

where  sup { sup |f’ (y)\} is bounded due to the fact that f is absolute continuous on
B, o LyeBy,,

m M 2M
S* and <;) (;) < (;) < b = Oy( ). We note that B,y C By

Step 2: We prove Theorem 5.2 (1) for the case that 7(Bj,,) =
If F(B:,) =0, suppose [; = rgaX{F(B;‘) > 0}, then

1 m—l;—1 41 ¢J w3*+]-‘ B* ( ;)
sup  E[Gy(Bj,,)] = sup {(_> H 2¢9 o )}

B{ }EQI\/[ B*W}EQM 2 j=1 “n* WS+ +F< {_] 1} Op(

{
o {0 oo S0

M M3
o+ max{o (—) 0 (_) } (D.20)
\Vny(M)) P\t (M)
In Theorem 5.1, we have proved that for any measurable set B € 7}, with m =1,..., M,

E{QU(B)} — F(B)/(1=6) 25 0 as M — oco. By (D.19) and (D.20), we prove that for
m > M,

sup
B?m} S

E(Gy(Biy)] — F(Bi)/(1 - 5)‘ _ maX{Op (%(M)) 0, (%) } 20

Further, U _y 7 U Qs contains all measurable subsets of S*, which is essentially equal
to &* defined in Theorem 5.2 in the main text. As a result, we have

sup
Be6*

E(Gy) — F/(1— 5)‘ 250.

Step 3: We prove Theorem 5.2 (2) by finding the supreme of Var (QU(B)) .
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From the inequality (D.16),

M M
sup Var g~B)§ s 0(—)30(—)
Beg* (U( ) BEM}Epﬂ’i‘n p n*}_(BT{FM}) p n*v(M)

where the last inequality holds due to the definition that (M) = 7}791%1}" (B)/(1—09).
S

Step 4: We prove the results of Theorem 5.2 (3).
Let I§; = {B: : Jy € B fly)/(1 =6) < A}, and JE = UBeIﬁ B. Let S*\Jg

€1.-.EM E1...€EM?
denote the compliment set of J%,. Therefore, (y)/(1=6) > A. Let T = wg~. Since

inf f
yGS*\Jﬁ
F is differentiable on §*, Ve > 0, for M large enough, VB € my;, and y1,y2 € B, we have

% - %\ < g7 Selecting A = ¢/(4T), it is obvious that €/(4T") > stl/I()ST)f(y)/(l —9).

yeI
Then
D(gg,f/a - 5)) = [ Jovto) - s/ - 6>'dy
B ) f(y) / f(y)
= /3*\]16\4(5”) 9o(y) = 5 |dy + /D 9o(y) = 15|
2K+ K,
Further,
- fly) / / f(y)
p— _—— < r T —_—
Ky /J#T) gWIU — 5|4y < /o 90 (y)dy + o 1= 54y

f(y)
—1— - (y)d EACZAp,
/S*\J;;@T) 90y + /J;;@m 11—

_ fy) / fy) / ) / f)
B /Je/<8T> 1— 6dy * se\seeT) 1 — 6dy S*\J/ D) 90 (y)dy + g7 1 — (de

M M
= / ey |90 = dy + 2/a/<sT> 1f(—y25dy
S*\Jy; It
Therefore,

D(Qg,f/(l —5)) < 2/
S

90(y) — %’dy + 2/f . %dy

217




) (v)
S 2 /S*\Je/(ST) gU(y) - 1 _ 5 dy + 2 ' ijevé(sT) : 6/(4T) (D21)
M
o S*\J%(ST) U 1 — 2 27

where w /sr) denotes the total volume of the subsets in J;V/[(ST), (D.21) is obtained by the
M
fact that €/(4T) > sup f(y)/(1—0) and (D.22) is due to the fact that w o/sr) < ws- =T.
M

ye s

For Kj,

95 (y) — f(Ty)é’dy

W), ) S
1-6 1-90 1-9

Go(B) — T(TB(;‘ +/B S _ M‘dy}, (D.24)

1-§ 1-9
where b, satisfies the fact that 7(B,) = f(b,)wp, with B, € 7}, being the subset that the
point y belongs to. (D.23) is due to the fact that y is uniformly distributed on By in
PTMC for any By € mar so that gz (y) = 2M /TGy (B,y).

Since VB € 7}, and b,y € B, we have |% - %| < ¢€/(8T). Then
3 {/ fby) )
B

—’dy} < ¢€/8. (D.25)
Bent \I9/GT)

1-6 1-96
By (D.22), (D.24) and (D.25), we can get

D<QU,]-"/(1 —5)) — 2K, + <

Kl -
S* \J]e\/i(8T)

/S*\Jje\é (8T)

gZ{

Bemt \I5/ 1)

2M/TgU(By)

dy (D.23)

2

F(B)| 3
< ~ —_ — 7 J—
<2 Z Gy(B) 1_5’—1-46
Bent \I5/GT)
Then P(D (gﬁ,f/(l - 5)) > e) < P(ZB%\%M G5(B) — 28| > g). Now we

consider the second probability,

P(Z

Ber, \I D

Gp(B) — %‘ > g)
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F(B) €
< - —
< £, 0|0 - 752 i)
F(B) €
o U Jon- 28] i)
Bert \I5/GD)
F(B) €
< Z P<gU(B)_1_5‘—2M+3)
J: AV AL
M+3\ 2
< (2 s lsigom) - 78
€ J: AV A 1—0

2

+ sup

Bemy \I D

- {0 (20) 0 (2

j=1,...,m,

)

o

where (D.26) and (D.27) are obtained by the fact that for a series of scalars a; with

m

M
n*y(M)

)}

€

Var[Gs(B)] ]gD.zs)

>
— 4m

Ui

- €
. 4 >
{Za]>e/ }C{mjgixaj_4m}c },
Jj=1 =
(D.28) are derived by applying Chebyshev’s inequality, and (D.29) can be obtained by
applying the results of step 1-3. In (D.26), since WX/I\I;//[(ST)
maximum value exists.

Since in (D.29), (M)

is set with finite element, the

min
* /(8T
Bemt \I/ D Ny

F(B)/(1—9), and by the definition of I} and

IS i f()/(1—6) > ¢/(8T), we can get v(M) > ¢/ (8T) x wp, = e/(8T) = & =
yes*\J%(ST) {Mm}
€/2M*3 where ws:,, is volume of B,
Then, with n* oc O,(25M M3*7), as M — oo, we could get
P(p(gg 710 -0) > )
Mo\? MP O\ M
oo ) 02 0]
\Vry () )7\ (M) )P\ ney(M)
N[292M+6 N[692M+6 N[92M+6
<m0 () (T ) ()}
n* [n*]2 n*
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= OP(%) 250
D.2 Additional Simulation Results

D.2.1 Simulation Results of Setting 5.1

Table D.1: Simulation results for the Dog bowl distribution

Algorithm n  Dimension 25% Median 97.5% ESS CT (in seconds)
Numerical U1 -10.630  0.000  10.630 -
Approximation ) n -10.630  0.000 10.630 - )

e o oo
PTMC Gibbs Sampler 5000 Z; 18232 88877 iggg‘f 2888 66.500
e B ne
MOMC (big stepsize) 5000 ! 18333 8?’;‘3 1838‘81 . 0.046
MCMC (small stepsize) 5000 z; :;g?g gigg Sgg; g 0.042
LMC (adaptive stepsize) 5000 g; :g;gg _%02%% 323(2) ; 0.072
LMC (cyclical stepsize) 5000 z; :Sgg? _8 {)5?68 Sgéi 12 0.124
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Table D.2: Simulation results for 25-normal mixture distribution

Algorithm n  Dimension 2.5% Median 97.5% ESS CT (in seconds)

Numerical i -4.200 0 4.200 -

Approximation ) s 4200 0 4200 - )

T I T T e
PTMC Gibbs Sampler 5000 z; fﬁgg gggol jﬂgg 2888 493.080

LTI
MCMC (big stepsize) 5000 g; gggg 8(1)% 22;% ? 0.582
MCMC (small stepsize) 5000 1@2 }ggi ?ggg ggg g;g 0.571
LMC (adaptive stepsize) 5000 Z?j; :ggif _%%%11 ggig ﬁ 1.417
LMC (cyclical stepsize) 5000 g; ;g‘gg g?g; gigi ;2 3.100

Table D.3: Simulation results for 5-normal mixture distribution

Algorithm n Dimension 2.5% Median 97.5% ESS CT (in seconds)
Numerical " -4.200  0.000  4.200 -
Approximation i s -4.200  0.000 4200 @ - i
e
PINC G Sy D32 OO 03 200
EEEE L
MCMC (big stepsize) 5000 z; 831(2] 1382 gggg igg 0.141
MCMC (small stepsize) 5000 Z; igg? 5888 ;ggg 228 0.143
LMC (adaptive stepsize) 5000 ZZZ :8:::2; _%%%11 gggg gg 0.326
LMC (cyclical stepsize) 5000 Z; :;ggg :888; ;gi? Z 0.660
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D.2.2 Simulation Results of Setting 5.2
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Simulation Results for Setting 5.2.2

Table D.6: Simulation results for Gamma-normal mixture distribution

PTMC Algorithm 5.1 (n* = 5,000, 000)

EBies ESE ASE ECP ESS CT
B, -0.008 0026 0.028 0950 5000
By 0238 0563 0486 0930 4998
By 0121 0271 0253 0.940 5000 1553
B, 0.091 0296 0279 0.960 5000
B, 0.096 0238 0.221 0930 5000

PTMC Gibbs Sampler PTMC MH

EBias ESE ASE ECP ESS CT  EBis ESE ASE ECP ESS CT
B, -0.008 0.026 0.029 0950 2975 0007 0.026 0028 0.950 878
B, 0236 0570 0513 0930 258 0233 0.568 0482 0.930 29
By 0121 0275 0268 0950 257 16862 0119 0274 0251 0.930 32  2.887
By 0.088 0204 0.285 0950 2450 0.083 0297 0278 0940 143
B; 0.098 0234 0224 0920 2287 0004 0233 0219 0.920 177

MCMC(0) MCMC(500)

EBias ESE ASE ECP ESS CT  EBiss ESE ASE ECP ESS CT
B, -0.009 0026 0.03T 0960 570 0007 0.026 0028 0.950 3137
B, 033 0582 0741 0960 42 0238 0579 0487 0920 259
B, 0173 0285 0391 0960 42 0076 0121 0279 0253 0.930 258 17.345
B 0106 0208 0312 0940 478 0.085 0.293 0279 0.940 2516
By 0111 0234 0242 0940 449 0.005 0233 0220 0.920 2355
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Table D.7: Simulation results for D-Vine

PTMC Algorithm 5.2 (n* = 1,500, 000)

PTMC Algorithm 5.2 (n* = 2,500, 000)

EBias ESE ASE ECP ESS CT EBias ESE ASE ECP ESS CT
By 0.027 0207 0.156 0.810 5000 0.021 0.188 0.153 0.860 4992
By 0.004 0.087 0.065 0.810 5000 0.005 0.077 0.066 0.890 5000
B3 0.004 0.144 0.124 0.860 5000 19,30 0.006 0.130 0.124 0.890 5000 27078
By -0.005 0.024 0021 0850 4995 -0.004 0.022 0.022 0.880 4996 '
Bs 0.021 0.159 0.146 0.850 5000 0.016 0.161 0.148 0.880 5000
B -0.007 0.038 0.031 0.820 4995 -0.003 0.037 0.031 0.880 4983

PTMC Algorithm 5.2 (n* = 5,000, 000) PTMC Algorithm 5.2 (n* = 12,500, 000)

EBias ESE ASE ECP ESS CT EBias ESE ASE ECP ESS CT
B 0.019 0.190 0.152 0.860 5000 0.017 0171 0.158 0.930 4987
By 0.006 0.076 0.065 0.920 5000 0.004 0.072 0.067 0.940 4982
B3 0.003 0.122 0.122 0.950 4984 36,082 -0.005 0.109 0.124 0.950 5000 75 %63
By -0.003 0.022 0.022 0910 5000 -0.003 0.022 0.022 0.960 5000 '
Bs  0.003 0.155 0.137 0.920 5000 0.008 0.148 0.142 0.940 5000
B -0.003 0.034 0.030 0.910 5000 -0.002 0.032 0.031 0.950 5000

PTMC Gibbs Sampler PTMC MH

EBias ESE ASE ECP ESS CT EBias ESE ASE ECP ESS CT
B 0016 0.169 0.161 0.940 2044 0.015 0.173 0.159 0.920 119
By 0.004 0.070 0.069 0.950 1253 0.003 0.070 0.068 0.950 138
B -0.005 0.107 0.125 0.980 1769 377 480 -0.006 0.109 0.123 0.990 141 20,356
By -0.003 0.021 0.023 0.960 2398 -0.003 0.022 0.023 0.970 480
B 0.005 0.142 0.147 0.950 2525 0.006 0.142 0.147 0.950 137
B -0.002 0.032 0.032 0.960 3284 -0.002 0.032 0.032 0.960 353

MCMC(0) MCMC(500)

EBias ESE ASE ECP ESS CT EBias ESE ASE ECP ESS CT
By 0016 0.169 0.160 0.920 450 0.015 0.169 0.159 0.930 2051
By, 0.004 0.071 0.068 0.950 188 0.003 0.070 0.068 0.950 1271
f3 -0.006 0.107 0.123 0.990 354 $.970 -0.006 0.107 0.123 0.980 1776 2103519
By -0.003 0.021 0.022 0960 528 -0.003 0.021 0.022 0.960 2418 '
B 0.006 0.143 0.145 0.960 591 0.006 0.142 0.145 0.950 2506
B -0.002 0.032 0.031 0.950 718 -0.002 0.032 0.031 0.950 3293
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D.3 Additional Results of Data Analysis
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Appendix E

Appendix for Chapter 6

E.1 Proof of Theorems

E.1.1 Proof of Theorem 6.1

Let N, = >[5, I(z; — hy < X;; <z + hy) denote the number of data points in the
nearest neighbor of x. By the Law of Large Numbers, as n — oo,

N

1 o1
_:_E ||[ hi < Xy <4 h;
o ni:1j:1 (2, i < Xij < xj+ hy)

p
LE[HI(,IJ —hj SX] S.T]‘i‘hj)
7=1

:P(X € «Sx,h)
=fx(w)-2"[[hj = O(n™) (E.1)

j=1

where w is a certain value in S, 5, fx is the density function of X and the last step is
obtained by applying the mean value theorem and h; = O(n™"7?). As a result, N, =
O,(n'~"), which goes to infinity as n goes to infinity.

The proof of Theorem 6.1 consists of the following steps. In the first step, we show
that w%Ngl__me(Z) satisfies the Lyapunov condition of the Central Limit Theorem for
independent but not identically distributed random variables. Based on the results of step
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1, we evaluate the order of  sup wistl.,,Em,m(Z) —F.(B.,..,)| and Var(wiINglmgm,x(Z))

lemsméﬂ'm

in step 2. In step 3, we prove the result of Theorem 6.1 using the results of step 2.

Step 1: we show that N\El em I(Z) satisfies the Lyapunov condition.

For the random vector Z; = (V;, X;")" with X; € S, 5, we re-index the random vector
as Z{k} = (Y{k},X{Tk})T for k = 1, ey Nw and Tigy = (l'{kl}y . ,x({kp})T. Let Z{x} = {Z{k} .
k=1,...,N,} denote the collection of data in S, and let w(Xy) = [[}_; w(Xk;) for
notation simplicity. Then we have that w, = S1n*, w(Xy) = Op(Ng) = Op(n' ™), as w(+)
is a positive bounded function on S, ;. Consequently,

p

wi%zvgl__gmz ZHw NI (Yi € Bey.e) [ [T (X5 € [ — Dy + By))

CC = 1‘7 1 ]:1
- ZI Yiry € Beyep)w(Xiay),
T k=1

and

1 x 651...am
](Y{k} - Bal...am = e ( ) .
0 x{k} (661...6m)’

E[I(}{{k} € 851---5m) = F

var[l (Y € Bey.,)] = F. (861 5m)[]' — Foy (B, ..c0n)]-

Let Wi = I(Yiy € Bey o )w(Xgy) — Fap (Bey e, and Ty, = SO0, Wi, Then we have

ik}
Nz
sy, = var(Ty,) = Z var(Wy)
k=1
Nz
= w(X{k})2Fw{k} (Bey.en)[1 — Fx{k} (Bey..em)]-
k=1

For notation simplicity, let Fiuy = Fm{k}<B€1...€m)' Now we only discuss the case that
Fyy > 0 for some k, as the case with Fyzy = 0 for all k =1,..., N, is trivial:

ZE Wi [?)

Nrk1

Ny
Z w(X ) {[1 = Fing’ Fey + Fiiy[1 — Frgl}
k=

m
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N,
1 xr
= =Y w(X ) Fgll — Fiyl{[1 - Fy)” - ka}}‘

2

(foil w( Xy )? Fiay[1 — F{k}]) =

3 Ny
wmax
< = Y Fugll — Fryl{[1 — Fug)* — F{Zk}}‘ (E.2)
min ( Zk 1 F{k}[]‘ - F{k}]) h=t
3 1 Ny
< B 3 > Fuyll — Fiiy) (E.3)

— 0 as N, — oo,

where (E.2) is obtained by the fact that w(Xx}) € [Wmin, Wmax], and (E.3) can be ob-
tained by applying the absolute value inequality. Therefore, we prove that Ty, satisfies
the Lyapunov condition.

Step 2: we evaluate the order of  sup wLINel.“em,w(Z) — F.(B.,. .,)l and

lemgmgﬂm

var(:L N, ., +(Z)).

First, we find the order of the variance of M%Nal.__amJ(Z),

1 ~ 1
var (—Nglmgmx(Z)) = var (—TNZ>
Wy Wy

N,
1 xT

= Var(w— E I(Yv{k} € Be1...€m)w(X{k}>>
T k=1

- % 2 w<X{k})2Ff{k} (BE1...em)[1 - Fz{k} (Bal...am)]
= [Z <i()k - Z Oy (E.4)

()l

where (E.4) is due to the fact that Fx{k}(Bel,,.Em) € [0,1]. By the Central Limit Theorem
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for independent and non-identically distributed variables, we obtain that as n — oo,

T

= S N(0,1),
SN,c
1 & 1 1
implying that — Z I(Yiy € Beyoop)w(Xyry) = Z Fuy +0 < ) (E.6)
T k=1 T k=1 ne
by the fact that wistm = OP(\/;NT) from (E.5).

Step 3: we prove the result of Theorem 6.1 by evaluating the order of the

upper bound of sup w%Nglmgm,x(Z) - FI(BEI_”EM)'.

BalmsmEﬂ'm

We first find an upper bound of the supreme of the absolute difference N61 ema(Z)—
Fz<le...sm) fOI' le...sm € T
1 .
sup ‘_Nal.--am,w(z) - Fm(Ba1--.am)
le...smeﬂ'm wx
| Ne
= sup | — Zl Yy € Beycp)w(Xgy) — Fu(B:, .z,
Bel.,.smeﬂ'm k‘ 1
1 &= 1
= sup — Z F{k} + Op (1_n) - Fx(le...sm) (E7)
Bey..em€mm| W —1 nz

1 xT
< sup | > wlew) Fy = Fo(By..c,,)
T =1

lemsm ETm,

+ 0, (Tll%) (E.8)

where (E.7) is the direct application of (E.6), and (E.8) is due to the absolute value
inequality.

Since miny Fygy < Z wz{"})F{ k< maxy Fypy for kK = 1,..., N,, then as n — oo,
(E.8) becomes
1 ~
sup _Nal...am,x(z> - Fx(Bel...em)

le...amEﬂ'm Wy
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Ny

1 1
S sup _Zw('x{k})F{k} - Fx(Bel...em> +Op< 177)
len.smeﬂ'm wl’ k=1 n 2
1
< sup {Sup F:c{k}(Bm---em) — Fy(B,..cn) } + OP( 1—n)
le...smewm k n 2
b 1
< o 2T sw @] 40, () (£9)
Bey...em €Tm TESy,h n 2

 vownso( L) cmo(D) o)) e
(20— e

where (E.9) is due to the following fact based on the Mean Value Theorem:

Fx{k} (le...sm) - Fx(le...sm) = Geq..em (l’{k}) — Gey..em (37)

P
= 2p H hjgél...sm (b) fOI' b I~ Sx,h
j=1

p
< 2”th sup |92, ., (@),

j=1 a:eSzyh

and (E.10) is due to (E.1) and the assumption that g¢., . (x) is smooth so that
sup |g., . (x)|is bounded.

xeSz,h

By Chebyshev’s Inequality, for any x € S,, with n — oo, we have

>6)
E{ﬁw@mgm—ﬂwwwﬁ+m(immwgﬁ
<
< .

o) o) ol

= 62

PQiW@MA@—awm%>

Wy,

— 0
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E.1.2 Proof of Theorem 6.2

From Theorem 6.1, we prove that

1 ~
sup _Nz-:l...z-:m,x(Z) - F:Jc(le...sm>

lemam ETm w-'E

<o) ()

N61...€m,90(2) = wax<B€1m€m) * maX{OP <%> ( Nx>

|
:wze(Bel_._gm)anax{Op(nl ) ( =R )} (E.12)
2,

and w, = Oy(N,) = O,(n'~"). Let Byoy = S and Byjy = B, ..., for j = 1,2,
we have that B{o} D B{l} D B{Q} D....

Therefore,

. Obviously,

The proof of Theorem 6.2 consists of the following three steps. In the first step, we show
Theorem 6.2 (1) for B € 7, with m = 1,..., M. In the second step, we show Theorem 6.2
(1) for the case that B € m,, with m > M. In the final step, we prove Theorem 6.2 (2).

Step 1: we first prove Theorem 6.2 (1) for By,; when m < M.
If Fx(B{m}) > 0, then

aEl €5 +NE1 smx(Z)
j=1 Zl =0 [0451 Ej— 1Z+NE1 5 1lx

2)]
_ﬁ Oey.e; + W, F, (B{J})+max{ < )’Op( )}
= (S Qe at) + Wi P (B 1})+max{ ("1 2“)’07”("27])}

)
it p, (3{]-1})+ma><{0 (” ") ( >}
(-

i ool
H B{J 1})

j=1

::]s

||'é3

\/
@Q
/‘\

N,
~~
H_/

bS]
/\
MT
:
N——
—
[—
—~
=
[S—y
N

2072 + w, Fp(Byj-1y —|—max{0p(n1 2"),0
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where the first equality is from (6), and the second equality is the application of (E.12).
Here we also use the default choice ag,. ., = ¢m? as mentioned in Section 2.2.
It is obvious that % <1. Forr=1,...,2" — 1, let T, denote any non-empty
x J—
subset of {1,...,m} and let T denote its compliment. Then (E.13) becomes

m Fy( B{q}) 1-2n 19) I—Tn
om_q Fx(B ) Cb — 2¢q 2_F:c ) + maX{Op <7‘L , p(n )}
IR =l |

I )

9€Tr 202 + W, F(By—1|z) + maX{Op <n1—277) , O, <n12"> }
2l bq° + maX{Op (n1—2n> .0, <n12"> }

- { 11

T, 202 + w, Fy(Brgry) + maX{Op (nwn) 0, (n)

m 07 + maX{Op <n1_27’) O, <n12"> }
E.(Bimy) + [ 1 {
O

=1 2052 + wo Fy(Byj—1y) + maX{Op <n1—277) , O, (ni") }

IA
=
2

(]

-1

e

J=1

m 052 +max{0p<n1 ),Op(n 3 )}
= F,(Bgmy) + exp{ Zlog [1 +
@)

m 5% + maX{Op (n1_2’7> ,O, <n12"> }
>

= F.(Buny) + exp{
3=1 2¢5% + w, Fp (B - 1})+max{ (nl 2n) © (nl;n)}

= ¢j2+max{0p(n1 ) ( )} 0o
= pKWWx(B{j1}>+m{o () o )}) )
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(E.17)

) i ¢j2+maX{Op(nl > < )}
= F(Buw) + 0, (;2@ 2w F (B{jl})+ma><{0 (”1 2")’0”< )})

B t0, ( zm: bj* + max{Op (n1‘2’7> ,0, (n;’) }) s

M M M3

2 _Fa(Bigy)
Fx B{q 1})
the previous step; equation (E.15) is due to the expansion of the product [T, (1 + a;)

where the inequality (E.14) is obtained by omitting the negative term —2¢q in

for a series of scalar a; with j = 1,...,m that [[[_,(1+q;) = PO {quT } +1; in

deriving equation (E.16) and (E.17), we use the Taylor expansions log(1 4+ a) = a + O(a)
and exp(a) = 1+ O(a), and inequality (E.18) is obtained by omitting the terms 2¢;? and

max{Op <n1_2’7) , O, <n12n> } in the denominator of previous step.
If F,(Bimy) = 0, suppose [} = max{i|i < m; F,(Bgy) > 0}, then

aflufj + N€1...5m,x(2)
j=1 Zl =0 |:a€1~~~€j71l + N81...5jfll,:c(Z)]

Li+1 %2 + F.(Bgy) + max{Op (n") ,Op (n_lgn) } <1 m—ly—1
i=1 % + F(Byj-1y) + maX{Op (n—”) Oy (n_lz‘n> :
1 m—Il1—1 1 m—I1—1 M M M3
< Fx<B{l1+1})(§) + <§> maX{Op(ﬁ),Op(nlg,,>,Op(n1_n)}
M M M3
= 0+maX{Op<H),OP (ﬁ),Op(ﬁ)}7 (E20)

where (E.20) is obtained by F(Bj, ,,,) = 0.

::]s

Now we prove the order var (Ga:| Z(B{m})) for m < M. First, we present a fact that for
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independent Z; and Zs,

var(Z,Z,) = E(Z173) — E*(Z,Zs)

E(Z})E(Z3) — E*(Z,)E*(Z,)

[E(Z})E(Z3) — E*(Z)E(Z3)) + [E*(Z0) E(Z3) — E*(Z1) E*(Z5)]
var(Z,)E(Z2) + E*(Z,)var(Z,). (E.21)

A
A

Next, write G, = G, .., .(Z) € [0,1]. By the definition of Polya tree, the G;, are
independent. Therefore, applying (E.21) to var (G;d Z(B{m})) gives that

var (Gx|Z<B{m})) = var ( ]ﬁl Ga‘,w)
- [var(GLa;)E ( ﬁ Gj,z> + BE(G1..)*var ( ﬁ Gj,zﬂ (E.22)

7j=2 7j=2
< [var(GLx) + V&I(HGN)} (E.23)
7j=2

< Zvar(Gm) (E.24)
j=1
m (aal...zsj + Na1...sj,a:(2)> { ZZ’;,ggj [aal...zsj,li + Nal...zsj,li,x(zﬂ }

_ Z Jan f)K)

2 \J_J-AIU

=1 { 51:0 [aal...aj,ﬂ + Nal...ej,ll,w(z)] } { lezo [aal...aj,ll + Nal...aj,ll,m(z)} + 1
- 1

< - (E.26)
Z 211:0 [asl...sj_ll + Nsl...sj_ll,m(Z)] + 1

i 1
=1 2¢5% + w, Fp(Byj_1y) + maX{Op <n1—2’7) , O, (nl'zn) }

M M
wam(B{m—l}) - OP (n1_,7> ) (E27)

where the inequality (E.23) is due to the fact that G;, is a probability between 0 and 1
for j = 1,...,m; (E.24) is obtained by repeating the procedure of (E.22) and (E.23) for
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Gix to Gy, for j =2,...,m; (E.25) is obtained from the variance of Beta distributions,
as G, follows a Beta distribution; (E.26) is due to the fact that

1
0 S 0481...51' + Nsl,..sj,x<2) S Z [asl...sjfll + Nsl...sjfll,:p(z)]
=0

1
0 S ; [0551...5]',12' + Nsl...sj,li,x(z)] S Z [as1...sj,1l + Nsl...sjfll,z(Z)};
1#€; =0

and the inequality in (E.27) is due to the fact that
> :

=1 2052 + w, o (Byi-1y) + maX{Op (n1—2’7) ,0, <n12") }

< Z !
i=1 2052 + we i (Bim-1y) + maX{Op (nl—%) L0, (nlg") }
1

AN
1=

205 + wo Fy (Bym-1}) + max{Op <n1—277) , O, <n12"> }

i”: M
j=1 Wy B{m 1}) xe(B{m—l})

IN

together with the fact that ¢ > 0.

Therefore for any measurable set B C m,, with m =1,..., M, if we consider

n= max{O(MlinJrg), O(Ml/’7+5)} with € > 0, then we have that as M — oo,

e by (E.19) and (E.20),

E{Gle(B)] _F(B) = maX{Op(%>,Op<n]}gn>,Op(é\1/—l_3n>} 2y,

e by (E.27),




e by Chebyshev’s Inequality,

M? M? M6 »
= maX{Op (W) , Op<_n1—77) ,Op (—nQ(l—n)) } — 0.

Step 2: next we prove Theorem 6.2 (1) for By,,; when m > M.
Let U ={B.,. c|Bey..cpy € T F(Bey. ,,) > 0} and y(M) = ani%Fx(B). We first show
S

the existence of y(M). Since F, is an appropriate probability measure with a continuous

density function on § and the number of the subset B, .,,, 2M s finite, there exists a

subspace B, .,, such that F,(B., .,,) > 0, and v(M) = %n'ng(B) exists and is greater
€

than zero. Let Qy = {Bpny : Byny € Ty m > M}
Now we consider the case that m > M. If F,(Byyy) > 0, then

ElG,z(Bumy)] = {ﬁ > [0;11 ; J:ljiljvj iZl)lx 7)] }{J 1]\11 %}
mow M L+ F, (B{J}HmaX{ ( ) ( )}
) Do {0, (w) 0, (w 7)]

(1)m_M[Fx<B{M}>+op(M¢] o i ) D >})] i

2 U)IFI B{] 1}

IN

7=1

< (3) [ e mon () o[ ) o ()}

where (E.28) is from (E.18).

Since we assume the joint density f(y, z) is smooth, the conditional probability measure
F, is differentiable on S, then

sup
Bimy €00

IG5 — FulBi)
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o)) )

1 m
3(5) sup { sup f(y1|w)—f(yzlx)}
Bimy €00 Ly1 €8y

y2€Bimy

emto(mm) (g ) O (won )} ©29

where the second inequality holds by the absolute value inequality, and the last inequality
holds due to the fact that

<1)M inf f(yle) < Fo(Bpn) < (%)M sup f(ylz)

2 yEB{M} yGB{M}

(1>m inf f(ylz) < Fo(Bpny) < (%)m sup f(ylz).

2) yeBm YEBmy

Let sup |f'(y|x)| represent the supreme value of derivative f'(y|x) in the subset By,
yEB A1y
then from the Mean Value Theorem, (E.29) becomes

sup
B{m} €EQnr

() () o o
#mesfon (G ) o () v
-on{o () 0 (G o ()} o
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where  sup { sup |f’ (y|x)|} is bounded due to the fact that F is differentiable on S.
B?M}EQA{ yEB{M}

If F,(Bgmy) = 0, suppose 3 = max{i|i <m;F,(Bg) > 0}, then

sup  E[G, z(Bmy)]

B{W}EQM
{(1)m—l1—1 lﬁ %2 + F(B;|z) + max{O]l7 (n") , O, (n—lzn)} }
j=1 % + F(Bj_1|z) + max{Op (n’?) .0, (n12n> }

o (O sl ol

== sup
B{'m} €Qnr

B{m}EQ]w =1 wa(BJ,ﬂ(I;)
M M M3
_ o+max{o (_)o (—)o (—)} £.31
\wnan) 2\ an) O \wmnon (=30
In step 1, we have proved that for any measurable set B € 7, with m = 1,... M,

E[G,3(B)] — F.(B) == 0 as M — oco. By (E.30) and (E.31), we prove that for m > M,
as M — oo

E(Gy5(Biwy)) — Fx<8{m}>\1

sup
Bimy €M
M M M3 )}
= maxq O Ol ———— 0| /——~
{ p(n"’Y(M)) p(nzfy(l\/[)> p(nl"’y(M)
50

Further, Ujj‘il mm | Qs contains all measurable subsets of S, which is essentially equal
to & defined in Theorem 6.2 in the main text. As a result, we have

sup 25 0.

sup ElG,172(Bimy)] — Fo(Bgmy)

From the inequality (E.27) in step 1,

M M
supvar| G_, (B, < sup O ————— ) <0,| ——|.
Beg ( o175 })) B{M}grm p<w1‘Fx(B{M})) p(nln’Y(M))
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where the last inequality holds due to the definition that v(M) = %”Ling(B).
€

Step 3: finally we prove Theorem 6.2 (2).

Let I8 = {B.,.c,, : 3y € Be,..ch,, f(y|z) < A}, and JE = UBGIAAJ B. Let S\J4 denote
the compliment set of J4;. Therefore, ianf(y|x) > A. Since f(y|z) is smooth on S, Ve >

yeS\Jy;

0, for M large enough, VB € myr, and 1,92 € B, we have |f(y1|r) — f(y2|2)] < g5, with T
to be the volume of S. Selecting A = ¢/(47), it is obvious that ¢/(47) > sup f(y|z).

c/(8T)

yeJp
Then
D(Gflz’Fz> :/S 9u12(y) — fylz)|dy
- /S\f/(sT) 9niz(y) = fylz) dy+/f/(m 9x12(y) — f(ylz)|d
M M
é Kl + KQ.
Further,

92(y) — f(ylz)

Ky =
2 g/ (8T)
M
S /
S\

where the two inequalities are due to the application of absolute value inequality. Therefore,

dyé//( )gxz(y)dy+//( flyle)dy
JE 8T Je 8T
M M

2
dy + /J%(ST) fylz)dy,

9.12(y) — f(ylz)

p(G.pr) < 2 [ 20— s 2 [ i
€
<2 g~ S|y £ 2 e (B3
€
< 2 ~(y) — d - E.33
< LWmTaM@)f@M)y+2 (£.33)
where v Je/(81) denotes the total volume of the subsets in J%(ST) (E.32) is obtained by the
M
fact that ¢/(47) > sup f(y|z) and (E.33) is due to the fact that v go/e7) < T. For Kj,

ye 5o

KIZ;@MW%@WJMM@
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(2Y/T)G, 2(By) = fyle) + f(byla) — f(bylw)|dy (E.34)

a /5\ J</(8T)

M

> Ao -nwm)|+ [ oo - oo} @5

Bemy \IIEV;(ST)

IN

where b, satisfies the fact that F,.(B,) = f(by|r)vs, with B, € m}, being the subset
that the point y belongs to and vp, being the volume of B,. (E.34) is due to the fact
that y is uniformly distributed on By in NNPT for any By € ma so that g, (y) =
(2M/T)GI|Z~(By). Since VB € my and b,y € B, we have |f(b,|z) — f(y|z)| < €/(87).

>

BEWN[\I;\é(ST)

foylz) = flylx)

dy} < ¢/8. (E.36)

By (E.33), (E.35) and (E.36), we can get

<2 )

B€7T1\/[ \IJSV/I(ST)

G,3(B) — Fx(B)‘ + Ze

oo|m

G, 7(B) - @(B)\ >

)

Then P(D (ze, Fx) > e) < P<ZBewM\I;§(8T>

Now we consider the second probability,

Bemp \I/ 1)
€
= P<B€ﬂf\?€,}§/(sw Gayz(B) = FI(B)‘ = 2M+3) (E.37)
€
< P( U {Gﬂz(B) —Fx(B)‘ > 2M+3D (E.38)

IN
(]
S
/N
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. wpxw@@m}

Bemp \I5, D

- {0 (2in) o) i) o)
- om0 () ) )

where (E.37) and (E.38) are obtained by the fact that for a series of scalars a; with

j=1...,m,
Z& > €/4 max a > = Cm a; > — :
! 7T Am ~ L7 T Am

In (E.37), since WM\I%(ST) is set with finite element, the maximum value exists.

Now we find a lower bound for v(M) in the set 7\ I} /5T) By the definition of & and

T ko) > €/(5T), e can et 3(M) > {6/ ST} x v, = {6/ ST} x i =
YES\Jy;

€/2M*3 where UB{(uy is volume of Byypy.

M 3

Then, with n = O(2 TM?T r n* = min{n, 1 —n}, as M — oo, we could get

( (GCL‘Z7F )
2 2 2
M M3
3M
<2 max{Op(nw ) o) O () )
2M+6 M222M+6 M622M+6
< 23Mmax{0p( )7017 (W> ’ OP(%) }

L0

E.2 Additional Simulation Results
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