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Abstract

Dimension reduction methods for functional data have been avidly studied in recent
years. However, existing methods are primarily based on summarizing the data by their
projections into principal component subspaces, namely the functional principal component
analysis (fPCA). While fPCA could be effective sometimes, in this thesis we show with
both real and synthetic data examples some pitfalls of this approach, especially when
the components of interest of the functional data are orthogonal to the leading principal
components.

In multivariate data analysis, a possible alternative, the projection pursuit technique,
was proposed by Kruskal (1972) and Friedman and Tukey (1974). In this thesis, we extend
the idea of projection pursuit to functional data analysis. We develop several new compu-
tational tools needed to implement the high-dimensional projection pursuit. We apply this
functional projection pursuit technique to three problems: (i) normality test for functional
data; (ii) forecasting the functional time series; and (iii) change point detection for func-
tional data. For each problem, a simulation study and several data analyses are provided
to show the advantages of our proposed method to existing methods in the literature that
mostly based on principal component analysis.
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Chapter 1

Introduction

1.1 Functional Data Analysis

In elementary statistics courses, we studied scalar or multivariate data which usually have
a relatively low dimension. In recent years, high dimensional data have drawn more and
more attention from researchers and practitioners. However, all these data are considered
as vectors in a finite dimensional Euclidean space. In functional data analysis, we instead
focus on individual observations that can be thought as elements of a, perhaps infinite
dimensional, function space. One assumes in this case that the data are intrinsically
continuous functions x1, · · · , xn, and for each function xi we observe discrete observations
xi(t1), · · · , xi(tpi), where t1, · · · , tpi are in the domain of xi. The range and domain of
functional data do not need to be on the real line. For example, Ramsay (2000) and
Ramsay and Silverman (2007) consider handwriting data for which the range is the spacial
location on a plane. In this thesis, we mainly focus on real valued functions whose domain
is a compact set on the real line.

The study done in Dauxois et al. (1982) is among the first to distinguish functional
data from multivariate data. In Ramsay and Silverman (1997), the idea of functional data
analysis is introduced comprehensively. Another textbook-level treatment is in Horváth
and Kokoszka (2012a), where focus is put on dependent functional data, in particular
functional time series.

There are several reasons why we want to focus on functional data. Below we present
some of these reasons using the NOx1 pollution data available in the R package fda.usc

1NOx, or nitrogen oxides, is a very common source of air pollution that will lead to acid rain and smog.
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(Febrero-Bande and Oviedo de la Fuente, 2012). This dataset contains the NOx levels
measured in every hour in a control station in Barcelona, Spain. Each curve in Figure 1.1
contains 24 measurements of NOx concentrations recorded from 12 a.m. to 11 p.m. during
one day. While the data are stored as vectors of length 24, one might wish to model the
NOx pollution as functional data for the following reasons:

Figure 1.1: NOx level (in mglm3) in Barcelona Spain from February 23 2005 to June 26
2005.

• First, a lot of data are continuous by nature. Since it is reasonable to assume that the
level of pollution changes continuously in time, the NOx data should be treated as
discrete observations of a continuous function at selected times. Also, the continuity
of the unobserved data generating process will introduce a correlation structure of
neighbouring observations which can be easily modeled by functional data analysis.
For multivariate data corresponding to high-frequency observations, one would need
a large covariance matrix to model the covariance structure, which could be quite
challenging to work with. Moreover, for multivariate data one can always switch
its coordinates while preserving the performance of most multivariate data analysis

2



tools (see, for example, the multivariate principal component analysis that will be
introduced in Chapter 2). However, if the data come from a continuous function, then
such operation may obscure the correlation structure of neighbouring observations.

• Second, when there are vectors with different lengths, it is not always clear how to
proceed using multivariate analysis methods. Let us imagine a hypothetical situation
when there is an automated weather station that can record NOx level in every 1
ms (i.e. 1000 measures per second). Suppose each day a few sudden power outages
happen randomly, and the different power outages last for different lengths of time.
Under this situation there would be a large number of random missing values for
the daily records. We will encounter a similar example in Chapter 3 and Chapter 5,
where the daily lower temperature data have many random missing values. Another
example is the stock tick data, in which case the stock price is recorded every time
the best bid or ask price is changed. Since the number of changes in each day could
be different, the number of daily observations would also be different. The above
examples would pose serious challenges for multivariate data analysis methods. One
could align the data via curve estimation, and then discretize them over a dense grid
to make the multivariate observations aligned. However, this approach might lead
to biases, especially from the interpolation process. On the contrary, such situations
can be easily handled in the functional data analysis framework. A functional data
object can be constructed based on arbitrary evaluations of the function within its
domain, and hence can deal with scenarios described above.

• Lastly, working with functional data can provide us with additional information from
the data that is not available in the multivariate framework, such as information on
derivatives or integrals. For example, the first order derivative describes how fast the
data change and second order derivative describes the acceleration of the change. An
interesting illustration of the use of derivatives can be found in Ramsay and Silverman
(2007), where the researchers extract first and second order derivative information
from the smoothed curve of human growth data to discover the growth pattern of
adolescents. While there are methods from numerical analysis to estimate derivatives
from discrete observations, it would be more natural to treat the data as a continuous
function and calculate derivatives directly.

To construct functional data objects from discrete observations, a common practice is
to follow the smoothing method suggested in Ramsay and Silverman (1997). To explain
the main idea behind this method, let us assume that we observe discrete realizations
yj, j = 1, . . . , J, of a function x such that yj = x(tj) + εj, where {εj} is a white noise,

3



and tj, j = 1, . . . , J, are in the domain of x. Suppose further that the function x can be
expanded using a set of basis functions φk as follows:

x =
K∑
k=1

ξkφk = ξ′φ,

where ξ = [ξ1, . . . , ξK ] is the coefficient vector of length K, and φ = [φ1, · · · , φK ]′ is a set
of basis functions. Let Φ be a J × K matrix such that Φkj = φk(tj). Then a possible
approach to the estimation of the coefficient vector ξ is by using the least square principle.
This is equivalent to the minimization of the sum of squared errors

SSE(y|ξ) =
J∑
j=1

[
yj −

K∑
k=1

ξkφk(tj)
]2

with respect to the coefficient vector ξ. The standard results from linear regression show
that the least square estimator for ξ is

ξ̂ = (Φ′Φ)−1Φ′y,

and the function is approximated as x̂ = ξ̂′φ.

In Green and Silverman (1993), the authors further extend this approach by introduc-
ing a roughness penalty to fit a more smooth curve. The roughness is measured by the
integrated squared second order derivatives:

PEN(x) =

∫
[x(2)(s)]2ds,

where x(2)(s) denotes the second order derivative of x evaluated at time s. We define the
penalized residual sum of squares as

PENSSE(x|y) = [y − x]′[y − x] + λPEN(x),

where λ is a smoothing parameter. The authors show that in this case the estimated
coefficient vector is

ξ̂ = (Φ′Φ + λR)−1Φ′y,

4



where

Rij =

∫
φ
(2)
i (s)φ

(2)
j (s)ds

is the penalty matrix.

Functional data analysis has been successfully applied to various fields. For example,
in Cardot et al. (1999) and Ramsay and Silverman (1997), the authors first consider a
functional linear model, which has been further extended to generalized functional linear
models in Müller et al. (2005) and to functional mixed models in Scheipl et al. (2015). In
Müller and Yao (2008) the authors propose a functional additive model. This model is
applied to analyze the longitudinal data in Müller et al. (2008). See Malfait and Ramsay
(2003) for a brief history, and Horváth and Kokoszka (2012a) for a comprehensive review
of functional linear models.

Functional data analysis has also been applied to medical and neural science. In Shep-
stone et al. (1999) the authors analyze the shape of bones as a curve to help diagnose
arthritis, and in Sidhu et al. (2012) the researchers use functional principal component
analysis to study Attention-Deficit Hyperactivity Disorder (ADHD) from functional Mag-
netic Resonance Image (fMRI) data. Some other examples of applications of functional
data analysis include Kargin and Onatski (2008), where the researchers propose functional
time series models to forecast the Eurodollar futures and credit card transactions, and
Ramsay and Bock (2002), in which the authors study the classic Berkeley Growth Study
data in Tuddenham (1954) from the prospective of human growth speed and accelera-
tion. For more examples and a thorough review of different applications of functional data
analysis, see Ramsay (2005) and Ullah and Finch (2013).

In many applications of functional data analysis, certain degree of dimension reduction
is necessary, as it might be difficult to work with the original curves directly. The arguably
most prevalent dimension reduction technique for functional data is functional principal
component analysis (fPCA), which is an extension of the principal component analysis
(PCA) for multivariate data. Below we present two examples to illustrate the use of fPCA.

Example 1: Functional regression model

Here we consider a functional regression model and assume that the predictor is a square
integrable random function X(·) defined on a domain S and the response is a random
function Y (·) defined on domain T . Let µY = E[Y ], µX = E[X], Y c = Y − µY , and
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Xc = X − µX . Then the linear functional regression model can be defined as:

E[Y |X] = µY +

∫
S
β(s, t)Xc(s)ds,

where β(s, t) is the regression parameter function. In He et al. (2000) the authors suggest
a fPCA based method to estimate β(s, t). Suppose we have the following Karhunen-Loève
expansion

Y c =
∞∑
k=1

ζkψk,

Xc =
∞∑
j=1

ξjφj,

where ψk and φj are functional principal components of Y c and Xc respectively, and ζk
and ξj are the corresponding functional principal component scores. Then the regression
parameter function is obtained as

β(s, t) =
∞∑
k=1

∞∑
j=1

E(ξjζm)

E(ξ2j )
φj(s)ψk(t).

Example 2: Longitudinal biomarker data

This example is based on Jiang et al. (2020). The goal of this project is to develop a dy-
namic prediction method for the survival probability of patients with Alzheimer’s Disease.
While prediction methods that use base line covariates have been thoroughly studied, in
this project we are trying to integrate longitudinal observations of biomarkers, especially
the expression level of certain genes, into random survival forest. These biomarkers are
observed at irregular time grids. For example, individual 1 has biomarker A measured
at times t = 0, 0.3, 0.4, 0.7, and biomarker B measured at times t = 0.1, 0.4, 0.5. But in-
dividual 2 has biomarker A measured at times t = 0, 0.2, 0.25, 0.8, 0.9, and biomarker B
measured at times t = 0.2, 0.35, 0.4, 0.55.

With a random forest algorithm we can input a large collection of variables, and during
the training process the algorithm will not only fit the model but also estimate the variable
importance simultaneously. Unfortunately, the traditional random forest algorithms can-
not directly handle these irregularly observed data. However, one could instead treat these
discretely observed values as realizations of some continuous functions. Then, similarly
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to Example 1, we can represent these functions using the functional principal component
analysis as a tool for dimension reduction. In the appendix to this chapter, we provide
more details about the methods we have used to find the functional principal component
scores from these irregularly observed data. We should notice that after proper dimen-
sion reduction the original data are now transformed into scalar scores of the same length,
analysis of which is significantly easier. Hence, with the help of fPCA, we successfully
link the multiple irregularly observed biomarker data with the well-studied random forest
algorithm. We have achieved promising results for predicting Alzheimer’s Disease patients’
survival probabilities, and demonstrated that our proposed method could be used for un-
derstanding the cause and development of Alzheimer’s Disease. The method has been
implemented in the R package funest which is available for download on CRAN.

We discuss the functional principal component analysis in greater details in Chapter 2.
However, we should notice that fPCA aims to minimize the L2 loss between original ob-
servations and reconstructed data. In some applications, such a subspace constructed by
functional principal components might not be optimal, especially when the features of the
data one is interested in are not related to the second moment. Furthermore, fPCA imple-
ments the same dimension reduction scheme to all different problems, which is evidently
not realistic.

1.2 Problems Studied

In this thesis, our goal is to introduce a flexible dimensional reduction framework, namely
projection pursuit, for functional data as well as high dimension data. While this new
framework aims to be adapted to any arbitrary case, in this thesis we focus on the following
three problems.

1.2.1 Normality test for functional data

Statistical methods based on the assumption of normality of the observations and/or model
errors are ubiquitous in classical statistics, and are also widely used in more modern settings
when the data to be analyzed are high-dimensional or functional in nature. To give some
recent examples, Panaretos et al. (2010) and Cuevas et al. (2004) assume normality in order
to perform two sample and analysis of variance tests with functional data, and in Kowal
et al. (2017), Kowal et al. (2019), normality of the data is used in performing Bayesian
inference with complex functional data. Some further applications of normality in this
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setting can be found in Gromenko et al. (2017b), Yao et al. (2005a), and Constantinou
et al. (2017), although this list is far from being exhaustive. Given the usefulness of these
procedures, it is important to have ways of measuring the validity of the assumption of
normality for a given sample of functional data. At the least such a validation would lend
further credibility to the conclusions of procedures in which normality is assumed, although
evidence for normality of functional data may also be of independent interest.

Methods for validating the assumption of normality of functional data have been only
lightly developed to date, with existing methods based primarily on the idea of summarizing
the data by their projections onto random or principal component subspaces, and then
applying multivariate normality tests to the vectors of scores defining these projections.
While this is effective in some cases, there could be some pitfalls of this approach, including
their sensitivity to the basis used to smooth the raw data.

In Chapter 3, we introduce a new normality test for functional data based on the
projection pursuit technique that overcomes some of these challenges. We also furnish a
way of decomposing functional data into its approximately Gaussian and non-Gaussian
components, which is useful for the purpose of data visualization and subsequent analyses.

1.2.2 Forecasting functional time series

One of the most fundamental problems in time series analysis is forecasting future values.
Suppose we observe a length n stretch of a time series x1, . . . , xn. The problem of forecasting
this series at horizon h can be framed as finding a function Fh with which we predict xn+h
as x̂n+h = Fh(x1, . . . , xn). One typically wishes to choose the function Fh optimally in the
sense that some specified loss L(xn+h, x̂n+h) is minimized.

The forecasting problem in both the univariate and the multivariate settings has been
thoroughly studied, and one can find comprehensive discussions on this topic in Hyndman
and Athanasopoulos (2018), Shumway and Stoffer (2017), Brockwell and Davis (2013),
and Lütkepohl (2013). In recent years, methods for forecasting functional time series have
also been actively studied. However, most existing methods either focus on forecasting
within the framework of functional autoregressive models, or rely on dimension reduction
using functional principal component analysis, and subsequent forecasting of the resulting
multivariate series. While fPCA performs well for this purpose under certain conditions,
principal component analysis as a general tool is not tailored for forecasting, and it can be
sub-optimal or even misleading in the presence of non-stationarity or when the predictable
components of a given functional time series do not coincide with the principal components.
In Chapter 4, we propose a new forecasting method based on dimension reduction using

8



a functional projection pursuit technique that aims to optimize the dimension reduction
step for forecasting. Emphasis is put on the cases where functional time series are non-
stationary, or when the forecastable components are orthogonal to the leading principal
components.

1.2.3 Change point detection for functional data

Change point detection aims at locating an index of a sequence of data such that the
observations prior and post to this point have different characteristics. Most statistical
methods assume homogeneity of the data, hence successfully identifying a change point
is essential for many statistical applications in environmental science (Jarušková, 1997;
Reeves et al., 2007), finance (Spokoiny et al., 2009), quality control (Lai, 1995), and health
science (Muggeo and Adelfio, 2011), to name a few.

In the past few decades, a variety of change point detection methods have been devel-
oped for univariate and multivariate data. One can find a comprehensive review of classical
methods for change point detection methods in Aue and Horváth (2013) and Horváth and
Rice (2014). A recent change point detection method is discussed in Matteson and James
(2014), where the authors propose an approach based on empirical characteristic functions
to detect distributional changes for multivariate data.

The available functional change point detection methods are limited in their applicabil-
ity, as most of them focus on detecting changes for a specific type of characteristics of the
observed data. For example, method proposed by Berkes et al. (2009) can only be applied
to detect a change in the mean level, while the method proposed by Aue et al. (2020) can
only be applied to detect the change in second moment structures. In Chapter 5, we pro-
pose a new change point detection method for functional data that can work for arbitrary
change point types, and can provide information about the mechanics behind the change
point for more insightful analysis.

1.3 Contributions and Organization of the Thesis

The rest of this thesis is organized as follows. In Chapter 2 we first review the functional
principal component analysis, and present a new dimensional reduction method based on
projection pursuit. We apply the projection pursuit method to test normality of functional
data in Chapter 3, to forecast functional time series in Chapter 4, and to detect a change
point in a sequence of functional data in Chapter 5.
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The major contribution of this thesis is an extension of the projection pursuit method
to functional data. To this end, we propose a new framework to efficiently select and
search a finite rank subspace of the potentially infinite dimensional function space. We
also develop novel computational tools to overcome the burden of the high dimensional
optimization problem in the implementation of projection pursuit. This part is presented
in Chapter 2. We further make the following contributions. In Chapter 3, we propose a
new normality test for functional data that can also decompose the data into Gaussian
and non-Gaussian components. In Chapter 4, we propose a new forecasting framework for
functional time series that emphasizes proper identification of the predictable components.
In Chapter 5, we propose a new change point detection method for functional data that
works for arbitrary types of a change point.
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Chapter 2

Dimension Reduction for Functional
Data

While it is exciting to work with functional data, their infinite dimensional nature makes
them difficult to analyze directly. Therefore, proper dimension reduction for functional data
is desired. In this chapter we first introduce the arguably most commonly used dimension
reduction method for functional data, namely the functional principal component analysis
(fPCA). We then introduce a new dimension reduction framework for functional data based
on general projection pursuit technique.

2.1 Multivariate Principal Component Analysis

Before discussing the functional principal component analysis, we first introduce the prin-
cipal component analysis in the multivariate setting. Let X = [X1, · · · , Xd]

′ be a d-
dimensional random vector with zero mean. Suppose vm = [vm1, · · · , vmd]′ is a vector of

length d and ||vm|| = v′mvm =
√∑d

j=1 v
2
mj = 1. By Ym we denote the inner product of vm

and X, or the projection score of X onto vm. That is,

Ym = 〈vm, X〉 = v′mX =
d∑
j=1

vmjXj. (2.1.1)
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Let

v1 = argmax
vm∈Rd,||vm||=1

Var(Ym),

and the first principal component y1 is defined as

y1 = 〈v1, X〉.

Intuitively, we are looking for a unit length vector in the d-dimensional Euclidean space
such that the projection scores of the data onto this unit length vector has the maximum
variance among projection scores of the data onto all unit length vectors. Such procedure
will decompose the data into two parts: the projections that are in the same direction as
v1, and residuals that are orthogonal to v1. Each subsequent vj is defined as the direction
that will maximize the sample variance of the residuals after the (j − 1)th projection, i.e.

vj = argmax
vm∈Rd,||vm||=1,

〈vm,vq〉=0 for q<k

Var(Ym).

Then the jth principal component yj is defined as

yj = 〈vj, X〉,

and the PCA decomposition of X has the form

X =
d∑
j=1

〈vj, X〉vj.

Let Σ be the covariance matrix of X, and we further assume that the eigenvalues of
Σ satisfy λ1 > λ2 > · · · > λd > 0. Then Var(Ym) = Var(v′mX) = v′mΣvm. To find v1,
we would like to maximize v′1Σv1 subject to v′1v = 1. One possible approach is to use the
technique of Lagrange multipliers. That is, we would like to maximize

v′1Σv1 + λ(v′1v1 − 1), (2.1.2)

where λ is a constant. Differentiate (2.1.2) with respect to v1 gives us

Σv1 − λv1 = 0,
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which is equivalent to

(Σ− λI)v1 = 0, (2.1.3)

where I is a d× d identity matrix. The form of (2.1.3) suggests that λ is an eigenvalue of
Σ and v1 is the corresponding eigenvector. Therefore,

v′1Σv1 = v′1λv1 = λv′1v1 = λ.

Hence, the maximum of v′1Σv1 is achieved when λ = λ1, the largest eigenvalue of Σ, and
v1 coincides with the eigenvector corresponding to the largest eigenvalue λ1. Similarly,
one can show that vj is the eigenvector corresponding to the jth largest eigenvalue λj.
More details could be found in Jolliffe (2011). Another possible approach is based on the
spectrum decomposition of the covariance matrix Σ. Principal axis theorem suggests that
the full rank covariance matrix can be decomposed as

Σ = U ′ΛU,

where U = [u1, · · · , ud] is an orthonormal matrix whose columns are eigenvectors of Σ,
and Λ = diag(λ1, · · · , λd). To maximize v′1Σv1 is equivalent to maximize w′1Λw1 where
w1 = U ′v1 = [w11, · · · , w1d]

′. Since U is orthonormal, ||w1|| = ||v1|| = 1, and hence we are
looking for a unit length vector w1 such that w′1Λw1 is maximized. Since Λ is a diagonal
matrix,

w′1Λw1 =
d∑
j=1

w2
1jλj, (2.1.4)

which is maximized when w1 = [1, 0, · · · , 0]. Therefore, v1 = Uw1 = u1, the eigenvector
corresponds to λ1. One can further show that vj is the eigenvector corresponds to λj. See
Horváth and Kokoszka (2012a) for more discussion about this approach.

Directions v1, · · · , vd can be estimated through eigenvectors of the sample covariance
matrix of observed data. Suppose the sample covariance matrix of d-dimensional observa-
tions xi, i = 1, · · · , n, is Ĉ. Assume its eigenvalues satisfy λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂d, and the
corresponding eigenvectors are v̂1, · · · , v̂d. Then the data can be approximated using the
first p eigenvectors as

xi ≈
p∑
j=1

〈v̂j, xi〉v̂j, i = 1, · · · , n,
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where p could be determined by, for example, Akaike information criterion (AIC) or the
total variance explained (TVE) (Wang et al., 2016). The purpose of this truncated sum-
mation of the first p terms is to use a lower dimensional subspace (as p < d) to summarize
as much information in terms of the variation of the original data as possible.

We should notice that in much of the literature in multivariate data analysis, principal
components refer to 〈vj, X〉, the projection scores of the data onto the principal component
directions. See, for example, Jolliffe (2011), Johnson et al. (2002), and Vidal et al. (2005).
However, in functional data analysis literature, the principal component directions are
commonly referred to as the principal components. See pp. 40 of Horváth and Kokoszka
(2012a) for an example. While it should not cause much confusion in the context, we will
call the principal component directions as the principal components.

2.2 Functional Principal Component Analysis

Functional principal component analysis is very similar to its multivariate counterpart. We
first introduce some notation used in the rest of this thesis. We assume, without loss of
generality, that the domain of the observed functions is [0, 1]. We let L2([0, 1],R) denote
the space of real valued functions with finite squared integral, which is a Hilbert space when
equipped with the inner product defined for x, y ∈ L2([0, 1],R) by 〈x, y〉 =

∫ 1

0
x(t)y(t)dt.

The corresponding norm is defined by ‖ · ‖2 = 〈·, ·〉.

We let X be a random object defined in L2([0, 1],R) with zero mean. Let C(t, s) =
cov(X(t), X(s)), then C defines a Hilbert-Schmidt integral operator of the form

c(f)(t) =

∫ 1

0

C(t, s)f(s)ds.

Let vi, i = 1, 2, · · · , be the eigenfunctions of c with the corresponding eigenvalues λi
satisfying

λic(vi)(t) = λivi(t), λ1 ≥ λ2 ≥ · · · . (2.2.1)

These eigenfunctions and eigenvalues can be estimated through estimates of C. The
fPCA decomposition can be seen as a special case of the Karhunen-Loève decomposition,
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which is of the form

X =
∞∑
j=1

〈vj, X〉vj.

In the context of functional data, we deal with an infinite-dimensional space, hence there
will be infinitely many eigenfunctions. In practice, typically we need to estimate the
covariance operator using the available data and then truncate the KL-decomposition to
the first p eigenfunctions, where p could also be determined by AIC or TVE mentioned
above. Suppose we observe a set of functions x1, · · · , xn defined in L2([0, 1],R). Let
x̄(t) = (1/n)

∑n
i=1 xi(t), t ∈ [0, 1]. Then the natural estimator of C is

Ĉ(t, s) =
1

n

n∑
i=1

(xi(t)− x̄(t))(xi(s)− x̄(s)),

which leads to the following empirical version of the operator c

ĉ(f)(t) =

∫ 1

0

Ĉ(t, s)f(s)ds.

The corresponding eigenfunctions and eigenvalues v̂i and λ̂i of vi and λi then satisfy

λ̂iĉ(v̂i)(t) = λ̂iv̂i(t), i = 1, ..., n, (2.2.2)

and the functional object may be approximated as

xi ≈
p∑
j=1

〈v̂j, xi〉v̂j, t ∈ [0, 1], i = 1, · · · , n.

The fPCA decomposition represents the data in directions where the variance of the pro-
jection scores is maximized. While it is a convenient approach to summarize the data
using eigenfunctions and eigenvalues, there are situations where such a decomposition, and
the corresponding approximation, will not capture the desired features of the data. For
example, variance is not necessarily related to the skewness of the data, the predictability
of a time series, or the location of the change point under certain scenarios that will be
discussed in greater details in later chapters.
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2.3 Multivariate Projection Pursuit

The classic projection pursuit technique for multivariate data is first discussed in Kruskal
(1972) and Friedman and Tukey (1974). In the multivariate setting, we define the projec-
tion index Q(v) as a measure of “interestingness” of the scores of the data projected onto
a vector v, where the score of projection is defined as (2.1.1). That is,

Q(v) = Q(〈x1, v〉, · · · , 〈xn, v〉)

for some function Q : Rn → R. Similarly to the principal component analysis in the multi-
variate setting, our goal is to find the set of d-dimensional vectors vj = [vj1, · · · , vjd]′, j =
1, · · · , d, such that

v1 = argmax
‖v‖=1

Q(v) and

vj = argmax
‖v‖=1,

v′jvm=0 for m<j

Q(v) for j = 2, 3, · · · , d.

Principal component analysis can be viewed as a special case of the projection pursuit,
where we choose the projection index to be the variance measure. In this case the optimal
directions coincide with the eigenvectors of the sample covariance matrix. Some applica-
tions of the projection pursuit method include finding robust principal components, like
in Li and Chen (1985) and Bali et al. (2011). However, the projection pursuit in general
leads to an orthogonal approximation of the set of optimal d-dimensional vectors in the
sense of “interestingness” rather than in the sense of L2 loss.

Usually the projection pursuit method has an intensive requirement for computational
power. In most implementations the dimension p is limited to a smaller integer (see Croux
and Ruiz-Gazen (1996) for an example where p = 10). In Croux and Ruiz-Gazen (2005) and
Croux et al. (2007), the authors develop an efficient algorithm for searching the projection
pursuit directions. However, this algorithm is based on coordinate descent optimization,
which works well when the objection functions is smooth and without many local maxi-
mums. In Croux et al. (2007), the authors implement their algorithm to estimate robust
principal components, where some robust variance measure is used as the projection index.
Such a projection index is smooth in the space, and therefore the results seem promising.
In applications where the objection function is not smooth or is unknown, one may have
concerns about this algorithm’s effectiveness.
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2.4 Functional Projection Pursuit

In this section, we propose a projection pursuit algorithm for functional data that would be
more robust in searching for the global maximum or minimum in the functional space. Let
U∞ = {v ∈ L2([0, 1],R) : ‖v‖ = 1} denote the unit sphere in L2([0, 1],R), and x1, · · · , xn
be a set of functions observed on L2([0, 1],R). The projection index is defined as

Q(v) = Q(〈x1, v〉, · · · , 〈xn, v〉),

where 〈·, ·〉 is the inner product defined in a Hilbert space. We want to find a set of
functions vj, j = 1, 2, · · · on the unit sphere on U∞ such that

v1 = argsup
v∈U∞

Q(v) and

vj = argsup
v∈U∞,

〈vj ,vm〉=0 for m<j

Q(v) for j = 2, 3, · · · .

An issue that presents itself here, in contrast with the multivariate setting, is that the
maximum of Q(v) is generally not well defined, owing to the fact that the unit sphere
in L2([0, 1],R) is not compact. An obvious way to fix this is to restrict the search for
projections of the data to compact subsets of U∞, which, as a result of Riesz’s lemma (see
e.g. Riesz and Sz.-Nagy (1990)), must be finite dimensional. Such a finite dimensional
subset must be spanned by a finite collection of orthonormal basis functions, and hence a
natural way to explore compact subsets of U∞ is then to consider those that intersect a k
dimensional linear subspace of the form Lk = span(φ1, . . . , φk), for some orthonormal basis
elements φ1, ..., φk chosen by the practitioner. For a chosen subspace Lk, we then instead
consider maximizing

QL,k(v) = sup
v∈U∞∩Lk

Q(v). (2.4.1)

This supremum is well defined if the function Q(v) is (almost surely) continuous over
U∞∩Lk, which holds in many cases under quite mild conditions in addition to v ∈ U∞∩Lk,
often basically entailing that Lk is not orthogonal to the data. The consequence of our
restriction to the searching space is that the set of optimal directions are constructed
as linear combinations of the basis functions φ1, ..., φk that span Lk. One might choose
the subspace Lk and its dimension based on a number of considerations. If the observed
functional data have been obtained by smoothing over a particular basis, such as the
Fourier basis or a spline basis, then that basis and the dimension used for smoothing is
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a natural choice for the subspace Lk. If departures from certain features are sought or
expected in a particular way, then this information can also be used to select the basis.
For instance, if it is believed that the functional data exhibits the feature of interest on a
subset of its domain, then a Haar basis could be used.

The practical evaluation of the supremum defined in (2.4.1) requires maximizing the
objective function QL,k(v) over a high-dimensional unit sphere, which presents a difficult
optimization problem. While there are algorithms proposed for projection pursuit in mul-
tivariate setting, due to the potentially high dimension of the unit sphere, as well as the
complexity of the objective function that may arise in the present application, traditional
methods might be ineffective. One reason for the poor performance of such methods is the
fact that they may not search the high dimensional space thoroughly, and hence miss the
global maximum. The method that we propose here to address this issue borrows from
recent advances in the generation of low discrepancy sequences developed in the context
of quasi Monte Carlo integration.

To explain the main idea behind these low discrepancy sequences, consider a p-dimensional
unit hypercube [0, 1)p, and a sequence of points in the cube Z = {xj ∈ [0, 1)p, j =
0, 1, 2, . . .}. Further, let [a, b) = {x ∈ [0, 1)p : ai ≤ xi < bi, i = 1, . . . , p} denote a sub-
rectangular prism, and A([a,b), N) the number of the first N points from Z that lie in
[a, b). A desirable property of the sequence Z is that

lim
N→∞

A([a,b), N)

N
= λp([a,b))

for any selection of the rectangular [a, b), where λp denotes the p-dimensional Lebesgue
measure. In order to quantify the rate at which the fraction A([a,b), N)/N converges to
the limit, different measures of discrepancy have been proposed in the literature. Among
them, the so-called star discrepancy has received a lot of attention:

D∗N(S) = sup
b∈[0,1]p

∣∣∣∣A([0,b), N)

N
− λp([0,b))

∣∣∣∣ .
In the context of numerical integration methods, the importance of star discrepancy

stems from the Koksma-Hlawka inequality, which provides an upper bound for the error
estimate for quasi Monte Carlo rules (see, for example, Niederreiter (1992) or Leobacher
and Pillichshammer (2014)). This bound depends on the underlying integration nodes only
through the star discrepancy, and this explains why sequences with low discrepancy are
desirable.
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As demonstrated by numerous authors, sequences with low discrepancy can also im-
prove efficiency of some global optimization methods (for example, Kimura and Matsumura
(2007), Pant et al. (2008), Georgieva and Jordanov (2009), and Monica et al. (2011)). In
our problem, the goal is to generate a low discrepancy sequence on the unit sphere that
could help us explore all regions of the unit sphere U∞∩Lk. The recent work by Brauchart
et al. (2015) provides an algorithm for generating such a sequence, which we use to propose
a two-step optimization method to estimate the maximum of the projection index Q.

First, each function on U∞∩Lk can be expanded by the chosen basis functions φ1, · · · , φk,
and the coefficients form a unit sphere in a k-dimensional Euclidean space. We generate
a low discrepancy sequence of length J on this k-dimensional unit sphere as described in
Brauchart et al. (2015). Denote these points by ξj = (ξj,1, . . . , ξj,k) for j = 1, 2, . . . , J . For
each ξj, and specified basis functions φi, i = 1, · · · , k, spanning Lk, we construct func-

tions of the form uj =
∑k

i=1 ξj,iφi. This is equivalent to generate a sequence of functions
u1, . . . , uJ on U∞ ∩ Lk. Then we calculate the projection index of our data corresponding
to uj as

Qj = Q(uj).

The Qj’s may then be ranked, and we denote the largest M of them as Q(1) ≥ · · · ≥
Q(M). We denote the low-discrepancy points that produce Q(m) by ξ(m), where m =
1, . . . ,M .

In a second step, we apply an optimization procedure to maximize Q(v), for v contin-
uous in local regions of the unit sphere centered at the initial points ξ(m), m = 1, · · · ,M .
The choice of optimization method is flexible, and common choices include the L-BFGS-B
algorithm proposed by Byrd et al. (1995), particle swarm optimization (Clerc, 2010), and
conjugate gradient descendant (Fletcher and Reeves, 1964). Let ξ̃(m) denote the point at
which Q(·) is optimized starting from the function on the unit sphere determined by the
initial point ξ(m). Then our final estimated vector of coefficients ξ̂ is determined as

ξ̂ = {ξ̃(m) : Q(ξ̃(m)) = max
m=1,··· ,M

Q(ξ̃(m))}.

For

û =
k∑
i=1

ξ̂iv̂i, (2.4.2)
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the estimated maximum of the projection index Q is given by

Q̂L,k = Q(û). (2.4.3)

This procedure is similar to the coarse-to-fine optimization schemes popular in the
machine learning community(see, for example, Pedersoli et al. (2015) and Charniak and
Johnson (2005) for two applications in computer vision and natural language processing).
Our algorithm is summarized in Algorithm 2.4.1. We should notice that we present a
two-step optimization scheme here. However, when the problem has a more consider-
able complexity, one can repeat these two steps accordingly until satisfactory results are
obtained.

Algorithm 2.4.1: Two-Step Approximation Algorithm for Q̂L,k

1 Input: x1, · · · , xn, φ1, · · · , φk
2 Result: Q̂L,k

3 generate ξ1, · · · , ξJ ;
4 for j = 1 to J do

5 generate uj =
∑k

l=1 ξjlφl;
6 calculate Qj = Q(uj);

7 end
8 rank Q1, · · · , QJ in decreasing order as Q(1), · · · , Q(J);
9 for m = 1 to M do

10 find ξ(m) corresponding to Q(m);
11 find the spherical coordinate {1, θ(m),1, · · · , θ(m),k−1} of ξ(m);
12 fix the (k − 1)-dimension box in a small neighborhood of (θ(m),1, · · · , θ(m),k−1);

13 find optimized ξ̃(m) in this box that maximizes Q(·);
14 end

15 let ξ̂ = {ξ̃(m) : Q(ξ̃(m)) = maxm=1,··· ,M Q(ξ̃(m))};
16 construct û =

∑k
l=1 ξ̂lφl;

17 calculate Q̂L,k
n = Q(û).

In later chapters of this thesis, we adopt this algorithm to different applications, and
show that projection pursuit method can lead to an efficient and robust dimension reduction
for functional data.
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Chapter 3

Projection pursuit based tests of
normality with functional data

3.1 Introduction

The much related problem of testing for normality in multivariate data enjoys an enormous
literature dating back at least to the 1960’s. A myriad of techniques are now available,
and, crudely, they can be categorized into four groups based on two characteristics. The
first is how departures from normality in the data are measured, in which typically either
moment based measures are used, such as the sample skewness and kurtosis, or goodness-
of-fit tests involving the empirical distribution or characteristic function are employed. The
second is how information is aggregated across the coordinates of the data, which usually
amounts to either pooling/averaging the information across coordinates, or searching for
linear combinations of the coordinates that maximize a given measure of non-Gaussianity.
Approaches following the later paradigm are often termed “projection pursuit” methods,
since finding such a linear combination can be framed as a classical projection pursuit
problem as put forward in Kruskal (1972), and Friedman and Tukey (1974). Canonical
test statistics based on moment methods of each type are Mardia’s multivariate skewness
(Mardia et al. (1979)), which aggregates the skewness across coordinates, and the skewness
measure of Malkovich and Afifi (1973), which is the maximal sample skewness among all
linear combinations of the coordinates. One test is expected to be preferable to the other
depending on how “sparse” the non-Gaussianity is in the data: data for which all linear
combinations of the coordinates are non-Gaussian should be more apparently non-Gaussian
by considering aggregation based methods, while non-Gaussianity that can be explained
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by only a few linear combination of the coordinates would typically be more easily detected
using projection pursuit methods. Some examples of multivariate projection pursuit based
normality tests can be found in Liang et al. (2000), Henze and Wagner (1997), Baringhaus
and Henze (1991), Zhu et al. (1995a),Zhu et al. (1995b), and general reviews of tests for
multivariate normality are given in Mecklin and Mundfrom (2004), Henze (2002), and
Szekely and Rizzo (2005b).

In contrast, testing for normality of functional data objects has received considerably
less attention. Methods based on random projections and subsequent Cramér-von Mises
and Kolmogorov–Smirnov type goodness-of-fit tests are proposed and reviewed in Cuesta-
Albertos et al. (2006), Cuesta-Albertos et al. (2007), Bugni et al. (2009), and Cuevas (2014).
To date and to the best of our knowledge, the only test available for this purpose based on
moment methods was put forward in Górecki et al. (2018), henceforth referred to as the
GHHK test. Their approach involves projecting the functional data onto the span of the
first several functional principal components estimated from the data, and then applying
a test based on combining Mardia’s skewness and kurtosis to the vectors of coefficients
defining these projections, i.e. applying a multivariate Jarque-Bera test (Jarque and Bera
(1980a)) to the projection scores. They also extend their method to serially correlated
functional data. While this method proves to be effective in many cases, it evidently might
be improved upon in several others. One is if the non-Gaussian components of the data are
sparse among the leading principal components, analogously to the multivariate setting,
but another is if the non-Gaussian components of the data are orthogonal to the leading
principal components, in which case the GHHK test would not be expected to have more
than trivial power. As we see below, this latter situation might occur more often than one
might think, as it can arise from simply misspecifying the basis used to smooth/generate
functional data objects from raw data and/or estimate the functional principal components.
Although one may argue that this situation could be avoided by including more principal
components, as later shown in a data example in Section 3.4.3, increasing the number of
principal components incorporated into the GHHK test does not help solve the problem.

In this chapter, we propose and study an alternative normality test for functional data
based on projection pursuit that overcomes some of these challenges. We consider as test
statistics the maximal sample skewness and sample kurtosis among all scalar projections of
the data onto a user selected compact subset of the unit ball, and hence the proposed test
can be thought of as a functional generalization of the tests of Malkovich and Afifi (1973)
and Baringhaus and Henze (1991). We show that the compact subset selected can be taken
to be relatively high dimensional, and can also be generated by the functional principal
components, which gives the test complimentary strengths to the GHHK test. A complete
asymptotic theory is developed for the proposed statistics, and computational tools are
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introduced to conduct the required high-dimensional projection pursuit. In addition to
providing a test for Gaussianity, this projection pursuit method also furnishes a way to
decompose functional data into a direct sum of approximately Gaussian and non-Gaussian
components useful for data visualization or subsequent analyses, which we demonstrate in
Section 3.4.3. This latter application builds upon some recent efforts to develop projection
pursuit methods for functional data; see for example Bali et al. (2011). We study the
proposed methods and compare them to the GHHK method in a simulation study, as well
as in three applications to real data sets, which show the complimentary strengths of the
two tests.

The rest of this chapter is organized as follows: In Section 3.2, we define our projection
pursuit-based test statistics, and present their asymptotic properties. In Section 3.3, we
detail several computational methods useful for calculating the proposed statistics and
their critical values, and also describe and present the results of a simulation study. The
results of the data analyses are presented in Section 3.4. The proofs of all technical results
are contained in Section B.

3.2 Problem statement, definition of test statistics,

and their asymptotic properties

Suppose that x1, ..., xn is a simple random sample of size n of functional data sharing the
same distribution as X. We assume throughout that each functional observation is then
an independent stochastic process, whose sample path is in L2([0, 1],R). More generally,
we could consider a simple random sample of elements from a general, separable, Hilbert
space, but because of the type of data applications we present in this chapter we consider
the space L2([0, 1],R) for clarity of presentation. Given this data, we are interested in
testing the null hypothesis

H0 : X is a Gaussian process in L2([0, 1],R).

By definition, H0 can be equivalently stated as

H0 : For each nonzero v ∈ L2([0, 1],R), the scalar random variable 〈X, v〉 is Gaussian.

As discussed in the multivariate setting in Malkovich and Afifi (1973), the latter formu-
lation motivates developing test statistics aiming to find the “least Gaussian” projection
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of X. Indeed, if the distribution of such a projection does not significantly deviate from
normality, then the same apparently holds for the entire process. In order to evaluate
the normality of the projection of the data onto the direction v, a natural measure is the
squared skewness and/or the absolute kurtosis:

Sn(v) =
1

n2σ̂6(v)

[
n∑
i=1

(〈xi, v〉 − 〈x̄, v〉)3
]2
,

and

Kn(v) =

∣∣∣∣∣ 1

nσ̂4(v)

n∑
i=1

(〈xi, v〉 − 〈x̄, v〉)4 − 3

∣∣∣∣∣ .
Above we use x̄(t) = (1/n)

∑n
i=1 xi(t), t ∈ [0, 1], to denote the sample mean function and

σ̂2(v) to denote the sample variance of the scalar observations 〈x1, v〉, ..., 〈xn, v〉. Though
here we consider “Jarque-Bera” moment based evaluations of normality, one could also
consider projection pursuit methods based on other measures, for instance those surveyed
in Thadewald and Büning (2007). Some benefits of using such moment based measures
in this setting stem from their affine invariance and asymptotic properties, which, as we
shall see below, are crucial in deriving feasible computational techniques to carry out a
projection pursuit test in high dimensions.

Letting U∞ = {u ∈ L2([0, 1],R) : ‖u‖ = 1} denote the unit sphere in L2([0, 1],R), the
least Gaussian projection may be calculated by evaluating the test statistics

Sn = sup
v∈U∞

Sn(v), and Kn = sup
v∈U∞

Kn(v).

As discussed in Section 2.4, these test statistics are not necessarily well defined, and an
obvious solution is to restrict the search for projections of the data to compact subsets of
U∞, which is finite dimensional. Let the chosen subspace Lk = span(φ1, ..., φk), for some
orthonormal basis elements φ1, ..., φk chosen by the practitioner, we then instead consider
the statistics

SLk
n = sup

v∈U∞∩Lk

Sn(v), and KLk
n = sup

v∈U∞∩Lk

Kn(v). (3.2.1)
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Effectively, these statistics are measuring for multivariate normality in the subspace Lk
based on the third and fourth order moments.

In the case when one would like a parsimonious finite dimensional representation of
the observed functional data, functional principal component analysis is often employed.
Let the first k estimated functional principal components introduced in Section 2.2 be
v̂1,PCA, . . . , v̂k,PCA. We note that the test statistic proposed in Górecki et al. (2018) is of
the form

GHHKk =
k∑
i=1

[Sn(v̂i,PCA) +K2
n(v̂i,PCA)],

which, under the condition that the first k eigenvalues in (2.2.1) are bounded away from zero
and with suitable normalization, converges in distribution to a χ2-random variable under
H0. Letting P̂k = span(v̂1,PCA, . . . , v̂k,PCA), one might alternatively test for normality in
the principal component subspace by considering the statistics

SP̂ ,kn = sup
v∈U∞∩P̂k

Sn(v), and K P̂ ,k
n = sup

v∈U∞∩P̂k

Kn(v), (3.2.2)

or

M P̂ ,k
n = max

1≤i≤k

n

6

(
Sn(v̂i) +

1

4
K2
n(v̂i)

)
, (3.2.3)

i.e. the Jarque-Bera type test statistic, in which the maximal sum of the skewness and
kurtosis is evaluated only over the first k principal component directions.

3.2.1 Large sample properties

The asymptotic properties of each of these statistics under H0 are detailed by the following
two results.

Theorem 3.2.1. Suppose x1, ..., xn are independent and identically distributed elements
of L2([0, 1],R) such that

1. H0 holds, and

2. infv∈U∞∩Lk
E〈xi, v〉2 > 0.

Then, with SLk
n and KLk

n defined in (3.2.1),
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(nSLk
n ,
√
nKLk

n )>
D→ ( sup

v∈U∞∩Lk

Z2
1(v), sup

v∈U∞∩Lk

|Z2(v)|)>,

where Z1 and Z2 are independent mean zero Gaussian processes defined on U∞∩Lk, whose
covariance functions, defined as

ρ1(v, r) = 6(ξ>(v)ξ(r))3, and (3.2.4)

ρ2(v, r) = 24(ξ>(v)ξ(r))3

respectively, depend only on k.

This result may be proven in a similar fashion to the main theorem of Baringhaus and
Henze (1991). We also note here that an asymptotic result of this type can easily be estab-
lished under the more general condition that the projections of X onto Lk are elliptically
symmetric, but we do not pursue that here. The asymptotic distribution presented in
Theorem 3.2.1 can be used to estimate valid critical values for each test statistic under H0

using simulation. Furthermore, the form of this distribution shows that the tests based on
SLk
n and KLk

n are asymptotically independent, which is useful in calculating a p value for
H0 using both statistics jointly.

In order to derive similar results when the subspace used to define the test statis-
tics is random and generated from the principal component basis, we make the following
assumption.

Assumption 3.2.1. The eigenvalues λi defined in (2.2.1) satisfy λ1 > · · · > λk > λk+1 ≥
0.

Assumption 3.2.1 implies that the principal component subspaces are asymptotically
one dimensional, and in particular it implies that the estimated principal components are
consistent up to a sign. This assumption could likely be relaxed to the one that only
requires λk > λk+1 at the expense of some simplicity in the proof.

Theorem 3.2.2. Suppose Assumption 3.2.1 holds, and that x1, ..., xn satisfy H0 and are
independent and identically distributed. Then with SP̂ ,kn and K P̂ ,k

n defined in (3.2.2),

(nSP̂ ,kn ,
√
nK P̂ ,k

n )>
D→ ( sup

v∈U∞∩Pk

Z2
1(v), sup

v∈U∞∩Pk

|Z2(v)|)>,

where Z1 and Z2 are independent mean zero Gaussian processes defined on U∞∩Pk. Their
covariance functions are defined in (B.1.2). Furthermore,
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M P̂ ,k
n

D→ max
1≤i≤k

χ2
i (2),

where χ2
i (2), i = 1, . . . , k, denote independent and identically distributed χ2 random vari-

ables with two degrees of freedom.

Theorem 3.2.2 shows that at least when the principal component subspaces are fixed
and one dimensional, the distribution of the maximal skewness and kurtosis is not asymp-
totically affected by the error in estimating the principal components. This comes basically
as a result of the continuity of the functions Sn(v) and Kn(v). This result also shows that

a test of asymptotic size α is obtained by rejecting H0 when M P̂ ,k
n exceeds χ2([1−α]1/k, 2),

where χ2(β, 2) is the βth quantile of the χ2 distribution with two degrees of freedom.

3.3 Implementation and a Simulation Study

Practical evaluation of the estimates of the test statistics ŜLk
n and K̂Lk

n defined in (3.2.1)
requires maximizing the objective functions Sn(v) and Kn(v) over a potentially high-
dimensional unit sphere, which presents a difficult optimization problem. This could be
solved with the functional projection pursuit method introduced in Section 2.4, by letting
the projection index Q(·) to be the skewness measure or kurtosis measure. In the rest of
this sub-section we only use ŜLk

n as an example, since K̂Lk
n can be evaluated similarly.

The projection pursuit algorithm for functional normality test consists the following
two steps. First, we generate a low discrepancy sequence of length J on U∞ ∩ Lk. Denote
the generated sequence by u1, . . . , uJ . Then we calculate the skewness of the projection of
our data onto uj as

Skj = Sn(uj), j = 1, . . . , J.

We then rank Skj’s in the descending order and denote the largest M of them as Sk(1) ≥
. . . ≥ Sk(M). The Skj’s may then be ranked, and we denote the largest M of them as
Sk(1) ≥ . . . ≥ Sk(M). We denote the corresponding points on the unit sphere that produce
Sk(m) by u(m), where m = 1, . . . ,M . In a second step, to maximize Sn(v) we apply M
times a local optimization procedure where as initial points we use u(m), m = 1, . . . ,M .

In our implementation of the method we have used the L-BFGS-B algorithm proposed
by Byrd et al. (1995), which allows the user to specify constraints on the domain over which
the objective function is optimized. We also tried other optimization techniques, such as
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particle swarm optimization (Clerc, 2010) and conjugate gradient descendant (Fletcher
and Reeves, 1964), but the results were almost identical. Therefore, we only report results
from L-BFGS-B method, since it performs slightly faster. Let û denote the point at which
Sn is optimized, our estimated test statistic is then given by

ŜLk
n = Sn(û). (3.3.1)

This algorithm is summarized in Algorithm 3.3.1.

Algorithm 3.3.1: Two-Step Approximation Algorithm for ŜLk
n

1 Input: x1, . . . , xn, φ1(t), . . . , φk(t)

2 Result: ŜLk
n

3 generate u1, . . . , uJ ;
4 for j = 1 to J do
5 calculate Skj = Sn(uj);
6 end
7 rank Sk1, . . . , SkJ in decreasing order as Sk(1), . . . , Sk(J);
8 for m = 1 to M do
9 find u(m) corresponding to Sk(m);

10 search for ũ(m) that maximize Sn(·) in a small neighborhood of u(m);

11 end
12 let û = {ũ : Sn(ũ) = maxm=1,...,M Sn(u(m))};
13 calculate ŜLk

n = Sn(û).

This procedure necessitates the selection of two tuning parameters: the length of the low
discrepancy sequence J and the number of initial points M . Our recommended procedure
is to start from some initial values, like those we propose below, and stop as soon as we
observe that the hypothesis testing decision and/or p-values are not sensitive to increasing
values of these parameters. This is equivalent to checking that the statistic calculated
and null quantiles estimated achieve stability as M and J increase. We have conducted a
number of simulations to investigate what choices for these parameters are appropriate in
practice. The results of some of these experiments are discussed and shown in the appendix
of this chapter. In terms of stability in estimating the quantiles of the test statistics defined
in (3.2.1), we have found that reasonable choices of these parameters in a dimension of
21 or less are J = 3 × 104 and M = 5. We also illustrate here how one might choose
the dimension of the subspace k in practice, and the discussion is also presented in the
appendix. A natural idea is to perform the test for a range of values of k in order to further
understand how any non-Gaussianity is manifested in the data, or if k should potentially

28



be increased. For Gaussian data, one expects that, as a function of k, the p-values of the
test applied for different choices of k will fluctuate as, quite dependent, uniform random
variables on [0, 1], while for non-Gaussian data the p-values as a function of k should at
some point become small.

In order to estimate the null distributions of SLk
n and KLk

n , we utilize the fact that their
limiting distributions are pivotal under H0 and estimate their critical values by simulation.
In particular, letting qSα and qKα denote the α quantiles of SLk

n and KLk
n respectively, these

are approximated by generating n k-dimensional multivariate normally distributed random
vectors, yi = (yi,1, ..., yi,k)

>, i = 1, ..., n, with mean zero and identity covariance matrix. A

functional sample Yi(t) =
∑k

j=1 yi,jφj(t) can be constructed from these vectors, to which

we apply Algorithm 3.3.1 to calculate the statistics SLk
n,1 and KLk

n,1. By repeating this

simulation B times we obtain a sample from statistics SLk
n,j and KLk

n,j, j = 1, ..., B, and then
we take qSα and qKα to be the α empirical quantiles of these respective samples. Below we
take B = 2000 for estimating critical values. We found that this number is suitable for
estimating the 1% and 5% critical values, although we recommend that it be increased if
one wishes to consider values even further in the tail of the distribution.

We can estimate a p-value for the test based on these statistics as follows. With ŜLk
n

and K̂Lk
n denoting the test statistics estimated from the data, we take

p = P (SLk
n > ŜLk

n ∪KLk
n > K̂Lk

n ) = 1− P (SLk
n ≤ ŜLk

n ∩KLk
n ≤ K̂Lk

n )

≈ 1− P (SLk
n ≤ ŜLk

n )P (uLk
n ≤ K̂Lk

n ),

where the last approximation is justified by the asymptotic independence of SLk
n and KLk

n .
The probabilities P (SLk

n ≤ ŜLk
n ) and P (KLk

n ≤ K̂Lk
n ) can be estimated from the empirical

CDF estimated from the simulation described above.

3.3.1 Simulation study

In order to evaluate the performance of the tests and the numerical methods proposed
above, we conducted a simulation study, the results of which we now present. The synthetic
data that we considered was generated from the basic model

xi =
D∑
j=1

εi,jfj, (3.3.2)
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where D = 101, and f1, . . . , f101 are the first 101 Fourier basis functions defined on
the common domain t ∈ [0, 1] as f1 = 1, fj(t) =

√
2 cos( j

2
πt) for j = 2, 4, . . . , 100, and

fj(t) =
√

2 sin( j−1
2
πt) for j = 3, 5, . . . , 101. We also studied the case in which the basis

elements fj were non-smooth Haar basis elements. Our results, which for completeness are
presented in the appendix, suggested that the performances of the tests were very similar
to those in the smooth case.

We produced raw discrete data from the model (3.3.2) by evaluating xi(t) at 100 equally
spaced points in the unit interval. To simulate data following H0, we generated the coef-
ficient vectors εi = (εi,1, ..., εi,D)> from a multivariate normal distribution with mean zero
and covariance matrix Σ = ΣD×D. We considered three different types of the covariance
structure. In two cases, Σ was diagonal,

Σ = diag(σ2
1, σ

2
2, . . . , σ

2
D),

where we either took the diagonal elements to decay quickly, so that

σ2
w =

1

w2
, w = 1, . . . , D,

and the resulting covariance matrix was labeled Σfast, or more slowly, in which case we
took

σ2
w =


1√
w

for w = 1, 2, 3

2.4065
w2 for w ≥ 4,

and then the resulting covariance matrix was labeled Σslow. The normalizing constant
2.4065 was computed so that for both covariance matrices∑7

i=1 σ
2
i

tr(Σ)
≈ 0.9,

which is a common threshold when using the total variance explained (TVE) in principal
component analysis to select the number of components to retain. We should note that
the TVE level could be arbitrary, for example in Górecki et al. (2018) the authors use 85%.
In the rest of this chapter, we use 90% as the threshold for TVE.

For these diagonal covariance matrices the first d population level principal components
of the observations xi, i = 1, . . . , n, are the functions f1,..,fd. Since initial Fourier basis
elements do not fluctuate too much, the first d principal components can be estimated
quite accurately. In order to investigate the situation in which the test might be sensitive
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to the estimation of the principal components, we also considered generating data having
a randomly constructed covariance matrix Σran in the following way: we represent Σ =
PΛP−1, where P is a D×D matrix whose columns are orthonormal to each other, and Λ
is a diagonal matrix. We generate P by applying a QR decomposition to a D ×D matrix
filled by independent and identically distributed normal random variables with zero mean
and unit variance, and we take Λ = diag(101, 100, . . . , 1). In this case the leading principal
components of xi in (3.3.2) are equally likely to be any of the functions f1, ..., fD, or linear
combinations of them, and the eigenvalues of the covariance matrix decay quite slowly.

In order to generate data under HA, we consider three alternatives, which we label as
L1, L3, and M10. For the alternative L1, we assume that the leading error term εi,1 in
(3.3.2) follows a scaled t-distribution with 5 degrees of freedom, mean zero, and variance
equal to Σ(1, 1). In L3, the first three leading coefficients εi,1, εi,2, εi,3 follow independently
a scaled t-distribution with 5 degrees of freedom and variances Σ(1, 1), Σ(2, 2), and Σ(3, 3),
respectively. In the last case M10, we assume εi,10 follows the scaled t-distribution with
5 degrees of freedom and variance equal to Σ(10, 10). In both of the cases L1 and L3,
the non-Gaussianity of the observations is contained in the leading principal components,
and hence the methods based on PCA are expected to perform well. In contrast, for
the alternative M10 the non-Gaussian component is orthogonal to the PCA subspaces of
dimensions nine or less.

To conduct the simulations, for each setting we generated 1000 samples of lengths
n = 150, 450 and 900. For each sample of curves, to estimate the test statistics SL,21n

and KL,21
n we applied the approximation method described in Algorithm 3.3.1. For linear

spaces L21, we considered F21 = span(f1, . . . , f21), where fi are the Fourier basis elements
described above, and B21 = span(b1, . . . , b21), where bi are ortho-normalized B-splines
constructed from 75 equally spaced knots of order 4.

We considered the following tests:

1. PP-F-21: Projection pursuit test with the subspace spanned by F21.

2. PP-B-21: Projection pursuit test with the subspace spanned by B21.

3. PP-PF-7: Projection pursuit test with the subspace spanned by the first 7 functional
principal components estimated by initially smoothing the raw data using the Fourier
basis.

4. PP-PB-7: Projection pursuit test with the subspace spanned by the first 7 functional
principal components estimated by initially smoothing the raw data using the B-
spline basis.
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5. GHHK-F: GHHK test where we smooth the data using the first 75 Fourier basis
functions and then estimate the pricipal componets from the coefficients. We use the
90% TVE criterion to select the number of principal components included.

6. GHHK-B: GHHK test where we smooth the data using 75 B-spline basis functions
and then estimate the pricipal componets from the coefficients. We use the 90% TVE
criterion to select the number of principal components included.

7. MAX-F: MAX test defined in (3.2.3) with data smoothed by Fourier basis. We use
the 90% TVE criterion to select the number of principal components included.

8. MAX-B: MAX test defined in (3.2.3) with data smoothed by B-spline basis. We
use the 90% TVE criterion to select the number of principal components included.

The percentage of rejections from the 1000 simulations at levels 5% and 1% are pre-
sented in Tables 3.1–3.3 for each covariance structure. The numbers in the Null column
show the test sizes for different methods, while the numbers in L1, L3, and M10 columns
show the power of each test under these three scenarios. The results can be summarized
as follows:

• Each test exhibited reasonable size. The GHHK test and the MAX type tests were a
bit oversized for large n, while the projection pursuit based tests tended to be a bit
undersized.

• For the covariance structures Σfast and Σslow and the alternatives L1 and L3, the
GHHK and MAX type tests performed superiorly and worked well regardless of the
basis used to smooth the data. The projection pursuit based tests exhibited good
power and consistency in these cases. By comparing the results for PP-PF-7 and
PP-F-21, one can get a sense of the sacrifice in power that is made by increasing
the dimension of the search space, which can be quite severe: when the dimension
increased from 7 to 21, the power was roughly halved at the significance levels of 5%
and 1%.

• As expected, in the case M10 the GHHK test, the MAX type test, and the projection
pursuit tests based on functional principal components have no more than trivial
power, while the power of the other projection pursuit tests is very similar to what
was observed under the alternative L1.
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• When the covariance matrix used to generate the data was Σran, then the performance
of the GHHK test was strongly affected by the choice of basis used to smooth the
raw data. When the Fourier basis was used, the GHHK test still exhibited strong,
although somewhat diminished, power. On the other hand, when orthogonal B-
splines where used to smooth the data, then the power was strongly diminished.
This can be explained by the fact that the non-Gaussian signal in these cases often
ends up in the Fourier basis elements that cannot be well represented by the first
seven principal components calculated after initially smoothing the raw data using
the orthogonal B-splines. In this case, the projection pursuit type tests are essentially
unaffected by the choice of the basis, since even when the non-Gaussian component of
the data is not well represented in the early principal components, it remains present
in some linear combinations of the coordinates of the full data and can be essentially
recovered without loss by the projection pursuit optimization.

33



Table 3.1: Percentage of rejections under the fast decaying covariance matrix Σfast.
level α = 5% α = 1%

method Null L1 L3 M10 Null L1 L3 M10

n = 150

PP-F-21 5.3 13.7 29.9 15.1 1.6 8.7 22.2 9.4
PP-B-21 2.9 15.0 34.4 15.8 1.0 9.8 24.5 9.3
PP-PF-7 3.1 34.5 65.1 3.8 0.8 23.6 48.9 1.5
PP-PB-7 3.7 33.0 65.7 11.0 0.8 20.4 50.2 6.6
GHHK-F 4.7 69.1 97.4 4. 9 1.5 59.4 95.8 1.4
GHHK-B 4.0 66.0 96.9 5.9 1.6 57.7 94.3 3.2
MAX-F 7.2 74.0 97.1 7.1 2.7 66.4 95.3 2.8
MAX-B 7.7 73.7 96.9 9.1 3.3 65.8 95.0 4.9

n = 450

PP-F-21 4.9 34.1 70.8 35.5 1.1 25.4 60.9 26.0
PP-B-21 3.9 38.3 75.6 38.6 0.7 28.7 64.5 29.0
PP-PF-7 3.3 79.1 99.1 3.7 0.3 65.2 95.1 0.4
PP-PB-7 4.4 80.4 99.5 10.5 0.5 66.1 95.8 6.2
GHHK-F 5.5 98.3 100 5.5 2.0 96.3 100 2.0
GHHK-B 6.0 97.6 100 6.9 2.4 95.7 100 2.5
MAX-F 6.4 99.0 100 6.4 2.8 97.5 100 4.2
MAX-B 8.1 98.8 100 8.9 3.9 96.9 100 3.2

n = 900

PP-F-21 4.4 65.0 94.7 66.4 0.7 50.2 85.7 50.7
PP-B-21 4.7 72.5 97.6 71.8 0.6 56.1 89.3 55.1
PP-PF-7 4.2 98.6 99.9 4.6 0.7 96.9 99.9 0.8
PP-PB-7 4.4 98.5 100 7.9 0.9 97.2 99.9 4.0
GHHK-F 6.8 100 100 6.8 1.5 100 100 1.5
GHHK-B 6.3 100 100 7.5 1.7 99.9 100 2.2
MAX-F 7.9 100 100 8.0 3.2 100 100 3.2
MAX-B 8.1 100 100 8.8 3.5 100 100 4.4
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Table 3.2: Percentage of rejections under the slow decaying covariance matrix Σslow.
level α = 5% α = 1%

method Null L1 L3 M10 Null L1 L3 M10

n = 150

PP-F-21 6.4 15.0 31.6 17.2 1.4 9.7 22.7 9.2
PP-B-21 2.8 15.0 34.4 16.5 1.0 9.8 24.8 9.4
PP-PF-7 3.0 32.7 65.2 3.9 0.5 20.6 49.7 1.2
PP-PB-7 3.3 32.8 66.3 4.2 0.7 21.5 51.3 1.5
GHHK-F 4.4 66.4 92.6 4.8 2.0 57.9 88.9 2.1
GHHK-B 4.8 64.1 91.6 10.6 2.0 55.6 87.3 6.8
MAX-F 7.3 73.5 92.8 7.3 3.5 65.3 88.9 3.5
MAX-B 8.1 72.5 92.4 14.8 4.1 64.4 88.6 10.2

n = 450

PP-F-21 5.5 37.6 71.6 35.0 1.5 29.0 61.0 28.1
PP-B-21 4.1 38.3 76.3 38.5 0.8 28.7 64.6 29.0
PP-PF-7 4.1 79.6 99.4 6.8 0.4 65.1 96.6 3.1
PP-PB-7 4.5 80.3 99.5 7.6 0.4 65.6 97.0 3.4
GHHK-F 6.4 98.1 100 6.9 2.3 95.5 100 2.4
GHHK-B 5.9 97.0 100 12.9 2.6 94.6 100 8.1
MAX-F 6.7 98.7 100 6.8 3.5 96.6 100 3.4
MAX-B 8.8 98.6 100 15.6 4.3 96.6 100 10.8

n = 900

PP-F-21 4.7 67.7 95.1 67.4 1.1 52.3 85.6 51.2
PP-B-21 4.6 72.5 98.0 70.6 0.5 56.1 89.6 54.9
PP-PF-7 4.0 98.5 100 6.7 1.2 97.3 100 3.8
PP-PB-7 4.6 98.5 100 7.2 1.5 97.4 100 4.0
GHHK-F 6.6 100 100 6.2 1.5 99.9 100 1.3
GHHK-B 7.1 100 100 10.7 1.7 99.9 100 5.0
MAX-F 7.3 100 100 7.2 2.8 100 100 2.9
MAX-B 8.4 100 100 12.9 3.3 100 100 7.3
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Table 3.3: Percentage of rejections under the random covariance matrix Σran.
level α = 5% α = 1%

method Null L1 L3 M10 Null L1 L3 M10

n = 150

PP-F-21 3.8 13.4 30.7 14.4 0.7 7.8 21.4 8.3
PP-B-21 4.9 15.9 36.0 17.1 1.0 7.6 20.9 8.2
PP-PF-7 3.1 30.9 66.0 23.6 0.8 19.8 48.9 15.6
PP-PB-7 3.6 10.8 26.5 10.8 0.3 5.6 16.4 5.5
GHHK-F 5.5 41.0 74.1 15.7 2.5 34.2 67.1 11.1
GHHK-B 5.9 9.8 17.8 10.3 2.6 5.7 13.1 5.9
MAX-F 13.3 51.4 80.6 26.5 6.8 44.3 75.0 18.9
MAX-B 28.6 34.9 42.4 34.7 18.1 23.7 32.1 23.0

n = 450

PP-F-21 3.8 38.8 73.3 38.1 1.2 29.3 60.4 27.8
PP-B-21 6.5 42.6 78.7 39.9 0.9 31.3 64.4 29.0
PP-PF-7 3.3 77.1 99.2 56.0 0.6 63.0 95.5 44.1
PP-PB-7 5.5 30.4 59.6 28.3 0.8 21.1 47.4 18.1
GHHK-F 5.2 77.5 98.5 54.0 2.3 71.3 97.1 45.5
GHHK-B 5.2 19.3 38.6 16.6 2.0 13.1 29.3 10.5
MAX-F 12.0 89.8 99.1 52.5 4.6 86.1 98.3 24.8
MAX-B 21.7 38.4 59.7 37.3 12.8 27.4 47.9 70.8

n = 900

PP-F-21 3.7 68.8 96.5 67.5 0.6 50.5 87.1 49.4
PP-B-21 7.9 76.7 98.3 72.9 0.9 55.9 89.6 51.5
PP-PF-7 5.6 97.8 100 70.0 1.1 95.4 100 64.5
PP-PB-7 6.0 52.4 84.9 50.1 1.7 43.5 79.3 40.3
GHHK-F 5.8 98.6 100 71.5 1.7 97.9 100 62.6
GHHK-B 5.6 28.4 59.9 26.8 1.5 20.7 51.6 19.9
MAX-F 9.2 99.3 100.0 77.1 3.6 98.6 99.9 70.8
MAX-B 15.2 44.5 73.9 41.4 6.6 33.4 63.9 31.8

3.4 Data Analysis

In this section, we apply our proposed normality test to several real datasets, with the main
objective of comparing its performance with that of some of the existing methods. While for
some data sets all tests give similar results, in one case the proposed test leads to different
conclusions than those implied by the existing methods. In addition, we also explain how
the proposed projection pursuit method can be used for identifying and visualizing the
non-Gaussian components of functional data.
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3.4.1 Fertility rate in Australia

We first consider Australian fertility rate data from 1921 to 2006 among women aged
from 15 to 49. The dataset has been collected by the Australian Bureau of Statistics and
is available in the R package rainbow (Shang and Hyndman, 2016). In the left panel of
Figure 3.1 each curve represents the distribution of the number of births per 1000 females at
each age. From the rainbow plot, and some further analysis, we have found that the second
order differencing of the curves is sufficient to remove the prevalent trend in the sequence of
curves. The detrended curves are depicted in the right panel of Figure 3.1. After applying
the GHHK-F test described in Section 3.3.1 to the detrended data, we have obtained a
p-value equal to 0.826, which suggests that these curves are reasonably Gaussian. Using
the proposed PP-F-21 we have obtained values of the test statistics Ŝn = 114.825 and
K̂n = 23.895, while the 95% level critical values are 132.915 and 32.792, respectively. The
corresponding empirical p-value is 0.325, which is in apparent agreement with the GHHK
test.

Figure 3.1: Fertility rate by age in Australia from 1921 to 2006.

3.4.2 Conditional intra-day stock prices

In modern finance, Brownian bridges arise naturally as conditioned Brownian motions in
the context of the Black-Scholes model for option pricing. But there are numerous other
applications of Brownian bridges, and more generally conditioned diffusion processes. For
example, in applications that involve modeling of the flow of information in the market,
like in Brody et al. (2008), a Brownian bridge represents the noise in the information
about a future market event. In Cartea et al. (2016) the authors utilize a randomized
Brownian bridge to model the mid-price of an asset with a random end-point that follows
a distribution that is not necessary Gaussian. Such models can be justified, to some
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extent, by the fact that Brownian motion is not the only diffusion process that produces a
Brownian bridge when conditioned on its terminal value (Benjamini and Lee, 1997).

In this example we test whether a conditioned log-price of a traded security follows a
Gaussian process, which is a less stringent requirement than the assumption that the price
follows a geometric Brownian motion. To this end, we utilize the intra-day stock prices
of IBM from 06/15/2006 to 04/02/2007, which are available in the R package fChange

(Sonmez et al., 2018). The closing prices of one share of IBM stock were recorded from 9
a.m. to 4:30 p.m. at a one-minute resolution, and hence there are 390 observations each day.
By analogy to the well-known construction for the Brownian bridge (e.g., Karlin and Taylor
(1981)), we have transformed the observed prices to conditioned prices in the following way.
Suppose the observed intra-day prices on a given day i are denoted xi(t1), . . . , xi(tn), and
yi,j = log xi(tj), j = 1, . . . , 390. We denote the straight line connecting yi,1 and yi,390 as
Li(t). Then the bridged log prices are defined as Yi(t1) = (yi,1 − Li(t1)), . . . , Yi(t390) =
(yi,390 − Li(t390)). The widely used Black-Scholes model assumes that log-prices follow
a Brownian motion, and hence these transformed price curves should follow a Brownian
bridge, which is a Gaussian process. The daily curves of the transformed prices are shown
in Figure 3.2. The p-value calculated from GHHK-F test is 3.78×10−8, which suggests that
these curves are non-Gaussian. Our PP-F-21 test generates test statistics Ŝn = 180.965
and K̂n = 42.401, while the 95% level critical values are 101.635 and 29.381 respectively.
The corresponding empirical p-value is essentially 0, and hence it is in agreement with the
GHHK test.
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Figure 3.2: Daily curves of the transformed IBM prices from 06/15/2006 to 04/02/2007.

3.4.3 Yearly lower temperature profiles in Australia

In this final example we consider data comprised of the daily lowest temperature recorded
in the Gayndah Post Office from 1893 to 2009, which is available both from the Aus-
tralian Government Bureau of Meteorology and the R package fChange (Sonmez et al.,
2018). Gayndah is a small town in Queensland, Australia, which is approximately 200km
northwest of Brisbane. The settlement was established in 1849, and the Post Office was
established at Gayndah in 1850. We analyze temperature records from 1894 to 2008, as the
records prior to 1894 are not complete. In this case each functional observation xi is defined
to be the daily lowest temperature recorded in the Post Office for day t = 1, 2, . . . , 365,
in year i = 1894, . . . , 2008. For leap years a 366th data point is added. Since these yearly
records have different lengths, we scale the data to the unit interval and smooth the curves
using 21 Fourier basis. We than evaluate these curves on 365 equally spaced points in the
unit interval. Figure 3.3 shows a rainbow plot of the data.

39



Figure 3.3: Daily lowest temperature at Gayndah Australia from 1894 to 2008.

The p-value of the GHHK test applied to this data is 0.928, which suggests that these
temperature curves are plausibly realizations of a Gaussian process. However, in this case
our projection pursuit based method suggests that these curves have components that
are both skewed and heavy-tailed. The estimated test statistics for our PP-F-21 test are
ŜLk
n = 185.49 and K̂Lk

n = 47.32, which both exceed the corresponding estimated 95%
critical values (130.59 and 33.97 respectively). The empirical p-value has been estimated
as 0.002.

Letting p1 denote the function that maximizes the skewness (or kurtosis) defined in
(2.4.2), we can estimate the skewed (or leptokurtic) direction of each curve xi as

gi1 = 〈xi, p1〉p1.

One can further remove this non-Gaussian component by point-wise subtraction to
obtain the residual

xnewi = xi − gi1.
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Subsequent tests for Gaussianity may be applied to the sample xnew1 , . . . , xnewn to find further
directions p2, p3, ... that will maximize the kurtosis or skewness. Suppose after m steps
we are no longer able to reject the null hypothesis that the residuals are Gaussian pro-
cesses. Then the curve xi can be decomposed into two parts: an approximate non-Gaussian
component gi = gi1 + . . .+ gim, and an approximate Gaussian component ri = xi − gi.

These two components for the Gayndah temperature curves are presented in Figure 3.4,
where we find 2 directions with excessive kurtosis and 1 direction with excessive skewness.
We notice that most variants of the direction tend to vary more prominently at either end
of the function, which corresponds to the summer in Australia.

Figure 3.4: The left panel shows the non-Gaussian components we found when running the
projection pursuit based test. The right panel are the residuals of the daily low temperature
profile after removing these non-Gaussian components.

We ran the GHHK-F test again on both the estimated non-Gaussian components and
and the residuals. The p-values were 0.000 and 0.678, respectively. The total variance
explained (TVE) of the non-Gaussian components was around 3%, which is quite small
relative to the usual TVE thresholds used to select the number of FPCs. While one could
in general try to increase the TVE used to select the number of components in the GHHK
test with the aim of discovering such a sparse non-Gaussian component, we point out that
intuitively the GHHK method is a joint Jarque-Bera test applied to the projections onto
FPCs. Therefore, increasing the number of FPCs will typically lead to a loss of overall
testing power. A case in point is this example, in which after increasing the TVE threshold
to 99% for the GHHK test, the test still fails to reject the Gaussianity of the curves at the
0.05% level with p-value equals to 0.723.

P-values of the test applied to the temperature data as a function of k are displayed
in Figure 3.5 below, and show that strong non-Gaussianity is evident in the data after
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projecting onto the first 3 Fourier basis elements, and then becomes essentially zero for k
greater than 7.

Figure 3.5: The p-values of proposed normality test under different number basis functions
to construct the subspace with daily low temperature at Gayndah, Australia. The red
horizontal dash-line is positioned at p=0.05.
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Chapter 4

Functional Time Series Forecasting
via Projection Pursuit

4.1 Introduction

The literature on forecasting functional time series is quite well developed and growing. Ex-
isting methods for predicting functional time series include functional auto regressive (FAR)
models, the functional Yule-Walker equations proposed in Bosq (2012), non-parametric
kernel based methods proposed in Besse et al. (2000), and linear wavelet based meth-
ods proposed in Antoniadis and Sapatinas (2003). In Kargin and Onatski (2008), the
authors consider forecasting within an order one FAR (FAR(1)) framework by reducing
the dimension of the autoregressive operator using the principal components of the lagged
autocovariance operator.

Another class of methods to forecast functional time series are based on an initial
dimension reduction of the observed data. The basic belief underlying this approach is
that each curve of a functional time series can be decomposed as

xi = µ+
d∑
j=1

βijvj + ei, (4.1.1)

where µ is the mean function, vj, j = 1, . . . , d, are d basis functions used for the purpose
of dimension reduction, the βij’s are the corresponding projection scores, and the ei are
model errors. In Hyndman and Ullah (2007) and Shang (2013), the authors propose to use
the leading functional principal components, which are the eigenfunctions of the sample
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covariance operator at lag zero, as the basis functions for the dimension reduction. Mo-
tivated by the Gaussian case, in which the uncorrelated principal component scores are
independent, the authors then propose to model each time series β1j, . . . , βnj, j = 1, . . . , d,
independently with univariate time series models, for instance using Autoregressive Inte-
grated Moving Average (ARIMA) models. Assuming that the h-step forward forecasted
scores are β̂n+h,1, . . . , β̂n+h,d, and the estimated mean function is µ̂, then the forecasted
(n+ h)th function may be expressed as

x̂n+h = µ̂+
d∑
j=1

β̂n+h,jvj.

In Aue et al. (2015), the authors further extend this approach by modeling the p-
variate principal component scores using a vector autoregressive (VAR) process. They
demonstrate that with this adaptation one can handle potential cross-sectional lagged
covariance structure within the principal component scores. As a result, this method offers
some improvement in terms of forecasting accuracy when compared to some of the existing
methods such as those proposed in Kargin and Onatski (2008) and Bosq (2012). Such
dimension reduction based forecasting methods are straightforward to apply, and their
basic application is summarized in Figure 4.1.

x1, · · · , xn

β1,· · · , βn β̂n+1

x̂n+1

dimension reduction

forecast multivariate time series

reconstruct the function

Figure 4.1: A basic schematic for forecasting functional time series through dimension
reduction.

Notably, many of the dimension reduction based methods proposed to date for the
purpose of forecasting rely on functional principal component analysis (fPCA). For such
approaches, v̂1,PCA,...,v̂d,PCA are taken to be the eigenfunctions of the sample covariance
operator of the data, namely they are the eigenfunctions of the kernel integral operator
with kernel
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Ĉ(t, s) =
1

n

n∑
i=1

[xi(t)− x̄(t)][xi(s)− x̄(s)], with x̄(t) =
1

n

n∑
i=1

xi(t) for t ∈ [0, 1]. (4.1.2)

For a survey on the topic, we refer to Shang (2014). Although principal component analysis
decomposes data along directions where the variance of the projection scores is maximized,
the projection scores with high variance might not always coincide with the predictable
components of the series. To illustrate this problem, consider the following toy example.
Suppose the functional time series to be forecast is generated as

xi(t) = αi
√

2 sin(2πt) + βi
√

2 cos(2πt), t ∈ [0, 1], i = 1, . . . ,

where αi, i = 1, 2, . . . , follow a scalar AR(1) process with marginal variance σα, and
βi, i = 1, . . ., is an independent white noise with variance σβ. If σβ > σα, and one applies
dimension reduction based methods using the leading functional principal component as
the projection direction, then the resulting projection scores will be asymptotically (as the
number of observations increases) the white noise sequence βi, i = 1, . . . , which is not
predictable. This kind of lack of efficacy of PCA for the purpose of forecasting can, as
we also demonstrate in some examples below, happen in a more nuanced and impactful
way with real datasets. Moreover, the calculation of the principal components relies on
estimating the covariance kernel in (4.1.2), which can be affected by the presence of non-
stationarity or outliers in the series.

In order to obtain a better subspace for forecasting, the dimension reduction step should
focus on minimizing prediction errors rather than maximizing the variance of projection
scores. Any such dimension reduction method will evidently depend on the forecasting
method used to predict the projected series.

In this chapter, we consider the problem of finding a subspace that is tailored to a
given finite dimensional forecasting method and a loss metric used to evaluate the predic-
tion performance. Specifically, we approximate the forecasting loss for a given dimension
reduction subspace using time series cross-validation. We then implement a projection
pursuit technique to search for the subspace that minimizes the estimated loss. This is
achieved by the development of novel computational tools to overcome the burden of this
potentially high dimensional optimization problem. By using the same univariate ARIMA
or vector AR forecasting methods as in Hyndman and Ullah (2007) and Aue et al. (2015),
we show that this technique can significantly improve forecasting accuracy, especially when
the functional time series is non-stationary or has the presence of outliers.
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The rest of this chapter is organized as follows: In Section 4.2 we introduce our fore-
casting method. Section 4.3 contains the results of a Monte Carlo simulation study, and in
Section 4.4 we present the application of two real-data sets. We present some additional
results pertaining to the selection of hyperparameters involved in the proposed method in
the appendix.

4.2 Methodology

4.2.1 Functional projection pursuit for forecasting

Suppose the observed functional time series is x1, . . . , xn, where each xi is an element
of L2([0, 1],R), and our goal is to predict the future curve xn+h, where h is the desired
forecasting horizon. Under the dimension reduction based forecasting framework, assume
that we have found d orthogonal directions v1, . . . , vd that span a d-dimensional forecasting
subspace as in (4.1.1). We denote the projection scores of xi onto this subspace by βi,j =
〈xi, vj〉, i = 1, . . . , n, and j = 1, . . . , d. Suppose, with some prediction function Fq, 1 ≤
q ≤ h, one can forecast the d-variate projection scores q steps ahead. Let us denote the
forecasted scores as

(β̂n+q,1, . . . , β̂n+q,d) = Fq(βi,j : i = 1, . . . , n, j = 1, . . . , d),

where at this point we are not imposing any restrictions on the prediction function Fq.
Below, we use ARIMA models when comparing our approach with Hyndman and Ullah
(2007) and Shang (2013), and vector autoregression when comparing with Aue et al. (2015),
although one might also consider, for example, exponential smoothing, among many other
options. With the forecasted scores, one may then construct the forecasted function as

x̂n+q =
d∑
j=1

β̂n+q,jvj.

As discussed in the introduction, a natural method of selecting the directions v1, . . . , vd
is fPCA, although this choice is not directly linked to the performance of any forecasting
method. Here we propose instead a functional projection pursuit technique to search for
such directions. To explain the main idea behind this method, we first consider the case
when d = 1. Let v be an element of the unit sphere U∞ and β

(v)
i = 〈xi, v〉 the projection

score of xi onto v.
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Denoting the h-step forward future curve as xn+h, then the h-step forward forecasting
error based on projection onto the direction v can be measured by

Sh(v) :=
1

h

h∑
q=1

E
[
‖xn+q − β̂(v)

n+qv‖2
]
. (4.2.1)

Instead of using the loss L(x, y) = E‖x − y‖2 in (4.2.1), one could consider here an
arbitrary loss function L(·, ·); for example L(x, y) = sup0≤t≤1 |x(t) − y(t)|. However, to
simplify exposition and enable comparison with Hyndman and Ullah (2007) and Aue et al.
(2015), in this study we use the expected integrated squared error. Ideally, one would like
to minimize (4.2.1) with respect to v. However, without making strong assumptions about
the data generating mechanism like, for example, assuming a functional autoregressive
structure as in Kargin and Onatski (2008), the loss defined in (4.2.1) cannot be directly
minimized as a function of v. We instead consider approximating Sh(v) using time series
cross-validation. Specifically, for some index i such that i+ h ≤ n, let

S̃h(i, v) :=
1

h

h∑
q=1

‖xi+q − β̂(v)
i+qv‖2 (4.2.2)

denote the accumulated loss in predicting xi+1 through xi+h based on the data x1, . . . , xi
and projection onto the direction v. When it is reasonable to assume that the losses
‖xi+q − β̂(v)

i+qv‖2 form a stationary series, one can approximate (4.2.1) by averaging S̃h(i, v)
over a validation set. Let r ∈ (0, 1) denote the proportion of the validation set to the
whole dataset, and w = br · nc be the size of the validation set. Letting V = {n−w− h+
1, . . . , n − h}, so that |V| = w, one can approximate the prediction loss defined in (4.2.1)
by

Ŝh(v) ≡ Ŝh,r(v) =
1

w

∑
i∈V

S̃h(i, v). (4.2.3)

A proper selection of the proportion r is an important aspect of the method, and we discuss
it in Section 4.2.2.

Having an approximation for Sh(v), we may then approximate the optimal forecasting
direction by

v̂1 = argmin
v∈U∞∩Lk

Ŝh(v), (4.2.4)

47



where Lk = span{φ1, . . . , φk} is a finite dimensional linear subspace of L2([0, 1],R) spanned
by some orthonormal functions φ1, . . . , φk. The purpose of restricting the search for optimal
forecasting directions to finite dimensional subsets of the unit ball is twofold, as discussed
in Section 2.4. Firstly, for such subsets, v̂1 is well defined, as then U∞ ∩ Lk is compact
for all k, and Ŝh(v) is a continuous function of v. Secondly, conducting optimization to
estimate v̂1 becomes feasible, as it can be parameterized in a finite dimensional space.

In order that v̂1 approximately minimizes (4.2.1) though, a large value of k is desired.
Consequently, computing v̂1 as defined in (4.2.4) leads to a high-dimensional optimiza-
tion problem, which we carry out using the projection pursuit algorithm introduced in
Section 2.4 with the projection index set to be the approximated prediction loss Ŝh(v).

In the first step, we evaluate Ŝh(v) over a low-discrepancy sequence of length J on the
k−dimensional subset of the unit sphere U∞ ∩ Lk. In the second step, a subset of size
M of the points for which Ŝh(v) is smallest are selected, and a fine search for the optimal
direction is conducted in a neighborhood of each point from this set using the L-BFGS-B
algorithm. This optimization algorithm is summarized in Algorithm 4.2.1.

Algorithm 4.2.1: Two-Step optimization algorithm for finding most predictable
direction.
1 Input: x1, · · · , xn
2 Result: v̂
3 generate low-discrepancy sequence u1, . . . , uJ ∈ U∞ ∩ Lk;
4 for j = 1 to J do

5 calculate Sj = Ŝh(uj) where Ŝh(·) is defined in (4.2.3);
6 end
7 rank S1, . . . , SJ in increasing order as S(1), · · · , S(J);
8 for m = 1 to M do
9 find the u(m) corresponding to S(m);

10 search for ũ(m) that minimize Ŝh(·) using L-BFGS-B algorithm in a
neighborhood of u(m);

11 compute Ŝh(ũ(m));

12 end

13 set v̂1 = {ũ : Ŝh(ũ) = minm=1,··· ,M Ŝh(ũ(m))};
14 return v̂1.
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Finding multiple projection directions

While the discussion above focuses on the case when d = 1, in practice a higher dimensional
forecasting subspace with d > 1 is often desired. In this case, our goal is to find a sequence
of directions vj, j = 1, 2, . . . , d, on the unit sphere that collectively minimize the forecasting
error. We suggest to approximate these iteratively as follows:

v̂1 = argmin
v∈U∞∩Lk

Ŝh,1(v), and

v̂j = argmin
v∈U∞∩Lk,

〈vj ,vl〉=0 for 1≤l<j

Ŝh,j(v) for j = 2, 3, . . . , d,

where Ŝh,1(v) is defined in the same way as in (4.2.3), and Ŝh,j(v), j = 2, 3, . . . , d, are given
by

Ŝh,j(v) =
1

w

∑
i∈V

1

h

h∑
q=1

∥∥∥xi+q − j−1∑
m=1

β̂
(v̂m)
i+q v̂m − β̂

(v)
i+qv

∥∥∥2.
Then Algorithm 4.2.1 can be repeatedly applied with Ŝh replaced by Ŝh,j to find each
projection direction, v̂1, ..., v̂d.

4.2.2 Details of implementation

Tuning forecasting hyperparameters

In a typical forecasting problem with functional data, the dimension d of the forecasting
subspace is an unknown parameter, and must be selected from the data. While there are
undoubtedly a multitude of methods one might conceive to select d, here we introduce two:
the sequential Goodness-of-Fit (SGF) stopping rule, and the elbow stopping rule. In the
SGF stopping rule, we keep searching for new directions until we find a direction vm such
that if one applies a test for white noise to the projected time series β

(vm)
1 , . . . , β

(vm)
n , such as

the Ljung-Box test (see e.g. Chapter 3 of Shumway and Stoffer (2017)), one cannot reject
the hypothesis that the univariate projection scores are white noises. This approach is
tailored to ARIMA modeling of the projected series, since if the projections onto the most
predictive directions cannot be rejected as a white noise, then sensible ARIMA models
fitted to these projections that are white noise models, and do not affect the forecast. In
this chapter we use the SGF stopping rule unless otherwise stated, and stop our search as
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soon as the p-value of the Ljung-Box test with maximal lag 3 applied to the projection
scores on the last estimated direction is greater than 0.05.

In the elbow stopping rule, we consider the sequence Ŝh,d(v̂d) as a function of d. Ac-

cording to their respective definitions, Ŝh,d(v̂d) is, up to variations in the high-dimensional
optimization scheme, a decreasing function of d, and it estimates the cross-validated loss
from selecting the dimension d for forecasting. Typically, this function decreases quickly
for small d and then flattens out for large d, as eventually further projections contribute
little to improve the forecasting accuracy. As a result, the plot of Ŝh,d(v̂d) against d would
typically exhibit an “elbow” around the point where this transition occurs, and then this
value d may be as the elbow point. An example of such a pattern is shown in Figure C.1 in
the context of forecasting pollution curves. See Arlot (2019) for a detailed survey of elbow
methods in model selection.

Our proposed method also requires the choice of the number k of initial orthonormal
basis functions to span Lk. Although these in principle could be any k orthonormal basis
functions, e.g. spline functions or Fourier basis functions, what we recommend is to use the
k leading principal components estimated from the data. The justification for this choice is
the fact that the functional principal components are efficient in summarizing the original
curves in terms of L2([0, 1],R) normed loss. Given that leading principal components
may not be ideal for forecasting, the resulting estimated forecasting directions are then
linear combinations of a possibly large number of the k functional principal components
that are approximately optimal for forecasting. We suggest taking k to be a much larger
number than one would typically consider in fPCA. Letting kv be the number of functional
principal components needed to explain ν% of the total variance of the observed data, we
select k = 3kν , and as a default set ν = 0.9.

Tuning optimization hyperparameters

In the optimization step, one also needs to set r, which determines the size of the validation
set by w = brnc. In a number of simulated experiments, we investigated the impact of
different values of r ∈ (0.01, 0.6) on the forecasting loss. The results are presented in
Section C.2. Based on these, we found that r ∈ [0.05, 0.1] performed well across many data
examples. In the simulations and real data examples below we set r = 0.05.

In the proposed method, two other optimization hyperparameters are J , the size of
the low-discrepancy sequence generated in the first step of the optimization, and M , the
number of potential candidates for optimal directions in the second step. In our imple-
mentations, we took J = 103 and M = 3, and did not observe any significant sensitivity of
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our results to other choices of these parameters. We refer to Section C.2 for an additional
discussion about the selection of these parameters.

Forecasting the multivariate scores

We forecast the projection scores of the functional time series using univariate ARIMA
models as in Hyndman and Ullah (2007), or vector AR models as in Aue et al. (2015). To
compare our approach with Hyndman and Ullah (2007), we fit d independent univariate
ARIMA processes using the auto.arima function in the forecast package by Hyndman
et al. (2019a), with the default setting for maximum orders left unchanged. The forecasted
scores are obtained from the forecast function in the forecast package with the desired
horizon. Suppose that these h-step forward forecasted coefficients are β̂n+h,1, . . . , β̂n+h,d.
Then the h-step forward forecasted curve is

x̂n+h =
d∑
j=1

β̂n+h,j v̂j. (4.2.5)

To fit the d-dimensional vector AR model, the order p is determined using the functional
FPE criterion discussed in Aue et al. (2015), with the maximum order limited to 5 and the
dimension d calculated as described above. The VAR(p) model is then fitted using the VAR

function in the vars package developed by Pfaff (2008), and the forecast is made using the
predict function from the same package. The forecasted curve is constructed in the same
way as in (4.2.5).

4.3 Simulation Study

In this section we present the results of a simulation study we conducted to evaluate
the proposed method. We first introduce the data generating processes (DGPs) that we
considered, and then compare the prediction accuracy of the proposed methods with the
above referenced dimension reduction based competitors.

Recall from Bosq (2012) that a functional ARMA (FARMA) model with orders p and
q is defined as

xk = Φ1(xk−1) + . . .+ Φp(xk−p) + wk + Θ1(wk−1) + . . .+ Θq(wk−q), k ∈ Z, (4.3.1)
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where the w′ks are a strong white noise innovation sequence in L2([0, 1],R), and the Φi’s
and Θj’s are Hilbert-Schmidt kernel integral (linear) operators mapping L2([0, 1],R) to

L2([0, 1],R), so that Φi(f)(t) =
∫ 1

0
φi(t, s)f(s)ds, and Θj(f)(t) =

∫ 1

0
θj(t, s)f(s)ds, with

‖φi‖, ‖θj‖ < ∞. In our simulation study, we assume the curves are generated in a D-
dimensional function space spanned by the standard orthonormal Fourier basis functions
ψj, j = 1, . . . , D, i.e. each sample curve xi and innovation wi can be represented as

xi =
D∑
j=1

βi,jψj, wi =
D∑
j=1

ωi,jψj, (4.3.2)

where βi,j = 〈xi, ψj〉, ωi,j = 〈wi, ψj〉, βi = [βi,j, j = 1, ..., D], and ωi = [ωi,j, j = 1, ..., D].
Since in this case the kernels φi and θj can be expanded as

φi(t, s) =
∞∑

j,k=1

Φ̃[j, k]φj(t)φk(s),

with a similar expression holding for θj, then the operators Φk’s and Θj applied to xi and
wi of the form (4.3.2) can be represented as matrices Φ̃ = {Φ̃[j, k], 1 ≤ j, k ≤ D} ∈ RD×D.
Hence, when working with these operators in our examples below, we simply associate
them with a D × D matrix of coefficients defining their expansions based on the first D
Fourier basis elements. Each FARMA process is generated after discarding a burn-in period
of length equal to half of the desired sample size. Each curve in the synthetic sample is
generated accordingly as in (4.3.2), and evaluated discretely at 75 equally spaced points in
the unit interval to produce the raw data that is then forecasted.

In this study, we consider the following data generating processes:

• FAR(2) process (FAR(2)): In this DGP we simulate a standard FAR(2) process
with D = 31. The matrix operators are Φ̃1 = 0.5Ψ, and Φ̃2 = 0.2Ψ, where Ψ is
a D × D matrix generated in the following way. We first generate Ψ̃ such that
Ψ̃ij = N(0, (i × j)−1), and then take Ψ = Ψ̃/‖Ψ̃‖. This is similar to the DGP
used in Aue et al. (2015). The innovation sequence is simulated according to ωi ∼
ND(0, diag(σ)), where σ′ = (j−1, j = 1, . . . , 31).

• FAR(1) process with a predictable component orthogonal to the leading
principal components (FAR-PredCompOrth): In this DGP we let D = 11, and

52



xi follows an FAR(1) model with

Φ̃1 =

[
O10×10 O10×1
O1×10 0.8

]
,

where Ok×l is a k × l matrix filled with 0’s, and ωi ∼ ND(0, diag(σ)) with σ =
(σ1, ..., σ11), σ1 = . . . = σ10 = 1, and σ11 = 0.2. This DGP is constructed in such a
way that when we select the number of principal components that can explain at least
90% of the total variance, then the only predictable component that corresponds to
the 11th Fourier basis element will be orthogonal to the leading principal components.

• FAR(1) process with cross-sectional covariance structure (FAR-CrossSecCov):
This scenario is similar to the one discussed in Section 6.2 of Aue et al. (2015). In
this DGP,

Ψ =

[
Ω2×2 O2×29
O29×2 O29×29

]
, where Ω =

[
0.1 0.8
0.8 0.1

]
,

and the covariance matrix of the white noise is Σ = diag(σ), where σ1 = σ2 = 1,
and σ3 = · · · = σ31 = 0.5. This DGP generates scenarios where the cross-sectional
covariance, modeled by Ω, dominates the autocovariance operator.

• FAR(1) process with temporary change in white noise variance (FAR-
VarShock): In this experiment we simulate scenarios where there is a tempo-
rary shock in the variance of the white noise. This DGP is similar to the FAR-
CrossSecCov process with D = 13. That is,

Ψ =

[
Ω2×2 O2×11
O11×2 O11×11

]
, where Ω =

[
0.1 0.8
0.8 0.1

]
,

and the white noise vectors ωi ∼ ND(0,Σi), where Σi = diag(σi), with σi =
[σ1,i, · · · , σ13,i] depends on i, the time series index of the curves. Specifically, when
1 ≤ i ≤ 100 or 111 ≤ i ≤ 250, σ1,i = · · · = σ13,i = 1. However, when 101 ≤ i ≤ 110,
σ1,i = σ2,i = σ8,i = . . . = σ13,i = 1 but σ3,i = · · ·σ7,i = 10. Hence, while the
predictable components in the time series are stationary, their variances are inflated
from the 101st to the 110th observation. A similar situation appears in the mortality
data set we analyze in Section 4.4.2.

• FAR(2) process with a polynomial trend (FAR-PolyTrend): In this sce-
nario, yi, i = 1, 2, . . . follow the DGP of the FAR(2) case, and xi(t) = (0.05i)2 +
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yi(t), for t ∈ [0, 1]. This DGP simulates an FAR(2) process with a polynomial trend.

• FARMA(1,1) process (FARMA): In this DGP we generate an FARMA(1,1)
process for which the AR operator of the coefficients is Φ̃1 = 0.5Ψ, and the MA
operator is Θ̃1 = 0.3Ψ, with Ψ generated in the same way as for the FAR(2) case.

• FARIMA(1,1,1) process (FARIMA): In this DGP, (1−B)xi follows the FARMA
process, where B is the pointwise backshift operator, i.e. Bxi(t) = xi−1(t), t ∈ [0, 1].

• FARIMA(1,1,1) process with predictable components coinciding with the
first two leading principal components (FARIMA-PCA): In this DGP we
generate the coefficients βi,1 and βi,2 in the expression (4.3.2) following two univariate
independent ARIMA(1,1,1) processes:

(βi,1 − βi−1,1) = 0.5(βi−1,1 − βi−2,1) + 0.3ω
(1)
i−1 + ω

(1)
i

(βi,2 − βi−1,2) = 0.4(βi−1,2 − βi−2,2)− 0.2ω
(2)
i−1 + ω

(2)
i ,

where ω
(1)
t and ω

(2)
t are two Gaussian white noises with variance 1, and βl,t, l =

3, . . . , 31, follow a normal distribution with mean 0 and standard deviation 0.5. This
DGP generates functional time series whose predictable part is in the leading func-
tional principal components and is orthogonal to the white noise model errors. This
DGP is specifically designed to be favorable for prediction using the fPCA based
method of Hyndman and Ullah (2007) and Shang (2013).

To conduct our simulation study, for each setting we generate 100 samples of length
n = 250. For each sample of functional time series, we forecast the last ten curves
x241, . . . , x250. For 1-step forward forecasts we predict the curve xi+1 using x1, . . . , xi for
i = 240, . . . , 249. For 10-step forward forecasts we make a 10-step forward forecasting and
predict x241, . . . , x250 at once using x1, . . . , x240.

We denote our projection pursuit based method using independent univariate ARIMA
models to forecast the projection scores as PP-I, and the one using vector AR model to
forecast the curves jointly as PP-J. We compare our proposed methods with the method
proposed in Hyndman and Ullah (2007), which we denote by fPCA-I, and with the method
based on jointly forecasting the principal component scores that proposed in Aue et al.
(2015), which we denote by fPCA-J. To the best of our knowledge, the former method
is the only existing method suitable for forecasting non-stationary functional time series.
While there are other competitive forecasting methods for stationary functional time se-
ries, such as those proposed by Bosq (2012) and Kargin and Onatski (2008), they have
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previously been compared with fPCA-J. In Didericksen et al. (2012) and Aue et al. (2015),
the authors suggest that fPCA-J is generally competitive or improves upon the above-
mentioned methods for stationary functional time series forecasting. Therefore we did not
compare them with the proposed methods.

For the fPCA-I and fPCA-J methods, we select the number of principal components
such that their total variance explained (TVE) is at least equal to 90%. The functional
principal components are approximated based on equally spaced discrete observations of
the functional objects at a resolution of 1/75, as discussed in Hyndman and Ullah (2007).
For the fPCA-J method, we apply the automatic selection method proposed in Aue et al.
(2015) to choose the autoregressive order.

In this simulation study, we compare the integrated squared errors of our proposed
methods with existing methods for 1-step and 10-step forward forecasting. Let the last
10 simulated curves in the bth sample be xb241, . . . , x

b
250, and the corresponding forecasted

curves be x̂b,1241, . . . , x̂
b,1
250 for 1-step forward forecasting, or x̂b,10241 , . . . , x̂

b,10
250 for 10-step forward

forecasting. Then the average integrated squared error is calculated as

IMSE1 =
1

100

100∑
b=1

1

10

250∑
i=241

∫ 1

0

[
xbi(t)− x̂

b,1
i (t)

]2
dt,

and

IMSE10 =
1

100

100∑
b=1

1

10

250∑
i=241

∫ 1

0

[
xbi(t)− x̂

b,10
i (t)

]2
dt,

in the case of 10-step ahead forecasting. The average integrated squared error for each
forecasting method and DGP are presented in Table 4.1.
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Table 4.1: Average integrated squared error over 100 simulated datasets for each forecasting
method and DGP considered. Cells are left blank (-) for methods PP-J and fPCA-J,
which assume stationarity of the projected series, when applied to non-stationary DGPs.

horizon PP-I PP-J fPCA-I fPCA-J

FAR(2) IMSE1 1.41 1.44 1.40 1.38
IMSE10 1.68 1.69 1.76 1.68

FAR-PredCompOrth IMSE1 10.63 10.59 10.84 10.80
IMSE10 10.75 10.67 10.79 10.79

FAR-CrossSecCov IMSE1 3.86 3.80 7.56 3.61
IMSE10 6.57 6.54 9.63 6.33

FAR-VarShock IMSE1 14.27 15.53 17.34 16.55
IMSE10 17.21 17.62 19.44 18.82

FAR-PolyTrend IMSE1 1.57 - 3.25 -
IMSE10 2.54 - 4.97 -

FARMA IMSE1 3.03 3.08 2.96 2.96
IMSE10 3.33 3.31 3.32 3.31

FARIMA IMSE1 4.03 - 20.66 -
IMSE10 21.39 - 38.20 -

FARIMA-PCA IMSE1 14.21 - 11.91 -
IMSE10 48.27 - 47.50 -

For stationary functional time series with forecastable components not orthogonal to
the leading principal components, such as the FAR and FARMA DGPs, we see that both
PP-I and PP-J performed quite similarly to the fPCA-I and fPCA-J methods. On the
other hand, when the forecastable components were orthogonal to the leading principal
components, like in the FAR-PredCompOrth case, PP-I or PP-J both outperformed
the fPCA based methods. For the FAR-CrossSecCov process the performances of PP-I
and PP-J were close to that of fPCA-J, while they all outperformed fPCA-I, which ap-
parently was negatively impacted by the off-diagonal covariance structure. Interestingly in
this case, the projection pursuit within the PP-I method apparently found projection di-
rections that are able to capture the cross-sectional dependence structure with independent
component forecasts to a similar degree as the joint methods.

When there exists a change in the innovation variance, as in the FAR-VarShock pro-
cess, the proposed methods significantly outperformed the fPCA based methods. This can
be attributed to the fact that the principal component estimates themselves are perturbed
by the shock in such a way that they lose alignment with the predictable components of
the process. The proposed methods based on functional projection pursuit appear to be
more robust against such changes.
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For the two non-stationary functional time series, FAR-PolyTrend and FARIMA,
PP-I outperformed fPCA-I. In the FARIMA-PCA case, which is tailored to the fPCA-
I method, we observed that fPCA-I indeed produced better 1-step and 10-step forward
forecasting results, although the forecasts based on PP-I were similar. We did not imple-
ment the fPCA-J or PP-J to forecast non-stationary functional time series, since these
methods have been designed for stationary series only.

To facilitate a comparison of the variability of the forecasts for each method, we plot
the histogram of loss ratios of integrated squared errors between different methods based
on all 100 samples. The ratios are defined as

r1 =
IMSE1(PP-I)

IMSE1(fPCA-I)
and r2 =

IMSE1(PP-J)

IMSE1(fPCA-J)
.

A ratio smaller than 1 indicates that the forecasting error from projection pursuit based
method works better than the analogous fPCA based method, with the opposite conclusion
for ratios larger than 1. Figure 4.2 illustrates the distributions of loss ratios for selected
DGPs, and Table 4.2 presents the percentage of time our proposed projection pursuit based
methods outperform the corresponding fPCA based methods (i.e. when the ratio is smaller
than 1). From these plots and Table 4.2 we can infer that when the functional time series
is stationary and the DGP meets the assumptions of fPCA based methods, like in the
FAR or FARMA case, our projection pursuit methods perform similarly to the existing
methods. However, for non-stationary functional time series, or when the assumptions
of fPCA based methods no longer satisfied, the projection pursuit based methods have
smaller forecasting errors.
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Figure 4.2: Histograms of ratios of 1-step forward forecasting errors of 100 simulated
samples. The red bars present the ratios between PP-I and fPCA-I, and blue bars present
the ratios between PP-J and fPCA-J. The two top panels correspond to FAR and FAR-
PolyTrend, while the two middle panels correspond to FARMA and FARIMA. In the
bottom panel, the left plot shows the ratios between PP-I and fPCA-I corresponding to
FAR-PredCompOrth, while the right plot shows the ratios between PP-J and FPCA-
J. Ratios less than one indicate an improved performance for the projection pursuit based
techniques.
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Table 4.2: Percentage of 1-step forward forecasting error ratios less than 1 in 100 simulated
samples.

DGP r1 r2

FAR 54% 42%
FAR-PolyTrend 80% -

FARMA 40% 44%
FARIMA 100% -

FAR-PredCompOrth 65% 61%

4.4 Data Analysis

In this section we apply the proposed projection pursuit based forecasting methods to two
datasets: Daily PM10 concentration curves and age specific mortality curves.

4.4.1 PM10 concentration data

The first dataset we study is comprised of 30 minute resolution measurements of the con-
centration in air of particulate matter pollution with a diameter of less than 10 µm recorded
in Graz-Mitte, Austria, from October 1, 2010, to March 31, 2011. Such particulate matter
pollution is abbreviated as “PM10”, and is known to have a negative effect on human
health. Therefore, it is desirable for both policy makers and researchers to understand
and be able to forecast the dynamics of PM10 concentration throughout the day. More
details about PM10 can be found in Stadlober et al. (2008). The specific data that we
have used is available in the ftsa package by Hyndman and Shang (2019). As the PM10
concentration is measured every 30 minutes and exhibits clear daily cycles, we can think of
the data as discrete evaluations of daily pollution curves that we wish to forecast. The raw
data is converted to full curves using linear interpolation. In total we have 182 such curves
obtained over 182 consecutive days. A square-root transformation is applied to stabilize
the intraday variance. These 182 curves are depicted in the top panel of Figure 4.3. From
the plot we can tell that there is no obvious trend in the PM10 concentration curves, and
the air pollution level is generally highest near noon and into the late afternoon, and the
lowest in the late evening/early morning. We also plot the daily PM10 concentration at
9.a.m. for all 182 days in the bottom panel of Figure 4.3. The graphs suggest that the
data are reasonably stationary.

59



Figure 4.3: PM10 concentration in Graz-Mitte, Austria, from October 1, 2010, to March
31, 2011 (top panel) and daily PM10 concentration at 9 a.m.(bottom panel).

We split the data into two parts: we use the first 172 curves as the observed data,
and compare the forecasting performance of PP-J, fPCA-I, and fPCA-J on the last 10
curves. For 1-step forward forecasting, we use an expanding window to predict the next
day’s PM10 concentration level curve from March 22 to March 31, 2011. For the 10-step
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forward forecasting, we forecast PM10 concentration level curves from March 22 to March
31, 2011, all at once. The 1-step forward and 10-step forward prediction errors are both
evaluated with integrated squared error. The prediction errors are presented in Table 4.3.

Table 4.3: Comparison of integrated squared prediction errors of three forecasting methods
under different forecasting horizons for PM10 data.

PP-J fPCA-I fPCA-J

h = 1 1.28 1.25 1.14
h = 10 1.25 2.39 1.42

We find that the 1-step prediction errors from the three different methods are quite
close, while the 10-step prediction error from fPCA-I is much greater than the other two
methods. The forecasted curves for March 22, 2011, from the 1-step forward predictions
are presented in the top panel of Figure 4.4. We applied the Diebold-Mariano test, see
Diebold and Mariano (2002), to the series of sequentially computed, 1-step ahead, inte-
grated squared errors to asses whether differences in the performances of the forecasting
methods are significant. The p-values of the Diebold-Mariano test between PP-J and
fPCA-I and between PP-J and fPCA-J are 0.92 and 0.82 respectively, which would in-
dicate that the performances of these 3 methods are not significantly different in terms of
the 1-step forward forecasting.

The forecasted curves on March 31, 2011, from 10-step forward prediction are presented
in the bottom panel of Figure 4.4. In this setting we expect some degree of cross-sectional
autocovariance at lags greater than zero. For example, when the PM10 level is high in
the late afternoon of the previous day, the particles in the air will not dissipate overnight,
which may result in generally higher PM10 concentrations in the next morning. In such
situations, the fPCA-I method tends to perform poorly, but projection pursuit seems to
be flexible enough to capture this effect to a similar degree as the fPCA-J method. While
the difference is not obvious for the 1-step forward prediction, we observe a much greater
difference in the 10-step forward predictions.
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Figure 4.4: Forecasted PM10 concentration level curve on March 22, 2011, from 1-step
forward forecasting (top panel) and forecasted PM10 concentration level curve on March
31, 2011, from the 10-step forward forecasting (bottom panel).
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4.4.2 French male mortality rate data

The French male mortality rate data contains 191 years of age-specific mortality rates from
1816 to 2006. For simplicity we only consider the records for males aged between 0 and 100
years old. The dataset is available in the demography package by Hyndman et al. (2019b).
To better emphasize the changes in the rate, we transform the data to the log scale. The
transformed data is presented in Figure 4.5. As in Section 4.4.1, we split the data into two
parts: we treat the first 181 curves as observed data, and based on these we make 1-step
and 10-step forecasts for the last 10 curves. There is an obvious trend in the plot, and
therefore the assumption of stationarity required for fPCA-J and PP-J is not satisfied.
Hence in this data example we only compare results from the PP-I and fPCA-I methods.

The 1-step forward and 10-step forward prediction accuracy of these two methods
presented in Table 4.4 are evaluated similarly as in Section 4.4.1. In this data example, we
found that PP-I was more accurate compared to the fPCA-I method, with a p-value of
0.066 from the Diebold-Mariano test applied to the series of successive 1-step ahead forecast
errors. The forecasted curves for year 1997 from the 1-step froward forecasting and year
2006 from the 10-step forward forecasting are depicted in Figure 4.6 and Figure 4.7.

Observe that in the 10-step ahead forecast of 2006, a noticeable difference in the pre-
dicted mortality rate curve is for males between 18 and 45 years old. We zoom in on
this segment in Figure 4.8. Revisiting Figure 4.5 we can see some outlier curves for males
around these ages in the time periods corresponding to World War I, the Spanish Flu, and
World War II. Thus, a possible reason for this difference could be that while the overall
trend for mortality rate is downward, those anomalous years have a significant impact on
the estimated covariance operator, thereby affecting the estimated principal components.
The fPCA-I method based on these estimated principal components then leads to an
overestimation of mortality rates for these ages. In contrast, our method is less sensitive to
these abnormal large variations, since they apparently contribute little to forecastability.

We further investigate the form of the 95% pointwise prediction interval curves resulting
from these two methods, which we obtained by simulating from the model residuals of the
component ARIMA models. While PP-I and fPCA-I generate similar 1-step forecasts,
the prediction intervals are quite different. This difference is more obvious for the 10-step
forward forecasting results. As shown in Figure 4.8, for the forecasted log mortality rates
for males age between 18 and 45, fPCA-I has a much wider prediction interval. This could
also be explained by the outliers caused by the two world wars. However, for males age
above 60, we notice that the true log mortality rate is lower than the lower bound from
fPCA-I method, while our PP-I method gives a reasonable lower bound, as illustrated
in Figure 4.9. This might be due to the fact that there exists a strong decreasing trend
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in log mortality rate for males at these ages that is not captured by the fPCA method. A
similar pattern can also be observed for log mortality rates for males age between 0 and 15.
Overall, among the 101 true log mortality rates, 41 (40.6%) of them are outside the 95%
prediction interval generated from the fPCA-I method, while only 6 (5.9%) are outside
the prediction interval from PP-I. Therefore, in this example, our method appears to be
more robust against outliers that may cause large variability and strong non-stationarity
in the functional time series.

Table 4.4: Comparison of average integrated squared prediction errors (on the order of
10−2) of PP-I and fPCA-I under different forecasting horizons for French male log mor-
tality data.

PP-I fPCA-I

h = 1 0.68 5.28
h = 10 2.68 5.75

Figure 4.5: Log mortality rate for French Male between 0 and 100 years old from 1816 to
2006.
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Figure 4.6: Forecasted French male log mortality rate curve in 1997 from 1-step forward
forecasting. The dotted lines indicate 95% prediction interval curves for each method.

Figure 4.7: Forecasted French male log mortality rate curve in 2006 from the 10-step
forward forecasting (bottom panel). The dotted lines indicate 95% prediction interval.
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Figure 4.8: Forecasted log mortality rate curve for French male between 18 and 45 years
old in 2006 with 95% pointwise prediction intervals resulting from the respective models.
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Figure 4.9: Forecasted log mortality rate curve for French male between 60 and 90 years
old in 2006 with 95% pointwise prediction intervals resulting from the respective models.
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Chapter 5

Change-points Detection in
Functional Data

5.1 Introduction

As discussed in Section 1.2.3, the existing functional change point detection methods are
limited in their applicability, as most of them focus on detecting changes of a specific
type. In Berkes et al. (2009), the authors propose an approach based on functional princi-
pal component analysis (fPCA). The basic premise underlying this approach is that each
functional observation xi can be decomposed as

xi(t) = µi(t) + ei(t), i = 1, . . . , n, for t ∈ [0, 1],

where the mean function µi changes after the Kth observation in the following way:
µ1 = . . . = µK 6= µK+1 = . . . = µn. The functions ei, i = 1, . . . , n, are model errors
representing random fluctuations such that

∫ 1

0
e2i (t)dt < ∞ and E(ei) = 0. While it is

not feasible to work on infinite dimensional data directly, the authors suggest that one can
instead calculate the cumulative sum (CUSUM) statistic of the estimated leading principal
components scores of the original data. In Aue et al. (2009), the asymptotic properties of
this detection method are derived, and subsequent works by Aston and Kirch (2012) and
Aston et al. (2012) extend this idea to dependent functional data. In Aue et al. (2014)
and Gromenko et al. (2017a), the authors further extend this approach to functional linear
models and spatially distributed functional data, respectively.

However, there is an unavoidable dimension-reduction loss when we summarize func-
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tional data with leading principal components. In Aue et al. (2018) the authors propose
a fully functional approach that is based on a functional version of CUSUM statistic and
does not require any dimension reduction.

Very recently, researchers have started focusing on higher order structural breaks, espe-
cially on a change in the covariance structure of the functional data. In such cases, µi’s are
equal for i = 1, . . . , n. However, the covariance structure of ei(t), t ∈ [0, 1], and therefore
the covariance structure of xi(t), t ∈ [0, 1], changes after the Kth observations. In Aue
et al. (2020), the authors suggest to apply CUSUM statistic to the eigenvalues and trace
of empirical covariance operator truncated to a finite number of terms to detect changes
in the covariance structure. In Stoehr et al. (2019) and Sharipov and Wendler (2019) the
authors propose similar ideas to detect change points in the covariance structures of func-
tional time series, and in Dette and Kutta (2019) the authors extend the method to detect
the change points in both eigenvalues and eigenfunctions.

Notably, there are several problems with the existing methods. For instance, these
methods can only be used to detect a specific type of change point, and would fail if the
assumption about the type of change point is incorrect. To illustrate this problem, consider
the following example. Suppose the functional data are generated as

xi(t) = αi sin(2πt), t ∈ [0, 1], i = 1, . . . , 100;

xi(t) = βi sin(2πt), t ∈ [0, 1], i = 101, . . . , 200,

where αi ∼ N(0, 1) and βi ∼ EXP (1)−1. While evidently there is a change point between
x1, . . . , x100 and x101, . . . , x200, as the distributions of the coefficients are different in the
two segments, methods for detecting changes in mean level or covariance operators will
fail to identify the true change point, since the mean levels and covariance operators are
constant. This type of distributional change could be more subtle in the context of real
datasets.

In this chapter, we propose a more general change point detection framework for func-
tional data based on projection pursuit. Suppose we have selected a metric to measure
a difference in distributions between two groups of scalar values. Then for each potential
location of the change point, we search for a projection direction such that this metric
when applied to the projection scores before and after this location is maximized. We
then check through all possible locations of the change point and identify a change point
location that leads to the maximization of our metric applied to projection scores.

Since the above method is based on a flexible choice of metric, it can be adapted to
different types of change points. In addition to locating the change point, this method
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can also simultaneously identify the changing component of the functional objects. We
further provide novel computational tools for an efficient implementation of our proposed
algorithm. Using both simulation studies and real data examples, we demonstrate that our
new method is versatile in detecting different types of change points in functional data,
and can provide some insight into the potential cause of the change points.

We should notice that the proposed method can be easily modified to change point
detection methods in other settings, although we do not pursue this direction. For example,
one can replace a functional basis with the standard basis in the Euclidean space to detect
change points in multivariate data.

The rest of this chapter is organized as follows: In Section 5.2 we introduce our func-
tional change point detection method. In Section 5.3 we present results of our simulation
study, and in Section 5.4 we apply our proposed method to two real-data sets.

5.2 Methodology

5.2.1 Functional projection pursuit for change point detection

We first define a functional change point as follows:

Definition 5.2.1. (i) Two random functions X and Y from L2([0, 1],R) have the same
distributions if and only if for any u ∈ U∞, the scalar random variables 〈X, u〉 and 〈Y, u〉
have the same distributions.

(ii) We say that K is a change point in functional realizations z1, . . . , zn if there ex-
ists some u ∈ U∞ such that the scalars 〈z1, u〉, . . . , 〈zK , u〉 and 〈zK+1, u〉, . . . , 〈zn, u〉 have
different distributions.

Let u be an element on the unit sphere U∞, and let z
(u)
i = 〈zi, u〉 be the projection

score of zi onto u. For an integer r ∈ {2, . . . , n − 1}, we denote by d(r, u) a measure of a

difference between the common distribution of z
(u)
1 , . . . , z

(u)
r and the common distribution

of z
(u)
r+1, . . . , z

(u)
n . Suppose that our goal is to find the change point K, as described in

Definition 5.2.1, under the assumption that such a point exists and is unique. One strategy
to locate the point is to examine all possible r, where for each r we search for the direction
u ∈ U∞ such that d(r, u) is maximized. Then the estimated change point is the location η
that corresponds to the largest d(η, vη). That is,

η, vη = argmax
r∈{2,··· ,n−1}

argsup
u∈U∞

d(r, u). (5.2.1)
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The intuition behind (5.2.1) is as follows. By Definition 5.2.1, there exists some u ∈ U∞
such that the corresponding K is also a change point for the scalar projection scores. We
quantify a distributional change in projection scores using a pre-selected metric, and the
location of the change point should be the one that maximizes the metric function. Our
proposed method aims to find a location η and the corresponding projection direction vη
such that the distributional change is maximal in view of the criterion in (5.2.1).

Due to the fact that U∞ is not a compact set, the values η and v that solve the
optimization problem in (5.2.1) may not be well defined. A possible solution is to restrict
our search to some compact subset of U∞, as discussed in Section 2.4. Such a finite
dimensional subset can be constructed as the intersection between U∞ and a linear subspace
Lk spanned by k basis functions {ψj, j = 1, . . . k}, chosen by the practitioner, or

Lk = span{ψj, j = 1, . . . k}. (5.2.2)

Then ηk and vkη that solve the problem

ηk, vkη = argmax
r∈{2,··· ,n−1}

argsup
u∈U∞∩Lk

d(r, u) (5.2.3)

are well defined.

It is important to note that the choice of the linear subspace Lk is flexible, as long as
the following assumption is satisfied.

Assumption 5.2.1. Suppose K is the true change point, then there exists some v ∈ Lk
such that 〈z1, v〉, . . . , 〈zK , v〉 and 〈zK+1, v〉, . . . , 〈zn, v〉 have different distributions.

This assumption implies that if we choose the linear subspace Lk such that it is not
orthogonal to the subspace where the true change happens, then the functional change
point detection problem is equivalent to a univariate change point detection problem after
finding a proper projection direction v. Therefore, to locate the change point in functional
observations one can first project the functional data onto Lk to obtain the k-variate scores,
and then apply the projection pursuit method discussed in Section 2.4 to find a univariate
projection scores such that an existing change-point detection method for univariate case
would work.

One might argue that we can apply an arbitrary change point detection method for
multivariate data to the k-variate projection scores. However, for the following reasons
we instead implement a functional projection pursuit based method: First, to detect a
change, one would expect large values of k so that the corresponding linear subspace is
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arbitrarily close to the original function space. However, large values of k will likely lead to
the so-called “curse of dimensionality”, or the observed data are too sparse for multivariate
methods to effectively detect the change point (see, for example Zhu et al. (2019)). Second,
one might be interested not only in detecting a change point but also in understanding (or
identifying) the aspect of the distribution that changes at this point. As demonstrated later
in Section 5.4, our proposed change point detection method based on functional projection
pursuit technique can help with the interpretation of the causes of the change in functional
observations.

We would also like to note that one can project functional observations onto some
random direction instead of searching for an optimal direction at each location r, so long
as this random direction is not orthogonal to the components where the change happens.
However, such an approach will not help us gain more information about the mechanism
behind the change point, and the change point would be more difficult to detect when
compared with our proposed projection pursuit based method.

5.2.2 Approximate optimal direction

As mentioned in Section 5.2.1, in order for our proposed method to be sufficiently powerful
to detect the change point, large k that defines the dimension of the space Lk in 5.2.2 is of-
ten desired. Therefore, (5.2.3) poses a significant practical challenge as a high-dimensional
optimization problem. In this chapter, we apply the projection pursuit technique intro-
duced in Section 2.4. Suppose that r is fixed, and in the first step we evaluate d(r, u) over
a set of u comprising a low discrepancy sequence u1, . . . , uJ generated on the k dimensional
unit sphere in U∞ ∩ Lk.

In the second step of our approach, we select M points from u1, . . . , uJ such that
the corresponding d(r, u) are the largest. Then a fine search is conducted in a small
neighborhood of each of these selected points to obtain the optimal direction.

We repeat the above two steps for each possible r, and the final result would be a pair
of r and u such that d(r, u) is maximized. Two optimization hyperparameters are J , the
length of the low-discrepancy sequence generated on the unit sphere, and M , the size of
the subset we selected for finer search. In our implementation of the method, we used
J = 100 and M = 3, and did not observe significant sensitivity in the results beyond this
choice, in both simulation study and real-data analysis. We summarize the algorithm in
Algorithm 5.2.1.
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Algorithm 5.2.1: Multi-layer optimization algorithm for functional change-point
detection.
1 Input: z1, . . . , zn
2 Result: η̂k, v̂kη
3 generate u1, . . . , uJ ∈ U∞ ∩ Lk;
4 for r = 2 to n− 1 do
5 for j = 1 to J do

6 calculate d
(r)
j = d(r, uj);

7 end

8 rank d
(r)
1 , . . . , d

(r)
J in decreasing order as d

(r)
(1), . . . , d

(r)
(J);

9 for m = 1 to M do

10 find u(m) corresponding to d
(r)
(m);

11 search for ũ(m,r) that maximize d(r, ·) in a small neighborhood of u(m);

12 end

13 let v̂(r) = {ũ : d(r, ũ) = max
m=1,··· ,M

d(r, ũ(m,r))};

14 end

15 let η̂k = argmaxr∈{2,...,n−1} d(r, v̂(r)) and v̂kη = v̂(η̂);

16 return η̂k, v̂kη .

5.2.3 Choice of d(r, u)

In the context of the proposed method, the choice of d(r, u) is flexible. Existing methods
for multivariate data often assume that the type of change that occurs is known. For
example, if we want to detect the change in the mean level, the t-test statistic would be a
natural choice. That is,

d(r, u) =

∣∣∣1/r∑r
i=1 z

(u)
i − 1/n−r

∑n
j=r+1 z

(u)
j

∣∣∣√
s2(1/r + 1/n−r)

where

s2 =

∑r
i=1

(
z
(u)
i − z̄i(u)

)2
+
∑n

j=r+1

(
z
(u)
j − z̄j(u)

)2
n− 2
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is the pooled sample variance of the projection scores of the functional observations onto
u. The metric can be constructed in a similar way for detecting change points in higher
moments.

However, a more realistic scenario is the one where we do not have prior knowledge
about the type of change point. In this case, one could consider a metric that measures a
distributional difference between two samples in a more general way. In this chapter, we
quantify this difference using the weighted squared difference between the corresponding
empirical characteristic functions. Characteristic functions, which characterize uniquely
probability distributions by including information of all moments, can detect in principle
any distributional change in observations, including but not limited to changes in mean
level or covariance operators.

We denote by φ
(r)
u and ϕ

(r)
u the characteristic functions of the underlying random vari-

ables of z
(u)
1 , . . . , z

(u)
r and that of z

(u)
r+1, . . . , z

(u)
n , respectively. In this chapter, we consider

the following measure of difference between φ
(r)
u and ϕ

(r)
u :

d(r, u) =
r(n− r)

n

∫
|φ(r)
u (t)− ϕ(r)

u (t)|2ω(t)dt,

where ω(·) is some weight function which decays to zero, as t → ∞, quickly enough for
the above integral to be finite. The normalizer r(n − r)/n is smaller when r is close to
the beginning or end of the sequence, and larger when it is in the center, which helps to
compensate for the effect of unbalanced sample sizes, similarly to the CUSUM statistic.

For a random variable X, its characteristic function φX(t) = E[eitX ] can be estimated
with

φ̂X(t) = 1/n
n∑
h=1

eitxh ,

where i is the imaginary number, and x1, . . . , xn are independent observations of X. In
practice, the true characteristic functions φ

(r)
u and ϕ

(r)
u are unknown, and one can replace

them with empirical characteristic functions φ̂
(r)
u and ϕ̂

(r)
u . Then the distance d(r, u) be-

tween two characteristic functions is approximated by

d̂(r, u) =
r(n− r)

n

∫
|φ̂(r)
u (t)− ϕ̂(r)

u (t)|2ω(t)dt. (5.2.4)
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We then estimate ηk and vkη as

η̂k, v̂kη = argmax
r∈{2,··· ,n−1}

argmax
u∈U∞∩Lk

d̂(r, u). (5.2.5)

We further notice that empirical characteristic functions converge to their population
counterpart more quickly when |t| is close to 0, and it is a common choice to select ω(t)
such that it decays to 0 fast when |t| → 0. In this chapter we adopt the approximation
proposed in Szekely and Rizzo (2005a). Specifically, we choose

ω(t) =
(2π1/2Γ(1/2)

2Γ(1)
|t|2
)−1

,

and for which Szekely and Rizzo (2005a) and Székely et al. (2007) show that the integral
in (5.2.4) can be approximated by∫

|φ(r)
u (t)− ϕ(r)

u (t)|2ω(t)dt ≈ 2

r(n− r)

r∑
i=1

n∑
j=r+1

|z(u)i − z
(u)
j |

−
(
r

2

)−1 ∑
1≤i<l≤r

|z(u)i − z
(u)
l |

−
(
n− r

2

)−1 ∑
n−r+1≤j<l≤n

|z(u)j − z
(u)
l |. (5.2.6)

A similar approximation is also implemented in Matteson and James (2014). For simplicity,
in the rest of the chapter we use this empirical characteristic function based metric. For
other choices of the weight function ω, one can always evaluate the integral in (5.2.4) using
more general quadrature methods.

5.2.4 Statistical significance of estimated change point

The statistical significance of the estimated change point can be tested through bootstrap-
ping. Suppose that for the observed functional data z1, . . . , zn, our projection pursuit
method finds the change point η̂k, the projection pursuit direction v̂kη , and the correspond-

ing distance between empirical characteristic functions is d̂(η̂k, v̂kη). In the bootstrapping
test, one can resample the same number of curves with replacements, and assume the
resampled observations are z

(b)
1 , . . . , z

(b)
n in the bth sample. Then with the location of the
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change point η̂k fixed, one can search for the optimal projection pursuit direction v̂(b) and
calculate the corresponding distance measure d̂(b) = d̂(η̂k, v̂(b)). If there is indeed a change
point at η̂k, d̂(b) is more likely to be smaller than d̂(η̂k, v̂kη), since the distributional differ-
ence between z1, . . . , zη̂k and zη̂k+1, . . . zn is supposed to be greater than the distributional

difference between z
(b)
1 , . . . , z

(b)

η̂k
and z

(b)

η̂k+1
, . . . z

(b)
n . On the other hand, if there is no change

point in the original observations, we should expect d̂(b) to be close to d̂(η̂k, v̂kη).

Suppose we repeat this procedure B times, and denote by q̂Bα as the 1− αth empirical
quantile of d̂(b), b = 1, . . . , B. Then our estimated change point η̂k is statistically significant
if d̂(η̂k, v̂kη) ≥ q̂Bα .

5.3 Simulation Study

To construct simulated data, we follow a similar data generating process (DGP) as the one
implemented in Aue et al. (2018). In each sample, n = 250 functional data objects are gen-
erated using D = 21 Fourier basis functions ψ1, · · · , ψD on the interval [0, 1]. Independent
curves are generated as

xi =
D∑
w=1

αi,wψw, (5.3.1)

where αi = (αi,w : w = 1, · · · , D) ∼ MVN(µ,Σ), i = 1, . . . , n, are independent vectors of
coefficients of the basis functions. We take 101 equally spaced realizations for each curve
to simulate discrete observations of functional data. We should notice that in practice the
bases that we typically use for smoothing discrete observations are never the same as that
from the true DGP, and we mimic this mis-specification by spanning Lk with 15 B-spline
basis functions.

The functional change point is introduced by a change in the distribution of the co-
efficients. We first define µ1 = {µ1,w = 0, w = 1, . . . , D} as the baseline mean values
of the coefficients. To introduce a change in the mean level, we define µ2 such that
µ2,1 = µ2,2 = µ2,3 = 0.5 and µ2,4 = . . . = µ2,D = 0, which corresponds to the case where
changes happen in the leading principal components, as explained below. We further con-
struct µ3 such that µ3,1 = . . . = µ3,10 = µ3,12 = µ3,D = 0 and µ3,11 = 0.1. This mean vector
mimics the scenario where the relevant for detection of change signal is weak.

76



The covariance matrix is generated as

Σ = PΛP−1

where P is a D×D squared matrix whose columns are orthonormal to each other, and Λ is a
diagonal matrix. We generate P by applying QR decomposition to a D×D squared matrix
filled with iid normally distributed random numbers with zero mean and unit variance.
There are two possible choices for eigenvalues of Σ:

• Λ1 = diag(3−w : w = 1, · · · , D), which mimics fast decaying eigenvalues;

• Λ2 = diag(w−1 : w = 1, · · · , D), which mimics slowly decaying eigenvalues.

In our study, we consider the following 8 types of change-point in functional observa-
tions:

• Mean function-Strong-Fast(MSF): Change in the mean function with fast de-
caying eigenvalues:

αi ∼MVN(µ1, PΛ1P
−1), i = 1, · · · , 150;

αi ∼MVN(µ2, PΛ1P
−1), i = 151, · · · , 250.

• Mean function-Strong-Slow(MSS): Same as the MSF case except the covariance
matrix has slowly decaying eigenvalues:

αi ∼MVN(µ1, PΛ2P
−1), i = 1, · · · , 150;

αi ∼MVN(µ2, PΛ2P
−1), i = 151, · · · , 250.

• Mean function-Weak(MW): In this scenario we consider the more extreme case
when the change in the mean function is very weak and away from the leading
principal components:

αi ∼MVN(µ1, PΛ2P
−1), i = 1, · · · , 150;

αi ∼MVN(µ3, PΛ2P
−1), i = 151, · · · , 250.

• Eigenvalue-Strong(EVS): Change in all eigenvalues of covariance operator:

αi ∼MVN(µ1, PΛ1P
−1), i = 1, · · · , 150;

αi ∼MVN(µ1, PΛ2P
−1), i = 151, · · · , 250.
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• Eigenvalue-Weak(EVW): Change in the non-leading eigenvalues of covariance op-
erator. In this scenario, Λ3 is a D ×D diagonal matrix such that

diag(Λ3) =

{
i−1, i = 1, . . . , 10,

3−i, i = 11, . . . , 21.

Then the coefficients are generated as

αi ∼MVN(µ1, PΛ1P
−1), i = 1, · · · , 150;

αi ∼MVN(µ1, PΛ3P
−1), i = 151, · · · , 250.

• Eigenfunction-Strong(EFS): Change in all eigenfunctions of covariance operator.
In this scenario, we generate two random matrices P1 and P2, and then calculate two
different covariance matrices with the slowly decaying eigenvalues:

αi ∼MVN(µ1, P1Λ1P
−1
1 ), i = 1, · · · , 150;

αi ∼MVN(µ1, P2Λ1P
−1
2 ), i = 151, · · · , 250.

• Eigenfunction-Weak(EFW): Similarly to the EFS case, we first generate two
random matrices P1 and P2. We then construct another matrix P3 such that the first
3 columns of P3 are the same as the first 3 columns of P1, and the remaining columns
are the same as the corresponding columns of P2. Then,

αi ∼MVN(µ1, P1Λ1P
−1
1 ), i = 1, · · · , 150;

αi ∼MVN(µ1, P3Λ1P
−1
3 ), i = 151, · · · , 250.

• Distribution-Fast(DF): Change in distribution of coefficients. We generate sample
curves using Fourier basis. In this case we simulate 500 curves instead of 250. For
i = 1, · · · , 300, the coefficients are generated from iid N(0, 1) distributions, while
for i = 301, · · · , 500, the coefficients are generated independently from Gamma(1, 1)
distributions and subtracted by 1 so that E(αi) = 0 and V ar(αi) = 1 for all coeffi-
cients.

The change point detection method we mainly focus on in this chapter is the one based
on the distance between empirical characteristic functions as the measure of difference in
distributions (denoted as change PP). For detecting change in mean functions, we also
include results from the method based on t-test statistic (denoted as change PP t). We
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compare our proposed method with several existing methods that are discussed in the
introduction. For detecting a change in the mean function, we compare with change FF
proposed by Aue et al. (2018) and change fPCA proposed by Aue et al. (2009). For
detecting a change in the eigenvalues and eigenfunctions of the covariance operator, we
compare our method with Aue et al. (2020) (denoted as change ev) and Stoehr et al.
(2019) (denoted as change ef) respectively.

For each method, we present in Table 5.1 the average estimated location of the change
point and the corresponding standard deviation based on 100 repetitions. To evaluate the
performance of each change point detection method, we use the Rand index proposed in
Fowlkes and Mallows (1983) and Hubert and Arabie (1985). In this study, we calculate
the Rand index as the proportion of correctly estimated change point location, adjusted
for correction-by-chance. Therefore, Rand index is a value between 0 and 1, and a larger
score indicates a more accurate change point detection method. For each test, in Table 5.2
we present the Rand index, as well as the corresponding standard deviation.

Table 5.1: Average locations of change point based on different detection methods. Stan-
dard deviations are included in the parentheses.

change PP change PP t change FF change fPCA
MSF 150.0(0.000) 150.0(0.000) 150.1(0.722) 149.3(6.263)
MSS 150.4(6.617) 150.0(0.681) 146.6(17.470) 150.2(2.187)
MW 150.0(0.200) 150.0(0.100) 138.4(34.165) 128.8(49.434)

change PP change ev change ef
EVS 151.6(2.739) 150.8(1.855) -
EVW 147.9(6.929) 139.8(38.705) -
EFS 150.1(1.292) - 150.0(4.007)
EFW 144.0(20.525) - 122.7(49.670)
DF 291.3(30.183) - -
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Table 5.2: Average adjusted Rand indices for estimated locations of change point based
on different detection methods. Standard deviations are included in the parentheses.

change PP change PP t change FF change fPCA
MSF 1.000(0.000) 1.000(0.000) 0.998(0.011) 0.983(0.077)
MSS 0.944(0.081) 0.995(0.010) 0.908(0.187) 0.981(0.029)
MW 1.000(0.003) 1.000(0.002) 0.696(0.297) 0.466(0.301)

change PP change ev change ef
EVS 0.974(0.042) 0.987(0.029) -
EVW 0.955(0.113) 0.632(0.296) -
EFS 0.992(0.019) - 0.975(0.054)
EFW 0.854(0.227) - 0.444(0.301)
DF 0.869(0.164) - -

Table 5.1 and Table 5.2 suggest that the proposed projection pursuit based method
performs better than the existing methods in all scenarios. For detecting the change in
mean functions, our proposed method exhibits both better accuracy and better consistency
compared with the two existing methods (change FF and change fPCA). Especially
when the changing component has weaker signals, i.e. in the MW case, our method still
shows outstanding performance, while two other methods have much smaller power in
detecting such kind of change in the mean level. For the change in covariance operators,
change PP works as well as the existing methods when the signal of change is strong.
However, when the changing component is not in the leading principal components (in
EVW and EFW cases), our method still shows robust performance while the respective
competitors fail. Furthermore, change PP shows exceptional performance in detecting the
change in the distribution of coefficients, while there is currently no competing method.
In summary, the presented results suggest that change PP is a powerful and versatile
functional change point detection method that can be used without assumptions about the
type of change point or data generating process. In all the studied scenarios, projection
pursuit based methods are proven to be a very competitive and robust method.

We further investigate the size and power of our proposed change point detection
method using the simulation approach discussed in Section 5.2.4 to estimate the p-value.
In this experiment we compare our method with change FF under the null case where
there is no change point, and MSF and MW case discussed above. The percentage of
rejections from the 100 simulations at levels 5% and 10% are presented in Table 5.3. The
results suggest that our proposed method has a reasonable size when under the null case.
In addition, the proposed projection pursuit based method has strong power against alter-
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natives regardless of the strength of the true signal, while the power of change FF drops
significantly when the change in mean function is weak.

Table 5.3: Percentage of rejections under the null, MSF, and MW.
level change PP change FF change fPCA

null
α = 5% 4 6 3
α = 10% 9 7 7

MSF
α = 5% 100 78 86
α = 10% 100 91 90

MW
α = 5% 100 35 8
α = 10% 100 50 16

5.4 Data Examples

In this section we present two data examples to show how our projection pursuit based
change point detection method can be applied on real world datasets. For both cases,
the Lk is spanned by 15 B-spline basis functions. Comparing with the change FF and
change fPCA mentioned above, our new method can detect different types of change and
can provide more insights about the nature of the change.

5.4.1 Australian fertility data

We first analyze the Australian Fertility Data recorded by the Australian Bureau of Statis-
tics from 1921 to 2015. It includes the fertility rate of Australian females aged from 15
to 49. The dataset is available in the R package rainbow (Shang and Hyndman, 2016).
From Figure 5.1 we can see a clear trend in the curves, which suggests that these func-
tional observations would not be homogeneous. The methods change PP, change FF,
and change fPCA all report a significant change point in the mean function near the 54th

curve, and the estimated change functions are also very similar (see the left panel of Fig-
ure 5.2). The right panel of Figure 5.2 shows the projection scores of Australian Fertility
Data for the estimated change function from change PP. We can tell that instead of a
structural break in the mean function, there might exist a nonlinear trend in the data. We
further take the 1st and 2nd order point-wise differences respectively, and apply the same
as before methods of change point detection.
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The 1st order difference represents the rate of change for the curves. The three different
methods, change PP, change FF, and change fPCA, suggest that there is a change
point at the 50th, 40th, and 55th curve, respectively. The direction found by change PP
on which the change is most significant, as well as the corresponding projection scores, are
presented in the first row of Figure 5.3. From the projection scores in the right panel we
can see that there might exist both a change in mean level and a change in the covariance,
and the rate of change shifts from positive to negative after the 50th curve. A possible
explanation of these results is the fact that the fertility rate is generally increasing before
the 70s, and decreasing thereafter. The corresponding direction presented in the left panel
suggest that women younger than 27 contribute most to the decrease of rate of change after
1970, while women elder than 30 have opposite effect on the change. In other words, the
fertility rate is first increasing and then decreasing for younger women, and first decreasing
and then increasing for elder women.

For the 2nd order differences, which represents the acceleration of the change, change FF
and change fPCA suggest that there is no change point. The change point found by
change PP is located after the 54th curve with p-value 0.03. From the projection scores,
which are shown in the right panel of the bottom row in Figure 5.3, we can tell that the
change should be dominated by a change in the covariance operator instead of the change
in mean function. Furthermore, the variance of projection scores is much smaller after the
change point, which indicates that the variation of fertility rate at each age is smaller after
the year 1975. From the corresponding direction found by change PP, which is depicted
in the left panel, we can tell that women aged around 25 and 40 contribute most to such
a change. These findings can be confirmed by inspecting the raw curves in Figure 5.1. In
conclusion, our results strongly indicate that in addition to being versatile in detecting dif-
ferent types of change point, the new projection pursuit based method is not only capable
of providing the location of the change point as accurately as the existing methods, but it
also gives more information about how the change happens.
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Figure 5.1: Australian fertility rate from 1921 to 2006.

Figure 5.2: Estimated change functions from change FF and change fPCA and the
scaled estimated direction from change PP (left), and the projection scores on estimated
change direction (right) for Australian Fertility Data.
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Figure 5.3: The direction on which the change is most significant (left) and the correspond-
ing projection scores on estimated change direction (right) for Australian Fertility Data
after taking 1st order difference (top row) and 2nd order difference (bottom row).

5.4.2 Daily low temperature profile in Gayndah

Another example we present here is the temperate data recorded in Gayndah, a small town
in Northern Australia. The daily low temperature has been recorded from 1893 to 2009,
however, the incomplete curves in 1893 and 2009 have been removed from this analysis. The
full dataset is available in the R package fChange (Sonmez et al., 2018). The three methods
change PP, change FF, and change fPCA all suggest a change point for the daily
low temperature curves, which we present in Figure 5.4. The methods change PP and
change FF detect a change point around the 59th curve, while change fPCA suggests
that the change point exists around the 69th curve. Before we draw a conclusion about
the location of the change point, we check the projection scores on the estimated change
direction as shown in the right panel of Figure 5.5. A strong linear trend can be observed,
which suggests that instead of a step-like change in the mean function, the detected change
point could possibly be introduced by the trend.

84



After removing the linear trend by taking first order difference, we apply the three
change point detection methods again. This time both change FF and change fPCA
suggest there is no change point. However, our change PP method locates a change point
at the 65th curve with p-value close to 0. By checking the corresponding projection scores,
which we depict in the right panel of Figure 5.6, we can see a clear difference in the variance
on the two sides of the detected change point. Therefore, we can conjecture that along side
with a growing trend in the daily low temperature in Gayndah, there is also a change point
after the year of 1959. This result not only provides additional evidence for the widely
accepted fact of global warming, but it also identifies the impact of human activities on
climate in modern age.

Figure 5.4: Daily low temperature profile in Gayndah, Australia from 1894 to 2008.
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Figure 5.5: Estimated change functions from change FF and change fPCA, together
with the scaled estimated change direction from change PP (left), and the projection
scores on estimated change direction (right) for Daily Low Temperature Profile in Gayndah.

Figure 5.6: The direction on which the change is most significant (left) and the correspond-
ing projection scores on estimated change direction (right) for Daily Low Temperature
Profile in Gayndah after removing the linear trend.
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Chapter 6

Concluding Remarks and Future
Works

In this thesis, we present a versatile dimension reduction framework for functional and
high-dimensional data rooted in the idea of projection pursuit. In particular, we propose
a computational framework to search for the optimal direction in projection pursuit, and
present three applications. In this chapter, we provide conclusion and future research
questions for each component of this thesis.

6.1 Functional Projection Pursuit Algorithm

In Chapter 2 we discuss a new dimension reduction framework for functional data that
utilizes projection pursuit techniques, and present a new computational tool to solve related
high dimensional optimization problems.

While the focus of this thesis is on the functional data analysis, we should notice that
the algorithm introduced in this chapter can be applied to the projection pursuit problem
in an arbitrary space and for arbitrary problems related to dimension reduction. For
example, we plan to implement the developed in this thesis projection pursuit technique
to feature selection in regression problems, with the objective of finding a set of best linear
combinations of variables that minimizes certain loss functions. We also plan to develop
and publish software packages that can automate the projection pursuit steps discussed in
this chapter. We plan to invite future researchers to extend the boundary of projection
pursuit to more research problems.
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6.2 Functional Normality Test

In Chapter 3, we show how projection pursuit can be applied to a normality test for
functional data. The proposed normality test shows great potential in cases when the
non-Gaussian components are orthogonal to the leading principal components.

Although in this chapter we specifically focus on the normality test, a more general
goodness-of-fit test could be formulated with a properly defined projection index replacing
the skewness and kurtosis measures. We believe that this idea will lead to interesting
research problems.

In Section 3.4.3, we also show how to decompose functional data into Gaussian and
non-Gaussian components. Some related research questions in our plan include: (i) Show-
ing that the proposed decomposition also works for more general goodness-of-fit test; (ii)
Developing schemes for analyzing the two separated components by applying to them more
efficient existing methods (for example, Gaussian and non-Gaussian as discussed in this
chapter).

6.3 Forecasting Functional Time Series

In Chapter 4, we discuss how to construct a subspace of the most predictable components
of a functional time series. We compare the forecasting results with existing methods for
functional ARIMA model and show that the proposed projection pursuit based methods
can outperform exiting methods when forecasting non-stationary functional time series.

We should notice that in this chapter we focus on functional ARIMA model because
this is a well-studied type of functional time series. However, the projection pursuit based
method introduced in this chapter is not restricted to any specific type of functional time
series. Therefore, an interesting related research problem would be to develop forecasting
methods for other types of functional time series.

6.4 Change-points Detection in Functional Data

In Chapter 5, we introduce and study a general change point detection method for func-
tional data based on empirical characteristic functions of projection scores. Using simulated
data, as well as real data sets, we demonstrate that the new method can be applied to
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detect various types of change points and can outperform existing methods in different
scenarios.

However, in our study we only consider the case when there is a single change point in
a sequence of independent data. We plan to continue developing methods that work for
multiple change points in the dependent case. We also plan to explore some asymptotic
properties of this change point detection method, as outlined in Pötscher and Prucha
(1994) and Billingsley (1968).
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point detection tests for multivariate data using rank statistics. arXiv preprint
arXiv:1107.1971.

Lütkepohl, H. (2013). Introduction to multiple time series analysis. Springer Science &
Business Media.

Machado, S. (1983). Two statistics for testing for multivariate normality. Biometrika,
70(3):713–718.

Malfait, N. and Ramsay, J. O. (2003). The historical functional linear model. Canadian
Journal of Statistics, 31(2):115–128.

Malkovich, J. F. and Afifi, A. (1973). On tests for multivariate normality. Journal of the
american statistical association, 68(341):176–179.

Mardia, K., Kent, J., and Bibby, J. (1979). Multivariate Analysis. Academic Press.

Matteson, D. S. and James, N. A. (2014). A nonparametric approach for multiple change
point analysis of multivariate data. Journal of the American Statistical Association,
109(505):334–345.

Mattson, M. (2004). Pathways towards and away from alzheimer’s disease. Nature,
430:631–639.

Mecklin, C. J. and Mundfrom, D. J. (2004). An appraisal and bibliography of tests for
multivariate normality. International Statistical Review, 72(1):123–138.

Mercer, J. (1909). Xvi. functions of positive and negative type, and their connection the
theory of integral equations. Philosophical transactions of the royal society of London.
Series A, containing papers of a mathematical or physical character, 209(441-458):415–
446.

Monica, T., Rajasekhar, A., Pant, M., and Abraham, A. (2011). Enhancing the local
exploration capabilities of artificial bee colony using low discrepancy sobol sequence. In
International Conference on Contemporary Computing, pages 158–168. Springer.

Muggeo, V. M. and Adelfio, G. (2011). Efficient change point detection for genomic se-
quences of continuous measurements. Bioinformatics, 27(2):161–166.

Müller, H.-G. et al. (2008). Functional modeling of longitudinal data. In Longitudinal data
analysis, pages 225–253. Chapman and Hall/CRC.

99



Müller, H.-G., Stadtmüller, U., et al. (2005). Generalized functional linear models. the
Annals of Statistics, 33(2):774–805.

Müller, H.-G. and Yao, F. (2008). Functional additive models. Journal of the American
Statistical Association, 103(484):1534–1544.

Müller, U. K. and Watson, M. W. (2018). Long-run covariability. Econometrica, 86(3):775–
804.

Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods.
Number 63 in CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia.

Ormoneit, D., Black, M. J., Hastie, T., and Kjellström, H. (2005). Representing cyclic
human motion using functional analysis. Image and Vision Computing, 23(14):1264–
1276.

Panaretos, V. M., Kraus, D., and Maddocks, J. H. (2010). Second-order comparison
of Gaussian random functions and the geometry of DNA minicircles. Journal of the
American Statistical Association, 105:670–682.

Pant, M., Thangaraj, R., Grosan, C., and Abraham, A. (2008). Improved particle swarm
optimization with low-discrepancy sequences. In 2008 IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational Intelligence), pages 3011–3018.
IEEE.

Pedersoli, M., Vedaldi, A., Gonzalez, J., and Roca, X. (2015). A coarse-to-fine approach
for fast deformable object detection. Pattern Recognition, 48(5):1844–1853.

Pfaff, B. (2008). Var, svar and svec models: Implementation within R package vars. Journal
of Statistical Software, 27(4).

Phillips, P. C. (1998). New tools for understanding spurious regressions. Econometrica,
pages 1299–1325.

Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle swarm optimization. Swarm
intelligence, 1(1):33–57.

Pötscher, B. M. and Prucha, I. R. (1994). Generic uniform convergence and equicontinu-
ity concepts for random functions: An exploration of the basic structure. Journal of
Econometrics, 60(1-2):23–63.

100



Rabin, J. S., Klein, H., Kirn, D. R., Schultz, A. P., Yang, H.-S., Hampton, O., Jiang, S.,
Buckley, R. F., Viswanathan, A., Hedden, T., et al. (2019). Associations of physical
activity and β-amyloid with longitudinal cognition and neurodegeneration in clinically
normal older adults. JAMA neurology, 76(10):1203–1210.

Ramsay, J. (2005). Functional data analysis. Encyclopedia of Statistics in Behavioral
Science.

Ramsay, J. and Bock, R. (2002). Functional data analyses for human growth. McGill
University: Unpublished manuscript.

Ramsay, J., Hooker, G., and Graves, S. (2009). Functional Data Analysis with R and
MATLAB. Springer.

Ramsay, J. O. (2000). Functional components of variation in handwriting. Journal of the
American Statistical Association, 95(449):9–15.

Ramsay, J. O. and Silverman, B. W. (1997). Functional data analysis. Springer.

Ramsay, J. O. and Silverman, B. W. (2002). Applied Functional Data Analysis. Springer,
New York.

Ramsay, J. O. and Silverman, B. W. (2007). Applied functional data analysis: methods
and case studies. Springer.

Reeves, J., Chen, J., Wang, X. L., Lund, R., and Lu, Q. Q. (2007). A review and comparison
of changepoint detection techniques for climate data. Journal of applied meteorology and
climatology, 46(6):900–915.

Riesz, F. and Sz.-Nagy, B. (1990). Functional Analysis. Dover.

Roy, S. N. (1953). On a heuristic method of test construction and its use in multivariate
analysis. The Annals of Mathematical Statistics, pages 220–238.

Scheipl, F., Staicu, A.-M., and Greven, S. (2015). Functional additive mixed models.
Journal of Computational and Graphical Statistics, 24(2):477–501.

Shang, H. L. (2013). Functional time series approach for forecasting very short-term elec-
tricity demand. Journal of Applied Statistics, 40(1):152–168.

Shang, H. L. (2014). A survey of functional principal component analysis. AStA Advances
in Statistical Analysis, 98(2):121–142.

101



Shang, H. L. and Hyndman, R. J. (2016). rainbow: Rainbow Plots, Bagplots and Boxplots
for Functional Data. R package version 3.4.

Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete
samples). Biometrika, 52(3/4):591–611.

Sharipov, O. S. and Wendler, M. (2019). Bootstrapping covariance operators of functional
time series. arXiv preprint arXiv:1904.06721.

Shepstone, L., Rogers, J., Kirwan, J., and Silverman, B. (1999). The shape of the distal
femur: a palaeopathological comparison of eburnated and non-eburnated femora. Annals
of the rheumatic diseases, 58(2):72–78.

Shumway, R. H. and Stoffer, D. S. (2017). Time series analysis and its applications: with
R examples. Springer.

Sidhu, G. S., Asgarian, N., Greiner, R., and Brown, M. R. (2012). Kernel principal com-
ponent analysis for dimensionality reduction in fmri-based diagnosis of adhd. Frontiers
in systems neuroscience, 6:74.

Smith, A. D., Heron, J., Mishra, G., Gilthorpe, M. S., Ben-Shlomo, Y., and Tilling, K.
(2015). Model selection of the effect of binary exposures over the life course. Epidemiology
(Cambridge, Mass.), 26(5):719.

Sonmez, O., Aue, A., and Rice, G. (2018). fChange: Change Point Analysis in Functional
Data. R package version 0.2.0.

Spokoiny, V. et al. (2009). Multiscale local change point detection with applications to
value-at-risk. The Annals of Statistics, 37(3):1405–1436.
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Appendix A

Appendix for Chapter 1

In this appendix we provide additional details about an application of functional data
analysis that is described in Example 2. The presentation is based on Jiang et al. (2020)

A.1 Motivation

In the past few decades, Alzheimer’s Disease (AD) has drawn numerous attention and re-
sources from both academia and pharmaceutical industry, as it is one of the most prevalent
diseases related to aging, with serious health consequences like memory loss and dementia
(Mattson, 2004; LaFerla et al., 2007; Rabin et al., 2019). Past studies have shown that cer-
tain biomarkers, especially the expression level of certain genes, could be used for diagnosis
of and development of AD (see, for example, Ewers et al. (2012) and Gomar et al. (2014)).
The measuring techniques for biomarkers are progressing, and in more recent studies re-
searchers have encountered longitudinal measures for multiple biomarkers. For example,
in the Alzheimer’s Disease Neuroimagining Initiative (ADNI) dataset, one could find the
time-varying measures of a large collection of biomarkers beside baseline covariates. While
these longitudinal observations may provide extra information to understand the potential
factors that are related to AD, they also pose challenges for statistical analysis.

In Jiang et al. (2020), our goal is to propose an individualized dynamic prediction
method for AD patient’s survival probability using random forest. Random forest algo-
rithms have many advantages, for instance they can incorporate nonlinear relationships,
can conduct prediction and feature selection at the same time, and are robust against noises
and outliers. However, traditional random forest algorithms cannot take these time-varying
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biomarker measures as inputs. For example, as mentioned above, the measuring times are
different across both individuals and biomarkers, and hence cannot be used directly with
existing methods, which assume the inputs have the same dimension.

To address this issue, we propose to apply the functional principle component analysis
to both reduce the dimension of these longitudinal covariates and characterize them via the
principal component scores before feeding to the random survival forest. Specifically, we
propose a multivariate functional principal component analysis described below to achieve
the goal.

A.2 PACE Algorithm

For a single biomarker, a commonly implemented method to find the functional princi-
pal components is the Principal Analysis by Conditional Estimation (PACE) algorithm
proposed by Yao et al. (2005a), which we briefly review in this section. We let xi =
(xi(ti,1), . . . , xi(ti,ri))

′ be the observed time-varying biomarkers for individual i, i = 1, . . . , n,
at time ti,1, . . . , ti,ri ∈ [0, 1]. We further assume that the observed trajectory of the ith in-
dividual, xi(t), t ∈ [0, 1], is recorded with error, that is,

xi(t) = zi(t) + εi(t), (A.2.1)

where zi(t) denotes the de-noised mean value of xi(t) for t ∈ [0, 1]. The error term is
assumed to have E(εi(t)) = 0 and V ar(εi(t)) = σ2 for t ∈ [0, 1]. Over the observed grid,
ti,k, k = 1, . . . , ri, the mean functions zi(t) and εi(t) are assumed to be mutually indepen-
dent. Suppose that zi, i = 1, . . . , n, are realizations of a stochastic process {Z(t), t ∈ [0, 1]}
with mean function µ and covariance operator C(t, s). One can estimate the discretized
mean function and covariance operator in the following way. Assume we pool all observed
time points ti,1, . . . , ti,ri , i = 1, . . . , n, together, and obtain the pooled grid t1, . . . , tR. Then,
the estimated discretized mean vector is

µ̂ = (µ̂(t1), . . . , µ̂(tR))′,

where µ̂(t) is the average value of all observations at time point t. In order to estimate
the eigenfunctions and eigenvalues of the covariance operator C(s, t), in Yao et al. (2005a)
the authors suggest to first estimate the R×R empirical covariance matrix Σ̂ from pooled
discrete observations. Then one can remove the effect of the variance introduced by the
error terms by first using a local linear smoother along the diagonal of Σ̂, and then by
applying the quadratic smoother to estimate the surface of C(s, t) along the off-diagonal
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direction. Then we can obtain the estimated leading eigenfunctions φ̂j and corresponding

eigenvalues λ̂j, j = 1, . . . , p, from Ĉ(s, t), where Ĉ(s, t) denotes the smoothed covariance
operator.

For the ith individual, let µ̂i = (µ̂(ti,1), . . . , µ̂(ti,ri)), φ̂i,j = (φ̂j(ti,1), . . . , φ̂j(ti,ri)), and

Σ̂i be an ri× ri matrix composed of the corresponding entries of Σ̂ where the ith individual
has observed values at the corresponding time. Then the functional principal component
score for the ith individual on the jth principal component can be estimated as

ξ̂i,j = λ̂jφ̂
T
i,jΣ̂

−1
i (xi − µ̂i) , (A.2.2)

j = 1, . . . , p, where the p is determined by Akaike information criterion (AIC) or the total
variance explained (TVE).

A.3 Multivariate Functional Principal Component Anal-

ysis

While the PACE algorithm described above can effectively characterize a single biomarker,
in order to incorporate the correlations between multiple biomarkers one have to use use
the multivariate functional principal component analysis (MFPCA) proposed by Happ and
Greven (2018).

Assuming that in total Q biomarkers are studied, then the ith individual have functional
observations xqi for q = 1, . . . , Q and i = 1, . . . , n. The first step is to apply the PACE
algorithm to the qth biomarker across all individuals for q = 1, . . . , Q, and then select
the first Mq principal component terms. The corresponding estimated functional principal

component scores for the ith individual are ξ̂qi,1, . . . , ξ̂
q
i,Mq

. Let M =
∑Q

q=1Mq and Λ̂ ∈ Rn×M

be an n×M matrix for which the ith row is {ξ̂1i,1, . . . , ξ̂1i,M1
, . . . , ξ̂Qi,1, . . . , ξ̂

Q
i,MQ
}.

In the multivariate setting we aim to perform a matrix eigenanalysis such that we can
estimate the corresponding eigenvectors v̂m from the empirical block matrix Ĝ = 1

n−1Λ̂T Λ̂ ∈
RM×M , m = 1, . . . ,M . Note that MFPCA indirectly addresses the correlations among
multiple biomarkers via correlation among the estimated functional principal component
scores by pooling all estimated eigenvalues from the univariate biomarkers in the block
matrix Ĝ. Hence the eigenvectors v̂m contain the information of correlations across different
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time-varying biomarkers. As a result, the multivariate eigenfunctions are estimated as

ψ̂qm(t) =

Mq∑
l=1

[v̂m]ql φ̂
q
k(t), t ∈ [0, 1], (A.3.1)

where [v̂m]ql denotes the lth entry in the qth block of v̂m, for q = 1, . . . , Q, m = 1, . . . ,M .
The corresponding individual-specific multivariate functional principal component scores
can thus be estimated as

ρ̂i,m =

Q∑
q=1

Mq∑
l=1

[v̂m]ql ξ̂
q
i,l,m = 1, . . . ,M. (A.3.2)

Similarly to the univariate setting, the optimal number of multivariate functional principal
components d can also be chosen based on TVE or AIC.

Recall that in the original dataset, each individual has observations of Q time-varying
biomarkers that are measured on irregular time grids. After applying the MFPCA, infor-
mation of these biomarkers now is characterized by d MFPC scores that have the same
length across different individuals and are ready to be fed to existing statistical analysis
or machine learning methods.
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Appendix B

Appendix for Chapter 3

B.1 Proof of Theorem 3.2.1 and Theorem 3.2.2

Below we let ‖ · ‖E,k denote the Euclidean norm in Rk, and we let ci denote unimportant
absolute numeric constants.

Proof of Theorem 3.2.1. Let

QS,n(v) =
1√
n

1

σ̂3(v)

n∑
i=1

〈Xi − X̄, v〉3,

and

QK,n(v) =
1√
n

1

σ̂4(v)

n∑
i=1

[〈Xi − X̄, v〉4 − 3].

With these definitions

nSLk
n = sup

v∈U∞∩Lk

Q2
S,n(v), and

√
nKLk

n = sup
v∈U∞∩Lk

|QK,n(v)|.

For v ∈ U∞ ∩ Lk, v can be written as

v(t) =

k∑
i=1

ξi(v)ϕi(t), ξi(v) = 〈ϕi, v〉, with

k∑
i=1

ξi(v)2 = 1.

Let ξ(v) = (ξ1(v), ..., ξk(v))> ∈ Rk, and further let Yi = (〈Xi, ϕi〉, ..., 〈Xi, ϕk〉)> ∈ Rk. Under H0,
Yi ∼ Nk(µk,Σk) for some mean vector µk and covariance matrix Σk. As a result of the second
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assumption of the theorem, Σk is nonsingular. With this notation in place, we have that

QS,n(v) = QS,n(v;Y1, ..., Yn) =
1√
n

1

[ξ>(v)Sn,Y ξ(v)]3/2

n∑
i=1

[ξ>(v)(Yi − Ȳ)]3,

where Ȳ = (1/n)
∑n

i=1Yi, and Sn,Y = (1/n)
∑n

i=1(Yi − Ȳ)(Yi − Ȳ)>. Similarly

QK,n(v) =
1

n

1

[ξ>(v)Sn,Y ξ(v)]2

n∑
i=1

{[ξ>(v)(Yi − Ȳ)]4 − 3}.

If A ∈ Rk×k is a nonsingular matrix, and b ∈ Rk, then

QS,n(v;AY1 + b, ..., AYn + b) =
1√
n

1

(ξ(v)>ASn,YA>ξ(v))3/2

n∑
i=1

[ξ>(v)A(Yi − Ȳ)]3,

=
1√
n

(
ξ>(v)A

‖Aξ(v)‖E,k
Sn,Y

A>ξ(v)

‖Aξ(v)‖E,k

)−3/2 n∑
i=1

[
ξ>(v)A

‖Aξ(v)‖E,k
(
Yi − Ȳ

)]3
.

From this it is clear that

sup
v∈U∞∩Lk

Q2
S,n(v;Y1, ...,Yn) = sup

v∈U∞∩Lk

Q2
S,n(v;AY1 + b, ..., AYn + b),

and hence the distribution of nSLk
n is invariant with respect to nonsingular affine transformations

of Y1, ...,Yn. The same holds for
√
nKLk

n , and so we can assume without loss of generality that
Yi ∼ Nk(0, Ik×k), where Ik×k is the identity matrix. The proof from here proceeds along similar
lines as Baringhaus and Henze (1991). Let

Q∗S,n(v) =
1√
n

n∑
i=1

[ξ>(v)Yi]
3 − 3ξ>(v)Yi,

and

Q∗K,n(v) =
1√
n

n∑
i=1

[ξ>(v)Yi]
4 − 3[2(ξ>(v)Yi)

2 − 1].

We now aim to show

(Q∗S,n(v), Q∗K,n(r))>
D(U∞∩Lk×U∞∩Lk)−→ (Z1(u), Z2(r))>, (B.1.1)

where Z1 and Z2 are independent, mean zero Gaussian processes defines on U∞ ∩ Lk with re-
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spective covariance functions

ρ1(v, r) = 6(ξ>(v)ξ(r))3, (B.1.2)

ρ2(v, r) = 24(ξ>(v)ξ(r))3,

and
D(U∞∩Lk×U∞∩Lk)−→ denotes weak convergence in the product metric space of continuous func-

tions on U∞∩Lk equipped with the supremum norm. In order to show this, first we observe that
for each v ∈ U∞ ∩ Lk, [ξ>(v)Yi]

3 − 3ξ>(v)Yi and [ξ>(v)Yi]
4 − 3[2(ξ>(v)Yi)

2 − 1] have mean
zero. It follows from straightforward calculation that for all v, r ∈ U∞ ∩ Lk,

E{[ξ>(v)Yi]
3 − 3ξ>(v)Yi}{[ξ>(r)Yi]

3 − 3ξ>(r)Yi} = ρ1(v, r)

E{[ξ>(v)Yi]
3 − 3ξ>(v)Yi}{[ξ>(r)Yi]

4 − 3[2(ξ>(r)Yi)
2 − 1]} = 0

E{[ξ>(v)Yi]
4 − 3[2(ξ>(v)Yi)

2 − 1]}{[ξ>(r)Yi]
4 − 3[2(ξ>(r)Yi)

2 − 1]} = ρ2(v, r).

We get from this and the central limit theorem that for v1, ..., vm, r1, ..., r` ∈ U∞∩Lk, a1, ..., am, b1, ..., b` ∈
R,

m∑
ν=1

aνQ
∗
S,n(vν) +

∑̀
j=1

bjQ
∗
K,n(rj)

=
1√
n

n∑
i=1

 m∑
ν=1

{aν [ξ>(vν)Yi]
3 − 3ξ>(vnu)Yi}+

∑̀
j=1

bj{[ξ>(rj)Yi]
4 − 3[2(ξ>(rj)Yi)

2 − 1]}


D→ N

0,

m∑
ν1,ν2=1

aν1aν2ρ1(vν1 , vν2) +
∑̀

j1,j2=1

bj1bj2ρ2(rj1 , rj2)

 , n→∞.

Hence by the Cramér-Wold theorem, the finite dimensional distributions of (Q∗S,n(v), Q∗K,n(r))

converge to those of (Z1(u), Z2(r)). The metric space (Lk ∩ U∞, ‖ · ‖) is isomorphic to (Sk−1, ‖ ·
‖E,k), where Sk−1 is the boundary of the unit sphere in Rk, and hence (Lk ∩ U∞, ‖ · ‖) satisfies
the metric entropy condition

∫ 1

0
log1/2(N(ε))dε <∞,

where N(ε), ε > 0 is the ε-covering number of U∞ ∩ Lk. Furthermore, it follows as in the proof
of Theorem 1 of Baringhaus and Henze (1991) that
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(E|Q∗S,n(v)−Q∗S,n(r)|2)1/2 ≤ c1‖v − r‖, and (E|Q∗K,n(v)−Q∗K,n(r)|2)1/2 ≤ c2‖v − r‖.

Hence (B.1.1) follows from Theorem 7.2.4 of Dudley (1999). Theorem 3.2.1 now follows upon
showing that.

sup
v∈U∞∩Lk

∣∣QS,n(v)−Q∗S,n(v)
∣∣ = oP (1), and sup

v∈U∞∩Lk

∣∣QK,n(v)−Q∗K,n(v)
∣∣ = oP (1), (B.1.3)

We provide the details to show supv∈U∞∩Lk

∣∣∣QS,n(v)−Q∗S,n(v)
∣∣∣ = oP (1), and the approximation

for QK,n follows along similar lines. To begin, we note that

QS,n(v)−Q∗S,n(v) = G1,n(v) +G2,n(v),

where

G1,n(v) =
1√
n

n∑
i=1

{
[ξ>(v)Yi]

3 − 3ξ>(v)Yi − [ξ>(v)(Yi − Ȳ)]3
}
,

and

G2,n(v) =
1− [ξ>(v)Sn,Y ξ(v)]−3/2√

n

n∑
i=1

[ξ>(v)(Yi − Ȳ)]3.

By expanding the term [ξ>(v)(Yi − Ȳ)]3, we have that

G1,n(v) =
3

n

[
n∑
i=1

(ξ>(v)Yi)
2 − 1

]
(
√
nξ>(v)Ȳ)

+
√
n(ξ>(v)Ȳ)2

3√
n

n∑
i=1

(ξ>(v)Yi) +
√
n(ξ>(v)Ȳ)3 =: G

(1)
1,n(v) +G

(2)
1,n(v) +G

(3)
1,n(v).

By the Cauchy-Schwarz inequality and the multivariate central limit theorem, supv∈U∞∩Lk
|ξ>Ȳ| ≤

‖Ȳ‖E,k = OP (1/
√
n). This readily implies that supv∈U∞∩Lk

|G(i)
1,n(v)| = oP (1), i = 2, 3. Let
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κ̂1, ..., κ̂k denote the eigenvalues Sn,Y in decreasing order. It is well known that max1≤i≤k |κ̂i−1| =
oP (1). One has that

κ̂k ≤
1

n

n∑
i=1

(ξ>(v)Yi)
2 ≤ κ̂1.

As a result,

sup
v∈U∞∩Lk

∣∣∣∣∣ 1n
[

n∑
i=1

(ξ>(v)Yi)
2 − 1

]∣∣∣∣∣ ≤ max
1≤i≤k

|κ̂i − 1| = oP (1),

which implies supv∈U∞∩Lk
|G(1)

1,n(v)| = oP (1). Hence supv∈U∞∩Lk
|G1,n(v)| = oP (1). With regard

to G2,n, it follows as above that

sup
v∈U∞∩Lk

∣∣∣∣∣ 1√
n

n∑
i=1

[ξ>(v)(Yi − Ȳ)]3

∣∣∣∣∣ = OP (1),

and

sup
v∈U∞∩Lk

|1− [ξ>(v)Sn,Y ξ(v)]−3/2| ≤ max
1≤i≤k

|κ̂−3/2i − 1| = oP (1),

implying that supv∈U∞∩Lk
|G2,n(v)| = oP (1), which establishes the first half of (B.1.3). The result

for the kurtosis measure can be established using similar arguments.

Proof of Theorem 3.2.2. Theorem 3.2.2 follows immediately from Theorem 3.2.1 upon showing
that

∣∣∣∣∣ sup
v∈P̂k∩U∞

Q2
S,n(v)− sup

v∈Pk∩U∞
Q2
S,n(v)

∣∣∣∣∣ = oP (1), (B.1.4)

and

∣∣∣∣∣ sup
v∈P̂k∩U∞

|QK,n(v)| − sup
v∈Pk∩U∞

|QK,n(v)|

∣∣∣∣∣ = oP (1). (B.1.5)

We show (B.1.4), as (B.1.5) can be shown similarly. Let ε > 0, and define the event
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Qεn =

{∣∣∣∣∣ sup
v∈P̂k∩U∞

Q2
S,n(v)− sup

v∈Pk∩U∞
Q2
S,n(v)

∣∣∣∣∣ > ε

}
.

Under Assumption 3.2.1, we have from Lemma 2.2 of Horváth and Kokoszka (2012b) that

max
1≤i≤k

|λi − λ̂i|
a.s.→ 0 and max

1≤i≤k
‖ϕi − ŝiϕ̂i‖

a.s.→ 0, (B.1.6)

where ŝi = sign(〈ϕi, ϕ̂i〉. Let 0 < δ < λ
3/2
k , and define the event

Aδ,n =

{
inf

v∈(Pk∪P̂k)∩U∞
σ̂3(v) > δ

}
.

By Mercer’s theorem

Ĉ(t, s) =
∞∑
j=1

λ̂jϕ̂j(t)ϕ̂j(s),

from which it follows that

σ̂2(v) =

∫∫
Ĉ(t, s)v(t)v(s)dtds ≥ λ̂k

k∑
i=1

〈ϕ̂i, v〉2.

Evidently then for v ∈ P̂k ∩ U∞, σ̂2(v) ≥ λ̂k. For v ∈ Pk ∩ U∞, v can be written as v(t) =∑k
j=1 vjϕj(t), where

∑k
i=1 v

2
j = 1. It follows that for v ∈ Pk ∩ U∞,

σ̂2(v) ≥ λ̂k
k∑
i=1

 k∑
j=1

vj θ̂i,j

2

, (B.1.7)

where θ̂i,j = 〈ϕ̂i, ϕj〉. Using (B.1.6), it follows that θ̂2i,i
a.s.→ 1 for i = 1, ..., k, and θ̂i,j

a.s.→ 0 for
1 ≤ i 6= j ≤ k, giving that the right hand side of (B.1.7) converges almost surely to λk for all
v ∈ Pk ∩ U∞. Thus P (Aδ,n)→ 1 as n→∞. We then write

P (Q(ε)
n ) = P (An,δ ∩Q(ε)

n ) + P (Acn,δ ∩Q(ε)
n ) ≤ P (An,δ ∩Q(ε)

n ) + P (Acn,δ).

On the set An,δ, the random function QS,n(v) is evidently continuous for all v ∈ (Pk∪P̂k)∩U∞,
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being a bounded rational function of continuous functions. Since the sets P̂k ∩U∞ and Pk ∩U∞
are compact, there exist points v′n ∈ P̂k ∩ U∞ and v̂′n ∈ Pk ∩ U∞ so that

sup
v∈P̂k∩U∞

Q2
S,n(v) = Q2

S,n(v̂′n) and sup
v∈Pk∩U∞

Q2
S,n(v) = Q2

S,n(v′n).

The existence of well defined (measurable) random elements v̂′n and v′n satisfying the above
relation is guaranteed by Theorem 18.19 in Aliprantis and Border (2006), which is a form of
the Kuratowski-Ryll-Nardzewski measurable selection theorem, since 1) the set correspondence
from the underlying sample space ω → P̂k ∩U∞ is weakly measurable, and (non-empty) compact
valued for all ω, and 2) the function Q2

S,n(v) is almost surely continuous. It follows that

P (Acn,δ ∩Q(ε)
n ) ≤ P

(
Acn,δ ∩

{
Q2
S,n(v′n) > Q2

S,n(v̂′n) + ε
})

+ P
(
Acn,δ ∩

{
Q2
S,n(v̂′n) > Q2

S,n(v′n) + ε
})

=: p1,n + p2,n.

We show that p1,n → 0 as n → ∞, and it can be shown similarly that p2,n → 0 as n → ∞, and
so we omit the details in this latter case. According to the definitions of v′n and v̂′n,

v′n(t) =

k∑
i=1

ri,nϕi(t), and v̂′n(t) =

k∑
i=1

r̂i,nŝiϕ̂i(t). (B.1.8)

Let

v′′n(t) =

k∑
i=1

r̂i,nϕi(t), and v̂′′n(t) =

k∑
i=1

ri,nŝiϕ̂i(t). (B.1.9)

It follows from (B.1.6) that ‖v̂′n − v′′n‖ ≤ max1≤i≤k ‖ϕi − ŝiϕ̂i‖ = oP (1), and ‖v̂′′n − v′n‖ = oP (1).

P
(
Q2
S,n(v′n) > Q2

S,n(v̂′n) + ε
)

= P
(
Q2
S,n(v′n)−Q2

S,n(v̂′′n) +Q2
S,n(v̂′′n) > Q2

S,n(v̂′n) + ε
)

≤ P
(
|Q2

S,n(v′n)−Q2
S,n(v̂′′n)|+Q2

S,n(v̂′′n) > Q2
S,n(v̂′n) + ε

)
≤ P

(
|Q2

S,n(v′n)−Q2
S,n(v̂′′n)| > ε/2

)
+ P

(
Q2
S,n(v̂′′n) > Q2

S,n(v̂′n) + ε/2
)
.

According to the definitions of v′n ,v̂′n and v̂′′n, P
(
Q2
S,n(v̂′′n) > Q2

S,n(v̂′n) + ε/2
)

= 0. Therefore we

now aim to show that
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P
({
|Q2

S,n(v′n)−Q2
S,n(v̂′′n)| > ε

}
∩Aδ,n

)
→ 0 as n→∞.

This readily follows if

P
({
|QS,n(v′n)−QS,n(v̂′′n)| > ε

}
∩Aδ,n

)
→ 0 as n→∞. (B.1.10)

One the set Aδ,n we have by the triangle inequality and mean value theorem that

|QS,n(v′n)−QS,n(v̂′′n)| ≤

∣∣∣∣∣ 1√
n

n∑
i=1

〈Xi − X̄, v′n〉3
∣∣∣∣∣
∣∣∣∣ 1

σ̂3(v′n)
− 1

σ̂3(v̂′′n)

∣∣∣∣
+

∣∣∣∣ 1

σ̂3(v̂′′n)

∣∣∣∣
∣∣∣∣∣ 1√
n

n∑
i=1

〈Xi − X̄, v′n〉3 −
1√
n

n∑
i=1

〈Xi − X̄, v̂′′n〉3
∣∣∣∣∣

≤ 3

2δ5/2

∣∣∣∣∣ 1√
n

n∑
i=1

〈Xi − X̄, v′n〉3
∣∣∣∣∣ ∣∣σ̂3(v′n)− σ̂3(v̂′′n)

∣∣
+

1

δ

∣∣∣∣∣ 1√
n

n∑
i=1

〈Xi − X̄, v′n〉3 −
1√
n

n∑
i=1

〈Xi − X̄, v̂′′n〉3
∣∣∣∣∣

=: R1,n +R2,n.

By expanding third power, one has that

1√
n

n∑
i=1

〈Xi − X̄, v′n〉3 −
1√
n

n∑
i=1

〈Xi − X̄, v̂′′n〉3 =
1√
n

n∑
i=1

〈Xi, v
′
n〉3 −

1√
n

n∑
i=1

〈Xi, v̂
′′
n〉3

−

[
3√
n

n∑
i=1

〈Xi, v
′
n〉2〈X̄, v′n〉 −

3√
n

n∑
i=1

〈Xi, v̂
′′
n〉2〈X̄, v̂′′n〉

]

+

[
3√
n

n∑
i=1

〈Xi, v
′
n〉〈X̄, v′n〉2 −

3√
n

n∑
i=1

〈Xi, v̂
′′
n〉〈X̄, v̂′′n〉2

]
−
√
n
[
〈X̄, v′n〉3 − 〈X̄, v̂′′n〉3

]
=: T1,n(v′n, v̂

′′
n) + T2,n(v′n, v̂

′′
n) + T3,n(v′n, v̂

′′
n) + T4,n(v′n, v̂

′′
n).

We note that under H0, the random element Xi⊗Xi⊗Xi ∈ L2[0, 1]3 has mean zero and satisfies
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that ∥∥∥∥∥ 1√
n

n∑
i=1

Xi ⊗Xi ⊗Xi

∥∥∥∥∥ = OP (1).

With regards to T1,n(v′n, v̂
′′
n), we have using (B.1.6), (B.1.8), (B.1.8), and the Cauchy-Schwarz

inequality that

|T1,n(v′n, v̂
′′
n)| =

∣∣∣∣∣∣ 1√
n

n∑
i=1

k∑
j,p,`=1

rj,nrp,nr`,n〈Xi ⊗Xi ⊗Xi, ϕj ⊗ ϕp ⊗ ϕ` − ŝjϕ̂j ⊗ ŝpϕ̂p ⊗ ŝ`ϕ̂`〉

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k∑

j,p,`=1

rj,nrp,nr`,n〈
1√
n

n∑
i=1

Xi ⊗Xi ⊗Xi, ϕj ⊗ ϕp ⊗ ϕ` − ŝjϕ̂j ⊗ ŝpϕ̂p ⊗ ŝ`ϕ̂`〉

∣∣∣∣∣∣
≤ c1

∥∥∥∥∥ 1√
n

n∑
i=1

Xi ⊗Xi ⊗Xi

∥∥∥∥∥ max
1≤i≤k

‖ϕi − ŝiϕ̂i‖ = oP (1).

One can establish similarly that |Ti,n(v′n, v̂
′′
n)| = oP (1), i = 2, 3, and 4, giving that R2,n = oP (1).

Replacing v̂′′n with zero in the definition of R2,n, we see from the above that∣∣∣∣∣ 1√
n

n∑
i=1

〈Xi − X̄, v′n〉3
∣∣∣∣∣ = OP (1).

Finally, for v, r ∈ (P̂k ∪ Pk) ∩ U∞, we have

|σ̂2(v)− σ̂2(r)| ≤ λ̂1‖v − r‖,

and hence R1,n = oP (1) using (B.1.6). This implies (B.1.10), and thus completes the proof of the

first part of the Theorem. The limit result for M P̂ ,k
n follows from Theorem A.2 in the supporting

information of Górecki et al. (2018) and the continuous mapping theorem.

B.2 Selection of Parameters J and M

Here we discuss how the parameters J = 3×104 and M = 5 in Section 3.3 are determined.
We experimented with different combinations of J and M , and selected simulation results
related to calculating the 95% quantiles for Ŝn and K̂n for various values of these parameters
are shown in Figure B.1 with n = 450 and k = 21. The two top panels show that when
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M = 5, the estimated quantiles of Ŝn and K̂n increase when J increases and flattened
when J is greater than 3× 104. Similarly, when J = 104 or 3× 104 the estimated quantiles
increases as M increases but plateaued when M ≥ 5. Therefore we believe J = 3 × 104

and M = 5 is a reasonable combination for estimating our test statistics.

Figure B.1: Estimated 95% quantiles of Ŝn (left panels) and K̂n (right panels) with n = 450
and k = 21. The top-left panel shows the estimated quantiles of Ŝn under different J ’s
from 102 to 5×104 with M = 5, the top-right panel presents the estimated quantiles of K̂n

under different J ’s from 102 to 5× 104 with M = 5. The bottom-left panel compares the
estimated quantiles of Ŝn under different M from 2 to 21, with the number of iterations
equal to J = 104 (in blue) or 3×104 (in red). The bottom-left panel compares the estimated
quantiles of K̂n under different M from 2 to 21, with the number of iterations equal to
J = 104 (in blue) or 3× 104 (in red).
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B.3 Selection of Number of Basis Functions

Here we investigate the influence of the number of basis functions k on the results of the
proposed normality test. First, we illustrate the impact of k on the test power through
a simulation study. The data is generated with 101 Fourier basis, and the coefficients
are generated with the slowly decaying covariance matrix. Then the 10th coefficient is
replace with a t-distributed random variable with same standard variance and df = 5. The
projection pursuit based normality test is conducted with B-spline basis and the number of
basis varies from 5 to 35. The size of low discrepancy sequence is fixed to be 3× 104 From
Figure B.2 we can see a clear pattern that the test power increases rapidly first, and then
decreases slowly. This seems to be due to the fact that ones needs a certain number of basis
functions in order to form the subspace on which the non-Gaussian signal can be captured.
However, when the number of basis functions is too large, the high dimensionality begins
to pose problem in the optimization step that tends to decrease the power.

Figure B.2: The test power of proposed normality test under different number B-spline
basis functions to construct the subspace with simulated data. The sample size is 900, and
the covariance matrix is Σslow defined in Section 3.3.1.
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B.4 Non-smooth Curves: Simulation Study

Here we show that our proposed method also works for data generated using non-smooth
basis functions. The data generating process and testing setup are the same as in Sec-
tion 3.3, except that we generate the functional objects using K = 31 Haar basis. Specifi-
cally, define

h(t) =


1 0 < t ≤ 1/2

−1 1/2 < t ≤ 1

0 t ≤ 0 or 1 < t

and the basis functions are constructed as

f jk(t) = 2j/2h(2jt− k)

for j = 0, . . . , 4 and k = 0, . . . , 2j − 1 for each j.

Table B.1: Percentage of rejections under the slow decaying covariance matrix Σslow.
level α = 5% α = 1%

method Null L1 L3 M10 Null L1 L3 M10

n = 150
PP-F-21 3.1 16.9 33.5 12.5 1.3 10.8 21.9 6.7
GHHK-F 6.4 58.4 85.5 7.6 2.5 49.7 79.9 3.4

n = 450
PP-F-21 3.8 36.5 72.9 36.9 0.2 29.0 60.2 27.4
GHHK-F 5.8 95.0 99.9 8.9 2.3 90.7 99.8 4.1

n = 900
PP-F-21 3.8 67.4 96.6 64.3 0.5 53.6 88.8 49.1
GHHK-F 6.0 99.9 100 10.3 1.7 99.8 100 4.4
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Appendix C

Appendix for Chapter 4

C.1 Selection of the Stopping Criterion

We use the PM10 data to compare two stopping criteria: the elbow stopping rule and
the SGF stopping rule. For the elbow stopping rule, we stop searching when an inclusion
of another direction does not significantly reduce the forecasting error. In Figure C.1, we
plot forecasting errors indexed by the number of possible directions found by our functional
projection pursuit method discussed in Section 4.2.1. Following the elbow stopping rule,
in this case one may want to stop after including the first and second directions.

The second stopping rule, namely the SGF stopping rule, will select the first 6 directions,
which would suggest that by following this rule we will explore potential directions more
thoroughly.
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Figure C.1: The 1-step cross-validated forecasting errors for the PM10 data as a function
of the number of dimensions included in the proposed projection pursuit method.

C.2 Selection of the Tuning Parameters

Here we present a small experiment with the objective of providing an insight into the
problem of selection of the proportion of data r used as the test set in our projection index
(4.2.3). In this experiment we generate data following FAR-CrossSecCov process, and
try different possible values r. The simulation results for forecasting errors are presented
in Figure C.2. The plot shows the 1-step and 10-step forecasting errors for different pro-
portions of testing data. We observe a decreasing trend in the forecasting errors, and the
curves flatten when r > 0.05. These findings would suggest that r = 0.05 is a reasonable
choice. However, we should also mention that in cases when data include a change point in
recent history, the errors will likely increase when r goes beyond certain level, suggesting
that in such cases the above choice will no longer be valid.
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Figure C.2: The 1-step and 10-step forecasting errors for different values of r range from
0.01 to 0.1.
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