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Abstract

Standard fluid simulators often apply operator splitting to independently solve for pres-
sure and viscous stresses. This decoupling, however, induces incorrect free surface boundary
conditions. Such methods are unable to simulate various fluid phenomena reliant on the
balance of pressure and viscous stresses, such as the liquid rope coil instability exhibited
by honey. Unsteady Stokes solvers, when used as a sub-component of Navier-Stokes, retain
coupling between pressure and viscosity, and are thus able to resolve these behaviours. The
simultaneous application of stress and pressure terms, however, creates much larger, and
thus more computationally expensive, systems than the standard decoupled approach.

To accelerate solving the unsteady Stokes problem, we propose a reduced fluid model
wherein interior regions are represented with incompressible polynomial vector fields. Sets
of standard grid cells are consolidated into super-cells, each of which are modelled using
only 26 degrees of freedom. We demonstrate that the reduced field must necessarily be at
least quadratic, with the affine model being unable to capture viscous forces. We reproduce
the liquid rope coiling instability, as well as other simulated examples, to show that our
reduced model provides qualitatively similar results to the full Stokes system for a smaller
computational cost.
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Chapter 1

Introduction

Most computer graphics research has historically been focused on inviscid, incompressible
liquids. The most abundant liquid we come in contact with daily—water—is of a relatively
low viscosity. This, however, does not preclude the presence of interesting phenomena
exhibited by more viscous materials. Indeed, dropping a thin stream of honey in just the
right manner will form a rope-like coil [Ribe et al., 2012]. While not as ubiquitous as water,
these viscous liquids are nonetheless still common in daily life with foods and oils, as well
as industrial applications with greases and other lubricants, and academic studies such as
the geology of the Earth’s mantle. It is on the simulation of these highly viscous fluids
that we focus our attention.

The physical behaviour of fluids is described by the Navier-Stokes equations which
derive from conservation laws assumed to hold throughout the fluid. Operator splitting
is standard practice in computer graphics for reducing the Navier-Stokes equations into
smaller problems solved in a stepwise manner [Bridson, 2015]. We set aside advective and
body force terms, which are solved on their own steps. This leaves just the coupled pressure
and viscous shear stress terms, forming the unsteady Stokes equations which are the subject
of our work. The coupling between these two terms has been found to be essential in
simulating the aforementioned coiling behaviour [Larionov et al., 2017]. Typical methods
once again apply operator splitting to independently solve for viscosity and pressure, which
breaks the coupling required for accurate free surface treatment. Rather than reproducing
the cylindrical rope coiling instability, decoupled methods result in random buckling of
the falling liquid stream [Batty and Bridson, 2008]. Larionov et al. [2017] presented a
variational method for solving the unsteady Stokes problem. While this unified solver is
effective, it creates much larger systems than the decoupled methods, leading to higher
computational costs.
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Spatial adaptivity methods have been developed to focus computational cost in regions
of interest by reducing resolution elsewhere in the fluid [Losasso et al., 2004]. In a similar
vein, model reduction methods have been proposed to capture the most relevant character-
istics of the flow in as small a dimensionality as possible [De Witt et al., 2012]. Integrating
both concepts, Goldade et al. [2020] proposed a pressure projection method that divides
the fluid into a uniform grid domain and a set of interior domains whose velocities are
defined as incompressible affine vector fields. Their method accomplishes spatial adap-
tivity without using complicated stencils and data structures, and model reduction that
retains compatibility with existing uniform grid methods, thus resulting in much simpler
implementation.

Building on these ideas, we propose a unified Stokes solver featuring interior regions
described using an incompressible polynomial vector field, primarily of degree 2. We show
that an affine model is insufficient for the Stokes problem, and that the quadratic model
is required for proper resolution of viscous forces while being small enough to provide
increased computational efficiency. We reproduce the liquid rope coil instability, as well
as other simulated examples, demonstrating that the quadratic model is able to resolve
qualitatively similar results to a fully uniform method with reduced computational cost.

2



Chapter 2

Previous Work

We outline prior work in computer graphics that relates to, or approaches the same prob-
lems as, our work in improving the computational efficiency of the unified Stokes step.

Standard Fluid Solvers. Standard methods for solving incompressible flow in com-
puter graphics use staggered pressure and velocity samples, originally developed for the
marker-and-cell (MAC) method of Harlow and Welch [1965]. This was introduced into
computer graphics by Foster and Metaxas [1996] who solved the pressure and velocity up-
dates explicitly, and was limited to voxelized solid boundaries. In response to the timestep
limitations imposed by explicit solvers, Stam [1999] developed a, now classical, uncondi-
tionally stable method using semi-Lagrangian advection and decoupled implicit solvers for
pressure and viscosity. With regards to pressure, this work introduced to computer graph-
ics the language of Helmholtz-Hodge decomposition and projection to refer to the operator
splitting approach initially developed by Chorin [1967].

Viscous Liquids. Carlson et al. [2002] focused on solving highly viscous liquids, adopting
an implicit Laplacian-based smoothing of velocity in place of Stam’s fast Fourier transform
(FFT)-based viscosity. Their treatment of free surface boundaries was found to produce
incorrect translational motion, later corrected by Fält and Roble [2003]. Batty and Bridson
[2008] adopted a variational approach for enforcing boundary conditions, and used a zero
traction free surface boundary to correctly handle viscous shear stresses and recover rota-
tional motion needed for buckling fluids. Larionov et al. [2017] extended the variational
approach for solving unsteady Stokes flow, coupling the pressure and viscosity equations
together. This method is able to recover cylindrical coiling behaviour in place of random
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buckling of prior decoupled methods, and forms the base uniform grid solver that we build
our reduced method on top of. Outside of Eulerian volume approaches, Bergou et al. [2010]
were able to successfully recreate meandering and coiling patterns of viscous threads on a
conveyor using a discrete rod-based model.

Particle-in-cell Methods. Intended to take advantage of desirable properties of both
Eulerian and Lagrangian methods, particle-in-cell (PIC) and related hybrid methods have
been developed. The first formulation of PIC was created by Harlow [1962], which suffered
from excessive dissipation. Brackbill and Ruppel [1986] subsequently developed fluid-
implicit-particle (FLIP) as a remedy. Both methods were introduced into computer graph-
ics by Zhu and Bridson [2005], who suggest taking a weighted average of the two methods.
The material point method (MPM) uses PIC/FLIP transfers along with constitutive mod-
els to solve elasto-plastic problems [Sulsky et al., 1995], being introduced into computer
graphics by Stomakhin et al. [2013] for simulating snow. A locally affine variation of the
PIC interpolation method was constructed by Jiang et al. [2015] in order to preserve an-
gular momentum previously lost with each grid-to-particle (G2P) interpolation, and was
later extended to be locally polynomial by Fu et al. [2017]. We use an APIC framework to
perform the advection step of our implementation, though we note that the reduced Stokes
solver we develop is agnostic to this choice.

Solid-Fluid Coupling. The coupling method between the reduced model and the uni-
form grid that we adopt from Goldade et al. [2020] is largely similar to the strong two-way
rigid body-fluid coupling presented by Batty et al. [2007]. This work introduced an oper-
ator that converted boundary fluid pressures into generalized forces that act on the solid.
The solid’s intended behaviour determines the constraints that define the degrees of free-
dom of its generalized velocity. Goldade et al. [2020] replace the rigid field used for rigid
bodies with an incompressible affine field intended to represent a fluid. They draw the
same comparison as the rigid and affine variants of PIC developed by Jiang et al. [2015].
We extend this analogy, with our polynomial model being akin to the polynomial extension
of Fu et al. [2017].

Spatial Adaptivity. With less of an emphasis on quantitative accuracy compared to
other application domains in science and engineering, computer graphics often more ag-
gressively trades accuracy for computational cost. Losasso et al. [2004] introduced the use
of an octree data structure as a method for focusing computation on areas of interest by
reducing grid resolution elsewhere, using finite-volume techniques to translate the uniform
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grid-based stable fluids method into stencils suited to irregular octree grids. Tetrahedral
meshes have also been explored, first with precomputed static meshes by Feldman et al.
[2005], with dynamic meshes by Klingner et al. [2006], and later with embedded free surface
and solid boundary conditions by Batty et al. [2010]. Chentanez et al. [2007] used tetrahe-
dral meshes with an algebraic multigrid solver for pressure. Similarly, methods based on
Voronoi diagrams rather than tetrahedral meshes have also been developed [de Goes et al.,
2015], and later adapted to improve octree t-junctions [Aanjaneya et al., 2017]. Goldade
et al. [2020] presented a reduced model pressure solver as a method for spatial adaptivity
with uniform cells near the boundary and coarsened reduced model cells on the interior,
which we directly adopt for our method. Approaching the same computational efficiency
goals, Edwards and Bridson [2014] used variable polynomial degrees (p-adaptivity) on a
discontinuous Galerkin method to focus computation near the fluid surface. Compared
to our use of polynomials to allow coarsening on interior cells, they apply higher-order
polynomials on the fluid surface to resolve finer detail out of a globally coarse grid.

Reduced Fluid Models. Rather than spatial adaptivity, some authors have proposed
solving for a reduced set of variables to decrease computational cost. Treuille et al. [2006]
used principal component analysis to find the reduced basis of target dimension that min-
imizes reconstruction error. In place of a global basis, Wicke et al. [2009] construct large
simulation primitives called ‘tiles’ with local bases; coupling along faces is handled by
shared boundary bases. De Witt et al. [2012] used Laplacian eigenfunctions as a divergence-
free basis. This was later extended by Cui et al. [2018], who reduced memory cost with
discrete sine and cosine transforms as well as introduce eigenfunctions for supporting Neu-
mann boundary conditions. Ando et al. [2015] solved for pressure on a reduced-dimension
grid and constructed an upsampler to compute corrected velocities that respect the free
surface boundary condition. Da et al. [2016] presented a boundary-only method for high
surface tension fluids, avoiding computation of internal volumetric degrees of freedom. The
reduced solver of Goldade et al. [2020] uses an affine basis to reduce degrees of freedom
allocated to interior regions of the fluid. We extend this to higher-order polynomial bases
for simulating the decoupled viscosity step and the coupled Stokes problem.
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Chapter 3

Background Theory

There is a wide assortment of fluids in nature; water, air, shampoo, pitch, and whipped
cream all have different properties and behaviours. We focus on the animation of viscous,
incompressible fluids. This does not include all possible fluids, but does represent a good
majority of visually interesting ones from daily life.

3.1 Governing Equations

Our fluids of interest are governed by a set of partial differential equations known as the
incompressible Navier-Stokes equations, typically given in the form,

∂u

∂t
= −u · ∇u− 1

ρ
∇p+ ν∇ · ∇u + g (3.1)

∇ · u = 0 (3.2)

where u is the velocity, ρ is the density, p is the pressure, ν is the kinematic viscosity
coefficient, and g are external (body) forces which typically contains gravity [Bridson,
2015].

The first equation is simply a conservation law for momentum, which is elucidated as
Newton’s second law, f = ma, with a simple rearrangement:

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇p+ ν∇ · ∇u + g (3.3)
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Note that the bracketed terms Du
Dt

= ∂u
∂t

+u·∇u is simply the material derivative of velocity.
That is, it is the rate of change of velocity within a coordinate system moving along with
the velocity. Equation 3.2 enforces incompressibility as a divergence-free condition.

The above form of Navier-Stokes, however, does not enforce the correct free surface
boundary condition, which requires a balance between pressure and viscous stresses (to be
discussed in Section 3.5). To allow proper free surface behaviour, the following generalized
form of the Navier-Stokes equations must be used,

∂u

∂t
= −u · ∇u− 1

ρ
∇p+

1

ρ
∇ · τ + g (3.4)

∇ · u = 0 (3.5)

τ = µ (∇u + (∇u)ᵀ) (3.6)

where τ is the symmetrized deviatoric stress tensor and µ = νρ is the dynamic viscosity
coefficient.

3.2 Time Discretization

To discretize the system in time, we can apply the usual Euler approximation for the time
derivative,

∂u

∂t
≈ un+1 − un

∆t
(3.7)

where ∆t is the timestep size and the subscripts indicate evaluation of a variable at that
timestep. In other words, un is the value of the velocity at timestep n.

Crucially, it is difficult to solve the entire system in one step. The typical approach
in computer graphics is to use operator splitting to solve the problem stepwise. We first
integrate the velocity to an intermediate state, u∗, subject to advection and body forces:

u∗ − un
∆t

= −un · ∇un + g (3.8)

This leaves the pressure and viscosity update for the second step:

un+1 − u∗

∆t
= −1

ρ
(∇p−∇ · τ) (3.9)

∇ · un+1 = 0 (3.10)

τ = µ (∇un+1 + (∇un+1)ᵀ) (3.11)

7



(a) (b)

Figure 3.1: Staggered grid sampling points on a standard (a) 2D and (b) 3D
cell. (a) The filled black square indicates the cell-centered sampling point for pressure, p,
and diagonal stresses, τxx and τyy; the grey disks indicate the node-centered off-diagonal
stresses, τxy; the red and green lines indicate face-centered velocities, u and v respectively.
(b) x, y, and z axes are shown in red, green, and blue lines respectively. The black cube
indicates the cell-centered sampling point for pressure, p, and diagonal stresses, τxx, τyy,
τzz; the red, green, and blue cylinders indicate the edge-centered off-diagonal stresses, τyz,
τxz, τxy, respectively; the red, green, and blue squares indicate the face-centered velocity
samples, u, v, w respectively [Larionov et al., 2017].

Our contribution is primarily concerned with solving the unsteady Stokes flow defined by
Equations 3.9-3.11 as an implicit system in velocity [Larionov et al., 2017].

3.3 Spatial Discretization

3.3.1 Staggered Grids

For our spatial discretization, we use the staggered grid standard in use in computer graph-
ics [Harlow and Welch, 1965]. Rather than variables being collocated, different variables
are sampled on different points on the standard cell, shown on Figure 3.1.

These sampling points are chosen such that numerical derivative approximations re-
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quired for a variable’s update equation fall collocated with that variable’s location. For
example, p must be collocated with ∇ · u, which is satisfied by choosing pressures on cell
centers and velocities on cell faces, as shown on Figure 3.1a. These faces form the numerical
stencil for divergence—the geometric arrangement of variables required for the numerical
evaluation of a given operator.

This method of choosing sampling points based on the construction of a friendly stencil
largely derives from finite difference methods, where a centered difference is ideal as it
has second-order accuracy compared to forward and backwards differences. Using centered
differences with a collocated grid results in an update equation that ignores the value being
updated, resulting in a non-trivial null-space. In particular, this means that high-frequency
noise—with period smaller than two cells wide—is not automatically filtered out; a näıve
centered difference with a collocated setup, lacking any extra filtering, is actually blind to
such checkerboarding error [Bridson, 2015].

3.3.2 Level Set Geometry

In constructing our method, we require a numerical definition of various geometrical do-
mains. We accomplish this using level sets, which define a surface implicitly as a signed
distance field (SDF); that is, it does not define a mesh but rather uses a scalar function
Φ(x) defined throughout the domain whose value dictates a point’s distance to the sur-
face, and whose sign dictates which side of the surface it lies on. Standard convention uses
Φ(x) < 0 to indicate a region’s interior and Φ(x) > 0 to indicate its exterior. Consequently,
the boundary is implicitly defined as the zero isocontour, Φ(x) = 0 [Bridson, 2015]. In the
discretized setting, level set values are typically stored in cell centers, with values being
interpolated elsewhere when needed.

In the bulk interior of the fluid, the discretization stencils will simply be the regular
grid stencils. Consequently, level sets are most important near the boundary of the fluid,
being required for proper enforcement of the free surface and solid boundary conditions.
There are a variety of ways to use the information contained in a level set for this purpose;
the standard methods used for finite difference-based pressure projection are ghost fluid for
the free surface (enforcing a Dirichlet boundary condition in pressure, p = 0), and cut cell
for solid boundaries (enforcing a Neumann boundary condition in pressure, ∂p

∂n
= ∇p · n)

[Bridson, 2015]. Both assume a linear interpolation of the level set values. The ghost fluid
method uses a linear interpolation to find a grid point’s distance to the surface, constructing
a finite difference with a fictitious particle whose value is extrapolated based on the Dirichlet
boundary condition [Gibou et al., 2002]. The cut cell method uses multilinear interpolation
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(a) (b)

Figure 3.2: Two methods of computing volume fractions from level sets. The
interior of an arbitrary level set is shown in light gray for both cases. (a) Computing
volumes by triangulating a marching squares template. The interior of the computed
volume is shown in light orange. (b) Computing volumes by sampling a level set with 3
points in each axis. Points within the level set are filled in orange and points outside are
not filled in. The sampled points indicate a volume fraction of 7/9.

to compute a face fraction, applying it to modify the existing finite difference stencil in
a manner similar to finite volume [Ng et al., 2009]. Note that since this computes face
fractions, the cut cell method works best when level set values are defined on nodes rather
than centers, though interpolation is always available to transfer center values to nodes.

We use neither ghost fluid nor cut cell methods, opting instead to use volume fractions.
We expand on how to formulate the problem with volume fractions in Section 3.6. What
remains is how to compute the volume fractions from the level set. One method is to adopt
marching cubes templates [Wyvill et al., 1986; Lorensen and Cline, 1987], and use linear
interpolants to exactly determine the intersection points along each edge. This creates
fairly simple local meshes in each cell, whose volumes can be computed, shown on Figure
3.2a. We adopt a simpler approach of sampling the level set with n points along each axis
volumetrically, and counting how many points fall inside the level sets, shown on Figure
3.2b. This sampling method comes with the advantage of less computation cost, assuming
not too many sampling points are used, and trivial parallelism. Notice, however, that this
is rather limited, considering that we have a granularity of 27 assuming 3 samples per axis
in 3D. In our tests, we find this to be enough for satisfactory boundary treatment. Such
low granularity actually has a rather nice consequence of automatically avoiding small
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volume fractions, which require clamping otherwise. While this method is a somewhat
aggressive approximation, the linear interpolation used in marching cubes is itself also just
an approximation of the underlying fluid volume.

The volume shown on Figure 3.2 is sampled around a cell center. As we also have
variables sampled on cell faces and edges, we require volume estimates for these points as
well. These are taken by applying the above sampling method within the unit cell around
each sampling point, simply shifting the sampling points by (−0.5, 0, 0)∆x for an x-face,
and (0,−0.5,−0.5)∆x for a yz-edge for example, once again highlighting the simplicity of
the method.

There is the additional matter of evolving the level set over time. Traditional grid
methods typically are initialized with a level set sampled on the grid, and evolve these
samples over time by advecting their values, using backwards semi-Lagrangian for example
[Bridson, 2015]. This comes with the issue of the diffusion of level set values, causing
smoothing of high frequency surface features such as sharp corners. Of course, many
more sophisticated surface tracking methods have been developed, such as particle level
set which seeds particles in a narrow band along the interface, which are subsequently
advected [Enright et al., 2002].

The key detail here is that traditionally, the level set is the primary representation
of the fluid geometry. The fluid is evolved by evolving the level set. Instead, we take a
primarily particle representation of the fluid, to be described in Section 3.4.1. This means
we solely construct a level set from the particles on a temporary basis, for computing
volume fractions and for rendering. We need not evolve the level set since it is simply a
representation of a fluid which is evolved independently of it.

3.4 Advection and Body Forces

To apply the advection and body forces in Equation 3.8, we further perform splitting to
apply each in isolation,

u? − un
∆t

= −un · ∇un (3.12)

u∗ − u?

∆t
= g (3.13)

with u? being another intermediate velocity state between un and u∗. Notice that Equation
3.12 is exactly the equation for zero material derivative, up to time discretization. This
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makes sense as advection exactly follows streamlines, and highlights that advection is
naturally a Lagrangian phenomenon.

3.4.1 APIC Advection

There is a wide range of methods for performing the advection step in Equation 3.12; due
to the splitting used, any such advection method can be used in conjunction with our
Stokes update. We choose to use the affine particle-in-cell (APIC) method of Jiang et al.
[2015], which we describe here in brief.

APIC is an extension of PIC, a class of hybrid Lagrangian/Eulerian method that uses
particles for advection, but computes and applies forces on a grid as usual. Using particles
for advection takes advantage of the natural Langrangian structure of advection, while
performing force computation on the grid allows for simpler discretization stencils and the
use of existing implicit solvers.

Moving between Lagrangian and Eulerian settings is facilitated by interpolation schemes
that transfer particle properties to the grid, and vice versa. Thus, a single PIC timestep
consists of performing a particle-to-grid (P2G) transfer, applying all non-advection terms
on the grid, performing a grid-to-particle (G2P) transfer, and finally applying advection
to the particles [Zhu and Bridson, 2005; Harlow, 1962]. It is the P2G and G2P transfers
that differentiate APIC from standard PIC.

Standard PIC simply uses a weighted average of nearby interpolants to perform both
transfers [Zhu and Bridson, 2005]. The G2P transfer is,

uni =

∑
pw

n
ipu

n
p∑

pwnip
(3.14)

where i is a grid index, p iterates over all neighbouring points within i’s kernel support,
and wip = N(xp− xi) is an interpolation kernel with compact support. Likewise, the P2G
transfer is,

un+1
p =

∑
iw

n+1
ip un+1

i∑
iw

n+1
ip

(3.15)

now centered on some particle p with i iterating over neighbouring grid points within p’s
kernel support. Note that there is freedom in the choice of interpolating kernel; standard
PIC as introduced by Zhu and Bridson [2005] used multilinear interpolation (i.e. a hat
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kernel) with support of size (2∆x)3, while later methods opted for smoother kernels adapted
from smoothed particle hydrodynamics (SPH) [Batty and Bridson, 2008].

Standard PIC was found to be excessively diffusive, caused by the two interpolations
performed at each timestep. This motivated the construction of the FLIP method by
Brackbill and Ruppel [1986], which used the P2G transfer to increment particle properties
rather than replace them outright. However, this direct path that retains prior particle val-
ues introduces a potential for accumulation of sub-grid scale noise between each timestep.
This issue is largely mitigated by taking a linear combination of PIC and FLIP, typically
on the order of above 90% FLIP, where a small amount of PIC acts as a mechanism to
damp potential noise [Zhu and Bridson, 2005].

Despite this, the PIC/FLIP blend was still found to be dissipative, particularly with
regards to angular momentum, which is not conserved in the G2P transfer. This insight
lead to the construction of interpolants which preserve affine velocity fields for the APIC
method. This requires a matrix Cn

p representing the linear coefficients of an affine velocity
field up + Cp(xi − xp). The APIC P2G transfer is,

uni =

∑
pw

n
ip

(
unp + Bn

p (Dn
p )−1(xi − xnp )

)∑
pw

n
ip

(3.16)

Dn
p =

∑
i

wnip(xi − xnp )(xi − xnp )ᵀ (3.17)

and the G2P transfer is,

un+1
p =

∑
iw

n+1
ip un+1

i∑
iw

n+1
ip

(3.18)

Bn+1
p =

∑
i

wn+1
ip vn+1

i (xni − xnp )ᵀ (3.19)

where Cn
p = Bn

p (Dn
p )−1, with Dn

p being analogous to an inertia tensor and Bn
p containing

angular velocity information for each particle [Jiang et al., 2015]. Notice that in addition to
linear velocities, particles now must keep track of their own Bn

p matrices; these effectively
hold the angular momenta that was previously thrown out at each G2P transfer. This
extra information also needs to be interpolated back into the grid, accomplished by the
extra term in Equation 3.16. A minor quirk resulting from the need to invert Dn

p is
that it becomes advisable to use quadratic or cubic interpolants rather than the prior hat
functions, which become singular at grid edges [Jiang et al., 2015].
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Summarizing this, we have the following algorithm for solving the incompressible Navier-
Stokes equations (Equations 3.1-3.2).

Algorithm 1: One APIC timestep.

1: do APIC particle to grid transfer (Eq 3.16, 3.17);
2: apply body forces (Eq 3.13);
3: do pressure-viscosity solve;
4: do APIC grid to particle transfer (Eq 3.18, 3.19);
5: advect particles (Eq 3.12);

Note that we perform the advection last within a timestep simply to make the associa-
tion that particles are “kicked” by newly computed forces, rather than by forces computed
in the prior timestep—the order of operations here remain the same. As well, this ensures
that advection in the first timestep uses the correct forces based on the input state, rather
than requiring the user to define a correct initial input. For example, a user may input
a non-incompressible field which is automatically handled before advection. Performing
advection first in this case may push particles into an unintended, potentially pathological,
state should the input field be not divergence-free.

We remind the reader that we simply use APIC as the framework to perform advection.
The focus of our work is solely in the pressure-viscosity solve in the above algorithm, which
is agnostic to the choice of advection scheme.

3.5 Decoupled Viscosity

While we seek to solve Equations 3.9-3.11 in a single step, we nonetheless describe the
standard method for solving the pressure-viscosity update as a point of comparison. Here,
operator splitting is once again applied to solve for viscosity alone,

u† − u∗

∆t
=

1

ρ
∇ ·
(
µ
(
∇u† + (∇u†)ᵀ

))
(3.20)

where u† is another intermediate velocity state between u∗ and un+1. A pressure projection
step is used to enforce the divergence free condition,

un+1 − u†

∆t
= −1

ρ
∇p (3.21)
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with pressure being given as a solution of the Poisson problem given by the divergence-free
condition:

−∇ · ∇p = − ρ

∆t
∇ · u† (3.22)

Note, however, that the input u∗ to Equation 3.20 is typically required to be divergence
free, thus requiring two pressure projections (one before Equation 3.20 and one after) in
one timestep [Batty and Bridson, 2008; Losasso et al., 2006].

Decoupling the pressure and viscosity in this way, while resulting in smaller systems
to solve, introduces inaccuracies particularly with regards to the free surface boundary
condition. The free surface boundary condition for the Stokes problem is,

t = (−pI + τ)n = tBC (3.23)

where t is the traction and tBC is the boundary condition for said traction. Assuming no
surface tension, tBC = 0. Notice that this boundary condition requires a balance of both
viscous (τ) and pressure stresses (pI), which cannot be solved for in the decoupled case.
Rather, for the decoupled case we simply independently apply a zero boundary condition
to each stress [Batty and Bridson, 2008]:

p = 0 (3.24)

τn = 0 (3.25)

While this does satisfy Equation 3.23, it does not find the true solution as in the coupled
case. It is analogous to solving a+ b = 0 by separately constraining a = 0 and b = 0.

3.6 Variational Stokes

Our method largely builds off the work of Larionov et al. [2017] and Batty and Bridson
[2008], who construct a variational formulation for solving the unified Stokes problem and
decoupled viscosity respectively. Here, we show a derivation for the objective function
whose optimal value satisfies the unsteady Stokes equations, and the optimality conditions
to find such a solution.
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3.6.1 Free Surface Formulation

We start with the free surface case:

ρ (u− u∗) + ∆t∇p−∆t∇ · τ = 0, in ΩL (3.26)

−∆t∇ · u = 0, in ΩL (3.27)

∆t

2µ
τ −∆tε(u) = 0, in ΩL (3.28)

∆t(−pI + τ)n̂ = 0, in ∂ΩL (3.29)

where Equations 3.26-3.28 are straightforward rearrangements of the previously stated un-
steady Stokes problem (Equations 3.9-3.11) and Equation 3.29 is the free surface boundary
condition. ε(u) = 1

2
(∇u + (∇u)ᵀ) is the deformation rate tensor. These equations hold in

the volume of the liquid, ΩL, and its boundary, ∂ΩL.

We define variations v of u, σ of τ , and q of p, and construct the first variations,

〈∇J [u],v〉 =

∫∫∫
ΩL

(ρu · v − ρu∗ · v + ∆t∇p · v −∆t∇ · τ · v) dV

+

∫∫
∂ΩL

(−∆tpIn̂ · v + ∆tτ n̂ · v) dA (3.30)

〈∇J [p], q〉 =

∫∫∫
ΩL

(−∆t∇ · u)q dV (3.31)

〈∇J [τ ], σ〉 =

∫∫∫
ΩL

∆t

2µ
τ : σ −∆tε(u) : σ dV (3.32)

by taking inner products of Equations 3.26 and 3.29 with v, Equation 3.27 with q, and
Equation 3.28 with σ respectively, using ‘:’ to denote the tensor double dot product. Here,
J [a] is the objective function we are trying to find, given in terms of a. Using integration
by parts and the divergence theorem, the following surface integrals can be converted into
volume integrals:∫∫

∂ΩL

−∆tpIn̂ · v dA =

∫∫∫
ΩL

−∆t(p∇ · v + v · ∇p) dV (3.33)∫∫
∂ΩL

∆tτ n̂ · v dA =

∫∫∫
ΩL

∆tε(v) : τ + v · ∇ · τ dV (3.34)

Plugging into Equation 3.30 and cancelling out terms, we get:

〈∇J [u],v〉 =

∫∫∫
ΩL

ρu · v − ρu∗ · v −∆tp∇ · v + ∆tε(v) : τ dV (3.35)
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Remembering that we choose u, p, and τ to be optimal, we constrain the first variations
to be zero:

0 = 〈∇J [u],v〉 =

∫∫∫
ΩL

ρu · v − ρu∗ · v −∆tp∇ · v + ∆tε(v) : τ dV (3.36)

0 = 〈∇J [p], q〉 =

∫∫∫
ΩL

(−∆t∇ · u)q dV (3.37)

0 = 〈∇J [τ ], σ〉 =

∫∫∫
ΩL

∆t

2µ
τ : σ −∆tε(u) : σ dV (3.38)

This is the weak form of the variational principle. Since v, q, and σ are chosen arbitrarily,
they also serve as our optimality conditions by dropping these test functions.

To arrive at a closed form for our functional, we note that if we can split a first variation
〈∇J [a], b〉 into symmetric bilinear, B(a, b), and linear, L(b), forms such that,

〈∇J [a], b〉 = B(a, b) + L(b) (3.39)

then we can construct the corresponding functional with,

J [a] =
1

2
B(a, a) + L(a) + C (3.40)

where C is a constant relative to the function of variation. Applying this to each of
Equations 3.35, 3.31, and 3.32, we get the functionals:

J [u] =

∫∫∫
ΩL

ρ

2
u · u− ρu∗ · u−∆tp∇ · u + ∆tε(u) : τ + Cp,τ dV (3.41)

J [p] =

∫∫∫
ΩL

−∆tp∇ · u + Cu,τ dV (3.42)

J [τ ] =

∫∫∫
ΩL

∆t

4µ
τ : τ −∆tε(u) : τ + Cu,p dV (3.43)

Noting that we may choose to add any arbitrary constant, we add ρ
2
u∗ · u∗ to Equation

3.41, and rearrange its first two terms with,

ρ

2
u · u− ρ

2
u∗ · u− ρ

2
u · u∗ +

ρ

2
u∗ · u∗ =

ρ

2
‖u− u∗‖2 (3.44)

to get:

J [u] =

∫∫∫
ΩL

ρ

2
‖u− u∗‖2 −∆tp∇ · u + ∆tτ :

(
∇u + (∇u)ᵀ

2

)
+ C ′p,τ dV (3.45)
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We also rearrange Equation 3.43 using the definition of ε:

J [τ ] =

∫∫∫
ΩL

∆t

4µ
τ : τ − ∆t

2µ
τ : τ + Cu,p = −∆t

4µ
‖τ‖2

F + Cu,p dV (3.46)

where ‖·‖F is the Frobenius norm. By inspection, with the constants representing place-
holders for missing terms, we can combine Equations 3.45, 3.42, and 3.46 to form the full
objective function:

J [u, p, τ ] =

∫∫∫
ΩL

ρ

2
‖u− u∗‖2 −∆tp∇ · u + ∆tτ :

(
∇u + (∇u)ᵀ

2

)
− ∆t

4µ
‖τ‖2

F dV

(3.47)

3.6.2 Free Surface Discretization

To discretize Equation 3.47, we need to construct an integral over the liquid domain, ΩL.
We do so by assuming that variables represent a constant field within a cell centered around
the variable’s sampling location, shown on Figure 3.3. This simply converts the integral
into a sum of variables weighted by the fraction of their control volumes within the liquid
domain. We represent this domain as a level set, ΦL(x), whose fractional volume within
each control volume can be found using the sampling procedure outlined in Section 3.3.2.

In 3D, the first term consists solely of velocities sampled on faces, and are accordingly
assigned face-centered volume weights wuL (Figure 3.3e). The second term contains pres-
sures and velocity divergences, both sampled on cell centers, and are assigned weights wpL
(Figure 3.3d). Finally, the rest of the terms contain stresses sampled on edges and centers,
and are assigned wτL (Figure 3.3f, 3.3d). We can thus convert the integral, Equation 3.47,
into the following semi-discrete summation,

J [u, p, τ ] ≈ 1

2

∑
f

wuL,f
(
ρ ‖u− u∗‖2)∣∣

f
−∆t

∑
c

wpL,c (p∇ · u)|c

+ ∆t
∑
n

wτL,n

(
τ :

(
∇u + (∇u)ᵀ

2

)
− 1

4µ
‖τ‖2

F

)∣∣∣∣
n

(3.48)

where the vertical bars indicate evaluation of variables at faces, f , centers, c, and both
edges and centers (or nodes in 2D), n.

Compiling the weights into diagonal matrices, W u
L , W p

L, and W τ
L , as well as converting

all derivative operators into their discrete counterparts, we construct the fully discrete
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Control volumes (shown filled in transparent orange) for 2D (a,b,c)
and 3D (d,e,f) geometry around the standard cell (shown in black outline).
(a,d) show the relevant volumes around their respective cell-sampled variables, which are
denoted by a black square and black cube respectively. (b,e) show the volumes around
their respective face-sampled variables, which are denoted by an orange dash and an orange
square respectively. (c) shows the volumes around a node-sampled variable denoted by a
grey circle. (f) shows the analogous volume in 3D around an edge-sampled variable denoted
by an orange cylinder.
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matrix-vector expression,

1

2
(u− u∗)ᵀMW u

L(u− u∗) + ∆tpᵀW p
LGᵀu + ∆tτ ᵀW τ

LDu− ∆t

4
τ ᵀµ−1W τ

Lτ (3.49)

where u, p, and τ are now stacked vectors of discrete samples, M is a diagonal matrix of
densities per velocity sample, µ is the diagonal matrix of viscosity coefficients per stress
sample, G is the discrete gradient operator, D is the discrete deformation rate operator
with Du = 1

2
(∇u + (∇u)ᵀ), −Gᵀ is the discrete vector divergence operator, and −Dᵀ is

the discrete tensor divergence operator.

To build the system to be solved, we simply apply the same discretization process to
our optimality conditions, Equations 3.36-3.38, dropping the arbitrary test functions. We
thus get the matrix-vector system: 1

∆t
MW u

L GW p
L DᵀW τ

L

W p
LGᵀ 0 0

W τ
LD 0 −1

2
µ−1W τ

L

u
p
τ

 =

 1
∆t

MW u
Lu∗

0
0

 (3.50)

3.6.3 Solid Boundary Formulation and Discretization

To discretize the solid boundary case, we follow a similar process as the free surface problem,

ρ (u− u∗) + ∆t∇p−∆t∇ · τ = 0, in ΩF (3.51)

−∆t∇ · u = 0, in ΩF (3.52)

∆t

2µ
τ −∆tε(u) = 0, in ΩF (3.53)

u = 0, in ∂ΩF (3.54)

where the last equation represents the solid boundary condition. This time, we perform
the integrations within the volume of the fluid (i.e. non-solid) region, ΩF . This gives the
objective function:

J [u, p, τ ] =

∫∫∫
ΩF

ρ

2
‖u− u∗‖2 + ∆tun+1 · (∇p−∇ · τ)− ∆t

4µ
‖τ‖2

F dV (3.55)

This discretizes into,

1

2
(u− u∗)ᵀMW u

F (u− u∗) + ∆tuᵀW u
F (Gp + Dᵀτ )− ∆t

4
τ ᵀµ−1W τ

Fτ (3.56)
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with non-solid volume weights W u
F , W p

F , and W τ
F . Discretizing the optimality conditions,

we get:  1
∆t

MW u
F W u

FG W u
FDᵀ

GᵀW u
F 0 0

DW u
F 0 −1

2
µ−1W τ

F

u
p
τ

 =

 1
∆t

MW u
Fu∗

0
0

 (3.57)

3.6.4 Defining the Integration Domains

Notice that with two boundary problems, we need to keep track of two different domains:
the liquid domain given by ΩL and the non-solid domain given by ΩF . We accomplish this
by constructing two level sets, ΦL(x) and ΦF (x), whose interiors represent the domains ΩL

and ΩF respectively, as shown on Figure 3.4. Using these two level sets, we can construct
the corresponding weights WL and WF using the sampling method mentioned in Section
3.3.2.

We interpret the active fluid region as the intersection of the liquid and fluid domains,
ΩL∩ΩF . Note that while the liquid domain does extend into the solid, as shown in Figure
3.4c, this region, ΩL∩ΩS, does not represent actual physical liquid, and we do not interpret
it as such. Rather, it simply represents constraints on the liquid region to enforce the solid
boundary condition.

3.6.5 Combined Free Surface and Solid Boundary Problem

With the two boundary value problems defined, with their respective integration domains,
we can exploit the similar structure of the two systems to construct the combined free
surface and solid boundary problem. In particular, notice that the optimality conditions
for the free surface, Equation 3.50, and the solid boundary, Equation 3.57, differ only
in volume weight diagonal matrices. The operators are all identical; without the volume
weights, they reduce to exactly the finite difference operators for the Stokes problem on a
regular grid.

We can thus simply apply both sets of volume weights simultaneously, to construct the
combined system [Larionov et al., 2017]: 1

∆t
MW u

FW
u
L W u

FGW p
L W u

FDᵀW τ
L

W p
LGᵀW u

F 0 0
W τ
LDW u

F 0 −1
2
µ−1W τ

FW
τ
L

u
p
τ

 =

 1
∆t

MW u
FW

u
Lu∗

0
0

 (3.58)
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(a) (b) (c)

Figure 3.4: Integration domains for (a) the free surface case, (b) the solid
boundary case, and (c) the combined case. For the free surface problem, the air
domain is defined as the complement of the liquid domain, ΩA = Ω̄L. Likewise, for the
solid boundary problem, the solid domain is the complement of the fluid domain, ΩS = Ω̄F .
In the combined problem, the active fluid is defined as the intersection of liquid and fluid
domains, ΩL ∩ ΩF , as defined in the independent boundary cases. Figure adapted from
Larionov et al. [2017].

Away from triple points, the system reduces to either Equation 3.50 or Equation 3.57 as
the weight matrices of the complementary boundary condition simply become the identity
matrix. This formulation was also found to produce natural behaviour at triple points
[Larionov et al., 2017].

We additionally would like to note that the weight matrices act on the correct degrees
of freedom. For example, the gradient operator maps pressure degrees of freedom into
velocity degrees of freedom, G : p → u, therefore it is natural to apply the cell-centered
weights corresponding to pressure before the transform, and the face-centered weights
corresponding to velocities after the transform, producing the W u

FGW p
L term.

While it is possible to use alternative discretizations of the continuous formulations
(Equations 3.47, 3.55), particularly finite element methods (FEMs) and finite volume
methods (FVMs), we point out key advantages of adopting the above variational finite
difference approach. This discretization recovers the usual staggered finite differences on
the interior of the fluid, with the weight matrices on Equation 3.58 reducing to identities.
This consequently inherits the stability of the staggered grid against high-frequency noise,
previously noted in Section 3.3.1. We also note the guaranteed symmetry of Equation
3.58, and the simplicity of boundary enforcement. Boundary conditions are handled solely
by changes in weights around the fluid surface, thus bypassing construction of boundary
meshes required for other methods [Larionov et al., 2017; Batty and Bridson, 2008].
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3.7 Reduced Fluid Model

We have thus described above a fully uniform viscous fluid solver as outlined by Larionov
et al. [2017], along with the accompanying regular grid methods. The key limitation we
seek to solve is the large computational cost of the Stokes linear solve given by Equation
3.58. This stems from the large number of degrees of freedom being solved for, motivating
a spatial adaptivity approach to focus computation only near the fluid surface.

We accomplish this by building off the work of Goldade et al. [2020], who constructed
an affine fluid model for the pressure projection step given by Equations 3.21 and 3.22.
This work retains the fully uniform grid on the surface while simplifying large interior
regions into super-cells, with each region having a reduced set of variables which describe
a local affine velocity field. They couple the fully uniform surface representation to the
interior affine fields by adopting a similar two-way coupling to the work of Batty et al.
[2007], which demonstrated coupling between rigid bodies and fluids. Here, we describe
Goldade et al.’s affine pressure projection approach, before building on it for solving the
viscosity and Stokes equations in the next chapter.

3.7.1 Affine Field

We define an affine description of a fluid field as follows:

uR(x) = uconst + G(x− xCOM) (3.59)

where G = ∇uR is the gradient 2-tensor and xCOM is the affine region’s center of mass.
Since the 3D gradient matrix has the structure,

G3D =



∂u

∂x

∂v

∂x

∂w

∂x

∂u

∂y

∂v

∂y

∂w

∂y

∂u

∂z

∂v

∂z

∂w

∂z

 (3.60)

it follows that its trace gives the divergence, Tr(G3D) = ∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= ∇·u, and similarly
for the 2D case. This implies that enforcing the usual incompressibility constraint can be
done by simply enforcing zero trace, ∇·uR = Tr(G) = 0. This reduces the required degrees
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of freedom for representing G by 1, as shown in the following forms:

G2D =

[
a11 a12

a21 −a11

]
, G3D =

a11 a12 a13

a21 a22 a23

a31 a32 −(a11 + a22)

 (3.61)

The velocity within some interior region ΩR can thus be represented by a generalized
velocity vector vR of 5 elements in 2D (2 constant and 3 linear) and 11 elements in 3D
(3 constant and 8 linear). We define a matrix C that gives the Euclidean velocity at any
point x. We elucidate the 2D case with the 3D case following straightforwardly,

uR = C(x)vR (3.62)

=

[
1 0 x̃ ỹ x̃
0 1 −ỹ 0 x̃

]
vR (3.63)

with x̃ = x− xCOM and similarly for ỹ.

Using this transformation, we can construct a generalized mass matrix using the fluid’s
kinetic energy as follows,∫∫∫

ΩR

ρR
2
‖uR‖2 dV =

∫∫∫
ρR
2
‖CvR‖2 dV (3.64)

=
1

2
vᵀR

(∫∫∫
ΩR

ρRCᵀC dV

)
vR (3.65)

=
1

2
vᵀRMRvR (3.66)

with MR =
∫∫∫

ΩR
ρRCᵀC dV being exactly the required generalized mass matrix.

3.7.2 Coupling to Regular Grid

We require a coupling between the affine and the regular grid representations of the fluid,
with the intention of using the affine model in the interior and the regular grid in a nar-
row band on the fluid boundary, as shown on Figure 3.5. For simplicity of the coupling
stencils between the two representations, we assume a voxelized affine interior region that
is sufficiently far away from the physical fluid boundary.

To construct our coupling, we define a transfer matrix, J : uR → vR which accumulates
forces from the regular grid and transforms them into generalized forces applicable to the
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Figure 3.5: Simple fluid domain setup with the fluid to be discretized shown
as a blue line, uniform grid cells shown in red, and a single reduced interior
region shown in green. Black lines show velocity degrees of freedom on the uniform
grid faces. Note that the faces on the boundary of the reduced region are described by the
reduced field in green.

interior regions,

Jf =
∑
a,j

Ca(xj)
ᵀfj (3.67)

where a iterates over each axis, j iterates over boundary faces, xj is the center of face j, and
fj is a force in Cartesian form. By construction, J couples all input forces around an interior
region to the generalized degrees of freedom. The transpose operation, Jᵀ : vR → uR,
distributes generalized forces from the affine representation into the surrounding regular
grid representation.

Using J and MR, we can construct the generalized velocity form of the pressure-velocity
update:

MR
∂vR
∂t

= J(−∇p) (3.68)

Note that this differs slightly from the construction given in Goldade et al. [2020], which
combines both the gradient operation and the Cartesian-to-generalized coordinate trans-
formation into J. We choose to define J as solely the coordinate transformation so as to
be able to use it with any force. This will be relevant when we need to transform both
pressure and stresses for the Stokes problem.
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We can thus construct the coupled pressure projection system as,

ρ
∂uF
∂t

= −∇p (3.69)

∇ · uF = 0 (3.70)

MR
∂vR
∂t

= J(−∇p) (3.71)

uC = vR, on ∂ΩC = ∂ΩR (3.72)

where ΩR is solely the parts of the fluid whose velocity is defined by the generalized veloc-
ities, vR, and ΩC = Ω̄R is solely parts whose velocity is defined with the usual Cartesian
grid velocities, uC . Because we already assume incompressibility in our definition of the
affine field, we need not have a divergence-free condition for the generalized velocities. This
additionally means that pressures are only defined in ΩC .

This discretizes into: 1
∆t

MC G 0
Gᵀ 0 GᵀJᵀ

0 JG 1
∆t

MR

uC
p
vR

 =

 1
∆t

MFu∗C
0

1
∆t

MBv∗R

 (3.73)

where MC is the diagonal matrix of face-centered density samples in the uniform grid,
MR =

∑
a,j ρRCa(xj)

ᵀCa(xj) dV is the discrete generalized mass matrix, and u∗C and v∗R
are the intermediate input velocities in uniform and generalized coordinates respectively.
G is the discrete gradient operator and −Gᵀ is the discrete vector divergence operator,
both as previously defined in Section 3.6.2.

Separating out J highlights the structure of the system—we effectively solve the same
pressure-velocity update separately for the Cartesian velocities (first row) and the gener-
alized velocities (last row). The pressure stencil for this reduced region is shown on Figure
3.6a.

Coupling is handled across the shared boundary between the Cartesian and reduced
regions using the equality constraint, Equation 3.72, as applied to the divergence free
condition, Equation 3.70, resulting in the second row of the system. The Gᵀ operator is
used for both sets of velocities, meaning that implementation-wise, we can adopt the usual
gradient stencils, and simply use Jᵀ to transform any generalized velocities touched by the
stencil into Cartesian velocities, as shown on Figure 3.6b.

With regards to boundary conditions, Goldade et al. [2020] used the aforementioned
ghost fluid and cut cell methods to enforce free surface and solid boundaries respectively.
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(a) (b)

Figure 3.6: Coupling between the uniform grid (red) and reduced regions
(green). (a) shows the same fluid domain as Figure 3.5, with cell-centered pressures
coupled to the reduced region shown in yellow, as subject to the last row of Equation 3.73.
(b) shows the finite difference stencil for a single divergence that couples together uniform
grid velocities (orange dashes) and affine velocities (light green dashes), as dictated by the
second row of Equation 3.73. This discrete divergence uses an identical stencil to the usual
finite difference method, but the light green velocity samples here are simply given by the
reduced model.

We take the previously defined volume weights approach from Larionov et al. [2017]. Ap-
plication of the volume weight terms to Equation 3.73 straightforwardly follows from the
system given in Equation 3.58, using W u

L/F and W p
L/F as given in the upper left 2×2 block.

This will be discussed further when we build our Stokes system. In particular, since we
seek to immerse the affine domain, ΩR, within the physical liquid, the volume weights of
any entry touching the affine terms are identically 1.

3.7.3 Tiled Regions

Of course, we cannot expect the affine model to be as accurate a representation of the
fluid as the uniform grid. Its role as a reduced model is to be able to represent the most
important modes of the flow—which we have chosen to be the constant and linear modes—
with as few degrees of freedom as possible. It thus becomes insufficient once higher-order
modes become significant.

In particular, this limits the size of potential affine regions, as larger fluid bodies have
more freedom to exhibit higher-order modes. To alleviate this issue, Goldade et al. [2020]
proposed tiling the fluid interior, dividing it into smaller blocks of predefined size, as
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Figure 3.7: The same fluid domain as in Figure 3.5, but with a basic tiling
scheme. Tiles are constructed to be at most 4-cells wide with 1-cell padding between.

shown on Figure 3.7. These blocks are separated by a layer of uniform grid cells, such
that no two affine regions are immediately adjacent. This avoids the construction of a new
operator acting between affine regions, allowing for straightforward implementation. The
only change to the system is that the MR and J matrices become block diagonal, with
each block representing a local matrix for one interior region.

We clarify some terminology we use regarding these tiled interior regions on Figure
3.8. We call the maximum size of the interior region itself as the interior region size.
The number of cells that separate neighbouring interior regions is called the padding size.
Finally, the sum of the two, which represents one repeating unit that tiles the interior of
the fluid, is called the tile size.
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Padding Size

Interior Region Size

Tile Size

Figure 3.8: Terminology used for describing the tiling setup for reduced regions.
For this example, the interior region size is 4 cells, the padding size is 2 cells, and the tile
size is the sum which is 6 cells.
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Chapter 4

Reduced Fluid Methods for Viscosity
and Stokes

4.1 Affine Field on Viscosity

We begin constructing our reduced model solver by first looking at the decoupled viscosity
formulation given in Section 3.5. Using the variational method of Batty and Bridson [2008]
for solving the decoupled viscosity step, Equation 3.20, we have the following objective
function:

J [u] =

∫∫∫
ΩL

ρ

2
‖u− u∗‖2 + ∆tµ

∥∥∥∥∇u + (∇u)ᵀ

2

∥∥∥∥2

F

dV (4.1)

Notice that this is simply Equation 3.47 without the pressure terms. We separate this
integration into the uniform Cartesian regions, ΩC , and the reduced fluid regions, ΩR, such
that ΩC ∩ΩR = ∂ΩR ⊆ ∂ΩC and ΩC ∪ΩR = ΩL. These domains and their boundaries are
shown on Figure 4.1. The boundary region subset is important here so as to distinguish
between the boundary separating the uniform Cartesian region and the reduced fluid region,
∂ΩR, from the general boundary of the Cartesian region, ∂ΩC , which includes the true
liquid boundary, ∂ΩL. This subset relation holds assuming we immerse the reduced fluid
region within the liquid.
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ΩR

ΩC

∂ΩC

∂ΩR

∂ΩL

Figure 4.1: Schematic of various domains used in our reduced solver. The
Cartesian domain, ΩC , and reduced domain, ΩR, form a decomposition of the full liquid
domain, ΩL = ΩC ∪ ΩR, such that they share only a boundary, ΩC ∩ ΩR = ∂ΩR ⊆ ∂ΩC .

Taking u = uC in ΩC and u = uR in ΩR, we get the following objective function,

J [uC ,uR] =

∫∫∫
ΩL

ρ

2
‖uC − u∗C‖

2 +
ρ

2
‖uR − u∗R‖

2 + ρ(uC − u∗C) · (uR − u∗R)

+ ∆tµ

∥∥∥∥∇uC + (∇uC)ᵀ

2

∥∥∥∥2

F

+ ∆tµ

∥∥∥∥∇uR + (∇uR)ᵀ

2

∥∥∥∥2

F

+ 2∆tµ

〈
∇uC + (∇uC)ᵀ

2
,
∇uR + (∇uR)ᵀ

2

〉
F

dV (4.2)

with 〈·, ·〉F as the Frobenius inner product. As shown in Appendix A, minimizing this
objective function in uC/R solves the following system:

uC − u∗C
∆t

=
1

ρ
µ∇ · (∇uC + (∇uC)ᵀ), in ΩC (4.3)

uR − u∗R
∆t

=
1

ρ
µ∇ · (∇uR + (∇uR)ᵀ), in ΩR (4.4)

uC = uR, on ∂ΩR (4.5)

Notice that this is the viscosity system, Equation 3.20, solved separately for regions ΩC

and ΩR, with two-way coupling being handled by the matching condition on their mutual
boundary. We make the assumption of constant velocity (note the µ outside of the diver-
gence, as compared to the original viscosity update in Equation 3.20), as a limitation of
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the reduced model. Because the reduced model does not use individual stress degrees of
freedom on the interior, there is no definition of a spatially-varying viscosity field, and we
thus necessarily fall back on a constant viscosity value.

Using the mapping Jᵀ : vR → uR, we can construct a discretization of the correspond-
ing first-order conditions in terms of uniform Cartesian velocities, uC , and generalized
velocities, vR, for the reduced model:[

1
∆t

MCW
u
FW

u
L + 2W u

FDᵀ(W τ
F )−1µW τ

LDW u
F 2W u

FDᵀ(W τ
F )−1µW τ

LDW u
FJᵀ

2JW u
FDᵀW τ

Lµ(W τ
F )−1DW u

F
1

∆t
MR + 2JW u

FDᵀ(W τ
F )−1µW τ

LDW u
FJᵀ

] [
uC
vR

]
=

[
1

∆t
MCW

u
FW

u
Lu∗

1
∆t

MRv∗R

]
(4.6)

Assuming that all vR samples are immersed within the active fluid domain, ΩR ⊂ ΩL∩F ,
such that its boundary is sufficiently far from both boundary conditions, dist(∂ΩR, ∂ΩR ∪
∂ΩF ) > ∆x where dist(A,B) = inf{‖x− y‖ | x ∈ A, y ∈ B} is a distance metric, then all
weights relevant to vR are unity and we can simplify the matrix system to:[

1
∆t

MCW
u
FW

u
L + 2W u

FDᵀ(W τ
F )−1µW τ

LDW u
F 2W u

FDᵀµDJᵀ

2JDᵀµDW u
F

1
∆t

MR + 2JDᵀµDJᵀ

] [
uC
vR

]
=

[
1

∆t
MCW

u
FW

u
Lu∗

1
∆t

MRv∗R

]
(4.7)

This already hints at an upcoming issue with using an affine representation for the viscosity
equation. Remembering that by definition of the affine system, G = ∇uR. In the discrete
setting, we have G = DJᵀvR. Since G is constant in an affine field, it thus follows that the
JDᵀDJᵀ term in Equation 4.7 becomes zero:[

1
∆t

MCW
u
FW

u
L + 2W u

FDᵀ(W τ
F )−1µW τ

LDW u
F 2W u

FDᵀµDJᵀ

2JDᵀµDW u
F

1
∆t

MR

] [
uC
vR

]
=

[
1

∆t
MCW

u
FW

u
Lu∗

1
∆t

MRv∗R

]
(4.8)

This means that we no longer solve for viscosity within the reduced region. The sec-
ond equation is now strictly a velocity matching constraint on the boundary between the
reduced model and the rest of the fluid, with no interior dynamics being performed.

The issue is thus not in the representative power of an affine field with respect to
velocity, but rather of the viscous stresses. Because an affine field lacks a second derivative,
it lacks any information for being able to evolve itself, and consequently enforce any stresses
back onto the uniform grid. An alternative way to view this would be with the function
of viscosity as a Laplacian smoothing operator, converting high frequency velocity modes
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Figure 4.2: Falling viscous beam solved using a uniform grid (pink) and affine
reduced fluid (yellow, orange) for the viscosity step in a decoupled pressure-
viscosity solve. (a) provides a comparison between a base resolution simulation (yellow)
and a simulation with both double spatial resolution and tile size (orange), such that
the tiles have physically the same size. (b) similarly provides a comparison between a
base resolution (yellow) and a double resolution but keeping the base tile size (orange).
All images show a 2D cutaway view of a 3D simulation, with lines representing fluid
boundaries for each method, reduced model interior regions shown filled in with their
respective colours, and solid boundaries shown in black. Uniform grid cells are not shown
for clarity, but take up all gaps between interior regions and a narrow band on the fluid
surface. Initial condition shown in grey, and consists of a homogeneous fluid with ρ = 1
and µ = 100. Result shown for t = 1.6. The affine results sharply disagree with the
uniform reference, even under spatial refinement.
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into low frequency. Since the affine field lacks any high frequency modes, this results in no
net change.

We demonstrate a practical result of this issue with a simple collapsing viscous beam
example, shown on Figure 4.2. Here, the affine method is considerably stiffer than the
reference solution using a uniform grid. Notice that this is not resolved even under spatial
refinement. Figure 4.2a shows that increasing resolution such that the interior regions
represent the same physical space as the base resolution produces a worse result. This is in
spite of the increased cell distance between interior regions, which would introduce more
degrees of freedom by which to resolve boundary forces. Figure 4.2b shows that increasing
resolution while keeping the same interior region size, and consequently producing smaller
physical regions, does not improve the result.

4.2 Polynomial Field

The lack of information for evolving viscosity in the reduced region motivates the con-
struction of a higher-order polynomial representation of the fluid. In place of the affine
description, Equation 3.59, we construct the following quadratic model:

uR(x) = uconst + G(x− xCOM) +
1

2
(x− xCOM)ᵀH(x− xCOM) (4.9)

where H is the Hessian 3-tensor with Hi,j,k = ∂2ui
∂xj∂xk

. Each page i of H is symmetric, thus

requiring only 18 degrees of freedom rather than the full 27. We also enforce incompress-
ibility by applying the usual ∇ · uR = 0 constraint, producing a total of 26 degrees of
freedom. That is, 3 for the constant term, 8 for the linear term, and 15 for the quadratic
term. For clarity, we give the definition of C for the quadratic model in 3D in Appendix
B.

Using this new transformation matrix, C, we can use the same definitions of the gen-
eralized mass matrix, MR, and transfer matrix, J, as in the affine case. Applying this to
the viscosity system, we thus retain the JDᵀDJᵀ term that canceled away for affine fields,
and consequently are able to resolve the missing dynamics within the interior regions. This
extension of the affine model into a quadratic model is similar in spirit to the generaliza-
tion of APIC into polynomial particle-in-cell (PolyPIC), which seeks to retain higher-order
polynomial modes during each interpolation [Fu et al., 2017; Jiang et al., 2015].

Applying this quadratic field to the above viscous beam problem, we get the results
shown on Figure 4.3. Once again, the first subfigure shows the result for increasing the
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Figure 4.3: Falling viscous beam solved using a uniform grid (pink) and
affine reduced fluid (sky blue, dark blue) for the viscosity step in a decou-
pled pressure-viscosity solve. (a) provides a comparison between a base resolution
simulation (sky blue) and a simulation with both double spatial resolution and tile size
(dark blue), such that the tiles have physically the same size. (b) similarly provides a
comparison between a base resolution (sky blue) and a double resolution but keeping the
base tile size (dark blue). All images show a 2D cutaway view of a 3D simulation, with
lines representing fluid boundaries for each method, reduced model interior regions shown
filled in with their respective colours, and solid boundaries shown in black. Uniform grid
cells are not shown for clarity, but take up all gaps between interior regions and a narrow
band on the fluid surface. Initial condition shown in grey, and consists of a homogeneous
fluid with ρ = 1 and µ = 100. Result shown for t = 1.6. The quadratic model’s results
show much closer agreement with the reference result than the affine model given in Figure
4.2.
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resolution and interior region size such that they physically represent the same space,
while the second subfigure shows the result of increasing just the spatial resolution without
increasing the interior region size. We note that in all cases, the quadratic model performs
better than the affine model, achieving much closer results to the reference. Interestingly,
the increased resolution with larger interior regions shown on Figure 4.3a shows improved
results, while maintaining the same interior region size as shown on Figure 4.3b does not.
This indicates that convergence error is highly influenced by the padding size between
interior regions, as we use the same error tolerance in all the viscous beam tests, and that
keeping a padding of only two cells greatly limits accuracy.

4.3 Reduced Model on Stokes

Having reviewed the reduced pressure model in Section 3.7, and developed a reduced
viscosity model in Section 4.1, we now combine them to construct our full reduced Stokes
system. We begin with the variational Stokes objective function, Equation 3.47, and apply
the same separation of ΩC and ΩR domains as used in Section 4.1. That is, we define a
uniform Cartesian region, ΩC , and an internal reduced fluid region, ΩR, that combined
span the entire liquid, ΩC ∪ ΩR = ΩL, with a shared boundary, ΩC ∩ ΩR = ∂ΩR ⊆ ∂ΩC .
This shared boundary must be sufficiently far from both boundary conditions, such that
dist(∂ΩR, ∂ΩR ∪ ∂ΩF ) > ∆x. Due to this immersion, it follows that ∂ΩL = ∂ΩC \ ∂ΩR

Applying these two domains, we get,

J [uC ,uR, p, τL] =

∫∫∫
ΩC

ρ

2∆t
‖uC − u∗C‖2 + ρ(uC − u∗C) · (uR − u∗R)

− p∇ · uC + τL : ε(uC)− 1

4µ
‖τL‖2

F dV

+

∫∫∫
ΩR

ρ

2∆t
‖uR − u∗R‖2 + ρ(uC − u∗C) · (uR − u∗R)

− p∇ · uR + τL : ε(uR)− 1

4µ
‖τL‖2

F dV (4.10)

where ε(u) = 1
2
(∇u + (∇u)ᵀ) is again the deformation rate tensor. τL here is defined

throughout the liquid, but for the purpose of our discretization, we choose to define actual
degrees of freedom τL|ΩC

= τ only on ΩC , using the relation τL|ΩR\∂ΩR
= 2µε(uR) for the
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complementary set. Plugging this into the above objective function, we get:

J [uC ,uR, p, τL] =

∫∫∫
ΩC

ρ

2∆t
‖uC − u∗C‖2 + ρ(uC − u∗C) · (uR − u∗R)

− p∇ · uC + τ : ε(uC)− 1

4µ
‖τ‖2

F dV

+

∫∫∫
ΩR

ρ

2∆t
‖uR − u∗R‖2 + ρ(uC − u∗C) · (uR − u∗R)

− p∇ · uR + τ : ε(uR) + µ‖ε(uR)‖2 dV (4.11)

Likewise, we define p solely on ΩC , considering that incompressibility within the reduced
fluid region is enforced by the definition of the reduced model.

We demonstrate in Appendix C that minimizing the above objective function solves
the following system,

ρ

∆t
(uC − u∗C) +∇p+∇ · τ = 0, in ΩC (4.12)

ρ

∆t
(uR − u∗R) +∇p+∇ · τ + µ∇ · ε(uR) = 0, in ΩR (4.13)

(−pI + τ)n̂ = 0, on ∂ΩL (4.14)

∇ · uC +∇ · uR = 0, on ΩC (4.15)

ε(uC)− 1

2µ
τ + ε(uR) = 0, on ΩC (4.16)

noting that uC , p, and τ are defined only on ΩC ; and uR is defined only on ΩR. This thus
solves the free surface boundary condition. We point out that the free surface boundary
condition is unaffected by our new fluid representation, due to the boundary between rep-
resentations being far away from the physical boundary. Consequently, the solid boundary
condition follows straightforwardly and simply requires the same methods for enforcing the
boundary as before.

Discretizing the optimality conditions for our objective function, and its solid boundary
condition analogue, results in the matrix-vector equation,

1
∆t

MCW
u
FW

u
L 0 W u

FGW p
L W u

FDᵀW τ
L

0 1
∆t

MR + 2JDᵀµDJᵀ JGW p
L JDᵀW τ

L

W p
LGᵀW u

F W p
LGᵀJᵀ 0 0

W τ
LDW u

F W τ
LDJᵀ 0 −1

2
µ−1W τ

FW
τ
L




uC
vR
p
τ

 =


1

∆t
MCW

u
FW

u
Lu∗

1
∆t

MRv∗R
0
0


(4.17)
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where any weights applied on vR simply become the identity matrix. This system can
then be solved using a choice of linear algebra solver. We choose to use the iterative
biconjugate gradient stabilized (BiCGSTAB) method suitable for use on general square
matrices. In our implementation, however, we do not solve this full form, but rather a
smaller pressure-velocity form to be described in the next section.

This linear system, in effect, solves the momentum balance equation separately for
the regular grid cell (first row) and the reduced model (second row), with coupling being
handled by the stress and pressure forces being applied on the boundary. An explicit
incompressibility condition is not required within the reduced model since it is enforced by
definition of the reduced model itself.

With regards to implementation, this method can easily be added to an existing varia-
tional Stokes solver due to the G and D operators remaining the same. We simply perform
the usual iteration through all faces using the same stencils, with the only difference be-
ing the handling of faces that fall inside the interior regions. For these, the weight that
would fall on a standard face is instead distributed into the interior region using the J
transformation operator.

4.3.1 Alternative Matrix-Vector Forms

This system is amenable to transformation into more convenient forms via Schur comple-
ments. That is, for a matrix-vector equation,[

A B
C D

] [
x
y

]
=

[
a
b

]
(4.18)

the equation in y can be eliminated by solving (A − BD−1C)x = a − BD−1b instead.
Should values of y be needed, a second solve for Cx+Dy = b can be done.

For our implementation, we eliminated stress to produce the pressure-velocity form: 1
∆t

MCW
u
FW

u
L +W u

FVW u
F W u

FVJᵀ W u
FGW p

L

JVW u
F

1
∆t

MR + JVJᵀ JGW p
L

W p
LGᵀW u

F W p
LGᵀJᵀ 0

uC
vR
p

 =

 1
∆t

MCW
u
FW

u
Lu∗

1
∆t

MRv∗R
0


(4.19)

where V = 2Dᵀ(W τ
F )−1µW τ

LD is the discrete volume-weighted viscosity operator. Note
that for brevity, we use V which includes explicit volume weights everywhere, even where
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they can be reduced to the identity matrix such as in the JVJᵀ term. This pressure-
velocity form is ideal for implementation simplicity, as it reduces the system’s size without
requiring any additional code. Since we do not actually need values of τ to evolve the
system, by removing it we also remove the need to construct its edge-valued grid structure.
Additionally, by explicitly solving for velocities, we avoid needing to perform another
solve—new velocities can be read directly off the solution vector, with a simple conversion
using C(x) in the case of vR.

On the converse, it is possible to eliminate the Cartesian velocities and subsequently
the generalized velocities to produce a pressure-stress form,[

A11 A12

A21 A22

] [
p
τ

]
=

[
W p
LGᵀW u

Fu∗C + ∆tW p
LGᵀJᵀB−1MRv∗R

W τ
LDW u

Fu∗ + ∆tW τ
LDJᵀB−1MRv∗R

]
(4.20)

where:

A11 = ∆tW p
LGᵀW u

F (W u
L)−1M−1

C +W p
LGᵀJᵀB−1JGW p

L (4.21)

A12 = ∆tW p
LGᵀW u

F (W u
L)−1M−1

C DᵀW τ
L +W p

LGᵀJᵀB−1JDᵀW τ
L (4.22)

A21 = ∆tW τ
LDW u

F (W u
L)−1M−1

C GW p
L +W τ

LDJᵀB−1JGW p
L (4.23)

A22 = ∆tW τ
LDW u

F (W u
L)−1M−1

C DᵀW τ
L +W τ

LDJᵀB−1JDᵀW τ
L +

1

2
µ−1W τ

FW
τ
L (4.24)

B =
1

∆t
MR + 2JDᵀµDJᵀ (4.25)

We reiterate, however, that in our implementation, we do not solve this form, nor the full
form given on Equation 4.17; we solve solely the pressure-velocity form in Equation 4.19.

The pressure-stress formulation is appealing as it is guaranteed to be symmetric positive
definite (SPD), and consequently allows for more efficient linear algebra techniques, notably
preconditioned conjugate gradient. This system differs from the SPD system given in
Larionov et al. [2017] only by the second term of each A block. The B matrix here has
a block diagonal structure and mutually couples all pressure and viscous stress samples
around each interior region’s boundary. Assuming that viscous stencils of one interior
region do not reach into a different interior region, i.e., the distance between any two
regions is at least 2∆x, then we can independently invert each 26× 26 block, one for each
interior region.

We once again point out that the same stencils used for a fully uniform case can
be reused here. The second terms of each A block all have JᵀB−1J in place of the
W u
F (W u

L)−1M−1
C in the first term. This means that we can simply use the same itera-

tions as before, replacing any faces that fall on the reduced regions with the scalar given
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(a) (b)

Figure 4.4: Viscous stencil for two reduced region boundary faces from neigh-
bouring regions with (a) one cell and (b) two cell padding. Stencil for the upright
triangle is shown filled in blue, and stencil for the inverted triangle is shown in white out-
line. Regular grid cells are shown in red, and reduced regions in green. Reduced region
faces are shown in green outline for clarity, but cells belonging to the same reduced region
are represented by the same degrees of freedom.

by JᵀB−1J. Because we solve for pressure and stresses, however, we do end up needing
to perform a subsequent solve using the known values of pressure and stresses to find the
velocities. Since we have already computed B−1, this simplifies to basic matrix-vector
arithmetic rather than a full linear solve.

4.4 Padding Sizes

We take a brief aside to discuss the size of padding required between neighbouring reduced
regions. For their reduced model pressure projection, Goldade et al. constructed tiles with
only one uniform cell padding in order to minimize the number of degrees of freedom
constructed. This was sufficient for their application because the size of the divergence
stencil (see Figure 3.6b) is small enough such that a single layer of pressure degrees of
freedom is sufficient in preventing coupling between neighbouring reduced regions. Notice
that the pressure system in Equation 3.73 has no differential operator acting between vR
and itself, which holds assuming these pressure degrees of freedom exist.

In comparison, the viscosity stencil representing the Laplace operator is significantly
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larger, as shown on Figure 4.4. Notice that with only one-cell padding, stencils of reduced
regions reach into neighbouring regions. This causes coupling between neighbouring re-
gions, manifested as nonzero off-diagonal blocks in the JVJᵀ term of the linear system,
Equation 4.19. This severely hampers performance, as it effectively locks the expressiv-
ity of neighbouring regions thus limiting their dynamics. This would also cause the SPD
form, Equation 4.20, to be computationally unfriendly, as the B matrix is no longer block
diagonal and consequently not easily invertible.

We have found that two-cell padding is sufficient for getting reasonable accuracy and
spatial convergence, as shown with analytical tests in Sections 5.3 and 5.4. The shared
velocity sample shown on Figure 4.4b is analogous to a shared pressure sample for reduced
model pressure projection, thus making a choice of two-cell padding equivalent to Goldade
et al.’s one-cell padding. We do, however, find that the iterative linear solve sometimes
has difficulty converging to a result using two-cell padding for larger problems, suggesting
that the shared velocity sample adds numerical stiffness. For these problems we find that
three cells is generally sufficient.

4.5 Implementation Details

4.5.1 Constructing Reduced and Cartesian Regions

We construct the domains, separating the reduced region from the Cartesian region, strictly
according to cell center labels. That is, we initially label all cell centers as either reduced or
Cartesian, and assign faces as being reduced region faces if they are immediately adjacent
to a reduced cell. We sketch out this labelling process on Figure 4.5.

Noting that we focus on applying only a narrow band of Cartesian regions only near
the fluid boundaries, we employ a simple partial flood fill algorithm to construct a band of
a given width. We perform this band construction separately for the free surface boundary
and solid boundary to provide a separate user parameter for independently controlling the
thickness of each boundary type.

As an initial setup, we first label the entire fluid domain to be solved as belonging to
the reduced regions, shown on Figure 4.5a. This simply includes all cells adjacent to faces
with nonzero volume weights. In a first pass, any cell adjacent to a cell that is not solved,
i.e. it is entirely air (or later entirely solid), is added to a list of boundary cells. All these
boundary cells are then labelled as Cartesian, shown on Figure 4.5b. In subsequent passes,
any reduced cell adjacent to a Cartesian cell is added to the list and turned into Cartesian
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5: Process for constructing the uniform grid and reduced regions for
a simple domain with both solid and free surface boundaries. Liquid domain is
outlined in blue, solid domain is outlined and filled in black, and air domain is filled in
white. Cells labelled for the uniform grid domain are shown in red, and those labelled for
the reduced region are shown in green.
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(a) (b)

Figure 4.6: Process for tiling the interior region for the same setup as Figure
4.5. These two steps directly continue after the labelling process in Section 4.5.1

cells. The number of these above passes determines the thickness of the surface band. Two
such secondary passes are shown on Figures 4.5c and 4.5d. We repeat this above process
for the solid boundary, doing an initial pass on Figure 4.5e and again two secondary passes
on Figures 4.5f and 4.5g.

If we are satisfied with a single reduced region, we can assign individual indices to each
cell in the uniform grid, and a single collective index to the reduced region, as shown on
Figure 4.5h. Alternatively, we can construct a tile of interior regions for greater simulation
flexibility, to be described in the next section.

4.5.2 Constructing Interior Tiles

To construct n× n sized interior tiles, we reassign every nth interior cell in each axis back
to being a Cartesian cell. To enlarge this padding to a required size m, we simply offset our
counting by [1,m] and repeat. In other words, we reassign any interior cell whose index
satisfies,

m−1∨
j=0

(∧
a

a ≡ 0 (mod n+ j)

)
(4.26)

where a iterates through the axis indices (i, j, k). This tiling step is shown on Figure 4.6a.
Recalling the tiling terminology outlined in Figure 3.8, this produces interior regions of
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size n−m and tile size n. We forewarn the reader that we use both terms in our results,
generally defaulting to interior region size but using tile size whenever it is relevant to
comparisons being made.

Once all tile boundaries are reassigned into Cartesian cells, we perform simple flood
filling in each interior region to assign each region a unique index. Overlaying a grid in this
manner may produce very small interior tiles near complicated surface geometry. We wish
to avoid solving for these small interior regions as they are likely to be easier to compute
using standard cells. To accomplish this, we construct the bounding box for each interior
region and reassign back into Cartesian cells those regions whose bounding box size along
each axis does not satisfy a minimum specified size. Figure 4.6b demonstrates such culling
of interior regions using our default minimum size of two cells on each axis.

Upon completion of the interior tiles, all degrees of freedom for interior regions and
Cartesian regions can thus be allocated. Each Cartesian face is given one degree of freedom,
and each interior region is given the number of degrees of freedom corresponding to their
reduced model.

4.5.3 Constructing the Polynomial Fit

Remembering that this reduced method is solely applied for the Stokes step, with all other
components of the solver (mainly advection) being performed on the usual uniform grid,
the above construction of reduced regions is necessarily performed at each timestep. This
means that we initially have velocities defined on the uniform grid at the start of the
Stokes step, which must be converted to generalized velocities wherever a reduced region is
constructed. Likewise, we are required to convert generalized velocities back into uniform
grid velocities at the end of the Stokes step. This conversion back is straightforwardly
performed using the C(x) transformation matrix as stated by Equation 3.62. We thus
turn our attention to the forward conversion into generalized velocities.

Because of the reduced degrees of freedom, we cannot exactly represent the fields being
replaced. As such, we construct the generalized velocities for each reduced region using
an ordinary least squares fit to the input uniform grid field. Since a generalized velocity v
can be transformed into a Cartesian velocity u using the C(x) matrix via Equation 3.62,
we aim to minimize the error between the actual velocity and its fitted velocity,

arg min
v∗
R

∑
j

∑
a

(ua,j −Ca(xj)v
∗
R)2 (4.27)

44



where a iterates through the three axes and j iterates through faces to be replaced. We
thus solve,

v̂∗R =

(∑
j

CᵀjCj

)−1(∑
j

Cᵀjuj

)
(4.28)

where we use the shorthand Cj = C(xj) and v̂∗R is our resulting best fit generalized
velocities. This formulation differs slightly from the usual (XᵀX)−1Xᵀ least squares system
where X contains a row for each sampling point, but nonetheless minimizes the required
error as shown on Appendix D. This was done to save memory costs on requiring a row
for each velocity sample, and consequently reduce the size of the matrix to be inverted.
Equation 4.28 requires only a 26 × 26 matrix inverse for each interior region, which we
perform via direct LU factorization.

The summations here collect transformations for velocities to be replaced by a given
interior region. Note that although this looks similar to the definition of the matrix J
given in Equation 3.67, j there iterates through all reduced boundary faces touched by
the viscous stencil, while here we iterate through faces that we want to influence the fitted
reduced model. This is because J accumulates forces from the regular grid and transforms
them into generalized forces on the reduced regions—any faces whose stencils require these
forces necessarily require an entry in the J matrix. For the least square system, we simply
include any velocity that we want to fit as a data point.

That being said, there is a bit of freedom in defining the iterants for j here, and it
is somewhat unclear what the correct choice is. One could either iterate through faces
strictly along the the interior region boundaries, or iterate through all faces within the
interior region domain. Taking the more mathematical perspective of the interior regions
strictly acting as boundary conditions, the former would be the more sensible option, as
the velocities occurring on the interior are irrelevant to the problem. On the other hand,
we do end up translating all velocities back to a uniform grid after dynamics are solved
for, which are then sent through to the next timestep. If the internal velocities are to
be considered as being truly physical, then the second option is more valid. This second
option is also more robust against potential degenerate cases, such as a velocity function
that is zero exactly on the boundary but varies on the interior. Such a case would be
captured as a constant velocity field if fitting only according to boundary velocities.

In our tests, we found no practical difference between the two, and settled on iterating
solely the boundary faces. This does, however, bring up the notion that if interior regions
are kept consistent between timesteps, save for the fluid’s free surface and solid boundary
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conditions cutting through them, then iterating through faces would be the clear option
as we can safely throw away the interior data.

4.5.4 Warm Starting Pressure

The temporal inconsistency of the interior regions also brings us to question the benefits
of warm starting pressure. Warm starting is the practice of using pressure values from
the prior timestep as the initial guess when using an iterative solver. Because the reduced
regions do not have valid pressure samples, as incompressibility is inherent to the reduced
model itself, there is little reason to use warm starting in our method. This may actually
cause harm as pressure values using our method differ completely from expected physical
pressures—should the interior region boundaries move, this could result in an initial guess
that is considerably far from the converged pressure values. Instead of warm starting, we
simply opt to use an initial zero vector as the initial pressure guess.

4.5.5 Putting it All Together

This completes all necessary portions of our full reduced model Stokes algorithm:

Algorithm 2: One Stokes timestep, performed in place of Line 3 of Algorithm 1.

1: compute volume integration weights (Sec 3.3.2);
2: assign liquid cell labels (Sec 4.5.1);
3: build free surface boundary layers;
4: build solid boundary layers;
5: build padding layers (Sec 4.5.2);
6: build interior region connected labels;
7: remove small interior regions;
8: assign degrees of freedom;
9: compute interior region centers of mass;

10: build least squares polynomial fit (Sec 4.5.3);
11: build generalized mass matrix (Eq 3.66);
12: construct linear system (Eq 4.19);
13: solve linear system (BiCGSTAB);
14: update velocities from interior regions (Eq 3.62);

This algorithm is a drop-in replacement for the variational Stokes method of Larionov
et al. [2017], and is performed as Line 3 in the overall fluid sim, Algorithm 1. This
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is implemented in C++ as a plugin for Houdini 18.0.532 [Side Effects Software 2020].
Additionally, all the overhead in constructing the reduced and Cartesian domains (Lines
1-7 of Algorithm 2) is adopted from Goldade et al. [2020], with much of the code being
directly ported from their implementation. The only significant additions to these steps
are support for a user-specified padding thickness as given in Section 4.5.2 (the original
implementation only constructed 1-cell padding), and separate uniform band construction
for solid and free surface boundaries as given in Section 4.5.1. The Eigen library was used
for matrix and vector structures, and to perform the BiCGSTAB linear solve [Guennebaud,
Jacob, et al., 2010].

The above algorithm highlights the simplicity in implementation, being able to be
injected into any uniform grid solver without worrying about new datatypes. This adapt-
ability comes at the cost of requiring transfers back onto the uniform grid at each timestep.
We later discuss potential improvements to this, at the cost of building a more monolithic
solver.
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Chapter 5

Results and Discussion

Here, we present results of using the new quadratic method for both unified Stokes and
decoupled pressure-viscosity problems. We perform the 3D results given in Sections 5.1
and 5.2 on an 8-core R7 1700 CPU with 16GB of RAM. 2D analytical results given on
Sections 5.3 and 5.4 are performed on a 4-core i7-7700HQ CPU with 8GB of RAM.

5.1 Honey Coil

We demonstrate that our quadratic reduced method retains the desirable free surface ac-
curacy of a fully uniform Stokes approach by replicating the liquid rope coiling instability,
as shown on Figure 5.1. We also present here the result of using our quadratic reduced
method for solely the viscous step of the decoupled approach, shown on Figure 5.1c, which
uses the system provided on Equation 4.7. On top of the desired cylindrical coil, the
Stokes system is able to retain more surface detail relative to the decoupled method, which
is consistent with results found by Larionov et al. [2017].

We compare the results of using affine regions to quadratic regions on Figure 5.2.
The affine method forms a more erratic coil, especially at the beginning, before gradually
settling to a stable coil. By comparison, the quadratic method forms a near perfect cylinder
from the start of the simulation. The difference in behaviour is consistent with earlier
observations in Section 4.1, which suggested that the affine model has convergence problems
for the viscosity equation. It is reasonable to expect that such difficulty extends into the
Stokes problem, which contains the same viscous term.
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(a) (b) (c)

Figure 5.1: Liquid rope coiling instability as simulated using our (a,b) unified
Stokes solver and (c) decoupled pressure-viscosity solver, both using quadratic
interior regions. A cutaway view of the unified Stokes solver is shown in (b), with
uniform grid cells in red and interior regions in green. Interior regions are capped at 123

with 4-cell padding between.

We point out the flexibility of the interior regions, having placed no restrictions on their
shape. In particular, these interior regions need not be convex, or even simply connected;
examples of such highly irregular regions are shown on Figure 5.3. We did not notice
any degradation in our results from having seemingly pathological interior regions. Any
irregularities in the shape of interior regions are naturally accounted for by the C mapping
matrix, which is consolidated into the generalized mass matrix, M, and transfer operator,
J.

Because of the thin feature size of the liquid coil, the size of reduced regions is greatly
limited, resulting in long aspect ratio regions. Since these regions do end up requiring the
regular Cartesian grid on the surface, this example only achieves minor runtime benefits:
the BiCGSTAB matrix-vector solve takes 2h:29m:20.7s with the quadratic interior regions
and 3h:01m:50.0s with a fully uniform grid, which corresponds to only a 17.9% reduction
relative to the full solve. The extra steps required to construct the reduced regions and
solve for the least squares fits decreases this runtime benefit. The full simulation (including
all steps external to the Stokes solve such as advection) takes 3h:48m:38.5s for the quadratic
model and 4h:07m:43.0s for the fully uniform grid, corresponding to only a 7.7% speedup.
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Figure 5.2: Sequence of frames showing the liquid coil instability simulated
using (left) an affine reduced model and (right) a quadratic reduced model.
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(a) (b) (c)

Figure 5.3: Sample non-simply connected reduced regions from the liquid rope
coil simulation.

5.2 Armadillo Drop

For a computationally friendlier example with more bulk geometry, we use the piling ar-
madillos test from Larionov et al. [2017], which drops nine copies of randomly oriented
Stanford armadillos. Simulated results using the affine, quadratic, and fully uniform mod-
els are shown on Figure 5.4, and runtime measurements are shown on Figure 5.5.

Both affine and quadratic regions have qualitatively similar results to the fully uniform
reference solution, particularly in retaining surface detail, but achieved this outcome with
significantly lower cost. The affine method in particular is nearly twice as fast as the fully
uniform method. While the linear solve time for the quadratic method is about two-thirds
the cost relative to the fully uniform case, some of that runtime improvement is again
offset by the overhead cost of constructing the quadratic system. This likely comes from
the least-squares fit, which requires a 26 × 26 direct matrix solve for each interior region.
The overhead for the affine method, which has a much smaller 11 × 11 system, is nearly
identical to the fully uniform case.

A potential method for accelerating this least squares construction would be to pre-
compute the matrix inverse for regular cube regions, noting that it depends only on the
face positions relative to the center of mass and not the input velocity data, as shown in
Equation 4.28. Prefactoring could similarly be applied to the SPD form of the linear solve.
Here, the B block defined in Equation 4.25 likewise only depends on the geometry of the
reduced region. We conjecture, however, that because most tiles in our tests are irregular,
the performance benefits from this would be negligible. In cases where there is a large
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(a) Fully Uniform (b) Affine

(c) Quadratic (d) Overlay

Figure 5.4: Nine randomly oriented viscous armadillos dropped in a pile. (a)
uses a uniform solver, (b) uses tiled affine regions, and (c) uses tiled quadratic regions. Both
(b) and (c) use a maximum interior region size of 283, with 4-cell padding. Armadillos are
made of a homogeneous fluid with µ = 500 and ρ = 1000.
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Figure 5.5: Wallclock runtime measurements for the armadillo drop example
in Section 5.2. The orange region indicates solely the linear system solve, the yellow
region indicates the overhead required in creating the Stokes system. The green region
indicates everything outside of the Stokes solver, such as APIC advection.
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number of regular tiles, it is likely that greater performance benefits can be achieved by
simply using larger tiles. Alternatively, it may also be possible to build a small library of
precomputed tiles, and attempt to find the best fit within a given irregular region, but we
leave this to future exploration.

Because the velocity field is fairly simple in this example, consisting mostly of the
free fall translational velocity, the affine and quadratic methods are very similar in result.
Both, however, deviate slightly from the uniform method at the periphery of the armadillo
models, i.e. the hands, feet, and snout. We note that the reduced region sizes that we
used were fairly generous—about half the height of an armadillo—resulting in entire limbs
being represented by single regions. This is problematic given that the bulk fluid is mostly
static; it is easy to see how an interior region that ends up connecting the bulk fluid with
a limb would quickly dissipate the limb’s ongoing momentum. The errors arising from
this are still reasonably small for this example, seeing as the affine and quadratic methods
both look physically plausible, if only lacking some higher order velocity modes. These
differences, however, are instructive in determining regions requiring more accuracy, such
as for refining the tile sizes, and may also be the topic of future exploration.

5.3 Analytical Viscosity Test Problem

To complement the evaluations of computational cost and qualitative appearances given
above, we now consider quantitative evaluations against exact analytical solutions in simple
geometries.

We examine spatial convergence of a 2D analytical test case for solely the viscous step,
Equation 3.20, using a fluid-filled π×π box with Dirichlet boundary conditions on velocity.
The fluid is homogeneous with ρ = 1, µ = 1, and an initial velocity of,

uinitial =

[
(1 + 3∆t)(sin(x) sin(y))−∆t(cos(x) cos(y))
(1 + 3∆t)(sin(x) sin(y))−∆t(cos(x) cos(y))

]
(5.1)

which gives a final velocity field:

ufinal =

[
sin(x) sin(y)
sin(x) sin(y)

]
(5.2)

Taking ∆t = 1, we solve this problem numerically using a single timestep of our reduced
viscosity-only solver, as outlined in Section 4.1, with both affine and quadratic reduced
models.
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Table 5.1: L1 errors for a viscosity-only step applied to the analytical test case
given on Section 5.3. Both tables use tiled interior regions with (a) using the affine
model and (b) using the quadratic model. Grey cells indicate tile and padding sizes too
coarse for the given resolution.

Tile / Padding
dx

1/16 1/32 1/64 1/128 1/256

16 / 2 4.982E+00 2.307E+00 9.869E-01 3.309E-01 9.653E-02
32 / 4 5.162E+00 2.438E+00 1.058E+00 3.558E-01
64 / 8 5.241E+00 2.510E+00 1.098E+00

128 / 16 5.278E+00 2.548E+00

(a) Affine

Tile / Padding
dx

1/16 1/32 1/64 1/128 1/256

16 / 2 1.748E+00 3.799E-01 4.906E-02 5.839E-03 6.952E-04
32 / 4 1.975E+00 4.036E-01 5.171E-02 5.970E-03
64 / 8 2.084E+00 4.159E-01 5.169E-02

128 / 16 2.137E+00 4.217E-01

(b) Quadratic

We compute L1 and L∞ velocity errors according to,

L1 =
∑
a

∑
j

|uexact,a(xa,j)− unumerical,a,j| (∆x)2 (5.3)

L∞ = max
a

max
j
|uexact,a(xa,j)− unumerical,a,j| (5.4)

where ∆x is the grid spacing, a iterates through the two axes, j iterates through all faces
within an axis, xa,j is the location of a staggered grid face, uexact,a is the a-axis of the true
velocity field, and unumerical,a,j is the discrete velocity sample located at the a-axis j face.

L1 errors are shown on Table 5.1, with L∞ and reconstruction errors shown in Tables
E.1 and E.2 respectively, both in Appendix E. The reconstruction error represents the
error in the least squares fit for the affine and quadratic models relative to the initial
condition, prior to any dynamics. This is slightly different from the backwards error since
it is the difference between the exact input and an approximate input into the approximate
discretized system, rather than the approximate input into the exact system.

We immediately see that the quadratic model is more accurate than the affine model in
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Table 5.2: Ratio between result error and reconstruction error at the location
of the L∞ error for the analytical test case given on Section 5.3. This may be
larger than simply dividing L∞ values from Table E.1 by reconstruction errors taken from
Table E.2 since the location of the L∞ error may have a smaller reconstruction error.

Tile / Padding
dx

1/16 1/32 1/64 1/128 1/256

16 / 2 3.012E-01 5.382E-01 6.463E-01 7.722E-01 8.496E-01
32 / 4 2.978E-01 5.697E-01 6.840E-01 7.971E-01
64 / 8 2.959E-01 5.775E-01 6.899E-01

128 / 16 2.949E-01 5.818E-01

(a) Affine

Tile / Padding
dx

1/16 1/32 1/64 1/128 1/256

16 / 2 2.419E-01 2.746E-01 2.275E-01 2.530E-01 2.978E-01
32 / 4 2.429E-01 2.778E-01 2.272E-01 2.561E-01
64 / 8 2.432E-01 2.788E-01 2.360E-01

128 / 16 2.434E-01 2.803E-01

(b) Quadratic

all respects, typically having more than an order of magnitude less error. For both models,
error is largely dependent on the physical size of the reduced regions; having smaller tiles
means the reduced model is better able to capture the local field. Taken in the opposite
perspective, having more tiles compensates for the lack of high-frequency modes in the
affine and quadratic models.

The tile and padding sizes were chosen such that each diagonal represents exactly the
same physical domain setup. The main diagonal has one full-size reduced region, the first
upper diagonal has a 2× 2 grid of reduced regions, the second has 4× 4, and so on. These
reduced regions and the padding in between are exactly the same physical size within each
diagonal regardless of resolution. We note that along each diagonal, error is relatively
constant. This makes sense as regardless of how much the interior is refined, a reduced
region occupying the same physical space will still evolve in the same manner.

Perhaps more notable is how the error of the result compares to the reconstruction
error. The ratio between the two is shown on Table 5.2. Interestingly, the quadratic model
keeps a roughly constant ratio, while the affine model has a clear increase in the ratio as
the physical tile size decreases. Exploring this further, we plot the results error against the
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reconstruction error at each reduced boundary velocity sample, shown on Figure 5.6. Here,
we see that error for the quadratic model generally follows the same linear trend throughout
the domain, albeit with an increasing error offset towards the center of the domain. From
this, it is clear that the largest errors will typically be the result of large reconstruction
errors, reinforcing the prior observation of nearly constant error ratios independent of
domain setup. Taken together, this means that the way the quadratic model performs
dynamics is a good representation of the expected fluid behaviour.

In comparison, the affine model follows the same linear trend only near the edges of the
domain. Elsewhere, the result error shows no apparent relation to the reconstruction error,
instead being correlated to the distance from the center. We note that for this problem,
the center has the greatest viscous forces. This plot shows that as viscous force increases,
the affine model breaks down, once again pointing to the missing DᵀD term mentioned
in Section 4.1. Further, because the error is strongly dependent on the problem’s viscous
force, large errors are no longer a result of large reconstruction errors—the affine fit could
be accurate, but the dynamics it imposes are not. This also means that even if the affine
tiles are decreased in size, and consequently become more accurate fits of the input velocity
field, the output velocities they produce cannot be trusted to improve in accuracy, resulting
in the increase in output error to input error ratio shown in Table 5.2.

We repeat the above test using a constant padding size, with L1 errors shown on Table
5.3, and L∞ and reconstruction errors shown on Tables E.3 and E.4 respectively. These
results show a clear increase in error as tile size increases, suggesting that the system is
quite sensitive to the amount of padding. Remembering that the reduced regions couple
all velocity samples along their boundary, increasing the number of coupled degrees of
freedom while keeping the padding the same results in less ability to resolve conflicting
boundaries. Cases where the quadratic fits of neighbouring tiles have errors with opposite
signs are common, requiring considerable padding sizes to resolve.

Additionally, while padding sizes were physically constant in Table 5.1, the constant
padding cell sizes of Table 5.3 means that their physical sizes shrink considerably for higher
resolutions. The difference between the lowest and highest resolution results in a factor of
eight decrease in physical size. While the error in fitted velocities does not change, this
does result in an increase in the derivative’s error, as the fitted velocities are effectively
pushed closer together. Due to the Laplace operator, this derivative error carries through
to influence the result.

Plotting convergence trends, as shown on Figure 5.7, gives further evidence of the
affine model’s insufficient dynamics. Because this problem has exact axis-aligned boundary
conditions, the variational approach simplifies to second-order finite differences, with all
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Figure 5.6: Result error vs reconstruction error of each reduced region bound-
ary velocity sample for the analytical viscosity-only step. (a) uses the affine model
and (b) uses the quadratic model. The color bar indicates the distance to the center of the
problem, (π/2, π/2). Both methods use a 256 × 256 resolution, with 16-cell tile sizes and
2-cell padding.
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Table 5.3: L1 errors for a viscosity-only step applied to the analytical test case
given on Section 5.3 with constant padding cell size. Both tables use tiled interior
regions with (a) using the affine model and (b) using the quadratic model. Grey cells
indicate tile and padding sizes too coarse for the given resolution.

Tile / Padding
dx

1/16 1/32 1/64 1/128 1/256

16 / 2 4.982E+00 2.307E+00 9.869E-01 3.309E-01 9.653E-02
32 / 2 7.106E+00 3.731E+00 1.931E+00 7.215E-01
64 / 2 7.787E+00 5.041E+00 3.178E+00

128 / 2 7.963E+00 6.137E+00

(a) Affine

Tile / Padding
dx

1/16 1/32 1/64 1/128 1/256

16 / 2 1.748E+00 3.799E-01 4.906E-02 5.839E-03 1.103E-03
32 / 2 4.433E+00 6.541E-01 7.708E-02 7.944E-03
64 / 2 6.394E+00 9.112E-01 1.026E-01

128 / 2 7.413E+00 1.176E+00

(b) Quadratic

volume weights in Equation 4.7 becoming identities. We see that the fully uniform case
has almost exactly second-order convergence, with an overall convergence fit of 2.01. The
quadratic model has better than second-order convergence, having an overall convergence
fit of 2.66. This is because of the error reduction resulting from both the increase in
resolution as well as the decrease in physical reduced region sizes. In effect, the method
would be second order, but has a high amount of reconstruction error at low resolutions
due to the large physical reduced region sizes that also gets reduced on refinement.

In comparison, the affine model has less than second-order convergence, with a con-
vergence rate of 1.11 at the coarsest resolution, which gradually increases to 1.78 at the
highest resolution. We see that the affine model’s dynamics actively hampers convergence.
At low resolutions, errors from the affine dynamics are significant, resulting in very poor
convergence. As resolution increases, these errors gradually reduce as the local flow rep-
resented by each region becomes closer to being affine. At the highest resolutions, despite
each tile having incorrect dynamics, the large number of tiles produce enough degrees of
freedom to approach second-order convergence. In effect, they behave as a very coarse
version of a uniform grid.
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Figure 5.7: Log-log plot of error against grid size for the viscosity-only analyti-
cal test case given in Section 5.3. 162 tiles are used with 2-cell padding size. Reduced
model L1 and L∞ errors are as given in the first rows of Tables 5.1 and E.1 respectively.

5.4 Analytical Free Surface Stokes Test Problem

We use a 2D analytical test case provided in Batty and Bridson [2010], consisting of a fluid
disk of radius r = 0.75, ρ = 1, µ = 0.1 evolved over ∆t = 1. The final velocity field is
defined using its streamfunction,

Ψ =
128

81
r4 cos(2θ) cos(

√
3 ln r)(15− 30r + 16r2) (5.5)

with r as the distance from the disk’s center and θ is the angle as measured from the
(1, 0) vector. Velocity is given by the curl of the streamfunction, u = ∇× Ψ. The initial
condition can be found by analytically evolving the final velocity backwards. Notice that
the varying velocity on the fluid surface results in a viscous stress which necessarily must
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Figure 5.8: Log-log plot of error against grid size on an analytical test case
solved using unified Stokes. Solid lines indicate L1 errors and dotted lines indicate L∞
errors. Red, yellow, and blue lines indicate uniform grids with no interior regions, affine
interior regions, and quadratic interior regions respectively. 162 tiles are used with 3-cell
padding size.

be balanced by the surface pressure. Pressure throughout the fluid is given by:

p =
512
√

3

81
r2µ sin(2θ) sin(

√
3 ln r)(15− 30r + 16r2) (5.6)

Error plots for our Stokes method using affine interior regions, quadratic interior regions,
and a reference uniform solver are shown on Figures 5.8 and 5.9, with the former plotting
error against grid size and the latter plotting against runtime. Exact error values are given
on the table in Appendix F. Timing results of each method are given on Table 5.4.

The quadratic model consistently outperforms the affine model, achieving lower errors
on the same grid resolution. While the affine method expectedly has less computational
cost than the quadratic method at the same grid resolution, the affine method’s error tends
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Table 5.4: Timing comparison for a fluid disk with known analytical solution.
All numbers are wallclock times given in seconds.

Affine Quadratic Uniform
1/16 0.696009 0.867416 0.685828
1/32 3.53121 4.40174 7.44412
1/64 18.8396 33.6367 101.695

1/128 184.232 241.191 2740.18
1/256 1703.46 4469.21

to be so large such that the quadratic method is more accurate for similar runtimes. Both
methods are shown to be considerably faster than a uniform grid of the same resolution.
While the uniform grid does have lower error, even with similar runtimes, the resolution
difference between it and the reduced models is quite stark. At high resolutions, both
reduced models achieve approximately double the resolution at the same runtimes.

Interestingly, the quadratic model has an apparent second-order convergence. Because
this problem has an irregular free surface boundary condition, we expect the variational fi-
nite difference scheme to have first-order spatial convergence [Larionov et al., 2017], which
is what we see with the uniform method. Once again, we associate the increased con-
vergence rate of the quadratic model to error reduction due to the physical shrinking of
the reduced regions. As the reduced regions shrink, the local flow becomes sufficiently
quadratic such that shrinking them further does not provide much increase in representa-
tion accuracy. In this regime, the secondary error source disappears and errors from the
variational handling of the free surface dominates, causing the quadratic model to behave
more like the uniform model with first-order accuracy. We see this at the highest resolution
plotted in Figure 5.8.

We show spatial error plots of pressures and velocities on Figures 5.10 and 5.11 re-
spectively. Errors in pressure are prevalent in the 2-cell padding result, but seem to be
dissipated for larger padding sizes. These errors naturally occur on the surface of each inte-
rior region, and is indicative of the attempt to match the reduced model with the original
fluid. The increased error for smaller padding sizes reinforces our claim that these se-
tups are dominated by the “compatibility” between neighbouring reduced regions. When
padding sizes are too small, there is not enough room to resolve conflicting errors from
neighbouring regions.

We should point out that although we speak of pressure errors here, the pressure results
from our method should not be taken to represent physical pressure in practice, even on
the usual Cartesian regions. Pressure is entirely meaningless in the reduced model setting,
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Figure 5.9: Log-log plot of error against runtime on an analytical test case
solved using unified Stokes. Solid lines indicate L1 errors and dotted lines indicate L∞
errors. Red, yellow, and blue lines indicate uniform grids with no interior regions, affine
interior regions, and quadratic interior regions respectively. 162 tiles are used with 3-cell
padding size.

once again noting that incompressibility is enforced by the definition of the reduced model.
Since pressure in the Cartesian setting acts as the Lagrange multiplier for enforcing the
divergence-free constraint, by creating regions without defined pressures, we effectively
defer errors to the boundary regions where the reduced model meets the original fluid.
This is also why warm starting using pressures from the last timestep may not necessarily
be useful, especially if the boundary regions are not consistent between timesteps.
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(a) (b) (c)

Figure 5.10: Pressure spatial error plots for the analytical test case given in
Section 5.4. Normalized error for each subfigure is plotted from green (lowest) to red
(highest), and is only shown for uniform grid cells. The simulation resolution is dx = 1/64
in all three cases, with a tile size of 163. (a), (b), and (c) show results for 2-, 3-, and 4-cell
padding sizes respectively. The black circular outline represents the free surface boundary
condition.

(a) (b) (c)

Figure 5.11: Velocity spatial error plots for the analytical test case given in
Section 5.4. Normalized error for each subfigure is plotted from green (lowest) to red
(highest). A light grey background shows the positioning of uniform grid cells. The
simulation resolution is dx = 1/64 in all three cases, with a tile size of 163. (a), (b), and
(c) show results for 2-, 3-, and 4-cell padding sizes respectively. The black circular outline
represents the free surface boundary condition.
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Chapter 6

Conclusions and Future Work

We have demonstrated that the reduced model provides qualitatively similar results with
faster runtimes. While the quadratic model is more computationally expensive than the
affine model, it is better able to capture viscous forces, with errors that reliably reduce
under refinement. The affine model is, however, shown to be sufficient in simple flows
represented by small enough interior regions, as demonstrated by the armadillo drop test.
Both methods thus allow for physically plausible simulation of Stokes and Navier-Stokes
flow at higher resolutions than fully uniform solvers.

We note that runtime improvement highly differs between problems; simpler velocity
fields with more bulk fluid are amenable to larger tiles, providing greater runtime improve-
ments. Simulations with small feature sizes and large changes in the velocity field, such as
the liquid rope coil, only result in marginal performance benefits which may be offset by
the increased overhead in constructing the interior regions.

We also claim, however, that a significant issue in attempting to achieve greater perfor-
mance is the difficulty in choosing parameters—interior region size, padding size, and error
tolerance—for any given problem. The system is highly sensitive to the size of the padding
between interior regions; smaller padding sizes seem to result in systems dominated by
compatibility error between neighbouring regions, but larger padding sizes introduce more
degrees of freedom and hence higher computational cost. Likewise, larger interior regions
couple more boundary samples, increasing stiffness in exchange for the reduction in internal
degrees of freedom. Physically larger reduced regions also result in larger representation
error, with larger domains being more likely to contain higher order modes not captured
by the reduced models.

Despite these issues, we believe that the quadratic reduced model for the Stokes problem
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holds promise, particularly the SPD form given in Equation 4.20. While an SPD form is
not a panacea, we nonetheless note the desirable property of being able to use the more
efficient conjugate gradient method for the linear solve. In addition, a strictly pressure-
stress form has the added benefit of providing a consistent metric for error tolerance in
choosing when to halt the iterative linear solver. Because the variables we chose to solve
for on Equation 4.19 include vR, whose entries wholly depend on the reduced model being
used, error tolerances are not comparable between models. For example, the quadratic
model contains velocity entries modulated by x̃2, meaning that adopting a tolerance of 0.1
from the uniform case could produce velocities that deviate by as much as 0.1x̃2. Using a
pressure-stress form mitigates this issue, setting a problem domain defined using the same
variables as the uniform grid method, allowing for more fair comparisons to be drawn.

Our results have also shown the potential value of pursuing an adaptivity method for
the interior regions. While our reduced method does have spatial adaptivity in the sense
of using a uniform grid on the surface and the reduced model on a tiled interior, further
adaptivity that controls the size of interior regions could improve runtime and accuracy.
A single global tile size was shown to be problematic for the armadillo drop test, which
had a simple bulk fluid but transient smaller scale flows. Tile-level adaptivity modulated
by the complexity of the velocity field would avoid such issues. Because we use a least
squares fit, we already have a practical metric for measuring how well the local flow is
approximated. A straightforward method for achieving adaptivity would simply be to
start coarse and refine any interior region with large least squares residuals. This also
provides a potential framework for p-adaptivity, in which different tiles could use different
degree polynomials. Before refining spatially, one could first check if fitting a higher order
model is sufficient. Of course, much of this is contingent on whether the increased cost of
overhead is outweighed by the performance improvement, which we suspect may be true
only for very high resolution problems.

Temporally consistent tiles may also provide accuracy improvements, as well as allowing
use of warm starting to reduce iterative solver runtimes. This also leads directly into a more
monolithic solver that forgoes transferring reduced model regions back onto the regular
grid. Keeping interior regions between timesteps, only updating them near surfaces where
they change, may improve the overhead cost of our method. This line of research is
significantly more involved, requiring new methods particularly with regards to handling
advection within the reduced regions.
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Appendix A

Reduced Model Viscosity Proof

Here follows a proof that the objective function given in Equation 4.2 solves the system
given in Equations 4.3-4.5.

We construct the optimality condition by taking J [uC + εωC ,uR + εωR] and equating
the term linear in ε to 0:

0 =

∫∫∫
ΩC

ρ(uC − u∗C) · ωC + ρ(uC − u∗C) · ωR

+ 2∆tµ ε(uC) : ε(ωC) + 2∆tµ ε(uC) : ε(ωR) dV

+

∫∫∫
ΩR

ρ(uR − u∗R) · ωC + ρ(uR − u∗R) · ωR

+ 2∆tµ ε(uR) : ε(ωC) + 2∆tµ ε(uR) : ε(ωR) dV (A.1)

where ε(u) = 1
2
(∇u+(∇u)ᵀ) is the deformation rate tensor. Since ωC and ωR are arbitrary

test functions, first take ωR = 0. This eliminates half of the above terms; taking the
remaining terms and applying integration-by-parts to the tensor contractions, we get:

0 =

∫∫∫
ΩC

(ρ(uC − u∗C)− 2∆tµ∇ · ε(uC)) · ωC dV (A.2)

+

∫∫
∂ΩC

2∆tµε(uC)n̂C · ωC dA (A.3)

+

∫∫∫
ΩR

(ρ(uR − u∗R)− 2∆tµ∇ · ε(uR)) · ωC dV (A.4)

+

∫∫
∂ΩR

2∆tµε(uR)n̂R · ωC dA (A.5)
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Factoring out ωR, the rest of the integrand of each term is thus identically zero, arriving
at the conditions,

0 = ρ(uC − u∗C)− 2∆tµ∇ · ε(uC), in ΩC (A.6)

0 = ρ(uR − u∗R)− 2∆tµ∇ · ε(uR), in ΩR (A.7)

0 = ε(uC)− ε(uR), on ∂ΩR (A.8)

with the last term resulting from the shared boundary, ∂ΩR ⊆ ∂ΩC , with boundary normals
pointing in opposite directions, n̂C = −n̂R. It thus clearly follows that:

uC = uR, on ∂ΩR (A.9)

Taking ωC = 0 results in the same system, just with ωR as the arbitrary test function. The
objective function thus satisfies the required viscosity system.

�
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Appendix B

Full Quadratic Model

We demonstrate the full quadratic model with 26 degrees of freedom via the definition of
C(x) (given on next page):
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Cᵀ(x) =



1 0 0
0 1 0
0 0 1
x̃ 0 −z̃
ỹ 0 0
z̃ 0 0
x̃2 0 −2x̃z̃
x̃ỹ 0 −ỹz̃
x̃z̃ 0 −1

2
z̃2

ỹ2 0 0
ỹz̃ 0 0
z̃2 0 0
0 x̃ 0
0 ỹ −z̃
0 z̃ 0
0 x̃2 0
0 x̃ỹ −x̃z̃
0 x̃z̃ 0
0 ỹ2 −2ỹz̃
0 ỹz̃ −1

2
z̃2

0 z̃2 0
0 0 x̃
0 0 ỹ
0 0 x̃2

0 0 x̃ỹ
0 0 ỹ2



(B.1)

where x̃ = x− xCOM and likewise for ỹ and z̃.
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Appendix C

Reduced Model Stokes Proof for Free
Surfaces

Here follows a proof that the objective function given in Equation 4.11 solves the system
given in Equations 4.12-4.16.

We can construct the optimality conditions by equating the linear term of J [uC +
εωC ,uR + εωR, p+ εq, τ + εσ] to zero:

0 =

∫∫∫
ΩC

ρ

∆t
(uC − u∗C) · ωC +

ρ

∆t
(uC − u∗C) · ωR − q∇ · uC + σ : ε(uC)

− p∇ · ωC − p∇ · ωR + τ : ε(ωC) + τ : ε(ωR)− 1

2µ
τ : σ dV

+

∫∫∫
ΩR

ρ

∆t
(uR − u∗R) · ωC +

ρ

∆t
(uR − u∗R) · ωR − q∇ · uR + σ : ε(uR)

− p∇ · ωC − p∇ · ωR + τ : ε(ωC) + τ : ε(ωR)

+ µε(uR) : ε(ωC) + µε(uR) : ε(ωR) dV (C.1)
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Applying integration-by-parts to the pressure and viscous stress terms, we get:

0 =

∫∫∫
ΩC

ρ

∆t
(uC − u∗C) · ωC +

ρ

∆t
(uC − u∗C) · ωR − q∇ · uC + σ : ε(uC)

+∇p · ωC +∇p · ωR −∇ · τ · ωC −∇ · τ · ωR −
1

2µ
τ : σ dV

+

∫∫
∂ΩC

− (pIn̂C) · ωC − (pIn̂C) · ωR + τ n̂C · ωC + τ n̂C · ωR dA

+

∫∫∫
ΩR

ρ

∆t
(uR − u∗R) · ωC +

ρ

∆t
(uR − u∗R) · ωR − q∇ · uR + σ : ε(uR)

+∇p · ωC +∇p · ωR −∇ · τ · ωC −∇ · τ · ωR − µ∇ · ε(uR) · ωC − µ∇ · ε(uR) · ωR dV

+

∫∫
∂ΩR

− (pIn̂R) · ωC − (pIn̂R) · ωR + τ n̂R · ωC + τ n̂R · ωR

+ µε(uR)n̂R · ωC + µε(uR)n̂R · ωR dA

Since ωC , ωR, q, and σ are arbitrary test functions, first take all except ωC to be zero. This
gives:

0 =

∫∫∫
ΩC

( ρ

∆t
(uC − u∗C) +∇p−∇ · τ

)
· ωC

+

∫∫
∂ΩC

(−pI + τ) n̂C · ωC dA

+

∫∫∫
ΩR

( ρ

∆t
(uR − u∗R) +∇p−∇ · τ − µ∇ · ε(uR)

)
· ωC dV

+

∫∫
∂ΩR

(−pI + τ)n̂R · ωC dA

The integrands each translate directly to the system:

ρ

∆t
(uC − u∗C) +∇p+∇ · τ = 0, in ΩC (C.2)

ρ

∆t
(uR − u∗R) +∇p+∇ · τ + µ∇ · ε(uR) = 0, in ΩR (C.3)

(−pI + τ)n̂C = 0, on ∂ΩC (C.4)

(−pI + τ)n̂R = 0, on ∂ΩR (C.5)

Remembering that ∂ΩL = ∂ΩC \ ∂ΩR, and that the normals of the shared boundary point
in opposite directions, n̂C = n̂R, then the last two equations cancel on the shared boundary,
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leaving the free surface boundary condition:

(−pI + τ)n̂ = 0, on ∂ΩL (C.6)

The same system is given when taking all test functions except ωR to be zero. Setting all
except q as zero gives:

0 =

∫∫∫
ΩC

q∇ · uC dV +

∫∫∫
ΩR

q∇ · uR dV (C.7)

We independently constrain ∇·uR = 0 on the interior Ωo
R by the definition of uR, therefore

it follows that,

0 =

∫∫∫
ΩC

q∇ · uC + q∇ · uR dV (C.8)

where domains of integration are enforced by where uR is defined. That is, the second term
applies only on the shared boundary ∂ΩR. This recovers the divergence-free condition from
the integrands after factoring out q. Setting all except σ as zero gives:

0 =

∫∫∫
ΩC

σ : ε(uC)− 1

2µ
τ : σ dV +

∫∫∫
ΩR

σ : ε(uR) dV (C.9)

Once again, combining the integrations where the last term applies only on the shared
boundary gives,

0 =

∫∫∫
ΩC

σ : ε(uC)− 1

2µ
τ : σ dV + σ : ε(uR) dV (C.10)

which recovers the viscous equation after factoring out σ. We thus have demonstrated that
optimizing the objective function recovers the required system.

�
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Appendix D

Least Squares Error Minimization

We derive the least squares system, Equation 4.28, from the minimization of the sum of
the squared residuals, Equation 4.27. The vector residual for a single face j is:

ej = uj −C(xj)v (D.1)

The sum of the squared residuals over all faces is thus:∑
j

eᵀjej =
∑
j

(uj −C(xj)v)ᵀ (uj −C(xj)v) (D.2)

=
∑
j

(
uᵀjuj − 2vᵀCᵀjuj + vᵀCᵀjCjv

)
(D.3)

Minimizing this error with respect to v, the first derivative must be zero:

∂

∂v

(∑
j

eᵀjej

)
=
∑
j

(
−2Cᵀju + 2CᵀjCjv

)
= 0 (D.4)

This gives our least squares system:∑
j

Cᵀjuj =
∑
j

CᵀjCjv (D.5)
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Appendix E

Error Tables for Analytical Viscosity
Problem
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Table E.1: L∞ errors for a viscosity-only step applied to the analytical test case
given on Section 5.3. Both tables use tiled interior regions with (a) using the affine
model and (b) using the quadratic model. Tile and padding sizes were chosen such that
each diagonal has interior interior regions at exactly the same spatial locations. Grey cells
indicate tile and padding sizes too coarse for the given resolution. The main diagonal has
exactly one full-size tile, and the upper diagonals have 4, 16, 64, and 256 tiles respectively.

Tile / Padding
dx

1/16 1/32 1/64 1/128 1/256

16 / 2 7.878E-01 3.187E-01 1.547E-01 5.417E-02 1.537E-02
32 / 4 8.074E-01 3.345E-01 1.645E-01 5.782E-02
64 / 8 8.156E-01 3.432E-01 1.702E-01

128 / 16 8.194E-01 3.477E-01

(a) Affine

Tile / Padding
dx

1/16 1/32 1/64 1/128 1/256

16 / 2 3.129E-01 6.054E-02 1.084E-02 1.432E-03 1.870E-04
32 / 4 3.415E-01 6.445E-02 1.139E-02 1.598E-03
64 / 8 3.557E-01 6.656E-02 1.213E-02

128 / 16 3.627E-01 6.784E-02

(b) Quadratic
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Table E.2: L∞ reconstruction errors for the analytical test case given on Section
5.3. The reconstruction error compares solely the (a) affine and (b) quadratic least squares
fits to the initial condition, before dynamics are applied. Tile and padding sizes were chosen
such that each diagonal has interior interior regions at exactly the same spatial locations.
Grey cells indicate tile and padding sizes too coarse for the given resolution. The main
diagonal has exactly one full-size tile, and the upper diagonals have 4, 16, 64, and 256 tiles
respectively.

Tile / Padding
dx

1/16 1/32 1/64 1/128 1/256

16 / 2 2.616E+00 1.086E+00 3.658E-01 1.115E-01 2.923E-02
32 / 4 2.712E+00 1.121E+00 3.803E-01 1.158E-01
64 / 8 2.757E+00 1.138E+00 3.876E-01

128 / 16 2.778E+00 1.146E+00

(a) Affine

Tile / Padding
dx

1/16 1/32 1/64 1/128 1/256

16 / 2 1.293E+00 3.407E-01 4.766E-02 6.107E-03 7.695E-04
32 / 4 1.406E+00 3.611E-01 5.021E-02 6.441E-03
64 / 8 1.462E+00 3.708E-01 5.144E-02

128 / 16 1.490E+00 3.756E-01

(b) Quadratic
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Table E.3: L∞ errors for a viscosity-only step applied to the analytical test
case given on Section 5.3 with constant padding size. Both tables use tiled interior
regions with (a) using the affine model and (b) using the quadratic model. Grey cells
indicate tile and padding sizes too coarse for the given resolution. The main diagonal has
exactly one full-size tile, and the upper diagonals have 4, 16, 64, and 256 tiles respectively.

Tile / Padding
dx

1/16 1/32 1/64 1/128 1/256

16 / 2 7.878E-01 3.187E-01 1.547E-01 5.417E-02 1.537E-02
32 / 2 9.454E-01 4.708E-01 2.667E-01 1.059E-01
64 / 2 9.878E-01 6.259E-01 4.153E-01

128 / 2 9.979E-01 7.617E-01

(a) Affine

Tile / Padding
dx

1/16 1/32 1/64 1/128 1/256

16 / 2 3.129E-01 6.054E-02 1.084E-02 1.432E-03 2.172E-04
32 / 2 6.366E-01 9.054E-02 1.599E-02 2.325E-03
64 / 2 8.422E-01 1.170E-01 2.127E-02

128 / 2 9.428E-01 1.423E-01

(b) Quadratic
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Table E.4: L∞ reconstruction errors for a viscosity-only step applied to the
analytical test case given on Section 5.3 with constant padding size. The recon-
struction error compares solely the (a) affine and (b) quadratic least squares fits to the
initial condition, before dynamics are applied. Grey cells indicate tile and padding sizes
too coarse for the given resolution. The main diagonal has exactly one full-size tile, and
the upper diagonals have 4, 16, 64, and 256 tiles respectively.

Tile / Padding
dx

1/16 1/32 1/64 1/128 1/256

16 / 2 2.616E+00 1.086E+00 3.658E-01 1.115E-01 2.923E-02
32 / 2 3.362E+00 1.344E+00 4.723E-01 1.342E-01
64 / 2 3.699E+00 1.470E+00 5.295E-01

128 / 2 3.854E+00 1.532E+00

(a) Affine

Tile / Padding
dx

1/16 1/32 1/64 1/128 1/256

16 / 2 1.293E+00 3.407E-01 4.766E-02 6.107E-03 7.695E-04
32 / 2 2.429E+00 4.485E-01 6.210E-02 7.941E-03
64 / 2 3.162E+00 5.072E-01 7.011E-02

128 / 2 3.568E+00 5.376E-01

(b) Quadratic
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Appendix F

Error Tables for Analytical Free
Surface Stokes Problem

Table F.1: Error values for the analytical test case given in Section 5.4.

Affine L1 Affine L∞ Quadratic L1 Quadratic L∞ Uniform L1 Uniform L∞
1/16 2.2858E+00 1.6646E+00 1.5582E+00 1.2112E+00 4.5395E-02 3.0139E-02
1/32 1.5643E+00 1.2452E+00 1.1511E+00 7.2727E-01 2.2576E-02 3.1938E-02
1/64 4.7645E-01 6.0261E-01 1.1502E-01 1.2482E-01 1.0988E-02 2.3042E-02

1/128 2.4068E-01 2.9071E-01 2.0523E-02 2.5571E-02 5.8821E-03 1.4434E-02
1/256 1.0007E-01 1.1680E-01 1.1193E-02 1.2536E-02
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