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Abstract 

Mining operations at Giant and Con mines (Northwest Territories, Canada) resulted in the release of >20,000 tonnes of 

arsenic trioxide (As2O3) into the atmosphere, mainly during the 1950s, which were deposited on the surrounding 

landscape. Studies of arsenic concentrations in lake water and sediment have concluded that no potential ecosystem health 

effects exist beyond a 40-km radius of the mines. However, paleolimnological studies at distances well beyond 100-km 

have identified elevated arsenic concentrations aligning with the timing of peak emissions. To improve characterization of 

the legacy footprint of emissions, spatiotemporal patterns of metal deposition were reconstructed from the analysis of 

sediment cores at lakes located 10-40 km (near-field) and 50-80 km (far-field) along the prevailing northwesterly wind 

direction (NW) and 20-40 km to the northeast (NE). Results based on concentrations of mining-associated metal(loids) 

(arsenic, antimony, lead) in radiometrically-dated (210Pb, 137Cs) sediment cores, enrichment factors, and total excess 

inventories for arsenic and antimony assert that deposition of these pollutants was greatest closest to the mines and along 

the prevailing wind direction (NW). Enrichment is evident as far as 80-km to the NW (considerable for arsenic; severe for 

antimony) and 40-km to the NE (considerable for arsenic; severe for antimony) suggesting pollution from the mines likely 

travelled distances beyond those explored here. Additionally, the presence of elevated metal concentrations in uppermost 

sediment strata at near-field lakes suggest that deposition of anthropogenic-sourced metals from lake catchments remains 

ongoing. Differences in the degree of enrichment and stratigraphic profiles among lake groups are likely due to 

availability of catchment-sourced legacy metals and post-depositional mobilization from stores in lake sediment. Long-

term sources of legacy metals in the near-field environment urge further research on metal mobilization linkages between 

terrestrial and aquatic ecosystems.  

  



 

iv 

Acknowledgements 

First and foremost, I would like to thank my supervisors, Roland and Brent, without whom this thesis would not have 

been possible. Roland, thank you for taking a chance on an undergraduate student you barely knew. Brent, thank you for 

your unwavering support and guidance through not one, but two degrees. 

I always dreamt of being an author when I grew up (albeit, of vampire novels) – and now I can finally say I am. Thank 

you for sharing my love of writing and for providing me with endless inspiration.  

Together, you pushed me out of my comfort zone. You made sure that I took advantage of every opportunity that came 

my way. With your encouragement (and financial support), I was lucky enough to visit some of Canada’s most beautiful 

landscapes, travel to countless conferences, and even serve as a science instructor at a remote camp for Indigenous youth. 

My thesis opened a lot of doors for me, but I would not have been able to open any of them without you.  

To Dr. Mike English – who did not think twice about bringing a very unexperienced young woman into the field with him 

in Yellowknife. You made my first northern field work experience very memorable, and the three back-to-back layovers 

more bearable. Thank you for being so kind and showing me all that Yellowknife has to offer. Your expertise and years of 

experience do not go unnoticed. I wish you all the best in your retirement. 

To my office mate and former undergraduate thesis mentor – Mitch, thank you for always being there to lend a helping 

hand and being the academic big brother (and friend) I didn’t know I needed. You have answered more of my questions 

than google has. 

To our old co-op student that never left – Mia, you knew after just a couple of days in Yellowknife together that I could 

not be bothered before coffee. I only wish we’d met sooner! 

To my best friend and sister – Anna, thank you for all of your love and emotional support. You are my biggest 

cheerleader, and I am yours.  

To my parents, Jack and Emilia – thank you for understanding that this too was a job. Even when you didn’t understand, 

you supported me. I hope I’ve made you proud. 

To my life partner, best friend, roommate, and now co-dog parent – Eoin, I cannot thank you enough for your love, 

patience, and understanding over the last two years. You still make me feel like my research is the coolest thing in the 

whole wide world. The job offers are coming – I promise Bernie! 



 

v 

To all of the other students, post-docs, technicians, and research associates in the Hall/Wolfe lab, the SAMMS team, and 

our many field assistants – thank you for creating this unique opportunity for me and making the last couple of years so 

enjoyable. 

Finally, thank you to all of the organizations that have so generously supported me over the last two years: Natural 

Sciences and Engineering Research Council of Canada, Royal Bank of Canada, The Water Institute, Global Water 

Futures, Polar Continental Shelf Program, Northern Scientific Training Program, Canadian Polish Millennium Fund, 

University of Waterloo, and Wilfrid Laurier University. 



 

vi 

Table of Contents 

AUTHOR'S DECLARATION ................................................................................................................................................ ii 

Abstract .................................................................................................................................................................................. iii 

Acknowledgements ................................................................................................................................................................ iv 

List of Figures ...................................................................................................................................................................... viii 

List of Tables ......................................................................................................................................................................... ix 

Chapter 1 Introduction ............................................................................................................................................................ 1 

1.1 Yellowknife’s mining history ....................................................................................................................................... 1 

1.2 Past studies .................................................................................................................................................................... 3 

1.3 Research objectives ....................................................................................................................................................... 4 

1.4 Study location ............................................................................................................................................................... 5 

Chapter 2 Research manuscript for submission .................................................................................................................... 12 

2.1 Introduction ................................................................................................................................................................. 13 

2.2 Methods ....................................................................................................................................................................... 14 

2.2.1 Study location ...................................................................................................................................................... 14 

2.2.2 Field methods ....................................................................................................................................................... 15 

2.2.3 Laboratory analyses ............................................................................................................................................. 15 

2.2.4 Numerical analyses .............................................................................................................................................. 16 

2.3 Results ......................................................................................................................................................................... 18 

2.3.1 Sediment core chronologies ................................................................................................................................. 18 

2.3.2 Metal stratigraphic profiles .................................................................................................................................. 19 

2.3.3 Enrichment factors ............................................................................................................................................... 20 

2.3.4 Excess metal inventories ...................................................................................................................................... 21 

2.4 Discussion ................................................................................................................................................................... 22 

2.4.1 Delineating the Giant Mine footprint ................................................................................................................... 22 

2.4.2 Influence of catchment and diagenetic processes on metal stratigraphic profiles................................................ 24 

2.5 Conclusions ................................................................................................................................................................. 25 

Chapter 3 Conclusions .......................................................................................................................................................... 33 

3.1 Key findings and relevance of research ...................................................................................................................... 33 

3.2 Future recommendations ............................................................................................................................................. 34 

References ............................................................................................................................................................................. 36 

Appendix A Study site information ...................................................................................................................................... 46 



 

vii 

Appendix B Chronology information ................................................................................................................................... 47 

Appendix C Carbon and nitrogen elemental and isotopic analysis ....................................................................................... 65 

Appendix D Loss-on-ignition ............................................................................................................................................... 68 

Appendix E Exploration of the use of generalized additive models (GAMs) to establish sediment background 

concentrations ....................................................................................................................................................................... 80 

Appendix F Reported solid-phase metal concentrations measured on 1 cm intervals of study lakes at ALS Laboratories 

(Waterloo, ON) ..................................................................................................................................................................... 93 

 



 

viii 

List of Figures 

Figure 1: Historical release of arsenic trioxide into the atmosphere at both Giant and Con mine 

between the years 1947 and 1974. 

p. 8 

Figure 2: Dissolved arsenic concentrations in surface waters of select lakes within a 30-km 

radius of Giant Mine shown by respective bedrock geology. 

p. 9 

Figure 3: Average annual amount of hours wind is blown from each direction based on data 

from Environment Canada’s climate station in Yellowknife. 

p. 10 

Figure 4: Evidence of arsenic enrichment in lake sediments 140 km from Giant Mine. p. 11 

Figure 5: Map showing locations of the study lakes relative to the area of influence of Giant 

Mine emissions identified by Palmer et al. (2015). 

p. 29 

Figure 6: Profiles of 210Pb, 226Ra, and 137Cs activity shown stratigraphically for lakes along the 

northwest and northeast transects. 

p. 30 

Figure 7: Stratigraphic profiles of arsenic, antimony, and lead for lakes across the northwest 

and northeast transects. 

p. 31 

Figure 8: Enrichment Factors for arsenic and antimony at NW transect near-field, far-field, and 

NE transect lakes. 

p. 32 

Figure 9: Calculated excess metal inventories for arsenic and antimony at all study lakes. p. 33 

 



 

ix 

List of Tables 

 

Table 1: Additional basin characteristics of lakes sampled to the northeast of Yellowknife, Northwest 

Territories 

p. 7 

Table 2: Selected basin characteristics of study lakes to the northwest and northeast of Giant Mine. p. 28 

  





 

1 

Chapter 1 

Introduction 

1.1 Yellowknife’s mining history 

Gold mines around the world have sparked the interest of researchers and have led them to investigate their impacts on 

surface waters (Grosbois et al. 2011, Cai et al. 2017), groundwater (Keshavarzi et al. 2012), fluvial and marine sediments 

(Posada-Ayala et al. 2016), and lake and wetland sediments (Morra et al. 2015, Kinimo et al. 2018, Sprague and Vermaire 

2018). In Canada’s subarctic, mining is a significant economic activity. The Northwest Territories is naturally rich in 

minerals such as gold, zinc, and cobalt (Government of Northwest Territories 2016), which have provided the opportunity 

for growth and development through the exploration and subsequent exploitation of natural resources. Yellowknife, the 

capital of the Northwest Territories, was first visited by prospectors in 1896 which eventually led to the establishment of 

the city (Indigenous and Northern Affairs Canada 2018). The NWT’s first mine (uranium, silver, radium) was opened in 

1933 on Great Bear Lake (Silke 2009). However, it wasn’t until 1935 that gold was found on the northern shores of Great 

Slave Lake. 

Yellowknife’s gold is found within arsenopyrite ores of the Archean Supergroup Greenstone volcanic belt in the Slave 

Geological Province (Hocking et al. 1978, Silke 2009, Fawcett et al. 2015). Here, the deposit is surrounded by the 

Western Plutonic Complex to the west and the Burwash Formation to the east (Boyle 1960). The discovery of the deposit 

led to the development of two major gold mines on the eastern shores of Yellowknife Bay, the Consolidated Mining and 

Smelting Company of Canada Ltd. (Con Mine) in 1938 and Giant Yellowknife Gold Mines Ltd. (Giant Mine) in 1948 

(Sandlos and Keeling 2012). Ownership of the mines changed numerous times over their life cycle until Giant Mine was 

taken over by the Government of Canada in 1999 until its official closure in 2004 (Galloway et al. 2012).  

The gold at Giant was refractory (i.e. encapsulated within other grains) and found primarily in quartz-carbonate veins 

scattered with sulphide mineralization as arsenopyrite (FeAsS) and pyrite (Jamieson 2014, Government of Northwest 

Territories 2016). To a lesser extent, stibnite and various antimony sulphosalts were also present in the ore (Coleman 

1957, Jamieson 2014, Walker et al. 2014). The sulphide ore was not amenable to cyanidation and as a result required 

high-temperature roasting as a pre-treatment. Antimony-bearing minerals present in the ore further complicated the 

extraction process (Marsden and House 2006, Fawcett and Jamieson 2011). However, at the time, roasting was the most 

sophisticated approach available and was deemed appropriate given the lack of resources (SRK Consulting Engineers and 

Scientists 2002). Roasting began at neighbouring Con mine in 1942 when arsenopyrite was encountered. However, this 

lasted only several months due to wartime restrictions. Roasting at Con Mine resumed in 1948 and was followed shortly 

after by Giant Mine in 1949 (Sandlos and Keeling 2012). Roasting occurred at a temperature of 500 degrees Celsius 

(Walker et al. 2005; 2014, Fawcett et al. 2015), and oxidation of arsenic and sulfur released arsenic trioxide (As2O3) and 

sulfur dioxide (SO2) into the atmosphere as a by-product (Hocking et al. 1978, Hutchinson et al. 1982). While both arsenic 
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and sulfur were released in large amounts during the roasting process, only arsenic was determined to be of serious 

concern and deemed a contaminant (Hocking et al. 1978). 

Roasting continued until 1999 and released over 20,000 tonnes of arsenic trioxide into the atmosphere - the majority of 

which was released during the first 3 years of the mine’s operation (1949-1951) (Figure 1; Hocking et al. 1978, Galloway 

et al. 2015, Van Den Berghe et al. 2018). Also incorporated into roaster dusts were antimony and other metals such as 

lead (SRK Consulting Engineers and Scientists 2002, Indigenous and Northern Affairs Canada 2007). Some of the ore at 

Giant was free-milling and did not require roasting, however, the supply was exhausted early on (Tait 1961). At Con Mine 

in contrast, only ~20% of the ore was refractory, resulting in a considerably smaller release of emissions (Hutchinson et 

al. 1978, Sandlos and Keeling 2012, Galloway et al. 2015). Emissions from Con Mine were as a result much less 

substantial overall and the ores free-milling nature allowed for the installation of a wet scrubber system in 1949 (Indian 

and Northern Affairs Canada 2007). Instead, arsenic and sulfur waste were deposited into ponds as a slurry which 

eventually evolved into the adoption of a pressure-oxidation method further reducing waste in the 1970s (Schuh et al. 

2018).  

Giant Mine released an estimated 7,800 tonnes of arsenic trioxide emissions between 1949 and 1951 alone and 

remediation costs are expected to cost over a billion dollars (Jamieson 2014, Thienpont et al. 2016). Prior to 1951, 

emissions were released directly into the atmosphere (Indian and Northern Affairs Canada 2007). During this time, dust 

build-up in the roaster stack was routinely cleaned and disposed of in areas ‘north of the property’, the locations of which 

were not recorded (SRK Consulting Engineers and Scientists 2002). In the Yellowknife region, studies revealed that mine 

emissions of arsenic trioxide increased the amount of respiratory, psychoneurotic, and other disorders (De Villiers and 

Baker 1969, Hocking et al. 1978). While workers at the mine site expressed concerns about potential health risks in 1949 

(SRK Consulting Engineers and Scientists 2002), efforts to reduce emissions did not take place until 1951 after the death 

of two young Dene boys from acute arsenic poisoning (Hutchinson et al. 1982, Sandlos and Keeling 2012, Thienpont et 

al. 2016). Pollution abatement measures were initially introduced in 1951 with the installation of the first Cottrell 

precipitator and again in 1955. However, emissions weren’t significantly reduced until a bag house dust collector was 

installed in 1958 (Hocking et al. 1978, Indian and Northern Affairs Canada 2007).  

The roasting process created a highly soluble and more toxic form of arsenic (Hutchinson et al. 1982, Jamieson 2014). 

However, arsenic is also a naturally occurring element and can be equally harmful to living organisms when encountered 

within the Earth’s crust (Matschullat and Deschamps 2011). Therefore, natural processes can also release arsenic into the 

human environment through a combination of weathering of rock and soil, biological activity, and natural disasters 

(Bajpai and Upreti 2012). Inorganic arsenic, like that found in the ores at Giant Mine, is also released through the 

combustion of fossil fuels, the use of fertilizers, in medicine, pigments, glass, and through sewage (Smedley and 

Kinniburgh 2002). The toxicity of arsenic in the environment does, however, depend on its speciation and the mineralogy 

of its host (Sharma and Sohn 2009, Palmer et al. 2015, Houben et al. 2016). 

The majority (>237,000 dry tonnes) of arsenic trioxide released over the mine’s life cycle is now stored underground 

(Indian and Northern Affairs Canada 2007, Jamieson 2014). More than 56 methods were explored for the storage of the 
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arsenic trioxide dust but a lack of long-term solutions and lack of market for arsenic trioxide led to the adoption of 

underground storage techniques (SRK Consulting Engineers and Scientists 2002). The benefit of storing arsenic 

underground was that it was trapped between permafrost layers which would prevent it from flowing through groundwater 

and eventually to the surface. There have however been concerns expressed about the suitability of these underground 

stopes and storage areas, given the recent increases in precipitation and temperature (Indian and Northern Affairs Canada 

2007). 

1.2 Past studies 

Arsenic dispersed from the roaster stack and was carried varying distances by wind before depositing onto the landscape 

surrounding Yellowknife via wet or dry deposition. As a result, the possibility remains that the many lakes, rivers, 

wetlands, and soils in the region have served as repositories for legacy pollutants, particularly arsenic, released in the 

1950s. The aquatic ecosystem effects of mining emissions were identified early in the Yellowknife region (e.g. Pick 1975, 

Wagemann et al. 1978, Hocking et al. 1978, Hutchinson et al. 1982) with a particular focus on aquatic organisms, soil, 

vegetation, lake water, and lake sediments. More recently, effects on aquatic organisms were identified by Stewart et al. 

(2018) and Sivarajah et al. (2020). The focus of most studies in recent years have also been on lake sediment and soils, 

particularly in the near-field (~40-km) region surrounding Giant Mine. These studies have concluded that arsenic, 

antimony, and lead found in the Yellowknife region are the product of emissions from the Giant and Con mine roaster 

stacks (Fawcett et al. 2015, Palmer et al. 2015, Thienpont et al. 2016, Houben et al. 2016, Bromstad et al. 2017, Galloway 

et al. 2018, Van Den Berghe et al. 2018, Schuh et al. 2018, Palmer et al. 2019, Cheney et al. 2020, Pelletier et al. 2020). 

Thus, contamination from the mines has been well documented at the local level.  

Proximity to the mines has been identified as a key determinant of the presence and severity of metal contamination. 

Analysis of surface water of lakes as well as soils in the immediate Yellowknife region have indicated a strong 

relationship between distance and (dissolved) arsenic concentrations (Palmer et al. 2015, Jamieson et al. 2017). The 

analysis of 98 lakes within a 30 km radius of Yellowknife determined that surface water arsenic concentrations were 

highest within 5 km of the mine site and decreased dramatically between 17.5 and 30 km (Palmer et al. 2015; Figure 2). 

Based on the results of the study, lakes located farther than 30 km were suggested to be unimpacted. Within 4 km of the 

mine site, total arsenic concentrations in lake water ranged between 27 and 136 ug/L (Houben et al. 2016). The role of 

distance in the dispersal of mining emissions has been further substantiated using lake sediments (Thienpont et al. 2016, 

Schuh et al. 2018, Van Den Berghe et al. 2018, Cheney et al. 2020). For example, regional surveys of surface sediments 

identified arsenic concentrations in lakes to range between 6.3 and 10,000 mg/kg (n=95) in the Yellowknife region (~30 

km surrounding Giant Mine), the highest of which were found closest to the roaster stack (Galloway et al. 2015). 

However, it has been suggested that elevated arsenic concentrations found closest to Yellowknife are the result of both 

anthropogenic (i.e. Giant Mine emissions, land use) and geogenic inputs (Galloway et al. 2015, Sivarajah et al. 2020). 

In the Yellowknife region, winds dominantly blow from the southeast to the northwest between May and September 

(based on data from 1971-2000 in Galloway et al. 2012, Environment Canada 2010; Figure 3). Given that mining-derived 
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metals in the region were atmospherically deposited, it can be assumed that concentrations would be highest in the 

prevailing wind direction. This has been asserted by several studies in the region using lake water, soils, and sediment 

(Galloway et al. 2012; 2015; 2018, Palmer et al. 2015, Cheney et al. 2020) demonstrating that the dominant wind 

direction likely received the bulk of mining emissions. However, this knowledge is limited to a 40 km radius surrounding 

the mines.  

Similar localized impacts from gold mining projects have been identified in other regions around the world in surface 

water (Grosbois et al. 2011, Cai et al. 2017), groundwater (Keshavarzi et al. 2012), fluvial and marine sediments (Posada-

Ayala et al. 2016), mine waste (Haffert et al. 2010), and wetland sediments (Kinimo et al. 2018). Canadian examples 

include legacy pollution from the Waverley gold mine in Nova Scotia (Mudroch et al. 1986), Cobalt’s silver mine in 

northern Ontario (Sprague and Vermaire, 2018) and near Snow Lake, Manitoba (Simpson et al. 2011). 

Lakes and wetlands in particular have proven to serve important roles in the storage of elements, metals, and metalloids 

(herein collectively referred to as metals) such as arsenic and can effectively document the timing of anthropogenic metal 

deposition in their sediments (Galloway et al. 2018). Lake sediments provide excellent archives of pollutant deposition 

and offer the unique opportunity to track metal accumulation and changes in water quality over time as 

‘paleoenvironmental monitors’ (Smol 2008, Thevenon et al. 2011, Zhang et al. 2014, Lintern et al. 2015, Birch 2017). 

Paleolimnology has proven to be particularly beneficial in tracking mining pollution (e.g., Wiklund et al. 2017, Pelletier et 

al. 2020, Klemt et al. 2020) as the sediment record can ideally be used to project future changes in ecosystem conditions 

(Kirk and Gleason 2015). However, interpretation of arsenic in lake sediment profiles is complex due to the potential 

impact of the surrounding catchment and post-depositional processes. Diagenetic processes for example, can affect the 

stability of arsenic in lake sediments, over time allowing them to become mobile under oxidizing conditions (Force et al. 

2000, Couture et al. 2010). Less mobile elements, also present in anthropogenic emissions, can be used to anchor arsenic 

concentrations and interpret where and if post-depositional mobility has occurred. 

1.3 Research objectives 

Conclusions that the area contaminated by Giant and Con mines emissions is limited to a 40-km radius are largely driven 

by studies of contemporary lake water and surficial lake sediment (Palmer et al. 2015, Galloway et al. 2018) and, as a 

result, may only be representative of modern conditions immediately surrounding the mine-lease area. However, a study 

by MacDonald et al. (2016) which sought evidence of pollution from upstream oil sands operations in Alberta, 

unexpectedly identified elevated arsenic concentrations (~20 mg/kg) in the Slave River Delta, over 140 km south of Giant 

near Fort Resolution, NT (Figure 4). Radiometric dating of a lake sediment core identified that the timing of arsenic 

enrichment aligned well with peak emission release from Giant and Con mines in the 1950s, the closest anthropogenic 

source. Arsenic concentrations deposited during the 1950s exceeded the CCME probable effects level of 17 mg/kg and 

were additionally supported by a measurable increase in antimony concentrations, also present in the ore at Giant Mine. 

Sharp decreases in concentrations of both arsenic and antimony in ~1959 in the lake sediment record likely reflected the 
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installation of the bag house dust collector at Giant Mine, which significantly reduced emissions from over 7000 kg/day to 

~1000 kg/day (Government of Northwest Territories 1993, Silke 2013). 

The unexpected finings of MacDonald et al. (2016), which speculated on far-field atmospheric pollution from Giant and 

Con mines, led to the development of the Sub-Arctic Metal Mobility Study (SAMMS). As part of Global Water Futures 

and the Canada First Research Excellence Fund, SAMMS was established to identify how legacy pollution from mining 

activities in Canada’s north (including Giant and Con mines) will behave in response to the expected changes in 

hydrological and dissolved organic matter (DOM) regimes as a result of climate warming. Six work packages were 

developed to address the following: 1) terrestrial stores of historical metal deposition, 2) processes governing DOM-

bound metal transport, 3) DOM quantity and quality in cold regions, 4) aquatic stores of historical metal deposition, 5) 

eco-toxicology of historical metal deposition in lake sediments and 6) changes to ecosystem structure and permafrost thaw 

as a result of climate change. 

As part of work package four and to address the need for improved knowledge of historical metal deposition pathways 

and processes in lake sediments, this study was developed to refine current estimates of the spatiotemporal footprint of 

emissions from Giant and Con mines. Using paleolimnology, we address the following: 1) Is there evidence of deposition 

of arsenic, antimony, and lead from Giant and Con mines dispersing beyond the previously determined near-field (40-km) 

radius? 2) Do the spatiotemporal patterns of concentrations, degree of enrichment, and excess inventories for arsenic and 

antimony differ with respect to wind direction? 3) Are sediments of near- and far-field (>40-km) lakes continuing to 

receive pollution from legacy stores in the catchment and lake sediments in present-day?  

The sediment core data presented here has also been utilized as part of another Master’s thesis project (Leclerc et al. in 

review). Porewater extracted from lake sediment cores collected here and diagenetic modelling were used to reconstruct 

and account for post-depositional mobility of arsenic. Collectively, our theses refine estimates of past metal deposition in 

lakes from mining emissions in the Yellowknife region and are contributions of the SAMMS project. 

1.4 Study location 

The Yellowknife region is subject to a subarctic continental climate with mild summers and cold winters. Average annual 

air temperatures are approximately -4.1 degrees Celsius with a mean annual precipitation ranging between 200 and 375 

mm, over 40% of which falls as snow (Environment Canada 2010). The lakes explored here fall within Canada’s Taiga 

Shield (Ecosystem Classification Group 2008), the Slave Geological Province (Galloway et al. 2018), and are situated 

south of the treeline (Wolfe et al. 2016). Additional details regarding individual lake bedrock geology and shoreline 

characteristics are found in Table 1. 

Lakes on the northwest transect in this study fall within the Great Slave Lowland High Boreal Ecoregion and are 

characterized by low-relief bedrock. The average elevation of the lowland is 175 metres above sea level (masl) with an 

upper range of 200 masl (Ecosystem Classification Group 2008). The region has some evidence of sedimentary deposits 

farther north but is predominantly underlain by Precambrian granites (Ecosystem Classification Group 2008, Wolfe et al. 

2016) where geogenic arsenic concentrations average 2 ppm (Boyle 1960, Wagemann et al. 1978, Galloway et al. 2018). 
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Soils are mostly brunisols with some brunisols and gleysols found around sporadic peat plateaus and wet depressions and 

towards the Yellowknife region become quite shallow (Hocking et al. 1978). Vegetation communities are dominated by 

black spruce, jack pines and trembling aspen, with some white spruce and birch found in wetter areas (Ecosystem 

Classification Group 2008). Lake catchments provide important habitat for moose and a spring staging area for migrating 

aquatic birds like grebes and dabbling ducks. 

Lakes on the northeast transect in this study fall within the Great Slave Upland High Boreal Ecoregion. The area is 

characterized by generally level bedrock with an average elevation of 200-300 masl reaching up to 450 masl in its 

northernmost sector (Ecosystem Classification Group 2008). Here, bedrock is dominated by fractured and dissected 

granites with some evidence of Precambrian sedimentary rock where average geogenic arsenic ranges 2-64 ppm (Boyle 

1960, Wagemann et al. 1978, Galloway et al. 2015). Soils found within bedrock depressions are generally brunisols and 

near wetlands transition to organic cryosols and gleysols. Dense forests found between bedrock outcrops are dominated by 

black spruce, jack pines, and paper birch. Unique to this region are harlequin ducks, typically only present in mountainous 

areas (Ecosystem Classification Group 2008). 

 

  



 

7 

Table 1: Additional basin characteristics of lakes sampled to the northwest and northeast of Yellowknife, Northwest 

Territories. Bedrock geology is based on Stubley and Irwin (2019) and Wheeler et al. (1997). 

Lake  Bedrock Geology  Shoreline characteristics 

NW10 Archean intrusive; granodiorite, tonalite, 

granite, biotite-bearing, rare hornblende 

Bedrock border, well forested 

with some fringe wetlands 

NW20 Same as above Bedrock border with some 

wetlands 

NW30 Archean intrusive; granodiorite/granite, biotite 

and muscovite, abundance of supracrusts with 

granite xenoliths  

Forested border with large 

peatland and bedrock zone. 

Evidence of forest fire 

NW40 Same as above Bedrock border with some 

intermittent forests. Evidence 

of forest fire 

NW50 Same as above Well forested border with 

bedrock. Algal bloom present 

at time of coring 

NW60 Archean intrusive; granite-granodiorite, 

heterogeneous, biotite-poor, massive to weakly 

foliated  

Steep bedrock border, some 

forested areas 

NW70 Archean intrusive; granite-granodiorite, 

tonalite, abundant biotite, medium-coarse 

grained, local megacrysts  

Dominated by bedrock. Algal 

bloom present at time of coring 

NW80 Archean sedimentary; medium metaturbidites 

(cordierite, andalusite, sillimanite, stalurolite)  

Limited bedrock, mostly 

forested border. Evidence of 

receding water levels 

NE20 Archean sedimentary; Metaturbidites, medium 

and knotted schist, cordierite and andalusite 

porphyries 

Surrounded by bedrock with 

some intermittent forest 

NE40 Same as above Forested with a slight bedrock 

border, wetland fringe 
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Figure 1: Temporal patterns of arsenic trioxide released into the atmosphere at both Giant and Con mine between the 

years 1947 and 1974; based on data from Hocking et al. (1978). 
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Figure 2: From Palmer et al. (2015, p.7), dissolved arsenic concentrations in surface waters of select lakes within a 30-km 

radius of Giant Mine shown by respective bedrock geology. 
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Figure 3: Wind rose taken from Galloway et al. (2018, p.1674) depicting the average annual amount of hours wind is 

blown from each direction based on data from Environment Canada’s climate station in Yellowknife.  
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Figure 4: Evidence of arsenic enrichment in lake sediments 140 km from Giant Mine expressed as residuals from the As-

Li relationship shown by corresponding Year CE (MacDonald et al. 2016, p.819). 
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2.1 Introduction 

Geological deposits in Canada’s North have provided ample opportunity for mineral exploration (Mudroch et al. 1986, 

Tenkouano et al. 2019). As a result of past-mining activities, a legacy of pollution continues to potentially influence 

environmental conditions in present-day landscapes. General absence of environmental monitoring prior to, during and 

after resource development has complicated the environmental assessment process and, consequently, natural or pre-

industrial conditions in these regions remain largely unknown (Thevenon et al. 2011, Gawel et al. 2014, Birch 2017, 

Klemt et al. 2020). As a consequence, it remains challenging to evaluate the extent and persistence of mine-related 

pollutants in the environment. 

The rich history of mining in the Northwest Territories includes the legacy of pollution left behind by two major gold 

mines: Giant Yellowknife Gold Mines Ltd. (Giant Mine) located ~5 km north of Yellowknife and the Consolidated 

Mining and Smelting Company (Con Mine) ~2 km south of Yellowknife (Indian and Northern Affairs Canada 2007, 

Government of Canada 2014a). Here, gold is hosted primarily in arsenopyrite ores and required high temperature roasting 

(500℃) to create iron oxides amendable to cyanidation (Hocking et al. 1978, Walker et al. 2005, Fawcett et al. 2015). As 

by-products of the oxidation process, arsenic trioxide (As2O3) and sulfur dioxide (SO2) were released from the roaster 

stack and deposited onto the landscape surrounding Yellowknife (Hutchinson et al. 1982). Between 1948 and 1999, more 

than 20,000 tonnes of As2O3 were emitted into the atmosphere, the majority of which were released from Giant Mine 

during its first three years of operations (1949-1951) (Hocking et al. 1978, Indian and Northern Affairs Canada 2007, 

Sandlos and Keeling 2012, Jamieson 2014, Galloway et al. 2015). Emissions gradually decreased during the next ten 

years with the introduction of pollution abatement measures, the most effective of which was a baghouse dust collector 

installed in 1958 (Hocking et al. 1978, Government of Canada 2014b).  

A lack of efficient emission controls prior to 1951 resulted in the widespread contamination of the many lakes, rivers, 

vegetation, and soils surrounding Yellowknife, the aquatic ecosystem effects of which have been well documented at the 

local level (Wagemann et al. 1978, Hutchinson et al. 1982, Fawcett et al. 2015, Palmer et al. 2015, Thienpont et al. 2016, 

Houben et al. 2016, Schuh et al. 2018; 2019, Galloway et al. 2018, Cheney et al. 2020, Pelletier et al. 2020). Arsenic 

remains an element of concern in the region today due to links with increased risks of cancer and respiratory issues in 

humans (Ng and Gomez-Caminero 2001). At high concentrations, arsenic can also affect the growth and reproductive 

habits of fish species (Boyle et al. 2008, Erickson et al. 2010, Chetelat et al. 2019). Lakes located downwind of the mines 

are suggested to have received the greatest deposition of legacy pollution (Jamieson 2014, Schuh et al. 2018, Van Den 

Berghe et al. 2018, Cheney et al. 2020). Studies thus far have mostly been limited to a 30-km radius from the mines and 

have ultimately concluded that no potential ecosystem effects exist beyond this distance based mainly on contemporary 

sampling of surface water and surficial bottom sediment of lakes (Galloway et al. 2012; 2015; 2018, Palmer et al. 2015). 

However, these conclusions stem from present-day conditions, which may under-represent the extent of the dispersal of 

legacy emissions during the 1950s. Most recently, a paleolimnological investigation by Cheney et al. (2020) identified 

that arsenic enrichment during the period of peak emissions can be detected as far as 40-km from the mines during the 

period of peak emissions. While their study intended on using lakes east and northeast of the mines as unimpacted 
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reference lakes, measurable increases in sediment arsenic concentrations during peak emission release suggested 

otherwise (Cheney et al. 2020). Additionally, a paleolimnological study by MacDonald et al. (2016) in the Slave River 

Delta, over 140-km southeast of the mines, identified elevated arsenic concentrations (~20 mg/kg) during the 1950s. 

Collectively, findings suggest that the extent of the spread of legacy pollution from Giant and Con mines during the 1950s 

may not yet be fully understood. 

While lake sediment profiles preserve a temporal record of pollutant deposition (Smol 2008, Birch 2017), interpretation of 

stratigraphic variation in arsenic concentration requires an understanding of the complex processes that may influence its 

deposition and stability within the sediment column (Outridge and Wang 2015). Under reducing conditions, arsenic can 

dissolve into sediment porewater, mobilize upwards and/or downwards through the sediment column, and potentially be 

released into overlying surface waters (Smedley and Kinniburgh 2002, Couture et al. 2008). In theory, mining-derived 

arsenic concentrations in sediment can be anchored using less mobile elements also present in the mined ore that were 

released into the environment during processing. Antimony is much less mobile in lake sediments than arsenic (Fawcett et 

al. 2015) and is also present in the ore at Giant Mine (SRK Consulting Engineers and Scientists 2002). Thus, antimony 

has been used in lake sediment studies in conjunction with arsenic to support identification of mining influence (Houben 

et al. 2016, Schuh et al. 2018, Palmer et al. 2019). Less commonly, lead has been used in addition to antimony to anchor 

arsenic concentrations and strengthen evidence of an anthropogenic signature as it was similarly present in the ore, albeit 

in lesser quantities, and is not considered to be mobile in lake sediments (Thienpont et al. 2016, Cheney et al. 2020, 

Pelletier et al. 2020). 

Here, we employ a paleolimnological approach to quantify the extent of arsenic, antimony and lead deposition from Giant 

and Con Mine emissions along two transects, one in the dominant wind direction to the northwest and the other in the less 

frequent wind direction to the northeast (based on data from 1971-2000 in Galloway et al. 2018 and Government of 

Canada 2019). Arsenic, antimony, and lead concentrations from ten radiometrically-dated sediment cores are used to 

address the following: 1) Is there evidence of deposition of arsenic, antimony, lead from Giant and Con mines dispersing 

beyond the previously determined near-field (40-km) radius? 2) Do the spatiotemporal patterns, degree of enrichment, and 

excess inventories for arsenic and antimony differ with respect to wind direction? 3) Are sediments of near- and far-field 

(>40-km) lakes continuing to receive pollution from legacy stores in the catchment and lake sediments in present-day? 

This study expands upon the current understanding of the area affected by emissions from Giant and Con mines and aims 

to guide future research towards predicting the fate of mining-sourced metals in catchments and stored within lake 

sediments. 

2.2 Methods 

2.2.1 Study location 

The study area lies within the traditional territory of the Dene, Yellowknives Dene First Nation, and Tlicho Dene 

(Government of Northwest Territories) within Canada’s Taiga Shield (Ecosystem Classification Group 2008). Here, most 

lakes are underlain predominantly by granitic bedrock (Stubley and Irwin 2019) where arsenic concentrations average 2 
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ppm (Boyle 1960) comparable to the worldwide average for granitic rocks (Wagemann et al. 1978). Beyond a distance of 

~75 km to the northwest and ~20 km to the northeast, lakes transition to an area of sedimentary bedrock dominated by 

metaturbidites (average As concentration: 2-64 ppm; Boyle 1960). Lakes selected for this study range in size (0.08-2.72 

km2; average area: 1.0 km2) and water depth (1.5-24 m; average depth: 6.96 m) and are located at roughly 10 (northwest) 

and 20 (northeast) km increments from Giant Mine (Table 2; Figure 5). In this study, lakes are grouped into three 

categories: northwest near-field (NW10-40), northwest far-field (NW50-80), and northeast (NE20, NE40) and are 

referenced with respect to distance in kilometers from Giant Mine. Near-field lakes are found within the known realm of 

mining-derived metal deposition, while far-field lakes exist at distances beyond those previously explored.  

2.2.2 Field methods 

Sediment core collection 

Two sediment cores were collected from the pontoon of a helicopter at the deepest part of each lake based on depth-finder 

measurements in June 2018 (NW transect lakes) and June 2019 (NE transect lakes) using a Uwitec gravity corer fitted 

with PVC tubes (86-mm internal diameter). Sediment cores obtained from lakes along the NW transect were transported 

back to a field base in Yellowknife and sectioned within 24 hours of retrieval into 0.5-cm intervals, but were later 

consolidated into 1.0-cm intervals to obtain sufficient sample mass for all laboratory analyses. As a result, NE lake 

sediments were directly sectioned into 1.0-cm intervals the following year as it was recognized that more material was 

needed than available at 0.5-cm increments. Sediment samples were then transported to the University of Waterloo where 

they were stored in the dark at 4℃ prior to analysis. 

2.2.3 Laboratory analyses 

Radiometric dating 

One core from each lake was subject to radiometric analysis to determine temporal patterns of metal deposition. When 

possible, metals analyses were performed on the same core that was used for dating (NW10, NW30, NW40, NW50, 

NW60, NE20). To ensure cores at each lake were comparable, a standard loss-on-ignition analyses was performed (Heiri 

et al. 2001) and instilled confidence in our use of alternate cores for analyses at lakes NW20, NW70, NW80 and NE40 

where additional sediment was required to complete analyses. Radioisotopes (214Bi, 214Pb, 210Pb, 137Cs) were measured for 

all intervals between 0 and 25 cm and at alternating intervals between 25 and 35 cm. For these intervals, 1-2 g of freeze-

dried sediment was subsampled and placed into pre-weighed polypropylene tubes to a height of 3.5 cm, sealed with a 

silicone septum, and 1 cc of 2 Ton Epoxy. One exception to this approach was at lake NW70, where sediment intervals at 

0-3 cm, 4-7 cm, and 8-9 cm were combined to obtain sufficient sample mass for analyses in the upper portion of the 

sediment core. Beyond these depths, sediment was subsampled as described previously and interpolation was used to 

assign ages to consolidated intervals in the upper portion of the sediment core. After a 21-day waiting period, which 

allows for parent and daughter isotopes to reach equilibrium, activity of 214Bi, 214Pb, 210Pb, and 137Cs were measured on an 

Ortec HPGe Digital Gamma Ray Spectrometer at the University of Waterloo for approximately 3-5 days per sample. 



 

16 

Measurements of total 210Pb activity were corrected for decay since the time of core collection and density using standard 

methods (Schelske et al. 1994). Using measurements of 214Bi and 214Pb as surrogates for 226Ra, supported 210Pb activity 

was first determined. Total 210Pb activity was then determined and used to estimate sediment ages using the Constant Rate 

of Supply Model (Binford 1990, Appleby 2001). To supplement the age model based on 210Pb, measurements of 137Cs 

activity were used to detect a peak associated with above-ground nuclear mass weapon testing in 1963 (Appleby 2001). 

The dry-mass sedimentation rate was used to extrapolate the sediment chronology beyond the depth where 210Pb 

background was reached within a core (i.e., where supported 210Pb was equal to total 210Pb). 

Focusing factors were determined using 210Pb data and are expressed as a ratio of the measured unsupported 210Pb (i.e., 

total 210Pb – supported 210Pb) within the sediment core to the expected unsupported 210Pb based on literature on 

atmospheric fallout near the study location (Wong et al. 1995, Fuller et al. 1999, Muir et al. 2009, Olid et al. 2010).  

Metal concentrations  

Concentrations of solid-phase metals in sediment were measured at all lakes and all sediment intervals between 0 and 29 

cm. Between 0.25 and 0.50 g (±0.05 g) of freeze-dried sediment was finely ground and homogenized using a mortar and 

pestle, loaded into pre-weighed plastic tubes, and sent to ALS Laboratories Ltd. (Waterloo, Ontario) for analysis. Metals 

were measured after digestion with aqua-regia and using a Collision/Reaction Cell inductively coupled plasma mass 

spectrometer (CRC ICP-MS) following EPA standards 200.2/6020A. For samples where 0.50 g (±0.05 g) of freeze-dried 

sediment was submitted for analysis, duplicates were analyzed every 5 cm to confirm reliability of results. Analytical 

uncertainties, expressed here as the relative percent difference (RPD) between duplicate samples, were reported by ALS 

Laboratories as: 2.67% for arsenic (n=15), 5.47% for antimony (n=14), and 3.85% for lead (n=15).  

2.2.4 Numerical analyses  

Enrichment factors  

Enrichment factors (EFs) were used to estimate the magnitude of arsenic and antimony enrichment relative to the pre-

industrial background. Background concentrations of arsenic and antimony were determined by visual assessment of the 

stratigraphic profile for individual lakes and metals. Inconsistencies in the sediment record hindered our ability to 

establish reliable estimates of lead in the pre-industrial era. Furthermore, the possibility of post-depositional mobility both 

upwards and downwards within the core (Couture et al. 2008, Leclerc et al. in review) hindered ability to rely on a 

specific pre-industrial time interval (e.g., 1935, predating operations of both mines) to establish background 

concentrations. Therefore, when a metal showed a near-constant stratigraphic pattern in the lower portion of the sediment 

core, ‘pre-industrial background’ was defined as the mean of the concentrations found in the near-constant zone. As a 

result, 20 background concentrations were constructed across the 10 study lakes for arsenic and antimony and are a 

reflection of the varying post-depositional behaviour of these metals in each sediment core profile. Background estimates 

were comprised of a minimum of 3 and maximum of 24 samples per lake, depending on the variability in the sediment 
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record. For metals measured in a core from each lake, sediment core depth of background estimates are comparable 

(within ±4 cm).  

Relationships between concentrations of measured metals in sediment at each lake were explored to identify an 

appropriate lithogenic element for normalization. However, analysis of both arsenic and antimony concentrations to a 

suite of lithogenic elements identified poor relationships. As a result, lithogenic elements were not appropriate to use as a 

normalizing agent, despite the recent use of Al, Li, and Ti by other studies in the Yellowknife region (Sivarajah et al. 

2019, Cheney et al. 2020) and in other regions where EFs have been computed from sediment profiles (e.g., Wiklund et 

al. 2012, Kay et al. 2020).  

Instead, EF calculations were not normalized to a lithogenic element, and raw metal concentrations are used in the 

following equation to compute EF values for each sediment interval: 

 

𝐸𝐹 =
𝑀𝑥

(𝑀𝑝𝑟𝑒−𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙)
 

 

where:  𝑀𝑥 is the concentration of a given metal at the interval at 𝑥 cm depth in a core, and 

𝑀𝑝𝑟𝑒−𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 is the average of the full range of concentrations in the pre-industrial era (to 1500 CE) for 

a given element. 

 

Here we adopt recommendations of Birch (2017) for classification of enrichment levels. Metals are considered enriched 

when an EF is ≥1.5 times the pre-industrial background concentration. It can then be assumed that metal concentrations 

with an EF less than 1.5 are representative of natural or ‘pristine’ conditions. EF values ranging from 1.5-3 are classified 

as minimal enrichment, 3-5 are classified as moderate enrichment, 5-10 are classified as considerable enrichment, and >10 

are classified as severe enrichment.  

Excess flux and total excess inventory calculations 

The contribution of anthropogenic sources of arsenic and antimony deposition to the lake sediments was estimated as the 

excess flux. Calculation of excess flux involved two steps. First, enrichment factors were multiplied by element 

concentrations in sediment and dry mass sedimentation rates (kg/m2/year) to determine rates of element flux (ℱ) in units 

of mg/m2/year, using the equation (Whitmore et al. 2008, Gomes et al. 2009, Wiklund et al. 2017): 

ℱ =
[(

𝐸𝐹𝑥 − 1
𝐸𝐹𝑥

) × 𝑆𝑅𝑥 × 𝐶𝑥]

𝑓𝑓
 

 

where:   𝐸𝐹𝑥 is the enrichment factor for a given element at interval 𝑥, 
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  𝑆𝑅𝑥 is the sedimentation rate in kg/m2/year at interval 𝑥,  

  𝐶𝑥 is the concentration of the element at interval 𝑥 and 

  𝑓𝑓 is the 210Pb-based focusing factor for a given lake. 

 

Second, we calculated the inventory of excess flux (ℱℐ) of each metal, suggested to provide more accurate estimates of 

metal fluxes (Bacardit et al. 2012, Wiklund et al. 2020), as: 

 

ℱℐ =  (𝐴𝑤 −  𝐴𝑥)  ×  ℱ𝑥 

 

where:   𝐴𝑤 is the age of the sediment interval 𝑤, 

  𝐴𝑥 is the age of the sediment interval 𝑥 and 

  ℱ𝑥 is the rate of flux (mg/m2/year) at sediment interval 𝑥. 

 

To account for lateral redistribution of sediment across the lake basin due to wind and wave action and changes in basin 

slope, excess flux inventories were corrected for sediment focusing and adjusted using focusing factors. Focusing factors 

>1 suggest that metal fluxes have been overestimated while focusing factors <1 suggest metal fluxes have been 

underestimated. By dividing the total excess flux inventory of a metal at a lake by its focusing factor, the flux was then re-

expressed as either greater or smaller than the calculated value. Excess flux inventories for all sediment intervals for each 

lake were then summed and expressed as the total mass and are representative of the total excess inventory of arsenic and 

antimony.  

2.3 Results 

2.3.1 Sediment core chronologies 

Total 210Pb activity profiles varied among lakes across the two transects (Figure 6). Activity of 210Pb ranged between 0.01 

Bq/g and 1.7 Bq/g overall. Stratigraphic profiles of 210Pb activity were similar at lakes NW10, NW20, and NW60, where 

activity decreased monotonically with increasing depth. In contrast, 210Pb activity was near-constant or declined at the 

tops of cores from lakes NW30, NW40, NW50, NW70, NW80, NE20 and NE40 before declining down-core between 2 

and 12 cm depth. The depths at which background 210Pb activity was reached also varied. Most commonly, background 

210Pb activity was reached between 6 and 15 cm in depth (NW10, NW20, NW30, NW40, NW50, NE20). At NW60, 

NW70 and NW80, however, unsupported 210Pb activity persisted to greater depth, and as deep as 29 cm at NE40. 

Background 210Pb activity ranged between 0.01 and 0.13 Bq/g. Rates of sedimentation varied by an order of magnitude 

(0.0016 at NW40 to 0.0156 g/cm2/year at NW80).  

Based on results from CRS modelling of the 210Pb profiles, sediment deposited during the 1950s occurred in the upper 5-

10 cm of cores from the study lakes with the exception of NW70 (13 cm), NW80 (15 cm), NE20 (11 cm), and NE40 (15 

cm; Figure 6). An increase in 137Cs activity was observed at most lakes (NW40, NW50, NW60, NE20, and NE40) in 
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sediment intervals younger than the 1950s based on 210Pb dating, which is consistent with the record of above-ground 

nuclear weapon testing (Appleby 2001). The lake sediment cores encompassed a wide range of ages from 207 years to as 

much as 3220 years (average: 807 years). However, lake NW70 (~3220 years old) revealed sharp changes in sediment 

composition over time and, as a result, the transition from organic-rich material in the upper 20 cm (~1750 CE) to clay-

rich material in the late 1600s (20-21 cm) may have resulted in an overestimation of inferred ages. Given the substantially 

older basal ages of lakes NW40 (~1390 CE at 30-cm depth) and NW70 (~900 CE at 30-cm depth), metal concentration 

data presented herein is limited to sediment deposited since ~1500 CE to allow for a more consistent comparison of 

climatic and environmental conditions among lakes. 

2.3.2 Metal stratigraphic profiles 

Broad patterns in stratigraphic variation of arsenic, antimony, and lead concentration are evident among the designated 

groups of lakes (Figure 7). Arsenic and antimony concentrations were typically highest closest to the mine in NW near-

field lakes, followed by NW far-field and NE lakes. Lead concentrations, in contrast, were on average higher at NW far-

field lakes, followed by NE and NW near-field lakes. Within 40 km of the mine (near-field), arsenic, antimony, and lead 

concentrations in most lake sediment core profiles demonstrated a continuous increase towards the top of the core, with 

maxima in uppermost sediments. Beyond this distance (NW far-field) and for the NE lakes, sediment core profiles 

identified sub-surface peaks aligning closely with timing of maximum emission from Giant and Con mines in the 1950s 

(with the exception of NW80) and were followed by a general decline in metal concentrations. Further details regarding 

the stratigraphic profiles in individual lake groups are provided below.  

The range of concentrations found in sediment profiles of near-field lakes (NW10-40) varied for arsenic (range: 7.8-1040 

ug/g, average: 77.49 ug/g), antimony (range: 0.1-17.5 ug/g, average: 1.71 ug/g), and lead (range: 0.7-8.9 ug/g, average: 

3.26 ug/g) (Figure 7). Maximum arsenic and antimony concentrations were highest at lake NW10 (As: 1040 ug/g, Sb: 

17.5 ug/g) and decreased with increasing distance from the mine (NW40; As: 33 ug/g, Sb: 2.4 ug/g). Maximum lead 

concentrations were also highest at lake NW10 (17.5 ug/g), but did not display as strong of a decline with distance 

(NW40; 6.1 ug/g vs NW30; 5.6 ug/g). Background values ranged from 7.8 to 27.1 ug/g for arsenic (average: 13.91 ug/g) 

and 0.1 to 0.5 ug/g for antimony (average: 0.24 ug/g). With the exception of the antimony and lead concentration profiles 

at NW40, which display peak concentrations that are aligned with maximum emissions in the 1950s, the near-field 

stratigraphic profiles for arsenic, antimony and lead increased towards the top of the sediment records and concentrations 

are highest in the most recently-deposited sediments.  

At far-field lakes (NW50-80), concentrations of arsenic (range: 3.3-240 ug/g, average: 29.30 ug/g), antimony (range: 0-

3.8 ug/g, average: 0.71 ug/g), and lead (range: 2.7-17.5 ug/g, average: 8.30 ug/g) similarly spanned a wide range, but were 

overall lower in arsenic and antimony than near-field lakes. Here, highest arsenic and antimony concentrations were found 

at lake NW50 (As maximum: 240 ug/g, average: 42.70 ug/g; Sb maximum: 3.8 ug/g, average: 0.75 ug/g) and decreased 

with increasing distance from the mine (NW80: As maximum: 31.8 ug/g, average: 14.72 ug/g; Sb maximum: 0.7 ug/g, 

average: 0.21 ug/g). Lead concentrations were highest at NW50 (maximum: 17.4 ug/g, average: 14 ug/g) and exceeded 
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that of all other study lakes. With the exception of NW70 (maximum: 15.7, average: 8.99 ug/g), average lead 

concentrations decreased beyond a distance of 50 km. Background concentrations at far-field lakes ranged from 3.3 to 

29.1 ug/g for arsenic (average: 12.54 ug/g) and from 0 (below detection limit) to 0.4 ug/g for antimony (average: 0.19 

ug/g). At far-field lakes (NW50-80), arsenic and antimony concentrations reached their maximum at depth and aligned 

with or post-dated the 1950s, whereas the deposition of lead was more variable over time and only formed a distinctive 

sub-surface post-emission peak at lake NW60. 

NE lakes (NE20, NE40) possessed metal concentrations that were nearly an order of a magnitude lower in comparison to 

NW lakes at the same distances. Metal concentrations for the NE lakes ranged from 2.2 to 135 ug/g for arsenic (average: 

30.48 ug/g), 0 to 3.5 ug/g for antimony (average: 0.59 ug/g), and 0.8 to 11.3 ug/g for lead (average: 5.09 ug/g). 

Concentrations of arsenic, antimony, and lead were higher at NE20 (As average: 52.08 ug/g, Sb average: 0.80 ug/g, Pb 

average: 11.30 ug/g) than at NE40 (As average: 8.88 ug/g, Sb average: 0.40 ug/g, Pb average: 2.29 ug/g). At the NE lakes, 

background concentrations of arsenic ranged from 2.2 to 27.9 ug/g (average: 18.41 ug/g) and background antimony 

concentrations ranged from 0 to 0.2 ug/g (average: 0.13 ug/g). Maximum concentration of arsenic, antimony, and lead at 

NE lakes occurred at depth and aligned with or post-dated the 1950s. 

2.3.3 Enrichment factors 

Enrichment factors for the NW near-field lakes (NW10-40) ranged from 1.08 to 62.70 for arsenic (average: 7.0) and 1.24 

to 44.75 for antimony (average: 11.1; Figure 8). Based on categories identified by Birch (2017), 8% of arsenic samples in 

near-field lakes were ‘pristine’ or unimpacted, 35% were minimally enriched, 21% were moderately enriched, 24% were 

considerably enriched, and 10% were severely enriched (Figure 8). For antimony, 2% of samples were unimpacted, 15% 

were minimally enriched, 21% were moderately enriched, 21% were considerably enriched, and 40% were severely 

enriched. There was evidence of enrichment above the pre-industrial baseline (EF >1.5) across all near-field study lakes 

for both metals in sediments deposited during the period of peak emissions (1950s). Consistent with stratigraphic trends 

observed in near-field metal concentration data, the greatest degree of enrichment occurred in the uppermost sediment 

layer, with the exception of NW40 where antimony enrichment was greatest during the 1950s. While there is a sharp 

gradient in the degree of arsenic enrichment at near-field lakes with distance from Giant Mine, enrichment of both arsenic 

and antimony began to occur well before the onset of mining operations at near-field lakes and is evident as early as the 

1700s at lake NW20 because of post-depositional mobility downward in the sediment core record (Leclerc et al. in 

review).  

At the NW far-field lakes, arsenic enrichment factors ranged between 0.84 and 15.25 (average: 5.09; Figure 8). 

Approximately 21% of samples were identified as unimpacted, 18% were minimally enriched, 16% were moderately 

enriched, 27% were considerably enriched, and 18% were severely enriched. Enrichment of antimony at far-field sites 

ranged from 1.33 to 24.85 (average: 8.11). Here, 3% of samples were unimpacted, 21% were minimally enriched, 10% 

were moderately enriched, 33% were considerably enriched, and 33% were severely enriched. Three of four far-field 

lakes became enriched in arsenic during the period of peak mine emissions, and all lakes experienced enrichment in 
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antimony at this time. The greatest degree of arsenic and antimony enrichment occurred during or shortly (~30 years) after 

the introduction of pollution abatement measures. Prior to the 1950s, most lakes appear to have experienced some 

antimony enrichment (NW50, NW60, NW70) while only NW60 experienced arsenic enrichment. Based on the degree of 

enrichment present in uppermost sediments and the historical trends of arsenic and antimony deposition, far-field lakes 

appear to be returning to a pre-industrial state.  

For the NE lakes, enrichment factors for arsenic ranged from 1.20 to 8.35 (average: 4.20) and 2.00 to 34.54 for antimony 

(average: 14.7). With regards to arsenic, 7% of samples were identified as unimpacted, 17% were minimally enriched, 

41% were moderately enriched, and 34% were considerably enriched. There was no evidence of severe arsenic 

enrichment along the NE transect. For antimony, 7% of sediment samples were minimally enriched, 3% were moderately 

enriched, 18% were considerably enriched, and over 71% were severely enriched. The greatest degree of arsenic and 

antimony enrichment aligned with or post-dated the 1950s. After the 1950s, arsenic and antimony enrichment declined. 

Both NE20 and NE40 appear to have experienced some arsenic and antimony enrichment prior to the onset of gold 

mining in the region due to downward post-depositional mobility (Leclerc et al. in review). EF values decline towards the 

surface of these cores and approach the pre-industrial state (EF of 1). In comparison to NW lakes at equivalent distances 

(NW20, NW40), the degree of enrichment of arsenic and antimony at NE20 and NE40 was comparable.  

2.3.4 Excess metal inventories 

Excess metal inventories demonstrated deposition of anthropogenic arsenic and antimony at all study lakes – at least as far 

as 80 km to the northwest and 40 km to the northeast (Figure 9). Spatial trends of excess inventories of arsenic and 

antimony were comparable across each of the three groups of lakes and ranged from 17 to 6929 mg/m2  for arsenic 

(average: 1404 mg/m2) and from 2 to 82 mg/m2 for antimony (average: 18 mg/m2). The amount of excess inventory at 

each lake was generally associated with distance from the mine and wind direction and is further described below 

according to lake group.  

The inventory of excess arsenic at NW near-field lakes (average: 3076 mg/m2) was on average 9 times that of far-field 

lakes (average: 342 mg/m2) and at least 16 times that of NE lakes (average: 182 mg/m2). A similar trend was evident for 

excess antimony with near-field lake inventories (average: 34 mg/m2) far exceeding both far-field (average: 8 mg/m2) and 

NE lake inventories (average: 5 mg/m2). On the NW transect, arsenic inventories were greatest at lakes NW10 (4826 

mg/mg2) and NW20 (6929 mg/m2) and decreased with increasing distance from the mine (NW70: 17 mg/m2; NW80: 120 

mg/m2), with the exception of NW50 (995 mg/m2). Apart from lakes NW30 (30 mg/m2) and NW50 (18 mg/m2), 

inventories of excess antimony displayed a similar decline with increasing distance from the mines (NW10: 82 mg/m2 vs 

NW80: 2 mg/m2). On the NE transect, total excess arsenic decreased markedly from NE20 (318 mg/m2) to NE40 (46 

mg/m2) and was similarly reflected by inventories of excess antimony (NE20: 7 mg/m2 vs NE40: 3 mg/m2). Excess 

inventory of As at NE20 (318 mg/m2) was less than 20 times at NW20 (6929 mg/m2) and less than 2 times at NE40 (46 

mg/m2) compared to NW40 (117 mg/m2). Transect differences in excess antimony deposition were less pronounced, but 
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NE inventories of antimony (range: 3-7 mg/m2, average: 5 mg/m2) were ~2-3 times less than at the NW lakes at equivalent 

distances (range: 7-19 mg/m2, average: 13 mg/m2). 

2.4 Discussion 

2.4.1 Delineating the Giant Mine footprint 

Stratigraphic records revealed evidence of anthropogenic deposition of arsenic and antimony at all study lakes and were 

quantified using enrichment factors and total excess metal inventories. The co-deposition and similar stratigraphic patterns 

of arsenic, antimony, and to a lesser extent lead in sediments reinforces the notion that enrichment of metals in sediments 

of these lakes are the product of emissions from Giant and Con mines rather than from the chemical weathering of 

bedrock or some other source. Measurement of dissolved arsenic concentrations in surface waters of lakes of the NW 

transect reported in Leclerc et al. (in review) are consistent with findings of other researchers in the area and similarly 

identified a 30-km zone (NW10-30) of expected impact from the mines (Galloway et al. 2012; 2015, Palmer et al. 2015). 

Yet, maximum concentrations and the enrichment of arsenic and antimony in sediment at lakes beyond 30 km, where 

preserved at depth, align reasonably well with the operational history of the mines and particularly peak emission release 

in the 1950s. At NW far-field and NE lakes, arsenic and antimony concentration profiles are characteristic of an isolated 

anthropogenic event. Sharp decreases towards the sediment surface in arsenic, antimony, as well as lead may reflect the 

introduction of pollution abatement measures over the mine’s life cycle. Minor observed ‘lags’ in the sediment record 

between peak emission release and the atmospheric deposition of mining-derived metals at NW far-field and NE lakes, 

such as the timing of peak arsenic, antimony, and lead concentrations at NE20 (~1960 CE), are likely explained by a 

combination of sediment mobility, uncertainties associated with the age model, and the delayed delivery of metals from 

the surrounding catchment to the lake bottom. Unlike conclusions drawn from surface water, sediment metal analyses 

suggest the emissions footprint from Giant and Con mines have travelled beyond the previously identified radius and at 

least as far as 80 km to the northwest and 40 km to the northeast. Although determination of the pre-industrial background 

used as part of enrichment factor and excess inventory calculations was conservative, given the mobile nature of the 

metals (arsenic, antimony), it remains possible that concentrations were redistributed through the sediment column and 

confound estimates of enrichment, particularly at NW20 and NW40 (Leclerc et al. in review). Indeed, “if the raw data do 

not show a clear signal, there is most likely no signal” (Reimann and Caritat 2005, p. 106). However, sediment metals 

concentration data and excess inventories in this region illustrate a clear signal of Giant and Con mine emissions, even 

without the use of enrichment factors (Figure 7). Based on our results, the degree of enrichment and amount of excess 

arsenic and antimony, which we attribute to emissions from Giant and Con mines, have been strongly influenced by two 

factors: 1) distance from the roaster stack and 2) wind direction.  

The degree of enrichment and excess inventories of arsenic and antimony at each lake generally declined with increasing 

distance from the mines along both NW and NE transects (Figures 8, 9). Enrichment ranged from minimal to severe 

during the 1950s and was greatest in NW near-field lakes, followed by NW far-field and NE lakes. This pattern was 

similarly reflected by excess inventories, with the largest quantity of arsenic and antimony deposited closest to the mines 
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(NW10, NW20, NE20) and the smallest at more distal locations (NW70, NW80, NE40). Within individual lake groups, 

similar decreases in degree of enrichment and excess inventories were observed with increasing distance. Minor 

exceptions to these trends are observed between near- and far-field lake groups and are most evident at lake NW50, which 

is considerably larger and deeper than all other lakes along the transect (Table 1). With respect to NW near-field lakes and 

NE lakes, results of our sediment metal analyses are largely in agreement with findings of other researchers. Consistent 

with studies of contemporary surface water (Palmer et al. 2015, Houben et al. 2016), surficial sediment (Galloway et al. 

2012; 2015), and soils (Jamieson et al. 2017, Galloway et al. 2018), solid-phase and dissolved arsenic concentrations were 

highest closest to Giant Mine. Our near-field results also support the findings of other paleolimnological analyses in the 

Yellowknife region (Thienpont et al. 2016, Schuh et al. 2018, Van Den Berghe et al. 2018, Cheney et al. 2020) that have 

identified widespread contamination from gold mining in the area. However, past studies have been limited to the near-

field region of Yellowknife and the surrounding area and have identified impacts within 5 km (Van Den Berghe et al. 

2018), 17 km (Palmer et al. 2015, Houben et al. 2016), 20 km (Sivarajah et al. 2020), 24 km (Pelletier et al. 2020), 30 km 

(Galloway et al. 2018), and 40 km (Cheney et al. 2020) of the mine. Conversely, NW far-field lake sediment records 

presented here demonstrate that emissions from the mines are present on the landscape at distances well beyond 40 km, 

and following the 1950s resulted in considerable to severe metal enrichment at least as far as 80 km in the prevailing wind 

direction.  

Northwest and northeast transects effectively illustrated that in addition to distance from the mines, the deposition of 

mining-derived metals was strongly dictated by the wind direction. Much like the NW far-field lakes, stratigraphic records 

of NE lakes (NE20, NE40) exhibited sharp increases in all three metals during and shortly after the 1950s with enrichment 

ranging from moderate (arsenic) to severe (antimony). However, in comparison to lakes in the northwest at the same 

distances (NW20, NW40), the total inventory of excess arsenic and antimony at NE20 and NE40 was ~2-20 times lower. 

Findings are consistent with studies of Palmer et al. (2015) and Galloway et al. (2018) that identified lakes located 

downwind of Giant Mine exhibited the highest dissolved arsenic concentrations in their surface water and surface 

sediments, highlighting the role of wind direction in the dispersal of mining emissions. However, the presence of excess 

arsenic and antimony at lakes in the northeast indicates that lakes in the non-dominant wind direction were not exempt 

from mining emissions and aligns with paleolimnological data reported by Cheney et al. (2020). Additionally, given the 

volume of arsenic and antimony deposited in excess at NW80, 79 km NW of the mine (As: 120 mg/m2, Sb: 2 mg/m2) and 

NE40, 41 km NE of the mine (As: 46 mg/m2, Sb: 3 mg/m2), it is unlikely that emissions released from Giant and Con 

mines were limited to an 80-km NW or 40-km NE radius. These results, as well as arsenic enrichment found in a lake in 

the Slave River Delta located 140 km southeast of the mine (MacDonald et al. 2016), suggest that emissions are likely 

present on the landscape beyond these distances and in directions not yet fully explored.  

Across all lake sediment records, excess arsenic was an order of a magnitude greater than excess antimony. Similar 

observations were made by Cheney et al. (2020) where lake sediment records in the non-dominant wind direction 

exhibited smaller increases in antimony in comparison to arsenic. Given that atmospheric residence times of arsenic and 

antimony have been estimated to be similar (4-10 days and 7-14 days, respectively; Han et al. 2003, Tian et al. 2014, Wai 



 

24 

et al. 2016, Herath et al. 2017, Wiklund et al. 2020), such a phenomenon is likely explained by the proportionally smaller 

release of antimony in comparison to arsenic from the roaster stack (SRK Consulting Engineers and Scientists 2002, 

Bromstad et al. 2017). Additionally, because lead was released in much smaller quantities than arsenic and antimony 

(SRK Consulting Engineers and Scientists 2002) and deposition of lead from fossil fuel combustion in the 1960s was 

widespread, it is not surprising to find the trend of decreasing concentrations with increased distance more subtle for lead 

than other metals. While it is possible that the Giant and Con mine signal in the lead record has been compromised by the 

introduction and subsequent ban of leaded gasoline in North America (Peter and Wozniak 2001), the comparable 

depositional history of all three metals at most lakes across the two transects suggests its influence was likely very 

minimal. 

2.4.2 Influence of catchment and diagenetic processes on metal stratigraphic profiles 

The depositional histories and stratigraphic profiles for arsenic and antimony concentrations varied by lake grouping. 

Arsenic and antimony concentrations increased towards the top of the sediment core records at NW near-field lakes, while 

maximum concentrations occurred at depth at NW far-field and NE lakes, forming distinctive down-core peaks in close 

agreement with, or post-dating, maximum emissions during the 1950s (Figure 7). There are three possible explanations for 

the differences observed in arsenic and antimony concentration profiles across the three lake groups: 1) the supply of 

terrestrial and within-lake arsenic and antimony is greatest closest to the mine, 2) post-depositional mobility of arsenic 

and/or antimony has occurred, or 3) a combination of 1) and 2). 

Proximity to the mines, which has long been identified as the key determinant for metal enrichment in lakes in the region 

(e.g., Galloway et al. 2012, Palmer et al. 2015), is likely also a determinant of metal enrichment in the terrestrial 

environment. An ongoing supply of metals, delivered to the land by mining emissions in the 1950s and mobilized via 

catchment erosion, has been identified as a potential explanation for the persistence of metal enrichment in near-surface 

lake sediments, particularly in the extensively-studied 30-40 km radius surrounding the mines (Thienpont et al. 2016, 

Schuh et al. 2018; 2019, Pelletier et al. 2020). Mining-derived metals may also be supplied via lateral movement of 

sediment from shallow to deep parts of the basin. However, focusing factors of <1 at near-field lakes NW10, NW20, and 

NW30 (Figure 6) do not support this. In contrast, NW far-field and NE lake catchments may have rapidly exhausted their 

lesser supplies of terrestrial legacy metals, which allowed for peak emissions to become discernible in their stratigraphic 

records. Despite being located at distances equivalent to near-field lakes NW20 and NW40, northeast lakes NE20 and 

NE40 may have similarly exhausted their comparatively smaller terrestrial supply of legacy metals because less pollutants 

were deposited on the landscape in non-dominant wind directions. Mining-derived metals at the sediment surface were 

also identified by Schuh et al. (2018) in lakes ~5 km from Giant Mine and were determined to be in part due to terrestrial 

loading from the surrounding catchment. Southwest of the mine in Yellowknife Bay, legacy metals (particularly lead) 

have similarly accumulated at the sediment surface and are likely to have originated from the terrestrial environment or 

other regions of the Bay (Pelletier et al. 2020). 
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Mobility of arsenic, and to a lesser extent antimony, in lake sediments has been well documented (Mudroch et al. 1989, 

Martin and Pederson 2002, Smedley and Kinniburgh 2002, Fawcett et al. 2015, Van Den Berghe et al. 2018, Miller et al. 

2019). However, given that lead is considered immobile in lake sediments (Outridge and Wang 2015, Thienpont et al. 

2016, Pelletier et al. 2020) and was also emitted from the smelters, we can use the similarities and differences among the 

three metals to interpret the processes influencing their stratigraphic profiles. For example, the parallel concentrations of 

arsenic, antimony, and lead at NW10-30 indicate that post-depositional mobility is unlikely to have been the dominant 

cause of enrichment present in uppermost strata. In contrast, at NW40, where trends of arsenic concentrations were 

consistent with those observed at lakes NW10-30 (NW40 maximum: 0-1 cm, ~2016), the antimony record formed a 

distinctive down-core peak in ~1960 (maximum: 2.35 ug/g, 5-6 cm) and behaved more similarly to NW far-field and NE 

lakes. Given its relatively static nature in comparison to its more mobile co-pollutants, the lead record at NW40 

(maximum: 7.06 ug/g, 5-6 cm) suggests that maximum arsenic concentrations found at the sediment surface are the 

product of post-depositional mobility rather than from the catchment. Similar inferences can be drawn from lake NW20 

where a deviation from the lead record by its otherwise parallel co-pollutants (arsenic, antimony) may indicate some post-

depositional mobility has occurred. Our inferences of post-depositional arsenic mobility in lake sediments at NW20 and 

NW40 show strong agreement with results of reactive transport modelling and the reconstruction of diagenetic processes 

over time (Leclerc et al. in review). 

Given that post-depositional mobility and lateral redistribution of sediment from shallow to deep areas was negligible, 

legacy deposits of arsenic, antimony, and lead from the catchments of NW near-field lakes are the most likely source of 

rising concentrations in upper sediment strata. Rising concentrations likely mask the down-core peak observed at more 

distant lakes during mine emissions in the 1950s. A possible mechanism for the rising concentrations is greater runoff and 

catchment erosion, which may have accelerated under a warming climate and more frequent wildfires (Wang et al. 2015, 

Abraham et al. 2017, Giesler et al. 2017, Pelletier et al. 2020b).  

2.5 Conclusions 

Lakes at ~10-km increments in the dominant (NW to 80 km) and non-dominant (NE to 40 km) wind directions were 

explored to identify the record of near- and far-field transport and deposition of metals from Giant and Con mine 

emissions. Paleolimnological analysis revealed that mining emissions released in the 1950s dispersed beyond the 

extensively studied near-field zone (~40 km). Measurable enrichment in arsenic and antimony in lake sediments during, 

and shortly after the 1950s, ranging from considerable to severe, demonstrate that emissions from the mines are present on 

the landscape at least as far as 80 km in the NW and 40 km in the NE. Concentrations of the three metals decreased with 

increasing distance from the mines and are in agreement with existing literature on mining impacts in the near-field region 

(Palmer et al. 2015, Jaimeson et al. 2017). Despite the focus of previous studies in the NW region (Van Den Berghe et al. 

2018), our findings illustrate that mining emissions also spread to the NE and is consistent with recent findings of Cheney 

et al (2020). The uncontrolled release of emissions in the 1950s resulted in considerable (arsenic) to severe (antimony) 

enrichment at lakes in the NE. However, comparison of lakes in the NE to lakes in the NW at the same distance revealed 

that the amount of excess arsenic deposited on the landscape was at least twenty times that of NE20 at NW20, and at least 
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twice that of NE40 at NW40. Given the quantity of excess arsenic and antimony found at lakes NW80 (As: 12 mg/m2, Sb: 

2 mg/m2) and NE40 (As: 46 mg/m2, Sb: 3 mg/m2), located farthest from the mine along each transect, pollution from 

Giant and Con mines is unlikely to be limited to the NW or NE sector and is expected to be present in all wind directions 

at distances farther than those explored here.  

Metal stratigraphic profiles identified two distinct trends among the lake groups. For lakes on the NW near-field transect, 

concentrations of arsenic, antimony, and lead gradually increased from the base of the sediment record and were most 

enriched at the sediment surface. At NW far-field and NE lakes, metal concentrations were most enriched at depth and 

formed distinctive down-core peaks. The parallel profiles of arsenic, antimony, and lead at lakes in the NW near-field 

region suggests that, with the exception of NW20 and NW40, post-depositional mobility of arsenic and antimony was 

unlikely to have occurred within the sediment column and is consistent with reactive transport modelling by Leclerc et al. 

(in review). Results suggest enriched metal concentrations found closest to the sediment surface are likely sourced from 

the surrounding terrestrial environment and that deposition of metal pollutants remains ongoing. Lakes located farther 

away (NW far-field) and in the non-dominant wind direction (NE), in contrast, have exhausted their lesser supply of 

terrestrial legacy metals and, in turn allowed the period of maximum emission release in the 1950s to become well-

preserved in the lake stratigraphic records. As a result, legacy pollution continues to affect lakes at present in the near-

field region where terrestrial sources of legacy metals are more abundant. 

Concentrations of dissolved arsenic remain elevated in surface water (NW10-NW30), which may suggest that moderate to 

severely enriched arsenic and antimony concentrations found in uppermost sediment intervals are acting as a source of 

arsenic to overlying surface water (Leclerc et al. in review). The possibility of lake sediment remaining a long-term source 

of arsenic to the water column urges further research to be conducted on the movement of legacy metals through sediment 

porewater. Additionally, given the likelihood that catchments in the near-field region (~40 km of the mine) have been 

burdened with legacy metals since the 1950s, future research should aim to characterize terrestrial stores of legacy metals 

to better understand processes governing the movement of legacy metals from terrestrial to aquatic systems. Confounding 

impacts from late 20th century climate warming, such as changes in precipitation and wildfire frequency, may accelerate 

transport of legacy metals and warrant further study (Pelletier et al. 2020b).  

The findings presented here are important for Indigenous peoples, natural resource managers, and government agencies to 

understand the consequences of legacy mining operations, and to guide research aimed at better understanding the 

processes that may increase transport of legacy metal pollution from land to adjacent aquatic ecosystems. Our historical 

account of mining impacts on lakes in the Northwest Territories will better inform the decision-making of stakeholders 

and have considerable implications for mining developments that have closed, are currently operating, and are proposed. 

   

  



 

27 

Table 2: Selected basin characteristics of study lakes to the northwest and northeast of Giant Mine.  

 

Lake  Coordinates (Lat., Long.) Distance from Giant Mine (km) Size (km2) Depth (m) 

NW10 62.552889, -114.52625 10.5 0.21 1.5 

NW20 62.608333, -114.605278 17.8 1.12 4.0 

NW30 62.672278, -114.812028 29.8 0.08 3.0 

NW40 62.738889, -114.958333 40.6 2.60 8.0 

NW50 62.825556, -115.009639 49.6 2.72 24.0 

NW60 62.834694, -115.158417 55.7 1.56 3.5 

NW70 62.951111, -115.367222 72.5 0.44 5.0 

NW80 63.002056, -115.444528 79.0 0.08 7.0 

NE20 62.598334, -114.017256 20.9 1.05 10.6 

NE40 62.705842, -113.682029 41.2 0.20 3.0 

 
 



 

28 

  

Figure 5: Map showing locations of the study lakes relative to the area of influence of Giant Mine emissions identified by 

Palmer et al. (2015). Top-right inset provides a wind rose illustrating winds that dominantly blow from southeast to the 

northwest in this region (Galloway et al. 2018, p.1674).  
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Figure 6: Profiles of 210Pb, 226Ra, and 137Cs activity shown stratigraphically for lakes along the northwest (left) and northeast (right) transects. Only 

the upper 30 intervals at each lake are shown here. In black, the CRS-based age model depicts the corresponding year for each sediment interval 

where black horizontal bars on either side represent the associated error (±2 sigma). Extrapolations of the CRS chronology are denoted by white 

filled data points while the 1950s, representing the timing of peak emissions from Giant and Con mines, is shown by the yellow arrow. The 

focusing factor for each lake as calculated by 210Pb inventories is denoted by “FF” above the lake name. 
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Figure 7: Stratigraphic profiles of arsenic, antimony, and lead concentrations for lakes across the northwest and northeast 

transects. Results are presented to 1500 CE where available. The period of peak emissions is highlighted in yellow (i.e., 

1950s) while the grey shaded areas represent the period identified as ‘pre-industrial’ or background. 
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Figure 8: Temporal patterns of Enrichment Factors for arsenic (top) and antimony (bottom) at NW transect near-field (left) and far-field (middle) 

lakes, and NE transect (right) lakes. Degree of enrichment is shown relative to the categories identified by Birch (2017). 
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Figure 9: Calculated excess metal inventories for arsenic and antimony at all study lakes. Metal concentrations were 

focus-factor corrected and either increased (FF<1: NW10, NW20, NW30, NW50) or decreased (FF>1: NW40, NW60, 

NW70, NW80, NE20, NE40) the estimated excess metal inventory. Top: arsenic and antimony inventories are shown 

according to distance from Giant Mine. Bottom: metal inventories are shown relative to wind direction. 
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Chapter 3 

Conclusions  

3.1 Key findings and relevance of research 

Measurement of metal concentrations in radiometrically-dated lake sediment cores collected along two transects (NW, 

NE) identify that pollution from Giant and Con mines is present well-outside the Yellowknife vicinity, and is not limited 

to the prevailing or north-easterly wind direction. Enrichment in arsenic and antimony during peak emission release in the 

1950s was recorded as far as 80 km from Giant Mine to the northwest, and 40 km to the northeast. Based on the 

inventories of arsenic and antimony present at the most distal sites along each transect (i.e., NW80 and NE40), it is 

unlikely that results presented here have captured the full spatial footprint from mining emissions. 

The systematic approach of obtaining lake sediment cores along transects in the dominant and non-dominant wind 

directions provided the unique opportunity to quantify the relative proportion of mining emissions that were deposited in 

each respective wind direction. Comparison of total excess metal inventories at sites at 20 and 40 km has shown several 

orders of a magnitude difference in the amount of arsenic and antimony deposited on the landscape in each direction. Our 

results are consistent with those presented by Cheney et al. (2020) and highlight that lakes in the northeast were not 

exempt from the uncontrolled release of mining emissions. Moreover, metal enrichment in NE lakes has illustrated that 

despite their location in the non-dominant wind direction, during peak emission release, sediments were considerably 

(arsenic) and severely (antimony) enriched.   

Unexpectedly, our study identified two distinct stratigraphic patterns in sediments of lakes that received pollution from 

Giant and Con mines. NW transect near-field lakes exhibited upward-trending increases in metal (arsenic, antimony, lead) 

concentrations, which in turn placed maximum concentrations at the sediment surface. In contrast, at NW far-field and NE 

lakes, the historical impact of peak emission release in the 1950s was well-preserved, forming a distinctive down-core 

peak where maximum concentrations occurred at depth. In line with the findings of recent studies in the Yellowknife 

region (Thienpont et al. 2016, Schuh et al. 2018; 2019, Pelletier et al. 2020), NW near-field lakes appear to be receiving a 

continuous supply of legacy metals from their surrounding catchments. Given their more distal locations, catchments of 

NW far-field lakes have exhausted the majority of their legacy metals. In the same regard, because the northeast wind 

direction received less metal pollution overall, terrestrial supplies of legacy metals at NE lakes have also likely been 

largely exhausted, thus the period of peak emissions is well-preserved in their stratigraphic records. Our use of the 

relatively immobile element lead as a tracker of potential post-depositional mobility in lakes (Thienpont et al. 2016, 

Pelletier et al. 2020) identified that with the exception of NW20 and NW40, metal mobility was minimal and the 

anthropogenic signal from Giant and Con mines has been well-preserved, in agreement with porewater modelling studies 

of Leclerc et al. (in review).  

At lakes NW10-30, the continued deposition of legacy metals following the 1950s may have been accelerated by a shift in 

climatic conditions in the latter half of the 1900s. Northern Canada has warmed at a disproportionately faster rate than the 
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rest of the continent and since 1948 has experienced an increase of at least 2℃ Celsius in average air temperatures (Bush 

and Lemmen 2019). A recent study by Sivarajah et al. (2020) identified that a considerable shift in average annual air 

temperatures occurred in the mid- to late 1950s in the Yellowknife region. This shift may be reflected in the sediment core 

record at NW near-field lakes in the form of increased loading from the terrestrial catchment as warmer air temperatures 

have resulted in an increase in precipitation in the form of rain which would have in turn increased rates of catchment 

erosion. Additionally, increased wildfire frequency may have contributed to catchment erosion and the liberation of 

legacy metals. 

3.2 Future recommendations 

Our study identified that despite the closure of the roasting facilities in 1999, concentrations of metals incorporated into 

roaster emissions are continuing to rise in upper strata of sediments of lakes within 30 km of Yellowknife. Elevated 

dissolved arsenic concentrations in the surface water of these lakes (Leclerc et al. in review) suggest that sediments, and 

the surrounding terrestrial environment, are continuing to provide a source of legacy metals to these lakes in present day. 

Thus, our analysis of metal concentrations in the surface sediments of these lakes suggests that arsenic, antimony, and 

lead emitted from the roaster stack is not getting buried downcore. Given that the toxicity of inorganic arsenic in 

sediments is dependent on its chemical form, the potential risks associated with arsenic trapped in the surface sediments of 

these lakes would be an important direction of inquiry, thus future studies at lakes NW10-30 should include arsenic 

speciation. Such an approach has proven to be useful in the Yellowknife region when attempting to discern arsenic from 

anthropogenic versus natural sources (e.g., Schuh et al. 2018, Van Den Berghe et al. 2018). 

While our analyses and collaborative research with Leclerc et al. (in review) did not identify considerable evidence of 

post-depositional metal mobility at lakes NW10-30, sediment cores collected as part of this study are representative only 

of the open-water season (May-September). The depths of these lakes (>4 m) suggest they are likely ice-covered for much 

of the year, which can lead to the development of anoxic conditions and, in turn, mediate the reductive dissolution of iron 

(oxy)hydroxides and subsequent release of arsenic to overlying porewater (Palmer et al. 2020). Increased runoff as a result 

of climate warming is also expected to result in an increase in the delivery of organic matter to lakes which, in its labile 

form, can serve as the electron donor and facilitate mobility of arsenic from sediments to the water column (Miller et al. 

2020). Recent studies by Miller et al. (2020) suggest increases in organic matter production will lead to an increase in the 

development of anoxic conditions in lakes, particularly in upper sediment strata where metals are most enriched at lakes 

NW10-30. However, the impacts of expected changes to lake biogeochemistry on the mobility and stability of arsenic in 

lake sediments is not well understood and further research is needed to determine the impacts of increased aquatic 

productivity on mining-impacted lakes. Future studies should investigate the impacts of seasonality on lakes in the 

extensively studied near-field region. 

 

The terrestrial environment may continue to influence lakes affected by mining pollution for years to come. And, given 

expected changes to precipitation patterns in the North as a result of climate warming (NWT Climate Change Impacts and 
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Adaptation Report 2008, Bush and Lemmen 2019), we may observe an increase in runoff from terrestrial to aquatic 

environments (Zhang et al. 2018). Evidence of metal enrichment in lakes as far as 80 km in the NW, 40 km in the NE, and 

140 km in the SE (MacDonald et al. 2016) indicates that pollution from Giant and Con mines in the 1950s has been 

widespread and further research is needed to fully characterize the emissions footprint. Based on our findings, it is 

recommended that additional lake sediment core transects are developed in wind directions not yet explored and at 

distances farther than those explored here (>80 km).  

In order to more effectively determine the extent of pollution from Giant and Con mines, multiple components of the 

ecosystem in these regions should be studied in tandem. Lakes selected for future studies should provide ample 

opportunity to collect wetland and soil cores from their surrounding catchments as the behaviour and fate of legacy metals 

stored in the terrestrial environment remains poorly understood. Identifying terrestrial stores of legacy metals will be 

essential to better understand relations between the terrestrial and aquatic environment. Given that climate change is 

expected to continue to alter the environment in these regions, the impacts of climate warming on the stability of legacy 

metals in the terrestrial environment should be further investigated to better determine the processes that may prompt 

additional mobility from terrestrial to aquatic systems. 

Additionally, future studies should aim to determine the role of catchment size and landcover type on the retention of 

mining-derived metals in lake sediments. The possibility remains that the area of land drained by each lake is influencing 

both the quantity of excess metals in sediments and the persistence of legacy metals at the sediment surface in lakes. 

Bathymetric studies and the collection of multiple sediment cores from different regions of each lake (i.e., shallow vs. 

deep) would also aid interpretation of the differences in metal depositional profiles observed here.
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Appendix A 

Study site information 

Table A1: Lake sediment core collection locations. 

Lake name Latitude Longitude 

NW10 62.552889 -114.52625 

NW20 62.608333 -114.605278 

NW30 62.672278 -114.812028 

NW40 62.738889 -114.958333 

NW50 62.825556 -115.009639 

NW60 62.834694 -115.158417 

NW70 62.951111 -115.367222 

NW80 63.002056 -115.444528 

NE20 62.598334 -114.017256 

NE40 62.705842 -113.682029 

 

Table A2: Collected sediment core lengths. 

Lake Core Length (cm) 

NW10 24.5 21 

NW20 46 47 

NW30 40 43.5 

NW40 35 32.5 

NW50 42 42.5 

NW60 46 45 

NW70 48.5 47 

NW80 50.5 49 

NE20 39 36 

NE40 33 39 
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Appendix B 

Chronology information 

Table B1: Measured 210Pb, 137Cs, and 226Ra values (dpm/g) and CRS-based chronology for lake NW10. Grey cells 

represent extrapolated values and yellow cells represent interpolated values. 

Sediment 

depth interval 

(cm)  

CRS 

Chronology  

CRS 

Error ± 2 

sigma  

210Pb 

dpm/g  

210Pb error 

(1 std. dev.) 

dpm/g  

137Cs 

dpm/g  

137Cs error 

(1 std. dev.) 

dpm/g  

226Ra 

dpm/g  

226Ra error 

(1 std. dev.) 

dpm/g  

0 2002.93 1.28 37.0745 1.4291 3.5859 0.2126 0.9244 0.2253 

1 1994.05 1.73 20.4874 1.0357 2.6089 0.2169 0.0430 0.2551 

2 1986.06 2.20 12.7428 0.7615 1.9199 0.1662 0.5755 0.2154 

3 1972.90 3.12 13.0540 0.7752 1.8263 0.1570 0.9414 0.2547 

4 1963.85 3.95 6.8019 0.4865 1.2990 0.1164 0.7625 0.2331 

5 1951.96 5.28 5.7971 0.4239 1.3063 0.0999 1.1570 0.2096 

6 1941.47 6.37 3.7911 0.3709 0.7361 0.0986 0.9344 0.1853 

7 1924.00 9.57 4.0472 0.3664 0.8241 0.0919 0.8111 0.1601 

8 1905.46 14.50 2.6846 0.2626 0.7176 0.0732 0.9291 0.1758 

9 1885.94 21.26 1.6596 0.1981 0.5045 0.0631 0.8344 0.1576 

10 1867.26 25.20 1.5432 0.1824 0.5143 0.0570 1.0906 0.1613 

11 1850.19  1.1172 0.1570 0.4502 0.0648 0.9470 0.1774 

12 1831.64  1.7516 0.1899 0.5367 0.0585 0.9664 0.1569 

13 1812.47  0.6095 0.1111 0.3763 0.0707 0.8524 0.1567 

14 1794.83  0.7125 0.1748     

15 1773.95  0.8263 0.1349 0.3789 0.0586 0.8320 0.1447 

16 1754.18        

17 1734.05        

18 1713.85        

19 1694.34        

20 1674.17        

21 1655.49        

22 1634.24        

23 1612.66        

24 1606.03        

 

Table B2: Measured 210Pb, 137Cs, and 226Ra values (dpm/g) and CRS-based chronology for lake NW20. Grey cells 

represent extrapolated values and yellow cells represent interpolated values. 

Sediment 

depth interval 

(cm)  

CRS 

Chronology  

CRS 

Error ± 2 

sigma  

210Pb 

dpm/g  

210Pb error 

(1 std. dev.) 

dpm/g  

137Cs 

dpm/g  

137Cs error 

(1 std. dev.) 

dpm/g  

226Ra 

dpm/g  

226Ra error 

(1 std. dev.) 

dpm/g  

0 2008.22 0.84 65.4450 2.5035 5.0130 0.2933 1.1366 0.2634 

1 2000.84 1.20 49.4680 2.0452 4.7236 0.2710 0.7001 0.2002 

2 1989.66 1.88 47.3543 2.1374 4.0903 0.2927 0.8718 0.4779 

3 1980.44 2.59 33.9023 1.8079 3.5789 0.2700 1.0434 0.5982 

4 1967.36 3.76 23.1014 1.7118 2.8958 0.2808 0.1308 0.3590 

5 1956.80 5.19 15.7680 1.2120 2.4981 0.2090 0.8471 0.2185 
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6 1943.06 7.70 10.2496 0.9535 2.1331 0.1715 0.0732 0.0365 

7 1928.89 11.20 6.6886 0.9172 1.6349 0.1692 0.6598 0.3584 

8 1918.73 14.29 3.8655 0.7817 1.3658 0.1497 0.9570 0.2065 

9 1912.82 15.54 2.2718 0.7794 1.3596 0.1503 0.9420 0.2080 

10 1907.89 17.02 2.6269 0.7230 1.2383 0.1417 1.3128 0.3940 

11 1894.88 20.96 2.1825 0.7436 1.1124 0.1429 0.4577 0.3553 

12 1868.95  2.2564 0.9050 0.9009 0.1681 0.6599 0.1647 

13 1854.69  1.5388 0.7479 0.8585 0.1437 0.9571 0.4992 

14 1841.90  1.2577 1.0666     

15 1827.88  1.0132 0.7605 0.8912 0.1397 0.0947 0.2639 

16 1810.96        

17 1796.87        

18 1778.47        

19 1770.29        

20 1734.21        

21 1711.74        

22 1694.08        

23 1680.71        

24 1660.74        

25 1640.10        

26 1608.05        

27 1576.48        

28 1546.35        

29 1523.86        

30 1504.12        

31 1486.48        

32 1468.24        

33 1460.94        

34 1431.76        

35 1409.36        

36 1387.13        

37 1363.93        

38 1345.21        

39 1319.35        

40 1286.95        

41 1253.92        

42 1228.50        

43 1211.91        

44 1182.52        

45 1164.45        

46 1143.09        

47 1118.57        

48 1100.70        

49 1075.70        
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Table B3: Measured 210Pb, 137Cs, and 226Ra values (dpm/g) and CRS-based chronology for lake NW30. Grey cells 

represent extrapolated values and yellow cells represent interpolated values. 

Sediment 

depth interval 

(cm)  

CRS 

Chronology  

CRS 

Error ± 2 

sigma  

210Pb 

dpm/g  

210Pb error 

(1 std. dev.) 

dpm/g  

137Cs 

dpm/g  

137Cs error 

(1 std. dev.) 

dpm/g  

226Ra 

dpm/g  

226Ra error 

(1 std. dev.) 

dpm/g  

0 2015.34 0.49 29.3975 2.2634 3.2635 0.3678 0.6891 0.2249 

1 2008.28 1.08 31.7128 2.1341 3.3673 0.3532 -0.2081 0.0897 

2 2002.25 1.43 23.7234 1.4292 2.4138 0.2176 0.3173 0.1237 

3 1995.26 1.89 19.2508 1.0670 2.4529 0.1650 0.3553 0.1185 

4 1988.11 2.47 18.0355 1.2521 2.6457 0.2122 0.8540 0.2294 

5 1979.44 3.30 13.9145 1.0900 2.4575 0.1878 -0.2566 0.1944 

6 1969.45 4.37 10.0005 1.0829 2.5389 0.2011 0.7428 0.2078 

7 1958.95 5.82 7.4325 0.8478 1.7335 0.1575 -0.2022 0.1492 

8 1950.22 7.16 4.1597 0.7137 1.2398 0.1350 0.4616 0.1325 

9 1943.81 8.31 3.3791 0.7330 1.0893 0.1393 0.3757 0.1149 

10 1937.03 9.45 2.8067 0.7941 0.9549 0.1499 0.2675 0.0819 

11 1929.18 9.05 2.1191 0.9627 0.9086 0.1776 0.1639 0.0561 

12 1913.67 7.28 2.7367 0.8309 0.8264 0.1547 0.2682 0.0875 

13 1908.51 6.56 1.5020 0.5232 0.6296 0.0971 0.4386 0.1101 

14 1896.67  1.1263 0.7636     

15 1887.23  0.8191 0.5562   0.3248 0.0885 

16 1877.14  0.8850 0.7626     

17 1868.31  0.9543 0.5217   0.3679 0.0957 

18 1857.05        

19 1846.83        
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20 1835.74 
 

      

21 1827.86 
 

      

22 1816.48 
 

      

23 1804.21 
 

      

24 1795.32 
 

      

25 1785.03 
 

      

26 1774.07 
 

      

27 1764.18 
 

      

28 1750.35 
 

      

29 1740.13 
 

      

30 1729.14 
 

      

31 1719.28 
 

      

32 1707.95 
 

      

33 1694.45 
 

      

34 1684.55 
 

      

35 1665.54 
 

      

36 1645.18 
 

      

37 1626.92 
 

      

38 1605.20 
 

      

39 1592.39 
 

      

40 1581.76 
 

      

41 1571.71 
 

      

42 1561.22 
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Table B4: Measured 210Pb, 137Cs, and 226Ra values (dpm/g) and CRS-based chronology for lake NW40. Grey cells 

represent extrapolated values and yellow cells represent interpolated values. 

Sediment 

depth interval 

(cm)  

CRS 

Chronology  

CRS 

Error ± 2 

sigma  

210Pb 

dpm/g  

210Pb error 

(1 std. dev.) 

dpm/g  

137Cs 

dpm/g  

137Cs error 

(1 std. dev.) 

dpm/g  

226Ra 

dpm/g  

226Ra error 

(1 std. dev.) 

dpm/g  

0 2013.74 0.86 46.5858 3.8273 5.7050 0.4159 0.0562 1.8660 

1 2006.79 1.33 52.3046 2.9797 6.1091 0.3061 3.3034 1.0784 

2 1994.47 2.22 46.2176 2.7430 6.1521 0.3117 3.2820 1.0145 

3 1979.67 3.40 39.6261 2.3810 7.9003 0.3306 3.7170 1.0144 

4 1967.80 4.68 28.9936 1.9732 7.5738 0.3137 4.4945 1.1787 

5 1952.56 7.00 20.3446 1.5353 7.2827 0.2825 3.5703 0.8758 

6 1938.93 9.99 14.8739 1.2520 4.8379 0.2097 4.1762 0.9350 

7 1927.28 13.62 10.0886 0.8103 2.3962 0.1110 3.7690 0.9274 

8 1916.31 17.67 7.3749 0.7935 1.8145 0.1085 3.6777 0.8363 

9 1898.75 27.28 7.6234 0.8092 1.3628 0.1047 3.6265 0.9337 

10 1887.11 33.00 5.4392 0.7061 1.2184 0.0917 4.0872 0.7831 

11 1868.15 44.15 5.1877 0.6852 1.0832 0.0875 3.8616 0.7876 

12 1853.40  5.3817 0.6366 0.8740 0.0786 4.1259 0.8165 

13 1839.33  4.8967 0.8311     

14 1828.70  4.4418 0.5343 0.6962 0.0643 3.2729 0.7457 

15 1813.41  4.3501 0.9356     

16 1796.65  4.2597 0.7681     

17 1783.85  4.1706 0.9457     

18 1770.71  4.0827 0.5518 0.3266 0.0639 3.4609 0.7859 

19 1732.98  4.6119 0.5983 0.1978 0.0717 3.6759 0.8776 
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20 1707.13 
 

      

21 1678.49 
 

      

22 1652.79 
 

      

23 1625.03 
 

      

24 1593.43 
 

      

25 1553.79 
 

      

26 1507.16 
 

      

27 1460.90 
 

      

28 1415.15 
 

      

29 1369.56 
 

      

30 1319.66 
 

      

31 1256.73 
 

      

 

Table B5: Measured 210Pb, 137Cs, and 226Ra values (dpm/g) and CRS-based chronology for lake NW50. Grey cells 

represent extrapolated values and yellow cells represent interpolated values. 

Sediment 

depth 

interval (cm)  

CRS 

Chronology  

CRS 

Error ± 2 

sigma  

210Pb 

dpm/g  

210Pb error 

(1 std. dev.) 

dpm/g  

137Cs 

dpm/g  

137Cs error 

(1 std. dev.) 

dpm/g  

226Ra 

dpm/g  

226Ra error 

(1 std. dev.) 

dpm/g  

0 
2016.47 0.57 26.1368 2.0582 9.8806 0.3478 9.4924 0.7353 

1 
2012.30 1.62 

24.1750 2.0152 

8.4825 0.3401 

11.5200 0.8961 

2 
2003.49 3.23 26.2746 2.1713 8.8400 0.3547 11.0238 0.8613 

3 
1990.60 5.40 28.5089 2.3014 11.6006 0.4244 9.4394 0.7440 

4 
1972.72 9.73 24.9142 2.1201 12.4211 0.4574 8.5187 0.6838 

5 
1948.99 20.48 

19.8600 1.7906 

10.3275 0.3963 

7.5774 0.6130 

6 1928.49 38.22 
13.4555 1.2831 

3.8312 0.1935 
7.9999 0.6276 
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7 1919.29  

8.4464 0.9277 

1.8830 0.1372 

7.7527 0.6045 

8 1909.54  
7.3604 0.8131 

1.0250 0.1050 
7.5747 0.5860 

9 1900.34  
7.4325 0.8632 

0.4320 0.1077 
7.9117 0.6162 

10 1890.94  
6.2818 0.7542 

0.6209 0.1023 
7.9248 0.6135 

11 1880.85  
7.1328 1.1366 

  
  

12 1871.44  
8.0574 0.8503 

0.2349 0.0865 
8.9446 0.6867 

13 1861.35  
  

  
  

14 1850.85  
  

  
  

15 1841.40  
7.2383 0.8167 

0.2328 0.0906 
8.3526 0.6452 

16 1830.90        

17 1821.45        

18 1811.37        

19 1798.32        

20 1788.23 
 

      

21 1775.18 
 

      

22 1764.79 
 

      

23 1753.09 
 

      

24 1742.70 
 

      

25 1731.00 
 

      

26 1720.12 
 

      

27 1707.23 
 

      

28 1696.35 
 

      

29 1683.46 
 

      

30 1667.82 
 

      

31 1650.89 
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32 1635.26 
 

      

33 1618.32 
 

      

34 1608.63 
 

      

35 1595.20 
 

      

36 1585.50 
 

      

37 1572.08 
 

      

38 1557.09 
 

      

39 1545.87 
 

      

40 1530.89 
 

      

41 1519.67 
 

      

42 1506.27 
 

      

43 1492.98 
 

      

44 1479.58 
 

      

 

Table B6: Measured 210Pb, 137Cs, and 226Ra values (dpm/g) and CRS-based chronology for lake NW60. Grey cells 

represent extrapolated values and yellow cells represent interpolated values. 

Sediment 

depth interval 

(cm)  

CRS 

Chronology  

CRS 

Error ± 2 

sigma  

210Pb 

dpm/g  

210Pb error 

(1 std. dev.) 

dpm/g  

137Cs 

dpm/g  

137Cs error 

(1 std. dev.) 

dpm/g  

226Ra 

dpm/g  

226Ra error 

(1 std. dev.) 

dpm/g  

0 
2012.31 

0.43 
68.2456 2.3410 2.6373 0.2411 1.0337 0.4242 

1 

2006.53 

0.59 

63.0049 2.1403 3.3761 0.2489 1.2221 0.2787 

2 
2000.26 

0.74 
62.7703 2.1645 3.9845 0.2779 1.4775 0.3781 

3 
1994.58 

0.87 
50.5045 1.8728 5.8301 0.3838 1.1929 0.3348 

4 
1987.65 

1.05 
45.6771 1.6904 7.1109 0.3966 1.2601 0.3587 

5 

1980.98 

1.25 

34.5077 1.2724 8.8287 0.4228 1.2210 0.3052 

6 
1977.29 

1.37 
23.2651 1.1850 9.0773 0.4823 0.9723 0.3113 
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7 

1964.57 

1.72 

27.5024 1.1591 6.1904 0.3244 1.6699 0.2979 

8 
1958.06 

1.99 
14.3379 0.6955 3.0457 0.1753 1.4945 0.2784 

9 
1950.55 

2.29 
12.1959 0.6748 2.0509 0.1518 1.6243 0.2752 

10 
1941.39 

2.74 
10.9778 0.6497 1.7076 0.1366 1.2441 0.2542 

11 
1934.57 

3.18 
8.2486 0.5308 1.3145 0.1189 1.2479 0.2500 

12 
1926.72 

3.75 
6.4378 0.4482 0.7847 0.1007 1.0884 0.2506 

13 
1915.80 

4.67 
6.4126 0.4780 0.5945 0.1098 0.9919 0.2639 

14 
1906.09 

5.50 
4.6874 0.3563 0.5651 0.0749 1.5995 0.2529 

15 
1899.73 

5.91 
3.3869 0.3201 0.5438 0.0839 1.4481 0.2476 

16 
1890.14 

6.44 
3.3503 0.3272 0.5146 0.0864 1.3803 0.2677 

17 
1878.69 

 
2.7000 0.2684 0.5507 0.0690 1.6634 0.2738 

18 
1867.67 

 
1.3900 0.2009 0.5538 0.0767 1.4807 0.2482 

19 
1857.26 

 
1.7504 0.2250 0.3949 0.0699 1.5046 0.2700 

20 
1847.49  

      

21 
1834.29  

      

22 
1821.67  

      

23 
1806.84  

      

24 
1795.41  

      

25 
1780.83  

      

26 
1763.54  

      

27 
1750.99  

      

28 
1736.88  

      

29 
1722.93  

      

30 
1708.87  

      

31 
1696.37  
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32 
1682.20  

      

33 
1667.54  

      

34 
1654.08  

      

35 
1641.19  

      

36 
1629.79  

      

37 
1619.77  

      

38 
1609.59  

      

39 
1597.98  

      

40 
1587.37  

      

41 
1577.93  

      

42 
1566.13  

      

43 
1554.93  

      

44 
1541.93  

      

45 
1529.72  

      

46 
1516.90  

      

47 
1503.47  

      

48 
1490.38  

      

49 
1476.21  

      

 

Table B7: Measured 210Pb, 137Cs, and 226Ra values (dpm/g) and CRS-based chronology for lake NW70. Grey cells 

represent extrapolated values and yellow cells represent interpolated values. 

Sediment 

depth interval 

(cm)  

CRS 

Chronology  

CRS 

Error ± 2 

sigma  

210Pb 

dpm/g  

210Pb error 

(1 std. dev.) 

dpm/g  

137Cs 

dpm/g  

137Cs error 

(1 std. dev.) 

dpm/g  

226Ra 

dpm/g  

226Ra error 

(1 std. dev.) 

dpm/g  

4 
2011.23 1.34 

65.3982 5.8078 
3.0689 0.5757 3.5879 0.7905 

8 

1999.31 2.36 

61.0035 5.1079 

4.1741 0.4703 3.2052 0.4371 
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10 
1985.49 3.20 

62.1998 5.9260 
4.7367 0.6740 0.7113 0.5254 

11 
1971.80 4.27 

56.4496 4.5714 
5.1897 0.4297 3.3385 0.4030 

12 
1954.84 6.20 

45.0005 4.0543 
5.0266 0.4962 2.9666 0.4197 

13 

1941.37 8.89 

14.3069 1.1872 

2.5200 0.1338 2.8780 0.2387 

14 
1929.25 12.05 

8.9935 0.9545 
2.1835 0.1484 3.2581 0.2742 

15 

1916.96 15.68 

7.8139 0.9311 

3.3163 0.1889 4.7121 0.3824 

16 
1896.80 23.11 

7.8879 0.8221 
3.1980 0.1557 5.4026 0.4142 

17 
1869.12 

 5.6837 0.6252 
2.9430 0.1300 5.4914 0.4118 

18 
1834.92 

 6.4537 0.7298 
2.8452 0.1441 6.3978 0.4812 

19 
1794.77 

 6.3159 1.0045 
    

20 
1758.95 

 6.1800 0.6902 
2.6737 0.1328 6.8916 0.5128 

21 
1717.03 

 6.4556 0.6735 
2.4674 0.1190 6.5386 0.4851 

22 
1672.23 

   
    

23 
1600.65 

   
    

24 
1522.11 

   
    

25 
1422.24 

   
    

26 
1297.10 

   
    

27 
1161.36 

 7.1656 0.7664 
1.1507 0.1016 7.3582 0.5473 

28 
1031.91  

  
    

29 
901.16  

7.1694 0.7202 
0.5627 0.0782 7.6456 0.5622 

30 
683.93  

      

31 
542.44  

      

32 
359.70  

      

33 
178.55  
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34 
4.08  

      

35 
-169.97 BC  

      

36 
-360.90 BC  

      

37 
-560.29 BC  

      

38 
-745.26 BC  

      

39 
-916.42 BC  

      

40 
-1208.55 BC  

      

 

Table B8: Measured 210Pb, 137Cs, and 226Ra values (dpm/g) and CRS-based chronology for lake NW80. Grey cells 

represent extrapolated values and yellow cells represent interpolated values. 

Sediment 

depth interval 

(cm)  

CRS 

Chronology  

CRS 

Error ± 2 

sigma  

210Pb 

dpm/g  

210Pb error 

(1 std. dev.) 

dpm/g  

137Cs 

dpm/g  

137Cs error 

(1 std. dev.) 

dpm/g  

226Ra 

dpm/g  

226Ra error 

(1 std. dev.) 

dpm/g  

0 
2016.76 0.20 

36.6193 1.9064 
5.3239 0.3030 2.5773 0.3365 

1 

2014.43 0.35 

34.2933 1.7916 

4.9440 0.2836 2.3447 0.5821 

2 
2010.58 0.57 

35.2894 1.6650 
4.8695 0.2539 2.7815 0.3331 

3 
2006.73 0.76 

32.8246 1.5609 
5.2391 0.2525 2.7980 0.3010 

4 
2002.13 0.99 

29.8860 1.5433 
5.8240 0.2660 2.7621 0.3315 

5 

1997.33 1.24 

27.3500 1.5082 

5.6170 0.2641 2.4450 0.3567 

6 
1992.84 1.49 

22.3472 1.2464 
5.3456 0.2288 2.2606 0.2533 

7 

1988.36 1.76 

18.9077 1.3420 

4.4432 0.2462 2.3687 0.3097 

8 
1983.62 2.07 

16.7548 1.0267 
4.5974 0.1933 2.8067 0.3594 

9 
1979.16 2.40 

13.4645 0.9268 
3.6641 0.1747 2.7057 0.2721 

10 
1974.26 2.78 

11.5860 0.8690 
3.2854 0.1621 2.4404 0.3338 

11 
1969.25 3.18 

9.8037 0.8300 
2.6988 0.1526 2.5538 0.3890 



 

59 

12 
1965.22 3.56 

8.9351 0.7214 
2.3275 0.1315 2.5080 0.4174 

13 
1959.31 4.12 

8.6587 0.8561 
1.9811 0.1539 2.2456 0.3041 

14 
1954.82 4.54 

7.2217 0.8078 
1.5550 0.1482 2.6377 0.3264 

15 
1949.14 5.13 

7.0672 0.7972 
1.1989 0.1395 2.2790 0.3838 

16 
1944.87 5.46 

5.3397 0.7420 
1.0479 0.1356 2.4186 0.3506 

17 
1940.02 5.76 

5.4549 0.8476 
1.0094 0.1482 2.2747 0.4001 

18 
1936.13 6.06 

5.1208 0.7229 
0.7621 0.1265 2.5792 0.3867 

19 
1928.72 5.94 

5.0385 0.8129 
0.7610 0.1492 2.0633 0.4619 

20 
1924.22 6.16 

4.2440 0.5152 
0.5421 0.0883 2.5151 0.2490 

21 
1919.21 6.34 

4.1489 0.5545 
0.5569 0.0957 2.3209 0.2463 

22 
1912.55 6.05 

4.1970 0.5522 
0.5050 0.0914 2.5249 0.1850 

23 
1907.30  

3.1338 0.4553 
0.4896 0.0792 2.5376 0.1950 

24 
1900.81  

3.6111 0.4254 
0.3679 0.0744 2.5551 0.2843 

25 
1896.19  

4.1104 0.4582 
0.4219 0.0773 2.6370 0.2181 

26 
1891.15  

3.1768 0.4519 
0.2680 0.0777 2.2007 0.1617 

27 
1885.95  

3.2942 0.4541 
0.2390 0.0793 2.7084 0.1792 

28 
1879.30  

3.3654 0.6322 
    

29 
1872.86  

3.4377 0.4399 
0.2833 0.0773 2.3651 0.2348 

30 
1866.81  

3.2584 0.6114 
    

31 
1861.06  

3.0856 0.4247 
0.1753 0.0731 2.6522 0.1895 

32 
1854.35  

3.1086 0.3927 
0.1456 0.0662 2.2161 0.1770 

33 
1847.80  

  
    

34 
1840.61  

  
    

35 
1833.51  

3.0127 0.3492 
0.0993 0.0576 3.0005 0.1744 

36 
1826.25  
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37 
1818.79  

      

38 
1811.83  

      

39 
1803.95  

      

40 
1796.34  

      

41 
1788.51  

      

42 
1781.05  

      

43 
1773.81  

      

44 
1767.39  

      

45 
1760.57  

      

46 
1753.66  

      

47 
1746.03  

      

48 
1739.70  

      

49 
1732.32  

      

 

Table B9: Measured 210Pb, 137Cs, and 226Ra values (dpm/g) and CRS-based chronology for lake NE20. Grey cells 

represent extrapolated values and yellow cells represent interpolated values. 

Sediment 

depth interval 

(cm)  

CRS 

Chronology  

CRS 

Error ± 2 

sigma  

210Pb 

dpm/g  

210Pb error 

(1 std. dev.) 

dpm/g  

137Cs 

dpm/g  

137Cs error 

(1 std. dev.) 

dpm/g  

226Ra 

dpm/g  

226Ra error 

(1 std. dev.) 

dpm/g  

0 2018.02 
0.20 69.1450 4.1294 1.5917 0.5474 0.9413 0.3649 

1 2012.75 

0.44 94.2344 3.2619 2.3523 0.2582 2.8330 0.5613 

2 2006.75 
0.65 99.3981 3.3184 3.5204 0.2512 3.6018 0.5370 

3 1999.11 
0.92 85.2641 2.9401 3.3004 0.2439 3.0764 0.3290 

4 1993.24 
1.14 42.9836 1.6541 5.4646 0.2184 3.7699 0.2544 

5 1984.68 

1.49 31.4679 1.3964 7.8204 0.2497 3.7078 0.2498 

6 1977.80 
1.80 23.5569 1.2094 11.0946 0.2836 3.6564 0.2439 
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7 1967.68 

2.39 20.5715 0.8550 5.1776 0.1400 3.5064 0.2029 

8 1960.03 
2.98 16.2517 0.7723 1.2240 0.0969 3.4909 0.2910 

9 1949.00 
3.98 13.9423 0.7368 0.7268 0.0931 3.5980 0.1908 

10 1938.69 
4.77 10.5998 0.8601 0.6708 0.1154 3.8757 0.2187 

11 1927.16 
6.35 9.5138 0.5784 0.6125 0.0824 3.8668 0.1844 

12 1913.88 
8.39 7.5663 0.5971 0.5797 0.0859 3.5843 0.1820 

13 1899.10 
7.42 5.9990 0.5711 0.4911 0.0840 4.0352 0.1850 

14 1871.08 
 6.2532 0.6821     

15 1845.77 
 4.9379 0.5508 0.4764 0.0823 4.9470 0.1958 

16 1823.53 
 5.3815 0.7532     

17 1804.29 
 5.8509 0.5138 0.3308 0.0783 5.6787 0.3552 

18 1786.12 
 5.7309 0.7497     

19 1768.19 
 5.6125 0.5460 0.2179 0.0783 5.2351 0.1977 

20 1751.97 
 5.2941 0.9263     

21 1728.82 
 4.9881 0.7483     

22 1707.50 
 4.6941 0.9065     

23 1684.92 
 4.4118 0.5117 0.0637 0.0772 4.3327 0.2251 

24 1656.95 
       

25 1632.41 
 

  
    

26 1606.95 
 

  
    

27 1581.21 
 

  
    

28 1555.87 
 

  
    

29 1534.45 
 

  
    

30 1510.59 
 

  
    

31 1490.40 
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32 1463.11 
 

  
    

33 1437.12 
 

  
    

34 1410.21 
 

  
    

35 1385.79 
 

  
    

36 1364.29 
 

      

37 1332.71 
 

      

38 1300.33 
 

      

39 1268.54 
 

      

 

Table B10: Measured 210Pb, 137Cs, and 226Ra values (dpm/g) and CRS-based chronology for lake NE40. Grey cells 

represent extrapolated values and yellow cells represent interpolated values. 

Sediment 

depth interval 

(cm)  

CRS 

Chronology  

CRS 

Error ± 2 

sigma  

210Pb 

dpm/g  

210Pb error 

(1 std. dev.) 

dpm/g  

137Cs 

dpm/g  

137Cs error 

(1 std. dev.) 

dpm/g  

226Ra 

dpm/g  

226Ra error 

(1 std. dev.) 

dpm/g  

0 2017.76 0.31 
34.1614 3.2585 1.8916 0.3244 0.4435 0.1811 

1 2016.06 0.41 

36.9551 2.9587 3.0659 0.2319 0.1177 0.1195 

2 2014.26 0.52 
35.7514 3.0406 2.9881 0.2908   

3 2012.15 0.62 
33.5611 2.6576 3.2225 0.2088   

4 2009.47 0.75 
33.9966 2.7453 3.5919 0.2506 0.1020 0.1198 

5 2006.53 0.88 

35.7231 2.8570 3.4528 0.2495 0.2576 0.0929 

6 2003.26 1.01 
36.0016 2.7324 3.4363 0.1913 0.0037 0.0031 

7 1999.07 1.18 

36.7711 2.9093 3.4200 0.2398 0.5010 0.1396 

8 1994.35 1.35 
37.1708 2.8895 4.0328 0.2413 0.5979 0.2919 

9 1990.20 1.51 
31.5660 2.4506 3.8221 0.2059   

10 1985.23 1.69 
25.6579 2.0454 4.2276 0.2045 0.3120 0.0784 
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11 1979.20 1.93 
27.2218 2.1216 5.0519 0.2191   

12 1974.25 2.16 
22.6657 1.8506 5.2161 0.2300 0.1566 0.0538 

13 1969.17 2.42 
17.5041 1.5306 5.8533 0.2455 0.1224 0.1044 

14 1964.24 2.71 
13.3109 1.2404 4.9122 0.2099 0.0743 0.1731 

15 1957.92 3.13 
12.0636 1.0982 3.5198 0.1546 0.7231 0.2034 

16 1952.76 3.53 
9.7643 1.0280 2.2990 0.1469 0.0301 0.0115 

17 1947.69 4.01 
8.7194 0.9469 1.5189 0.1242 0.6792 0.1444 

18 1941.01 4.72 
8.2546 0.9277 1.2482 0.1193   

19 1935.64 5.38 
5.4817 0.7769 0.9818 0.1164 1.1817 0.1755 

20 1929.15 5.96 
5.0427 1.0279     

21 1922.03 7.10 
4.6277 0.6731 0.7353 0.0940 0.2953 0.0750 

22 1915.25 8.17 
4.1470 0.8927     

23 1906.85 10.19 
3.7008 0.5865 0.6645 0.0859 0.0340 0.0197 

24 1899.21 12.10 
2.9075 0.7436     

25 1891.40 14.97 
2.2366 0.4572 0.5785 0.0796   

26 1882.99 18.20 
1.8369 0.5913     

27 1875.34 22.59 
1.4880 0.3750 0.4149 0.0791   

28 1868.94 26.57 
1.0755 0.4444     

29 1864.85  
0.7474 0.2384 0.3318 0.0710 0.0488 0.0332 

30 1860.07  
      

31 1855.08  
      

32 1849.58 
       

33 1844.81 
       

34 1839.40 
 

  
    

35 1834.36 
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36 1828.06 
 

      

37 1822.93 
 

      

38 1816.50 
 

      

39 1810.45 
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Appendix C 

Carbon and nitrogen elemental and isotopic analysis  

Table C1: Carbon and nitrogen elemental and isotopic composition values for lake NW20.  

Depth (cm) %Carbon %Nitrogen δ13C ‰ δ15N ‰ 

0 37.13 3.29 -27.89 2.02 

1 36.30 3.21 -27.96 1.50 

2 36.69 3.20 -27.83 2.09 

3 33.00 2.84 -27.68 1.64 

4 35.55 3.00 -27.36 1.81 

5 35.70 3.03 -27.44 1.84 

6 28.85 2.43 -27.20 1.48 

7 35.87 3.00 -27.32 1.94 

8 35.93 2.98 -27.10 1.86 

9 36.86 3.07 -26.90 1.30 

9 36.59 3.05 -26.83 1.21 

10 37.36 3.14 -26.91 1.51 

11 34.08 2.83 -26.53 1.63 

12 35.91 2.94 -26.28 0.92 

13 36.48 3.01 -26.10 1.23 

14 37.35 3.19 -25.97 0.83 

15 36.08 3.05 -25.77 0.38 

16 36.03 2.97 -26.17 1.10 

17 35.72 2.98 -26.30 1.14 

18 35.98 3.01 -26.56 0.80 

19 34.86 2.97 -26.58 0.69 

19 36.31 3.06 -26.66 1.20 

20 32.06 2.59 -26.11 0.58 

21 36.23 2.96 -26.60 1.45 

22 35.42 2.91 -26.65 1.22 

23 35.50 2.93 -26.58 0.50 



 

66 

24 30.40 2.48 -26.25 0.41 

25 29.14 2.46 -26.08 0.73 

26 21.68 1.87 -25.11 0.56 

28 20.94 1.77 -22.90 0.19 

29 33.27 2.83 -22.62 -0.14 

29 24.56 2.09 -22.47 0.51 

  

Table C2: Carbon and nitrogen elemental and isotopic composition values for lake NW20.  

Depth (cm) %Carbon %Nitrogen δ13C ‰ δ15N ‰ 

0 20.32 1.57 -27.11 4.86 

1 28.17 2.39 -29.16 4.79 

2 28.16 2.37 -28.92 5.32 

3 27.74 2.29 -28.53 4.50 

4 28.01 2.18 -28.19 5.42 

5 26.52 2.02 -27.37 4.97 

6 25.78 2.00 -27.94 5.38 

7 26.44 2.03 -27.40 5.13 

8 25.56 1.93 -27.27 4.80 

9 27.08 2.04 -27.37 4.60 

9 26.68 2.00 -27.10 5.09 

10 22.15 1.66 -27.23 5.47 

11 25.44 1.93 -26.86 4.70 

12 20.51 1.54 -26.65 4.81 

13 21.55 1.61 -26.52 4.74 

14 20.44 1.52 -26.44 4.79 

15 17.32 1.31 -26.58 4.58 

16 23.27 1.70 -26.64 5.08 

17 22.87 1.65 -26.76 4.57 

18 14.54 1.06 -26.94 5.58 

19 19.60 1.44 -26.99 5.08 

19 13.35 0.99 -26.97 4.83 
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20 9.31 0.71 -27.24 5.07 

21 13.43 1.02 -26.83 3.90 

22 10.23 0.80 -26.63 5.07 

23 13.16 1.03 -26.42 4.23 

24 12.15 0.95 -26.71 5.03 

25 10.09 0.79 -26.39 4.76 

26 3.16 0.25 -26.18 4.86 

27 3.13 0.25 -25.81 5.06 

28 6.88 0.54 -24.29 4.66 

29 13.26 0.99 -23.56 3.81 

29 13.92 1.02 -23.43 3.57 
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Appendix D 

Loss-on-ignition 

Table D1: Measured loss-on-ignition values for sediment dry weight, water content, organic matter content, mineral 

matter content (including carbonates), mineral matter content (excluding carbonates), and carbonate content at lake 

NW10. 

Depth 

(cm) 

Dry Weight (g) %H2O 

(g/g wet wt.) 

%OM 

(% dry wt) 

%MM+CaCO3 

(%dry wt) 

%MM 

(%dry wt) 

%CaCO3 

(% dry wt) 

0 2.31 96.29 66.43 33.57 30.75 2.82 

1 1.59 96.55 65.02 34.98 29.38 5.59 

2 1.85 96.35 67.03 32.97 29.76 3.21 

3 2.21 95.68 67.44 32.56 29.75 2.81 

4 2.15 95.75 67.18 32.82 27.46 5.35 

5 2.66 95.18 70.11 29.89 25.40 4.49 

6 2.69 94.74 71.35 28.65 27.13 1.53 

7 2.57 95.36 73.45 26.55 25.69 0.86 

8 2.88 94.44 71.11 28.89 24.74 4.14 

9 3.57 93.61 71.57 28.43 25.34 3.09 

10 3.43 93.76 72.38 27.62 24.43 3.19 

11 3.14 93.44 73.82 26.18 23.24 2.94 

12 3.41 93.59 76.27 23.73 21.77 1.97 

13 3.52 93.53 71.94 28.06 23.83 4.23 

14 3.24 93.89 71.87 28.13 25.18 2.95 

15 3.84 93.24 73.17 26.83 24.64 2.19 

16 3.63 93.35 72.18 27.82 24.95 2.86 

17 3.70 93.50 73.80 26.20 22.29 3.91 

18 3.71 93.62 73.08 26.92 24.45 2.47 

19 3.59 93.55 73.81 26.19 23.93 2.25 

20 3.71 93.07 73.45 26.55 23.54 3.01 
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21 3.43 93.18 74.06 25.94 23.35 2.59 

22 3.91 92.93 73.10 26.90 21.51 5.39 

23 3.97 93.18 74.72 25.28 20.65 4.63 

24 1.22 94.22 73.31 26.69 24.39 2.30 

 

Table D2: Measured loss-on-ignition values for sediment dry weight, water content, organic matter content, mineral 

matter content (including carbonates), mineral matter content (excluding carbonates), and carbonate content at lake 

NW20. 

Depth 

(cm) 

Dry Weight 

(g) 

%H2O 

(g/g wet wt.) 

%OM 

(% dry wt) 

%MM+CaCO3 

(%dry wt) 

%MM 

(%dry wt) 

%CaCO3 

(% dry wt) 

0 1.54 97.31 70.15 29.85 27.84 2.00 

1 1.12 97.69 71.82 28.18 27.42 0.76 

2 1.34 97.36 68.57 31.43 25.23 6.21 

3 1.12 97.67 67.38 32.62 26.18 6.44 

4 1.67 97.21 68.33 31.67 29.33 2.34 

5 1.35 97.14 68.29 31.71 28.76 2.96 

6 1.91 96.62 67.86 32.14 28.12 4.02 

7 2.03 96.43 66.83 33.17 27.14 6.03 

8 2.02 96.02 68.14 31.86 27.13 4.73 

9 2.06 96.72 65.89 34.11 30.01 4.10 

10 1.47 96.59 69.24 30.76 24.37 6.39 

11 2.25 96.02 67.59 32.41 26.93 5.47 

12 2.69 95.87 67.04 32.96 29.30 3.65 

13 2.05 95.85 67.79 32.21 29.92 2.29 

14 1.84 96.29 70.09 29.91 28.38 1.53 

15 2.02 96.22 67.10 32.90 27.95 4.94 

16 2.43 96.05 65.65 34.35 27.50 6.86 

17 2.03 96.17 67.10 32.90 26.86 6.04 

18 2.65 95.57 66.57 33.43 29.79 3.64 

19 1.18 97.51 67.51 32.49 29.58 2.91 
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20 5.19 91.37 65.72 34.28 30.78 3.50 

21 3.23 94.79 67.91 32.09 28.28 3.81 

22 2.54 95.17 64.55 35.45 31.91 3.54 

23 1.92 96.94 
    

24 2.87 95.24 62.89 37.11 33.83 3.29 

25 2.97 94.06 46.13 53.87 51.29 2.58 

26 4.61 91.50 36.23 63.77 60.13 3.64 

27 4.54 91.34 32.03 67.97 65.41 2.56 

28 4.33 92.44 33.85 66.15 62.85 3.29 

29 3.24 94.40 50.27 49.73 48.03 1.70 

 

Table D3: Measured loss-on-ignition values for sediment dry weight, water content, organic matter content, mineral 

matter content (including carbonates), mineral matter content (excluding carbonates), and carbonate content at lake 

NW30. 

Depth 

(cm) 

Dry weight 

(g) 

%H2O 

(g/g wet wt.) 

%OM 

(% dry wt) 

%MM+CaCO3 

(%dry wt) 

%MM 

(%dry wt) 

%CaCO3 

(% dry wt) 

0 0.99 98.09 74.83 25.17 22.97 2.19 

1 1.79 97.06 74.32 25.68 23.38 2.29 

2 1.69 96.68 74.50 25.50 23.15 2.35 

3 1.99 96.51 74.57 25.43 24.32 1.12 

4 1.76 96.32 75.41 24.59 24.70 -0.11 

5 2.16 96.15 73.52 26.48 22.66 3.82 

6 2.49 95.96 76.60 23.40 22.44 0.96 

7 2.59 95.52 77.12 22.88 21.18 1.71 

8 2.98 95.04 68.16 31.84 27.42 4.42 

9 2.37 95.45 75.71 24.29 20.62 3.67 

10 2.31 96.02 75.82 24.18 23.24 0.94 

11 2.73 95.78 74.98 25.02 23.75 1.28 

12 2.98 95.87 74.02 25.98 24.06 1.92 

13 1.73 95.90 75.21 24.79 22.31 2.48 
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14 3.18 95.21 71.94 28.06 24.72 3.35 

15 2.56 95.38 72.69 27.31 25.04 2.26 

16 2.71 95.26 72.21 27.79 24.62 3.17 

17 2.42 95.63 70.53 29.47 26.67 2.79 

18 3.03 95.47 70.16 29.84 28.07 1.77 

19 2.77 95.33 72.07 27.93 26.17 1.76 

20 3.10 94.79 75.33 24.67 22.22 2.45 

21 2.19 95.46 75.00 25.00 22.40 2.59 

22 1.54 95.25 74.86 25.14 23.42 1.72 

23 2.85 94.94 77.53 22.47 20.80 1.67 

24 2.70 94.93 76.26 23.74 22.69 1.05 

25 3.05 95.24 76.19 23.81 22.96 0.86 

26 2.77 95.23 75.17 24.83 23.16 1.68 

27 2.92 95.31 74.07 25.93 23.57 2.36 

28 3.72 93.82 73.20 26.80 21.41 5.39 

29 2.70 94.93 74.77 25.23 22.89 2.33 

 

Table D4: Measured loss-on-ignition values for sediment dry weight, water content, organic matter content, mineral 

matter content (including carbonates), mineral matter content (excluding carbonates), and carbonate content at lake 

NW40. 

Depth 

(cm) 

Dry weight 

(g) 

%H2O 

(g/g wet wt.) 

%OM 

(% dry wt) 

%MM+CaCO3 

(%dry wt) 

%MM 

(%dry wt) 

%CaCO3 

(% dry wt) 

0 2.44 96.05 53.06 46.94 45.95 0.99 

1 2.92 95.02 52.51 47.49 46.66 0.82 

2 3.96 92.96 41.64 58.36 56.28 2.08 

3 3.88 94.43 45.13 54.87 53.95 0.91 

4 3.46 93.23 40.27 59.73 57.42 2.31 

5 3.71 93.46 41.86 58.14 55.01 3.13 

6 4.69 92.39 41.27 58.73 56.66 2.07 

7 4.58 92.80 42.26 57.74 55.98 1.75 

8 4.97 91.91 34.89 65.11 60.46 4.65 

9 4.23 92.74 40.44 59.56 57.43 2.13 
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10 5.00 92.38 40.83 59.17 59.14 0.03 

11 5.26 90.59 35.99 64.01 62.67 1.35 

12 9.33 89.45 35.64 64.36 63.40 0.95 

13 6.05 89.48 31.12 68.88 64.40 4.47 

14 7.09 88.53 29.34 70.66 68.81 1.84 

15 8.73 86.77 29.36 70.64 68.77 1.87 

16 9.43 86.75 28.36 71.64 70.06 1.58 

17 7.42 86.16 27.28 72.72 71.49 1.22 

18 8.80 84.37 26.08 73.92 72.46 1.46 

19 12.21 82.77 24.99 75.01 73.39 1.63 

20 8.32 85.76 24.70 75.30 73.36 1.95 

21 9.76 82.93 23.04 76.96 75.59 1.37 

22 8.46 86.03 27.42 72.58 70.31 2.27 

23 9.09 85.76 25.93 74.07 71.69 2.39 

24 10.12 82.57 22.98 77.02 75.44 1.58 

25 12.95 81.76 15.30 84.70 83.21 1.49 

26 15.24 77.55 16.76 83.24 82.10 1.14 

27 15.03 78.59 17.07 82.93 82.37 0.56 

28 14.96 77.33 16.53 83.47 82.34 1.13 

29 15.00 77.66 16.79 83.21 81.09 2.11 

 

Table D5: Measured loss-on-ignition values for sediment dry weight, water content, organic matter content, mineral 

matter content (including carbonates), mineral matter content (excluding carbonates), and carbonate content at lake 

NW50. 

Depth 

(cm) 

Dry weight 

(g) 

%H2O 

(g/g wet wt.) 

%OM 

(% dry wt) 

%MM+CaCO3 

(%dry wt) 

%MM 

(%dry wt) 

%CaCO3 

(% dry wt) 

0 2.62 93.75 30.23 69.77 63.28 6.49 

1 6.64 88.58 25.26 74.74 70.60 4.13 

2 8.97 86.46 26.10 73.90 69.70 4.20 

3 7.49 88.33 26.27 73.73 69.56 4.17 

4 7.66 88.23 23.99 76.01 70.42 5.60 

5 7.20 88.84 23.89 76.11 69.58 6.53 



 

73 

6 6.95 89.43 26.00 74.00 69.32 4.68 

7 6.55 89.97 24.69 75.31 68.48 6.84 

8 6.70 89.55 25.47 74.53 70.87 3.66 

9 7.12 89.01 24.43 75.57 70.63 4.94 

10 7.42 88.58 23.60 76.40 71.52 4.88 

11 6.79 89.30 23.84 76.16 73.43 2.73 

12 7.12 89.10 22.88 77.12 72.28 4.84 

13 9.16 86.88 22.13 77.87 72.95 4.93 

14 7.56 87.78 22.09 77.91 74.66 3.25 

15 8.27 87.97 21.48 78.52 74.63 3.88 

16 7.89 86.64 19.80 80.20 76.33 3.87 

17 9.16 86.52 20.12 79.88 76.26 3.62 

18 10.86 81.55 14.96 85.04 81.77 3.27 

19 11.47 87.22 21.24 78.76 74.44 4.32 

20 7.05 87.78 20.03 79.97 75.81 4.16 

21 9.46 86.46 19.72 80.28 74.68 5.60 

22 10.44 86.27 20.52 79.48 74.13 5.35 

23 8.09 86.65 20.34 79.66 74.75 4.91 

24 9.59 85.06 20.08 79.92 73.82 6.09 

25 9.35 86.55 19.85 80.15 75.21 4.94 

26 9.57 85.89 20.74 79.26 75.08 4.18 

27 9.26 85.64 20.90 79.10 74.29 4.81 

28 9.70 87.57 21.79 78.21 72.59 5.62 

29 6.60 88.96 17.86 82.14 79.87 2.28 

 

Table D6: Measured loss-on-ignition values for sediment dry weight, water content, organic matter content, mineral 

matter content (including carbonates), mineral matter content (excluding carbonates), and carbonate content at lake 

NW60. 

Depth 

(cm) 

Dry weight 

(g) 

%H2O 

(g/g wet wt.) 

%OM 

(% dry wt) 

%MM+CaCO3 

(%dry wt) 

%MM 

(%dry wt) 

%CaCO3 

(% dry wt) 

0 2.37 96.36 68.08 31.92 30.31 1.61 

1 2.00 97.19 64.97 35.03 31.00 4.04 
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2 1.85 96.87 63.17 36.83 32.35 4.48 

3 1.72 96.79 61.78 38.22 35.09 3.13 

4 1.90 96.75 59.76 40.24 36.32 3.92 

5 1.99 96.45 58.58 41.42 38.75 2.67 

6 1.46 96.49 58.18 41.82 37.57 4.25 

7 3.21 95.30 55.00 45.00 42.50 2.50 

8 2.44 96.14 55.49 44.51 42.18 2.33 

9 2.75 95.28 54.42 45.58 42.45 3.13 

10 2.82 95.53 51.56 48.44 43.53 4.90 

11 2.25 95.94 53.10 46.90 43.69 3.21 

12 2.73 95.68 51.39 48.61 41.16 7.45 

13 2.85 94.98 51.67 48.33 41.37 6.96 

14 3.14 95.28 49.28 50.72 45.86 4.86 

15 2.61 95.17 48.67 51.33 45.07 6.26 

16 2.98 95.17 52.55 47.45 43.97 3.48 

17 3.57 94.35 52.05 47.95 46.00 1.96 

18 3.47 94.21 48.81 51.19 46.87 4.33 

19 3.31 94.33 49.24 50.76 47.62 3.14 

20 3.11 94.52 47.75 52.25 45.94 6.31 

21 4.15 93.40 48.80 51.20 47.39 3.80 

22 4.00 93.57 46.01 53.99 48.64 5.34 

23 4.61 93.07 47.65 52.35 48.67 3.68 

24 3.67 93.50 47.14 52.86 47.37 5.49 

25 4.59 93.01 47.27 52.73 48.37 4.36 

26 5.37 92.39 48.42 51.58 46.39 5.18 

27 4.00 92.06 48.96 51.04 47.54 3.50 

28 4.48 92.25 49.54 50.46 45.51 4.94 

29 4.34 92.81 50.58 49.42 45.85 3.57 
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Table D7: Measured loss-on-ignition values for sediment dry weight, water content, organic matter content, mineral 

matter content (including carbonates), mineral matter content (excluding carbonates), and carbonate content at lake 

NW70. 

Depth 

(cm) 

Dry weight 

(g) 

%H2O 

(g/g wet wt.) 

%OM 

(% dry wt) 

%MM+CaCO3 

(%dry wt) 

%MM 

(%dry wt) 

%CaCO3 

(% dry wt) 

0 0.52 99.47 84.81 15.19 12.48 2.70 

1 0.50 99.17 86.27 13.73 11.81 1.92 

2 0.56 99.06 85.53 14.47 11.71 2.76 

3 0.60 99.05 84.75 15.25 12.75 2.50 

4 0.59 98.99 84.07 15.93 12.93 3.00 

5 0.62 98.88 83.00 17.00 14.09 2.91 

6 0.61 98.76 79.95 20.05 16.75 3.31 

7 0.99 98.49 75.82 24.18 20.51 3.67 

8 1.05 98.32 70.18 29.82 26.74 3.08 

9 1.09 98.00 66.23 33.77 30.06 3.71 

10 1.52 97.59 58.49 41.51 37.98 3.53 

11 1.54 97.07 47.66 52.34 48.67 3.66 

12 2.76 95.46 36.53 63.47 60.21 3.26 

13 3.50 94.32 30.16 69.84 65.27 4.57 

14 3.88 93.69 30.42 69.58 66.48 3.10 

15 4.83 92.29 29.55 70.45 67.13 3.32 

16 4.83 91.60 28.78 71.22 67.86 3.36 

17 5.91 90.54 26.46 73.54 68.79 4.74 

18 6.85 90.54 25.28 74.72 71.04 3.68 

19 6.19 89.98 24.67 75.33 71.94 3.39 

20 7.25 88.83 22.55 77.45 74.19 3.26 

21 7.73 87.84 18.79 81.21 77.86 3.35 

22 12.13 83.06 14.84 85.16 81.86 3.30 

23 13.50 80.63 11.74 88.26 85.14 3.12 

24 17.13 76.59 9.90 90.10 86.72 3.38 

25 21.28 70.99 7.33 92.67 89.84 2.84 
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26 23.23 67.86 6.81 93.19 90.68 2.50 

27 22.12 68.80 6.29 93.71 90.65 3.06 

28 22.40 67.79 5.42 94.58 91.74 2.84 

29 36.58 66.06 4.24 95.76 93.16 2.59 

 

Table D8: Measured loss-on-ignition values for sediment dry weight, water content, organic matter content, mineral 

matter content (including carbonates), mineral matter content (excluding carbonates), and carbonate content at lake 

NW80. 

Depth 

(cm) 

Dry weight 

(g) 

%H2O 

(g/g wet wt.) 

%OM 

(% dry wt) 

%MM+CaCO3 

(%dry wt) 

%MM 

(%dry wt) 

%CaCO3 

(% dry wt) 

0 1.39 97.70 58.46 41.54 35.46 6.08 

1 1.78 96.46 58.64 41.36 36.41 4.95 

2 2.36 95.56 58.04 41.96 35.12 6.84 

3 2.75 95.40 58.95 41.05 36.32 4.73 

4 2.98 95.16 60.71 39.29 34.41 4.88 

5 3.25 94.71 54.25 45.75 39.08 6.67 

6 2.69 95.35 56.95 43.05 39.89 3.15 

7 3.19 94.77 54.89 45.11 39.57 5.54 

8 3.85 93.70 55.56 44.44 39.15 5.29 

9 3.48 94.02 53.75 46.25 39.88 6.38 

10 3.54 93.81 54.33 45.67 39.56 6.12 

11 4.09 93.05 52.64 47.36 42.56 4.80 

12 3.91 93.96 51.73 48.27 37.62 10.65 

13 4.19 93.30 51.37 48.63 43.38 5.25 

14 4.03 93.40 51.68 48.32 42.13 6.19 

15 4.03 93.22 52.94 47.06 41.54 5.52 

16 3.30 93.94 54.11 45.89 42.02 3.87 

17 3.88 93.31 55.61 44.39 39.93 4.46 

18 3.46 94.11 53.68 46.32 41.48 4.84 

19 4.02 92.95 54.06 45.94 41.31 4.63 

20 4.20 93.63 53.90 46.10 40.62 5.48 

21 4.11 93.84 55.10 44.90 38.80 6.10 
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22 4.48 93.02 54.27 45.73 39.16 6.56 

23 3.92 93.25 53.40 46.60 41.31 5.30 

24 4.77 91.80 55.68 44.32 39.99 4.33 

25 3.58 94.37 56.07 43.93 38.44 5.48 

26 4.51 93.22 53.99 46.01 38.84 7.17 

27 4.40 93.36 55.10 44.90 40.12 4.78 

28 4.58 92.42 55.40 44.60 39.71 4.89 

29 4.83 92.18 55.52 44.48 39.17 5.31 

 

Table D9: Measured loss-on-ignition values for sediment dry weight, water content, organic matter content, mineral 

matter content (including carbonates), mineral matter content (excluding carbonates), and carbonate content at lake NE20. 

Depth 

(cm) 

Dry weight 

(g) 

%H2O 

(g/g wet wt.) 

%OM 

(% dry wt) 

%MM+CaCO3 

(%dry wt) 

%MM 

(%dry wt) 

%CaCO3 

(% dry wt) 

0 1.18 98.91 51.85 48.15 48.15 0.00 

1 1.05 98.19 50.00 50.00 48.49 1.51 

2 1.20 97.73 49.56 50.44 49.24 1.20 

3 1.11 97.82 49.09 50.91 49.67 1.24 

4 1.45 97.49 36.00 64.00 57.47 6.53 

5 2.38 95.66 36.87 63.13 58.75 4.39 

6 2.48 95.40 37.66 62.34 54.10 8.24 

7 2.77 95.17 38.68 61.32 56.28 5.04 

8 2.62 95.28 36.17 63.83 58.04 5.79 

9 2.82 95.17 35.80 64.20 59.16 5.04 

10 2.97 94.65 35.96 64.04 60.99 3.06 

11 3.36 94.11 34.24 65.76 61.61 4.15 

12 3.06 94.59 31.87 68.13 62.15 5.98 

13 4.47 92.27 25.84 74.16 68.89 5.27 

14 6.56 88.92 20.91 79.09 75.88 3.21 

15 5.93 90.30 23.72 76.28 72.66 3.62 

16 5.21 90.95 27.94 72.06 67.84 4.22 

17 4.51 92.28 30.75 69.25 65.03 4.22 

18 4.26 92.92 31.73 68.27 62.11 6.16 
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19 4.20 92.35 32.46 67.54 63.62 3.92 

20 3.80 93.15 32.56 67.44 63.49 3.95 

21 5.42 91.20 28.47 71.53 68.12 3.41 

22 5.00 91.34 27.78 72.22 69.39 2.83 

23 5.29 91.08 26.67 73.33 70.01 3.32 

24 6.55 88.95 24.86 75.14 70.97 4.17 

25 5.75 89.46 26.57 73.43 70.60 2.84 

26 5.96 90.01 24.25 75.75 73.04 2.70 

27 6.03 90.04 25.86 74.14 70.84 3.30 

28 5.93 89.92 26.43 73.57 69.81 3.76 

29 5.02 91.61 28.20 71.80 68.26 3.55 

 

Table D10: Measured loss-on-ignition values for sediment dry weight, water content, organic matter content, mineral 

matter content (including carbonates), mineral matter content (excluding carbonates), and carbonate content at lake NE40. 

Depth 

(cm) 

Dry weight 

(g) 

%H2O 

(g/g wet wt.) 

%OM 

(% dry wt) 

%MM+CaCO3 

(%dry wt) 

%MM 

(%dry wt) 

%CaCO3 

(% dry wt) 

0 1.03 98.69 83.33 16.67 12.55 4.12 

1 1.53 97.35 82.58 17.42 12.27 5.15 

2 1.40 97.41 84.47 15.53 10.25 5.28 

3 1.71 96.87 82.05 17.95 14.46 3.49 

4 1.64 97.01 82.67 17.33 13.71 3.63 

5 1.90 96.69 81.82 18.18 15.71 2.47 

6 1.83 96.79 82.61 17.39 10.63 6.76 

7 2.03 96.47 82.39 17.61 12.20 5.41 

8 1.82 96.72 83.64 16.36 13.89 2.47 

9 2.08 96.38 82.87 17.13 14.87 2.25 

10 1.82 96.84 83.65 16.35 15.50 0.86 

11 2.17 96.22 84.13 15.87 15.15 0.72 

12 2.15 96.26 82.89 17.11 15.66 1.45 

13 2.00 96.52 82.08 17.92 13.99 3.93 

14 2.12 96.38 83.43 16.57 12.07 4.51 

15 2.13 95.92 82.76 17.24 15.90 1.34 
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16 2.46 95.67 82.57 17.43 8.70 8.73 

17 2.63 96.02 83.84 16.16 14.79 1.37 

18 3.00 95.34 83.19 16.81 15.64 1.17 

19 1.88 96.68 80.61 19.39 13.62 5.77 

20 2.61 96.21 81.05 18.95 16.80 2.15 

21 2.23 96.07 80.20 19.80 17.04 2.76 

22 2.83 95.49 82.22 17.78 11.73 6.04 

23 2.52 96.23 81.48 18.52 11.32 7.20 

24 2.34 95.74 82.16 17.84 16.56 1.28 

25 2.63 96.11 84.10 15.90 9.62 6.28 

26 2.18 96.60 81.29 18.71 13.15 5.57 

27 2.73 95.82 82.21 17.79 16.48 1.31 

28 2.64 95.53 78.22 21.78 20.57 1.21 

29 2.94 95.63 79.26 20.74 18.86 1.88 
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Appendix E 

Exploration of the use of generalized additive models (GAMs) to establish sediment 

background concentrations 

In an attempt to strengthen our determination of the near-constant metals concentration portion of the stratigraphic 

records, a generalized additive model (GAM) was run in R (version 4.0.0; R Core Team 2020) using the package mgcv 

(version 1.8-31; Wood 2017). GAMs are an alternate approach to standardizing temporal data and have been particularly 

recognized for their benefits in paleolimnology (Simpson 2018). In the section below, the first derivative from the 

estimated trend was used to identify periods of significant change in metal profiles and supplement our visual assessment 

of the data. In particular, first derivatives were used to identify where the initial departure from the average trend of the 

data occurred (i.e., departure from background). Visually-determined arsenic baselines for NW and NE lakes were on 

average within ±27 years of the GAM-identified baselines. The largest difference in visual vs. GAM-identified arsenic 

baselines (±68 years) was at lake NW60 (Visual: 1852 vs. GAM-identified: 1920). The GAM was not able to determine a 

departure from background for the lake NW70 arsenic dataset. Visually-determined antimony baselines for NW and NE 

lakes were on average within ±42 years of the GAM-identified baseline (n=20). Differences in the two approaches were 

more pronounced for antimony overall. Generalized additive models were explored in this study with the aim of 

identifying statistically-significant periods of change which would in turn identify the beginning and end of the pre-

industrial or undisturbed period. In most cases, the GAMs identified that our visual determination of the pre-industrial 

period was comparable and, in some instances, considered more appropriate than the GAM approach. Thus, our study 

proceeded with the use of visually-determined backgrounds rather than GAM-identified backgrounds. The efforts of this 

exploration are shown below. Notably, very similar arsenic and antimony total excess inventories were generated using 

both approaches for defining background concentrations (Table E1). 
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Figure E1: Stratigraphic profiles of arsenic, antimony, and lead for lakes across the northwest and northeast transects. 

Results are presented to 1500 CE where available. The period of peak emissions is highlighted in yellow (i.e, 1950s) 

while the grey shaded areas represent the period identified as ‘pre-industrial’ or background. A red dashed line shows the 

first derivative of the data set as identified by generalized additive modelling in R. 
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Table E1: Arsenic and antimony total excess inventories shown by varying baseline approach. GAM-based inventories 

refer to inventories calculated using the first-derivative defined baselines whereas original inventories are those previously 

described in Figure E1. 

 

Lake Arsenic 

GAM-based 

Inventory 

(mg/m2) 
 

Arsenic 

Original Inventory 

(mg/m2) 
 

Difference 

(±mg/m2) 

Antimony 

GAM-based 

Inventory 

(mg/m2) 

Antimony 

Original Inventory 

(mg/m2) 
 

Difference 

(mg/m2) 
 

NW10 4872 4826 45.93 83 82 1.33 

NW20 7194 6929 265.26 19 19 0.28 

NW30 441 434 6.93 29 30 1.55 

NW40 116 117 0.75 7 7 0.19 

NW50 995 995 0.00 15 18 3.28 

NW60 211 234 23.68 7 7 0.22 

NW70 N/A 17 N/A 3 4 0.45 

NW80 123 120 2.83 2 2 0.00 

NE20 309 318 8.87 7 7 0.07 

NE40 44 46 1.70 2 3 0.06 
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Figure E2: Outputs of generalized additive model and first derivative plots for lake NW10 for arsenic (top) and antimony 

(bottom). 
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Figure E3: Outputs of generalized additive model and first derivative plots for lake NW20 for arsenic (top) and antimony 

(bottom). 
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Figure E4: Outputs of generalized additive model and first derivative plots for lake NW30 for arsenic (top) and antimony 

(bottom). 
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Figure E5: Outputs of generalized additive model and first derivative plots for lake NW40 for arsenic (top) and antimony 

(bottom). 
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Figure E6: Outputs of generalized additive model and first derivative plots for lake NW50 for arsenic (top) and antimony 

(bottom). 
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Figure E7: Outputs of generalized additive model and first derivative plots for lake NW60 for arsenic (top) and antimony 

(bottom). 
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Figure E8: Outputs of generalized additive model and first derivative plots for lake NW70 for arsenic (top) and antimony 

(bottom). 
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Figure E9: Outputs of generalized additive model and first derivative plots for lake NW80 for arsenic (top) and antimony 

(bottom). 
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Figure E10: Outputs of generalized additive model and first derivative plots for lake NE20 for arsenic (top) and antimony 

(bottom). 
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Figure E11: Outputs of generalized additive model and first derivative plots for lake NE40 for arsenic (top) and antimony 

(bottom). 
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Appendix F 

Reported solid-phase metal concentrations measured on 1 cm intervals of study lakes at 

ALS Laboratories (Waterloo, ON) 

Table F1: NW10 

NW10 Al Sb As Ba Be Bi B Cd Ca Cr Co 

0-1 cm 6390.00 17.50 1040.00 97.40 0.17 <0.20 15.60 0.71 10900.00 11.30 7.84 

1-2 cm  6440.00 15.70 956.00 93.40 0.19 <0.20 11.10 0.67 9340.00 11.00 8.14 

2-3 cm 7070.00 10.90 742.00 97.90 0.18 <0.20 9.60 0.71 9510.00 12.10 9.15 

3-4 cm 7150.00 8.63 551.00 93.40 0.20 <0.20 9.00 0.70 8860.00 12.30 9.29 

4-5 cm 7550.00 7.03 397.00 96.90 0.22 <0.20 8.60 0.77 9490.00 13.10 10.10 

5-6 cm 8010.00 5.87 318.00 101.00 0.23 <0.20 8.70 0.83 9790.00 14.00 11.50 

6-7 cm 7180.00 3.21 155.00 88.00 0.24 <0.20 6.70 0.80 8610.00 13.00 11.60 

7-8 cm 8270.00 3.27 160.00 99.70 0.27 <0.20 7.10 0.85 9550.00 14.90 13.40 

8-9 cm 8490.00 2.29 122.00 103.00 0.28 <0.20 6.90 0.91 9600.00 15.20 13.70 

9-10 

cm 

7780.00 1.64 80.20 91.20 0.23 <0.20 6.30 0.82 8750.00 13.70 12.50 

10-11 

cm 

8370.00 1.26 59.80 96.60 0.27 <0.20 6.60 0.89 9380.00 15.60 13.50 

11-12 

cm 

9010.00 1.26 53.70 105.00 0.29 <0.20 7.20 1.04 10000.00 17.00 15.00 

12-13 

cm 

8450.00 0.96 43.80 99.10 0.28 <0.20 6.70 0.90 9310.00 16.00 14.20 

13-14 

cm 

8030.00 0.78 39.10 96.00 0.26 <0.20 6.50 0.90 9450.00 15.10 13.40 

14-15 

cm 

8420.00 0.65 35.20 103.00 0.26 <0.20 6.30 0.95 9290.00 15.60 14.10 

15-16 

cm 

7890.00 0.49 27.10 92.80 0.25 <0.20 5.70 0.84 8730.00 14.90 13.10 

16-17 

cm 

7180.00 0.42 23.10 86.40 0.24 <0.20 5.50 0.80 7970.00 13.50 12.00 
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17-18 

cm 

7530.00 0.48 20.90 90.10 0.24 <0.20 6.20 0.82 8570.00 14.20 12.90 

18-19 

cm 

8320.00 0.38 19.50 101.00 0.28 <0.20 6.70 0.89 9280.00 15.60 14.50 

19-20 

cm 

7490.00 0.34 15.40 89.70 0.26 <0.20 6.00 0.83 8270.00 14.30 13.00 

20-21 

cm 

8430.00 0.49 15.60 95.50 0.31 <0.20 7.80 0.93 9240.00 16.30 15.30 

21-22 

cm 

7490.00 0.38 12.50 86.10 0.27 <0.20 7.30 0.91 8620.00 14.80 14.30 

22-23 

cm 

7300.00 0.31 11.20 84.20 0.26 <0.20 6.60 0.88 8340.00 14.20 13.70 

23-24 

cm 

7190.00 0.29 9.36 82.00 0.29 <0.20 6.90 0.91 8580.00 14.80 13.70 

24-25 

cm 

8680.00 0.33 11.10 101.00 0.34 <0.20 8.00 1.03 9930.00 16.90 16.60 

 

NW10 Cu Fe Pb Li Mg Mn Mo Ni P K Se 

0-1 cm 26.60 4460.00 8.88 <2.0 1670.00 251.00 1.62 19.00 1180.00 350.00 1.13 

1-2 cm  29.30 3420.00 7.04 <2.0 1430.00 173.00 1.81 19.50 817.00 250.00 1.24 

2-3 cm 33.10 3410.00 5.52 <2.0 1400.00 168.00 1.78 20.90 743.00 220.00 1.24 

3-4 cm 33.10 3260.00 4.33 <2.0 1290.00 164.00 1.84 20.90 708.00 220.00 1.14 

4-5 cm 34.40 3370.00 3.64 <2.0 1340.00 164.00 1.87 21.30 698.00 230.00 1.17 

5-6 cm 38.30 3600.00 3.23 2.00 1400.00 169.00 2.17 22.30 742.00 240.00 1.39 

6-7 cm 37.00 3330.00 2.10 <2.0 1240.00 148.00 2.20 20.60 673.00 200.00 1.33 

7-8 cm 42.00 3730.00 2.27 <2.0 1330.00 154.00 2.57 23.50 791.00 210.00 1.48 

8-9 cm 44.70 3630.00 2.03 <2.0 1290.00 160.00 2.62 24.60 780.00 190.00 1.37 

9-10 

cm 

41.50 3300.00 1.76 <2.0 1290.00 159.00 2.74 22.20 725.00 190.00 1.29 
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10-11 

cm 

45.50 3430.00 1.75 <2.0 1370.00 152.00 2.80 24.30 766.00 220.00 1.47 

11-12 

cm 

49.30 3790.00 1.85 2.00 1480.00 171.00 3.35 26.80 821.00 240.00 1.66 

12-13 

cm 

47.20 3660.00 1.66 <2.0 1430.00 169.00 3.38 25.50 762.00 210.00 1.51 

13-14 

cm 

44.00 3630.00 1.54 <2.0 1460.00 169.00 3.03 24.30 735.00 210.00 1.48 

14-15 

cm 

45.40 3600.00 1.57 <2.0 1350.00 166.00 2.91 25.10 743.00 200.00 1.54 

15-16 

cm 

42.40 3390.00 1.49 <2.0 1280.00 161.00 2.75 24.00 682.00 180.00 1.39 

16-17 

cm 

38.80 3190.00 1.40 <2.0 1190.00 140.00 2.71 21.90 644.00 190.00 1.29 

17-18 

cm 

41.80 3550.00 1.50 <2.0 1300.00 153.00 3.02 23.00 705.00 220.00 1.40 

18-19 

cm 

45.80 3990.00 1.58 2.10 1370.00 164.00 3.23 25.70 761.00 210.00 1.59 

19-20 

cm 

42.90 3530.00 1.50 <2.0 1190.00 147.00 3.02 23.40 652.00 190.00 1.60 

20-21 

cm 

51.10 4520.00 1.57 <2.0 1330.00 165.00 3.68 25.80 860.00 240.00 1.61 

21-22 

cm 

47.80 4380.00 1.41 <2.0 1230.00 148.00 3.68 23.90 806.00 210.00 1.75 

22-23 

cm 

47.00 4450.00 1.38 <2.0 1160.00 147.00 3.44 23.30 812.00 180.00 1.57 

23-24 

cm 

46.80 4700.00 1.44 <2.0 1220.00 145.00 3.39 22.90 744.00 200.00 1.73 

24-25 

cm 

55.70 5630.00 1.68 <2.0 1360.00 173.00 4.15 27.80 911.00 250.00 1.86 
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NW10 Ag Na Sr S Tl Sn Ti W U V Zn Zr 

0-1 cm 0.11 140.00 41.20 6700.00 0.11 <2.0 76.20 <0.50 2.90 12.60 124.00 1.90 

1-2 cm  0.10 118.00 36.90 5700.00 0.11 <2.0 78.30 <0.50 2.98 13.60 125.00 1.80 

2-3 cm 0.10 105.00 36.40 5700.00 0.11 <2.0 83.80 <0.50 3.40 15.40 148.00 2.10 

3-4 cm 0.10 100.00 34.50 5500.00 0.11 <2.0 82.20 <0.50 3.41 14.60 155.00 2.10 

4-5 cm <0.10 114.00 36.50 5700.00 0.15 <2.0 88.40 <0.50 3.69 15.00 191.00 2.10 

5-6 cm 0.11 123.00 36.90 6400.00 0.18 <2.0 91.50 <0.50 3.98 15.50 226.00 2.20 

6-7 cm <0.10 114.00 32.20 6100.00 0.19 <2.0 82.50 <0.50 3.76 14.20 213.00 2.20 

7-8 cm 0.12 111.00 39.00 6600.00 0.20 <2.0 92.00 <0.50 4.43 16.30 229.00 2.50 

8-9 cm 0.24 95.00 37.50 6200.00 0.21 <2.0 94.30 <0.50 4.46 17.00 236.00 2.80 

9-10 

cm 

0.11 114.00 33.80 5600.00 0.20 <2.0 85.90 <0.50 4.19 16.30 211.00 2.60 

10-11 

cm 

0.12 105.00 36.70 6100.00 0.19 <2.0 94.40 0.56 4.65 17.50 224.00 2.50 

11-12 

cm 

0.14 117.00 42.00 6900.00 0.24 <2.0 98.80 <0.50 5.25 19.00 239.00 2.70 

12-13 

cm 

0.13 117.00 38.20 7100.00 0.22 <2.0 91.90 <0.50 4.94 18.30 220.00 2.60 

13-14 

cm 

0.12 133.00 36.50 7400.00 0.21 <2.0 87.20 <0.50 4.66 17.60 208.00 2.50 

14-15 

cm 

0.12 92.00 37.60 6300.00 0.19 <2.0 90.40 <0.50 4.80 18.20 210.00 2.60 

15-16 

cm 

0.12 92.00 35.30 6000.00 0.18 <2.0 84.00 <0.50 4.76 17.50 198.00 2.50 

16-17 

cm 

0.11 88.00 32.50 5600.00 0.17 <2.0 80.00 <0.50 4.32 15.90 183.00 2.20 

17-18 

cm 

0.13 109.00 36.80 6700.00 0.20 <2.0 83.40 <0.50 4.76 16.90 194.00 2.10 
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18-19 

cm 

0.13 102.00 38.00 6900.00 0.18 <2.0 90.80 <0.50 5.08 18.40 216.00 2.40 

19-20 

cm 

0.12 84.00 32.50 6000.00 0.17 <2.0 83.60 <0.50 4.88 16.80 216.00 2.20 

20-21 

cm 

0.16 102.00 38.10 7600.00 0.19 <2.0 90.80 <0.50 5.07 19.60 230.00 2.50 

21-22 

cm 

0.13 96.00 36.30 7500.00 0.16 <2.0 79.10 <0.50 4.91 17.80 216.00 2.40 

22-23 

cm 

0.14 89.00 34.70 7000.00 0.15 <2.0 71.90 <0.50 4.66 17.50 209.00 2.50 

23-24 

cm 

0.13 100.00 36.10 7600.00 0.16 <2.0 77.40 <0.50 4.85 17.90 202.00 2.60 

24-25 

cm 

0.16 110.00 42.30 9500.00 0.19 <2.0 88.20 <0.50 5.69 21.10 241.00 2.80 

 

Table F2: NW20 

NW20 Al Sb As Ba Be Bi B Cd Ca Cr Co 

0-1 cm 10200.00 4.99 239.00 81.90 0.32 <0.20 11.50 0.68 8220.00 12.80 7.20 

1-2 cm  9750.00 4.88 209.00 76.70 0.31 <0.20 10.40 0.59 7300.00 11.60 6.80 

2-3 cm 10900.00 4.48 195.00 80.40 0.34 <0.20 10.20 0.57 7590.00 12.70 7.12 

3-4 cm 11800.00 4.49 200.00 86.30 0.36 <0.20 10.80 0.57 8250.00 13.70 7.82 

4-5 cm 11700.00 3.75 170.00 83.50 0.37 <0.20 9.60 0.54 7850.00 12.70 7.54 

5-6 cm 10400.00 2.80 138.00 75.30 0.32 <0.20 8.50 0.44 6960.00 11.50 6.66 

6-7 cm 10900.00 2.22 119.00 77.40 0.34 <0.20 7.70 0.45 6980.00 11.90 6.96 

7-8 cm 12200.00 2.26 124.00 85.20 0.37 <0.20 8.80 0.54 7720.00 13.40 8.00 

8-9 cm 12100.00 1.96 117.00 84.40 0.38 <0.20 8.70 0.56 7850.00 13.60 8.12 

9-10 cm 11600.00 1.53 97.20 81.30 0.37 <0.20 8.70 0.56 7460.00 13.30 7.90 

10-11 cm 11500.00 1.28 87.20 78.20 0.37 <0.20 7.90 0.58 7330.00 13.60 8.39 

11-12 cm 13600.00 1.13 84.80 90.40 0.42 <0.20 8.40 0.73 8410.00 16.30 10.40 

12-13 cm 11600.00 0.82 60.70 76.50 0.36 <0.20 7.00 0.63 7170.00 13.60 8.57 
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13-14 cm 12500.00 0.91 65.60 83.30 0.39 <0.20 7.50 0.73 7870.00 14.70 9.55 

14-15 cm 11300.00 0.68 55.00 74.10 0.33 <0.20 6.40 0.60 6720.00 12.90 8.98 

15-16 cm 12300.00 0.75 60.30 80.60 0.40 <0.20 8.00 0.62 7980.00 13.30 9.39 

16-17 cm 11700.00 0.63 51.00 82.30 0.35 <0.20 7.30 0.50 7350.00 12.90 8.32 

17-18 cm 11000.00 0.42 42.60 78.70 0.33 <0.20 7.20 0.51 7100.00 12.50 8.09 

18-19 cm 11700.00 0.32 39.30 80.60 0.39 <0.20 7.90 0.64 7630.00 14.10 9.03 

19-20 cm 10500.00 0.24 33.50 73.30 0.34 <0.20 7.00 0.61 6670.00 12.40 8.42 

20-21 cm 11100.00 0.25 31.40 76.10 0.34 <0.20 7.40 0.55 6670.00 13.00 8.87 

21-22 cm 10800.00 0.20 27.50 72.10 0.35 <0.20 7.40 0.53 6430.00 13.20 8.42 

22-23 cm 9130.00 0.16 21.50 62.10 0.33 <0.20 6.30 0.46 5840.00 10.60 6.96 

23-24 cm 11400.00 0.17 25.00 76.20 0.40 <0.20 7.40 0.64 6470.00 15.00 9.17 

24-25 cm 10800.00 0.16 23.10 73.60 0.40 <0.20 7.30 0.64 6250.00 14.30 9.07 

25-26 cm 11200.00 0.13 21.00 77.80 0.42 <0.20 6.80 0.55 6120.00 17.80 8.94 

26-27 cm 14400.00 0.16 26.30 96.90 0.56 <0.20 8.50 0.75 7300.00 20.10 11.00 

27-28 cm 12800.00 0.19 19.80 81.40 0.49 <0.20 7.20 0.63 5570.00 17.10 9.74 

28-29 cm 12600.00 0.14 17.80 76.10 0.52 <0.20 5.50 0.65 4850.00 18.00 9.84 

29-30 cm 13800.00 0.46 21.50 100.00 0.53 0.20 7.60 0.71 3580.00 24.70 11.00 

 

NW20 Cu Fe Pb Li Mg Mn Mo Ni P K Se 

0-1 

cm 

25.00 10300.00 6.35 3.70 1610.00 228.00 2.49 15.80 1640.00 910.00 1.15 

1-2 

cm  

21.00 9670.00 5.46 3.70 1370.00 202.00 2.55 14.50 1500.00 480.00 1.07 

2-3 

cm 

22.70 10800.00 4.76 3.90 1390.00 212.00 3.07 15.40 1500.00 430.00 1.12 

3-4 

cm 

25.00 10600.00 4.68 4.00 1400.00 225.00 3.49 17.10 1540.00 430.00 1.32 

4-5 

cm 

24.50 10000.00 4.04 3.90 1380.00 218.00 3.47 16.70 1450.00 380.00 1.33 
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5-6 

cm 

22.20 9000.00 3.36 3.60 1160.00 191.00 3.10 14.90 1290.00 350.00 1.20 

6-7 

cm 

22.60 9300.00 2.98 3.50 1200.00 199.00 3.12 15.70 1290.00 340.00 1.14 

7-8 

cm 

25.80 10200.00 3.14 3.90 1340.00 213.00 3.58 17.30 1390.00 380.00 1.41 

8-9 

cm 

26.10 10400.00 3.01 4.10 1380.00 221.00 3.45 17.00 1410.00 390.00 1.34 

9-10 

cm 

25.20 10100.00 2.67 4.30 1360.00 218.00 3.23 16.40 1300.00 400.00 1.45 

10-11 

cm 

25.80 9780.00 2.48 4.40 1380.00 204.00 3.07 16.00 1190.00 400.00 1.32 

11-12 

cm 

31.70 11300.00 2.95 5.40 1640.00 228.00 4.00 19.00 1380.00 460.00 1.52 

12-13 

cm 

26.50 9700.00 2.49 4.40 1370.00 201.00 3.59 16.40 1180.00 380.00 1.29 

13-14 

cm 

29.60 10600.00 2.86 4.60 1430.00 214.00 4.04 17.90 1280.00 370.00 1.49 

14-15 

cm 

26.40 9310.00 2.33 3.70 1220.00 181.00 3.67 16.20 1170.00 340.00 1.23 

15-16 

cm 

29.00 9900.00 2.76 3.90 1260.00 203.00 4.53 17.70 1340.00 320.00 1.42 

16-17 

cm 

27.10 9460.00 2.43 3.50 1220.00 192.00 3.59 17.30 1260.00 330.00 1.27 

17-18 

cm 

26.20 9070.00 2.29 3.50 1170.00 178.00 3.30 16.30 1200.00 310.00 1.30 

18-19 

cm 

27.50 10100.00 2.68 4.50 1390.00 199.00 3.70 17.10 1210.00 390.00 1.37 

19-20 

cm 

26.00 9000.00 2.36 4.30 1260.00 178.00 4.05 15.00 1090.00 360.00 1.21 
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20-21 

cm 

25.50 9080.00 2.38 4.40 1360.00 191.00 4.44 15.80 1190.00 410.00 1.03 

21-22 

cm 

23.80 9160.00 2.32 5.10 1460.00 178.00 3.98 15.50 1060.00 450.00 0.99 

22-23 

cm 

19.20 7540.00 2.09 4.40 1140.00 138.00 3.12 12.60 888.00 340.00 0.91 

23-24 

cm 

24.40 10100.00 2.50 6.20 1650.00 193.00 3.91 16.50 1030.00 580.00 1.00 

24-25 

cm 

24.80 10100.00 2.53 6.80 1720.00 185.00 4.09 16.30 917.00 570.00 1.06 

25-26 

cm 

25.10 10700.00 2.50 8.10 1940.00 189.00 4.24 17.20 861.00 670.00 0.97 

26-27 

cm 

28.40 14600.00 3.11 11.80 2670.00 221.00 5.04 20.90 1140.00 1000.00 1.20 

27-28 

cm 

24.90 12700.00 2.85 10.20 2310.00 186.00 3.92 18.50 972.00 850.00 1.04 

28-29 

cm 

27.10 14300.00 3.19 12.70 2610.00 184.00 4.28 18.90 898.00 950.00 0.93 

29-30 

cm 

39.10 19800.00 5.62 20.60 3990.00 197.00 6.38 25.20 572.00 1790.00 1.05 

 

NW20 Ag Na Sr S Tl Sn Ti W U V Zn Zr 

0-1 cm <0.10 538.00 42.00 6200.00 0.09 <2.0 91.10 <0.50 6.65 18.20 168.00 1.80 

1-2 cm  <0.10 189.00 36.60 5800.00 0.09 <2.0 88.00 <0.50 6.50 18.00 131.00 1.70 

2-3 cm <0.10 179.00 39.90 6100.00 0.09 <2.0 81.40 <0.50 7.54 20.20 125.00 1.70 

3-4 cm <0.10 171.00 43.90 6700.00 0.09 <2.0 91.70 <0.50 8.53 22.20 118.00 1.80 

4-5 cm <0.10 167.00 41.80 6400.00 0.08 <2.0 90.00 <0.50 8.30 22.20 109.00 1.70 

5-6 cm <0.10 154.00 37.40 6000.00 0.07 <2.0 87.30 <0.50 7.47 20.50 91.20 1.50 

6-7 cm <0.10 168.00 37.50 5900.00 0.07 <2.0 70.70 <0.50 7.42 21.70 93.20 1.60 

7-8 cm <0.10 162.00 41.60 6400.00 0.08 <2.0 89.80 <0.50 8.46 23.90 115.00 1.70 
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8-9 cm <0.10 178.00 42.70 6600.00 0.08 <2.0 87.50 <0.50 8.29 23.50 118.00 1.80 

9-10 

cm 

<0.10 165.00 40.60 6200.00 0.08 <2.0 97.50 <0.50 8.00 22.00 115.00 1.60 

10-11 

cm 

<0.10 150.00 40.20 6000.00 0.08 <2.0 94.60 <0.50 8.05 21.00 118.00 1.50 

11-12 

cm 

0.11 185.00 46.70 6800.00 0.10 <2.0 118.00 <0.50 9.90 24.90 159.00 1.90 

12-13 

cm 

<0.10 165.00 40.40 5900.00 0.09 <2.0 101.00 <0.50 9.17 22.30 135.00 1.80 

13-14 

cm 

0.10 187.00 45.60 6900.00 0.12 <2.0 98.10 <0.50 10.40 24.30 166.00 2.00 

14-15 

cm 

<0.10 149.00 38.90 6100.00 0.11 <2.0 72.40 <0.50 8.49 20.80 131.00 1.60 

15-16 

cm 

0.10 152.00 47.00 7100.00 0.11 <2.0 76.10 <0.50 9.91 22.80 129.00 2.10 

16-17 

cm 

0.10 143.00 43.30 6800.00 0.10 48.60 71.00 <0.50 8.61 22.10 98.90 2.00 

17-18 

cm 

<0.10 143.00 42.30 6800.00 0.09 <2.0 70.00 <0.50 8.44 20.60 88.30 2.00 

18-19 

cm 

<0.10 160.00 45.00 6800.00 0.09 <2.0 79.30 <0.50 9.27 22.20 124.00 1.90 

19-20 

cm 

<0.10 146.00 39.50 5800.00 0.08 <2.0 75.00 <0.50 8.30 19.70 135.00 1.60 

20-21 

cm 

<0.10 140.00 39.50 5400.00 0.08 <2.0 95.00 <0.50 8.05 21.10 112.00 1.70 

21-22 

cm 

<0.10 142.00 37.90 5000.00 0.09 <2.0 87.50 <0.50 7.45 20.70 103.00 1.50 

22-23 

cm 

<0.10 127.00 34.20 4600.00 0.08 <2.0 59.80 <0.50 6.55 16.90 89.40 1.50 

23-24 

cm 

<0.10 172.00 39.90 5100.00 0.11 <2.0 113.00 <0.50 7.56 22.30 135.00 2.80 
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24-25 

cm 

<0.10 151.00 38.00 4900.00 0.13 <2.0 108.00 <0.50 7.83 21.60 155.00 1.70 

25-26 

cm 

<0.10 148.00 37.70 4600.00 0.13 <2.0 119.00 <0.50 8.01 22.80 129.00 1.60 

26-27 

cm 

<0.10 207.00 44.70 5700.00 0.20 <2.0 201.00 <0.50 9.70 30.10 161.00 2.70 

27-28 

cm 

<0.10 264.00 34.90 5000.00 0.19 <2.0 150.00 <0.50 7.95 25.60 148.00 1.70 

28-29 

cm 

<0.10 165.00 30.50 4100.00 0.22 <2.0 201.00 <0.50 9.13 26.40 154.00 1.90 

29-30 

cm 

0.11 329.00 25.20 3500.00 0.39 <2.0 363.00 0.56 13.50 30.90 138.00 2.80 

 

Table F3: NW30 

NW30 Al Sb As Ba Be Bi B Cd Ca Cr Co 

0-1 cm 3140.00 4.14 65.10 72.80  <0.20 9.60 0.47 11300.00 9.93 5.36 

1-2 cm  3710.00 5.67 75.10 58.70 0.12 <0.20 11.80 0.52 12600.00 42.80 6.85 

2-3 cm 3440.00 4.76 59.50 43.90 0.11 <0.20 10.50 0.48 11500.00 8.86 6.56 

3-4 cm 3790.00 5.07 61.70 45.70 0.12 <0.20 11.30 0.50 12800.00 9.58 6.99 

4-5 cm 3700.00 4.46 58.60 49.00 0.12 <0.20 10.70 0.45 12000.00 10.60 7.07 

5-6 cm 3760.00 3.95 56.70 45.90 0.13 <0.20 10.50 0.48 12200.00 9.38 7.39 

6-7 cm 3430.00 3.10 48.60 40.80  <0.20 9.30 0.44 12000.00 8.38 6.97 

7-8 cm 4600.00 2.86 53.60 56.70 0.14 <0.20 11.80 0.62 14800.00 12.90 10.40 

8-9 cm 4650.00 2.07 45.70 57.70 0.14 <0.20 11.90 0.61 15100.00 11.90 10.90 

9-10 cm 5050.00 1.51 39.70 61.20 0.17 <0.20 11.40 0.65 15200.00 18.70 12.20 

10-11 

cm 

4970.00 1.17 31.90 57.60 0.16 <0.20 10.80 0.65 15000.00 12.60 11.90 

11-12 

cm 

4850.00 0.90 27.90 57.50 0.13 <0.20 10.30 0.63 14300.00 12.40 11.60 
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12-13 

cm 

4690.00 0.79 24.70 54.70 0.14 <0.20 9.80 0.59 13300.00 11.80 10.90 

13-14 

cm 

5380.00 0.65 23.70 62.40 0.18 <0.20 10.80 0.62 15100.00 14.90 12.20 

14-15 

cm 

6050.00 0.54 22.80 72.80 0.18 <0.20 12.30 0.68 17300.00 14.00 13.40 

15-16 

cm 

5280.00 0.46 17.90 60.90 0.14 <0.20 9.40 0.57 14100.00 11.90 11.10 

16-17 

cm 

5950.00 0.40 18.80 68.80 0.16 <0.20 9.60 0.65 14700.00 12.20 12.60 

17-18 

cm 

5490.00 0.46 15.20 59.00 0.14 <0.20 9.00 0.60 14000.00 11.30 11.40 

18-19 

cm 

5060.00 0.33 13.30 54.10 0.12 <0.20 9.10 0.54 13500.00 10.20 11.50 

19-20 

cm 

4260.00 0.25 10.60 48.00 0.10 <0.20 7.80 0.45 11100.00 8.94 9.87 

20-21 

cm 

4050.00 0.18 10.40 46.90 0.10 <0.20 8.20 0.46 10600.00 8.80 10.30 

21-22 

cm 

4540.00 0.19 11.90 56.40 0.12 <0.20 8.60 0.54 12100.00 10.10 11.40 

22-23 

cm 

4250.00 0.17 11.30 53.10 0.12 <0.20 8.00 0.50 11300.00 10.20 10.50 

23-24 

cm 

3780.00 0.15 9.90 46.00  <0.20 7.10 0.46 9800.00 8.20 10.30 

24-25 

cm 

4060.00 0.14 10.20 50.20 0.12 <0.20 7.60 0.46 10700.00 9.20 11.40 

25-26 

cm 

4130.00 0.11 8.58 50.70 0.10 <0.20 6.70 0.45 10700.00 9.40 11.60 

26-27 

cm 

4460.00 0.14 10.00 54.50 0.14 <0.20 8.10 0.55 11400.00 10.90 13.60 
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27-28 

cm 

5870.00 0.13 11.90 69.80 0.17 <0.20 10.00 0.70 14000.00 14.40 17.60 

28-29 

cm 

4890.00 0.13 9.93 58.90 0.14 <0.20 8.90 0.58 12300.00 12.30 13.20 

29-30 

cm 

5850.00 0.14 11.50 71.90 0.19 <0.20 11.10 0.70 14800.00 14.40 14.30 

 

NW30 Cu Fe Pb Li Mg Mn Mo Ni P K Se 

0-1 cm 16.80 5050.00 5.38 <2.0 1720.00 247.00 2.29 15.30 1700.00 500.00 0.80 

1-2 cm  20.60 4940.00 5.56 <2.0 2210.00 266.00 3.80 21.20 1700.00 510.00 0.84 

2-3 cm 19.40 3970.00 4.87 <2.0 1860.00 231.00 2.88 19.40 1520.00 390.00 0.78 

3-4 cm 20.60 4030.00 4.91 <2.0 2030.00 234.00 3.14 19.00 1450.00 390.00 0.79 

4-5 cm 19.90 3970.00 4.43 <2.0 2080.00 228.00 2.91 19.80 1360.00 380.00 0.88 

5-6 cm 19.70 3990.00 3.94 <2.0 2130.00 225.00 2.54 18.40 1320.00 320.00 0.84 

6-7 cm 17.50 3540.00 3.35 <2.0 1960.00 206.00 2.24 16.50 1140.00 280.00 0.75 

7-8 cm 23.20 4890.00 3.15 <2.0 2540.00 274.00 2.82 22.10 1430.00 340.00 1.00 

8-9 cm 22.70 4930.00 2.56 <2.0 2590.00 275.00 2.53 21.60 1400.00 330.00 1.08 

9-10 

cm 

23.00 5360.00 2.18 <2.0 2660.00 286.00 2.64 24.60 1410.00 330.00 1.06 

10-11 

cm 

21.80 5350.00 1.92 <2.0 2550.00 286.00 2.53 22.80 1380.00 310.00 1.00 

11-12 

cm 

20.80 5120.00 1.64 <2.0 2500.00 276.00 2.34 22.70 1380.00 310.00 1.07 

12-13 

cm 

20.10 5070.00 1.59 <2.0 2420.00 269.00 2.48 21.70 1210.00 300.00 1.00 

13-14 

cm 

21.90 5720.00 1.61 <2.0 2580.00 308.00 2.68 24.90 1340.00 310.00 1.11 

14-15 

cm 

23.70 6300.00 1.63 <2.0 2830.00 349.00 2.90 26.00 1470.00 340.00 1.20 



 

105 

15-16 

cm 

20.10 5540.00 1.40 <2.0 2410.00 293.00 2.48 21.80 1160.00 270.00 1.00 

16-17 

cm 

22.50 5930.00 1.49 <2.0 2540.00 317.00 2.49 24.30 1300.00 350.00 0.99 

17-18 

cm 

20.20 5370.00 1.42 <2.0 2300.00 279.00 2.30 22.60 1130.00 290.00 0.96 

18-19 

cm 

17.70 4990.00 1.26 <2.0 2100.00 259.00 2.09 21.50 1050.00 280.00 0.94 

19-20 

cm 

14.10 4390.00 0.94 <2.0 1740.00 216.00 1.67 18.40 880.00 230.00 0.73 

20-21 

cm 

13.90 4500.00 0.90 <2.0 1690.00 222.00 1.87 17.90 857.00 220.00 0.79 

21-22 

cm 

15.80 5290.00 0.95 <2.0 1890.00 250.00 2.57 19.00 924.00 210.00 0.90 

22-23 

cm 

15.50 5290.00 0.81 <2.0 1810.00 236.00 3.48 16.80 805.00 200.00 0.90 

23-24 

cm 

14.00 4480.00 0.71 <2.0 1570.00 211.00 3.16 15.00 782.00 180.00 0.66 

24-25 

cm 

13.80 4850.00 0.78 <2.0 1640.00 228.00 2.99 17.10 748.00 200.00 0.81 

25-26 

cm 

13.50 4970.00 0.75 <2.0 1650.00 233.00 2.61 17.70 802.00 190.00 0.82 

26-27 

cm 

16.80 5380.00 0.86 <2.0 1730.00 256.00 2.84 19.70 911.00 200.00 0.97 

27-28 

cm 

20.00 7060.00 1.11 <2.0 2220.00 317.00 3.09 25.20 1040.00 280.00 1.08 

28-29 

cm 

16.00 6080.00 1.02 <2.0 1920.00 278.00 2.43 20.80 942.00 260.00 0.88 

29-30 

cm 

19.40 7520.00 1.22 <2.0 2250.00 337.00 2.79 24.40 1060.00 280.00 1.11 
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NW30 Ag Na Sr S Tl Sn Ti W U V Zn Zr 

0-1 cm <0.10 118.00 47.80 5500.00 0.08 <2.0 34.90 <0.50 6.30 5.71 122.00 1.80 

1-2 cm  <0.10 156.00 52.40 6200.00 0.10 <2.0 42.70 <0.50 7.67 7.37 145.00 2.10 

2-3 cm <0.10 120.00 46.20 5500.00 0.09 <2.0 38.50 <0.50 7.50 6.50 145.00 1.90 

3-4 cm <0.10 132.00 49.10 5900.00 0.09 <2.0 44.40 <0.50 8.01 7.06 149.00 2.50 

4-5 cm <0.10 149.00 48.70 6000.00 0.08 <2.0 41.20 <0.50 7.60 6.50 136.00 2.20 

5-6 cm <0.10 140.00 50.40 5700.00 0.08 <2.0 42.40 <0.50 7.79 6.36 143.00 2.20 

6-7 cm <0.10 140.00 45.20 5000.00 0.07 <2.0 38.40 <0.50 7.27 5.72 133.00 2.30 

7-8 cm <0.10 155.00 59.50 6800.00 0.09 <2.0 56.90 <0.50 10.00 7.87 209.00 2.90 

8-9 cm <0.10 167.00 58.50 6700.00 0.09 <2.0 56.20 <0.50 10.40 7.89 227.00 2.90 

9-10 

cm 

<0.10 149.00 61.00 6800.00 0.10 <2.0 64.30 <0.50 11.70 8.86 249.00 3.10 

10-11 

cm 

<0.10 156.00 58.70 6700.00 0.09 <2.0 61.00 <0.50 11.40 8.62 231.00 3.80 

11-12 

cm 

<0.10 179.00 58.40 6300.00 0.08 <2.0 57.70 <0.50 10.60 8.30 221.00 3.70 

12-13 

cm 

<0.10 193.00 57.20 5900.00 0.09 <2.0 58.60 <0.50 9.66 8.09 196.00 3.90 

13-14 

cm 

<0.10 177.00 64.10 6400.00 0.09 <2.0 70.30 <0.50 10.80 9.05 187.00 3.90 

14-15 

cm 

<0.10 212.00 66.70 6900.00 0.09 <2.0 82.80 <0.50 11.50 9.78 210.00 4.50 

15-16 

cm 

<0.10 193.00 58.90 5800.00 0.08 <2.0 70.10 <0.50 9.18 7.95 179.00 4.40 

16-17 

cm 

<0.10 240.00 64.60 6000.00 0.08 <2.0 93.40 <0.50 9.93 8.30 192.00 4.60 

17-18 

cm 

<0.10 230.00 64.90 5500.00 0.08 <2.0 84.40 <0.50 9.25 7.20 164.00 5.40 
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18-19 

cm 

<0.10 210.00 55.00 5200.00 0.06 <2.0 73.00 <0.50 8.83 6.71 134.00 4.20 

19-20 

cm 

<0.10 167.00 44.60 4000.00 0.06 <2.0 56.30 <0.50 7.34 5.88 120.00 3.20 

20-21 

cm 

<0.10 140.00 44.70 4500.00 0.08 <2.0 48.10 <0.50 7.95 6.23 135.00 2.90 

21-22 

cm 

<0.10 124.00 51.20 5100.00 0.10 <2.0 48.40 <0.50 10.30 7.53 179.00 2.90 

22-23 

cm 

<0.10 149.00 46.70 4600.00 0.13 <2.0 38.30 <0.50 11.00 8.58 224.00 2.10 

23-24 

cm 

<0.10 131.00 41.20 4200.00 0.10 <2.0 32.80 <0.50 10.70 7.47 179.00 1.80 

24-25 

cm 

<0.10 127.00 44.60 4600.00 0.09 <2.0 37.50 <0.50 12.00 7.95 171.00 2.30 

25-26 

cm 

<0.10 125.00 44.70 4400.00 0.08 <2.0 37.80 <0.50 11.90 7.58 146.00 2.60 

26-27 

cm 

<0.10 111.00 48.50 5200.00 0.09 <2.0 47.50 <0.50 14.00 7.98 170.00 2.80 

27-28 

cm 

<0.10 156.00 59.60 6400.00 0.13 <2.0 64.80 <0.50 18.10 10.60 223.00 3.70 

28-29 

cm 

<0.10 164.00 51.80 5300.00 0.09 <2.0 54.10 <0.50 14.50 9.59 188.00 3.10 

29-30 

cm 

<0.10 187.00 62.90 6400.00 0.10 <2.0 63.30 <0.50 16.20 12.60 238.00 3.90 

 

Table F4: NW40 

NW40 Al Sb As Ba Be Bi B Cd Ca Cr Co 

0-1 

cm 

12200.00 1.10 33.20 158.00 0.48 <0.20 19.10 0.26 9240.00 25.20 8.57 
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1-2 

cm  

9980.00 1.09 27.80 126.00 0.47 <0.20 18.50 0.22 8050.00 19.50 7.17 

2-3 

cm 

11800.00 1.19 32.90 149.00 0.48 <0.20 16.50 0.25 7560.00 23.50 8.65 

3-4 

cm 

14300.00 1.61 31.40 164.00 0.48 <0.20 14.10 0.31 6750.00 28.70 10.20 

4-5 

cm 

14600.00 2.16 29.70 158.00 0.54 <0.20 14.90 0.29 7460.00 28.40 10.20 

5-6 

cm 

15000.00 2.35 28.70 155.00 0.54 <0.20 13.40 0.31 7160.00 28.80 10.30 

6-7 

cm 

14900.00 2.33 26.50 165.00 0.55 <0.20 12.70 0.32 6910.00 29.30 10.60 

7-8 

cm 

15000.00 1.39 23.00 149.00 0.54 <0.20 11.20 0.31 6380.00 29.70 10.70 

8-9 

cm 

14800.00 0.87 19.80 142.00 0.58 <0.20 11.00 0.30 6240.00 28.60 10.60 

9-10 

cm 

16500.00 0.53 20.00 156.00 0.60 <0.20 11.50 0.31 6400.00 31.10 11.40 

10-11 

cm 

16000.00 0.36 18.50 144.00 0.62 <0.20 12.20 0.31 6840.00 30.40 11.30 

11-12 

cm 

16400.00 0.28 17.00 155.00 0.60 <0.20 11.40 0.31 6200.00 31.10 11.60 

12-13 

cm 

17900.00 0.21 16.00 167.00 0.58 <0.20 10.30 0.31 5830.00 33.00 12.00 

13-14 

cm 

15000.00 0.19 12.90 146.00 0.49 <0.20 8.60 0.27 5100.00 29.30 10.40 

14-15 

cm 

12800.00 0.27 10.20 122.00 0.45 <0.20 7.90 0.26 4700.00 24.40 9.09 

15-16 

cm 

12400.00 0.22 9.03 121.00 0.45 <0.20 7.60 0.26 4630.00 24.40 8.53 
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16-17 

cm 

15200.00 0.20 9.45 148.00 0.58 <0.20 8.20 0.28 5460.00 28.80 9.42 

17-18 

cm 

15100.00 0.14 8.33 144.00 0.45 <0.20 6.20 0.25 4320.00 28.30 9.01 

18-19 

cm 

14400.00 0.22 8.03 137.00 0.52 <0.20 8.20 0.25 5010.00 27.60 8.92 

19-20 

cm 

14900.00 0.15 8.46 144.00 0.56 <0.20 7.50 0.26 5060.00 29.20 9.60 

20-21 

cm 

14000 0.29 10 144 0.6 <0.20 8.6 0.216 4850 29.8 9.41 

21-22 

cm 

14400 0.2 11.2 147 0.58 <0.20 8.4 0.222 4960 30.5 9.67 

22-23 

cm 

14300 0.24 11.1 146 0.61 <0.20 9.1 0.219 5040 29.9 9.49 

23-24 

cm 

14600 0.23 11.3 144 0.63 <0.20 9.3 0.213 4950 30.7 9.69 

24-25 

cm 

11500 0.35 9.64 117 0.53 <0.20 8.4 0.184 4300 24.8 7.89 

25-26 

cm 

8690 0.26 8.37 88.2 0.41 <0.20 5.6 0.144 3320 19.8 6.54 

26-27 

cm 

8690 0.2 7.83 84.9 0.42 <0.20 6.1 0.15 3280 19.9 6.6 

27-28 

cm 

10400 0.14 7.46 102 0.43 <0.20 5.6 0.145 2860 23 6.84 

28-29 

cm 

14600 0.21 9.58 150 0.66 <0.20 7.1 0.17 3770 32.2 9 

29-30 

cm 

20300 0.26 13.9 208 0.9 0.28 10.1 0.213 4780 44.3 11.9 
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NW40 Cu Fe Pb Li Mg Mn Mo Ni P K Se 

0-1 cm 20.80 20800.00 5.83 14.70 4700.00 1010.00 1.67 22.60 1630.00 1910.00 0.53 

1-2 cm  16.10 17100.00 5.32 14.60 3470.00 854.00 1.62 18.20 1290.00 1520.00 0.48 

2-3 cm 19.70 20100.00 5.78 14.60 4080.00 988.00 1.78 22.30 1430.00 1710.00 0.46 

3-4 cm 23.10 20600.00 6.10 15.90 4970.00 779.00 2.16 26.30 1290.00 1900.00 0.55 

4-5 cm 23.40 19700.00 7.06 18.80 4900.00 683.00 2.84 25.90 1110.00 1870.00 0.52 

5-6 cm 24.60 19800.00 6.97 18.50 5100.00 684.00 3.07 26.30 977.00 1860.00 0.56 

6-7 cm 25.40 19500.00 6.58 19.30 5090.00 630.00 3.22 27.00 903.00 1890.00 0.52 

7-8 cm 24.70 19500.00 5.48 19.70 4890.00 621.00 2.80 26.50 872.00 1880.00 0.54 

8-9 cm 24.00 19200.00 5.28 19.40 4760.00 591.00 2.69 25.70 746.00 1760.00 0.53 

9-10 

cm 

25.30 20500.00 5.70 23.60 5140.00 613.00 2.69 27.30 803.00 1970.00 0.57 

10-11 

cm 

24.90 20200.00 5.41 25.40 5170.00 574.00 2.88 26.80 786.00 1930.00 0.59 

11-12 

cm 

26.00 20400.00 5.25 25.40 5020.00 598.00 2.81 27.00 750.00 1950.00 0.58 

12-13 

cm 

27.00 21200.00 4.90 28.20 5490.00 612.00 2.63 28.50 771.00 2070.00 0.61 

13-14 

cm 

23.10 19600.00 4.16 17.20 4790.00 548.00 2.18 24.80 648.00 1810.00 0.46 

14-15 

cm 

19.50 17200.00 4.27 15.30 4080.00 487.00 2.13 21.10 579.00 1510.00 0.37 

15-16 

cm 

21.00 16100.00 4.34 17.00 4250.00 448.00 1.95 21.60 574.00 1520.00 0.46 

16-17 

cm 

24.50 17700.00 5.10 18.90 4790.00 472.00 2.09 25.10 581.00 1800.00 0.56 

17-18 

cm 

23.20 16500.00 3.95 16.70 4700.00 444.00 1.51 24.50 546.00 1770.00 0.56 

18-19 

cm 

22.30 16000.00 4.79 20.50 4610.00 458.00 1.79 24.10 531.00 1760.00 0.48 
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19-20 

cm 

23.80 16700.00 5.06 23.30 4830.00 459.00 2.01 25.70 515.00 1900.00 0.53 

20-21 

cm 

22.2 17500 5.39 23.5 5120 372 2.31 25.9 475 2280 0.57 

21-22 

cm 

22.7 18000 5.56 23.1 5340 373 2.22 26.4 495 2370 0.57 

22-23 

cm 

22.5 17800 5.64 23.1 5400 377 2.31 26.9 503 2490 0.49 

23-24 

cm 

22.5 17900 5.62 22.9 5550 382 2.35 28.4 488 2550 0.5 

24-25 

cm 

18.3 14700 4.66 18.5 4410 305 2.12 22.4 417 2020 0.39 

25-26 

cm 

14.7 11900 3.7 14.2 3490 249 1.71 18.1 340 1530 0.3 

26-27 

cm 

13.8 11800 3.99 14.5 3510 234 1.58 18 357 1540 0.27 

27-28 

cm 

14.7 13100 4.37 15.1 4130 241 1.21 19.1 390 1900 0.3 

28-29 

cm 

19 18200 6.69 22.6 6010 318 1.29 24.6 371 2820 0.36 

29-30 

cm 

24.8 24600 8.91 30 8300 419 1.9 33.1 472 4130 0.46 

 

NW40 Ag Na Sr S Tl Sn Ti W U V Zn Zr 

0-1 cm <0.10 384.00 44.70 3900.00 0.11 <2.0 209.00 <0.50 11.30 26.60 95.10 2.40 

1-2 cm  <0.10 280.00 41.00 3800.00 0.11 <2.0 171.00 <0.50 10.00 22.00 66.30 2.20 

2-3 cm <0.10 313.00 40.00 3900.00 0.11 3.80 192.00 <0.50 10.70 26.10 74.80 2.30 

3-4 cm <0.10 331.00 36.90 4000.00 0.13 <2.0 251.00 <0.50 11.90 31.00 79.60 2.50 

4-5 cm <0.10 322.00 40.50 3900.00 0.14 <2.0 261.00 <0.50 13.60 30.50 78.90 3.20 

5-6 cm <0.10 320.00 39.40 3700.00 0.14 <2.0 253.00 <0.50 13.80 31.00 80.60 3.20 
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6-7 cm <0.10 299.00 38.20 3900.00 0.14 <2.0 268.00 <0.50 13.90 31.60 83.70 2.90 

7-8 cm <0.10 302.00 32.00 3600.00 0.13 <2.0 256.00 <0.50 12.10 31.30 84.00 2.40 

8-9 cm <0.10 296.00 34.20 3400.00 0.13 <2.0 251.00 <0.50 13.50 30.00 84.60 2.20 

9-10 

cm 

<0.10 310.00 38.50 3700.00 0.16 <2.0 296.00 <0.50 17.40 33.00 88.50 2.50 

10-11 

cm 

<0.10 298.00 33.40 3600.00 0.15 <2.0 294.00 <0.50 11.00 32.00 86.60 2.80 

11-12 

cm 

<0.10 303.00 36.90 3600.00 0.16 <2.0 305.00 <0.50 17.60 32.80 90.00 2.80 

12-13 

cm 

<0.10 297.00 32.60 3700.00 0.15 <2.0 335.00 <0.50 14.50 35.00 93.60 2.60 

13-14 

cm 

<0.10 256.00 28.60 2900.00 0.15 <2.0 316.00 <0.50 9.04 31.30 82.70 1.90 

14-15 

cm 

<0.10 255.00 25.70 2300.00 0.15 <2.0 256.00 <0.50 8.83 26.60 71.90 2.00 

15-16 

cm 

<0.10 228.00 25.60 2500.00 0.16 <2.0 290.00 <0.50 9.49 25.80 71.00 1.90 

16-17 

cm 

<0.10 243.00 29.00 3000.00 0.19 <2.0 341.00 <0.50 11.10 30.00 75.60 2.70 

17-18 

cm 

<0.10 232.00 24.40 3000.00 0.14 <2.0 331.00 <0.50 9.16 28.80 70.40 2.40 

18-19 

cm 

<0.10 280.00 27.10 2800.00 0.18 <2.0 341.00 <0.50 10.70 28.60 68.00 2.80 

19-20 

cm 

<0.10 245.00 29.30 3200.00 0.18 <2.0 362.00 <0.50 10.90 30.40 73.40 3.30 

20-21 

cm 

<0.10 325 28.5 3400 0.205 <2.0 399 <0.50 9.99 31 66 6.7 

21-22 

cm 

<0.10 295 30.3 4200 0.194 <2.0 420 <0.50 10.3 31.7 66.6 6.5 

22-23 

cm 

<0.10 338 31.6 4300 0.2 <2.0 433 <0.50 10.1 31.2 65.1 6.9 
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23-24 

cm 

<0.10 328 32 4200 0.206 <2.0 453 <0.50 9.76 32 63.8 7.2 

24-25 

cm 

<0.10 356 26.3 3500 0.171 <2.0 364 <0.50 8.41 26.3 54.8 5.8 

25-26 

cm 

<0.10 227 18.3 2700 0.128 <2.0 278 <0.50 6.59 21.7 44.9 4 

26-27 

cm 

<0.10 233 18.9 2200 0.143 <2.0 314 <0.50 6.49 21.9 44.6 4 

27-28 

cm 

<0.10 204 18.6 1700 0.145 <2.0 371 <0.50 5.83 25 44.8 5.4 

28-29 

cm 

<0.10 251 28.8 2000 0.202 <2.0 530 <0.50 7.22 34.6 54.7 10.8 

29-30 

cm 

0.11 337 39.9 3100 0.258 <2.0 752 <0.50 9.57 49 70.5 17.5 

 

Table F5: NW50 

NW50 Al Sb As Ba Be Bi B Cd Ca Cr Co 

0-1 cm 10800 1.52 108.00 4990 0.47 <0.20 8.6 0.524 8550 24.1 16.7 

1-2 cm  12200 1.50 93.50 5300 0.51 <0.20 10.0 0.518 8240 27.1 16.1 

2-3 cm 15600 1.57 163.00 3690 0.65 <0.20 13.9 0.391 7640 34.0 15.9 

3-4 cm 19900 2.13 212.00 1830 0.92 0.21 17.7 0.361 6850 42.3 10.7 

4-5 cm 22700 3.50 240.00 1350 0.99 0.25 17.9 0.528 6680 45.3 10.4 

5-6 cm 26200 3.76 86.80 1000 1.12 0.30 19.3 0.570 6290 53.7 12.1 

6-7 cm 27200 1.96 20.60 850 1.10 0.32 18.3 0.444 5910 57.1 13.3 

7-8 cm 28000 0.62 29.10 841 1.04 0.31 18.4 0.527 5750 58.4 16.7 

8-9 cm 28100 0.39 23.20 955 1.06 0.28 17.5 0.430 5420 57.7 16.1 

9-10 cm 28600 0.30 14.60 917 1.17 0.29 19.4 0.456 5950 58.9 12.9 

10-11 cm 27800 0.29 14.20 836 1.25 0.31 17.7 0.522 5630 57.9 16.0 

11-12 cm 29400 0.31 17.30 901 1.31 0.32 17.6 0.519 5800 58.8 21.0 

12-13 cm 28600 0.27 11.90 849 1.12 0.30 17.7 0.456 5390 58.7 13.3 
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13-14 cm 29800 0.30 13.60 831 1.11 0.33 19.0 0.461 5520 61.8 14.9 

14-15 cm 29500 0.27 12.00 818 1.03 0.30 17.6 0.489 5290 61.6 21.7 

15-16 cm 28900 0.28 20.80 750 0.93 0.28 17.2 0.375 5130 61.2 16.3 

16-17 cm 27200 0.27 18.10 692 1.01 0.28 17.9 0.425 4920 56.5 16.0 

17-18 cm 28900 0.26 12.30 749 1.02 0.31 18.0 0.504 5130 61.8 16.8 

18-19 cm 27900 0.26 16.90 684 1.03 0.29 17.6 0.511 4880 57.5 17.1 

19-20 cm 27600 0.26 15.20 675 1.08 0.30 19.7 0.529 5070 56.8 14.7 

20-21 cm 28000 0.27 11.00 756 1.04 0.31 17.2 0.598 4970 59.8 20.7 

21-22 cm 27500 0.26 14.90 731 1.07 0.30 17.9 0.658 5060 55.1 21.0 

22-23 cm 27100 0.25 15.20 746 1.02 0.29 19.3 0.597 5290 55.8 16.8 

23-24 cm 23100 0.24 19.90 687 0.88 0.25 17.0 0.668 4780 47.9 16.4 

24-25 cm 25900 0.24 14.80 701 0.96 0.27 17.3 0.660 4890 52.4 17.2 

25-26 cm 26500 0.27 11.30 733 0.97 0.28 16.7 0.505 5140 62.6 22.0 

26-27 cm 26700 0.27 12.10 756 1.04 0.29 18.5 0.646 5120 56.2 15.8 

27-28 cm 26600 0.26 11.00 746 1.04 0.28 19.3 0.522 5300 56.5 23.6 

28-29 cm 26000 0.26 16.40 689 1.03 0.25 20.1 0.757 5100 53.1 18.7 

29-30 cm 25300 0.21 11.30 700 0.94 0.25 18.0 0.449 4850 53.9 16.1 

 

NW50 Cu Fe Pb Li Mg Mn Mo Ni P K Se 

0-1 cm 24.0 92500 6.02 11.1 4270 158000 159 36.5 2020 3040 0.69 

1-2 cm  26.9 75500 6.57 13.6 4740 167000 156 39.0 1810 3340 0.72 

2-3 cm 31.8 120000 8.63 17.3 5460 79000 113 37.6 3250 3160 1.04 

3-4 cm 39.5 121000 12.50 21.5 6210 22000 51.5 35.9 5110 3280 1.06 

4-5 cm 44.6 120000 15.30 21.8 6380 14000 44.2 41.9 6590 3430 1.18 

5-6 cm 52.5 76600 17.40 25.8 7520 8660 21.2 50.8 4070 4030 1.30 

6-7 cm 55.5 49200 15.50 27.6 7980 5550 15.3 51.7 2730 4430 1.12 

7-8 cm 58.1 51600 14.30 27.6 8470 4580 18.1 56.0 2590 4660 1.31 

8-9 cm 57.0 53900 14.40 26.9 8070 7480 18.5 64.1 2780 4460 1.26 

9-10 cm 56.7 47200 14.90 29.9 8490 6290 10.3 51.1 2610 4670 1.11 

10-11 cm 55.9 49600 16.50 28.7 8580 4170 11.0 59.1 2730 4510 1.22 

11-12 cm 56.8 51100 17.50 30.3 8440 4380 13.2 68.9 2940 4520 1.21 
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12-13 cm 53.6 40800 14.70 30.5 8450 4050 8.12 51.6 2280 4630 1.11 

13-14 cm 56.5 43900 15.90 33.4 9120 4010 9.15 61.7 2090 5030 1.01 

14-15 cm 55.4 44600 14.50 32.6 9270 6260 8.12 65.9 1890 5010 0.96 

15-16 cm 52.9 60600 13.40 30.9 9160 6360 10.8 60.1 1930 4990 0.96 

16-17 cm 49.6 71700 13.50 28.4 8720 6950 8.16 61.2 2180 4470 0.96 

17-18 cm 53.2 56700 14.50 33.6 9270 5460 5.62 58.2 1810 5120 0.93 

18-19 cm 51.3 72800 14.10 29.7 8830 6510 7.82 62.7 2590 4930 1.03 

19-20 cm 52.0 77000 15.90 30.1 8360 6910 7.33 58.5 4080 4510 1.10 

20-21 cm 56.1 54300 16.20 30.6 8850 4220 7.59 70.4 2130 4450 1.05 

21-22 cm 53.5 70900 15.80 28.7 8370 7640 10.0 74.3 2220 4300 1.04 

22-23 cm 54.6 72300 14.60 30.8 8330 11000 6.85 62.3 2820 4500 1.16 

23-24 cm 46.9 96200 13.40 24.2 7390 19500 6.58 61.0 4500 3730 1.06 

24-25 cm 52.1 77200 14.30 27.7 7850 9640 6.66 61.2 4690 4030 0.99 

25-26 cm 52.2 63200 14.80 30.3 8670 3800 9.03 69.7 2190 4310 1.17 

26-27 cm 52.4 66200 14.10 29.9 8460 4660 8.13 56.4 2780 4320 1.07 

27-28 cm 54.6 58200 13.80 30.6 8530 3540 10.2 71.9 2000 4380 1.23 

28-29 cm 52.6 84400 12.80 26.5 7770 5580 8.99 62.3 3740 4070 1.24 

29-30 cm 49.1 65100 12.70 27.0 7740 3700 5.93 55.6 2270 4020 1.05 

 

NW50 Ag Na Sr S Tl Sn Ti W U V Zn Zr 

0-1 cm <0.10 213 122 1000 0.267 <2.0 247 <0.50 37.6 22.3 97.1 1.2 

1-2 cm  <0.10 224 127 1300 0.293 <2.0 268 <0.50 39.9 24.3 101 1.7 

2-3 cm <0.10 246 93.7 1700 0.253 <2.0 356 <0.50 44.1 31.8 94.3 1.0 

3-4 cm <0.10 289 64.9 1800 0.220 <2.0 444 0.56 53.8 41.7 104 1.1 

4-5 cm 0.10 301 58.6 3100 0.248 <2.0 448 0.61 57.9 49.4 138 1.6 

5-6 cm 0.13 347 54.3 4700 0.325 <2.0 525 <0.50 68.2 55.4 144 1.9 

6-7 cm 0.13 367 48.8 4100 0.367 <2.0 563 <0.50 65.5 57.2 139 2.1 

7-8 cm 0.14 375 51.3 4000 0.372 <2.0 581 <0.50 61.8 58.1 149 2.1 

8-9 cm 0.12 356 51.9 3600 0.348 <2.0 590 <0.50 59.3 58.8 148 2.1 

9-10 cm 0.12 391 51.7 2700 0.335 <2.0 617 <0.50 60.6 60.4 161 2.3 

10-11 cm 0.13 374 49.8 3200 0.350 <2.0 574 <0.50 60.9 61.5 168 2.8 
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11-12 cm 0.13 379 48.9 3700 0.381 <2.0 612 <0.50 65.7 62.9 170 2.7 

12-13 cm 0.13 385 48.6 2100 0.357 <2.0 592 <0.50 55.3 59.3 148 2.5 

13-14 cm 0.13 385 49.0 2200 0.391 <2.0 690 <0.50 56.3 61.2 163 2.6 

14-15 cm 0.12 375 48.3 2200 0.391 <2.0 684 <0.50 48.0 59.6 144 2.6 

15-16 cm 0.12 391 47.6 2300 0.369 <2.0 717 <0.50 47.3 59.8 145 2.8 

16-17 cm 0.11 390 45.7 2200 0.352 <2.0 765 <0.50 51.9 57.4 146 2.2 

17-18 cm 0.13 398 47.8 1800 0.351 <2.0 745 <0.50 40.9 59.9 154 3.3 

18-19 cm 0.11 407 46.0 2400 0.371 <2.0 697 <0.50 45.8 58.7 152 3.1 

19-20 cm 0.12 423 46.6 2600 0.396 <2.0 752 <0.50 59.4 59.9 171 2.5 

20-21 cm 0.13 382 46.6 3100 0.385 <2.0 690 <0.50 49.6 59.6 168 2.7 

21-22 cm 0.12 386 45.9 3700 0.408 <2.0 675 <0.50 53.0 58.4 162 2.6 

22-23 cm 0.13 397 45.3 2700 0.384 <2.0 732 <0.50 51.6 58.2 161 2.0 

23-24 cm 0.11 356 41.3 2600 0.349 <2.0 589 <0.50 48.1 52.6 143 2.0 

24-25 cm 0.12 358 41.8 2900 0.408 <2.0 607 <0.50 62.3 54.4 161 2.7 

25-26 cm 0.11 369 43.0 3700 0.374 <2.0 649 <0.50 60.2 57.9 160 3.1 

26-27 cm 0.12 365 44.5 3300 0.369 <2.0 718 <0.50 59.4 57.8 174 2.8 

27-28 cm 0.12 368 46.1 4000 0.405 <2.0 647 <0.50 63.8 56.9 163 2.9 

28-29 cm 0.11 389 43.4 4000 0.356 <2.0 648 <0.50 63.2 56.4 187 2.3 

29-30 cm 0.11 369 43.1 2700 0.328 <2.0 579 <0.50 67.3 55.9 137 2.8 

 

Table F6: NW60 

NW60 Al Sb As Ba Be Bi B Cd Ca Cr Co 

0-1 cm 8530.00 0.84 88.30 140.00 0.56 <0.20 27.70 0.26 13400.00 14.80 6.04 

1-2 cm  9660.00 1.07 73.20 112.00 0.57 <0.20 24.40 0.28 10100.00 16.60 7.26 

2-3 cm 11300.00 1.39 85.40 125.00 0.67 <0.20 27.40 0.32 9660.00 19.80 8.38 

3-4 cm 12000.00 1.93 74.60 101.00 0.69 <0.20 20.60 0.38 8630.00 21.50 9.13 

4-5 cm 11400.00 2.11 76.60 94.30 0.67 <0.20 18.70 0.38 8080.00 20.80 8.88 

5-6 cm 12200.00 2.57 81.40 94.60 0.62 <0.20 18.70 0.40 7630.00 22.50 8.56 

6-7 cm 15600.00 3.35 106.00 116.00 0.74 <0.20 21.90 0.49 9240.00 29.70 10.50 

7-8 cm 11800.00 2.84 77.40 101.00 0.61 <0.20 20.60 0.38 7400.00 21.60 7.63 

8-9 cm 15400.00 3.35 66.10 113.00 0.68 <0.20 18.50 0.48 7890.00 28.70 9.18 
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9-10 

cm 

15300.00 2.73 53.40 108.00 0.73 <0.20 18.10 0.44 7710.00 28.10 9.18 

10-11 

cm 

12500.00 1.82 41.50 89.40 0.73 <0.20 16.00 0.42 6780.00 21.80 7.93 

11-12 

cm 

12600.00 1.25 38.70 83.50 0.66 <0.20 15.00 0.38 6360.00 22.40 8.16 

12-13 

cm 

10000.00 0.60 26.60 69.20 0.56 <0.20 12.40 0.34 5700.00 18.10 6.90 

13-14 

cm 

11900.00 0.51 23.80 83.60 0.63 <0.20 14.20 0.41 6310.00 22.20 7.99 

14-15 

cm 

13300.00 0.40 19.10 92.20 0.65 <0.20 16.60 0.36 6750.00 24.90 8.32 

15-16 

cm 

12900.00 0.34 16.70 92.00 0.64 <0.20 14.60 0.37 6670.00 25.20 7.70 

16-17 

cm 

12600.00 0.28 13.70 86.60 0.61 <0.20 13.20 0.31 5910.00 23.00 7.30 

17-18 

cm 

12800.00 0.25 12.00 86.40 0.68 <0.20 12.80 0.33 5640.00 23.60 7.97 

18-19 

cm 

11500.00 0.21 10.10 78.60 0.61 <0.20 11.60 0.31 5300.00 21.00 7.81 

19-20 

cm 

13500.00 0.24 10.20 92.50 0.65 <0.20 12.70 0.36 5700.00 25.50 8.62 

20-21 

cm 

12800.00 0.21 8.88 89.20 0.64 <0.20 11.80 0.37 5300.00 24.00 8.22 

21-22 

cm 

12700.00 0.20 7.98 89.90 0.60 <0.20 12.20 0.36 5580.00 24.40 8.21 

22-23 

cm 

14000.00 0.21 8.05 93.40 0.69 <0.20 12.30 0.41 5240.00 25.80 9.10 

23-24 

cm 

13400.00 0.18 7.66 85.60 0.69 <0.20 11.20 0.42 5420.00 24.50 8.77 
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24-25 

cm 

14800.00 0.15 7.41 92.90 0.77 <0.20 11.90 0.44 5720.00 24.40 8.78 

25-26 

cm 

16900.00 0.18 8.22 106.00 0.87 <0.20 13.10 0.47 6870.00 27.70 10.60 

26-27 

cm 

16600.00 0.18 7.77 107.00 0.83 <0.20 14.10 0.45 6900.00 28.50 9.92 

27-28 

cm 

12700.00 0.14 6.21 85.10 0.66 <0.20 10.40 0.34 5680.00 21.40 8.40 

28-29 

cm 

12900.00 0.16 6.36 84.90 0.67 <0.20 11.40 0.33 5860.00 22.80 9.28 

29-30 

cm 

12200.00 0.13 5.58 83.20 0.62 <0.20 10.30 0.33 5520.00 22.10 8.33 

 

NW60 Cu Fe Pb Li Mg Mn Mo Ni P K Se 

0-1 

cm 

14.40 47500.00 4.70 5.80 3220.00 1060.00 2.26 15.20 2000.00 1530.00 0.75 

1-2 

cm  

15.90 40500.00 5.14 6.90 3160.00 702.00 2.44 17.30 1830.00 1420.00 0.68 

2-3 

cm 

20.10 43400.00 6.52 8.10 3590.00 715.00 3.23 21.30 1930.00 1560.00 0.90 

3-4 

cm 

23.10 36700.00 8.20 9.10 3400.00 493.00 4.04 22.70 1470.00 1410.00 0.89 

4-5 

cm 

22.80 35700.00 8.81 9.20 3290.00 448.00 4.39 22.20 1320.00 1320.00 0.85 

5-6 

cm 

26.10 34000.00 9.19 10.30 3540.00 411.00 4.63 23.10 1220.00 1470.00 0.97 

6-7 

cm 

33.50 41600.00 10.90 12.50 4490.00 520.00 5.43 30.30 1470.00 1780.00 1.17 

7-8 

cm 

25.00 34700.00 7.82 10.30 3340.00 466.00 4.23 21.90 1270.00 1400.00 0.79 

8-9 

cm 

31.30 35500.00 8.70 13.20 4170.00 417.00 4.94 27.60 1160.00 1800.00 1.05 
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9-10 

cm 

31.60 33400.00 8.16 13.20 4040.00 355.00 5.29 27.20 1140.00 1740.00 1.18 

10-11 

cm 

27.00 29100.00 6.98 11.30 2970.00 279.00 5.20 22.80 908.00 1230.00 1.04 

11-12 

cm 

28.80 30400.00 5.91 9.60 2950.00 276.00 4.99 23.00 993.00 1270.00 0.96 

12-13 

cm 

24.20 24700.00 4.73 7.60 2440.00 232.00 3.78 19.40 806.00 990.00 0.81 

13-14 

cm 

28.30 26500.00 4.94 9.60 2920.00 259.00 4.24 22.10 940.00 1260.00 0.84 

14-15 

cm 

30.00 26700.00 4.77 12.50 3540.00 274.00 4.76 23.50 1020.00 1530.00 0.91 

15-16 

cm 

30.50 26400.00 4.70 11.80 3420.00 277.00 4.95 24.30 970.00 1320.00 0.81 

16-17 

cm 

26.30 26800.00 4.33 11.30 3050.00 255.00 5.17 21.60 861.00 1300.00 0.84 

17-18 

cm 

26.10 26700.00 4.22 11.50 3080.00 254.00 4.99 21.40 871.00 1340.00 0.79 

18-19 

cm 

25.10 25300.00 4.02 11.00 3020.00 233.00 4.58 20.00 751.00 1340.00 0.75 

19-20 

cm 

27.90 28400.00 4.71 13.00 3350.00 260.00 5.30 23.10 823.00 1460.00 0.88 

20-21 

cm 

27.80 25200.00 4.38 12.40 3250.00 243.00 4.65 23.20 758.00 1370.00 0.83 

21-22 

cm 

29.10 25400.00 4.55 13.20 3290.00 230.00 5.08 23.80 770.00 1440.00 0.85 

22-23 

cm 

30.10 27800.00 4.60 13.50 3280.00 234.00 5.81 25.30 797.00 1490.00 0.91 

23-24 

cm 

28.10 29400.00 4.63 12.50 3150.00 238.00 5.40 23.40 754.00 1380.00 0.67 



 

120 

24-25 

cm 

27.00 32900.00 4.56 12.80 3230.00 263.00 5.21 23.10 798.00 1410.00 0.81 

25-26 

cm 

29.60 39700.00 5.12 14.30 3710.00 316.00 5.70 25.60 954.00 1610.00 0.93 

26-27 

cm 

28.90 38400.00 5.09 14.30 3780.00 322.00 5.45 25.60 957.00 1630.00 0.78 

27-28 

cm 

23.00 32300.00 4.05 10.80 2870.00 261.00 4.81 20.40 758.00 1220.00 0.66 

28-29 

cm 

24.10 32900.00 4.22 11.40 2990.00 268.00 5.06 21.40 798.00 1310.00 0.58 

29-30 

cm 

22.20 30800.00 4.21 10.90 3170.00 265.00 4.72 19.80 703.00 1370.00 0.66 

 

NW60 Ag Na Sr S Tl Sn Ti W U V Zn Zr 

0-1 

cm 

<0.10 410.00 73.70 4900.00 0.05 <2.0 165.00 <0.50 7.53 23.20 73.50 1.90 

1-2 

cm  

<0.10 411.00 54.20 5100.00 0.07 <2.0 182.00 <0.50 9.28 25.70 61.60 2.00 

2-3 

cm 

<0.10 439.00 55.90 5900.00 0.09 <2.0 216.00 <0.50 11.80 30.60 71.60 2.50 

3-4 

cm 

<0.10 452.00 44.40 6300.00 0.11 <2.0 229.00 <0.50 13.70 32.10 77.80 3.20 

4-5 

cm 

<0.10 417.00 41.50 6300.00 0.10 <2.0 216.00 <0.50 13.80 32.30 78.90 3.60 

5-6 

cm 

<0.10 413.00 39.70 6400.00 0.11 <2.0 253.00 <0.50 14.60 32.90 79.90 3.50 

6-7 

cm 

<0.10 515.00 47.70 8800.00 0.13 <2.0 320.00 <0.50 18.70 41.50 99.10 4.40 

7-8 

cm 

<0.10 349.00 41.80 6700.00 0.11 <2.0 250.00 <0.50 15.80 31.60 76.90 3.20 

8-9 

cm 

<0.10 471.00 42.70 7800.00 0.14 <2.0 322.00 <0.50 21.10 38.70 95.00 2.70 



 

121 

9-10 

cm 

<0.10 426.00 42.90 7900.00 0.14 <2.0 307.00 <0.50 22.50 39.20 91.70 2.80 

10-11 

cm 

<0.10 333.00 37.80 6600.00 0.12 <2.0 230.00 <0.50 21.40 32.70 81.70 3.10 

11-12 

cm 

<0.10 396.00 35.20 6500.00 0.11 <2.0 222.00 <0.50 18.20 33.30 79.30 2.90 

12-13 

cm 

<0.10 297.00 31.50 5500.00 0.08 <2.0 163.00 <0.50 14.00 27.70 68.60 2.40 

13-14 

cm 

<0.10 331.00 36.10 6100.00 0.09 <2.0 224.00 <0.50 15.00 32.80 82.00 3.00 

14-15 

cm 

<0.10 398.00 38.70 6400.00 0.13 <2.0 267.00 <0.50 17.10 37.00 82.80 3.00 

15-16 

cm 

<0.10 334.00 37.50 5700.00 0.13 <2.0 186.00 <0.50 18.00 36.20 82.70 2.30 

16-17 

cm 

<0.10 301.00 34.30 5700.00 0.12 <2.0 186.00 <0.50 16.70 36.40 74.10 1.50 

17-18 

cm 

<0.10 303.00 32.90 4800.00 0.13 <2.0 203.00 <0.50 15.20 36.60 72.10 2.20 

18-19 

cm 

<0.10 332.00 30.40 4500.00 0.12 <2.0 192.00 <0.50 13.70 33.50 67.40 2.00 

19-20 

cm 

<0.10 263.00 33.20 5500.00 0.14 <2.0 240.00 <0.50 16.40 37.60 80.30 2.30 

20-21 

cm 

<0.10 288.00 31.00 5400.00 0.14 <2.0 221.00 0.62 16.30 34.40 79.40 2.10 

21-22 

cm 

<0.10 282.00 32.70 5600.00 0.13 <2.0 221.00 <0.50 17.10 34.10 81.40 1.90 

22-23 

cm 

<0.10 306.00 32.10 6000.00 0.15 <2.0 240.00 <0.50 16.50 36.30 91.30 1.70 

23-24 

cm 

<0.10 265.00 31.20 4900.00 0.14 <2.0 205.00 <0.50 15.90 37.20 90.30 1.90 
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24-25 

cm 

<0.10 271.00 32.80 4500.00 0.13 <2.0 211.00 <0.50 16.60 39.90 91.80 1.50 

25-26 

cm 

<0.10 332.00 38.40 4400.00 0.14 <2.0 228.00 <0.50 19.00 46.10 108.00 1.90 

26-27 

cm 

<0.10 321.00 38.90 4400.00 0.13 <2.0 262.00 <0.50 18.30 45.10 105.00 1.30 

27-28 

cm 

<0.10 244.00 31.10 3300.00 0.11 <2.0 187.00 <0.50 15.10 36.00 87.50 1.70 

28-29 

cm 

<0.10 248.00 32.10 3900.00 0.12 <2.0 211.00 <0.50 15.10 37.60 90.70 2.00 

29-30 

cm 

<0.10 259.00 30.30 3600.00 0.11 <2.0 209.00 <0.50 13.80 36.10 83.80 1.60 

 

Table F7: NW70 

NW70 Al Sb As Ba Be Bi B Cd Ca Cr Co 

0-1 cm 2300 0.73 16.2 169 0.12 <0.20 26.7 0.198 8930 5.31 2.32 

1-2 cm  2890 0.82 19.8 207 0.14 <0.20 27 0.21 9070 7.14 2.77 

2-3 cm 2990 0.78 19.4 203 0.16 <0.20 25.2 0.231 8720 6.7 2.96 

3-4 cm 3330 0.85 21.4 220 0.19 <0.20 26.8 0.252 9050 7.44 3.26 

4-5 cm 3480 0.92 22.2 213 0.2 <0.20 26.8 0.261 9260 7.74 3.39 

5-6 cm 3580 0.93 22.5 200 0.19 <0.20 24.2 0.265 8670 8.3 3.46 

6-7 cm 4280 1.17 24.8 184 0.25 <0.20 23.8 0.297 8690 9.53 3.99 

7-8 cm 5390 1.43 27.6 175 0.34 <0.20 22.4 0.37 8890 12.3 4.64 

8-9 cm 6250 1.57 30.7 151 0.36 <0.20 18.8 0.367 7800 14.2 5.39 

9-10 cm 7880 1.92 44.7 180 0.44 <0.20 20.1 0.453 8620 18.1 6.86 

10-11 cm 9830 2.09 33.8 165 0.5 <0.20 16.9 0.446 7820 22.6 8.01 

11-12 cm 10300 1.99 25.5 151 0.52 <0.20 13.2 0.413 6350 23.1 8.03 

12-13 cm 12000 1.88 22.8 153 0.61 <0.20 11 0.446 5390 26.8 9.07 

13-14 cm 13500 1.14 18.8 154 0.67 0.21 9.6 0.386 5330 29.8 10.2 

14-15 cm 17800 0.81 23 198 0.89 0.27 9.8 0.473 5450 38.1 13.3 

15-16 cm 17400 0.6 21.1 187 0.87 0.27 9.4 0.46 5220 37.3 13.3 

16-17 cm 19200 0.46 21.2 208 0.98 0.3 9.5 0.502 5590 41.2 14.3 
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17-18 cm 19500 0.38 19 205 0.98 0.3 9.9 0.514 5570 42.3 14.2 

18-19 cm 21500 0.36 20.7 217 1.06 0.33 11.2 0.536 5940 46.6 15.4 

19-20 cm 21500 0.38 19.6 218 1.07 0.34 11.4 0.525 5770 46.8 15.5 

20-21 cm 22800 0.35 20.4 227 1.11 0.34 12.5 0.509 5620 48.8 16 

21-22 cm 24400 0.34 19.5 236 1.18 0.38 13.3 0.456 5830 52.9 16.7 

22-23 cm 23000 0.3 14.2 221 1.13 0.35 12.1 0.377 5000 49.3 15.1 

23-24 cm 25700 0.31 14.2 241 1.25 0.41 13 0.399 5320 55.3 16.8 

24-25 cm 26100 0.3 13.4 247 1.23 0.41 13.6 0.395 5200 56.2 16.5 

25-26 cm 27900 0.29 11.4 263 1.34 0.42 15.3 0.414 5270 58.6 16.6 

26-27 cm 27100 0.27 7.76 264 1.39 0.43 15 0.348 5480 57.2 14.5 

27-28 cm 29500 0.28 9.13 290 1.39 0.41 15.7 0.353 5190 60 15.7 

28-29 cm 30700 0.29 9.99 304 1.39 0.4 17.4 0.387 5340 62 16.5 

29-30 cm 31200 0.29 8.99 318 1.41 0.41 16.7 0.326 5450 64 16.5 

 

NW70 Cu Fe Pb Li Mg Mn Mo Ni P K Se 

0-1 cm 7.88 10700 2.66 2.7 2100 375 0.51 5.54 1260 1180 0.71 

1-2 cm  8.55 11900 3.24 3 2130 318 0.69 6.61 1410 1190 0.85 

2-3 cm 8.83 11800 3.5 2.9 2060 294 0.65 6.86 1490 1080 0.91 

3-4 cm 9.93 12700 3.55 3.2 2190 305 0.76 7.47 1630 1120 0.76 

4-5 cm 12.7 13300 3.92 3.4 2260 304 0.77 7.67 1700 1140 0.99 

5-6 cm 10.7 13600 4.15 3.5 2180 289 0.8 8.27 1590 1060 0.92 

6-7 cm 13.7 14200 5.34 4.4 2360 283 0.91 9.72 1640 1140 1 

7-8 cm 16.3 15900 6.6 6.4 2680 304 1.16 11.9 1610 1230 0.96 

8-9 cm 19.6 16600 7.46 8.4 2960 283 1.41 13.9 1320 1270 0.96 

9-10 cm 23.8 22400 8.96 10.7 3600 341 1.74 17.2 1500 1520 1.15 

10-11 cm 29 20900 9.39 15 4430 325 2.1 20.9 1150 1930 1.25 

11-12 cm 29.4 20100 8.25 16.6 4600 302 2.12 21 835 2010 1.02 

12-13 cm 33.8 21600 8.25 19.6 5160 302 2.63 24 700 2420 1.04 

13-14 cm 38.4 20700 8.88 23.7 6000 291 3.33 27.6 479 2700 1.07 

14-15 cm 50 25900 11.4 30.6 7640 345 4.58 37.1 517 3650 1.3 

15-16 cm 48.5 25300 11 30.2 7590 332 4.4 38.2 453 3630 1.26 
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16-17 cm 52.7 27100 12.3 32.8 8340 367 4.75 40.9 448 3970 1.39 

17-18 cm 52.8 27100 12.2 33.7 8470 372 4.48 38.5 454 4060 1.17 

18-19 cm 55.8 29500 13.2 36.5 9260 415 4.96 41.7 481 4520 1.32 

19-20 cm 54.2 29500 13.4 35.8 9110 412 5.05 42 500 4510 1.28 

20-21 cm 52.7 31100 13.8 37.4 9580 421 5.2 43.1 501 4800 1.19 

21-22 cm 50.2 33900 15 41.3 10300 447 5.24 45.4 564 5110 1.1 

22-23 cm 42.4 25600 13.8 38.8 9790 394 4.13 42.5 506 4840 0.74 

23-24 cm 44.6 35900 15.7 43.7 10900 438 4.6 46.7 567 5500 0.92 

24-25 cm 41.4 36100 15.7 44.3 11200 435 4.25 48 574 5620 0.82 

25-26 cm 41.1 36800 16.8 47.1 11700 440 3.33 47.4 614 6010 0.72 

26-27 cm 36.7 34600 16.6 48.4 11500 415 2.04 39.5 599 5920 0.68 

27-28 cm 37.7 36900 16.5 50.1 12000 423 2.46 42.3 635 6270 0.57 

28-29 cm 39.8 37400 16.7 51.3 12300 430 3.28 43.4 655 6530 0.56 

29-30 cm 38.3 38000 17.7 51.9 12600 435 2.81 43.2 703 6600 0.51 

 

NW70 Ag Na Sr S Tl Sn Ti W U V Zn Zr 

0-1 cm <0.10 1020 78.6 3900 0.068 <2.0 48.2 <0.50 2.2 5.54 305 <1.0 

1-2 cm  <0.10 922 85.6 4700 0.066 <2.0 63.3 <0.50 2.98 6.74 124 1.5 

2-3 cm <0.10 817 82.7 4700 0.062 <2.0 59.5 <0.50 3.21 7.06 91 <1.0 

3-4 cm <0.10 760 89.4 5200 0.069 <2.0 67.9 <0.50 3.8 8.12 79.1 1.1 

4-5 cm <0.10 757 90.4 5400 0.072 <2.0 68.7 <0.50 4.04 8.67 83.4 1 

5-6 cm <0.10 660 83.9 5200 0.079 <2.0 73.1 <0.50 4.24 8.97 78.4 1.1 

6-7 cm <0.10 622 78 5700 0.095 <2.0 92 <0.50 5.1 10.9 77.5 1.3 

7-8 cm <0.10 558 76.7 6100 0.118 <2.0 111 <0.50 6.42 14.6 88.3 1.6 

8-9 cm <0.10 501 64.5 6300 0.14 <2.0 155 <0.50 6.92 17 82.9 2 

9-10 

cm 

<0.10 505 71.1 7600 0.185 <2.0 192 <0.50 8.17 21.4 109 2.8 

10-11 

cm 

<0.10 481 64.3 7000 0.188 <2.0 284 <0.50 9.97 26.9 99 4.3 

11-12 

cm 

<0.10 415 52.8 5600 0.194 <2.0 352 <0.50 9.85 28 104 5.5 
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12-13 

cm 

<0.10 438 47 5000 0.226 <2.0 436 <0.50 12.1 33.5 86.4 8.9 

13-14 

cm 

0.12 404 47.6 5600 0.234 <2.0 529 <0.50 13.7 38.4 68.2 15.1 

14-15 

cm 

0.15 411 54.5 6000 0.266 <2.0 656 <0.50 17.7 50.8 82.5 24.3 

15-16 

cm 

0.16 397 52.3 5700 0.262 <2.0 680 <0.50 16.4 49.3 80.4 24.8 

16-17 

cm 

0.17 417 56.7 5700 0.281 <2.0 736 <0.50 17.4 53.4 85.8 28.2 

17-18 

cm 

0.18 419 56.5 5200 0.28 <2.0 776 <0.50 17.3 55.2 85.8 30.2 

18-19 

cm 

0.19 453 61.8 5600 0.301 <2.0 861 <0.50 18.3 60.6 94 33.1 

19-20 

cm 

0.2 447 62.6 5000 0.322 <2.0 901 <0.50 16.6 63 93 35 

20-21 

cm 

0.2 481 64.7 5100 0.337 <2.0 941 <0.50 15.2 64.8 93.2 37.6 

21-22 

cm 

0.21 482 69.7 4400 0.347 <2.0 1030 <0.50 14 68 93.3 40.6 

22-23 

cm 

0.18 440 63.5 2000 0.313 <2.0 961 <0.50 10.3 60.2 83.1 35.7 

23-24 

cm 

0.2 480 70.3 2800 0.372 <2.0 1090 <0.50 10.7 65.3 90.1 39.5 

24-25 

cm 

0.2 483 72.1 2300 0.374 <2.0 1120 <0.50 9.88 64.3 86.6 40.4 

25-26 

cm 

0.2 519 79.4 1500 0.425 <2.0 1200 <0.50 10.5 70 88.4 44.1 

26-27 

cm 

0.21 523 84.8 <1000 0.394 <2.0 1170 <0.50 10.2 66.2 84.3 44.3 
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27-28 

cm 

0.19 549 88.7 1000 0.417 <2.0 1230 <0.50 10.1 66.8 89 35.7 

28-29 

cm 

0.19 560 93.5 1200 0.417 <2.0 1270 <0.50 10.4 67.9 91.2 32.2 

29-30 

cm 

0.19 560 95.7 <1000 0.416 <2.0 1270 <0.50 9.81 69.4 93 34.2 

 

Table F8: NW80 

NW80 Al Sb As Ba Be Bi B Cd Ca Cr Co 

0-1 cm 11900 0.3 17.9 141 0.46 <0.20 9.9 0.218 9790 22.6 8.36 

1-2 cm  11700 0.43 19.8 132 0.45 <0.20 11.9 0.208 9180 22.4 8.38 

2-3 cm 10800 0.44 19.7 120 0.46 <0.20 11.2 0.199 9170 25.4 7.81 

3-4 cm 11100 0.44 22.5 120 0.45 <0.20 10.4 0.191 9170 39.8 8.18 

4-5 cm 11600 0.39 24.7 118 0.47 <0.20 9.4 0.201 9270 22.4 8.17 

5-6 cm 11200 0.39 25.5 115 0.45 <0.20 9 0.204 8890 22 7.98 

6-7 cm 11800 0.51 29 121 0.45 <0.20 8.8 0.214 9310 23.8 8.61 

7-8 cm 11800 0.71 31.8 125 0.47 <0.20 11.1 0.211 9150 23.8 8.44 

8-9 cm 11600 0.56 31.8 116 0.47 <0.20 9.5 0.213 9040 23.9 8.25 

9-10 

cm 

11000 0.38 29 103 0.46 <0.20 6.8 0.217 8840 23.6 8.46 

10-11 

cm 

11000 0.37 26.2 94.5 0.45 <0.20 6.5 0.209 8850 23 8.18 

11-12 

cm 

10800 0.28 23.4 98.7 0.42 <0.20 6.4 0.193 8730 22.8 8.16 

12-13 

cm 

11600 0.23 21.9 105 0.44 <0.20 6.3 0.21 8510 24.1 8.62 

13-14 

cm 

11800 0.24 18.4 112 0.44 <0.20 7.9 0.198 8820 24.8 8.55 

14-15 

cm 

11600 0.16 14.5 109 0.44 <0.20 6.5 0.193 8610 26.1 8.56 

15-16 

cm 

12400 0.16 12.3 124 0.47 <0.20 8.8 0.211 8840 25.8 8.97 
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16-17 

cm 

12200 0 9.32 112 0.46 <0.20 6.5 0.199 8940 24.4 8.82 

17-18 

cm 

11600 0 7.47 117 0.43 <0.20 6.9 0.196 8600 24.4 8.48 

18-19 

cm 

11800 0 6.84 121 0.45 <0.20 8.2 0.199 8870 25.1 8.64 

19-20 

cm 

12200 0 6.53 123 0.46 <0.20 8.8 0.194 8960 25.5 8.82 

20-21 

cm 

12000 0 5.93 125 0.46 <0.20 8.9 0.2 8950 25 8.65 

21-22 

cm 

11600 0 5.21 116 0.46 <0.20 7.5 0.206 8620 23.7 8.62 

22-23 

cm 

11200 0 4.89 111 0.45 <0.20 7.6 0.205 8290 23 8.51 

23-24 

cm 

11000 0 4.39 109 0.45 <0.20 6.5 0.213 7910 22.9 8.89 

24-25 

cm 

11400 0 4.26 122 0.45 <0.20 8.6 0.211 8360 23.4 9.07 

25-26 

cm 

11800 0.17 4.15 117 0.48 <0.20 7.8 0.23 8720 24.3 9.39 

26-27 

cm 

12100 0.13 3.99 117 0.49 <0.20 8 0.216 8780 24.5 9.51 

27-28 

cm 

11500 0.1 3.59 107 0.46 <0.20 6.3 0.219 8300 23 9.13 

28-29 

cm 

11800 0 3.45 108 0.48 <0.20 6.6 0.223 8760 23.6 9.36 

29-30 

cm 

12000 0 3.3 106 0.48 <0.20 6.1 0.236 8760 24.1 10.3 

 

NW80 Cu Fe Pb Li Mg Mn Mo Ni P K Se 

0-1 cm 23.7 20300 5.22 15 4510 573 1.01 25.4 1490 1860 0.56 
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1-2 cm  24.3 20100 5.5 14.8 4270 490 1.14 25.6 1490 1890 0.58 

2-3 cm 23.7 18700 5.54 14.5 4060 467 1.14 24.5 1290 1720 0.53 

3-4 cm 24.3 18900 5.66 14.8 4040 462 1.39 30.9 1250 1730 0.54 

4-5 cm 24.1 19200 5.49 15 4210 457 1.14 25.2 1290 1690 0.59 

5-6 cm 23.7 18500 5.36 14.5 4130 431 1.04 25.5 1270 1640 0.54 

6-7 cm 25.4 20000 5.6 15.5 4440 440 1.03 27.4 1310 1660 0.58 

7-8 cm 26.2 20300 5.85 16.2 4330 408 0.99 26.8 1170 1840 0.62 

8-9 cm 25.4 20100 5.62 16.5 4280 391 1 26.8 1180 1770 0.61 

9-10 

cm 

24 19800 4.49 15.3 4270 392 0.91 27 1070 1440 0.56 

10-11 

cm 

24.4 19300 4.06 15.7 4190 376 0.95 26.8 1030 1400 0.53 

11-12 

cm 

23.6 19400 4.24 15.8 4050 367 1.03 26.7 956 1380 0.57 

12-13 

cm 

25.2 20800 4.48 16.1 4190 376 1.09 28.1 993 1440 0.61 

13-14 

cm 

26.6 20200 4.79 16.8 4230 378 1.16 28.2 1030 1730 0.57 

14-15 

cm 

26.3 19600 4.46 16.2 4200 389 1.14 29 952 1450 0.59 

15-16 

cm 

28 19900 4.81 17.2 4500 404 1.12 33.7 1010 1800 0.6 

16-17 

cm 

26.1 18500 4.5 17.3 4340 405 1.09 29.1 964 1520 0.59 

17-18 

cm 

26 17800 4.42 16.2 4150 401 0.97 27.9 912 1530 0.55 

18-19 

cm 

26.6 17900 4.65 16.4 4190 408 0.96 28.6 928 1700 0.57 

19-20 

cm 

27.7 18100 4.68 17 4310 418 0.98 29.3 1000 1780 0.64 
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20-21 

cm 

27.3 18000 4.59 16.6 4160 428 0.99 28.5 971 1770 0.65 

21-22 

cm 

26.5 17400 4.27 16.2 3980 408 0.94 27.7 957 1550 0.58 

22-23 

cm 

24.3 17600 3.93 15.7 3730 392 0.94 26.4 938 1540 0.6 

23-24 

cm 

23.5 18200 3.79 15 3550 394 0.95 26.6 1000 1360 0.62 

24-25 

cm 

25 18600 3.99 15.4 3720 412 0.9 27.2 1060 1570 0.66 

25-26 

cm 

25 19100 4 15.5 3900 428 0.95 28 1100 1590 0.66 

26-27 

cm 

24.9 19400 4.05 16 3860 440 0.99 27.8 1150 1600 0.64 

27-28 

cm 

24.2 18800 3.75 14.8 3650 415 0.92 27.1 1120 1380 0.63 

28-29 

cm 

23.9 19400 3.81 15.8 3840 441 0.92 27.4 1140 1430 0.65 

29-30 

cm 

23.6 19300 3.64 15.7 3890 433 0.91 28.1 1110 1460 0.61 

 

NW80 Ag Na Sr S Tl Sn Ti W U V Zn Zr 

0-1 cm <0.10 549 51 9700 0.099 <2.0 176 <0.50 2.14 30.2 95.6 6.6 

1-2 cm  <0.10 450 46.8 10100 0.114 <2.0 181 <0.50 2.26 30.5 74.5 5.9 

2-3 cm <0.10 422 46.8 10100 0.11 <2.0 159 <0.50 2.27 28.2 76.1 6.2 

3-4 cm <0.10 401 46.2 10800 0.106 <2.0 165 <0.50 2.29 28.5 69.9 6 

4-5 cm <0.10 430 47.2 11100 0.092 <2.0 173 <0.50 2.29 29.1 70 6.4 

5-6 cm <0.10 386 44.3 11200 0.094 <2.0 168 <0.50 2.21 28 69.6 6.1 

6-7 cm <0.10 406 46.2 12500 0.098 <2.0 179 <0.50 2.39 29.1 73.3 6.9 

7-8 cm <0.10 384 46.2 13000 0.117 <2.0 187 <0.50 2.6 28.6 93.5 6.4 

8-9 cm <0.10 369 45.3 13100 0.118 <2.0 185 <0.50 2.65 27.7 69.8 6.8 
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9-10 

cm 

<0.10 321 43.3 13400 0.082 <2.0 151 <0.50 2.47 26.9 70.4 6.8 

10-11 

cm 

<0.10 330 43.4 13800 0.081 <2.0 153 <0.50 2.61 26.4 70.8 6.9 

11-12 

cm 

<0.10 321 43 13500 0.079 <2.0 159 <0.50 2.66 25.9 68.1 6.9 

12-13 

cm 

<0.10 316 42.8 13800 0.077 <2.0 179 <0.50 2.82 27.6 71.6 7.3 

13-14 

cm 

<0.10 336 44.3 13300 0.11 <2.0 207 <0.50 2.94 28.3 70.6 7.2 

14-15 

cm 

<0.10 321 43.3 12500 0.084 <2.0 188 <0.50 2.85 28.2 76 7.9 

15-16 

cm 

<0.10 358 44.7 12100 0.112 <2.0 221 <0.50 3 30.4 75.5 7.7 

16-17 

cm 

<0.10 325 45.4 11800 0.09 <2.0 201 <0.50 2.92 29.4 71.6 8 

17-18 

cm 

<0.10 316 43.8 10600 0.093 <2.0 191 <0.50 2.77 28.6 69.5 7.5 

18-19 

cm 

<0.10 333 44.2 10700 0.108 <2.0 201 <0.50 2.95 29.2 72.4 7.5 

19-20 

cm 

<0.10 344 46.3 11400 0.117 <2.0 226 <0.50 2.94 30.3 74.9 7.5 

20-21 

cm 

<0.10 347 45.9 11100 0.114 <2.0 210 <0.50 2.9 30.4 75 7.4 

21-22 

cm 

<0.10 351 44.7 10700 0.099 <2.0 194 <0.50 2.7 28.6 72.5 7.2 

22-23 

cm 

<0.10 332 42.6 11200 0.1 <2.0 185 <0.50 2.64 27.2 72.7 6.7 

23-24 

cm 

<0.10 302 40.7 11000 0.091 <2.0 166 <0.50 2.59 26.3 75 7.1 



 

131 

24-25 

cm 

<0.10 334 43.3 11400 0.11 <2.0 182 <0.50 2.64 27.2 77.2 6.6 

25-26 

cm 

<0.10 360 45.8 12100 0.111 <2.0 190 <0.50 2.63 27.9 81.1 7.2 

26-27 

cm 

<0.10 369 45.6 12100 0.109 <2.0 193 <0.50 2.58 28.1 82.8 6.8 

27-28 

cm 

<0.10 330 43.1 12000 0.083 <2.0 172 <0.50 2.38 26.3 81 6.6 

28-29 

cm 

<0.10 337 45.2 12300 0.09 <2.0 176 <0.50 2.48 27.1 80 7.1 

29-30 

cm 

<0.10 336 45 12400 0.083 <2.0 180 <0.50 2.43 27.1 81.5 7.5 

 

Table F9: NE20 

NE20 Al Sb As Ba Be Bi B Cd Ca Cr Co 

0-1 cm 14800 0.66 71.8 230 0.72 0.21 18.9 0.36 8520 26.4 8.54 

1-2 cm  12800 0.99 88.5 172 0.75 0.21 15 0.346 7750 23.1 8.47 

2-3 cm 15200 1.5 111 174 0.91 0.24 13.6 0.383 8050 26 9.86 

3-4 cm 17300 2.12 118 180 0.93 0.27 16.2 0.379 8360 27.8 11.1 

4-5 cm 17300 2.19 101 168 0.88 0.27 13.3 0.331 6960 30.8 11.9 

5-6 cm 16200 2.56 115 161 0.8 0.26 12.2 0.362 7060 29.6 11 

6-7 cm 15400 3.11 127 166 0.8 0.25 11.9 0.368 7070 28.9 9.93 

7-8 cm 15400 3.51 135 165 0.78 0.26 11.4 0.401 6950 28.9 9.48 

8-9 cm 15600 2.3 113 155 0.74 0.25 10.7 0.377 6750 30.1 9.43 

9-10 

cm 

17000 1.16 75.4 174 0.86 0.27 14.6 0.39 7350 31.2 10.3 

10-11 

cm 

18700 0.58 54.9 192 0.91 0.3 14.8 0.417 7330 33.4 11 

11-12 

cm 

17700 0.32 43.1 183 0.88 0.29 12.3 0.366 7310 32.6 11.1 

12-13 

cm 

17600 0.21 35.5 181 0.86 0.28 11.2 0.334 6610 33.5 11.1 



 

132 

13-14 

cm 

17400 0.18 30.1 185 0.83 0.28 10.3 0.293 6090 35.6 11.4 

14-15 

cm 

20700 0.16 23.1 231 0.87 0.28 10.6 0.265 5920 40.5 12.1 

15-16 

cm 

21000 0.16 23.8 238 0.97 0.29 12.6 0.297 6210 38.8 12 

16-17 

cm 

21200 0.15 24.5 251 1.05 0.28 12.2 0.364 6960 38.1 12.2 

17-18 

cm 

20800 0.15 27.7 255 1.04 0.3 11.5 0.414 7170 35.7 12.3 

18-19 

cm 

20100 0.15 27 254 1.04 0.29 11 0.401 7370 34.5 13.6 

19-20 

cm 

19200 0.16 27.9 229 0.97 0.27 10.1 0.404 7130 35 14.4 

20-21 

cm 

19200 0.16 23.4 238 0.94 0.3 11.5 0.369 7250 33.4 11.6 

21-22 

cm 

18600 0.17 21.4 213 0.87 0.29 11.5 0.337 6660 33.7 11.8 

22-23 

cm 

18900 0.15 19.7 229 0.91 0.29 10.8 0.325 6560 35.1 12 

23-24 

cm 

18800 0.15 18.1 225 0.86 0.28 9.3 0.324 6470 35.5 11.8 

24-25 

cm 

18500 0.16 18 221 0.84 0.28 10.3 0.288 6350 35.8 11.6 

25-26 

cm 

18000 0.16 16.9 219 0.83 0.27 9.8 0.283 6210 34.7 11.1 

26-27 

cm 

18200 0.15 16.8 228 0.84 0.27 10.2 0.307 6300 35.5 11.4 

27-28 

cm 

19200 0.15 18.6 245 0.85 0.29 10.8 0.314 6530 36.8 12 



 

133 

28-29 

cm 

19200 0.14 17.7 230 0.85 0.28 12.1 0.304 6370 35.7 11.6 

29-30 

cm 

19800 0.16 18.5 231 0.88 0.29 12.6 0.31 6620 36.4 11.7 

 

NE20 Cu Fe Pb Li Mg Mn Mo Ni P K Se 

0-1 cm 53.6 15300 5.93 21.1 6310 1020 1.66 41.8 3080 2960 0.93 

1-2 cm  57.4 14200 5.98 17 4810 1120 1.92 45.9 2730 2090 0.73 

2-3 cm 64.7 17300 6.49 19.1 4940 1230 2.08 50.7 2700 2100 0.78 

3-4 cm 60.3 19300 8.17 21.3 5140 1190 2.02 50.2 2480 2390 0.87 

4-5 cm 50.6 21600 9.66 26.4 5990 1050 1.58 45.5 1850 2810 0.75 

5-6 cm 54.1 20200 11.1 23.1 5590 1010 1.81 48.2 1760 2530 0.73 

6-7 cm 58.7 18900 10.7 22.9 5500 985 1.92 47.6 1760 2430 0.76 

7-8 cm 59.8 18300 11.3 22.4 5280 973 2.17 47.3 1600 2370 0.8 

8-9 cm 53.4 18200 9.7 22.8 5570 939 1.88 45.7 1520 2400 0.73 

9-10 

cm 

55.3 19300 9.17 26.9 5610 945 1.79 47.1 1690 2690 0.79 

10-11 

cm 

62.2 19700 8.8 24.7 5780 1000 1.85 49.1 1970 2750 0.72 

11-12 

cm 

57.7 20000 8.1 29 6020 945 1.75 48.1 1700 2630 0.72 

12-13 

cm 

51.6 20700 7.61 29 6310 914 1.77 46.7 1470 2640 0.71 

13-14 

cm 

47.4 23600 7.58 29.1 6420 829 1.76 46.2 1230 3010 0.7 

14-15 

cm 

46.3 24300 7.99 33.3 7620 847 1.51 44.5 1230 3440 0.47 

15-16 

cm 

49.8 23600 7.73 31.1 6930 869 1.27 45 1480 3370 0.62 

16-17 

cm 

55.4 22100 7.47 33.6 6780 948 1.28 47.6 1920 3060 0.65 
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17-18 

cm 

60.9 21800 7.28 29.7 6060 1030 1.47 48.1 2410 2890 0.74 

18-19 

cm 

58.7 22500 7.12 28.3 5910 1010 1.47 46.4 2480 2710 0.7 

19-20 

cm 

57.3 24700 6.64 27.5 5980 991 1.27 49.8 2440 2670 0.78 

20-21 

cm 

53.1 21400 6.74 27.9 5800 926 1.27 44 2410 2810 0.72 

21-22 

cm 

48.2 22200 7.07 28 6000 859 1.25 43.1 2020 2940 0.68 

22-23 

cm 

48.2 22400 7.24 29 6310 855 1.17 42.5 1960 2980 0.62 

23-24 

cm 

46.3 22200 7.29 29 6490 835 1.15 42 1710 2950 0.62 

24-25 

cm 

44.2 23300 7.4 29.7 6570 794 1.27 42.6 1560 3090 0.61 

25-26 

cm 

43.8 22400 7.27 29 6410 773 1.18 42.1 1430 2990 0.64 

26-27 

cm 

43.6 21900 7.33 28.5 6450 784 1.12 41.7 1580 3020 0.6 

27-28 

cm 

46.6 23300 7.52 29.3 6590 807 1.16 43.2 1700 3130 0.63 

28-29 

cm 

44.8 22000 7.39 28 6360 764 1.06 40.7 1740 3180 0.64 

29-30 

cm 

46.6 22400 7.41 27.8 6430 787 1.15 41.3 1860 3190 0.62 

 

NE20 Ag Na Sr S Tl Sn Ti W U V Zn Zr 

0-1 cm <0.10 816 44.1 12000 0.163 <2.0 223 1.59 8.2 27.9 153 1.8 

1-2 cm  0.11 502 39.4 12700 0.148 <2.0 141 1.25 10.8 25.4 78.7 2.3 

2-3 cm 0.14 494 44.6 15000 0.154 <2.0 157 1.12 11.3 27.8 82.9 2.6 
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3-4 cm 0.14 539 46.2 16900 0.174 <2.0 249 1.2 11.8 30.9 89.5 1.8 

4-5 cm 0.13 468 40.8 15300 0.199 <2.0 291 0.94 10.7 33.7 87.1 2.3 

5-6 cm 0.14 435 40 15200 0.194 <2.0 231 1.01 11.8 32.8 95 2.6 

6-7 cm 0.17 439 40.2 14100 0.179 <2.0 188 0.93 12.1 31.4 89.1 2.3 

7-8 cm 0.19 423 36.2 13700 0.188 <2.0 183 1.01 12.1 31.9 90.5 2.3 

8-9 cm 0.17 429 36.8 13100 0.184 <2.0 203 0.99 11.5 32.6 86.9 2.6 

9-10 

cm 

0.17 460 40.7 13900 0.206 <2.0 311 1.06 11.5 34.2 95.1 2.2 

10-11 

cm 

0.18 478 44.4 13200 0.205 <2.0 328 1.12 12.6 36.8 100 2 

11-12 

cm 

0.17 442 42.1 13400 0.195 <2.0 248 0.9 11.8 36.9 93.7 2.7 

12-13 

cm 

0.16 427 37.4 13100 0.199 <2.0 256 0.86 11.5 38.9 90.3 2.7 

13-14 

cm 

0.15 420 36.1 14600 0.228 <2.0 318 0.7 10.4 39.5 85.7 3 

14-15 

cm 

0.15 474 41.5 10100 0.247 <2.0 442 0.57 9.03 42.9 87.5 3.7 

15-16 

cm 

0.16 482 42.8 11800 0.242 <2.0 466 0.73 10.1 41.2 92.4 2.4 

16-17 

cm 

0.17 487 45 10700 0.221 <2.0 369 0.8 11.2 40.9 101 2.6 

17-18 

cm 

0.16 484 45.9 13000 0.218 <2.0 305 0.97 12.3 39.9 106 2.6 

18-19 

cm 

0.14 427 46 14100 0.215 <2.0 282 0.96 12.3 38.4 102 2.4 

19-20 

cm 

0.15 413 44.5 17100 0.199 <2.0 263 0.92 11.8 37.9 103 2.7 

20-21 

cm 

0.14 414 43.7 14000 0.204 <2.0 307 1 10.9 37.8 94.2 2.2 
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21-22 

cm 

0.14 395 42.1 13900 0.211 <2.0 334 0.83 10.5 37.6 89.2 2.9 

22-23 

cm 

0.15 392 42.3 12500 0.207 <2.0 343 0.78 10.2 38.5 90.2 2.9 

23-24 

cm 

0.14 391 40.5 12000 0.209 <2.0 287 0.69 10.2 38.8 91.4 3.3 

24-25 

cm 

0.14 391 39.4 12300 0.216 <2.0 362 0.81 10 39.9 88.1 3 

25-26 

cm 

0.14 393 38.5 11500 0.212 <2.0 333 0.73 10.2 38.9 86 3.2 

26-27 

cm 

0.14 395 39.4 10700 0.21 <2.0 342 0.66 10 39 88.1 3.1 

27-28 

cm 

0.15 409 42.2 11500 0.211 <2.0 384 0.74 10.2 40.6 92.8 3.1 

28-29 

cm 

0.13 418 43.7 11300 0.209 <2.0 443 0.74 9.8 39 89.7 2.6 

29-30 

cm 

0.14 429 43.8 11300 0.214 <2.0 451 0.79 10 40.4 88.8 2.6 

 

Table F10: NE40 

NE40 Al Sb As Ba Be Bi B Cd Ca Cr Co 

0-1 cm 3060 0.35 6.95 82.4 0.11 <0.20 24.5 0.22 18300 8.77 4.38 

1-2 cm  3210 0.37 7.91 70 0.12 <0.20 24 0.232 16400 9.55 4.79 

2-3 cm 3360 0.41 8.95 58.2 0.12 <0.20 24.8 0.248 16500 10.2 5.02 

3-4 cm 3500 0.43 9.42 56 0.13 <0.20 24 0.255 16500 10.3 5.16 

4-5 cm 3300 0.46 9.34 52.8 0.12 <0.20 23.4 0.246 15400 9.73 4.93 

5-6 cm 3400 0.46 9.24 51.1 0.12 <0.20 23.1 0.248 15200 9.81 4.99 

6-7 cm 3460 0.44 8.99 46.9 0.14 <0.20 24.4 0.234 15800 10.2 4.97 

7-8 cm 3560 0.41 8.71 45.1 0.13 <0.20 23.2 0.255 16000 10.8 5.11 

8-9 cm 3580 0.45 9.52 43.5 0.14 <0.20 23.4 0.268 15800 10.8 5.44 

9-10 

cm 

3770 0.6 10.9 42.4 0.13 <0.20 21.4 0.273 14600 11.2 5.68 



 

137 

10-11 

cm 

3960 0.53 11.8 42.3 0.15 <0.20 24.4 0.314 14900 11.3 5.74 

11-12 

cm 

3790 0.58 12 42.2 0.16 <0.20 23.7 0.323 14900 11.1 5.78 

12-13 

cm 

3540 0.56 12 40.3 0.13 <0.20 22 0.298 14400 10.3 5.45 

13-14 

cm 

3710 0.66 14.2 41.4 0.15 <0.20 21.8 0.325 14600 10.9 5.74 

14-15 

cm 

3690 0.79 16 42.8 0.15 <0.20 21.7 0.315 14900 10.9 5.92 

15-16 

cm 

3950 0.95 18.8 45.1 0.15 <0.20 20.9 0.335 15300 11.1 6.2 

16-17 

cm 

3970 0.83 17.2 50.9 0.16 <0.20 19.9 0.327 15300 11.1 5.97 

17-18 

cm 

4130 0.59 13.8 46.9 0.17 <0.20 20.5 0.32 15800 11.7 6.09 

18-19 

cm 

4070 0.43 11 45.1 0.18 <0.20 18.8 0.343 14700 11.7 6.46 

19-20 

cm 

4010 0.33 8.8 42.4 0.16 <0.20 19.6 0.364 14100 11.5 6.8 

20-21 

cm 

3920 0.3 7.6 40.8 0.17 <0.20 19.7 0.363 13400 11.3 6.84 

21-22 

cm 

4080 0.24 6.64 42.9 0.17 <0.20 20.5 0.35 14900 11.5 6.79 

22-23 

cm 

4070 0.21 5.88 43.4 0.16 <0.20 19.9 0.343 14800 11.4 6.3 

23-24 

cm 

3730 0.17 4.59 41.3 0.15 <0.20 18.5 0.289 13900 10.4 5.44 

24-25 

cm 

3570 0.14 3.76 41.1 0.15 <0.20 16.3 0.271 13900 9.78 5.01 



 

138 

25-26 

cm 

3820 0.1 2.99 42.4 0.14 <0.20 16.1 0.285 14700 10.1 5.09 

26-27 

cm 

4130 0 2.71 44.1 0.15 <0.20 16.3 0.34 14400 10.9 5.71 

27-28 

cm 

4240 0 2.32 43 0.16 <0.20 16.5 0.328 14400 10.8 5.76 

28-29 

cm 

4260 0 2.2 42.8 0.15 <0.20 16.5 0.289 14100 11.2 5.88 

29-30 

cm 

4480 0.11 2.23 42.6 0.14 <0.20 17 0.329 14100 12.1 6.67 

 

NE40 Cu Fe Pb Li Mg Mn Mo Ni P K Se 

0-1 cm 23.6 2570 2.01 <2.0 3360 199 0.72 25.3 1860 830 0.67 

1-2 cm  23.6 2940 2.18 <2.0 3200 196 0.75 27 1490 610 0.7 

2-3 cm 24.8 3140 2.41 <2.0 3230 166 0.8 28.6 1270 460 0.77 

3-4 cm 25.1 3230 2.52 <2.0 3130 162 0.81 29.1 1240 440 0.72 

4-5 cm 24 3020 2.54 <2.0 3030 148 0.78 27.8 1100 410 0.74 

5-6 cm 24.4 3050 2.5 <2.0 3050 149 0.81 27.8 1120 400 0.78 

6-7 cm 24.9 2860 2.48 <2.0 3240 151 0.8 28.5 1060 390 0.73 

7-8 cm 23.8 2940 2.48 <2.0 3280 159 0.75 29.3 1060 370 0.7 

8-9 cm 24 3290 2.75 <2.0 3220 151 0.74 29.7 1010 330 0.77 

9-10 

cm 

24.3 4540 2.29 <2.0 3300 149 0.79 31.1 966 310 0.74 

10-11 

cm 

26.4 4090 3.44 <2.0 3300 148 0.78 32.6 936 310 0.81 

11-12 

cm 

26.6 3560 3.93 <2.0 3190 141 0.83 32.4 870 300 0.82 

12-13 

cm 

25 3430 4.06 <2.0 3150 137 0.75 31 793 270 0.73 

13-14 

cm 

26.1 4050 3.99 <2.0 3170 142 0.73 31.8 800 260 0.78 



 

139 

14-15 

cm 

26.8 4170 3.89 <2.0 3320 148 0.78 32.1 785 260 0.83 

15-16 

cm 

29 4800 3.5 <2.0 3520 158 0.85 34.1 764 270 0.86 

16-17 

cm 

28.9 4240 3.04 <2.0 3490 156 0.85 34.1 774 260 0.84 

17-18 

cm 

30.2 4240 2.65 <2.0 3520 163 0.84 34.2 749 260 0.84 

18-19 

cm 

30.1 4320 2.5 <2.0 3300 153 0.92 35.1 731 250 0.8 

19-20 

cm 

32.5 4390 2.42 <2.0 3090 144 0.98 37.4 752 240 0.84 

20-21 

cm 

35.5 3650 1.96 <2.0 2880 136 1.1 38.4 743 250 0.9 

21-22 

cm 

36.5 3190 1.6 <2.0 3190 149 1.11 39.6 752 250 0.89 

22-23 

cm 

36.3 3010 1.32 <2.0 3070 149 1.07 38.6 728 240 0.96 

23-24 

cm 

32.5 3030 1.03 <2.0 2920 140 0.93 34.7 703 230 0.84 

24-25 

cm 

29.6 3060 0.91 <2.0 2560 140 0.92 32.4 634 200 0.78 

25-26 

cm 

27.2 2810 0.84 <2.0 2820 156 0.87 31.1 646 210 0.78 

26-27 

cm 

29.8 3110 0.9 <2.0 2780 153 0.95 35 645 230 0.93 

27-28 

cm 

30.2 2940 0.86 <2.0 2750 150 1.05 33.3 637 240 0.87 

28-29 

cm 

31.7 2940 0.83 <2.0 2480 142 1.08 33.8 656 240 0.9 



 

140 

29-30 

cm 

35.7 2730 0.85 <2.0 2690 146 1.22 36.9 727 260 0.87 

 

NE40 Ag Na Sr S Tl Sn Ti W U V Zn Zr 

0-1 cm <0.10 355 72.6 12300 <0.050 <2.0 51.8 <0.50 1.04 4.99 44.5 2.1 

1-2 cm  <0.10 300 65.5 12500 <0.050 <2.0 46.6 <0.50 1.05 5.3 46.5 2.3 

2-3 cm <0.10 304 64.4 13600 <0.050 <2.0 47.5 <0.50 1.11 5.7 48.8 2.7 

3-4 cm <0.10 287 62.5 13300 <0.050 <2.0 51.2 <0.50 1.11 5.86 48.9 2.8 

4-5 cm <0.10 277 58.9 13200 <0.050 <2.0 56.1 <0.50 1.09 5.66 46.3 2.7 

5-6 cm <0.10 280 59.9 13400 <0.050 <2.0 59.4 <0.50 1.11 5.85 45.2 2.9 

6-7 cm <0.10 298 61.5 12800 <0.050 <2.0 61.2 <0.50 1.15 5.82 43.5 3.1 

7-8 cm <0.10 279 61.3 13300 <0.050 <2.0 48 <0.50 1.12 5.81 43 3 

8-9 cm <0.10 274 60.5 13500 <0.050 <2.0 51.2 <0.50 1.16 5.63 44.8 3.1 

9-10 

cm 

<0.10 269 57.8 15300 <0.050 <2.0 48.1 <0.50 1.04 5.9 51.6 3.2 

10-11 

cm 

<0.10 262 57.9 15300 0.05 <2.0 59.2 <0.50 1.13 6.1 55.6 3.3 

11-12 

cm 

<0.10 263 58.3 14500 0.202 <2.0 55.1 <0.50 1.2 6.18 59.7 3.1 

12-13 

cm 

<0.10 255 56.8 14600 0.054 <2.0 50.4 <0.50 1.11 5.63 56.4 3 

13-14 

cm 

<0.10 237 55.8 15300 0.061 <2.0 54.4 <0.50 1.16 5.88 57.6 3.1 

14-15 

cm 

<0.10 245 58.8 15900 0.072 <2.0 54.8 <0.50 1.21 6.23 58.3 3 

15-16 

cm 

<0.10 250 60 17100 0.068 <2.0 62.3 <0.50 1.26 6.82 62.8 3.3 

16-17 

cm 

<0.10 240 60.9 16400 0.095 <2.0 62.6 <0.50 1.27 6.83 61.4 3.3 

17-18 

cm 

<0.10 235 62.6 16400 0.082 <2.0 65.1 <0.50 1.34 7.01 58.9 3.3 



 

141 

18-19 

cm 

<0.10 233 60.6 16100 0.156 <2.0 59.8 <0.50 1.29 7.01 59.1 3.3 

19-20 

cm 

<0.10 222 57.5 15700 0.077 <2.0 55.3 <0.50 1.25 6.93 71.1 3.2 

20-21 

cm 

<0.10 227 54.9 14700 0.188 <2.0 55.2 <0.50 1.27 7.45 81.5 3.1 

21-22 

cm 

<0.10 239 59.1 15900 0.096 <2.0 57.2 <0.50 1.31 8.05 82.6 3.3 

22-23 

cm 

<0.10 223 59.5 15800 0.075 <2.0 60.9 <0.50 1.26 7.97 78.9 3.3 

23-24 

cm 

<0.10 222 55 14700 0.056 <2.0 57.6 <0.50 1.18 7.14 65.8 2.8 

24-25 

cm 

<0.10 174 55 13700 0.057 <2.0 51.8 <0.50 1.12 7.06 62.8 2.6 

25-26 

cm 

<0.10 197 56.8 14300 0.056 <2.0 52.6 <0.50 1.11 7.08 63.4 2.5 

26-27 

cm 

<0.10 206 57.4 15100 0.067 <2.0 62.5 <0.50 1.23 7.27 71.5 2.8 

27-28 

cm 

<0.10 222 56.9 15100 0.068 <2.0 63.1 <0.50 1.27 7.37 72.1 3 

28-29 

cm 

<0.10 190 54.3 14200 0.071 <2.0 64.3 <0.50 1.33 7.41 68.1 2.8 

29-30 

cm 

<0.10 236 56.2 14700 0.074 <2.0 64.2 <0.50 1.39 7.8 72.3 3 



 

 


