
Wasserstein Autoencoders with
Mixture of Gaussian Priors for

Stylized Text Generation

by

Amirpasha Ghabussi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Masters of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2021

c© Amirpasha Ghabussi 2021

Author’s Declaration

This thesis includes all the material that I authored or co-authored: see Statement of
Contribution included in this Thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contribution

Chapter 4 is based on the following paper:

• Amirpasha Ghabussi, Lili Mou, Olga Vechtomova ”Stylized Text Generation Us-
ing Wasserstein Autoencoders with a Mixture of Gaussian Prior.” arXiv preprint
arXiv:1911.03828 (2019)

I contributed to the implementation, experimentation, and writing the manuscript of the
above paper.

iii

Abstract

Probabilistic text generation is an important application of Natural Language Process-
ing (NLP). Variational autoencoders and Wasserstein autoencoders are two widely used
methods for text generation. New research efforts focus on improving the quality of the
generated samples for these two methods. While Wasserstein autoencoders are effective
for text generation, they are unable to control the topic of generated text, even when the
training dataset has samples from multiple categories with different styles. We present a
semi-supervised approach using Wasserstein autoencoders and a mixture of Gaussian pri-
ors for topic-aware sentence generation. Our model is trained on a multi-class dataset and
generates sentences in the style/topic of a desired class. It is also capable of interpolating
multiple classes. Moreover, we can train our model on relatively small datasets. While
a regular WAE or VAE cannot generate diverse sentences with few training samples, our
approach generates diverse sentences and preserves the style and the content of the desired
classes.

iv

Acknowledgements

I would like to thank Prof. Olga Vechtomova, without whom none of this would have
been possible. Her support, guidance, and feedbacks have always been invaluable. I also
want to thank Prof. Lili Mou who helped with this work from the beginning and provided
constant support throughout this work.

v

Dedication

This thesis is dedicated to my family who always supported me throughout my life.

vi

Table of Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Problem Statement . 1

1.2 Contributions . 1

1.3 Chapter Outline . 2

2 Background 3

2.1 Natural Language Generation . 3

2.2 Feed Forward Neural Network . 4

2.3 Single Layer Perceptron . 4

2.4 Multi Layer Perceptron . 4

2.4.1 Regularization . 6

2.4.2 Dropout . 6

2.5 Recurrent Neural Networks . 8

2.6 BiDirectional RNNs . 9

2.6.1 Long Short Term Memory . 10

2.7 Word Embeddings . 11

2.8 Convolutional Neural Networks . 12

2.9 Sequence to Sequence Models . 13

vii

3 Related Work 15

3.1 Autoencoders . 15

3.1.1 Variational Autoencoders . 17

3.1.2 Wasserstein Autoencoders . 17

3.2 Style Transfer . 19

3.3 Stylized Text Generation . 20

3.4 Gaussian Mixture Models . 20

3.5 Jensen-Shannon Divergences . 21

4 Approach 23

4.1 Wasserstein Autoencoder with Gaussian Mixture Prior 26

4.1.1 Datasets . 26

4.2 Training . 28

4.3 Sentence Generation with GMM-WAE . 32

4.4 Experiments . 33

4.4.1 Evaluation . 34

5 Summary and Conclusion 39

5.1 Summary . 39

5.2 Future Work . 40

References 41

viii

List of Figures

2.1 A feed forward neural network with 2 hidden layers. [Source] 5

2.2 Three common activation functions. [Source] 7

2.3 Left: a fully connected neural network. Right: the effect of dropout on the
same network. [Source] . 8

2.4 Recurrent Neural Networks. [Source] . 9

2.5 A long short term memory cell. [Source] 10

2.6 The notations used in figure 2.5. [Source] 11

2.7 Convolutional neural networks. [Source] 13

2.8 Sequence to sequence models used for translation. [Source] 14

3.1 Autoencoders reconstruct the input data point. [Source] 16

3.2 Stochastic WAE latent representation. [2] 19

3.3 Neural image style transfer. [Source] . 20

3.4 A mixture of Gaussian example. [Source] 21

4.1 a) GMMWAE training phase. b) GMMWAE inference phase. 30

4.2 a) the latent space before training. The small green circles around each
encoded data point represent the stochastic feature of the encoder. b) The
latent space with four Gaussian mixtures after training. The blue circles are
the latent distributions for each of the latent Gaussian distributions. They
get closer to the actual distribution of each class of the data after training
is finished. 31

ix

https://static.packt-cdn.com/products/9781788397872/graphics/1ebc2a0a-2123-4351-b7e1-eb57f098bafa.png
https://media.condenast.io/photos/59f258a87953d714f00d7704/master/w_768/activation_figures.png
https://miro.medium.com/max/1400/0*OosJfL01iiPqXUHK.png
https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-networks/
https://nickmccullum.com/python-deep-learning/lstms-long-short-term-memory-networks/
https://nickmccullum.com/python-deep-learning/lstms-long-short-term-memory-networks/
https://miro.medium.com/max/3288/1*uAeANQIOQPqWZnnuH-VEyw.jpeg/
https://github.com/tensorflow/nmt/blob/master/nmt/g3doc/img/encdec.jpg/
https://www.oreilly.com/library/view/neural-networks-with/9781789346640/assets/3cd826e0-e037-416a-992e-7ab29296eb34.png
https://hackernoon.com/hn-images/1*k5Q_NYr1niC-qjWMr-lUCg.png
https://miro.medium.com/max/1200/1*lTv7e4Cdlp738X_WFZyZHA.png

4.3 Comparison of GMM-WAE with other baselines trained on small, medium,
and large datasets. The small and medium datasets are a subset of the
whole MNLI dataset. the accuracy percentages provided are the average
accuracy of each model for style-conditioned sentence generation. 33

x

List of Tables

4.1 A few examples of the data point from the MNLI dataset 27

4.2 Classification acuracy and JSD values for GMM-WAE Style-conditioned sen-
tence generation using 40960 training samples from MNLI. 28

4.3 Style-conditioned sentence generation results. All models were trained on
the whole MNLI dataset. Note that the classification accuracy for separate
WAE models is not a valid measure since each model is only trained on a
single class. Thus the accuracy should be almost 100% in theory. 35

4.4 Style-interpolated sentence generation results on MNLI. 35

4.5 Sentences generated by GMM-WAE. 37

xi

Chapter 1

Introduction

1.1 Problem Statement

Stylized generative models have become an important research area during the past decade.
Thanks to extensive investment in stylized image generation, today there are many models
capable of creating fantastic looking pictures with a variety of desired styles. Research
on stylized text generation is also progressing. While little deficiencies in a generated
stylized image might not be too obvious, slightly wrong word choices or small grammatical
errors are salient within text. Another interesting research area is text generation with a
mixture of styles. This may have many use-cases such as generating poems or small novels
with the style of multiple writers. Lastly, training deep generative models to perform the
previously mentioned tasks, usually requires a big number of training samples and most
models perform poorly on smaller datasets. Hence, training models that produce good
results on smaller datasets is another interesting research topic.

1.2 Contributions

The main contributions of this thesis are:

• Supervised multi-class sentence generation while preserving the content and style of
specified classes.

• Diverse stylized sentence generation on relatively small datasets.

1

1.3 Chapter Outline

This thesis is organized in the following chapters:

• Chapter 1 outlines the main contributions and the problem statement.

• Chapter 2 discusses related core concepts that are important to this work.

• Chapter 3 includes important related and previous research on stylized text genera-
tion and style transfer.

• Chapter 4 explains our approach to produce stylized text and how we manage to mix
multiple styles. This chapter also includes our experiments and results.

• Chapter 5 provides a conclusion and summary of this work, followed by future work.

2

Chapter 2

Background

2.1 Natural Language Generation

Natural Language Generation (NLG) is a field of research that falls under the broader
field of Natural Language Processing. NLG aims to generate sentences or text which
resemble any form of written or spoken documents in natural human language. In early
21st century, NLG research was mostly focused on generating sequences of text based on
a set of grammatical rules [40]. Other approaches were based on statistical analysis of a
variety of language features such as predicting the next word based on the occurrence and
co-occurrence probabilities of a word [8]. Probabilistic models such as n-gram were other
early NLG approaches [9]. After the rise of neural networks in the recent years, they were
widely adopted in many NLG sub-fields including, but not limited to the following:

• Neural machine translation: Given a sentence or document as input, neural
machine translation (NMT) focuses on generating a semantically similar document
in another natural human language (e.g. German to English). [20, 10, 45]

• Dialogue generation: Dialogue generation is the task of producing a response
conditioned on a given text input. The goal of dialogue generation is to replicate a
natural human to human conversation. The main application of dialogue generation
is digital chat bots and to some extent, AI assistance programs [20, 42].

• Stylized text generation: Stylized text generation is the task of generating a sen-
tence or document, conditioned on the style of some other documents. One example
of its applications is formalizing an informal document [36].

3

• Text summarization: Text summarization’s main goal is to generate a short and
concise document. Given a longer document, the summary should include all the key
important information contained in the original document [37, 4].

2.2 Feed Forward Neural Network

Feed forward neural networks are the most basic type of neural networks. In a feed forward
neural network, information only flows in one direction, forward, hence the name feed
forward neural network. This is the main factor distinguishing feed froward neural networks
from their descendant, recurrent neural networks. Similar to many other neural networks,
using gradient descent [41], the back-propagation of the loss updates the weights of the
network.

2.3 Single Layer Perceptron

Feed forward neural networks in their simplest form are also called a single layer perceptron
where the input and output layers are directly connected via a series of weights. The output
of each node is the output of an activation function applied to the sum of the weights and
the inputs. Single layer perceptrons are only capable of distinguishing between linearly
separable inputs [35].

2.4 Multi Layer Perceptron

Multi Layer Perceptron (MLP) is the most vanilla type of neural networks widely used
in NLG and machine learning. An MLP can be made from stacking two or more single
layer perceptrons. Unlike a single layer perceptron, the input and the output layers of
the MLP are connected via one or more hidden layers. In each hidden layer node, the
output is computed as an activation function applied on the sum of the weights and the
output of the previous hidden layer. One can think of each hidden layer as a function
f . Assuming a neural network has n hidden layers and one output layer, the output can
be written as fn(fn−1(. . . (f1(input)))). Figure 2.1 includes feed forward neural network
with two hidden layers. Each node is represented by a circle and each arrow represents a
connection between two nodes. Note that every node in all layers is connected to all the

4

Figure 2.1: A feed forward neural network with 2 hidden layers. [Source]

nodes from the previous layer, hence, this network is also called a fully connected neural
network.

The non-linear activation functions that are applied in each layer can be different;
however, usually in practice all the hidden layers have a similar activation function and
the final layer can have a different one. There are many popular choices for the activation
function. Some of these functions are listed below:

• ReLU: A rectified linear unit is one of the most popular activation functions used
in neural networks, due to its simple computations. A ReLU function simply returns
the input if the input is bigger than one, and zero otherwise:

f(x) =

{
x if x > 0,

ax otherwise.

Moreover, the derivatives of the ReLU function are computed with very low compu-
tation power, it is 1 for values above 0 and 0 otherwise. Figure 2.2 bottom shows the
ReLU function.

5

https://static.packt-cdn.com/products/9781788397872/graphics/1ebc2a0a-2123-4351-b7e1-eb57f098bafa.png

• Sigmoid: A sigmoid function clips the value of the input between zero and one and
has an S-shaped curve:

f(x) =
1

1 + e−x
=

ex

ex + 1

Figure 2.2 top shows the sigmoid function.

• Softmax: When the output of a neural network is a vector and the intent is to pick
the most probable component, the softmax function becomes useful. Softmax, as the
name suggests, amplifies the maximum value in an array or vector and dampens the
rest of the components with respect to their values:

σ(z)i =
ezi∑K
j=1 e

zj
for i = 1, . . . , K and z = (z1, . . . , zK) ∈ RK

• Tanh: Tanh is another popular choice for activation functions in neural networks:

tanhx =
sinhx

coshx
=
ex − e−x

ex + e−x
=
e2x − 1

e2x + 1

Figure 2.2 middle shows the tanh function.

2.4.1 Regularization

In machine learning, regularization is a variety of practices and techniques that improves
an approach to avoid over-fitting to the data it is being trained on and helps it to generalize
easier. There are many techniques for regularization including but not limited to: dropout,
batch-normalization, training knowledge augmentation, Lasso, and Ridge regularization.

2.4.2 Dropout

Dropout [46] is one of the most used regularization techniques in machine learning. The
term dropout refers to a neural network hidden layer unit randomly dropping out, meaning
that the output of the cell will be equal to zero and will not contribute to the input state
of the next cell.

Figure 2.3 shows how dropout works on a neural network. The neural network on the
left is a fully connected neural network. When dropout is added to this network, some of

6

Figure 2.2: Three common activation functions. [Source]

7

https://media.condenast.io/photos/59f258a87953d714f00d7704/master/w_768/activation_figures.png

Figure 2.3: Left: a fully connected neural network. Right: the effect of dropout on the
same network. [Source]

the units randomly deactivate and do not contribute to the outcome of the network. The
probability of a cell being deactivated during a forward pass is as follows:

ŵj =

{
wj, with P (c)

0, otherwise

2.5 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are another type of neural networks mainly used for
text sequences. They are also used in audio processing. The distinguishing factor of a RNN
compared to a feed forwad neural network is that an RNN also includes the position or the
time step of a sequence of data points. Another important characteristic of RNNs is that
they can unfold many times until they cover the entire sequence of input data, hence the
input can have arbitrary length. The reason RNNs are used instead of vanilla feed forward
neural networks is that if the input is a sequence, the historical context becomes important

8

https://miro.medium.com/max/1400/0*OosJfL01iiPqXUHK.png

Figure 2.4: Recurrent Neural Networks. [Source]

when the network is interpreting the next components of the sequence. For example, the
word ”bad” by itself has a negative sentiment, but when used in a sentence, it can change
the sentiment of the sentence.

There is a recurrent connection between each unfold of an RNN when it is processing
a sequence of data. In other words, the output of the RNN when it is processing the data
point in the t position, also depends on the features that are extracted at position t − 1.
Similarly, the output of the RNN at t − 1 depends on both the t − 1 data point and the
RNN output at t− 2. This can be written as equation 2.1:

ht = f(W1.ht−1 +W2.xt) (2.1)

Figure 2.4 shows how a recurrent neural network can extract features from a sequence
of data.

2.6 BiDirectional RNNs

Bidirectional RNNs are a special type of RNNs. Instead of processing the input sequence
from the first element to the last, bidirectional RNNs process the sequence from the last
element to the first one as well. This means that the output of the network at position t is

9

https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-networks/

Figure 2.5: A long short term memory cell. [Source]

a concatenation of the forward and backward passes of the RNN over the input sequence.
In practice, bidirectional RNNs can improve the accuracy of a network.

2.6.1 Long Short Term Memory

Vanilla RNNs suffer from two types of problems, vanishing and exploding gradients. The
vanishing gradients problem is when the gradient in an RNN is multiplied by values less
than one. Due to the nature of the RNNs, they usually form a deep computational graph.
Therefore, the computed gradient has to flow through this deep graph. When the gradient
is multiplied by values less than one, it starts to vanish rapidly and gets closer to zero.
Thus, after a while the gradient becomes zero and it will not be possible to train the
network anymore. Similarly, when the gradient is multiplied by values above one, the
gradient starts to grow rapidly and becomes useless for training the neural network.

To overcome the abovementioned problems, a Long Short Term Memory (LSTM)[17]
can be used. Figure 2.5 shows the internal architecture of andLSTM cell and 2.6 provides
the notations used in the LSTM internal architecture.

The functions in figure 2.5 have the following definitions:

ft = σg(Wfxt + Ufht−1 + bf)

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

10

https://nickmccullum.com/python-deep-learning/lstms-long-short-term-memory-networks/

Figure 2.6: The notations used in figure 2.5. [Source]

c̃t = σc(Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ σh(ct)

Where wq and Uq are the weights of the input and recurrent connections respectively where
the subscript q can be any of the forgot gate f , input gate i, or the output gate o of the
memory cell c. Finally, h is the hidden state of the cell.

The way the LSTM works and fixes the problem of vanishing or exploding gradients is
as follows: First, the forget gate f decides how much information from the previous state
Ct−1 should be preserved. Then the input gate i and the tanh gate determine by how much
should the previous state be updated. Finally, the last step determines the output for this
observation through the output gate o. This step requires both a sigmoid function and a
tanh function. There are many variations of the LSTM cells that are adopted by many.
However, the main idea behind all of them is to avoid vanishing or exploding gradients
while memorizing the context of the input sequence.

2.7 Word Embeddings

There are many approaches to quantify words and documents into numerical values. Some
approaches such as Bag Of Words (BOW) work on a document and sentence level. BOW
represents each document as a vector with a length equal to the number of words available
in the vocabulary. The value of each component in this vector corresponds to the number of
times a specific word appears in the document. For example, if a vocabulary only includes
three words and a sample sentence consists of the first word of the vocabulary followed by
the second word of the vocabulary followed by the first word, then the BOW representation
of this sentence is [2, 1, 2].

11

https://nickmccullum.com/python-deep-learning/lstms-long-short-term-memory-networks/

Although BOW is a powerful representation for documents, it does not provide enough
information on a word level. To provide a better representation for individual words, the
word embeddings were proposed. A word embedding is a m × n matrix where m is the
number of available words in the vocabulary and n is a fixed number. Each sentence can
be represented as a sequence of vectors, each with n components. This allows individual
words to have a set of characteristics defined by the value of their corresponding vector.

To find useful values that represents each word, Mikolov et al. proposed word2vec [34].
Word2vec learns the word representation from a text corpus using either the Continuous
Bag of Words (CBOW) or the skip-gram approach. CBOW and skip-gram are very similar
approaches. CBOW optimizes a loss function based on predicting the words included in
a fixed sized window around each word in the document. The skip-gram model instead,
predicts the probability distribution of the words in a window, given the word in the middle
of the window. Finally, another popular word embedding is GloVe [38] which is trained
based on the aggregated global word co-occurrence. GloVe and Word2vec both are very
popular word embeddings widely used in machine learning.

2.8 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are another type of neural networks mainly used in
image and video processing applications. As the name suggests, they involve convolutional
mathematical operations. CNNs usually have an input layer, one or more hidden layers
and a fully connected output layer. The dimensions of the input layer matches the height,
width, and the channels of the input. Channel size is the depth of the image. For example,
a RGB image has three channels, red, green, and blue.

The main intention behind CNNs was to decrease the parameter count of the neural
networks and to avoid overfitting. For example, when a fully connected neural network
is applied on a 50 by 50 image with a single channel, The number of weights required to
construct the network is 50× 50. However, a CNN can decrease the number of parameters
by orders of magnitude depending on its hyper parameters.

Figure 2.7 is an overview of a 6 layer CNN. The input layer and the third layers of the
networks are convolutional layers. The second and the fourth layers however, are pooling
layers. Pooling is another commonly used practice in CNNs. A pooling layer simply picks
the maximum or the minimum value of a matrix from the previous layer. The final two
layers are fully connected layers that produce the final output of the neural network.

12

Figure 2.7: Convolutional neural networks. [Source]

Although CNNs are mostly used for image and video processing, they can also be used
on text as well. They achieve this by setting the width of all layers to 1.

2.9 Sequence to Sequence Models

Sequence to Sequence (seq2seq) [47] models are widely used in natural language processing
to transform an input sequence with an arbitrary length to an output sequence. Most of
the seq2seq models consist of an encoder and a decoder. Both the encoder and the decoder
are usually implemented with RNNs. The encoder is responsible to learn an intermediate
representation of the input sequence which will be used by the decoder later on. The
decoder uses this representation and generates a desired output sequence. For example,
Sutskever et al. [47] uses a seq2seq model for English to French translation. Figure 2.8
provides an overview of a seq2seq network used for translation.

Other use cases of seq2seq models were used for many NLP tasks including but not
limited to style transfer [23], dialogue generation [31], and auto-encoders [1].

13

https://miro.medium.com/max/3288/1*uAeANQIOQPqWZnnuH-VEyw.jpeg/

Figure 2.8: Sequence to sequence models used for translation. [Source]

14

https://github.com/tensorflow/nmt/blob/master/nmt/g3doc/img/encdec.jpg/

Chapter 3

Related Work

This chapter outlines the related topics that are closely connected with the contributions
of this work.

3.1 Autoencoders

Autoencoders [3] are models that are specialized in reconstructing the data points using
three important components, the encoder, the decoder, and the latent space. The encoder
is mainly implemented with CNNs for image processing tasks and with RNNs for text and
audio processing. However, depending on the task, there are other types of neural networks
that can be used to implement the encoder based on the input structure. For example,
one choice for text processing is a feed-forward neural network when the input format is
bag-of-words (BOW) [50]. It encodes the input into a vectorized representations usually
with fewer dimensions.

The latent space captures the key features of the input. This latent space is one of the
important components of an autoencoder. The latent representation of a data point can
be used for many use cases. For example, if the size of the latent space is smaller than
the size of the input, the latent representation can be stored as a compressed version of
the input, while preserving most of the key important information included in the original
data point.

The decoder uses the information stored in the latent space to reconstruct the input.
Usually the decoder is implemented with the same component as the encoder. Simply

15

Figure 3.1: Autoencoders reconstruct the input data point. [Source]

reconstructing a data point is not a useful task on its own. But the decoder of an autoen-
coder along with the latent space or the latent representation of the data points can be
very useful. The example scenario included in the previous paragraph cannot be achieved
without a decoder, as merely storing a latent representation of the input data is not enough
when there is no decoder to recreate the original inputs from their latent representation.
Figure 3.1 represents an autoencoder.

Usually, the autoencoder’s input has a much higher dimension than its corresponding
latent representation. However, in some applications, such as noise reduction and text
enhancement, the latent representation has higher dimensions [33]. Since autoencoders are
trained on unlabeled data, they are relatively simple to train. The input of the network is
a data point and the output should be the same data point. This makes the autoencoders
very popular since they can be trained on datasets that are simply gathered from various
sources on the internet. Since human labeling is not necessary on these datasets, these
datasets can be very large which allows training autoencoders with great performance.

Another important application of autoencoders is style transfer [43]. Style transfer is
the task of conserving the contents of an input, but changing its style. For example, if the
network’s input is a photograph of an apple, the output of the network can be a painted
apple with a brush in the style of an artist. Style transfer is also a popular application
in Natural Language Processing (NLP). In NLP, style transfer refers to regenerating a

16

https://www.oreilly.com/library/view/neural-networks-with/9781789346640/assets/3cd826e0-e037-416a-992e-7ab29296eb34.png

sentence or a document and changing its style. For example, reconstructing a formal
sentence to an informal one.

The autoencoders’ training loss depends on the data points and the input structure.
For example, the loss function of autoencoders for text can be defined as follows: Given
that at time step t the decoder predicts the next token to be xt , the training loss of the
autoencoder JAE is definded as:

JAE =
N∑
i=1

T∑
t=1

−log(p(xt|h, x1, x2, ..., xt−1)) (3.1)

where h is the latent vector representation, N is the number of training samples, and T is
the total number of decoding steps.

3.1.1 Variational Autoencoders

Variational autoencoders (VAE) [25] are a probabilistic variant of the vanilla autoencoders.
Instead of simply reconstructing the input, VAE encoder approximates the posterior dis-
tribution by encoding each input into two separate latent representations. One is used as
the mean and the other one is used as the variance of the posterior latent distribution.
During the training phase, the latent representation of each data point is used as the mean
and the variance and a sample is generated from a normal distribution. Then the de-
coder reconstructs the data point. During the inference phase, the decoder generates novel
data samples by sampling from the learned prior distribution. All the above can only be
achieved by imposing a normal probability distribution over the latent space. To push the
posterior distribution close to the prior, Kullback-Leibler (KL) [28] divergence is applied
on the latent space. Finally, the total training loss of the VAE can be written as follows:

JV AE = −EqE(h|x)log(p(x|h, x1, x2, ..., xt−1) + λvaeKLqE(h|x)||p(h) (3.2)

3.1.2 Wasserstein Autoencoders

One approach to regularize the posterior is to impose a constraint that the aggregated
posterior of h should be similar to its prior [48]. This constraint can be relaxed by penalizing
the Wasserstein distance between q(h) and p(h). This can be computed as the Maximum
Mean Discrepancy (MMD) between Q(h) and P (h):

17

MMD =

∥∥∥∥∫ k(h, .)dP (h)−
∫
k(h, .)dQ(h)

∥∥∥∥
Hk

(3.3)

where Hk is the reproducing kernel Hilbert space defined by kernel k. We chose the
inverse multi-quadratic kernel k(x, y) = C

C+||x−y||22
in our experiments which is a common

choice.

The MMD penalty can be estimated by empirical samples as:

M̂MD =
1

N(N − 1)

(∑
n 6=m

k(h(n), h(m)) +
∑
n6=m

k(h̃(n), h̃(m))

)
− 1

N2

∑
n,m

k(h(n), h̃(m)) (3.4)

where h̃(n) is a sample from prior p and h(n) is a sample from the aggregated posterior q.
Therefore, the training objective of a WAE is:

JWAE = JAE + λMMD · M̂MD (3.5)

A variation of the normal WAE is the stochastic WAE. The WAE’s encoder can be
either stochastic or deterministic. When the WAE is using a deterministic encoder, it has
high reconstruction performance, but it usually lacks diversity when it comes to sentence
generation. This stochasticity can be imposed on the encoder by using a KL-divergence
term, regularizing the encoder. Bahuleyan et al. [2] show that this is a relaxed optimization
of the Wasserstein distance.

It is important to note that the KL term is not what pushes the prior and the posterior
distributions close to each other. The KL term is only meant as a regularization term to
make the encoder stochastic. It is applied on two normal distributions, between the pre-
dicted posterior q(z|x) = N (µpost, σ

2
post) and N (µpost, I). Therefore, the training objective

of a stochastic wae is

JStochastic WAE = JAE + λKL ·KL(N (µpost, σ
2
post),N (µpost, I)) + λMMD · M̂MD (3.6)

Figure 3.2 depicts how the KL terms is used. The black circles show the encoded data
points. The green circles show the normal distribution with a mean equal to the encoded
mean of each data point and a variance of 1. The red circle shows the normal distribution
used to regularize the aggregated posterior of the input data which is represented by the
dark blue ellipse.

18

Figure 3.2: Stochastic WAE latent representation. [2]

3.2 Style Transfer

Neural style transfer was first proposed by Gatys et al. [15] for image style transfer. The
original image style transfer task was to replicate an input image and reconstruct all the
objects included in the original one, but change the style of the image. Style in this context
was referred to as different features of the image such as brush style and color palettes.
For image style transfer, the default choice of the neural network is a CNN. Figure 3.3
represents an instance of image style transfer.

Similarly in NLP, the task of style transfer refers to reconstructing a sentence or a
document and preserving all the important information and details, while changing the
writing style of the language. In natural language processing there is no unique definition
of style. Different authors choose a variety of text characteristics as style. Sentiment,
formality, genre, and authorship are common choices for representing the style of a sentence
[21, 43, 13, 23]. One example of style transfer in NLP can be the following: transforming
a formal document into an informal one while preserving the context, sentiment, and the
important information included in the origianl sentence.

19

Figure 3.3: Neural image style transfer. [Source]

3.3 Stylized Text Generation

Stylized text generation is another application of NLG. Compared to style transfer where
the task is to preserve the context of a document and modify its style, stylized text gen-
eration focuses on generating novel data points with a desired style. There are many
approaches for stylized text generation. One approach is to use style-specific embeddings
for sentence generation [13, 49]. Others focus on learning separate latent representations
of style and content. Gao et al. [14] use a structured latent space with an autoencoder and
a shared decoder to generate stylized dialogue responses. John et al. [23] apply adversarial
and multitask losses to separate style from content. Their approach is designed for style
transfer but can also be used for stylized generation.

3.4 Gaussian Mixture Models

Mixture of Gaussian prior was previously used for image clustering [5] and image generation
[16]. In NLP Gaussian mixture model (GMM) priors have been used for several tasks. Shen
et al. [44] use Gaussian mixtures for machine translation. Gu et al. [20] use an autoencoder
network with a GMM prior to learn the latent representation of sentence-level data points,
and jointly train a GAN to generate and discriminate in the same space. They use the
Wasserstein distance to model dialogue responses. They only use GMM as a multi-modal
representation of the latent space and do not add conditions to mixture distributions.
Wang et al. [51] propose an unsupervised approach using a VAE with a GMM prior for

20

https://hackernoon.com/hn-images/1*k5Q_NYr1niC-qjWMr-lUCg.png

Figure 3.4: A mixture of Gaussian example. [Source]

topic modeling. They use bag-of-words for document representation, so their approach
cannot be used for sentence generation. Moreover, their unsupervised approach prevents
them from having any control over the styles learned by their model.

The next chapter introduces the Mixture of Gaussian prior following the equation:

p(θ) =
K∑
i=1

φiN (µi,Σi) (3.7)

3.5 Jensen-Shannon Divergences

Jensen-Shannon Divergence (JSD) [32] is our metric of choice to evaluate our multi-class
sentence inference accuracy. We sample from two of the Gaussian distributions and average
the sampled vectors with equal weights. Then, we feed this vector to the decoder. To
determine the class of the inferred sentence, we use our pre-trained classifier. In the ideal
situation, the output of the last layer of the classifier should be 0 for all of the classes

21

https://miro.medium.com/max/1200/1*lTv7e4Cdlp738X_WFZyZHA.png

and 0.5 for the two sampled classes. JSD quantifies the difference between the sampling
probability distribution and the classification distribution of the sampled sentences.

Let p(1) = (p
(1)
1 , p

(1)
2 , ..., p

(1)
n) and p(2) = (p

(2)
1 , p

(2)
2 , ..., p

(2)
n) be two probability distribu-

tions where
n∑

i=1

p
(j)
i = 1 and 0 =< p

(j)
i =< 1 for all i = 1, 2, ..., n and j = 1, 2. Then, the

Jensen Shannon Divergence D between the two probability distributions p(1) and p(2) with
same weights is:

D(p(1), p(2)) = H(
p(1)

2
+
p(2)

2
) +

H(p(2))−H(p(1))

2
(3.8)

where

H(p(j)) =
n∑

i=1

p
(j)
i ∗ log2(p

(j)
i) (3.9)

denotes the Shannon entropy of of p(j).

22

Chapter 4

Approach

Probabilistic text generation is an important application of Natural Language Processing
(NLP). Variational autoencoder [25] is a common method for sentence generation. VAE
imposes a prior distribution on the latent space which is typically set to standard normal. It
regularizes the latent space by Kullback-Leibler (KL) divergence [28] while reconstructing a
data sample. This is equivalent to maximizing the variational lower bound of the likelihood
of data. VAE is very difficult to train due to the issue of KL collapse. This can be resolved
by adding word dropout or KL annealing to the training process [7]. Another approach for
text generation is Generative Adversarial Networks (GAN) [18]. However, GAN loss is not
differentiable for discrete data such as text, and they have difficulties generating discrete
sequences [22], therefore VAE seems more appropriate for sentence generation.

Wasserstein autoencoders (WAE) [48] address the aforementioned problems. They
regularize the latent space by pushing the aggregated posterior to the prior. This can be
achieved by comparing empirical samples from the prior and the posterior distributions.
Since unlike VAE, WAE does not push the latent posterior to be close to the prior based
on any given input, this results in a better reconstruction performance. Moreover, WAE
is much easier to train since it does not use KL divergence to regularize the latent space.

Regular VAE and WAE both generate a sentence by learning a distribution for the latent
space. At the inference time, by sampling from this space, they can generate sentences
similar to the distribution of the dataset they have been trained on. When the dataset
has one class or a topic, this produces satisfactory results. Yet, since they use a standard
normal distribution as their prior, they tend to over-regularize the latent space in cases
where the dataset consists of multiple classes with different styles or topics. This can be a
major drawback of using VAE or WAE for style-specific text generation.

23

To solve this problem, we propose a WAE with a Gaussian Mixture Prior (GMP)
with the number of mixtures set to the number of classes in the dataset. This allows us
to generate samples with the style of a specified class by only sampling from the GMP
corresponding to this class. Moreover, since we share the same encoder and decoder over
all of the classes, we can generate more diverse sentences by training our model on relatively
small datasets. Lastly, this allows us to also generate sentences with a mixture of styles by
using a sample from the weighted mixture of Gaussians from the the latent distribution.

In addition to over regularizing the latent space, most neural networks depend on big
datasets and perform poorly when trained on small datasets. However, achieving good
results using small data is an important real-world challenge, and in most cases it is harder
than solving a big data challenge. With our proposed approach we show that we can train
our model on a small number of data samples by adding data points from different topics
to our data. Our experiments show that this will have a minimal effect on the style of the
generated sentences.

To summarize, our main contributions are:

• Supervised single-class and multi-class sentence generation while preserving the con-
tent and style of specified classes

• Diverse sentence generation on relatively small datasets

We conduct several experiments to evaluate our approach. We use the Multi-genre Nat-
ural Language Inference (MNLI) dataset [52] to run all of our experiments. We experiment
with style-conditioned and style-interpolated sentence generation. Our model produces the
most diverse sentences among previous works. Moreover, we illustrate how our model can
outperform others in fluency, diversity, and style accuracy even when it is trained on a
small portion of the MNLI dataset.

In natural language processing there is no unique definition of style. Different authors
choose a variety of text characteristics as style. Sentiment, formality, genre, and authorship
are common choices for representing the style of a sentence [21, 43, 13, 23]. There are
different approaches to style transfer, stylized generation, and style-specific topic modeling.

One approach to stylized text generation is using style-specific embeddings for sentence
generation. Vechtomova et al. [49] use author-specific embeddings to generate stylized
poetry, using multi-modal training data. By pretraining the embeddings using a CNN
classifier they are able to generate novel and poetic data samples. Fu et al. [13] propose
two different approaches for style transfer: style-specific embeddings and style-specific

24

decoder. By applying adversarial losses during training, they encourage the encoder to
only include the content of the sentence in the latent space. They use sentiment as the
style of a sentence.

Other works focus on learning separate latent representations of style and content for
style transfer or stylized generation. Gao et al. [14] use a structured latent space to
generate stylized dialogue responses. Their model uses a sequence-to-sequence module and
an autoencoder with a shared decoder. John et al. [23] propose another approach and
apply an adversarial loss to separate style from content. This approach is designed for
style transfer, but it can be conditioned on a desired style and used for stylized generation
as well.

Mixture of Gaussian prior was previously used for image clustering [5]. However, using
mixture of Gaussian for text generation is different from previous works both in terms of
the training objective and the model structure. There are different approaches to generate
stylized sentences or style transfer. Previous work used Gaussian mixture models as the
prior distribution for several NLP tasks. Shen et al. [44] uses Gaussian mixtures for
machine translation. Gu et al. [20] uses an autoencoder network with a GMP to learn the
latent representation of sentence-level data points and jointly trains a GAN to generate
and discriminate in the same space. They use the Wasserstein distance to model dialogue
responses. Wang et al. [51] propose an unsupervised approach using a VAE with Gaussian
mixture prior for topic modeling. They apply a training penalty to push the Gaussian
distributions further apart in the latent space. However, their choice of bag of words for
data point representation does not allow them to generate coherent sentences. Moreover,
mixing new data points with their dataset of choice might completely change the topics of
their model.

This work is different from the previous works in that we use a semi-supervised approach
with a GMM as our prior distribution and use labeled data for training. Moreover, we
refer to a specific topic/class as the style of a sentence similar to Wang et al. [51], but
we propose a semi-supervised approach using Wasserstein distance. This allows us to have
more control over the specific styles our model will learn. Moreover, it allows us to mix
these styles at the inference time. Additionally, we do not apply any penalty to push the
Gaussian distributions further away in the latent space and this makes our model easier
to train. Finally, we can expand our dataset and add new training samples to help our
encoder to effectively learn the latent representation of our desired classes, and help our
decoder to generate much more diverse sentences.

25

4.1 Wasserstein Autoencoder with Gaussian Mixture

Prior

We use a stochastic WAE with MMD penalty with a sequence to sequence neural network
[47]. Using a Gaussian mixture distribution for our prior we are able to generate single
and multi-style conditioned sentences at the inference time.

In this work we use a Gaussian mixture model as the chosen distribution for our WAE
prior. There are multiple benefits gained from this. First, many datasets are a combination
of different styles and classes, therefore, the model structure should account for this in
order to learn a good representation of these datasets. Moreover, separating the latent
representation of a group of data samples allows the model to be trained on completely
different data points at the same time and learn multiple latent distributions independently.
The final distribution of our latent space follows the Gaussian mixture model distribution:

P (z) =
N∑
i=1

wiN (µi, σi) (4.1)

Where N is the number of mixture distributions, ΣN
i=1wi = 1, and wi ≥ 0. If a dataset

has N classes with distinct styles, we use the same number of Gaussian distributions for
our latent space and encode every sentence to its corresponding latent distribution. Then,
the latent vector representation is defined as:

h =
N∑
i=1

wi × hi (4.2)

Where hi denotes the sampled vector from the ith Gaussian mixture distribution hi ∼
N (µi, σi) and wi is its corresponding weight.

4.1.1 Datasets

The Multi-Genre Natural Language Inference (MNLI) [52] is the main dataset used in this
work. It has 433k annotated sentences pairs. MNLI is based on the Stanford Natural
Language Inference (SNLI) corpus [6]. MNLI is different from SNLI in that it covers
multiple genres of spoken and written sentences. This allows researchers to use it for

26

Genre Premise Label Hypothesis
Fiction The Old One always com-

forted Ca’daan, except to-
day.

Neutral Ca’daan knew the Old One
very well.

Letters Your gift is appreciated by
each and every student who
will benefit from your gen-
erosity.

Neutral Hundreds of students will
benefit from your generos-
ity.

Telephone Yes now you know if if
everybody like in August
when everybody’s on vaca-
tion or something we can
dress a little more casual or

Contradiction August is a black out
month for vacations in the
company.

9/11 At the other end of Penn-
sylvania Avenue, people
began to line up for a
White House tour.

Entailment People formed a line at the
end of Pennsylvania Av-
enue.

Table 4.1: A few examples of the data point from the MNLI dataset

multi-genre text generation and evaluation. Table 4.1.1 includes a few samples from the
MNLI dataset.

The dataset has ten genres of data points, five of which have no training samples. The
other five genres are Telephone, Slate, Government, Fiction, and Travel. The government
genre includes reports, letters, speeches, and other types of government related documents
gathered from publicly available government domain websites. The Fiction genre includes
sentences from freely available fiction works written between 1912 and 2010. Telephone
covers telephone conversations held between 1990 to 1991. Travel includes sentences from
travel guides published by Berlitz Publishing in early 2000s. Finally, Slate includes a
variety of articles on pop culture written between 1990 and early 2000s.

In our experiments, we only use the premise sentences of the data points from genres
with available training samples. The other genres which only have 2000 dev and 2000
test samples are ignored. From the rest of the genres with available training samples, we
filter out the Slate genre since the sentences included in this genres overlap in content
and style with other genres included in the dataset. After filtering the genres without
training samples and slate from the dataset, the remaining data points are 77,348 samples

27

Gov Fic Trav Tel JSD
Gov 70.27 03.87 19.98 05.88 0.116
Fic 00.31 96.58 03.03 00.08 0.012

Trav 01.76 09.94 87.68 00.63 0.045
Tel 05.25 03.28 02.46 89.00 0.040

Table 4.2: Classification acuracy and JSD values for GMM-WAE Style-conditioned sen-
tence generation using 40960 training samples from MNLI.

from fiction, 77,350 samples from government, 83,348 samples from telephone, and 77,350
samples from the travel genre, leading to 315,396 data points.

Finally, it is important to mention that MNLI has many sentences that are incomplete,
have words appearing twice in a row, or some grammatical mistakes. This is demonstrated
by the examples included in table 4.1.1. Therefore, the models trained on MNLI tend to
learn these types of mistakes.

4.2 Training

At the training time, each input sequence (xi1, x
i
2, ..., x

i
n) is mapped to its corresponding

mean and variance vectors depending on its class. We simultaneously learn multiple priors
by learning their mean (µi) and variance (σi) vectors. These vectors are initialized with
random weights before training starts. Since we use a stochastic WAE, we then sample
from a normal distribution with the same encoded mean and a variance of 1. We also use
an empirical estimate of the MMD penalty to regularize the latent space. Since we use a
stochastic WAE, we then sample from a normal distribution with the same encoded mean
and a variance of 1. We use KL-divergence to regularize the stochastic part of our model
and produce more diverse sentences based on the following objective:

JKL =
N∑
i=0

KL
(
N (µpost, diag(σpost)

2)||N (µpost, I)
)

(4.3)

Where N is the number of data points. To regularize the latent space and learn the
prior distribution, we use the MMD penalty following Equation 3.4. Final training loss is
the weighted sum of the KL loss, MMD loss, and reconstruction loss:

28

JWAE = JAE + λKL · JKL + λMMD ·
M∑
j=0

M̂MDj (4.4)

Where M is the total number of classes in the dataset.

During the training phase, we use mini-batches where the samples are from only one
input class. This is a stochastic estimation of the actual gradient descent algorithm. The
gradient computed for individual batches is biased towards a certain class, but since mul-
tiple batches are sampled from all of the classes, we can correctly optimize the training
objective. For a sequence with class i we set all other latent weights to zero and wi = 1.
This allows us to only back-propagate the reconstruction loss through the ith Gaussian
distribution and the MMD penalty will push µi and σi to the prior. The one-hot class
vector represents the training weights for the mixture distributions and the blue arrows
show the back-propagation through just one of the distributions.

Training batches include only one class at a time. This is a stochastic estimation of
the actual gradient. The gradient for each batch is biased towards a certain class. Since
multiple batches are sampled from different classes, GMM-WAE correctly optimizes the
training objective. For a batch sampled from class i we have wi = 1 and wj = 0 for j 6= i.
This allows the gradient to back-propagate only through the ith Gaussian distribution and
the MMD penalty pushes the ith Gaussian prior to the posterior. Figure 4.1a shows an
overview of the training process and the following pseudo code explains the training phase.

Algorithm 1 Training step for a mini batch from class A

µpost, σpost ← encoder(batchA)
JKL ← KL(N (µpost, σpost),N (µpost, I))
z ∼ N (µprior, σprior)
JAE ← reconstructionLoss(batcha, Decoder(z))
JMMD ←MMD(samples from prior A,

samples from posterior A)

JWAE = JAE + λKL · JKL + λMMD · M̂MD
BackPropagate

Finally, figure 4.2 shows a latent space with four Gaussian mixtures

29

Figure 4.1: a) GMMWAE training phase. b) GMMWAE inference phase.

30

Figure 4.2: a) the latent space before training. The small green circles around each encoded
data point represent the stochastic feature of the encoder. b) The latent space with four
Gaussian mixtures after training. The blue circles are the latent distributions for each of
the latent Gaussian distributions. They get closer to the actual distribution of each class
of the data after training is finished.

31

4.3 Sentence Generation with GMM-WAE

Text generation with GMM-WAE is slightly different from the training process. To generate
a sentence, we first have to sample from the latent space and produce the latent vector h
following Equation 4.2. Then we feed this vector to the recurrent decoder as its initial state,
and append it to the input at all time steps of the decoder. We use the standard inference
decoder similar to Wu et al.[53]. Since we use a Gaussian mixture prior, we have the ability
to decide which Gaussian prior we want to choose for sentence generation. We can also
choose multiple priors and generate the sample based on a Gaussian mixture distribution.
Figure 4.1b shows an overview of the inference process. The classes contributing to the
style of the final sentence are the weights with non-zero values in the class vector.

Style-Conditioned Sentence Generation. In this setup, we generate sentences
conditioned on one class. These sentences represent how capable GMMWAE is in terms of
generating novel sentences conditioned on one of the input classes. Given the target class i
we set wi = 1 and wj = 0 for all j 6= i. In other words, we set all wi to zero except for the
weight of the class, corresponding to the target class of the generated sentence. Hence the
latent vector is sampled from P (z) = N (µk, σk) where k is the target style the generated
sentence is conditioned on. The sampled latent vector will only include features from the
target class. This is similar to training a VAE only on the data points from the target
class and gererating novel sentences. However, since our decoder is trained on many other
data samples from other classes as well, it is capable of generating more diverse sentences.
Additionally, in cases where the dataset is too small, a VAE will not train properly and the
generated sequences might not be coherent, but since our encoder and decoder is shared
among all the training classes, GMMWAE can be trained on smaller datasets where each
class does not have many training samples.

Style-Interpolated Sentence Generation. In this setup, generated sentences are
conditioned on two Gaussian prior distribution samples. We set wi and wj to be equal
to 0.5 and the rest are zeroes. This means that we only use two of the latent normal
distributions for our mixture of Gaussian and generate samples based on them. Hence
the latent vector is sampled from a mixture of Gaussian (equation 3.7) where K = 2 and
φ1 = φ2 = 0.5. This allows us to generate sentences with a mixture of styles. These types
of sentences show the importance if using a prior distribution that takes into account the
styles or classes the training dataset has. A vanilla VAE or WAE are not capable of doing
a similar task.

32

Figure 4.3: Comparison of GMM-WAE with other baselines trained on small, medium,
and large datasets. The small and medium datasets are a subset of the whole MNLI
dataset. the accuracy percentages provided are the average accuracy of each model for
style-conditioned sentence generation.

4.4 Experiments

We use the MNLI dataset [52], containing 433k sentences from five genres: Slate, Telephone,
Government, Fiction, and Travel. We ignore Slate since it covers a diverse set of topics
overlapping with the other classes. We conducted all evaluations with two settings: (a)
using all MNLI training data points in the four classes mentioned above; (b) using a subset
of 10,240 training samples from each of these four classes to simulate a smaller dataset as
illustrated in Fig. 4.3. We compare our style-conditioned experiments with the following
approaches:

Separate WAE models – four separate WAE each trained on an individual class of

33

the MNLI dataset. The classification accuracy for separate WAE models is not a valid
measure since each model is only trained on a single class. Thus the accuracy should be
100% in theory.

VAE + embedding – VAE with randomly initialized trainable class embeddings fed
to the decoder [49].

Disentangled VAE – VAE with auxiliary multi-task and adversarial objectives to
disentangle latent representations of style and content [23].

VAE – vanilla seq2seq VAE trained on the entire dataset. For style-conditioned gen-
eration, we sample from the distribution defined by the empirical mean and variance of
training data points for each class.

WAE – vanilla WAE trained on the entire dataset. The same method was used for
stylized generation as in VAE.

VAE + Multi – single VAE with multi-task loss to classify the latent representation
of each training sample based on their topic.

Our model works best for generating diverse sentences and outperforms other models
in most of the evaluation metrics. When the dataset is relatively small, a WAE or VAE
do not capture enough features to generate diverse and fluent sentences. We use a WAE
with GMP and train our model using ten percent of the data in MNLI and compare its
performance with other models. Our model outperforms all of the other models in this
case.

4.4.1 Evaluation

We use Jansen-Shannon Divergence to evaluate style-interpolated sentence generation clas-
sification accuracy. We also use multiple measures for sentence diversity, and finally we
use perplexity to validate the coherency and fluency of the generated sentences.

Style Accuracy: We follow the approach of the previous work [21, 43, 13, 23] and
separately train a CNN to classify sentences based on their classes. We use this classifier
to classify sentences generated with our approach and compare our results with a separate
WAE trained only on a specified class of a dataset. Table 4.1.1 provides the classification
results of the style-conditioned sentences GMMWAE generates after being trained on the
MNLI dataset. The classifier can easily classify the styles of the generated sentences when
they are conditioned on one of the Gaussian prior distributions. The classification accuracy
of the classifier over the original MNLI dataset is 98%. We used a 70-30 training-evaluation
split for validating the accuracy of the CNN classifier on the original MNLI dataset.

34

D-1↑ D-2↑ Entropy↑ (PPL)↓ Acc↑
Disentangled VAE 0.027 0.117 4.853 73.81 77.8

Separate WAE models 0.052 0.214 5.416 95.2 97.9
WAE 0.026 0.154 4.391 85.3 74.2
VAE 0.044 0.158 5.043 92.8 57.5

VAE + Multi 0.040 0.169 5.281 97.7 42.2
VAE + embedding 0.034 0.070 4.153 112.3 85.2

GMM-VAE 0.52 0.201 5.342 94.3 85.5
GMM-WAE (ours) 0.067 0.465 5.883 97.3 85.8

Table 4.3: Style-conditioned sentence generation results. All models were trained on the
whole MNLI dataset. Note that the classification accuracy for separate WAE models is
not a valid measure since each model is only trained on a single class. Thus the accuracy
should be almost 100% in theory.

D-1↑ D-2↑ Entropy↑ (PPL)↓ JSD↓
WAE 0.035 0.207 4.829 91.9 0.153
VAE 0.041 0.167 5.001 92.0 0.239

VAE + Multi 0.039 0.169 5.250 98.2 0.178
VAE + embedding 0.038 0.172 5.102 85.4 0.160

GMM-VAE 0.044 0.197 5.330 88.4 0.148
GMM-WAE (ours) 0.075 0.490 5.975 99.6 0.161

Table 4.4: Style-interpolated sentence generation results on MNLI.

We also generate style-conditioned sentences with other models and baselines to evalu-
ate the performance of our approach. The Acc column of table 4.3 represents the accuracy
of each model for style-conditioned generated sentences. The accuracy percentage is the
average accuracy of the models when they generate style-conditioned sentences on each of
the four used MNLI classes.

For style-interpolated sentence generation, we use JSD to compare the classification ac-
curacy of our CNN classifier. Our approach does not generate the most accurate sentences
among the other approaches, however, our JSD values almost match the best performing
approach. The JSD column of table 4.4 compares the classification accuracy results of
GMMWAE with other approaches.

Perplexity: We use the Kneser-Ney language model [26] to evaluate the fluency of

35

our sampled sentences. We measure the empirical distribution of trigrams in a corpus and
compute the log-likelihood of a sentence. We train the language model on the original
MNLI samples and evaluate the fluency of our sampled sentences. 4.3 provides the fluency
results for the style-conditioned sentences generated by GMMWAE and other approaches.
Our model achieves perplexity scores similar to most other models and baselines. We are
sharing the same encoder and decoder among all training samples and conditioning our
decoder on one or two of the prior Gaussian distributions.

Similarly, the PPL column of table 4.4 includes the perplexity results for the style-
interpolated sentences from other models and GMMWAE.

Diversity: We use distinct diversity metrics by computing the percentage of distinct
unigrams and bigrams following the work of Li et al. [30] and Bahuleyan et al. [1]. D-
1 and D-2 represent the unigram and the bigram percentages respectively. Our model
outperforms all of the baselines and models in terms of sentence diversity both in the
style-conditioned and the style-interpolated setup. The diversity results are provided in
the D-1 and the D-2 columns of tables 4.3 and 4.4.

We also ran an experiment on the SQuAD dataset [39] for question generation using
GMMWAE. For the question generation task, since the dataset is very small, neither of
the models are successful at generating diverse sentences and they tend to generate the
same set of question over and over. However, GMMWAE generates twice as many diverse
sentences compared to separate WAEs or VAEs trained on each class of SQuAD questions.

To evaluate and compare style-interpolated and style-conditioned sentences, we used a
few baselines since there is no prior work similar to what we are proposing. Some of the
prior work such as VAE + embeddding are capable of interpolating between two styles by
averaging the embedding vectors for two of the MNLI classes. However, for other baselines
such as WAE and VAE we had to use a different approach. We first trained these models on
the MNLI dataset. After the training process was finished, we fed the training samples from
only one of the MNLI classes to the encoder and averaged the latent representation of these
samples. These averaged vectors represent the average mean and variance for an individual
MNLI class. We then computed similar vectors for other MNLI classes. This way, we could
compute an average mean and variance latent representation for all individual classes. We
then used these mean and variance vectors to generate new samples for each class. For
style-conditioned sentences, we simply used the averaged vectors from individual classes
and generated novel sentences for the baselines. For style-interpolated sentence generation,
we averaged the mean and variance vectors and then passed the averaged vectors to the
decoder to generate sentences with a mixture of styles. Table 4.5 provides a few sample
generated sentences by GMMWAE.

36

Fiction
kramenin? he drew the question the last time that ’s happened? man , apparently you do n’t
think that the doctor ’s always alone.
Government
i provide guidance in determining the requirements of state agencies also used the additional
databases. there are no success of delivery in california , reducing in pm concentrations.
Travel
hong kong is now a fascinating fifth-century , walled architecture. the greatest can be sensed in
dublin and its surrounding farmlands , a full of historic buildings.
Telephone
uh-huh yeah i guess you ca n’t have our problem. so they had to talk about it, um oh absolutely.
Government + Travel
so we ’ve talked to our children to pursue little observation from the standpoint that we ’re
split in. one provides opportunities for bargaining delivery system to link between gagas and
research is helpful.
Government + Telephone
8 time, i mean you have UNK UNK outside the new government. when the general requires a
current protections of federal acquisition , he said an organization had adoptedeach retiree.
Government + Fiction
it is right we just always died as a wild country. the village who still have the american culture.
Travel + Telephone
given the book now i know like that capital or UNK egypt who came to conquer. that i guess
the remaining states that now is a more easily protected.
Travel + Fiction
given the book now i know like that capital or UNK egypt who came to conquer. and some
point the british army and you can be sure of nancy texas.
Telephone + Fiction
exactly when the telephone of mine yeah i do it is in your way i have rather taken on that.
susan is talking like san wouldoro stabbed into her.

Table 4.5: Sentences generated by GMM-WAE.

To summarize, table 4.3 and table 4.4 provide detailed comparison between our work
and other models and baselines. Our model provides the best accuracy results when it is
trained on smaller datasets compared to other approaches. Although some baselines have
better perplexity scores, our model generates the most diverse sentences as the D-1 and
D-2 values suggest. Additionally our approach generates sentences with the largest set of
unique words, where other models use a smaller set of words to generate novel sentences.
Perplexity results is the only metric that our model cannot outperform the other baselines.
Finally, our model achieves the highest classification score. This is a good indication that
style-conditioned sentences generated from our model are preserving the style and content

37

of their corresponding class better than all other approaches.

38

Chapter 5

Summary and Conclusion

5.1 Summary

This work proposed the Wasserstein autoencoders with a Gaussian mixture prior. The
Gaussian mixture prior replaces the single Gaussian prior used by default by the Wasser-
stein autoencoders. During the training phase, each data sample is fed to the model along
with its corresponding class. The class is used to choose the right Gaussian prior for
this training sample. After the sample is reconstructed, the loss is only backpropagated
through the prior that the data point belonged to. Additionally, an MMD penalty is also
computed using empirical samples to push the latent posterior distribution to the prior.
After the training phase is complete, the model is capable of generating style-conditioned
and style-interpolated novel sentences.

Style-conditioned sentences are the novel sentences generated by the model when the
desired class of the sentences is conditioned on one of the training classes. This can be
achieved by only using one of the latent Gaussian distributions to sample from. Then the
decoder will use this sample to generate a sentence similar to one of the classes that is has
used during the training phase.

Style-interpolated sentences are the other types of sentences that GMMWAE is capable
of generating. These types of sentences are generated by interpolating between the style
of two classes. By using a Gaussian mixture model between two of the trained latent
distributions, the model can mix two styles together and generate novel sentences with a
mixture of styles.

GMMWAE can generate novel sentences with a single style or a mixture of styles while
having the advantage of a shared decoder. This allows GMMWAE to learn easier when

39

there is a data sparsity in the dataset and the number of training samples is limited. In
many benchmarks, GMMWAE performs better than other models we compared our work
to and in other benchmarks it performs similar to other models.

5.2 Future Work

There are some areas that we would like to explore furtherThere are some areas that we
would like to explore further. First, the style-interpolated experiments we conducted were
only based on two chosen styles. There is an opportunity to explore the effectiveness of
GMMWAE based on more than two styles.

. First, the style-interpolated experiments we conducted were only based on two chosen
styles. There is an opportunity to explore the effectiveness of GMMWAE based on more
than two styles.

Additionally, it would also be interesting to improve the accuracy of the model on other
benchmarks as well. For example, the accuracy of GMMWAE based on the perplexity
benchmark can be improved to match other approaches.

Finally, an additional penalty can be added to the latent space to push the normal
distributions further away from each other during the training phase. How this will affect
the accuracy and the performance of the model is another interesting topic that can be
explored.

40

References

[1] Hareesh Bahuleyan, Lili Mou, Olga Vechtomova, and Pascal Poupart. Variational
attention for sequence-to-sequence models. arXiv preprint arXiv:1712.08207, 2017.

[2] Hareesh Bahuleyan, Lili Mou, Hao Zhou, and Olga Vechtomova. Stochastic wasserstein
autoencoder for probabilistic sentence generation. arXiv preprint arXiv:1806.08462,
2018.

[3] Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In Pro-
ceedings of ICML workshop on unsupervised and transfer learning, pages 37–49, 2012.

[4] Regina Barzilay and Michael Elhadad. Using lexical chains for text summarization.
Advances in automatic text summarization, pages 111–121, 1999.

[5] Matan Ben-Yosef and Daphna Weinshall. Gaussian mixture generative adversarial net-
works for diverse datasets, and the unsupervised clustering of images. arXiv preprint
arXiv:1808.10356, 2018.

[6] Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning.
A large annotated corpus for learning natural language inference. arXiv preprint
arXiv:1508.05326, 2015.

[7] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz,
and Samy Bengio. Generating sentences from a continuous space. arXiv preprint
arXiv:1511.06349, 2015.

[8] Erik Cambria and Bebo White. Jumping nlp curves: A review of natural language
processing research. IEEE Computational intelligence magazine, 9(2):48–57, 2014.

[9] Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques
for language modeling. Computer Speech & Language, 13(4):359–394, 1999.

41

[10] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder-decoder approaches. arXiv
preprint arXiv:1409.1259, 2014.

[11] Edward Choi, Mohammad Taha Bahadori, Andy Schuetz, Walter F Stewart, and
Jimeng Sun. Doctor ai: Predicting clinical events via recurrent neural networks. In
Machine Learning for Healthcare Conference, pages 301–318, 2016.

[12] Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, and Rui Yan. Style transfer
in text: Exploration and evaluation. arXiv preprint arXiv:1711.06861, 2017.

[13] Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, and Rui Yan. Style transfer
in text: Exploration and evaluation. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[14] Xiang Gao, Yizhe Zhang, Sungjin Lee, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. Structuring latent spaces for stylized response generation. arXiv
preprint arXiv:1909.05361, 2019.

[15] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using
convolutional neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2414–2423, 2016.

[16] Benoit Gaujac, Ilya Feige, and David Barber. Gaussian mixture models with wasser-
stein distance. arXiv preprint arXiv:1806.04465, 2018.

[17] Felix A Gers and E Schmidhuber. Lstm recurrent networks learn simple context-free
and context-sensitive languages. IEEE Transactions on Neural Networks, 12(6):1333–
1340, 2001.

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[19] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX Companion.
Addison-Wesley, Reading, Massachusetts, 1994.

[20] Xiaodong Gu, Kyunghyun Cho, Jung-Woo Ha, and Sunghun Kim. Dialogwae: Multi-
modal response generation with conditional wasserstein auto-encoder. arXiv preprint
arXiv:1805.12352, 2018.

42

[21] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing. To-
ward controlled generation of text. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1587–1596. JMLR. org, 2017.

[22] Ferenc Huszár. How (not) to train your generative model: Scheduled sampling, like-
lihood, adversary? arXiv preprint arXiv:1511.05101, 2015.

[23] Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga Vechtomova. Disentan-
gled representation learning for non-parallel text style transfer. arXiv preprint
arXiv:1808.04339, 2018.

[24] Yoon Kim. Convolutional neural networks for sentence classification. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1746–1751, Doha, Qatar, October 2014. Association for Computa-
tional Linguistics.

[25] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR,
abs/1312.6114, 2013.

[26] Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram language mod-
eling. In 1995 International Conference on Acoustics, Speech, and Signal Processing,
volume 1, pages 181–184. IEEE, 1995.

[27] Donald Knuth. The TEXbook. Addison-Wesley, Reading, Massachusetts, 1986.

[28] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals
of mathematical statistics, 22(1):79–86, 1951.

[29] Leslie Lamport. LATEX — A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, second edition, 1994.

[30] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-
promoting objective function for neural conversation models. In Proc. of NAACL-
HLT, March 2016.

[31] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky.
Deep reinforcement learning for dialogue generation. arXiv preprint arXiv:1606.01541,
2016.

[32] Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transactions
on Information theory, 37(1):145–151, 1991.

43

[33] Xugang Lu, Yu Tsao, Shigeki Matsuda, and Chiori Hori. Speech enhancement based
on deep denoising autoencoder. In Interspeech, pages 436–440, 2013.

[34] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[35] Marvin Minsky and Seymour A Papert. Perceptrons: An introduction to computa-
tional geometry. MIT press, 2017.

[36] Lili Mou and Olga Vechtomova. Stylized text generation: Approaches and applica-
tions. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics: Tutorial Abstracts, pages 19–22, 2020.

[37] Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. Abstractive
text summarization using sequence-to-sequence rnns and beyond. arXiv preprint
arXiv:1602.06023, 2016.

[38] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[39] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad:
100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

[40] Ehud Reiter and Robert Dale. Building natural language generation systems. Cam-
bridge university press, 2000.

[41] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[42] Iulian V Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle
Pineau. Building end-to-end dialogue systems using generative hierarchical neural
network models. arXiv preprint arXiv:1507.04808, 2015.

[43] Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. Style transfer from
non-parallel text by cross-alignment. In Advances in neural information processing
systems, pages 6830–6841, 2017.

[44] Tianxiao Shen, Myle Ott, Michael Auli, and Marc’Aurelio Ranzato. Mixture models
for diverse machine translation: Tricks of the trade. In ICML, pages 5719–5728, 2019.

44

[45] Xiaoyu Shen, Hui Su, Shuzi Niu, and Vera Demberg. Improving variational encoder-
decoders in dialogue generation. arXiv preprint arXiv:1802.02032, 2018.

[46] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[47] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. Advances in neural information processing systems, 27:3104–3112,
2014.

[48] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasser-
stein auto-encoders. arXiv preprint arXiv:1711.01558, 2017.

[49] Olga Vechtomova, Hareesh Bahuleyan, Amirpasha Ghabussi, and Vineet John. Gen-
erating lyrics with variational autoencoder and multi-modal artist embeddings. arXiv
preprint arXiv:1812.08318, 2018.

[50] Hanna M Wallach. Topic modeling: beyond bag-of-words. In Proceedings of the 23rd
international conference on Machine learning, pages 977–984. ACM, 2006.

[51] Wenlin Wang, Zhe Gan, Hongteng Xu, Ruiyi Zhang, Guoyin Wang, Dinghan Shen,
Changyou Chen, and Lawrence Carin. Topic-guided variational autoencoders for text
generation. In NAACL-HLT, 2019.

[52] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge
corpus for sentence understanding through inference. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long Papers), pages 1112–1122.
Association for Computational Linguistics, 2018.

[53] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolf-
gang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s
neural machine translation system: Bridging the gap between human and machine
translation. arXiv preprint arXiv:1609.08144, 2016.

45

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Contributions
	Chapter Outline

	Background
	Natural Language Generation
	Feed Forward Neural Network
	Single Layer Perceptron
	Multi Layer Perceptron
	Regularization
	Dropout

	Recurrent Neural Networks
	BiDirectional RNNs
	Long Short Term Memory

	Word Embeddings
	Convolutional Neural Networks
	Sequence to Sequence Models

	Related Work
	Autoencoders
	Variational Autoencoders
	Wasserstein Autoencoders

	Style Transfer
	Stylized Text Generation
	Gaussian Mixture Models
	Jensen-Shannon Divergences

	Approach
	Wasserstein Autoencoder with Gaussian Mixture Prior
	Datasets

	Training
	Sentence Generation with GMM-WAE
	Experiments
	Evaluation

	Summary and Conclusion
	Summary
	Future Work

	References

