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Abstract

Given a family of sets, a covering problem consists of finding a minimum cost collection of
elements that hits every set. This objective can always be bound by the maximum number of
disjoint sets in the family, we refer to this as the covering dual, since when we allow covers to be
fractional and relax the notion of disjoint sets, the natural Linear Programming (LP) formulations
become duals and the optimal objective values of the two LPs match. A consequence of the
Edmonds-Giles theorem about Totally Dual Integral systems is that if we assume the covering
dual always has an optimal integer solution for every cost function, then we can always find an
optimal integer cover. The converse does not hold in general, but a still standing conjecture from
the mid-1970s states that the existence of an optimal integer cover for every cost function implies
the existence of a 1

4
-integer optimal solution to the dual for every cost function. In this thesis we

discuss weaker versions of the conjecture and build tools allowing us to approach them.
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Chapter 1

Introduction

In this thesis we will be interested in the general form of covering problems. Covering is a widely
used and studied model for optimization problems. Despite its simplicity, it is general enough so
that finding a shortest s-t path, a minimum cost s-t cut or a minimum cost perfect matching can
all be formulated as finding a minimum cover for a family of sets.

Covering problems are usually studied over clutters instead of arbitrary families of sets, as
this structure simplifies the discussion without losing on generality. This is explained in Section
1.1. Along with the rest of Chapter 1, this constitutes most of the required prerequisites to study
clutters and the covering problem. We note that the thesis is written to be mostly self-contained
and accessible to anyone familiar with basic concepts of linear programming. In the rest of this
section, we give a high-level overview of the content of the thesis, and all the concepts mentioned
will be rigorously defined as they are introduced in later chapters.

A close relative of covering is the set packing problem, which is also studied over clutters,
and is defined in Section 2.1. Both these problems have straightforward IP formulations, whose
LP relaxations are not guaranteed to be exact, so the LP optimum can be different than the
IP optimum. A well known result is that integrality of the set-packing polytope implies that
the corresponding set-packing system is TDI. However, the analogous statement fails for the
covering problem. There are multiple classes of clutters where the covering polytope is integral
but the covering system is not TDI. However, it is conjectured that a weaker statement holds,
namely that whenever the covering polytope is integral, the covering system must have an optimal
dual solution that is 1

4
-integer. This is known as the 1

4
conjecture, due to Seymour, and is still

standing from the mid 1970s. This conjecture appears to still be unapproachable today, as even
for very special cases, for example considering the clutter of T -joins, we are not able to prove
nor refute the conjecture. This pushes us to instead work with a relaxed version of the statement.
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Various relaxations are discussed in Chapter 2, but the rest of thesis is focused on Conjecture
26, and investigates the following question: ”Does there exist a constant λ > 0, such that if the
covering polytope is integral, then there exists a dual variable of the covering system that can be
set to a value greater or equal to λ in an optimal dual solution”.

In Section 2.2 we touch on a fundamental difference between the behavior of dual variables
in set-packing and covering. In the former, if the set-packing system is TDI, then any dual
variable that can be set to a non-zero value in an optimal dual solution can be set to a non-zero
integer value in an optimal dual solution. However, even if the covering system is TDI, there are
examples where a dual variable can be only be set to an arbitrarily small value in an optimal dual
solution.

Chapter 3 gives multiple characterizations of the range of values that can be assigned to a
specific dual variable in an optimal dual solution. While the main result of sections 3.1 and 3.2
is already known, the proof given in Section 3.1 is original. The results in Section 3.3 all follow
from applying widely known linear programming tools to the covering system.

Chapter 4 moves away from studying the possible values that a specific dual variable can take
in an optimal dual solution to our original aim of studying the possible values that can be taken
by some dual variable in an optimal dual solution. We discuss multiple exact IP formulations
and the strength of their natural LP relaxations. While proving a non-exact relaxation is feasible
does not imply that Conjecture 26 holds, it constitutes additional incentive to investigate the
conjecture further. Additionally, if the relaxation is not very loose, then such a result would be
evidence towards accepting the conjecture. On the other hand, if we’re able to construct a family
of examples where the relaxation is not feasible, this would constitute a proof that Conjecture
26 is incorrect, which would also disprove the 1

4
conjecture. All the results in this chapter are

original work.

Finally, Chapter 5 builds on Section 4.2 to strengthen the weak LP relaxation using lift and
project methods. Section 5.5 then specializes the developed machinery to the setting of T -joins.
All the results of this chapter are original findings, with the exception of Theorem 89 and Corol-
lary 90, which are known results, but the presented proof is original work.

1.1 Covering on Clutters

A clutter, usually referred to F, defined over a ground set V (F), is a collection of sets of subsets
S1, S2, . . . , Sk ⊆ V (F) such that no set is included in another. We call these Si the elements of
the clutter.1 We usually refer to the ground set V (F) as V when there is no ambiguity, and it is

1These are also referred to as edges or members of the clutter in the literature.
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commonly assumed to be {1, . . . , n}.

A covering problem can be defined over any arbitrary family of sets S1, S2, . . . , Sk ⊆ V ,
and consists of the following: Given a cost vector c ≥ 0, find a minimum cost 2 collection of
elements B such that B ∩ Si 6= ∅ for all i ∈ [k]3. We refer to such sets as covers of S1, . . . , Sk,
and we say that a set B covers S if B ∩ S 6= ∅.

Since any set that covers S covers any superset of S, covers of S1, . . . , Sk correspond exactly
to the covers of the clutter whose elements are the minimal sets among S1, . . . , Sk. This is why
clutters are the fundamental structure to look at when studying the covering problem. We will
denote the minimum cost of a cover by τ(F, c), and refer to it as the covering number. When the
clutter and cost vector are unambiguous, we simply refer to it by τ .

A max-capacity problem can be defined over any arbitrary family of sets S1, . . . , Sk ⊆ V ,
and consists of the following: Given a capacity vector c ≥ 0, find a maximum size multiset4

M = {Si1 , . . . , Sit} such that each j ∈ V does not belong to more than cj sets in M . We call
such a multiset a c-packing. Note that when c = 1, M must be a family of pairwise disjoint sets.

Given any c-packing M that contains S, and any Q that is a subset of S, M ′ := (M−{S})+
{Q}5 is also a c-packing of same size as M , and hence we also study this problem over clutters
instead of arbitrary families. We will denote the maximum size of a c-packing by ν(F, c), and
refer to it as the packing number. When the clutter and cost vector are unambiguous, we simply
refer to it by ν.

Let us examine some examples. Consider a graph G = (V,E) and vertices s, t ∈ V . Let F
be the clutter whose ground set is E and whose elements are the s, t paths in G. The covering
problem on F with an integer cost vector c is then equivalent to finding a minimum cost set
X ⊆ E such that X contains an edge from every s, t path, and hence corresponds to finding a
minimum c-cost s, t cut in G. The max-capacity problem translates to finding a collection of s, t
paths such that no edge e is used in more than ce of these paths, which corresponds to finding a
maximum value s, t flow with edge capacities given by c. This leads to the fact that the packing
number and the covering number are equal in this case due to the max-flow min-cut theorem
[25].

Note that this min-max relation does not hold for arbitrary clutters. For example, if we
consider the clutter ∆2 = {{1, 2}, {2, 3}, {1, 3}} with c = 1, then τ = 2, since we need at least
2 elements to cover all three sets, but ν = 1 as no 2 elements of the clutter are disjoint. However,

2c(B) :=
∑

t∈B ct.
3[k] := {1, 2, . . . , k}
4The size of a multiset is the sum of multiplicities of its members.
5M ′ is the multiset obtained from M by removing a copy of S and adding a copy of Q.
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we can still always obtain a weaker result, namely that the covering number is at least as big as
the packing number.

Remark 1. Let F be a clutter and c ≥ 0, then τ(F, c) ≥ ν(F, c).

This result can be proven with a short combinatorial argument. If we consider any cover B
and any c-packing M , then every set S ∈M must intersect B at least once, and hence :

|M | =
∑
S∈M

1 ≤
∑
S∈M

|S ∩B| =
∑
e∈B

∑
S∈M

|S ∩ {e}| ≤
∑
e∈B

ce = c(B).

This is also a consequence of weak duality. If we denote by M(F) the matrix whose rows are the
characteristic vectors of the elements of F, that is rowi(M(F)) = χSi

6, then we can define the
covering problem as follows (CI) :

minimize cTx
subject to M(F)x ≥ 1, (CI)

x ≥ 0,
x integer.

As well as the max capacity problem (DI):

maximize 1Ty
subject to M(F)Ty ≤ c, (DI)

y ≥ 0,
y integer.

For every cover B of F we have that χB is a solution to (CI) of matching cost. Similarly any
c-packing M yields a solution ȳ to (DI) where ȳS is the number of occurrences of S in M . We
can then define the LP relaxations (C) and (D) of these problems as follows:

minimize cTx
subject to M(F)x ≥ 1, (C)

x ≥ 0.

maximize 1Ty
subject to M(F)Ty ≤ c, (D)

y ≥ 0.

6For a set S ⊆ [n], we denote by χS the n dimensional vector where χSi = 1 if i ∈ S and 0 otherwise. The
choice of n is usually clear from context.
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We define fractional covers of F to be the set of feasible points for (C), and fractional c-packings
of F to be the set of feasible points to (D).

As (C) is obtained from (CI) by omitting the integrality constraint, every feasible point of
(CI) is also feasible for (C). Since both problems have the same objective function, we must
have that τ(F, c), which is the optimal value for (CI) is at least as large as the optimal objective
value for (C). Following the same logic we can deduce that ν(F, c), which is the optimal value
for (DI), cannot surpass the optimum value for (D). Notice that (C) and (D) are exactly the duals
of one another so we can apply weak duality to obtain the following result:

τ(F, c) ≥(1) τ
∗(F, c) ≥(?) ν

∗(F, c) ≥(2) ν(F, c)

where τ ∗(F, c), ν∗(F, c) denote the optimums of (C) and (D) respectively. Note that while (?)
always holds with equality due to strong duality, (1) (respectively (2)) holds with equality if and
only if (C) (respectively (D)) has an optimal solution that is integer.

Given this observation, we ask the following natural questions:

Question 2.

(a) How big can the gap between τ and ν get ?

(b) Can we characterize the clutters for which (1) holds with equality for all non-negative integer
vectors c ?

(c) Can we characterize the clutters for which (2) holds with equality for all non-negative integer
vectors of c ?

We know that for (a) both the additive and multiplicative gaps can be arbitrarily big. Take F
to be all the 2-element subsets of [2n] and c = 1. We then have τ = 2n− 1 since any cover of F
cannot exclude any pair of ground elements as otherwise it would not intersect their union which
is an element of F. We also have ν = n since we cannot find more than n disjoint elements,
as every element of F has size 2 while |V (F)| = 2n. This gives an additive gap of order Θ(n)
between τ and ν. We can take it further by considering F to be all the n-element subsets of [n]2

and c = 1 yields τ = n2 − n + 1 but ν = n for similar arguments as before: any cover cannot
miss any collection of n ground elements since they form an element of the clutter, and we cannot
have more than n disjoint elements since every element of F has size n. Hence a multiplicative
gap of order Θ(n). The natural follow-up question is if we can characterize the best possible
asymptotic bound on ν as a function of both τ and |V (F)|, but to our knowledge, the answer is
still unknown.
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(b) and (c) are a lot more difficult to answer. Although we are able to identify some classes
that always satisfy (1) and/or (2) with equality, it is in general NP-hard to tell if an arbitrary
clutter satisfies either of the properties [11]. An interesting fact is that the condition in (c) implies
its counterpart in (b). This is an application of a theorem due to Edmonds and Giles but to state
it we first need some quick definitions.

Definition 3. A pointed 7polyhedron P = {x ∈ Rn : Ax ≤ b} is said to be integral if every
extreme point is integer, or equivalently P = conv(P ∩ Zn)8.

Definition 4. A linear system of inequalities Ax ≤ b is said to be totally dual integral (TDI) if
for any integer vector c such that min{cTx : Ax ≤ b} has an optimal solution, the dual has an
optimal solution that is integer.

Theorem 5 (Edmonds & Giles theorem [13]). If the system {Ax ≤ b} is TDI and b is integer,
then the polyhedron {x ∈ Rn : Ax ≤ b} is integral.

Clearly, the condition in (c) is equivalent to {M(F)x ≥ 1, x ≥ 0} being TDI, since the
existence of an optimal solution to (D) that is integer is equivalent to ν = ν∗. We also have that
integrality of (C) is equivalent to the condition in (b) due to the following classical result [27]:

Theorem 6. P = {x ∈ Rn : Ax ≤ b} is integral if and only if for all c such that min{cTx :
x ∈ P} is finite there exists an integer x̄ ∈ P for which cT x̄ = min{cTx : x ∈ P}. This means
that whenever P 6= ∅ is the feasible region of an LP that is not unbounded, the optimal value is
achieved by an integer point in P .

1.2 Idealness and the MFMC property

Definition 7. A clutter F is called ideal if the corresponding covering polyhedron (C): {x ∈ Rn :
M(F)x ≥ 1, x ≥ 0} is integral, or equivalently τ(F, c) = τ ∗(F, c) for all c ≥ 0.

Definition 8. A clutter F is said to have the Max-flow Min-cut property (MFMC) if ν(F, c) =
ν∗(F, c) for all integer c ≥ 0.

Since the covering problem is unbounded if and only if c has a negative entry, the condition
of ν(F, c) = ν∗(F, c) for all non-negative integer c corresponds exactly to the system in (C)
being TDI, and so the Edmonds Giles theorem applied to the covering problem translates to the
following result:

7A non-empty polyhedron is pointed if it has an extreme point, or equivalently if it does not contain a line.
8conv(X) denotes the convex hull of X which is defined to be the intersection of all convex sets containing X ,

and is known to be equal to the set of all points that can be written as a convex combination of some elements in X .
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Theorem 9. If a clutter F has the MFMC property, then it is ideal.

We note that the reverse implication is false. We give the example of the clutter Q6 =
{{1, 2, 3}, {1, 5, 6}, {2, 4, 6}, {3, 4, 5}}, which can be shown to be ideal9 but it does not have the
MFMC property, as ν(Q6,1) = 1 but τ(Q6,1) = 2.

We now ask some additional questions regarding these properties.

Question 10.

(a) Can we find other conditions on F that are equivalent to idealness or the MFMC property?

(b) Within the class of ideal clutters, is there a bound on the gap between τ and ν ?

(c) Does idealness imply a weaker version of the MFMC property ? Namely can we always find
an optimal dual solution that is not ‘far from integer’ ?

Examples of MFMC clutters include clutters of s-t paths [25], s-t dipaths [17] and s-t
cuts [12]. The class of ideal clutters includes all of the previously mentioned clutters, as well as
clutters of s-t dicuts [24], acyclic T -joins [16], and odd circuits of planar graphs [19].

While the MFMC property is quite hard to certify and we do not have any particularly useful
characterization, there are multiple results characterizing when idealness holds.

1.2.1 Blockers

First let us look at the extreme points of the covering polyhedron. C = {x ∈ Rn : M(F)x ≥
1, x ≥ 0} is integral if and only if all its extreme points are integer. Hence F is ideal when the
extreme points of the polyhedron correspond exactly to the minimal covers of F. These covers
form a clutter structure, and it turns out that studying the resulting clutter gives a lot of insight
on properties of F. This motivates the following definition:

Definition 11. Given a clutter F, we define the blocker of F to be the clutter on the same ground
set, whose elements are the minimal covers of F, and denote by it by b(F).

One might wonder if this construction is injective and/or surjective. The answer is even
stronger than a simple yes to both questions. This construction is not only bijective but satisfies
the involution property [14, 20] :

9The easiest way to verify this is to find all the extreme points of the covering polytope and check they all
integer.
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Theorem 12. Let F be a clutter. Then b(b(F)) = F.

We also have a surprising result linking idealness of F and b(F) due to Lehman [22]:

Theorem 13. F is ideal if and only if b(F) is ideal.

We note that such equivalence does not hold for the MFMC property. We again use the
example of Q6, which is an ideal clutter that does not have the MFMC property but its blocker
b(Q6) = {{1, 2, 3}, {1, 5, 6}, {2, 4, 6}, {3, 4, 5}, {1, 4}, {2, 5}, {3, 6}} does. The clutter and its
blocker as a pair give another characterization of idealness, namely the width-length inequality
also due to Lehman [22].

Theorem 14 (Width-Length Inequality). Let F be a clutter. Then F and b(F) are ideal if and
only if the following inequality holds for all vectors w, l ∈ RV

≥0 :

τ(F, w)× τ(b(F), l) ≤ wT l.

To illustrate this we provide two examples. First consider C1
3 = {{1}, {2}, {3}} and its

blocker b(C1
3) = C3

3 = {1, 2, 3}. Both clutters are ideal and verify τ(C1
3 , c) = c1 + c2 + c3 and

τ(C3
3 , c) ≥ mini∈[3] ci. The width-length inequality then translates to :

(w1 + w2 + w3)× (min
i∈[3]

li) ≤ w1l1 + w2l2 + w3l3

which clearly holds for all w, l ≥ 0.

To showcase the flip side, consider C2
3 = {{1, 2}, {1, 3}, {2, 3}}. We have that b(C2

3) = C2
3 .

This clutter is not ideal as for c = 1 we have τ(F,1) = 2 while the point (1
2
, 1

2
, 1

2
) is a fractional

cover achieving an objective value of 3
2
< 2. Now consider w = l = 1, then we have:

τ(C2
3 ,1)× τ(C2

3 ,1) = 2× 2 > 3 = 1T1.

So the width-length inequality fails.

In fact, an interesting result states that every self-blocking clutter, i.e. satisfying b(F) = F,
is either non ideal, or must be the trivial clutter on a single element, that is F = {{1}}, up to
renaming the ground element [2].

8



1.2.2 Minors

We also have a result stating that when checking for idealness we do not need to verify that
τ = τ ∗ for all c ≥ 0 as we can restrict ourselves to a smaller subset of cost vectors.

Theorem 15. [21] F is ideal if and only if τ(F, c) = τ ∗(F, c) for all c ∈ {0, 1,∞}V .

The forward direction is trivial as it follows from the equivalent definition of idealness, while
the proof for the reverse direction can be found in [21]. We note that this condition can be
rephrased in terms of minors of the clutter. To do that, we first introduce the notion of minors.

For each element of the ground set j ∈ V (F), we define the deletion minor (F \ j) and
contraction minor (F/j) to be the clutters on groundset V \ {j}, where the elements of (F \ j)
are {S : j /∈ S, S ∈ F} and the elements of (F/j) are the minimal elements in {S \ {j}, S ∈ F}.
These operations commute with themselves and with each other, so we have (F\j)\k = (F\k)\j,
(F/j)/k = (F/k)/j, and (F \ j)/k = (F/k) \ j for all ground elements j 6= k ∈ V (F). A minor
of F is any clutter that be obtained from F by a sequence of deletions and contractions. Since the
order of the operations does not matter, given I, J disjoint subsets of V (F), we denote the minor
obtained by deleting elements in I and contracting element in J by F \ I/J .

Remark 16. Let F be a clutter, then we have:

• If F is ideal then all of its minors are ideal.

• If F has the MFMC property then all of its minors have the MFMC property.

We also note that these operations behave nicely with respect to taking the blocker, as we
have b(F \ j) = b(F)/j and b(F/j) = b(F) \ j. This yields the following result:

Remark 17. Let F be a clutter, j ∈ V (F), and c ≥ 0. Let c̄ be the restriction of c on V (F) \ {j},
then the following hold:

• If cj = 0 then τ(F, c) = τ(F \ j, c̄).

• If j does not belong to every c-optimal F cover, then τ(F, c) = τ(F/j, c̄)

Proof. For the first result, notice that when B is a cover of F, B \ j10 is a cover of F \ j so
τ(F, c) − cj ≥ τ(F \ j, c̄). If B is a cover of F \ j, then B ∪ {j} is a (not necessarily minimal)

10If j /∈ B then B \ j = B.
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cover of F, hence τ(F \ j) + cj ≥ τ(F, c). When cj = 0, these two inequalities imply that
τ(F, c) = τ(F′, c̄). For the second point, notice that every cover B of F/j is a cover of F that
does not contain j, so we have c(B) = c̄(B) hence τ(F, c) ≤ τ(F′, c̄). Now if we consider an
optimal cover B of F such that j /∈ B, we obtain that τ(F, c) = c(B) = c̄(B) ≥ τ(F/j, c̄),
combining these two inequalities yields the desired result.

This shows that we can think of deleting j as setting its cost to 0, while contracting it corre-
sponds to setting its cost to an arbitrarily high value. Therefore, we can reformulate Theorem 15
in terms of minors namely in the following way:

Theorem. Let F be a clutter such that τ(F′,1) = τ ∗(F′,1) for all F′ minors of F, then F is ideal.

We note that it is conjectured that an analogous version of this theorem holds for the MFMC
property, namely the following:

Conjecture 18 (Replication conjecture). [8] Let F be a clutter such that τ(F, c) = ν(F, c) for
all vectors c ∈ {0, 1,∞}V . Then F has the MFMC property.

1.2.3 Further discussion

Going back to question 10-b concerning for the gap between τ and ν within the class of ideal clut-
ters, we can still find instances with arbitrarily large additive gap. For example, define n clutters
Q6i, i ∈ [n], that are ’independent’ copies of Q6, with respective ground sets {1i, 2i, 3i, 4i, 5i, 6i}.
Then consider F = Qn

6 = ∪ni=1Q6i, so the elements of Qn
6 correspond to the rows of the block

diagonal matrix with n identical blocks equal toM(Q6). We have τ(Qn
6 ,1) = 2n as any minimal

cover corresponds to the union of n sets Ci = {ai, bi} ⊆ {1i, 2i, 3i, 4i, 5i, 6i}, where each Ci is a
cover of a Q6i, while ν(Qn

6 ,1) = n as we cannot have any 2 elements belonging to the same Q6i

in a packing. We are not currently aware of any example with asymptotically better than constant
ratio gap, nor of any non-trivial bounds on the worst case scenario ratio bound.

The answer to 10-c will be the focus of this thesis. In the next chapter, we discuss potential
relaxations of the MFMC property and formalize multiple conjectures as potential answers to
this question.

10



Chapter 2

Weakenings of the MFMC property

Since idealness does not imply the existence of optimal packing, we can ask if it implies the
existence of some ”nice” fractional packings. No general positive result is currently known, but
there are two main conjectures of interest in this direction. First is the natural soft relaxation of
the integrality condition.

Conjecture 19 ( 1
k

conjecture). There exists an integer k ≥ 1 such that for all ideal clutters F
and all integer c ≥ 0, F admits an optimal c-packing y such that ky is integral.

Simply working with Q6 we realize that if such a k exists it must be a multiple of 2, and there
are reasonably small examples of ideal clutters without a 1

2
optimal packing, so the smallest still

standing possible value of k is 4, and the hypothesis that the 1
k

conjecture holds with k = 4 is
commonly referred to as the 1

4
conjecture [28].

The second conjecture, due to Seymour in 19751, is more intriguing, as it claims the existence
of an optimal solution of a special form :

Conjecture 20 (Dyadic conjecture). Let F be an ideal clutter and c ≥ 0. Then F admits an
optimal fractional c-packing y such that 2ky is integral for some integer k.

This conjecture is perhaps inspired by a common duplication technique used to prove that
many classes of ideal clutters always admit a half integer packing. We will see an example of
this technique at the end of this chapter, and again in Section 5.5. The hope is that such an

1To our knowledge, this conjecture never appeared in a publication by Seymour, but is it mentioned by Schrijver
in [26], section 79.6e.
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argument can be extended in the general case resulting in a dyadic packing.2 We note that it is
proven that for all ideal clutters with τ(F, c) ≥ 2, there exists a dyadic c-packing y with yT1 ≥ 2
hence the conjecture holds for pairs (F, c) with τ(F, c) = 2. [1]

But how can we start to approach these conjectures, and what would be reasonable inter-
mediate result to support them? A good place to start would be to look at a close relative of
covering, namely the packing problem, for which the equivalent notion of idealness implies the
TDI condition. Perhaps this would give us an idea on what type of properties are useful to have
when trying to certify a weaker version of the MFMC property.

2.1 The packing problem.

A packing problem defined over any arbitrary family of subsets S1, . . . , Sk ⊆ V consists of the
following : Given a cost vector c ≥ 0, find a maximum cost collection of elements B such that
no two elements belong to a common set Si. Such a collection is called a packing.

It also makes sense to study the packing problem over clutters, as any pair of elements that
belong to the same S, also both belong to any superset of S. A notable difference between the
covering and packing problems defined on an arbitrary family of sets is that for the covering
problem it is sufficient to restrict ourselves to the clutter formed by the minimal elements of the
family, while for the packing problem we can restrict to the clutter of maximal elements in the
family. Note that when c = 1, the packing problem on F = {S1, . . . , Sm} where V (F) = [n]
is equivalent to the maximum capacity problem on F′ on ground set [m] whose elements are the
maximal sets in {S ′1, . . . , S ′n} where S ′i = {j ∈ [m] : i ∈ Sj}. In other words, the elements of F′
correspond to maximal characteristic vectors of the columns of M(F).

The IP formulation is straightforward. We write the packing problem as (PI):

maximize cTx
subject to M(F)x ≤ 1, (PI)

x ≥ 0,
x integer.

We will denote by (P ) its LP relaxation, and its dual is given by (D):

minimize 1Ty
subject to M(F)Ty ≥ c, (D)

y ≥ 0.

2A vector x is said to be dyadic if every entry is of the form 1
2k

for some integer k.
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Since all these problems are bounded when c ≥ 0, weak duality implies that we have:

opt(PI) ≤(1) opt(P ) ≤(∗) opt(D) ≤(2) opt(DI).
3

where (DI) is obtained from (D) by imposing an integrality constraint on y. Note that (∗)
always holds with equality due to strong duality, and we can ask the same questions that we did
for the covering problem, namely the following:

Question 21.

(a) How big can the gap between opt(PI) and opt(DI) get ?

(b) Can we characterize the clutters for which (1) holds with equality for all non-negative integer
vectors c ?

(c) Can we characterize the clutters for which (2) holds with equality for all non-negative integer
vectors of c ?

While the answer to (a) is the same as the covering case, that is, we can find arbitrarily large
gaps between the two values, the answers to the (b) and (c) are very different. In fact, (b) and
(c) turn out to be equivalent to each other, and we can identify if they hold in polynomial time.
The recognition algorithm is due to a result stating that the packing polytope is integer if and
only if M(F) is the clique vertex matrix of a perfect graph [10], and there exists polynomial time
algorithms to recognize clique-vertex matrices [10] and to recognize perfect graphs [6]. Similarly
as for the covering case, the condition in (c) implies its counterpart in (b) due to Theorem 5. The
reverse direction is the interesting part about this result, so we formalize it:

Theorem 22. Let F be a clutter. If the system {M(F)x ≤ 1, x ≥ 0} is integral, then it is TDI.

The proof for this result relies on two main ideas. First we make sure that we can set a dual
variable yS to 1 (or higher) value in an optimal dual solution, then we use induction on opt(P ),
by considering the covering problem on the same clutter with cost vector c− χS .

Lemma 23. Let y be an optimal solution to (D′), then for every S such that yS > 0, there exists
an optimal solution y′ such that y′S ≥ 1.

Proof. Let c be integer and consider γ = max{cTx : M(F) ≤ 1, x ≥ 0} and γ′ = max{c′Tx :
M(F)x ≤ 1, x ≥ 0} where c′ = c − χS . We claim that γ′ = γ − 1 and that this is sufficient to

3Given an optimization problem (P ), we denote by opt(P ) its optimal value outcome.
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imply the result. Indeed, given y′ that satisfies M(F)Ty ≥ c − χS and 1Ty′ = γ − 1, we have
M(F)T (y′ + eS) ≥ c, 1T (y′ + eS) = γ = opt(P ) and (y′ + eS)S ≥ 1. Now to actually prove
the equality, note that the two problems have the same feasible region, and for any feasible x,
cTx ≥ c′Tx = cTx − χTS x ≥ cTx − 1, and hence γ ≥ γ′ ≥ γ − 1. Since the polyhedron in
integral and c′ is integer, γ′ must be integer and hence γ′ ∈ {γ, γ − 1}. We claim that γ′ 6= γ.
Were this to be the case, every optimal solution x̄ for the c′ objective must satisfy c′T x̄ = cT x̄,
and hence x̄ must also be optimal for the c objective and satisfy χTS x̄ = 0, which violates the
complementary slackness conditions(C.S.) with respect to yS . We give a quick reminder of the
C.S. conditions for the sake of completeness.

Theorem 24 (Complementary Slackness for a maximization primal). [27] Let (P ) be max{cTx :
Ax ≤ b, x ≥ 0} and its dual (D) be min{bTy : ATy ≥ c, y ≥ 0} where A ∈ Rm×n. For x, y
feasible for (P) and (D) respectively, x and y are both optimal if and only if both of the following
conditions hold:

• For all i ∈ [n], xi = 0 or (ATy − c)i = 0,

• For all j ∈ [m], yj = 0 or (Ax− b)j = 0.

The full proof of Theorem 22 then follows by a simple inductive argument on opt(P ). First
assume opt(P ) = 0, then y = 0 is an integer optimal solution to (D). Now if opt(P ) ≥ 1,
consider an optimal dual solution y and S ∈ F such that yS > 0. By Lemma 23 there must exist
an optimal solution y′ with y′S ≥ 1. Now consider (P ′):

maximize (c− χS)Tx
subject to M(F)x ≤ 1, (P ′)

x ≥ 0.

Then opt(P ′) = opt(P ) − 1, so we can obtain an integer optimal solution to the dual of (P ′),
that is an integer y′ ≥ 0 such that 1Ty′ = opt(P )− 1 and M(F)Ty′ ≥ c−χS . Therefore, y′+ eS
will be an optimal integer solution to (D) finishing the proof.

In the next section we go back to the covering problem while keeping in mind Lemma 23
that was the key to obtaining TDI-ness.

2.2 Further relaxations

The takeaway from the proof is that the key to obtaining the TDI property for the packing problem
was the ability to ‘push’ the dual variables. That is, as long as there exists a dual optimal solution
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y with yS > 0, then there must exists an optimal dual solution y′ with y′S ≥ 1. This property does
not hold for ideal clutters, and does not even hold for MFMC clutters. As an example, consider
the s, t paths clutter on the graph G = (V = {s, t, a, b}, E = {(s, a), (s, b), (a, b), (a, t), (b, t)}).
The members are S1 = {(s, a), (a, t)}, S2 = {(s, b), (b, t)}, S3 = {(s, a), (a, b), (b, t)}, S4 =

Figure 2.1: The graph G. S3 is represented by the double edges.

{(s, b), (a, b), (a, t)}. An illustration of this graph is given in Figure 2.1. Note that S3 and S4 do
appear with non-zero coefficients in the optimal dual solution y = (1

2
, 1

2
, 1

2
, 1

2
) but can never be

achieve a higher coordinate value in any other optimal solution, since the set of optimal solutions
to the dual is conv({(1, 1, 0, 0), (1

2
, 1

2
, 1

2
, 1

2
)}).

Therefore, to construct a weaker version of this property for ideal clutters, we relax it in a
natural way as follows:

Conjecture 25 (Packing analog conjecture). There exists an integer k > 0 such that for all ideal
clutters F and non-negative integer vectors c, if yS > 0 for some optimal dual solution y for the
covering problem, then there exists an optimal dual solution y′ such that y′S ≥ 1

k
.

Even this weaker version turns out to be false, we will prove this in Chapter 3 via Proposition
49 after we build up the necessary machinery. This leads us to abandon the hope of a universal
bound on how far we can push these values in an optimal solution. Thus, we relax the condition
to no longer impose it for every S ∈ F.

Conjecture 26 (Weak 1
k

conjecture). There exists an integer k ≥ 0 such that for all ideal clutters
F and non-negative integer vectors c, there exists a set S ∈ F such that yS ≥ 1

k
for some optimal

dual solution y for the covering problem.

This property would be immediately implied by the 1
k

conjecture for the same k, so we can
ask whether we can obtain a positive result in the other direction.
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Conjecture 27 (Weak to strong 1
k

conjecture). For every k̄ ≥ 1, there exists an integer f(k̄)
such that every ideal clutter F satisfying the weak 1

k
conjecture condition with k = k̄ admits a

1
f(k̄)

-integer packing all positive integer vectors c.

Note that Conjecture 27 is true for k̄ = 1, with f(1) = 1, so the MFMC property is equivalent
to the weak 1

k
conjecture condition holding with k = 1.

The reasoning behind this is similar to the packing problem where we use induction on
τ(F, c). Consider an optimal dual solution ȳ with a ȳS ≥ 1 for some S. We must have that
τ(F, c) ≥ τ(F, c−χS)+1 since every x that is feasible for the primal satisfies χTS x ≥ 1. We also
have that ȳ−eS is feasible for {M(F)Ty ≥ c−χS, y ≥ 0}, and hence ν∗(F, c−γ) ≥ ν∗(F, c)−1.
Since τ = τ ∗ = ν∗, we must then have that the objective value for the Primal/Dual pair decreased
by exactly 1. So any optimal integer c−χS packing augmented via adding a copy of S yields an
optimal integer c packing.

For all other values of k however, this reasoning does not work since c − 1
k

is not an integer
vector, so to apply the weaker 1

k
conjecture again we would have to scale it back up, but then the

’size’ of c increases instead of decreasing. Not all hope is yet lost, since the conjecture remains
open even if we impose that f(k) = k, which means that there is still a possibility that the 1

k

conjecture is equivalent to its weak version.

In the next chapter, we formalize this notion of ‘maximal dual value’ for both F and each of
its elements and attempt to understand its properties. We note that in the rest of this document,
F is always taken to be an ideal clutter, unless otherwise specified.
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Chapter 3

The dual potential

Let us first recall the LP relaxation for the covering problem and its dual :

minimize cTx
subject to M(F)x ≥ 1, (C)

x ≥ 0.

maximize 1Ty
subject to M(F)Ty ≤ c, (D)

y ≥ 0.

Definition 28. Given a covering problem (F, c) and a set S ∈ F, we define

λF,c(S) = max{yS : y is an optimal solution of (D)}

and we call this quantity the dual potential of S.

For convenience, we will also write this quantity as λc(S) when the clutter F is unambiguous,
or even λ(S) when c is taken to be the all 1 vector. We also define :

λc(F) = max
S∈F

(λF,c(S))

and again omit c when it is equal to the all 1 vector.

These quantities allow us to rephrase the conjectures from the previous section in a more
convenient form, namely in the following way:
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Conjecture (Weak 1
k

conjecture). There exists an integer k such that for all ideal clutters F,
λc(F) ≥ 1

k
for all non-negative integer vectors c.

Conjecture (Weak to strong 1
k

conjecture). For every k ≥ 1, there exists an integer f(k) such
that every ideal clutter F satisfying λc(F) ≥ 1

k
for all positive integer vectors c admits a 1

f(k)
-

integer packing all non-negative integer vectors c.

First, we try to characterize when λc(S) > 0. The answer to this is immediately given by the
strict complementary slackness conditions.

Theorem 29 (Strict Complementary Slackness for a minimization primal). [27]

Let (P ) = min(cTx,Ax ≥ b, x ≥ 0) and its dual (D) = max(bTy, ATy ≤ c, y ≥ 0) where
A ∈ Rm×n such that both are feasible, then following are equivalent for all i ∈ [n]:

• There exists an optimal solution x to (P) with xi > 0;

• For all optimal dual solutions y to (D), we have (ATy − c)i = 0.

Similarly, for all j ∈ [m] the following are equivalent:

• There exists an optimal solution y to (D) with yj > 0;

• For all optimal primal solution x to (P), we have (Ax− b)j = 0.

Applying this to our setting, we obtain the following result:

Lemma 30. Let F be an ideal clutter and c ≥ 0. Then λc(S) > 0 if and only if |S ∩ B| = 1 for
all covers B ∈ b(F) satisfying c(B) = τ(F, c).

Proof. Since F is ideal, the set of optimal solutions to (C) is Γ = conv{χB : B ∈ b(F), c(B) =
τ(F, c)}. Strict complementary slackness then states that λc(S) > 0 if and only if (M(F)x −
1)S = 0 for all x ∈ Γ. We observe that (M(F)x−1)S ≥ 0 holds for allB ∈ b(F), hence for every
point in Γ as well. A convexity argument shows that equality is attained by every point in Γ if and
only if it is attained at every extreme point of Γ, and we give a quick proof of this in proposition
31 for the sake of completeness. Therefore λc(S) > 0 if and only if (M(F)χB −1)S = 0 for all
B ∈ b(F) with c(B) = τ(F, c), directly yielding the desired result.

Proposition 31. Let X be a bounded closed convex set such that aTx ≥ b holds for all x ∈ X .
Then aTx = b for all x ∈ X if and only if aTx = b for every extreme point of X .
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Proof. The forward direction is trivial and so we focus on the reverse direction. Let x ∈ X , if
x is an extreme point, then the equality is already satisfied via the assumption. Otherwise, since
X is a closed, x can be written as a convex combination of a finite number of extreme points of
X , namely x =

∑
λix

i, where λ ≥ 0,
∑
λi = 1 and each xi is an extreme point of X , hence we

have:
aTx = aT (

∑
λix

i) =
∑

λi(a
Txi) =

∑
λib = b

∑
λi = b.

These elements play the most significant role in any discussion regarding optimal dual solu-
tions, and hence the following definition.

Definition 32. Let F be a clutter and c ≥ 0, we define

Fc = {S ∈ F : |S ∩B| = 1 for all B ∈ b(F) satisfying c(B) = τ(F, c)}

and refer to it as the c-core of F.

Now we try to find an expression for λc(F). The next two sections arrive at the same result
but utilize different approaches.

3.1 An LP formulation

Consider a set S with λc(F) > 0. The most straightforward approach to determine λc(S) would
be to write the natural LP for the problem. Let τ = τ(F, c) and then consider (M):

maximize yS
subject to M(F)Ty ≤ c, (M)

−1Ty = −τ,
y ≥ 0.

M(F)Ty ≤ c, y ≥ 0 imply that y is feasible for the dual, while 1Ty = τ implies that it’s optimal,
so λc(S) = opt(M). To find this optimal value, we instead solve dual (N):

minimize cTx− τγ
subject to M(F)x ≥ γ1 + eS, (N)

x ≥ 0, γ free.
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The first observation to make is that if (x, γ) is an optimal solution to (N) and γ′ > γ,
then there exists x′ such that (x′, γ′) is also optimal for (N). To show this simply consider
x′ = x+ (γ′ − γ)χB where B ∈ b(F) with c(B) = τ(F, c). Then we have x′ ≥ 0′ and:

M(F)x′ = M(F)x+M(F)(γ′−γ)χB ≥ γ1+eS+(γ′−γ)M(F)χB ≥ γ1+eS+(γ′−γ)1 = γ′1+eS.

And hence (x′, γ′) is feasible for (N) and we have cT [x+ (γ′ − γ)χB]− τγ′ = cTx− τγ.

Now to solve this LP, we can fix γ and solve min{cTx : M(F)x ≥ γ1+ eS, x ≥ 0} and then
deduce the optimal value of (N). Treating γ as a parameter is particularly useful since for all
γ > 0, we can scale x by 1

γ
and look a the following LP (Nγ):

minimize γcTx− τγ
subject to M(F)x ≥ 1 +

1

γ
eS, (Nγ)

x ≥ 0.

Note that by our initial observation we can disregard the cases of γ ≤ 0, as we’re interested in
opt(N) = limγ−→∞ opt(Nγ), so for the rest of the discussion, we will assume γ > 1. A nice
property of (Nγ) is that its feasible region corresponds to the feasible region of the covering
problem (C) (given at the start of Chapter 3) with the inequality χTS x ≥ 1 strengthened to
χTS x ≥ 1 + 1

γ
.

This gives an alternative proof of Lemma 30, as if we assume the existence of an optimal
cover B with |B ∩ S| > 1, then we have χB is feasible for (Nγ) and yields an objective value of
γ(cT χB)− τγ = γ(c(B)− τ) = 0, implying λc(S) = opt(M) = opt(N) = 0.

Now we assume |S∩B| = 1 for all b ∈ b(F) satisfying c(B) = τ . we claim that χTS xγ = 1+ 1
γ

for all xγ that is optimal for (Nγ). Indeed assume that x is feasible for (Nγ) with χTS x > 1 + 1
γ

,
and consider x′ = (1− ε)x+ ε χB, where B ∈ b(F) satisfies c(B) = τ and ε > 0 is chosen small
enough. x′ is also a feasible solution (Nγ) with strictly smaller objective value.

We also know that the optimal value is always achieved at an extreme point of (Nγ), and
we can easily characterize the extreme points of (Nγ) given the extreme points of (C) via the
following result:

Lemma 33. Let P ⊆ Rn be a pointed polyhedron and Q = {x : x ∈ P, cTx ≤ α} so Q is
obtained from P by adding one more inequality. Then every extreme point of Q is either an
extreme point of P or can be written as a convex combination of two extreme points of P , or as
x+ r where x is an extreme point of P and r is an extreme ray of P .
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Proof. Let x̄ be an extreme point of Q, d = dim(Q) and d + t = dim(P ). Note that t ≥ 0 as
Q ⊆ P . First let us assume t = 0. x̄ must satisfy d different facet constraints of Q with equality.
But every facet of Q either corresponds to cTx ≤ α or a facet of P , and hence x̄ must satisfy at
least d− 1 facet constraints of P with equality, and hence the minimal face F of P containing it
must have dim(F ) ≤ dim(P ) − (d − 1) = 1. If F has dimension 0 then x̄ is an extreme point
of P . Otherwise, since P is pointed, its dimension 1 faces are either segments or rays. If F is
a segment then each point in F can be written as a convex combination of its endpoints which
are extreme points of P , and if F is a ray then F = {x + λr, λ ≥ 0} where x is an extreme
point of P and r is an extreme ray of P . To obtain the result of the theorem it is sufficient to
notice that for all λ > 0, λr is also an extreme ray of P . For t ≥ 1, the proof remains largely
the same. Every implicit equality of Q that is not an implicit equality of P also corresponds to
either a facet of P or to cTx ≤ α. Hence x̄ again must satisfy a total of at least d + t − 1 facet
constraints of P with equality, which proves that the minimal face of F containing it satisfies
dim(F ) ≤ dim(P )− (d+ t− 1) = 1.

Now consider an extreme point of {x ∈ Rn : M(F)x ≥ 1+ 1
γ
eS, x ≥ 0}. Since the covering

polyhedron is pointed, Lemma 33 implies that it is an extreme point of (C) or can either be
written as the convex combination of 2 extreme points of the covering polyhedron or as x + r
where x is an extreme point and r is an extreme ray of the covering polyhedron. The extreme
points of (C) are exactly χB, B ∈ b(F) while the extreme rays are αei, i ∈ V (F), α ≥ 0.

Since every optimal point must satisfy χTS x = 1 + 1
γ

, we can dismiss the case that x = χB
given γ > 1. Consider the case where an optimal extreme point is of the form x = χB +αei.
We then must have i ∈ S and χTS χB = 1 as otherwise x′ = χB will also be a feasible solution
to (Nγ) of smaller objective value. Clearly α must be equal to 1

γ
and any choice of B and i ∈ S

yields a feasible solution to (Nγ). To minimize the objective value we must choose B such that
c(B) = τ and i such that ci = min{cj : j ∈ S}. This yields an objective value for (Nγ) equal to
γ(cTx− τ) = γ(τ + 1

γ
ci − τ) = min{cj : j ∈ S}.

Now consider x = λχB +(1 − λ)χ′B, 0 < λ < 1. Since we know the optimal x satisfies
χTS x = 1+ 1

γ
and γ > 1, we must have, up to permutingB andB′, |B∩S| > 1, |B′∩S| = 1 and

λ = 1
γ(|B∩S|−1)

. Note that every choice of B′ yields a feasible solution, so in order to minimize
the objective function it is clear that we should pick B′ to satisfy c(B) = τ . This yields an
objective value of:

γ(cTx− τ) = γ(
1

γ(|B ∩ S| − 1)
c(B) + (1− 1

γ(|B ∩ S| − 1)
)τ − τ) =

c(B)− τ
|B ∩ S| − 1

.

The optimal objective value of (Nγ), which is equal to the objective value of (N) for all
γ > 1, is therefore given by the minimum of these quantities, proving the following result:
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Theorem 34. Let F be an ideal clutter, c ≥ 0 and S ∈ F such that |B ∩ S| = 1 for every
c-optimal cover B. Then λc(S) = min(m1,m2) where :

m1 = min
e∈S

(ce) and m2 = min
B∈b(F),|B∩S|>1

c(B)− τ(F, c)
|B ∩ S| − 1

.

This result will be the backbone of the following chapters, as it gives us a clear way to
certify that λc(S) ≥ λ for any given value λ < 1: we simply check that c(B)−τ(F,c)

|B∩S|−1
≥ λ for all

B ∈ b(F), |B ∩ S| > 1, and if we want to certify that λc(S) < λ then we just need to exhibit
B ∈ b(F) such that |B ∩ S| > 1 and c(B)−τ(F,c)

|B∩S|−1
< λ. This is exactly what we use to disprove

Conjecture 25 in Section 3.4, but first we explore alternative ways to arrive at this result.

3.2 Mate conditions

In this section we will be giving an alternative proof of Theorem 34 that’s obtained by tinkering
with the objective function. We start with the following result.

Theorem 35. Let F be an ideal clutter, c ≥ 0 and S ∈ F. Then for all λ ≤ mine∈S(ce), the
following are equivalent:

• λc(S) ≥ λ;

• ν∗(F, c− λχS) = ν∗(F, c)− λ;

• τ(F, c− λχS) = τ(F, c)− λ.

Note that the condition λ ≤ mine∈S(ce) ensures that c− λχS ≥ 0 and that τ is finite.

Proof. Let S ∈ F satisfy λc(S) > 0. For every dual solution y for the c covering problem such
that yS ≥ λ we have that y′ = y − λeS is a feasible dual solution for the c − λχS covering
problem on F. We claim that if y is optimal for the c dual, then y′ must be optimal for the c−χS
dual. This is easy to see since for any feasible ȳ for the c− λχS dual, ȳ′ = ȳ + λyS is a feasible
solution for the c dual with objective value 1T ȳ + λ, therefore ν∗(F, c) ≤ ν∗(F, c − λχS) + λ.
This proves our claim since if we assume that y is optimal we will have 1Ty′ = 1Ty − λ =
ν∗(F, c) − λ ≤ ν∗(F, c − λχS). Therefore it becomes clear that the existence of a dual optimal
solution with yS ≥ λ is equivalent to ν(F, c) − λ = ν∗(F, c − λχS). The third characterization
follows immediately from the 2nd via strong duality and the fact that the covering polyhedron is
integral.
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We then characterize exactly when τ(F, c − λχS) = τ(F, c) − λ holds via the notion of
λ-mates.

Definition 36. For a set S ∈ F, we say that B ∈ b(F) is a λ-mate of S if c(B) − λ|S ∩ B| <
τ(F, c)− λ.

Theorem 37. Let S ∈ F, and λ ≤ ce for all e ∈ S, then the following are equivalent :

• λc(S) ≥ λ;

• S has no λ mate.

Proof. We have shown that λc(S) ≥ λ is equivalent to τ(F, c−λχS) = τ(F, c)−λ (∗). From the
proof of Theorem 35 we already know τ(F, c−λχS) ≤ τ(F)−λ, so we only need to ensure that
τ(F, c−λχS) ≥ τ(F)−λ. We know F is ideal, so τ(F, c−λχS) = minB∈b(F)((c−λχS)T χB) =
minB∈b(F)(c

T χB −λ|B ∩ S|). Clearly every set B with |B ∩ S| = 1 achieves value c(B)− λ ≥
τ(F, c)−λ. For each element B with |B∩S| > 1, we must have cT χB −λ|B∩S| ≥ τ(F, c)−λ
or equivalently B is not a λ-mate of S.

The result of Theorem 34 follows immediately as corollary of this result, simply noting that
λc(S) = max(λ : S has no λ-mate).

We can also deduce that these conditions are equivalent to ensuring that every optimal c cover
is also an optimal c− λχS cover, giving another characterization of λc(S) that we explore in the
next section.

3.3 The cone of tight constraints

Let b(F)c be the set of elements in b(F) that are c-optimal, i.e. b(F)c = {B ∈ b(F), c(B) =
τ(F, c)}. Then since F is ideal, we must have that b(F)c are the extreme points of a face Fc of the
covering polyhedron. As we have seen in the previous section, λc(S) ≥ λ ⇐⇒ b(F)c remain
optimal for c′ = c− λχS , which is equivalent that Fc is contained within the optimal face for c′.
Therefore, we can use the cone of tight constraints at Fc to characterize the dual potential. First
we recall its definition and some of its key properties.

Definition. Let F be a face of a polyhedron {x : Ax ≥ b}, then we define the set of tight
constraint at F and denote it by TF = {j ∈ [m] : Ajx = bj for all x ∈ F}. We also define
cone(F ) = {

∑
j∈TF λj(Aj)

T : λ ≥ 0}1 and refer to it by the cone of tight constraints at F 2.
1Note that this is different from the usual definition of cone(S) = {

∑
B∈S λB χB , λ ≥ 0},

2This is also sometimes referred to as the normal cone in the literature.
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Proposition 38. 1. F is optimal for c if and only if c ∈ cone(F ).

2. Let x̄ be a point in the relative interior of F , then TF = {j ∈ [m] : Ajx̄ = bj}.

3. If F is bounded then TF = {j ∈ [m] : Ajx = bj for all x that are extreme points of F}.

Proof. To prove the first statement, consider c ∈ cone(F ). Then we have cT =
∑

j∈TF λjAj ,
λ ≥ 0. Consider the problem (LP ) = min{cTx : Ax ≥ b} and it’s dual (LD) : max{bTy :
ATy = c, y ≥ 0}. We claim y ∈ Rm defined by yTF = λ and yj = 0 for all j /∈ TF is feasible
for (LD). Indeed we have for all i ∈ [n]: (ATy)i =

∑
j Ai,jyj =

∑
j∈TF Ai,jλj = ci. We

also have for all x ∈ F that cTx =
∑

j∈TF λjAjx =
∑

j∈TF λjbj = bTy and hence x and y are
both optimal and F is contained within the optimal face of (LP ). The reverse direction follows
from the complementary slackness conditions. Given c such that every x ∈ F is optimal for
(LP ) = min{cTx : Ax ≥ b}, consider y optimal for the dual (LD). Then for each j /∈ TF , we
know there exists x ∈ F such that Ajx < b, since x is also optimal this means that yj = 0 by the
C.S. conditions. This means that c = ATy =

∑
j∈TF yjAj and y ≥ 0.

The proof of the 2nd statement follows from simple arguments from polyhedral theory. Let
x̄ be in the relative interior of F . Clearly TF ⊆ {j ∈ [m], Ajx̄ = bj}. For the reverse inclusion,
consider j ∈ [m] such that Ajx̄ = bj . The set of optimal solutions of min(ATj x, x ∈ P ) is a face
of P , this is because it can be written as {x, x ∈ P,Ajx = opt}. Since Ajx ≥ bj is valid for P ,
then we must have min(Ajx, x ∈ P ) ≥ bj , and this is satisfied with equality for x̄, and hence the
set of optimal solutions must be a face containing x̄. But the minimal face containing x̄ is F as x̄
was taken to be in the relative interior, and hence all x ∈ F must be optimal, therefore Ajx = bj
for all x ∈ F .

The third result follows from a convexity argument. If F is bounded then every point in F can
be written as a convex combination of its extreme points, so ensuring Ajx = bj for all extreme
points of F implies the result for all x ∈ F .

Now we apply this result for the covering polyhedron.

Definition 39. Let F be a clutter, c ∈ RV
≥0 and Vc = ∪b(F)c is the set of ground elements that

appear in an optimal cover.3Then we define:

cone(b(F)c) = {
∑
S∈F̄c

γS χS +
∑
i/∈Vc

αiei, γ, α ≥ 0}

and refer to it as the cone of tight constraints at c.
3We denote by ∪X = ∪Y ∈XY and ∩X = ∩Y ∈XY
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Proposition 40. Let S ∈ F, and 0 ≤ λ ≤ ce for all e ∈ S. Then the following are equivalent :

(1) λc(S) ≥ λ;

(2) S has no λ mate;

(3) c− λχS ∈ cone(b(F)c).

In order to get more out of (3) we try to understand more about the cone of tight constraints
at c. Since we have defined the cone via its generators, we ask if we could also find a polyhedral
formulation. The answer is yes, and the next result gives such a formulation.

Theorem 41. Let F be an ideal clutter and c ≥ 0, then :

cone(b(F)c) = {d : d ≥ 0, (χB′ −χB)Td ≥ 0 for all B ∈ b(F)c and B′ ∈ b(F)}.

Proof. d ∈ cone(b(F)c) if and only if the face defined by b(F)c is optimal for (LP ) : min{dTx :
M(F) ≥ 1, x ≥ 0}. The extreme points of this face are exactly the elements in b(F)c hence it
is sufficient to check that every element in b(F)c is optimal for (LP ). Since the optimal value
of (LP ) is always achieved at an extreme point, proving that an element B ∈ b(F)c is optimal
for (LP ) is the same as ensuring that it yields an objective value at least as low as any other
extreme point of the covering polyhedron. F is ideal, and so the extreme points of the covering
polyhedron are exactly χS , S ∈ b(F). Therefore dT χB′ ≥ dT χB for all B′ ∈ b(F) implies that
B is optimal for (LP ).

This formulation has a lot of redundant inequalities, and we can cut down on many of them
by simply considering a point in the interior of b(F)c, giving a more compact formulation.

Theorem 42. Let x̄ ∈ relint(conv({χ(B), B ∈ b(F)c})4, then we have :

cone(b(F)c) = {d : d ≥ 0, (χB −x̄)Td ≥ 0 for all B ∈ b(F)}.

Proof. One of the directions is easy to prove. Indeed, if d ∈ cone(b(F)c then clearly d ≥ 0
and x̄Td = dT x̄ = τ(F, d) ≤ d(B) = χTB d for all B ∈ b(F). For the reverse direction, let
d ≥ 0 satisfy (χB −x̄)Td ≥ 0 for all B ∈ b(F). Since d ≥ 0, we know the covering problem
is not unbounded and therefore admits an optimum. Since F is ideal the extreme points are
exactly χB, B ∈ b(F), so to prove d ∈ b(F)c it is sufficient to prove d(B′) ≥ d(B) for all
B′ ∈ b(F) and B ∈ b(F)c. Let x̄ =

∑k
i=1 λi χBi

, λ ≥ 0,
∑
λi = 1. Then we have (χBi

−x̄)Td ≥
4relint denotes the relative interior of a set, with the convention that relint({t}) = {t}
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0 for all 1 ≤ i ≤ k, implying λi(χBi
−x̄)Td ≥ 0. Summing the LHS over all i we obtain

(
∑

i λi χBi
−x̄)Td = (x̄−x̄)Td = 0Td = 0, so all the inequalities must hold at equality, therefore

we have d(Bi) = x̄Td for all i, and thus d(B) = x̄Td for all B ∈ b(F)c, since the minimal face
containing all of B1, . . . , Bk is b(F)c. Therefore, we immediately obtain d(B′) ≥ d(B) for all
B′ ∈ b(F) and B ∈ b(F)c as desired.

A big step towards understanding the properties of the cone would be to understand its facets:
exactly when do the non-negativity constraints correspond to facets, and which elements in B ∈
b(F) yield facet defining inequalities. A small inconvenience is that this formulation depends on
a choice of x̄, and perhaps this choice might affect which elements of the blocker yield facets
and which correspond to equality constraints. In the next two propositions, we first dispel these
concerns, then we characterize the equality constraints.

Proposition 43. Let x1, x2 ∈ relint(conv({χ(B), B ∈ b(F)c}), andCi = {d : d ≥ 0, (χB −xi)Td ≥
0 for all B ∈ b(F)}. We then have :

1. (χB −x1)Td ≥ 0 is a facet of C1 if and only if (χB −x2)Td ≥ 0 is a facet of C2.

2. (χB −x1)Td = 0 for all d ∈ C1 if and only if (χB −x2)Td = 0 for all d ∈ C2.

3. di ≥ 0 is a facet of C1 if and only if di ≥ 0 is a facet of C2.

4. di = 0 for all d ∈ C1 if and only if di = 0 for all d ∈ C2

Proof. Items 3 and 4 are immediate since C1 = C2 and item 2 follows from (x1)Td = (x2)Td
for all d ∈ Ci. To prove item 1, we observe that if (χB −x1)Td ≥ 0 is a facet of C1, then it
must hold at equality for r−1 affinely independent points of C1 (where r = dim(Ci)) and hence
(χB −x2)Td ≥ 0 must also hold at equality for r−1 affinely independent points in C2 by simply
considering the same set of points, and thus it must correspond to a facet of C2.

Proposition 44. Let C = cone(b(F)c), then we have :

1. (χB −x̄)Td = 0 for all d ∈ C if and only if B ∈ b(F)c.

2. di = 0 for all d ∈ C if and only if i ∈ ∪b(F)c and i /∈ ∪Fc.

Proof. The proof for item 1 follows from the same argument as for Theorem 42, while the 2nd
item follows from the initial definition of the cone.
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The most straightforward condition that implies B ∈ b(F) yields a facet defining inequality
for cone(b(F)c) is the non-redundancy of the constraint, that is if we remove (χB −x)Td ≥ 0
from the formulation in Theorem 42 we would obtain a different cone. This leads us to the
following result:

Theorem 45. Let S ∈ F satisfy λ(S) < min{ce : e ∈ S} and let M(S) = {B ∈ b(F) : λc(S) =
c(B)−τ(F,c)
|B∩S|−1

}, then the following holds:

• If M(S) = {B}, then (χB −x)Td ≥ 0 is a facet of cone(b(F)c).

• If |M(S)| ≥ 2, then at least 2 different elements B,B′ ∈ M(S) generate facet defining
inequalities of the cone.

Proof. We have that c ∈ cone(b(F)c), c − λc(S)χS ∈ cone(b(F)c) but c − (λc(S) + ε) /∈
cone(b(F)c) for any strictly positive ε, hence we must have that c−λc(S)χS satisfies at least one
facet inequality with equality that c did not. Since λc(S) < min{ce : e ∈ S} no non-negativity
constraint became tight. If M(S) = {B} then (χB −x)Td ≥ 0 is the only inequality satisfied
at equality by c − λc(S)χS but not c, hence it must correspond to a facet of the cone. In the
case that |M(S)| ≥ 2, then we consider two cases. First, if c − λc(S)χS lies in the relative
interior of a facet, then all the elements in M(S) must correspond to this same facet. Otherwise,
if c− λc(S)χS lies on a face of dimension less than or equal to dim(b(F)c)− 2, then we must it
must lie on the intersection of at least 2 facets, and hence at least two different elements of M(S)
yield different facet defining inequalities.

We end this section with a small discussion of the consequences of every facet corresponding
to a non-negativity constraint.

Simple Conic Clutters

Suppose that all the facets of cone(b(F)c) correspond to a non negativity constraint.5 This implies
that cone(b(F)c) is the intersection of a linear space and the non-negative orthant, and hence the
idea behind the definition of simple conic clutters.

Definition 46. A clutter F is simple conic if cone(b(F)c) is the intersection of a linear space, and
the non-negative orthant for all c ≥ 0.

5Note that this does not imply that no blocker element inequality defines a facet, but in the case they do, it
coincides with a non negativity facet.
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It turns out that this property is very strong, and implies that an integer optimal dual solution
can always be found and can be constructed in an almost arbitrary fashion, as the clutter satisfies
the packing-analog conjecture with k = 1.

Theorem 47. Let F be an ideal simple conic clutter, then F has the MFMC property.

Proof. The reasoning behind this result is quite simple. Consider an arbitrary set S ∈ F with
λc(F) > 0, and consider c′ = c − χS . If c′ /∈ cone(b(F)c), then it must violate at least one facet
constraint. However, all facets correspond to non negativity constraints, so as long as cS ≥ 1S ,
then c′ remains in the cone and hence yS ≥ 1. Therefore F satisfies the packing analog conjecture
with k = 1, and thus has the MFMC property.

However, being simple conic is a very hard condition to satisfy, and it is plausible that no
ideal clutter is simple conic. This leads us to relax this condition as follows :

Definition 48. Given an ideal clutter F and non-negative vector c, we say clutter F is c-simple
conic if cone(b(F)c′) is the intersection of a linear space, and the non-negative orthant for all
0 ≤ c′ ≤ c, c′ integer.

This becomes a more reasonable property to satisfy, and while we can no longer certify the
MFMC property, we can still certify that τ(F, c) = ν(F, c) using a similar proof to the previous
theorem, since c′ = c − χS ≤ c and hence we can repeat the argument on c′ to construct an
integer optimal packing.

3.4 Next steps

Now we use our characterization of λF,c(S) to disprove Conjecture 25.

Proposition 49. For every k ≥ 1, there exists a clutter F that has the MFMC property, c ≥ 0
integer and S ∈ F such that 0 < λc(S) < 1

k
.

Proof. We prove this by construction for each k ≥ 3 (The result will then also be implied for
k ∈ {1, 2}). Consider F the clutter of s-t paths in the graph Gk = (s ∪ A ∪ B ∪ t, E), where
A is a clique of k vertices ai, i ∈ [k], B is a clique of k vertices bi, i ∈ [k]. These clique edges
will have some arbitrarily high cost M . We also have edges (s, ai) and (bi, t) with costs 2 for
all 2 ≤ i ≤ k − 1, and edges (s, a1), (s, ak), (b1, t), (bk, t) with cost 1. We also have edges
(ai, bi) for all i ∈ [k], and (ai, bi+1) for all i ∈ [k − 1], both with cost 1. An illustration
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Figure 3.1: The graph Gk, edges in E(A), E(B) of cost M are not drawn. Edges in P are
represented by double lines.

of this graph is given in Figure 3.1.There are only 3 cuts of size less than M : B1 = δ(s)
with c(B1) = 2k − 2, B2 = δ{s ∪ A} with c(B2) = 2k − 1, and B3 = δ(s ∪ A ∪ B) with
c(B3) = 2k − 2.We have τ(F, c) = 2k − 2, with only B1, B3 being optimal covers. Now
consider the path P ∈ F that starts from s and in order visits ak,bk,ak−1,bk−2,...,a2, b2, a1, b1, t.
Clearly |P ∩B1| = |P ∩B3| = 1 hence λ(F) > 0. Meanwhile, B2 gives a strong bound of λ(P ).
We have |P ∩B2| = 2k − 1, and thus we have λ(P ) ≤ c(B)−τ

|B∩S|−1
= 2k−1−(2k−2)

2k−1−1
= 1

2k−2
. The path

P then satisfies 0 < λ(P ) ≤ 1
2k−2

< 1
k

for all k ≥ 3. Since F is in the family of clutters of s-t
paths it has the MFMC property, concluding our proof.

This result is a crucial point in our strategy when tackling our original question of how to
approach relaxations of the MFMC property. We now know a lot about λF,c(S), including the
fact being non zero is not enough to certify any universal lower bound. This shows that there
is a fundamental difference between the behavior of dual variables in the packing problem on
perfect clutters and the covering problem on ideal and even MFMC clutters. If we want to con-
tinue with the idea of mimicking the packing problem, it is then hopeless to consider arbitrary
sets S ∈ F with λ(S) ≥ 0: While we may still be able to prove a lower bound on λF,c(S)
as function of τ, ||c||1, or other parameters, it is unlikely that they would be very helpful. This
leads us to consider special elements of the clutter and try to find a universal lower bound on
their λ-values. There are multiple options to consider. We could focus on sets S ∈ F of min-
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imal cardinality as these are intuitively more likely to appear in an optimal packing. There are
other intuitively justifiable choices, such as sets whose members have a high average c-cost, but
we forego these ideas in favor of the most straightforward approach: Pick the set S∗ such that
λF,c(S

∗) = maxS∈F{λF,c(S)}, and check if we can find a universal lower bound on λF,c(S∗).
This corresponds exactly to Conjecture 26, as λF,c(S∗) is the definition of λc(F). This will be the
focus of the rest of the thesis.
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Chapter 4

LP Formulations

Our objective in this section is to investigate Conjecture 26. While we do have an expression for
λc(F), namely

λc(F) = max
S∈F
{λF,c(S)} = max

S∈F

{
min

B∈b(F),|B∩S|>1

{
c(B)− τ(F, c)
|B ∩ S| − 1

}}
.

it is quite difficult to untangle the max-min function and the formula is generally difficult to
work with. Contrary to the formula for λc(S) given in Theorem 34, where every element of the
blocker provides an upper bound, a single (S,B) pair does not yield an upper nor lower bound
on λc(F). Therefore, we attempt to find a reasonable proxy for λc(F), say f(F, c), and examine
the behavior of this proxy instead. The reasoning behind this is simple. If we can prove that
f(F, c) > 1

k
for some constant k, then this would be a nice result supporting Conjecture 26. On

the other hand, if we can construct examples where f(F, c) is arbitrarily small, then this would be
a good argument against the conjecture, and in the case that f(F, c) is an upper bound to λc(F),
it would completely refute it.

Our approach will be mainly LP based. If we can write an integer program (IPλ) whose
solution sets correspond exactly to sets S ∈ F satisfying λF,c(S) ≥ λ, then we would have
λc(F) = max{λ : (IPλ) is feasible}. But since integer programs are difficult to work with, we
can consider the LP relaxations (LPλ), and consider f(F, c) = max{λ : (LPλ) is feasible} as a
proxy for λc(F). Note that with this approach, f will always be an upper bound for λc(F).

In this chapter, we consider two possible formulations. The first is a high dimensional formu-
lation with indicator variables for each element of the clutter, while the second is more compact
with variables corresponding to ground elements.
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4.1 Set variable LP

We introduce a variable yS for every set of the clutter (note that we can restrict this to sets in Fc,
i,e, sets satisfying λc(S) > 0), we consider the polyhedron Lc(λ):∑

S∈F

yS = 1, (1)∑
S∈F

|B ∩ S|yS ≤
1

λ
(c(B)− τ) + 1, for all B ∈ b(F),(2) Lc(λ)

y ≥ 0. (3)

Due to (1) any integer point in Lc(λ) corresponds to eS for some S ∈ F, and (2) implies that
λc(S) ≥ λ due to Theorem 34. We try to gauge how strong this relaxation is. First we note that
this polyhedron is always non empty as long as we impose a very lenient upper bound on λ.

Proposition 50. Let F be a clutter, c ≥ 0 and λ ≤ τ(F, c), then Lc(λ) is non-empty.

Proof. We prove this by exhibiting a feasible point. Let ȳ be an optimal dual solution for the
covering problem, that is 1T ȳ = τ(F, c) and

∑
S:e∈S ȳS ≤ ce. Let y′ = ȳ

τ
, we claim y′ is feasible

for (Lc(λ)). We clearly have 1Ty′ = 1, and we also have :∑
S∈F

|B ∩ S|y′S =
∑
e∈B

∑
S:e∈S

y′S ≤
∑
e∈B

ce
τ
≤ c(B)

τ
=

1

τ
(c(B)− τ) + 1

and therefore y′ is feasible forLc(τ(F, c)). Since (2) only gets more relaxed the more we decrease
λ, y′ is feasible for all smaller values of λ as well.

Despite this being a positive result, it being this general reduces any hope of non-emptiness
implying strong properties λ(F) and in particular, we can certify the following:

Proposition 51. There does not exists a constant α > 0 such that for all ideal clutters F, Lc(λ)
is non-empty⇒ λc(F) ≥ min(λ

α
, 1).

Proof. The proof follows from the simple fact that we can set τ to be arbitrarily large while still
having a bound on λ(F). If we consider F = Qn

6
1, then we have τ = 2n but λ(F) = 1

2
.

1Recall Qn
6 is the clutter obtained by combining n independent copies of Q6, which we have already encountered

in section 1.2.3
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This directs us towards strengthening the relaxation if we want to obtain a positive result. We
can consider the Chvátal-Gomory closure of Lc(λ) and check whether we can leverage more out
of its feasibility. This is a well-studied operation in polyhedral theory [7], and we give a quick
reminder of its construction and some of the main results.

Definition 52. Given a polyhedron P = {x : Ax ≤ b}, and αTx ≤ β a valid inequality
for P where α is integer, the inequality αTx ≤ bβc is valid for the integer hull of P , that is
PI = conv({x ∈ P : x integer.}) and is called Chvátal-Gomory cut of P , also referred to as a
CG-cut.

Definition 53. For a polyhedron P , we define:

CG(P ) = {x ∈ P : αTx ≤ bβc for all CG cuts of P}

and refer to it as the Chvátal-Gomory closure of P .

Proposition 54 (Properties of the CG closure). [7]

1. CG(P ) is a polyhedron.

2. PI ⊆ CG(P ) ⊆ P .

3. If P ⊆ Q then CG(P ) ⊆ CG(Q).

4. If A is rational, then there exists a finite integer k ≥ 0 such that PI = CGk(P )2. The
smallest such k is referred to as the CG rank of P .

Much to our surprise, it turns out that the CG closure of Lc(λ) corresponds exactly to its
integer hull. This follows from rewriting constraint (2) as :

0 ≤
∑
S∈F

yS(
1

λ
(c(B)− τ) + 1− |B ∩ S|), ∀B ∈ b(F). (2)′

Then we utilize the following lemma :

Lemma. Let P ⊆ {x :
∑

i∈[n] aixi ≥ 0(i),
∑

i∈[n] xi = 1(ii), x ≥ 0}. Then for all ai < 0, we
have that xi = 0 is valid for CG(P ).

2CGk(P ) denotes the k-th iteration of theCG closure, that isCGk(P ) = CG(CGk−1(P )) with the convention
that CG0(P ) = P .
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Proof. Let T = {i ∈ [n] : ai > 0}, and let aj < 0. Then :
∑

i∈T aixi + ajxj ≥ 0 is valid
for P as we are simply adding non negativity constraints to (i). Normalizing by |aj| and adding
(ii) we get that

∑
i∈T ( ai

|aj | + 1)xi +
∑

i∈[n]\T\{j} xi ≥ 1 is valid for P . By simply adding non
negativity constraints we can increase all the coefficients to match the maximal coefficient, so
we get M

∑
i∈[n]\{j} xi ≥ 1. This implies that

∑
i∈[n]\{j} xi ≥ 1 is valid for the CG(P ), which

along with (ii) implies xj = 0 is valid for CG(P ).

Applying this to Lc(λ), we have that ( 1
λ
(c(B) − τ) + 1 − |B ∩ S|) < 0 if B is a λ-mate of

S, and hence yS = 0 is valid for CG(Lc(λ)) as long as S has a λ-mate, while any set without a
λ-mate yields a feasible integer point, and therefore CG(Lc(λ)) = conv(eS, S has no λ-mate).

This leads us to abandon the CG closure, and instead attempt to manually find valid inequal-
ities for the integer hull that we can add to Lc(λ) while still avoiding an exact formulation.

We start by noticing that we can impose a stronger version of (2) for any subset of F, namely:∑
S∈K |B ∩ S|yS ≤ ( 1

λ
(c(B) − τ) + 1)

∑
S∈K yS for any B ∈ b(F) and K ⊆ F. Finding out

which pairs B,K are useful to impose is a very interesting question, but it is very hard to assess
an individual pair’s contribution. Thus we opt to first omit any sets not in Fc, then add many
related inequalities at once, and compare the different LPs we obtain. For this we define Lqc(λ) :∑

S∈Fc

yS = 1, (1)

∑
S∈K

|B ∩ S|yS ≤ (
1

λ
(c(B)− τ) + 1)

∑
S∈K

yS, ∀B ∈ b(F), ∀K ⊆ Fc, |K| = q,(2q)

y ≥ 0. (3)

Writing gλ(B, S) := −|B∩S|+( 1
λ
(c(B)−τ)+1), we simplify the LP and write in the following

form : ∑
S∈Fc

yS = 1, (1)∑
S∈K

gλ(B, S)ys ≥ 0, ∀B ∈ b(F), ∀K ⊆ Fc, |K| = q,(2q) (Lqc(λ))

y ≥ 0. (3)

We then obtain a series of nested polyhedra L1
c(λ) ⊆ L2

c(λ) ⊆ ... ⊆ L
|Fc|
c (λ) where L|Fc|

c (λ) =
Lc(λ) and L1

c(λ) corresponds to the integral hull due to yS = 0 being valid for any set S with
gλ(B, S) < 0 for some B ∈ b(F). As expected, pinpointing the values of λ and q for which
these polyhedra stop being non-empty is quite difficult, but in compensation we are able to find
a positive result as a consequence of their feasibility. Before we proceed, we introduce some
notation to simplify the discussion.
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Definition 55. For a clutter F and c ≥ 0, we define λc(q) = max{λ : Lqc(λ) is non-empty} for
q ∈ [|Fc|],
we also define qc(λ) = min{q ∈ [|F|] : Lqc(λ) is non-empty} for 0 ≤ λ ≤ τ .3 We will omit c from
the subscript when clear from context.

We then have λc(F) = λc(1) ≤ λc(2) ≤ · · · ≤ λc(|Fc|) = τ , while qc(λ) is an increasing
function of λ, with q(0) = q(λc(F)) = 1 and qc(τ) = |F|c. It is quite hard to pinpoint the values
of these functions, however checking small examples suggests that the decrease does not jump
from τ to λc(F) between 1 point and the next, and is more or less uniform. For example, if we
consider F = Q6 and c = 1, then we have τ = 2 and |Fc| = |F| = 4, with λ(1) = 1

2
, λ(2) = 1,

λ(3) = 3
2
, λ(4) = 2. A weak version of this uniform decrease follows from the next result :

Theorem 56. Assume Lqc(λ) is non-empty, then λ(F) ≥ min(λ
q
,mine∈V ce)

Proof. Let y be a feasible point for (Lqc(λ)), and S∗ be a set maximizing yS . For all B ∈ b(F),
we have the following: for each K ⊆ Fc \ {S∗} with size q − 1, we have:

gλ(B, S
∗)yS∗ +

∑
S∈K

gλ(B, S)ys ≥ 0.

Let F = |Fc|, we can sum this over all possible choices of K to obtain :(
F − 1

q − 1

)
gλ(B, S

∗)yS∗ +
∑
S 6=S∗

(
F − 2

q − 2

)
gλ(B, S)ys ≥ 0

⇒ (F − 1)gλ(B, S
∗)yS∗ ≥ −

∑
S 6=S∗

(q − 1)gλ(B, S)yS

= (q − 1)
∑
S 6=S∗

(|B ∩ S| − 1− 1

λ
(c(B)− τ))yS

≥
∑
S 6=S∗

(−1

λ
(c(B)− τ))yS

≥ (F − 1)(q − 1)(−1

λ
(c(B)− τ))yS∗

⇒ gλ(B, S
∗) ≥ −(q − 1)(

1

λ
(c(B)− τ))

3The reason we only define this up to τ is simply because λc(|Fc|) = τ .
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⇒ 1

λ
(c(B)− τ) + 1− |B ∩ S∗| ≥ −(q − 1)(

1

λ
(c(B)− τ))

⇒ q

λ
(c(B)− τ) + 1− |B ∩ S∗| ≥ 0.

Since this holds for all B ∈ b(F) we obtain:

λ(F) ≥ λc(S
∗) ≥ min(

λ

q
,min
e∈S∗

ce) ≥ min(
λ

q
,min
e∈V

ce).

This immediatly shows that λ
q(λ)
≤ λc(F), hence we have q(λ) ≥ λ

λc(F)
and similarly λc(q) ≤

qλc(F). While these hold at equality for Q6, there is no guarantee that this is the case in general.

4.2 Ground element LP

Next, we try our second LP formulation, where now we have a variable for every element of
the clutter, and integer solutions correspond exactly to χS , where λc(S) ≥ λ. Thus we define
P(F,c)(λ):

x(B) ≥ 1, for all B ∈ b(F), (1)

x(B) ≤ 1

λ
(c(B)− τ) + 1, for all B ∈ b(F),(2) P(F,c)(λ)

0 ≤ x ≤ 1. (3)

As usual, we will omit F and/or c when they are clear from context.

Proposition 57. If x = χS is an integer point in Pc(λ) and λ ≤ ce for all e ∈ S, then there exists
S ′ ⊆ S such that S ′ ∈ F and λc(S ′) ≥ λ. Note that x′ = χS′ will also be an integer point in
Pc(λ).

Proof. Given x that is integer in (Pc(λ)), (3) implies that x = χS for some S ⊆ V (F). (1) then
implies that S is a (not necessarily minimal) cover of b(F), and hence there exists S ′ ⊆ S such
that S ′ ∈ F, as the minimal covers of b(F) are exactly the elements in b(b(F)) = F. Finally note
that for all B ∈ b(F) we have |B ∩ S ′| ≤ |B ∩ S| = x(B) ≤ 1

λ
(c(B) − τ) + 1 which implies

λ ≤ c(B)−τ
|B∩S′|−1

, and since λ ≤ ce for all e ∈ S ′, we have λc(S ′) ≥ λ.

This formulation has some interesting features, most surprising of which is that for nice
values of λ, the polytope is the intersection of 2 integral polyhedra.
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Proposition 58. Let k ∈ N, F an ideal clutter and c ≥ 0. Then P(F,c)(
1
k
) is the intersection of

two integral polyhedra.

Proof. Let P 11 = {x ≥ 0 : x(B) ≥ 1 for all B ∈ b(F)} and P 2 = {y ≥ 0 : y(B) ≤
k(c(B)− τ) + 1, for all B ∈ b(F)}. We have P 1 = conv(χS, S ∈ F) + cone(e1, e2, . . . , e|V (F)|)
as it is the covering polytope of b(F) which is ideal, and hence the extreme points are elements
of b(b(F)) = F. To show P 2 is integral, we relate it back to P 1. We have :

y(B) ≤ k(c(B)− τ) + 1, for all B ∈ b(F)

⇐⇒ (k1− y)(B) ≥ kτ − 1 for all B ∈ b(F)

⇐⇒ 1

kτ − 1
(k1− y) ≥ 1 for all B ∈ b(F).

We claim that if y is an extreme point of P 2 then y′ = 1
kτ−1

(k1− y) is an extreme point for P 1.
Clearly y′ is feasible for P 1, so assume it is not an extreme point and write it as y′ = γx1 + (1−
γ)x2, x1, x2 ∈ P 1. Then we will have yi = k1−(kτ−1)xi is feasible for P 2. The non negativity
constraints can be satisfied as long as we choose x1, x2 close enough to y′, and all the B induced
constraints can be obtained by reversing the equivalence chain from above. We then obtain that
y is a convex combination of y1, y2, contradicting that it’s an extreme point. Hence we have that
P 2 only has integer extreme points since given x integer k1− (kτ − 1)x is also integer. To finish
the proof, we simply write P(F,c)(

1
k
) = P ′1 ∩ P2, where P ′1 = {x ∈ P1, x ≤ 1} is also integral

with extreme points corresponding exactly to χS +χM , where S ∈ F and M ⊆ V (F) \ S.

Similarly to the previous formulation in section 4.1, it turns out that P(F,c)(τ(c,F)) is always
non-empty for any clutter (even non ideal). To prove this we simply consider x = c

τ(c,F)
. For (1)

we have x(B) = c(B)
τ
≥ 1 for all B ∈ b(F) by definition of τ , while (2) is always satisfied with

equality. This leads to a similar result, namely that feasibility can’t imply any bound on λc(F).

Proposition 59. There does not exists a constant α > 0 such that for all ideal clutters F, Pc(λ)
is non-empty⇒ λc(F) ≥ min(λ

α
, 1).

The proof is similar to that of proposition 51.

This suggests that the current formulation is too weak, and hence we move to stronger relax-
ations via common lift and project methods that we explore in the next chapter.
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Chapter 5

Convex lifts

In this section we discuss different possibilities to strengthen Pc(λ). We use a common lifting
technique and consider the system S(Pc(λ)) :

Y =

[
1 xT

x X

]
1 (1)

diag(Y ) = Y e0 (2)

Y ei ∈ cone(

[
1

Pc(λ)

]
) for all i ∈ {0, . . . , n}, (3) (S(Pc(λ)))

Y e0 − Y ei ∈ cone(

[
1

Pc(λ)

]
) for all i ∈ {0, . . . , n},(4)

rank(Y ) = 1. (5)

While this is a commonly used technique to lift subsets of {0, 1}n to the space of (n+1)×(n+1)
matrices, there is quite a bit to unpack in this definition. The main idea is that given Y feasible
for S(Pc(λ)), the corresponding x is an integer point of Pc(λ).

Consider Y ∈ (S(Pc(λ)). (5) forces Y to be of the form
[

1
x

] [
1
x

]T
, this along with (2)

forces x to be integer as xi = (Y e0)i = diag(Y )i = x2
i . Finally (3) implies that

[
1
x

]
= Y e0 ∈

cone(

[
1

Pc(λ)

]
), which implies that x ∈ Pc(λ). (3) and (4) are trivially satisfied by matrices of

1We index the rows and columns of Y ∈ S(Pc(λ)) by i ∈ {0, 1, . . . , n} where n = |V (F)|, so Y0,i = xi for all
i ∈ [n].
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the form
[

1
χS

]T [
1
χS

]
, as Y ei is either a copy of Y e0 or the all 0 vector. However, they become

more interesting once we omit (5), as the set of feasible points of the system becomes convex.

Let’s consider a matrix Y that satisfies (1),(2),(3) and (4). If xi = 1 then Y e0 − Y ei ∈

cone(

[
1

Pc(λ)

]
) implies that Y ei = Y e0, and if xi = 0 then Y e0 ∈ cone(

[
1

Pc(λ)

]
) implies Y ei

must be the all 0 vector. Finally if 0 < xi < 1 and Y ei =

[
xi
Xei

]
), (3) implies that x1 := 1

xi
Xei ∈

Pc(λ) while (4) implies x2 := 1
1−xi (x − Xei) ∈ Pc(λ). x is therefore a convex combination of

x1 and x2, where x1, x2 ∈ Pc(λ) and (x1)i = 1
xi
xi = 1, while (x2)i = 1

1−xi (xi − xi) = 0.

This immediately brings to mind the Balas, Ceria, Cornejols (BCC) operator, and it turns
out that (1),(2),(3) and (4) correspond exactly to a lift of BCC(Pc(λ)). We will give a quick
reminder of the BCC operator and formalise this result in the next section.

5.1 LS0, LSs, and LS+.

As we have discussed in the introduction to the chapter, rank(Y ) = 1 is the main culprit of en-
forcing all points in S(Pc(λ)) to be integer. Since our objective is to find a non exact formulation
of finding a set with a target λc(S) value, relaxing this constraint is the natural way to go, and we
discuss multiple ways to do this. The simplest way to relax a constraint is to simply omit it, and
by omitting rank(Y ) = 1 we obtain the following system S0 :

Y =

[
1 xT

x X

]
(1)

diag(Y ) = Y e0 (2)

Y ei ∈ cone(

[
1

Pc(λ)

]
) for all i ∈ {0, . . . , n}, (3) (S0(Pc(λ)))

Y e0 − Y ei ∈ cone(

[
1

Pc(λ)

]
) for all i ∈ {0, . . . , n}.(4)

To formalize the main result about this relaxation, we first recall the BCC operator.

Definition 60. [5] For a polyhedron P ⊆ [0, 1]n, we define:

BCCi(P ) = conv([P ∩ {xi = 0}] ∪ [P ∩ {xi = 1}]).

BCC(P ) = ∩iBCCi(P ).
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Proposition 61. For a polyhedron P ⊆ [0, 1]n, we have projx(S0(P )) = BCC(P ).2

Proof. We have essentially proven the forward containment in the discussion at the start of chap-
ter 5, the reverse containment follows from a simple constructive argument. If x ∈ BCC(P )
then for all i ∈ [n] there exists zi,0, zi,1, such that x is a convex combination of zi,0, zi,1 and they
are both in P with zi,0i = 0 and zi,1i = 1. Clearly we must have that x = xiz

i,1+(1−xi)zi,0 for the

i-th coordinate to match. Then we simply construct Y by taking Y e0 =

[
1
x

]
, Y ei =

[
xi

xiz
i,1

]
and

we will verify Y e0 − Y ei =

[
1− xi

(1− xi)zi,0
]

, so we can easily verify Y is feasible for S0(P ).

We also discuss alternative ways to relax condition (5). Since xxT is always symmetric we
can opt to relax rank(Y ) = 1 constraint with a simple symmetry condition, and we obtain the
following Ss:

Y =

[
1 xT

x X

]
(1)

diag(Y ) = Y e0 (2)

Y ei ∈ cone(

[
1

Pc(λ)

]
) for all i ∈ {0, . . . , n}, (3) (Ss(Pc(λ)))

Y e0 − Y ei ∈ cone(

[
1

Pc(λ)

]
) for all i ∈ {0, . . . , n},(4)

Y ∈ Sn+1.3 (5)

We can also observe that feasible points of S(Pc(λ)) are all of the form
[

1
x

] [
1
x

]T
, which always

yields a positive semidefinite matrix, so we can also consider the system S+:

Y =

[
1 xT

x X

]
(1)

diag(Y ) = Y e0 (2)

Y ei ∈ cone(

[
1

Pc(λ)

]
) for all i ∈ {0..n}, (3) (S+(Pc(λ)))

Y e0 − Y ei ∈ cone(

[
1

Pc(λ)

]
) for all i ∈ {0, . . . , n},(4)

Y ∈ Sn+1
+ .4 (5)

2By projx(S) we mean the projection of the set of feasible points for S.
3Sn+1 is the set of all (n+ 1)× (n+ 1) matrices that are symmetric.
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We then define LS?(Pc(λ)) = projx(S?(Pc(λ))) where ? ∈ {0, s,+}. These are known as the
Lovàsz-Schrivjer operators [4, 23], and satisfy PI ⊆ LS+(P ) ⊆ LSs(P ) ⊆ LS0(P ) ⊆ P . We
note that while LS0 and LSs are polyhedral operators, LS+ is not. In the following sections we
will be exploring properties of these operators, their relative strength, and how we can utilize
them to learn more about properties of ideal clutters.

5.2 Feasibility

Contrary to Pc(λ) which is always non-empty for λ ≤ τ(F, c) even when F is not ideal, LS0(Pc(1))
is always empty for some c if F is not ideal.

Theorem 62. Let F be a non-ideal clutter, F′ be a minimally non-ideal minor of F 5, and let
J, I ( V such that F′ = F \ J/I . Then for c given by ci = 0 for i ∈ J , ci = ∞ for i ∈ I and
ci = 1 otherwise, we have that LS0(P(F,c)(1)) is empty.

Proof. We have τ(F, c) = τ(F′,1), and so we have projV \(I∪J)(P(F,c)(λ)) ⊆ PF′,1(λ). For
this we require a strong result about minimally non-ideal clutters that can be found in [10],
which is that P1(λ) contains no element with an integer coordinate. To obtain the result of the
theorem, it suffices to consider an element e ∈ V \ (J ∪ I), then projV \I∪J(BCCi(P(F,c)(λ))) ⊆
BCCi(PF′,1(λ)) = ∅ and hence LS? ⊆ LS0 ⊆ BCCi(P(F,c)(λ)) = ∅.

This behavior is different from what happens in the ideal case, where we can always certify
these objects are non-empty.

Theorem 63. Let F be an ideal clutter and c ≥ 0 integer such that τ(F, c) ≥ 1. ThenLS+(P(F,c)(1))
is non-empty.6

In order to prove this theorem, we will use a minimal counter example argument, where we
prove the result for a particular class of pairs (F, c), then try to reduce an arbitrary case to one of
these pairs.

Definition 64. For a clutter F and c ≥ 0 such that τ(F, c) ≥ 1, we say that F is c-critical if every
element e ∈ V (F) appears in a c-optimal cover. We can write this condition as ∪b(F)c = V (F).

4Sn+1
+ is the set of all (n+ 1)× (n+ 1) matrices that are symmetric and positive semidefinite.

5F is said to be minimally non-ideal if it is non-ideal but all of its proper minors are ideal.
6Note this also proves that LSs, LS0 are non-empty.
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Lemma 65. Let F be an ideal clutter and c ≥ 0 integer such that F is c-critical, thenLS+(P(F,c)(1))
is non-empty.

Proof. Let y be an optimal dual solution for the c-covering problem. Then since every element
in V (F) appears in some c-optimal cover, we must have that

∑
S,e∈S yS = ce for all e ∈ V due

the C.S. conditions. Now consider Y = 1
τ(F,c)

∑
S∈F yS

[
1
χS

] [
1 χTS

]
. We claim this is feasible

for LS+(and hence for all the other relaxations). Y is the sum of rank 1 symmetric matrices so is
clearly symmetric and positive semidefinite. it also satisfies diag(Y ) = Y e0 as this condition is

satisfied for each of the rank 1 integer matrices. We also have Y e0 =

[
1
c
τ

]
) and we have already

proven that c
τ
∈ Pc(1). For the final constraints, we have

Y ei =
1

τ

∑
S:i∈S

yS

[
1
χS

]
=
ce
τ

[
1

1
ce

∑
S:e∈S ys χS

]

So to verify if Y ei ∈ cone(

[
1

Pc(1)

]
), we have to verify that 1

ce

∑
S:e∈S ys χS ∈ Pc(1). For this

we simply check every inequality. Let B ∈ b(F), then we have :

1

ce

∑
S:e∈S

ys|B ∩ S| ≥
1

ce

∑
S:e∈S

ys =
1

ce
ce = 1

1

ce

∑
S:e∈S

ys|B ∩ S| =
1

ce
(
∑
S:e∈F

ys|B ∩ S| −
∑
S:e/∈S

ys|B ∩ S|)

≤ 1

ce
(c(B)−

∑
S:e/∈S

ys) =
1

ce
(c(B)− τ + ce) ≤ c(B)− τ + 1

A similar argument also shows that Y e0 − Y ei is in the cone, and completes the proof.

Hence the assumption that F is c-critical will be our base case condition. Now let us consider
a pair (F, c) that is not critical. The natural operation to perform in order to move closer toward
every element appearing in a minimum cover is to simply decrease the cost of the missing ele-
ments. When ce = 1, decreasing ce to 0 corresponds to deleting element e, which leads us to
explore how these operators behave with respect to minor operations.
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5.3 Feasibility from smaller instances

In this section, we will assume that c = 1, and study the relation between LS?(PF(1)) and
LS?(PF′(1))7 where F′ = F \ {k} or F/{k}, and we start with the deletion minor. Since all we
know about LS? is that it is the projection of S?, most of the proofs will be in the language of S?
and square matrices.

Let k ∈ V (F), F′ = F \ {k}, τ ′ = τ(F′,1) and τ = τ(F,1). Assume Y ′ =

[
1 xT

x X

]
is

feasible for S?(PF′(1)), and we wish to extend it to Y =

 1 xT xk
x X z
xk z′T xk

 feasible for S?(PF(1)).

The first condition we will look at is

xkz
xk

 ∈ cone(

[
1

PF(1)

]
). If we pick xe 6= 0, then this

means having to find a feasible solution x̄ to PF(1) with x̄e = 1, which we cannot guarantee the

existence of. Hence we choose xk = 0 and attempt to prove that Y =

1 xT 0
x X 0
0 0 0

 is feasible.

This also aligns with our intuition behind the relaxation: If x is aiming to represent an element in

F′, then
[
x
0

]
should represent the same element in F, and as we are looking for elements of the

clutter that have small intersections with blocker elements, adding e, even with a small weight,
only hurts feasibility.

Next we look at Y e0 ∈ cone(

[
1

PF(1)

]
). For every B ∈ b(F), we have to verify the following:

1 ≤(1) χ
T
B x ≤(2) |B| − τ + 1.

First thing to note is that we do not have to worry about (1), since B \ {k} is always a cover
of F \ {k}, we already know that 1 ≤ χTB x holds by feasibility of Y ′ for PF′ . For (2), we have
χTB x ≤ |B \ {k}| − τ ′ + 1, which means we only risk violating the constraint if k /∈ B and
τ ′ < τ . Thus we try to characterize when τ = τ ′. Since the covers of F′ are exactly B \ {k}
where B is a cover of F, τ = τ ′ is equivalent to k not belonging to any minimum F cover. This
is quite convenient for us since we were mainly interested in deleting elements that do no appear
in any minimum cover.

7We will drop all the c subscripts to reduce notation, as the cost vector is usually clear from context.
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Figure 5.1: On the left : G \ {(s, b)} with τ = 1, on the right G with τ = 2. S consisting of the
double edges has λF\{k}(S) = 1 but λF(S) = 1

2
.

It turns out that this is actually a sufficient condition to verify all the other constraints as well,
and hence we obtain the following theorem:

Theorem 66. Let F be an ideal clutter, k ∈ F such that k does not appear in any 1-optimal

cover, and F′ = F \ {e}. If x is feasible for LS?(PF′(1)) then
[
x
0

]
is feasible for LS?(PF(1)), for

all ? ∈ {0, s,+}.

Proof. It is sufficient to prove our earlier claim that whenever Y ′ is feasible for S?(PF′(1)), the
0 row and column extension Y is feasible for S?(PF(1)). We have already shown that Y e0 ∈

cone(

[
1

PF(1)

]
). The proofs for Y ei and Y e0 − Y ei belonging to the cone are also very similar,

and follow directly from feasibility of Y ′. It is also clear that Y is symmetric if and only if Y ′ is
symmetric, and Y is p.s.d. if and only if Y ′ is p.s.d.

It remains to discuss what happens if τ 6= τ ′ (which is equivalent to τ ′ = τ − 1), can we
somehow augment the solution? The answer is no, even if x is integer. This also aligns with our
objective of modelling the behavior λ(S), since it is generally false that an arbitrary S ∈ F \ {k}
with λF\{k}(S) ≥ λ would necessarily satisfy λF(S) ≥ λ. Figure 5.1 shows a small example
where F is a clutter of s-t paths and λ = 1.

Going back to where the proof fails for τ ′ = τ − 1, the main problem is that we are unable
to verify that χTB x ≤ |B| − τ + 1. However, this is only an issue when k /∈ B, as otherwise we
already have χTB x ≤ |B \ {k}| − τ ′ + 1 = |B| − τ + 1. When thinking about how to strengthen
these inequalities, keeping in mind that we only need to consider elements of the blocker that do

44



not contain k, the contraction clutter comes to mind, and it turns out that the key does indeed lie
there, as illustrated by the following theorem :

Theorem 67. Let F be an ideal clutter, F′ = F \ {k} and F′′ = F/{k}. If Y ′ is feasible for both

S?(PF′(1)) and S?(PF′′(1)), then Y =

[
Y ′ 0
0T 0

]
is feasible for S?(PF(1)).

Proof. Let τ = τ(F,1), and similarly τ ′ = τ(F′,1) ≥ τ − 1, and τ ′′ = τ(F′′,1) ≥ τ since
the covers of F′′ are covers of F that do not contain k. Assume x is feasible for for both PF′(1)
and PF′′(1). For all B ∈ b(F) that do contain k, we use feasibility for F′ to obtain χTB x ≤
|B \ {k}| − τ ′ + 1 ≤ |B| − τ + 1, and for B that do not contain k, B is a cover of F′′ and hence

χTB x ≤ |B| − τ ′′ + 1 ≤ |B| − τ + 1. This shows that Y e0 ∈ cone(

[
1

PF(1)

]
), and the other

constraints follow using very similar arguments.

This result can be easily generalized to arbitrary target value of λ instead of 1, yielding the
following result :

Proposition 68. Let F be an ideal clutter. Then for all ? ∈ {0, s,+} and λ ≥ 0 we have:

S?(PF\k(λ)) ∩ S?(PF/k(λ)) ⊆ S?(PF(λ)).8

While we would like to say that this implies LS?(PF\k(λ)) ∩ LS?(PF/k(λ)) ⊆ LS?(PF(λ)),
we are not guaranteed that the certificates of feasibility 9 of a vector x ∈ LS?(PF\k(λ)) ∩
LS?(PF/k(λ)) are equal for both lifts, so the result is slightly out of reach. However, we can
still obtain the result when x is integer, since there is a unique candidate for its certificate matrix
in both lifts, implying the following result:

Proposition 69. Let F be an ideal clutter, k ∈ V (F) and S ∈ F ∩ (F/k), then we have:

λF,1(S) ≥ min(λF\k,1(S), λF/k,1(S)).

This bound is quite interesting, and it gives rise to many questions:

Question 70. Let F be an ideal clutter, k ∈ V (F).

(a) Can we characterise when S ∈ F ∩ (F/k) satisfies Proposition 69 with equality ?

8Here we are identifying S?(P ) with its feasible region.
9We say that Y is a certificate of feasibility for x ∈ LS? if proj(Y ) = x and Y is feasible for S?.
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(b) Can we obtain a similar result for k /∈ S ∈ F \ (F/k) ?

(c) Can we obtain a similar bound for λF,c(S) ? I.e. an upper bound that that depends on
λF,c′(S) for some values of c′ related to c ?

The answer to any of these questions would be very helpful if we are trying to utilize feasi-
bility of smaller instances in a more general setting. However, we will not be delving deeper as
we already have all we need to prove Theorem 63.

As we discussed near the end of the previous section, given a non c-critical clutter F, the
natural operation to perform to move towards being critical is considering c′ = c − ek where k
does not belong to any c-optimal cover. However, this only works if ck ≥ 1, as otherwise c′ will
have a negative entry. Thus, we handle both cases separately.

Lemma 71. Let F be an ideal clutter, c ≥ 0 such that F is not c-critical, and k /∈ ∪b(F)c
satisfying ck = 0. Let F′ = F \ k, and c′ be the restriction of c on V (F′). If x ∈ LS?(P(F′,c′)(λ)),

then
[
x
0

]
∈ LS?(P(F,c)(λ)) for all ? ∈ {0, s,+}.

Lemma 72. Let F be an ideal clutter, c ≥ 0 integer such that F is not c-critical, and k /∈ ∪b(F)c
satisfying ck ≥ 1. Let c′ = c − ek. If x ∈ LS?(P(F,c′)(λ)), then x ∈ LS?(P(F,c)(λ)) for all
? ∈ {0, s,+}.

Proof. To prove both lemmas we simulate the proof of Theorem 66. For the first lemma, we
notice that τ ′ = τ(F′, c′) = τ(F, c) and then use feasibility of x to obtain that for every B ∈ b(F)

we have χTB

[
x
0

]
= χTB\k x ≤

1
λ
c(B \ k) − τ ′ + 1 = c(B) − τ + 1. For the second lemma

the argument is even easier, as τ(F, c′) = τ(F, c) and c′(B) ≤ c(B) for all B ∈ F, so every
constraint either remains the same or gets more relaxed when moving from c′ to c.

The proof of Theorem 63 now follows from a classic inductive argument. We will call (F, c)
a minimal counterexample if :

(i) |V (F)| is minimal among all the counterexamples,

(ii) ||c||1 is minimal among all counterexamples satisfying (i)10.

10||c||1 is the usual 1-norm, equal to
∑

i |ci|.
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We show that there are no counterexamples by showing that there are no minimal counterexam-
ples. Assume (F, c) is a minimal counterexample, then clearly F cannot be c-critical as that would
violate Theorem 65. So we know there exists k ∈ V (F) \ ∪b(F)c. If ck = 0 then by Lemma 71
with λ = 1, we obtain another counterexample (F′, c′) with |V (F′)| = |V (F)| − 1, and if ck ≥ 1
then we use Lemma 72 instead to obtain a counterexample (F, c′) where ||c′||1 = ||c|| − 1. In
both cases, we have violated the minimality condition, so it must be that Theorem 63 holds for
all ideals clutters F and integer c ≥ 0 satisfying τ(F, c) ≥ 1.

A point of intrigue is that decreasing c by ek seems to behave very similarly to the deletion
operation when ck = 1. This is not a coincidence, since we can convert it to a deletion operation.
If we were to identify (F, c) with the clutter F′ where every element k is duplicated ck times with
each copy given cost 1, then deleting one of these copies corresponds to decreasing the cost by
1. We formalize this in the following result.

Definition 73. Let F be a clutter and c ≥ 0 integer. We define F, the replication clutter of F by
c, to be the clutter on ground set V (F′) = ∪e∈V (F){e1, e2, . . . , ece} whose elements are exactly
the copies of sets in F, i.e. sets S ′ of the form S ′ = {(e1)α1 , . . . , (e

k)αk
} where {e1, . . . , ek} ∈ F,

and 1 ≤ αi ≤ cei .

In other words, F′ is obtained by replacing every ground element e with ce copies, and then
considering the sets that do not contain any two copies of the same element and are clones of el-
ements in F, where a clone of S = {e1, e2, . . . , ek} is a set of the form S ′ = {(e1)α1 , . . . , (e

k)αk
}

where 1 ≤ αi ≤ cei .

Proposition 74. Let F be a clutter on ground set V (F) = [n], c ≥ 0 integer, and let F′ be the
replication clutter of F by c.

(a) b(F′) = {B′ : B′ = ∪e∈B{e1, e2, ..., ece}, B ∈ b(F)}.

(b) F is ideal if and only if F′ is ideal.

(c) τ(F, c) = τ(F′,1).

(d) If c = 1− ek, then F′ = F \ k11.

(e) For S ∈ F and S ′ ∈ F′ is a clone of S, we have λF′,1(S ′) = min{1, λF,c(S)}.

(f) For all λ ≤ 1, P(F,c)(λ) is non-empty if and only if P(F′,1)(λ) is non-empty.
11Up to relabelling the ground set.
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Proof. (a) Holds from the simple observation that a cover of F′ containing ei either contains all
copies ej, j ∈ [ce] or can be made smaller by omitting ei from the cover. (b) follows from (a) and
the width-length inequality(Theorem 14) by adding up all the weights of the clones for F′ and
taking the minimum weight in b(F′), and so does (c). (d) follows from the definition.

To prove (e), we consider S ′ = {(e1)α1 , . . . , (e
k)αk
} ∈ F′ a clone of S = {e1, . . . , ek} ∈ F.

Let x = χS ∈ RV (F) and x′ = χS′ . We claim x′ is feasible for P(F′,1)(λ) if and only if x is
feasible for P(F,c)(λ). From (a), we know that there exists a one-to-one correspondence between
elements in b(F) and b(F′), so B′ = ∪e∈B{e1, e2, ..., ece}. Note that we have x′(B′) = x(B), and
c(B)−τ(F,c)
|B∩S|−1

= |B′|−τ(F′,1)
|B′∩S′|−1

, and hence x′ satisfies the two constraints given by B′ if and only if x
satisfies the two constraints given by B.

The forward direction of (f) is a simple generalization of (e). Given x feasible for P(F,c)(λ),
then we can simply construct x′ coordinate-wise by x′e1 = xe and x′ei = 0 for all j ≥ 2, and we
would have x′ is feasible for P(F′,1)(λ). For the reverse direction, given x′ feasible for P(F′,1)(λ)
then x given by xe =

∑ce
i=1 x

′
ei

is feasible for P(F,c)(λ) since x′(B′) = x(B) just like in the proof
of (e). We note that if ce = 0 then xe is taken to be 0 in this construction.

This means that we can centralise our focus on c = 1, and if we can prove that for a small
enough value λ̄, P(F,1)(λ̄) is always non-empty then the result would hold for all c ≥ 0 integer
as well by deleting elements of cost 0 then considering the replication clutter of the minor.

5.4 Next iteration and LS ranks

Now that we have proven that LS?(P(F,c)(1)) is always non-empty for ideal F and integer c ≥ 0
as long as τ ≥ 1, we can keep iterating the operator and ask when do we reach the integer hull.
To formalise this, we need a quick definition.

Definition 75. Given an ideal F, integer c ≥ 0 and τ > λ > 0. For all ? ∈ {0, s,+}, we define:

r?(F,c)(λ) := min{r ∈ N : LSr?(P(F,c)(λ)) = (P(F,c)(λ))I}.12

First thing to note is that this value is always finite and is bounded above by |V (F)|. This
due to the fact that for any polytope P ⊆ [0, 1]n and T ⊆ [n] with |T | = k, we have LSk0 (P ) ⊆
BCCT (P ) = conv{x ∈ P : xT is integer}, implying the following result :

0 ≤ r+
(F,c)(λ) ≤ rs(F,c)(λ) ≤ r0

(F,c)(λ) ≤ |V (F)|.
12LSk

? (P ) denotes the k-th iteration of LS?, i.e. LSk
? (P ) := LS?(LS

k−1
? (P )) with the convention that

LS0
?(P ) := P .
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Many questions immediately come to mind, so we discuss a few:

Question 76.

(a) How big is the gap between r0, rs and r+ ? Can we characterize the triplets (F, c, λ) for
which they coincide ?

(b) Can we find better upper bounds on any of the r? for certain classes of ideal clutters ?
Perhaps a universal constant, a function of |V (F)|, or a more intrinsic parameter of the
clutter.

(c) Can we find lower bounds for certain classes of ideal clutters ?

In all the small examples we are able to work out by hand, all the values r? for 0 ≤ λ ≤ τ are
equal. Equality between r0 and rs could be due to the high symmetry in small examples, making
it is quite plausible that a gap can manifest once the examples get bigger and less symmetric.
The difference between r+ and rs is a lot harder to grasp: It is not clear what the p.s.d. condition
is achieving. In all the examples we studied feasibility was always achieved by a convex com-
bination of vvT matrices which is guaranteed to satisfy the p.s.d. condition, and it proved to be
quite challenging to construct a non p.s.d solution to Ss, which seems to suggest that not only
LS+ = LSs is true, but that S+ = Ss also holds.

(b) and (c) appear to be quite challenging and we are very far from finding any general
bounds, but we still attempt to approach certain special cases. First we choose to study the
behavior of these rank functions for λ = 1 and c = 1. We then focus on the case when λ(F) < 1
mainly because we have no good tools of being able to tell if a polytope is equal to the integer
hull aside from when the integer hull is empty. In this setting, we know r?F ≥ 2 since we know
LS?(PF) is always non-empty, so we ask if we can find a nice class of clutters for which r?F = 2.
A step towards finding such a class is the following result:

Definition 77. For a clutter F we define Gap(F) := min{|B| − τ(F) : B ∈ F, |B| > τ}.

Lemma 78. Let F be an ideal clutter where :

1. τ = 2, and

2. The minimal covers partition V (F), and

3. Gap(F) ≥ k.

Then, LSk+(P(F,1)(1)) is non-empty.
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Proof. The result already holds for Gap(F) = 1 without any assumptions on F. We will prove
this for Gap(F) = 2 by construction. For i ∈ V (F) denote by ī the element such that {i, ī} is a
cover of size 2. Note that due to Assumptions 1 and 2, this element exists and is unique, and we
also have ¯̄i = i. We construct Y i as follows : Y ie0 = Y iei = 1

2
1+ 1

2
(e0 + ei− eī), Y ieī = 0 and

for any j /∈ {0, i, ī}, Y iej = 1
4
1+ 1

4
(e0 + ei + ej − eī− ej̄). Note that Y iej ∈ cone

[
1

P (1)

]
since

every cover of size at least 4 hits at least 2 non-zero elements. Hence the lower bound inequality
is satisfied. A size ≥ 4 cover also hits at most 2 elements with entry 1 while every other entry is
at most 1

2
. Hence, the upper bound inequality is also satisfied. This shows that Y i ∈ S0(P (1))

for all i, and we can also show that Y i is symmetric p.s.d. and therefore 1
2
1 + 1

2
(ei − eī) ∈

LS+(PF,1(1)) for all i ∈ [V (F)], and so 1
2
1 ∈ LS2

+(P (1)). This idea can be easily generalized
for arbitrary Gap(F) values by showing that LS+(P (1)) has a solution with Gap(F)− 1 entries
set to 1.

Corollary 79. Let F be an ideal clutter where :

1. τ = 2, and

2. The minimal covers partition V (F), and

3. λ1(F) < 1.

Then, r?(F,1) ≥ Gap(F) + 1.

Proof. This result follows directly from Lemma 78 by simply noticing that (PF,1(1))I = ∅ for
every clutter satisfying λ1(F) < 1.

We note however that this does not constitute a proof that r+
F can get arbitrarily high, since

we have yet to prove the existence of clutters with arbitrarily large gap that are ideal, let alone
clutters satisfying the conditions in Corollary 79. The highest gap value we are currently able to
achieve with these conditions is Gap(F) = 2, with the example of Q10 [3] given below.
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M(Q10) =



0 0 0 0 0 1 1 1 1 1
1 0 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 1 1
1 1 1 1 0 0 0 0 0 1
0 0 0 1 0 1 1 1 0 1
0 1 1 1 0 1 0 0 0 1
0 0 1 1 0 1 1 0 0 1
0 1 0 0 1 1 0 1 1 0
1 0 1 0 1 0 1 0 1 0
0 1 1 0 1 1 0 0 1 0
0 0 1 0 1 1 1 0 1 0
0 1 0 1 1 1 0 1 0 0
1 0 0 1 1 0 1 1 0 0
1 1 0 1 1 0 0 1 0 0
1 0 1 1 1 0 1 0 0 0


To complement Corollary 79, we give a large class of clutters that satisfy the conditions of

the corollary with gap 1, whose r? rank is exactly 2.

Proposition 80. LetHr denote the r×2r−1 matrix whose rows correspond to non-empty subsets
of [r]. Denote byH∗r the matrix of the same dimension such thatHr+H∗r = J13. Then the clutter

Qr,t [9] given by its matrix representation :




Hr H∗r J 0 1 0
H∗r Hr 0 J 1 0
J 0 H∗t Ht 0 1
0 J Ht H∗t 0 1

is ideal with τ = 2,

λ(F) < 1, its minimum covers partition the ground set, Gap(Qr,t) = 1 and r0
Qr,t,1

= 2.14

Proof. We will focus on proving that r0 = 2 as the rest of the properties are verified in [9]. First
we label the ground set of Qr,t as follows :

13J is the all 1 matrix.
14This also proves that rs = r+ = 2, as we already know 1 < r+ ≤ rs since LS+(P(F,c)(1)) is always

non-empty.
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L S P Q e f


Hr H∗r J 0 1 0
H∗r Hr 0 J 1 0
J 0 H∗t Ht 0 1
0 J Ht H∗t 0 1

. To show LS2
0(P (1)) is empty, we will show that there are no

points in LS0(P (1)) with xe ∈ {0, 1}. Consider any feasible point x and let Y be its certificate
matrix. Without loss of generality we will assume xe = 1 (otherwise we will have xf̄ = 1
and the argument is similar). Denote the elements in L, S, P,Q by {l1, . . . , lr},{s1, . . . , sr},
{p1, . . . , pt},{q1, . . . , qt} so that {li, si} and {pi, qi} are minimum covers. We must have have
xl1 + xs1 = 1 so again without loss of generality we can assume xl1 > 0. Thus, Y el1 ∈

cone

[
1

P (1)

]
implies that we must have a solution x′ ∈ P (1) with x′l1 = x′e = 1. Note that for x′

to be feasible for P (1), we must have that 1 ≤ x′. χB ≤ |B| − 1 for every B ⊆ F that is a cover
(not necessarily minimal) of F (for non minimal covers, the inequality is implied by the minimal
cover contained in them).

Now note that for every 1 ≤ j ≤ r, {l1, sj, e} is a cover, so we must have x′S = 0, and thus
x′L = 1. We also have that {S, pi, f} is a cover for all 1 ≤ i ≤ t, and hence we must have
that x′P = 1, and thus x′Q = 0. With this, we have found every single coordinate of x′, so the
only potential candidate is x′ = χL +χP +xe, which is an integer vector (and corresponds to the
first row of F). However, L ∪ P ∪ {e} is a cover (not necessarily minimal of Qr,t, that does not
contain any cover of size 2, and hence must contain a non minimal cover B whose inequality in
P (1) will be violated by x′.

This hints that Gap(F) could be closely related to the LS ranks, but characterizing this re-
lation proved to be quite difficult to approach, especially due to the lack of examples with high
gap.

Another observation we make is that in all of these examples, the central point c
τ

seems to
always belong to the last non-empty iteration of the LS operators, and so we end this discussion
with a small observation regarding its certificate.

Remark 81. Let F be a c-critical ideal clutter such that the covering dual LP (D) (Given at
the start of Chapter 3) has a unique optimal solution. The point x = c

τ
∈ LS?(Pc(1)) admits a

unique certificate matrix in S? for all ? ∈ {0, s,+}.

Proof. Let Y be a certificate for feasibility of x, and without loss of generality assume that

{1, . . . , τ} is a c-optimal cover. Consider τY ej =

[
1
Y j

]
where Y j ∈ Pc(1). Since Pc(1) ⊆
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conv(χS : S ∈ F), we must have Yj =
∑

S∈cF y
j
S χS , with

∑
yjS = 1. Note that since Yi,j = 0

for all 1 ≤ i 6= j ≤ τ , the sets appearing in these decompositions with non-zero coefficients are
distinct, and thus y′ =

∑τ
j=1 y

j will be an optimal dual solution. To check feasibility, we simply
calculate

∑
S:e∈S yS =

∑
S:e∈S

∑τ
j=1 y

j
S =

∑τ
j=1

∑
S:e∈S y

j
S =

∑τ
j=1 Yj,e =

∑τ
j=1 Ye,j = 1.

Now consider Y ′ induced from y′ via the usual construction (given in the proof of Lemma 65).
Y ′ agrees with Y on all the columns corresponding to 1, 2, . . . , τ but we cannot yet certify that
they agree on elements Yi,j where i 6= j > τ . So we repeat the construction but starting with a
minimum cover containing the ground element τ + 1. We find Y ′′ that agrees with Y on column
τ + 1. But the optimal dual solution y′′ found in the process must be equal to y′ (as it is unique)
and hence Y ′ = Y ′′, and thus Y ′ agrees with Y on all columns 1, . . . , τ, τ + 1. By simple
repetition of the argument for each index, we find that Y = Y ′.

We might get tempted to believe that the uniqueness of an optimal dual solution is actually
equivalent to the uniqueness of the certificate as every optimal dual solution yields a certificate
matrix for c

τ
, but this is incorrect. Different dual solutions may give rise to the same matrix, we

give the example of a uniform packing of {1, 2, 3}, {1, 5, 6}, {2, 4, 6}, {3, 4, 5} and a uniform
packing of {1, 2, 6}, {1, 3, 5}, {2, 3, 4}{4, 5, 6} yielding the same matrix.

In the next section, we go back to focusing on the initial lift, but now specifically for the
clutter of T -joins and c = 1, and attempt to gauge how the relaxation behaves for this class.

5.5 The case of T -joins

A graft is a pair (G, T ) where G = (V (G), E(G)) is a graph and T is a subset of V (G) of even
cardinality. A T -join M is a collection of edges of G, such that degM(v) is odd if and only if
v ∈ T . We refer to sets X ⊆ V as T -even (resp. T -odd) if |T ∩X| is even (resp. odd). When T
is clear from context we drop the T and refer to such sets as even or odd.

Definition 82. Let (G, T ) be a graft, we define its clutter of T -joins to be the clutter on ground-set
E(G) whose elements are acyclic T -joins15 and refer to it as F(G, T ).

To reduce the notation, we define τ(G, T ) = τ(F(G, T ),1) and P (G, T, λ) = P(F(G,T )),1(λ),
similarly LS?(G, T, λ) = LS?(P (G, T, λ)(λ)).

The main focus of this section is to show that LS?(G, T, λ) mimics a lot of the properties
satisfied by integer T -joins packings.

15A T -join is minimal if and only if it is acyclic.
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First we note that the clutter minor operations behave well with respect to the graft minor
operations. That is F(G, T )\{k} = F((G, T )\{k}), and similarly for the contraction operation.

We also have a nice characterization of the blocker of this clutter, which turns out to be the
clutter of minimal T -cuts.

Remark 83. Let (G, T ) be a graft whereG is connected. Then b(F(G, T )) = {δ(U) : U ⊆ V (G)
is T -odd, G|U and G|(V \ U)16 are both connected.}. These elements are referred to as T -cuts.

Now consider S = δ(A) for a T -odd set A ⊆ V (G) with |S| = τ . Let L = E(G|A)
and R = E(G|V − A), so L,R, S partition E(G). Let G′ = G/R and G′′ = G/L with
T ′ = T ∩A∪{R}, T ′′ = T ∩ (V −A)∪{L}, and define F′ = F(G′, T ′),F′′ = F(G′′, T ′′). These
will satisfy τ ′ = τ ′′ = τ . Given disjoint T ′-joins J ′1, . . . , J

′
τ and disjoint T ′′-joins J ′′1 , . . . , J

′′
τ ,

we can construct τ disjoint T -joins by ’gluing’ each J ′i to J ′′j where J ′i ∩ S = J ′′j ∩ S, and
hence J ′i ∪ J ′′j appears in an optimum packing for (G, T ). We claim that this idea extends to our
relaxation, in the following sense:

Lemma 84. Consider a graft (G, T ) and S = δ(A) for an odd set A ⊆ V (G) with |S| = τ . Let
L = E(G|A) and R = E(G|V − A). Let G′ = G/R and G′′ = G/L. If (xL, xS) is feasible
for LS?(G′, T ′, λ) and (xR, xS) is feasible for LS?(G′′, T ′′, λ), then (xS, xL, xR) is feasible for
LS?(G, T, λ), for all ? ∈ {0, s,+}.

We will prove the result for LS+ since it is the trickiest, the proof for the other two operators
is very similar.

Proof. Let Y ′, Y ′′ be the certificates of feasibility of (xL, xS) and (xR, xS) for their respec-

tive S+ lifts. So, we have Y ′ =

 1 xTL xTS
xL XL XL,S

xS XS,L XS

 is feasible for S+(G, T, λ) and Y ′′ = 1 xTR xTS
xR XR XR,S

xS XS,R XS

 is feasible for S+(G′′, T ′′, λ). We claim that there exists:

Y =


1 xTL xTS xTR
xL XL XL,S Z
xS XS,L XS XS,R

xR ZT XR,S XR

 feasible for S+(G, T, λ).

16For a graph G and a set A ⊆ V (G), we denote by G|A the graph G restricted to A, so G|A = G \ (V −A)
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When considering possible candidates for Z, we might be tempted to pick Z = 0 or Z =
yLy

T
R as they are the most straight forward extensions. While the former always yields a p.s.d.

matrix, it can violate every other condition. The latter seems more promising: if Y ′, Y ′′ were
coming from convex combinations of rank 1 solutions, ye represents the total weight of solutions
that include e, and yeyf would be a reasonable guess for the total weight of rank 1 solutions
combining e and f (this is akin to assuming an independence between the T -joins on each side).
However this still can fail even for very small clutters, and is only guaranteed to work when
xS = ek for some k ∈ S. We could then attempt to prove that every solution to S+ can be written
as a convex combination of feasible matrices where xS = ek, combine these individually and
find the appropriate Z by taking a convex combination of these extensions. This is unfortunately

unattainable, since the S+ for Q6 has a unique solution Y that satisfies Y e0 =

[
1

1
2
1

]
17. Fortu-

nately, we can still extend our solutions with a choice of Z that is inspired by the integral case.
For i ∈ L, j ∈ R, Zi,j should represent the total weight of rank 1 solutions sharing i and j, and
since we are combining rank 1 solutions based on their S intersection, a more calculated choice
would be to take Zi,j =

∑
k∈S,xk 6=0

1
xk
Xi,kXj,k (since Xi,k would be representing the fraction

from xi of rank 1 solutions combining i and k, and and among those 1
xk
Xj,k use j), and so we

pick Z = XL,SX
−1
S XS,R.18

First we shall prove that if (xL, xS) ∈ P (G′, T ′, λ) and (xR, xS) ∈ P (G′′, T ′′, λ) then
(xL, xS, xR) ∈ P (G, T, λ). Let C be a T -cut of (G, T ). If C is also a T ′ cut of (G′, T ′) (or
T ′′ cut of (G′′, T ′′)), then feasibility of (xL, xS) (respectively (xR, xS)) guarantees that 1 ≤∑

e∈C xe ≤ |C| − τ + 1. Hence we focus on cuts C where C = δ(A′ ∪ B′) where ∅ ( A′ ( A
and ∅ ( B′ ( V \ A. Note that exactly 1 of A′ or B′ is T -odd, (we can simply assume it is A)
so let P = δ(A′) and Q = δ(B −B′), both T -odd. Note that∑

e∈C

xe =
∑
e∈P

xe +
∑
e∈Q

xe −
∑
e∈S1

xe +
∑
e∈S2

xe

where S1 = δ(A′, B − B′) ⊆ S, S2 = δ(A− A′, B′) ⊆ S. Since S is a minimal size T ′-cut, we
have

∑
e∈S xe = 1 and therefore :∑

e∈C

xe ≥
∑
e∈P

xe +
∑
e∈Q

xe −
∑
e∈S

xe ≥ 1 + 1− 1 = 1,

∑
e∈C

xe ≤
∑
e∈P

xe +
∑
e∈Q

xe +
∑
e∈S

xe ≤
1

λ
(|P | − τ) + 1 +

1

λ
(|Q| − τ) + 1 + 1.

17Note that Q6 is the T-join clutter of G = K2,3 where the terminals are all the vertices but a single degree 3
vertex.

18Whenever X is singular, we will refer by X−1 to its unique Moore-Penrose pseudoinverse.
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≤ 1

λ
[(|P |+ |Q| − τ + 2)− τ ] + 1 ≤ |C| − τ + 1

As |C| + |S| − 2 ≥ |P | + |Q|, since S must contain at least 1 edge in δ(A′, B − B′) and one
other edge in δ(B′, A− A′) for C to be a minimal cut, and these edges belong to exactly one of
P or Q.

To show Y ei ∈ cone(

[
1

P (G, T, λ)

]
), a similar argument applies for each i ∈ S, and now we

prove it when e ∈ L (and similarly for e ∈ R). Every cut C ⊆ L must satisfy

1 ≤
∑
j∈C

Y ′i,j ≤
1

λ
(|C| − τ) + 1

simply from the feasibility of Y ′, as Yi,j = Y ′i,j . But what if C ⊆ R ? Then we have :

Y ei|{0}∪S∪R =

 xi
XS,i∑

k∈S Xk,i
1
xk
Xk,R

 =
∑
k∈S

1

xk
Xk,i

 xk
xS,k
Xk,S

 =
∑
k∈S

1

xk
Xk,i(Y

′′ek)

and hence the inequality follows from the fact that Y ′′ek ∈
[

1
P (G′′, T ′′, λ)

]
. Finally when C is

contained in neitherR nor L, we simply combine the two tricks above by breaking it into a cut of
G′ and another of G′′ and obtaining bounds for each using the appropriate feasibility conditions

from Y ′, Y ′′. The Y e0 − Y ei ∈
[

1
P (G, T, λ)

]
conditions follow by similar arguments. To verify

that Y is psd, we use Schur complement on the S block. This is a common characterization
for positive semi-definiteness of a block matrix [18], and we state the result for the sake of
completeness.

Theorem 85. (Schur complement conditions for positive semi-definiteness.)

Let M =

[
A B
BT C

]
be a symmetric matrix. Then, the following hold:

• M � 0 ⇐⇒ A � 0, C −BTA−1B � 0, and (I − AA−1)B = 0.

• If A � 0, then M � 0 ⇐⇒ C −BTA−1B � 0.
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Back to our proof, we already know XS � 0 from Y ′ � 0 as it is feasible for S+(G′, T ′, λ),
so we need to verify that :

M =

 1 xTL xTR
xL XL Z
xR ZT XR

−
 xTS
XL,S

XR,S

X−1
S

[
xS XS,L XS,R

]
� 0.

Since 1 =
∑

k∈S xS , and for all e ∈ R ∪ L, we have xe −
∑

k∈S Xe,k = 0, we have :

M =

0 0 0
0 XL −XL,SX

−1
S XS,L 0

0 0 XR −XR,SX
−1
S XS,R

 ,
which is p.s.d. if and only if each diagonal block is p.s.d., and that is easily verified by applying
Schur complement condition on the S blocks of Y ′ and Y ′′. We do not have to worry about
the last condition of Theorem 85, as XS is a diagonal matrix, and for all i ∈ S we have that if
XSi,i = 0, then Y ei = Y T ei = 0.

Next we look at another reduction. Consider 2 edges (u, v), (u,w) of (G, T ) and letG′ be the
graph obtained by deleting both and then introducing a new (v, w) edge. Note that any packing
of (G′, T ) can be trivially extended to a packing of (G, T ). We claim that a similar extension
works for LS?.

Lemma 86. Let (G, T ) be a graft, and F(G, T ) be the clutter of T -joins. Let n, n + 1 be
edges of G that are incident to the same vertex w, such that G′ the graph obtained by delet-
ing the edges (w, n) and (w, n + 1), then adding the edge (n, n + 1), satisfies τ(G′, T ) =
τ(G, T ). If (x1, x2, . . . , xn) is feasible for LS?(G′, T, λ), then (x1, x2, ..., xn, xn) is feasible for
LS?(G, T, λ).

Proof. Let Y ′ =

 1 xT xn
xn X α
xn αT xn

 be the certificate matrix for (x, xn) in S?(G′, T, λ). we claim

that Y =


1 xT xn xn
x X α α
xn αT xn xn
xn αT xn xn

 is feasible for S?(G, T, λ). Let n = (u, v), n + 1 = (u,w),

and n + 2 = (v, w) (so E(G) = [n + 1], E(G′) = [n − 1] ∪ {n + 2}). First we prove that

Y e0 ∈ cone(

[
1

P (G, T, λ)

]
). Consider any T -cut C = δ(U) of (G, T ). We proceed according to

S = U ∩ {u, v, w}.

57



If |S| ∈ {0, 3}, then C is also a T -cut of (G′, T ), and hence by feasibility of Y ′ we have:

1 ≤
∑
i∈C

xi ≤
1

λ
(|C| − τ) + 1.

If S = {u}, then we have n, n+ 1 ∈ C, and C ′ = C \ {n, n+ 1} is a T -cut of G′. Thus:

1 ≤
∑
i∈C′

xi ≤
1

λ
(|C ′|−τ)+1⇒ 1 ≤ 2xn+

∑
i∈C\{n,n+1}

xi ≤ 2+
1

λ
(|C ′|−τ)+1 ≤ 1

λ
(|C|−τ)+1.

If S = {v}, then C ∩{n, n+ 1} = {n}, and C ′ = C ∪{n+ 2} \ {n} is a T -cut of of G′. So:

1 ≤ α0 +
∑

i∈C′\{n+2}

xi ≤
1

λ
(|C ′| − τ) + 1⇒ 1 ≤ xn +

∑
i∈C\{n+2}

xi ≤
1

λ
(|C| − τ) + 1.

Other possibilities of S simply follow by considering Ū instead of U .

Y ei, Y e0 − Y ei ∈ cone(

[
1

P (G, T, λ)

]
) follows using the same argument from Y ′ei, Y

′e0 −

Y ei ∈ cone(

[
1

P (G′, T, λ)

]
) for i ≤ n − 1, and for i ∈ {n, n + 1}, the result follows from

Y ′en+2, Y
′e0 − Y en+2 ∈ cone(

[
1

P (G′, T, λ)

]
). Y � 0 can be easily verified by Schur comple-

ment condition, since :[
xn xn
xn xn

]
−
[
xn αT

xn αT

] [
1 xT

x X

]−1 [
xn xn
αT αT

]
=

[
1 1
1 1

]
(xn −

[
xn αT

] [1 xT

x X

]−1 [
xn
αT

]
) � 0

as (xn −
[
xn αT

] [1 xT

x X

]−1 [
xn
α

]
) � 0 follows from Y ′ � 0.

Together, Lemmas 84 and 86 provide a very powerful series of reductions, inferring feasibil-
ity of (SDP) from smaller instances. Lemma 84 ensures that every minimal cut is of the form δ(t)
for some t ∈ T , while Lemma 86 will ensure that T = V (G) and δ(t) = τ for every t ∈ T by
short-cutting through every vertex of degree > τ as long as τ does not decrease. Unfortunately,
this cannot be done in general, as the degree of a vertex can decrease by 2 when reducing 2 of
its incident edges, but it works if we ensure all odd cuts have the same parity, since that would
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imply that every non minimal odd cut has to have size at least τ + 2, decreasing the size of any
non minimal cut by 2 still ensures it has size at least τ . Note that the above operation preserves
this parity condition, since every cut remains of its same size or decreases by exactly 2. This
results in a nice structure for every minimal (G, T ) for which LS? is empty:

Definition 87. We call a graft (G, T ) pseudo-eulerian if every T -odd cut has the same parity.

Lemma 88. For every λ ≥ 0, a minimal19 pseudo-eulerian graft (G, T ) for which LS?(G, T, λ)
is empty must satisfy :

• V (G) = T , and

• deg(u) = τ for all u ∈ T , and

• if |δ(U)| = τ for a T -odd set U , then U ∈ {{u}, V − {u}} for some u ∈ T .

One can be tempted to ignore this reduction since we have already proven in the previous
section that LS?(1) is always non-empty for every ideal clutter which includes every clutter of
T -joins. However, the construction we used is robust enough to preserve some nice properties
of the feasible solutions. For example, if we show that LS?(G, T, λ) has an integer point for
every graft satisfying the assumptions in Lemma 88, then we will obtain that LS?(G, T, λ) has
a feasible integer point for every pseudo-eulerian graft. This is because our constructions in
Lemmas 86 and 84 preserve integrality. This leads us to the following result :

Theorem 89. Let (G, T ) be a pseudo-eulerian graft with |T | ≤ 8, then the clutter of T -joins
packs.

Proof. Note that both of our reductions preserve the graph being pseudo-eulerian, and our con-
structions ensure that integral solutions of the reduced instances yield an integral solution for
the original instance, and crucially do not augment any coordinate that is originally 0. Hence,
”disjoint” solutions for the reduced instances augment to ”disjoint” final solutions. Therefore,
it is sufficient to prove that every graft satisfying the conditions of lemma 88 with |T | ≤ k to
obtain the result for all pseudo-eulerian grafts with |T | ≤ k. For these instances, we do simple
induction on τ . The result is trivial for τ = 1, and for τ ≥ 2, it suffices to obtain a perfect
matching M , then consider G′ = G \ M . We claim that τ(G′, T ) = τ(G, T ) − 1, and that
(G′, T ) is pseudo-eulerian. The latter is due to the fact that every perfect matching intersects
every T -odd cut an odd number of times, and so it is sufficient to find a perfect matching M
with τ(G \M,T ) = τ(G, T ) − 1. First we prove the existence of a perfect matching. Assume

19So LS?(λ) is non-empty for every graft minor of (G,T ).
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otherwise, then we must have a Tutte-Berge set certificate S and disjoint odd sets K1, . . . , Kl

such that l > |S| and δ(Ki) ⊆ δ(S). Since each Ki is odd, δ(Ki) is an odd T -cut, and hence
must have size at least τ . But then we have :

|δ(S)| ≥
l∑

i=1

|δ(Ki)| ≥ lτ ≥ (|S|+ 1)τ

which is not possible since each vertex in S has degree τ . Then we claim that χM is feasible for
PF(G,T ),1(1) and hence λ(χM) = 1. Indeed, consider any odd T -cut C of (G, T ): if C = δ(v)
for some v then clearly |C ∩M | = 1, otherwise |C| ≥ τ + 2, but since C must have at least one
side containing 3 vertices, we have |C ∩M | ≤ 3 ≤ |C| − τ + 1.

This leads to the following corollary for any T joins clutter with |T | ≤ 8 :

Corollary 90. Let (G, T ) be a graft where |T | ≤ 8. Then the clutter of T -joins admits a half
packing.

Proof. The result follows trivially from doubling every edge then applying Theorem 89.

For |T | ≥ 10, we do not generally expect integer solutions, but we have feasibility of
LS?(G, T, 1) from the previous sections.

These reductions also show that the 1
k

conjecture for T -joins is equivalent to a weaker version
of the still open generalized Fulkerson Conjecture, that we state below:

Conjecture 91. Weak Generalized Fulkerson conjecture : There exists a universal constant k
such that every m-regular graph on 2n vertices with no odd cut of size < m admits a collection
of km perfect matchings that cover each edge exactly k times.
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Chapter 6

Takeaways, and what lies ahead

Let us take a step back and revisit our findings in context of the initial plan. We were looking
for a proxy for λc(F). We started by finding a formulation Pλ such that Pλ is non-empty if
and only λc(F) ≥ λ, and then we would have λc(F) = max(λ : Pλ is non-empty). We were
hoping to consider a proxy of the form f(F, c) = max(λ : Qλ is non-empty), where Qλ is a
relaxation of Pλ, and to somehow find a bound of λc(F) as a function of f(F, c), ideally of the
form λc(F) ≥ 1

α
f(F, c) for some constant α.

We tried two different IP formulations in Sections 4.1 and 4.2 and attempted to take the
natural LP relaxations, but this turned out to be too weak as those were always non-empty for
λ = 1. We then tried different ways to strengthen each relaxation.

For the LP relaxation in 4.1 we first tried considering the CG closure, but it turned out that this
gives back the integer hull and goes back to being exact, so we attempted an alternative method
by adding a certain set of valid inequalities for the integer hull. We succeeded in obtaining a nice
lower bound but as a trade-off we lost track of the feasibility of these relaxations.

For the LP relaxation in 4.2, which was always non-empty even for non-ideal clutters, we
considered multiple convex lifts. The first iteration always remained non-empty even for λ = 1
when F is ideal, but for the following iterations, it was quite difficult to understand when the
relaxation becomes exact and how we could obtain a useful lower bound from its feasibility. It
is also intriguing that the rank of the lift and project operators we considered seemed to depend
on Gap(F), so perhaps we should investigate more about this quantity and perhaps it is tightly
related to λ(F). Section 5.5 shows that even when we restrict ourselves to clutters of T -joins,
which are a relatively nice class, the problem remains quite hard and it at least as hard as a still,
weak version of the Fulkerson conjecture.
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The common point between our main two formulations is that they use a very rough averaging
idea, where a feasible point could correspond to convex combination of sets S1, . . . , Sk ∈ F such
these individual sets no longer need to satisfy the blocker inequalities |B∩S|−1 ≤ 1

λ
(c(B)−τ),

but they do on average for every B ∈ b(F). Theorem 56 is perhaps a good indicator of what’s
happening behind the scenes, as when we obtain a convex combination of at most k elements
of F who on average satisfy these inequalities, we obtain a lower bound of λ

k
on λ(F), and the

example of Q6 shows this is best bound we can get using this method. This hints that any good
bound λc(F) requires a large number of local constraints, as averaging over the whole clutter
seems to be too weak. However, it appears to be quite difficult to balance adding strong local
constraints with maintaining information on the feasibility of these relaxations.

In conclusion, the 1
k
-conjecture is still far from our reach. While we do have very useful tools

to understand λF,c(S), we do not yet have any grasp on the behavior of λc(F).
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[8] Michele Conforti and Gérard Cornuéjols. Clutters that pack and the max flow min cut
property: a conjecture. Technical report, Carnegie-Mellon Univ Pittsburgh PA Graduate
School Of Industrial Administration, 1993.
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