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Abstract

Cooking fumes may cause multiple adverse health effects, and range hoods play central
roles in controlling indoor air pollution caused by cooking fumes. However, the traditional
design of the range hoods has a low efficiency due to its working principle, and the efficiency
decreases rapidly as the mounting height of the exhaust hood increases.

This thesis is aimed at design and building a novel tornado-like vortex generator
(TLVG) with an intelligent controller to enhance the efficiency of traditional range hood.
Both experimental results and numerical simulation indicate that most of the cooking fumes
are spreading to surrounding areas when the traditional range hood is working alone, while
the cooking fumes are drawn into the tornado-like vortex and exhausted through the range
hood when the novel TLVG is on.

The effects of various factors on the efficiency of sucking cooking fumes are analyzed
by orthogonal experiment design. The results show that the key factor affecting the per-
formance of the TLVG is the horizontal jet angle. A higher jet velocity results in a lower
negative pressure, which helps concentrate and exhaust the fume. The results also reveal
that the exhaust flow velocity marginally affects the pressure around the source of cooking
fumes, but the tornado-like vortex cannot be produced when the value of the exhaust flow
velocity is too high. In addition, the figures of the velocity field, pressure field, and tracking
particle field are plotted and analyzed.

In this thesis, an intelligent controller of TLVG is designed and simulated to adapt to
various types of range hoods. Adaptive-Network-based Fuzzy Inference System (ANFIS)
is used in this intelligent controller, which combines the merits of both Fuzzy Inference
Systems and Neural Networks. The results from the numerical simulation of the TLVG
can be used to train and test the neural fuzzy system. Besides, Particle Swarm Optimiza-
tion (PSO) is used for effective training in ANFIS networks. Digital simulation results
demonstrate that the designed ANFIS-Swarm controller realizes a better prediction of the
checking data than that from a basic ANFIS controller.

This study provides information for improving the kitchen environment, and it can also
be applied to different types of range hood, exhaust ventilation system, and air pollution
control.
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Chapter 1

Introduction

1.1 Motivation

Cooking has been reported as the main source of indoor air pollution [15], which causes
multiple adverse health effects such as respiration disease [7], acceleration of skin aging
[15] and even lung cancer [5]. Therefore, high-performance ventilation systems are needed
to remove fumes from cooking. The most common approach to improving the exhaust
performance is to increase the flow rate using a centrifugal fan with a high power.

Nowadays, the flow rate of range hood can be up to 20 m3/min, which leads to large
energy consumption and loud noise [35]. This thesis compares six types of range hoods
from Chinese market. As shown in Table 1.1, the average flow rate and average noise of
the range hoods in China are 15.75 m3/min and 66.92 dB, respectively.

However, the flow rate of the fume generated from cooking is much lower than the flow
rate of a range hood [4],[35],[16]. The great difference indicates that cooking fume is only
a small part of the gas exhausted by the range hood. In view of the wide range of the
range hood applied, researchers realized that it is important to improve the efficiency of
the range hood for energy saving.

The efficiency of a traditional range hood is limited by its working principle [35], [2],
[17]. The suction force is from the negative pressure generated by the centrifugal fan in
the range hood [2], [6], and there is always a distance between the range hood and the
source of the cooking fumes. The absolute value of the negative pressure decreases rapidly
as the distance increases [24]. As a result, the power is insufficient to completely exhaust
the cooking fumes, while clean air is a considerable part of the total gas exhausted from
the range hood [23]. That is the reason for large energy waste in a traditional range hood.
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Table 1.1: Parameters of different range hoods.

Brand Flow Rate (m3/s) Noise (dB)

ROBAM 17 67.5

FOTILE 15 66

SIEMENS 14.5 69

HAIER 17 68

SACON 16 63

MIDEA 15 68

Average 15.75 66.92

As for a suction system like vacuum cleaner, a pipe is used to extend the negative
pressure area to the target, and the pipe directs the suction force to the target, which
means that high power is not necessary even if the centrifugal fan in the vacuum cleaner
is far away from the target. As for a range hood, efficiency will be significantly improved
if the source of the cooking fumes is enclosed by a pipe. However, a big solid pipe is
impractical in reality. Inspired by the concept of tornado in nature, a virtual gas pipe
can be generated, and even heavy objects can be captured and lifted into the atmosphere
because the vortex forms a rotating gas column with a strong suction force [14], [27].

Earlier research has demonstrated that two essential elements to generate tornado-like
vortex are pressure difference on the vertical direction and shear force on the horizontal
direction [27]. For a range hood, the centrifugal fan provides a pressure gradient only in
the vertical direction. Thus, a method to provide shear force is needed to construct a micro
tornado system. Meanwhile, the shear force has to match the pressure gradient to generate
a stable tornado. Therefore, a novel tornado-like-vortex generator (TLVG) is proposed and
built to provide the vertical pressure gradient, and the horizontal air jets from tubes are
designed to provide the shear force.

1.2 Objectives

The goal of this thesis is to design and build a novel tornado-like vortex generator (TLVG)
to enhance the efficiency and to reduce the noise of traditional range hood. The traditional
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range hood is used to provide the vertical pressure gradient, and the horizontal air jets
from the tubes of this TLVG are designed to provide the shear force.

This thesis also uses numerical simulation with ANSYS Fluent to predict both air flow
path and cooking fume tracks. On the air side, incompressible air properties are adopted.
Steady-state RANS approach is used with a Eulerian reference frame, and a SST k − ω
equation is used to model the effects of Reynold’s stresses. On the particles side, a steady-
state, one-way coupled approach is used with a Eulerian reference frame, and the discrete
particle model is used for the traction.

In addition, the effects of different parameters of this novel TLVG need to study. A
L18(35) orthogonal experiment design is conducted to study the effects of jet velocity, flow
rate of range hood, jet angle, mounting height of range hood, and distance between tubes,
which are sensitive parameters to tornado-like vortex generation.

Finally, the intelligent controller is adopted to determine optimum parameters for this
TLVG.

1.3 Contributions

The contributions of this thesis are as follows:

• This study makes significant contributions to the current range hood market. Exist-
ing research enhances the performance of the range hood by using greater power or
air curtain. However, it does not help much with the negative pressure at the source
of cooking fumes. In this thesis, a novel TLVG, which can generate two tornado-
like vortices simultaneously, is designed and built, and it can increase the absolute
value of the negative pressure at the source of cooking fumes significantly. Different
factors of this TLVG like jet velocities and jet angles are adjustable to improve the
performance and stability of the tornado-like vortices.

• This thesis explores the feasibility of using TLVG to improve range hood efficiency.
Both experimental results and CFD simulation show the novel TLVG draws the
smoke into the vortex column and exhaust it through the range hood rather than
spreading it to the surrounding when the range hood working alone. This thesis also
uses orthogonal experimental design based on the CFD results to analyze different
factors of this novel TLVG, which saves time and money.
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• Existing research does not enhance the performance of the range hood using Adaptive-
Network-based Fuzzy Inference System (ANFIS) controller. This thesis reports an
intelligent controller of TLVG for different types of range hood. ANFIS is used in this
intelligent controller, which utilizes the adaptability of neural network (NN) to adjust
the parameters of membership functions and rules to minimize the overall error while
using the Sugeno Fuzzy Inference model. The Particle Swarm Optimization (PSO)
is also applied to find the globally optimal parameters of the ANFIS to optimize the
ANFIS controller for a better performance.

1.4 Thesis Organization

This thesis is organized as follows:

• Chapter 2 describes the background of numerical simulation (with ANSYS FLUENT)
and control theory. This chapter first introduces the computational methods within
SNSYS FLUENT such as governing equations, turbulence modelling, discretization
method, and discrete particle model (DPM). After that, some popular models and
concepts of intelligent control theory are introduced and discussed in terms of their
principles and advantages.

• Chapter 3 covers the methodology and process of this study. First, it describes the
structure of experimental device: the novel tornado-like vortex generator. Second,
it details the CFD modelling of the TLVG. The domain, meshes, setups, boundary
conditions, and DPM settings are covered in this chapter. Then, it introduces the
orthogonal experiment, and it is designed to study the effects of different factors of
the novel TLVG. Last, it covers the design of the intelligent controller of the TLVG
and the process of getting the training data of the controller.

• Chapter 4 compares the experiment and simulation, and it discusses the effects of
different parameters such as jet velocity, range hood flow rate, radius of the vortex
and the height of the range hood. In addition, it compares the standard ANFIS
controller and the ANFIS with PSO controller after training.

• Chapter 5 draws the conclusion of the thesis. This chapter also discusses future works
needed for this project.
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Chapter 2

Background and Literature Review

2.1 Computational Method

2.1.1 Governing Equations

As for low-speed air flow case, the governing equations used in the ANSYS FLUENT solver
are the incompressible Navier-Stokes equations [8], which are for the conservation equations
of mass and momentum. The equation for mass conservation (equation of continuity) is:

∂ρ

∂t
+∇ · (ρ~v) = 0 (2.1)

Equation 2.1 is the general form of the mass conservation equation and is valid for both
incompressible and compressible flows. In this thesis, the fluid is considered incompressible
for low-speed air flow case (density is constant, independent of space and time), and the
mass continuity equation simplifies to a volume continuity equation:

∇ · ~v = 0 (2.2)

The momentum conservation equation is:

∂

∂t
(ρ~v) +∇ · (ρ~v~v) = −∇p+∇ · (τ) + ~F (2.3)

where p is the static pressure, and ~F is the body force. The stress tensor τ is given by:

5



τ = µ[(∇~v + ~vT)− 2

3
∇ · ~vI] (2.4)

where µ is the molecular viscosity, and I is the unit tensor.

2.1.2 Turbulence Modelling

Fluctuating velocity fields describe turbulent flows. They are too computationally costly
to model directly in engineering simulations since these fluctuations can be small with high
frequency. Instead, to minimize the resolution of tiny sizes, the governing equations may
be time-averaged, resulting in an adjusted series of equations that are less costly to solve
computationally. The adjusted equations, however, contain additional unknown variables,
and turbulence models are needed to calculate these variables.

This research adopts the default shear-stress transport (SST) k − ω turbulence model.
The ω equation has some advantages when compared with the ε equation. The most
influential point is that the ω equation can be integrated without additional terms in the
viscous sublayer. Moreover, the k − ω model is typically more fitting for predicting the
flow and separation of the boundary layer of the inverse pressure gradient. The drawback
of the standard equation ω is that the solution is relatively sensitive to the values of k and
ω beyond the shear layer. In ANSYS Fluent, the shear-stress transport (SST) k−ω model
is recommended over the standard k − ω model.

Menter [22] proposed the shear-stress transport (SST) k−ω model to effectively combine
the robust and precise formulation of the k − ω model in the near-wall region with the
free-stream independence of the far-field k−ε model, and the equations of SST k−ω model
are as follows:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

(
Γk

∂k

∂xj

)
+ G̃k − Yk (2.5)

∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xj

(
Γω

∂ω

∂xj

)
+Gω − Yω +Dω (2.6)

where G̃k and Gω are the generation of turbulence kinetic energy due to mean velocity
gradients and ω (rate of dissipation), respectively; Γk and Γω represent the effective diffu-
sivity of k and ω, respectively; Yk and Yω are the dissipation of k and ω, respectively, due
to turbulence; Dω represents the cross-diffusion term.
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2.1.3 DPM

Equations of Motion for Particles

The trajectory of a particle can be determined by integrating the force balance in the
Lagrangian reference frame. The force balance equations of the particle, which is also
called the trajectory equations, are:

mp
d~up
dt

= mp
~u− ~up
τr

+mp
~g (ρp − ρ)

ρp
+ ~F (2.7)

where mp is the mass of the particles; ~u and ~up are the fluid phase velocity and particle
velocity, respectively; ρ and ρp are the density of the fluid phase and the particles, respec-

tively; ~F is the additional force, including virtual force and pressure gradient force; mp
~u−~up
τr

is drag force; τr is particle relaxation time:

τr =
ρpd

2
p

18µ

24

CdRe
(2.8)

where µ is the molecular viscosity of the fluid phase; dp is the diameter of the particle; Re
is the relative Reynolds number, which is given by:

Re =
ρdp|~up − ~u|

µ
(2.9)

Droplet Size Distributions

The Rosin-Rammler distribution is common for liquid sprays. There are several size groups,
and each is represented by an average particle size, and the track of the particle is deter-
mined based on this representative particle size. The Rosin-Rammler distribution is based
on the idea that a exponential relationship exists between the size of the particle (d) and
the mass fraction of particles with diameter greater than d (Yd):

Yd = e−(d/d̄)n (2.10)

where d is the mean diameter and n is the spread parameter.
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Turbulent Dispersion of Particles

Models of turbulent dispersion use either a stochastic discrete particle method or a cloud
representation method for a group of particles with a mean trajectory. These models can
also be combined to model several groups of particles with a mean trajectory involving the
effects of turbulent variations in the gas phase velocities.

In this thesis, the stochastic particle tracking in turbulent flow, which is also called
random track tracking, is adopted to simulate the particle turbulent movement. When the
flow is turbulent, FLUENT uses the time average velocity u of the fluid to calculate the
particle trajectory through the trajectory equation (Equation 2.7). The particle diffusion
induced by fluid turbulence can be determined by considering the instantaneous velocity
u = u+u′ caused by fluid velocity pulsation. The Random Walk Model is used to calculate
the instantaneous velocity of the fluid.

2.2 Control Theory

2.2.1 Fuzzy System

Fuzzy logic is widely used in intelligent control with multiple inputs. Fuzzy inference is the
process of input/output mapping using fuzzy logic. Fuzzy Inference Systems can model the
ill-defined systems which cannot be easily modeled using mathematical equations [34]. This
is because Fuzzy Inference Systems employing Fuzzy If-Then rules utilizes the qualitative
nature of human reasoning in defining uncertain systems.

An example of the Fuzzy If-Then rule is like this: If the temperature is Warm then
the fan speed is Fast. Quantitative identifiers like “warm” and “fast” in this example can
be mathematically represented using Membership Functions. The membership function
determines the probability that the crisp input satisfies our qualitative identifier, which
transforms crisp inputs into fuzzy inputs.

Two inference models can be applied to inferring the output from the rule base: Mam-
dani’s Fuzzy inference model and Sugeno’s Fuzzy inference model.

In Figure 2.1 [12], the Mamdani’s Fuzzy inference model (type 1) evaluates the impor-
tance of each rule using the min operator and combine the outputs of all the rules using
the max operator. Then, the output can be defuzzified using a defuzzification method such
as center of area and mean of maximum criterion. In the Sugeno’s Fuzzy inference model
(type 2), the output of each rule is expressed as a linear combination of all the inputs plus

8



Figure 2.1: Fuzzy inference system.

a constant term [19]. Then, the final output is calculated using a weighted average of the
outputs of the individual rules.

This thesis focus on the Sugeno’s fuzzy inference model. The main difference between
two models is the output membership function. The Sugeno output membership functions
are linear functions of x, y directly, so the result need not be defuzzified.

The Fuzzy Inference System (FIS) has some advantages. For example, the linguistic
rule base models humans reasoning, which is easy to be interpreted. The parameters of
FIS are also associated with the membership functions of physically meaningful quantities,
which allow for selecting good initial values for them. However, the FIS also has some
drawbacks. For instance, there is no standard way to generate the membership function
and transform human knowledge or experience into the fuzzy rule. Therefore, an effective
way is needed to tune the membership functions and the rules of the FIS.

Neural Networks represent the relationship between the inputs and outputs by a net-
work of non-linear units. The weights of these units are modified so that their cumulative
error is minimized. The neural network trains itself by learning from the available data,
and it requires no prior knowledge about the system.

The goal of the Adaptive-Network based Fuzzy Inference System (ANFIS) is to combine
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Figure 2.2: ANFIS network architecture.

the advantages of both FIS and NN. The NN is integrated into the FIS model to make it
more adaptable without losing their interpretability.

2.2.2 ANFIS

ANIFS utilizes the adaptability of NN to adjust the membership functions and rules pa-
rameters to minimize the overall error while using the Sugeno Fuzzy Inference model [32].
Figure 2.2 shows a simple ANFIS with two inputs, x and y, each of which has two mem-
bership functions.

The first hidden layer of ANIFS is responsible for the membership functions and com-
puting the membership values for system’s inputs. In Figure 2.2, the membership functions
of the qualitative variables A1, A2, B1 and B2 are µA1 , µA2 , µB1 and µB2 , respectively.

Each membership function has parameters to be learned and adapted. For example,
Equation 2.11 shows the use of Gaussian function as a membership function.

µAi
(x) = exp [−(

x− ai1
bi1

)2],

µBi
(y) = exp [−(

y − ai2
bi2

)2]
(2.11)

where {ai1, ai2, bi1, bi2} are the membership functions’ parameter set. These parameters
control the position and width of the Gaussian functions.
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Figure 2.3: Two pass hybrid learning algorithm for ANFIS.

In the second layer, a T-norm operator (e.g. multiplication) is applied to the resulted
membership values from the first layer. As seen in Figure 2.2, this results in w1 and w2

using Equation 2.12.

w1 = µA1(x)× µB1(y)

w2 = µA2(x)× µB2(y)
(2.12)

In the third layer, the outputs of the second layer are normalized. Equation 2.13 shows
the normalization used in the example of Figure 2.2.

w1 =
w1

w1 + w2

w2 =
w2

w1 + w2

(2.13)

Note that both the second and third layers consist of mathematical operations with no
learned parameters. In addition, the outputs of the third layer can be considered as the
importance of each rule.

In the fourth layer, the output of each individual rule is computed using linear function
of the inputs (x and y in Figure 2.2). Next, the result will be multiplied by the the
respective output of the previous layer, which represent the importance of the rule. Finally,
the outputs are then summed in the layer 5 to obtain the final output.

Note that, the parameters of the forth layers are learnt parameters that represent the
each individual rule as illustrated in equations 2.14 to 2.15.

O4
1 = w1f1 = w1(p1x+ q1y + r1)

O4
2 = w2f2 = w2(p2x+ q2y + r2)

(2.14)

O5 = f = w1f1 + w2f2 (2.15)
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The parameters in layer 1 are called premise parameters, and those in layer 4 are called
consequent parameters. These parameters need to be trained and updated to lower the
error function, which is the error between actual and the desired output.

The original ANFIS proposed by Jang [12] uses hybrid learning, which uses gradient
descent (GD) for tuning antecedent parameters and Least Square Estimate (LSE) for
identifying the consequent parameters (Fig. 2.3).

In the forward pass, we can fix the parameters in the layer 1. Thus, the output is just
a linear combination of the parameters in the layer4 like the Equation 2.16:

f = w1f1 + w2f2

= (w1x)p1 + (w1y)q1 + (w1)r1

+ (w2x)p2 + (w2y)q2 + (w2)r2

(2.16)

Thus, the simplest way to find the parameters is using the Least Square Estimate.

In the backward pass, we can fix the parameters in layer 4. Thus, the output is a
complex nonlinear function in terms of the parameters in the layer 1. The gradient descent
method is adopted to learn the parameters in layer 1 for several echoes until the error is
convergent and almost 0.

2.2.3 PSO

The standard two-pass learning algorithm uses a gradient descent method that is compu-
tationally expensive and inefficient. The BP algorithm of the ANN affects the training of
premise parameters, and it may fall into local minimum [13]. Various effective methods of
training ANFIS networks using metaheuristic algorithms have been proposed to avoid the
disadvantages of the traditional learning algorithm.

Metaheuristic algorithm is a stochastic algorithm that combines randomization and
local search [31]. Their basic ideas are often from nature. Metaheuristic algorithms usually
create a population of solution candidates, and they are designed for global optimization
including genetic algorithms and particle swarm optimization.

Particle swarm optimization (PSO) is used widely in the process of training parameters
of ANFIS. PSO is a computational method that attempts to solve problems for a given
candidate solution through iterative attempts [9]. PSO solves the problem through solving
a set of candidate solutions, which are the combination of the position and velocity of the
particles. The motion of each particle is affected by its local optimum position and the
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global optimum position for all the particles, which is updated as other particles find better
positions.

Figure 2.4: Steps in the PSO algorithm.

Figure 2.4 shows the specific steps in the PSO algorithm [1]. First, we initialize a set of
random particles like the genetic algorithm (GA). For every iteration, the fitness of each
particle is calculated. Then, we can get the Pbest and Gbest, which are the best position
for this particle and for all the particles, respectively. After that, the particle velocity and
position should be updated using this formula [25]:

V Pbest
i = Pbest− x(k)

i

V Gbest
i = Gbest− x(k)

i

V
(k+1)
i = w · V (k)

i + c1 · V Pbest
i + c2 · V Gbest

i

X
(k+1)
i = X

(k)
i + V

(k+1)
i

(2.17)
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Figure 2.5: Concept of modification of a searching point by PSO.

where w is the inertia weight factor; c1 and c2 are the acceleration constants.

Figure 2.5 shows the concept of modification of the point i by PSO. The velocity of
particle i at time k is expressed as V

(k)
i ; V Pbest

i is the velocity towards Pbest, and V Gbest
i is

the velocity towards Gbest. So, the velocity of particle i at time k+1 is a linear combination
of the V Pbest

i , V Gbest
i and current velocity at time k V

(k)
i . Last, the updated position at

time k+1 is the current position X
(k)
i combine the modified velocity V

(k+1)
i . Repeating

this process until the fitness converges, and then we get the best value of the parameters
of the ANFIS.
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Chapter 3

Methodology

3.1 Experimental Setup

Fig. 3.1 shows the aluminium frame of TLVG with the dimension of 1.1 m (length) × 0.65
m (width) × 2.2 m (height).

The range hood is on the top of this TLVG device. There are two popular types of range
hood in the market: top-suction range hood and side-suction range hood (Fig. 3.2). In this
paper, the top-suction range hood (AN-1174, Ancona, Italy) is used to test and simulate
first, and the side-suction range hood (JQG9001, Fotile, China) is used to compare the
results in Chapter 4. As shown in Fig. 3.3, the vertical slide guides and lock mechanisms
behind the range hood are used to adjust the mounting height of the range hood above
the table.

Fig. 3.4 shows three aluminium tubes with internal diameter of 48mm located on the
horizontal linear slide guides under the range hood. The tube is fixed on the linear motion
(LM) block on the linear slide guide using brackets. Therefore, the tubes can be moved
horizontally by moving the LM block. A DC fan (FFB03812VN-SPC, Delta Electronics,
Taiwan) with an air flow of 23 CFM is placed at the top end of each tube (Fig. 3.5), and
the air can flow out from the holes along the side of the tube. As for the tubes on the
left and right sides, each tube has 20 holes of equal diameter (5 mm) and equal distance
(18 mm) from each other, and the air jets out from the holes are towards z direction. The
tube in the middle has 20 in-line holes on both sides, and the air jets out from the holes
are towards +x and -x directions (i.e. the lateral directions).

Fig. 3.6 shows the ultrasonic mist maker (B00P8OYGNA, AGPtek, USA) on the table
of this stand. Two mist makers are used to generate visible mist to simulate cooking fumes
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Figure 3.1: The frame of TLVG device.

(a) top-suction range hood. (b) side-suction range hood.

Figure 3.2: Two types of range hoods.

and smoke. The black background in Fig. 3.7 is adopted to help people observe the flow
path of the mist. As the concentration of mist increases, the color of the mist becomes
more white. A high-speed video camera is used to capture the flow pattern of the mist.

Fig. 3.8 shows the principle of how the tornado-like vortices generated by this novel
TLVG device. The top range hood provides a suction force by the negative pressure.
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Figure 3.3: Vertical slide guides and lock mechanisms.

Figure 3.4: Schematic diagram of the tubes.

The jets from the holes on the tubes produce strong shearing forces, which makes the
surrounding air form a tornado-like vortex and move up to the centrifugal fan of the range
hood.
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Figure 3.5: DC fan at end of tube.

Figure 3.6: The mist maker.

3.2 Numerical Modelling

3.2.1 Domain and Setups

Fig. 3.8 shows the 3D model of the TLVG device with the top-suction range hood built in
Ansys SpaceClaim. To simulate the flow field, a cuboid with dimensions of 2.1 m (length)
× 1.15 m (width) × 2.4 m (height) is selected as the simulation domain.

The numerical simulation is performed with Ansys Fluent 2020 R1 [3], which employs
the finite volume method and the SST turbulence model by solving the three-dimensional
Reynolds-averaged Navier-Stokes equations. The Discrete Phase Model is also used to
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Figure 3.7: The experimental device of the TLVG.

simulate the movement of the cooking fumes. In the calculation, the indoor air is regarded
as a continuous phase, and the mist is regarded as the dispersed phase that is composed
of many tiny droplets.

Discretization is applied to the algebraic equations to solve the flow field. During
the process of discretization, the element-based finite volume method was used to solve the
steady Reynolds-averaged Navier-Stokes equations. When the flow equation was discretized
in space, the pressure and momentum parts are discretized by second-order upwind scheme,
and the turbulent kinetic energy part is discretized by the first-order upwind scheme. The
maximum normalized residual was less than or equal to 10−4 for all solving variables when
the algebraic equations were solved.

3.2.2 Boundary Conditions

To set boundary conditions for this model, the following assumptions were made for the
physical parameters in this article:
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Figure 3.8: The 3D model of the TLVG.

1. The density of the fluid is considered as constant because of the low speed.

2. Considering the complex component of the cooking fumes and the various styles of
cooking, only the mist phase represented the cooking fumes.

3. The steady flow is considered in the numerical simulation.

4. Other external factors such as the walking, hand movements and so on are not
considered in this study.

A hand-held digital anemometer (Fig. 3.9) is used in the experiment to measure the
velocity of air flow. The anemometer is fixed on the surface of the tube and covers the hole
to measure the jet velocity from the hole on the surface of the tube. Different velocities
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(a) Front view. (b) Side view.

Figure 3.9: The hand-held digital anemometer.

can be measured by adjusting the voltages of the DC fan in the tube. The relationship
between the voltages of the DC fan and the measured velocities is shown in Table 3.1.

Table 3.1: Jet velocities at the measuring point vs the jet velocities.

Voltage (v) 14 13 12 11 10 9

Measured velocity (m/s) 1.3 1.2 1.15 1 0.9 0.8

Jet velocity (m/s) 3.1 2.9 2.7 2.4 2.2 2

However, it can cause errors due to the thickness of the anemometer. Fig. 3.9b indicates
that if the anemometer is fixed on the surface of the tube, the distance between the surface
of the tube and the center of the anemometer is around 2 cm. Besides, the velocity
decreases rapidly because of the tiny size of the holes of the tubes. Therefore, these
measured velocities can not be used as the velocity boundary conditions of the jets from
the holes on the surface of the tube directly.

Assume that the velocity that we measured is the velocity 2 cm in front of the holes,
and we call this point the measuring point. For analysis purposes, a horizontal line was
drawn from the hole (on the surface of the tube) to the measuring point (2 cm in front
of this hole). The velocities on this short line will be calculated via numerical simulation
with different velocity boundary conditions at the hole (Fig. 3.10). Assume that other
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factors will barely disturb the velocity results on this short line. When the velocity at
the measuring point (distance = 2 cm) is the same as the measuring velocity, the velocity
boundary condition at the hole (distance = 0 cm) is supposed to be the corresponding
actual jet velocity. For different measured velocities, the corresponding jet velocities are
listed in Table 3.1.

Figure 3.10: Velocities on the horizontal line from the hole to the measure point.

The top-suction range hood has a 3-speed mechanical control: 1.15 m/s, 1.43 m/s and
2 m/s, which are also measured by the digital anemometer. Because the size of the exhaust
inlet surface on the bottom of the range hood is relatively big, the velocity will not decrease
as fast as the that at the small holes on the tube, and the thickness of the anemometer can
be neglected compared to the size of the exhaust inlet surface. Therefore, the experimental
data of the exhaust flow velocities can be used directly as the boundary conditions of the
exhaust inlet surface on the bottom of the range hood.

The top surface of the mist generator was the surface to release the mist. Because of the
limitation of the measuring tools, the properties of the mist in this numerical simulation
are from some related papers. The flow rate of the mist is set to be 1.1e-4 kg/s [21], and
the Rosin-Rammler diameter distribution with 18.6µm of mean droplet diameter and 2.76
of spread parameter is adopted [29]. As for turbulent dispersion, the discrete random walk
model and random eddy lifetime with default time scale constant of 0.15 are selected.

As shown in Fig. 3.8, other external surfaces of this domain are set as zero-pressure
outlet boundary conditions, and the back face, top face and bottom face of the domain
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were all assumed to be no-slip wall boundary conditions, and their roughness was not
considered.

3.2.3 Mesh Independence Test

Five mesh refinement levels are used to determine the dependence of the solution on the
level of mesh refinement. Table 3.2 lists properties of these five levels of mesh refinements
used.

Table 3.2: Five mesh levels and corresponding properties.

Mesh level Coarser Coarse Normal Fine Finer

Minimum face size (m) 0.004 0.002 0.001 0.0005 0.0001

Maximum face size (m) 0.06 0.06 0.06 0.06 0.06

Nodes 111835 165662 247814 368535 1285632

When the fine mesh level (nodes: 368535) is adopted, the tetrahedral mesh used to
discretize the computational domain is shown in Figure 3.11. Figure 3.12 shows the mesh
refinement at the hole on the surface of the tube when the minimum face size is 0.0005 m.

2 m/s of the jet velocity and 1.15 m/s of exhaust flow velocity are set as the boundary
conditions in the initial modelling to find the proper mesh size. The value of static pressure
and velocity of the points on the vertical central line (x = 0.175 m, z = 0.15 m) of the
model is presented to compare the results. As shown in Fig. 3.13, the top end of the
central line is on the range hood outlet, and the bottom end of the central line is on the
table.

As shown in Fig. 3.14, the x axis is the distance below the range hood outlet, and the y
axis is the value of the static pressure. The results of the pressure start to converge at the
coarse mesh level, and the differences between the results at coarse mesh and the results
at finer mesh are tiny to be noticed. However, it is noticed from the Fig. 3.15 that results
of the velocity start to converge at the fine mesh level. For computational efficiency and
result accuracy, the fine mesh (node: 368535) is selected as the final mesh in the following
numerical simulations.
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Figure 3.11: Tetrahedral mesh on the surface of the domain.

Figure 3.12: Mesh refinement at the hole on the surface of the tube.

3.3 Design of Orthogonal Experiment

To simplify the communication, some terms are introduced and defined:

• Factors: experimental variables that can be changed independently of each other.
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Figure 3.13: The planes of cross section, central line and horizontal line of the model.

Figure 3.14: The static pressure on the vertical central line.
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Figure 3.15: The velocity magnitude on the vertical central line.

• Indices: the experimental indicators to study the effects of different factors.

• Responses: the measured value of the indices.

In this study, an orthogonal table is adopted to manage and analyze this multi-factor
experiment, which can get the whole experimental results only upon part of the experiments
and those analyzing conclusions [36], [20].

This experiment evaluates the effects of the novel TLVG on the suction of cooking
fumes. Therefore, two experimental indices, the pressure at the center of the mist maker
(Psrc) and the percentage of mist particles exhausted to range hood (Cexh), are used to
evaluate the influence of the new TLVG on the suction of cooking fumes.

In Fig. 3.16, the pressure monitoring point (x = 0.175 m, y = 1.1 m and z = 0.15 m),
which is the at the center of the mist generator surface, is selected to measure negative
pressure Psrc. The percentage of mist exhausted to range hood (Cexh) can be calculated
by the number of mist particles exhausted to range hood over the total number of mist
particles generated by the mist generator. The greater absolute value of the negative
pressure Psrc and the higher percentage of mist exhausted to range hood Cexh, the better
performance of this novel TLVG.

Fig. 3.16 also shows the five experimental factors considered in this orthogonal exper-
imental design:
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(a) Top View

(b) Trimetric View

Figure 3.16: Five factors in orthogonal experimental design and the pressure monitoring
point.

27



1. The air jet velocity from the holes on the tubes.

2. The exhaust flow velocity of the range hood.

3. The jet angle of the air from the holes on the tubes.

4. The mounting height of the range hood above the table.

5. The distance between the tubes.

The relationship between the voltage of the DC fan in the tube and the jet velocity is
shown on the Table 3.1. According to the experiments, the tornado-like vortex can not
be generated when the voltage is lower than 9 V. Three representative levels of the jet
velocity are selected to research: 2 m/s, 2.4 m/s and 2.9 m/s to process the orthogonal
experimental design. As for the exhaust flow velocity of the range hood, this top-suction
range hood in the experiment has 3-speed mechanical controls: 1.15 m/s, 1.43 m/s and 2
m/s, which are measured by the digital anemometer. Fig. 3.16a also shows the definition
of the the angle of jet from the holes of the tube on the right side, which will be set to 0,
30 and 60 degrees in this orthogonal experimental design. In terms of the recommended
mounting heights of range hood in the market, they are set to: 75 cm, 80 cm and 85
cm. Besides, the distances between tubes are set to: 30 cm, 35 cm and 40 cm. Table 3.3
presents the five orthogonal experimental factors and their three levels used in this study.

Table 3.4 is a L18(35) orthogonal table which provides 18 schemes used for the orthog-
onal experiments. These schemes are the different combinations of three parameter levels
for five chosen factors. The rule of this L18(35) orthogonal table design is listed in the
Appendix A.

Table 3.3: Factors and levels of orthogonal experimental design.

Factors Level 1 Level 2 Level 3

Jet velocity (m/s) 2 2.4 2.9

Exhaust flow velocity (m/s) 1.15 1.43 2

Jet angle (◦) 0 30 60

Mounting height of range hood (m) 0.75 0.8 0.85

Distance between tubes (m) 0.3 0.35 0.4

The multi-index comprehensive evaluation and the extreme difference analysis are
adopted to deal with the experimental data more intuitively [33], [26] [11], [18], [28]. The
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Table 3.4: L18(35) orthogonal experimental plan layout.

Scheme No. Jet velocity (m/s) Exhaust flow velocity (m/s) Jet angle (o) Mounting height (m) Distance (m)

1 2 1.15 0 0.75 0.3

2 2 1.43 30 0.8 0.35

3 2 2 60 0.85 0.4

4 2.4 1.15 0 0.8 0.35

5 2.4 1.43 30 0.85 0.4

6 2.4 2 60 0.75 0.3

7 2.9 1.15 30 0.75 0.4

8 2.9 1.43 60 0.8 0.3

9 2.9 2 0 0.85 0.35

10 2 1.15 60 0.85 0.35

11 2 1.43 0 0.75 0.4

12 2 2 30 0.8 0.3

13 2.4 1.15 30 0.85 0.3

14 2.4 1.43 60 0.75 0.35

15 2.4 2 0 0.8 0.4

16 2.9 1.15 60 0.8 0.4

17 2.9 1.43 0 0.85 0.3

18 2.9 2 30 0.75 0.35
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comprehensive evaluation is an effective method by which to evaluate the responses of
each experimental scheme. The extreme difference analysis is employed to to obtain the
optimal levels for each factor and the most important factors influencing the experimental
responses.

In multi-index comprehensive evaluation, the linear weighted method is very popular.
In this study, the comprehensive score was calculated based on two indices: Psrc and Cexh.
Firstly, in order to obtain the membership degree, the maximum and minimum values
of the responses of Psrc and Cexh in the experimental scheme are obtained. Then the
weights of Psrc and Cexh were assigned to calculate the comprehensive score SC for every
experimental scheme. Here, the membership degree is used to measure the influence of the
experimental scheme on the Psrc and Cexh respectively. Weights are used to measure the
importance of Psrc and Cexh by determining two fractions, and the sum of the fractions for
all the indices must be 1. The calculation formula of membership degree M of index I for
n-th scheme in this orthogonal experiment M I

n is given by formula 3.1:

M I
n =

RI
n −RI

min

RI
max −RI

min

(3.1)

where M I
n represents the response of index I for nth scheme in this orthgonal experiment.

RI
max and RI

min are the maximum and minimum responses of index I respectively.

It is assumed that the pressure at the source of the mist (Psrc) and the percentage of
exhausted mist (Cexh) are two equally important indicators for evaluating the effectiveness
of this TLVG, and the weight is 0.5 for each index. The comprehensive score SC is intro-
duced to comprehensively assess the impact of Psrc and Cexh on suction of cooking fumes.
The comprehensive score for nth experimental scheme SCn is calculated as follows:

SCn = 0.5 ·MPsrc
n + 0.5 ·MCesc

n (3.2)

where MPsrc
n and MCesc

n are the membership degrees of Psrc and Cexh for n-th scheme,
respectively.

The extreme difference analysis can obtain the most important factors affecting the ex-
periment index and identify the optimal level combination of factors. In extreme difference
analysis, the difference D is adopted to determine the main factor affecting the responses:

Dj = max
i

(Kij)−min
i

(Kij) (3.3)
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where Dj is the difference of factor j, and Kij is the sum of comprehensive scores (SC) for
all the schemes at ith level of factor j. max

i
(Kij) and min

i
(Kij) are the maximum value

and the minimum value of Kij for different levels of factor j. The factor with a greater D
value is considered more important in affecting the responses.

3.4 Controller

3.4.1 Design of the Intelligent Controller

In real life, there are not just three levels for the exhaust flow velocity of range hood.
Besides, the mounting height of the range hood may be changed according to the installa-
tion environment. Therefore, the jet velocity of TLVG should also be changed dynamically
according to the changes of other factors to achieve the best performance of suction of cook-
ing fumes. In this section, an intelligent controller is designed to control the jet velocity
according to other factors measured.

In this controller, two factors are used as inputs: exhaust flow velocity and mounting
height of range hood, and the jet velocity is used as output. An intelligent controller is
supposed to deal with this open-loop and multiple-input system.

Fuzzy logic is widely used in intelligent control with multiple inputs. Fuzzy inference
is the process of input-output mapping using fuzzy logic. Fuzzy Inference Systems (FIS)
can model the ill-defined systems which cannot be easily modeled using mathematical
equations. In this thesis, the Adaptive-Network-based Fuzzy Inference System (ANIFS)
is used in the intelligent controller, which utilizes the adaptability of neural network to
adjust the membership functions and rules parameters to minimize the overall error while
using the Sugeno Fuzzy Inference model.

Figure 3.17 shows the architecture of the ANFIS for this intelligent controller. There
are two inputs: the range hood flow rate (x) and mounting height of range hood (y). For
each input, there are 5 Gaussian membership functions (A1 - A5 and B1 - B5) in layer 1:

µAi
(x) = exp [−(

x− ai1
bi1

)2],

µBi
(y) = exp [−(

y − ai2
bi2

)2]
(3.4)

where {ai1, ai2, bi1, bi2} are the membership functions’ parameter set, which control the
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Figure 3.17: ANFIS Architecture.

position and width of the Gaussian functions. It means that this layer contains 20 (5 ×
2 + 5× 2 = 20) premise parameters for input membership functions.

In the second layer, multiplication is applied to the resulted membership values from
the first layer, and the outputs of the second layer are normalized in the third layer:

wi = µAi
(x)× µBi

(y)

wi =
wi∑5
i=1wi

(3.5)

where i is from 1 to 5, and wi represents the importance of each rule.

In the fourth layer, the output of each individual rule is computed using linear function
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fi of the inputs (x and y). Next, the result will be multiplied by the the respective output
wi of the previous layer:

wifi = wi(pix+ qiy + ri) (3.6)

where {pi, qi, ri} are the consequent parameters in layer 4. It means that this layer contains
15 (5× 3 = 15) consequent parameters for output membership functions.

Finally, the outputs are then summed in the layer 5 to obtain the final output:

f =
5∑
i=1

wifi (3.7)

The parameters in layer 1 and layer 4 need to be trained and updated to lower the error
function, which is the error between system output f and the desired output.

In Matlab, a single-output Sugeno FIS can be generated and tuned based on the training
data using the command: anfis(trainingData). The FIS object is automatically generated
using grid partitioning, and the training algorithm uses a combination of the least-squares
and back propagation gradient descent methods to model the training data set.

3.4.2 Training Data

In this section, the numerical simulation results are used as the training data for the ANFIS
controller. When the jet angle is 0o and the distance between tubes is 0.35 m, the tornado-
like vortex with the largest radius can always be obtained, and the effect of suction of
cooking fumes is the best, so the jet angle is set to 0o and the distance between tubes is set
to 0.35 m. As for the exhaust flow velocity of the range hood in the market, it is usually
between 1 m/s to 3 m/s. The mounting height of the range hood is from 0.75 m to 0.85 m
typically.

In the numerical simulation, the exhaust flow velocities of range hood are selected as 1
m/s, 1.2 m/s, 1.4 m/s, 1.6 m/s, 1.8 m/s, 2 m/s, 2.2 m/s, 2.4 m/s, 2.6 m/s, 2.8 m/s, and
3m/s. The mounting heights of the range hood are 0.75 m, 0.8 m, and 0.85 m. Try different
combinations of these two factors, and find the corresponding optimized jet velocity. The
optimized jet velocity for every case is defined as the lowest velocity with the percentage
of mist particles exhausted to range hood (Cexh) over 99%.

Repeat this process 33 (11 x 3) times and use this data as the training set for the ANFIS
controller. While training the data, the exhaust flow velocity and the mounting height of
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the range hood are the inputs, and the optimized jet velocity is the output through the
neural fuzzy system. Fig. 3.18 shows that 33 training data after randomly rearrangement.

Figure 3.18: ANFIS training data.

3.4.3 ANFIS with PSO

Table 3.5: Parameters of PSO.

parameters number

Population Size 50

Number of Iterations 1000

Inertia Weight w 1

Inertia Weight Damping Ratio wdamp 0.99

Personal Learning Coefficient c1 1

Global Learning Coefficient c2 2

The parameters of the ANFIS may fall into local minimum because standard two-pass
learning algorithm uses a gradient descent method. The particle swarm optimization (PSO)
is applied to find the globally optimal parameters of the ANFIS to avoid the disadvantages
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of the traditional learning algorithm and to design the optimal ANFIS controller with a
better performance.

The algorithm of PSO is implemented in Matlab, and the script is attached in the
Appendix B, which is modified according to the code given by Yarpiz [10]. Table 3.5 lists
the parameters of PSO algorithms used in this script. In this script, the population size is
defined as 50. The number of iterations is set as 1000, which is same as the basic ANFIS
controller. The inertia weight w is 1, and the inertia weight damping ratio wdamp 0.99 is
used to lower the inertia weight for every iteration (w = w∗wdamp). Therefore, the step size
will decrease after several iterations. The personal learning coefficient c1 and the global
learning coefficient c2 are 1 and 2, respectively. After training, the output of this fuzzy
logic system can be calculated using Matlab comand: evalfis(data name, fis name). The
comparison between the results of the standard ANFIS and the ANFIS with PSO after
training is discussed in Chapter 4.
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Chapter 4

Result and Discussion

4.1 Comparison between Experiment and Simulation

This novel TLVG device can produce two tornados on the both left and right sides at the
same time. However, in the initial experiment, for simplification reasons, only one tornado
on the right side is considered to research.

Scheme 1 of the orthogonal experimental design was selected to compare the CFD
simulation results and the experimental results. In scheme 1, the jet velocity is 2 m/s,
which means the voltage of the DC fans on the end of the tubes is 9 v according to Table
3.1. The exhaust flow velocity, jet angle, mounting height and distance between tubes are
1.15 m/s, 0o, 0.75 m and 0.3 m, respectively.

Turning on the range hood at an exhaust velocity of 1.15 m/s while turning off the air
jets generator of the TLVG (i.e. the conditions of not generating a tornado-like vortex) as
shown in Fig. 4.1a, it can be observed that the mist is spreading out at the bottom region
due to its higher density than that of air. The suction force from the centrifugal fan in
the range hood is not strong enough to lift up the mist particles. Turning on both the
range hood at an exhaust velocity of 1.15 m/s and the air jets generator at a velocity of
2 m/s in the middle and right tubes, the mist rapidly forms a tornado-like vortex on the
right side of this device. It is like a virtual pipe connecting the source of the mist and the
centrifugal fan of the range hood. Almost all the mist is going to the range hood, and no
more spreading can be observed as shown in Fig. 4.1b.

As for the numerical simulation, Fig. 4.2 shows an intuitive view of the mist particles
tracking, which is similar to what is observed in the experiment (Fig. 4.1). Fig. 4.2a shows
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(a) Turning on the range hood while turning
off the air jets generator.

(b) Turning on both the range hood and the
air jets generators (middle and right tubes).

Figure 4.1: Mist distribution comparison.

the case turning on the range hood at a speed of 1.15 m/s while turning off the air jets
generator, and most of the mist is stay at the bottom and only little portion of mist is
sucked up by the range hood. Fig. 4.2b shows the case turning on both the range hood at
speed of 1.15 m/s and the air jets generator at a speed of 2 m/s on the middle and right
tubes, and the mist is exhausted through the tornado-like vortex which has been seen in
Fig. 4.1b.

Similarly, Fig. 4.3 shows an intuitive view of the negative pressure region (non-red
region) comparing the cases without and with the TLVG device on the vertical cross
section (z = 0.15 m) in Fig. 3.13. The mist maker is far away from the range hood, but
the negative pressure region is expanded in the vertical direction to draw the water mist
around the mist maker in Fig. 4.3b.

As shown in the Fig. 3.13, a horizontal line (x = 0.35 m, y = 1.308 m) was drawn
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(a) Turning on the range hood while turning
off the air jets generator.

(b) Turning on both the range hood and the
air jets generator (middle and right tubes).

Figure 4.2: Particle tracking comparison.

(a) Turning on the range hood while turning
off the air jets generator.

(b) Turning on both the range hood and the
air jets generator (middle and right tubes).

Figure 4.3: Static pressure comparison.
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directly in front of the holes of the tube on the right side. The values of the velocity on this
line compare the simulation with the experimental result. As shown in the Fig. 4.4, the
red line represents the velocities of the points on this horizontal line which are calculated
through numerical simulation. Meanwhile, the discrete points are the results measured by
the digital anemometer. Notice that there are errors for the values measured by the digital
anemometer, but the trends of results between simulation and experiment in Fig. 4.4 are
consistent, and the errors between them are deemed acceptable.

Figure 4.4: The static pressure on the central line.

All these similarities and matched data of the experimental and numerical results indi-
cate that the numerical model has successfully captured the main features, and the results
of the CFD simulation are reliable.

4.2 Results of Orthogonal Experimental Design

Table 4.1 presents the results of the orthogonal experimental design, in which the responses
for −Psrc (-Pa) and Cexh of each schemes and the corresponding membership degree M and
the comprehensive score SC obtained through Equations 3.1 and 3.2 are listed.

As shown in Table 4.1, when experimental scheme 17 was adopted, the Psrc, Cexh,
MPsrc and MPsrc are -0.1912 Pa, 97.65%, 1 and 1, respectively. This indicates that the
negative pressure at the center of the mist maker (Psrc) can be enhanced obviously and the
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Table 4.1: Results of orthogonal experiment.

Scheme No. −Psrc (-Pa) Cexh (%) MPsrc MCexh
SC

1 0.0805 70.37 0.340 0.609 0.474

2 0.0632 68.52 0.237 0.582 0.410

3 0.0468 52.44 0.139 0.351 0.245

4 0.1034 58.64 0.477 0.440 0.459

5 0.0440 65.85 0.123 0.544 0.333

6 0.0456 45.68 0.132 0.254 0.193

7 0.0368 59.01 0.080 0.446 0.263

8 0.0491 27.95 0.153 0.000 0.077

9 0.1776 80.86 0.919 0.759 0.839

10 0.0316 63.58 0.049 0.511 0.280

11 0.0692 52.17 0.273 0.347 0.310

12 0.0592 42.24 0.213 0.205 0.209

13 0.0920 84.12 0.409 0.806 0.607

14 0.0393 59.63 0.095 0.455 0.275

15 0.1227 63.58 0.592 0.511 0.551

16 0.0234 57.41 0.000 0.423 0.211

17 0.1912 97.65 1.000 1.000 1.000

18 0.1422 80.75 0.708 0.758 0.733

maximum percentage of mist exhausted to ranged hood Cexh was obtained when the jet
velocity, the exhaust flow velocity of the range hood, the jet angle, the mounting height of
the range hood and distance between tubes were 2.9 m/s, 1.15 m/s, 0, 0.85 m and 0.3 m,
respectively when experimental scheme 17 was adopted.

For factor j, the K values for level a, b and c as well as the D values were calculated
using Equation 3.2 and Equation 3.3. Their values are listed in Table 4.2. The level with
the higher value of K is considered to provide better control effectiveness for the cooking
fumes. For example, for the factor of jet velocity, level c (2.9 m/s) performs the best
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Table 4.2: Extreme difference analysis of orthogonal experiment.

Factor Jet velocity Exhaust flow velocity Jet angle Mounting height Distance between tubes

Kaj 1.929 2.294 3.634 2.248 2.561

Kbj 2.419 2.404 2.555 1.917 2.995

Kcj 3.122 2.771 1.281 3.305 1.914

Dj 1.194 0.477 2.352 1.388 1.080

because 3.122 is the highest among all the K values for three levels. Similarly, level c (2
m/s) of the factor of exhaust flow velocity, level a (0o) of the factor of jet angle, level c
(0.85 m) of the factor of mounting height and level b (0.35 m) of the factor of distance
between tubes performs the best. In Table 4.2, the D value of factor jet angle was higher
than those of other factors. This means that the effect of the jet angle of this TLVG on the
pressure and concentration of escaped cooking fumes is significant, and the horizontal jet
angle should always be 0 to get the best performance. The D value of factor exhaust flow
velocity is the lowest among D values of all the factors, which indicates that the exhaust
flow velocity only slightly impacts the effects of the TLVG on the suction of cooking fumes.

4.3 Effects of Different Factors on Tornado-Like Ver-

tex

4.3.1 Jet Velocity

Different jet velocities are tested in this section while other irrelevant variables are fixed.
From the results of the orthogonal experiment, the proposed responses for the factors of
exhaust flow velocity of the range hood, the jet angle, the mounting height and the distance
between tubes are 2 m/s, 0o, 0.85 m, and 0.35 m, respectively.

To assess the effect of the jet velocity on tornado-like vertex, the values of static pressure
of the points on the vertical central line of the model in Fig. 3.13 are presented to compare
the results. In Fig. 4.5, the x-axis is the distance below the range hood, and the y-axis is
the corresponding static pressure. The pressure tends to be 0 when the distance is far away
from the range hood. Different lines in Fig. 4.5 represent cases with different boundary
conditions of the jet velocities at the holes of the tubes. Higher jet velocity generally
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produces higher absolute value of negative pressure due to the larger shearing force, which
will be helpful to concentrate and suck up the cooking fumes. Fig. 4.6 shows the velocity
vector on the horizontal cross section (y = 1.308 m) in Fig. 3.13 at different jet velocities,
which indicates that the radius of the tornado-like vortex becomes larger as the jet velocity
increases.

Figure 4.5: Pressure on the central line with different jet velocities.

However, the particle size of mist is relatively small (around 0.01− 10µm [30]), which
means that strong suction force is not necessary for this TLVG. Because higher jet velocity
consumes more power, a trade off must be made between exhausting efficiency and power
losses. The results of the percentage of particles exhausted to the range hood are sum-
marized in Table 4.3. Although the absolute value of negative pressure and the radius of
the tornado-like vortex will be greater when the jet velocity increases, the percentage of
particles exhausted to the range hood has reached 100% when the boundary condition of
the jet velocity at the holes of the tube is 4 m/s.

Table 4.3: Percentage of exhausted particles for different jet velocities.

Jet velocity (m/s) 1 2 3 4 5 10

Percentage (%) 47.92 64.58 83.33 100 100 100
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(a) v = 1 m/s (b) v = 2 m/s

(c) v = 3 m/s (d) v = 4 m/s

(e) v = 5 m/s (f) v = 10 m/s

Figure 4.6: Velocity vector on the horizontal cross plane with different jet velocities.

4.3.2 Range Hood Exhaust Flow Velocity

In reality, there are more than these three speeds for a range hood. Therefore, different
exhaust flow velocities have been tested in this section while other irrelevant variables are
fixed. From the results of the orthogonal experiment above, the proposed factors for the
jet velocity, the jet angle, the mounting height and the distance between tubes are 2.9 m/s,
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0o, 0.85 m and 0.35 m respectively.

The values of static pressure of the points on the vertical central line (Fig. 3.13) of the
model are also presented to compare the results. As shown in Fig. 4.7, higher exhaust
flow velocity results in greater absolute value of negative pressure at the exhaust hood.
However, the pressure does not change much at the mist source area far away from the
range hood.

Figure 4.7: Pressure on the central line with different exhaust flow velocities.

From Table 4.4, the percentage of particles exhausted to the range hood decreases as the
exhaust flow velocity increases. Besides, as seen in Fig. 4.8, the tornado-like vortex fades
away when the exhaust flow velocity increases. These figures indicate that higher power
of range hood cannot guarantee the performance of the tornado-like vortex generator.

Table 4.4: Percentage of exhausted particles for different exhaust flow velocities.

Exhaust flow velocity (m/s) 1 2 3 4 5

Percentage (%) 100 83.33 64.58 64.58 50
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(a) Exhaust flow velocity = 1 m/s (b) Exhaust flow velocity = 2 m/s

(c) Exhaust flow velocity = 3 m/s (d) Exhaust flow velocity = 4 m/s

Figure 4.8: Pressure contour on the vertical cross plane with different jet velocities.

4.4 Interaction between Two Tornado-like vortices

In this section, the results of the orthogonal experiment for the right part of TLVG are
applied to both left and right parts of TLVG. The proposed responses for the factors of jet
velocity, exhaust flow velocity, the jet angle, the mounting height and the distance between
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tubes are 2.9 m/s, 2 m/s, 0, 0.85 m, and 0.35 m, respectively.

(a) Turning on the middle and right air jets
generators.

(b) Turning on the middle and left air jets
generators.

(c) Turning on all three air jets generators. (d) Turning off all three air jets generators.

Figure 4.9: Velocity vector on the horizontal cross plane.

Keeping the range hood on (exhaust flow velocity of 2 m/s), there are four cases con-
sidered in this section: (a) Turning on the DC fans in the right tube and middle tube, the
tornado-like vortex can be produced on the right part of the TLVG; (b) turning on the DC
fans in the left tube and middle tube, the tornado-like vortex can be produced on the left
part of the TLVG; (c) turning on all the DC fans in these three tubes, two tornado-like
vortices can be produced at the same time; (d) turning off all the DC fans in these three
tubes, no tornado-like vortex is produced.

The velocity vectors on the horizontal plane are shown in the Fig. 4.9. Two vortices in
the third case are separated, and the shapes of two vortices are not affected by each other.

For case (a), only the mist maker on the right side is turned on. For case (b), only
the mist maker on the left side is turned on. For case (c) and (d), both two mist makers
are turned on. The results of the mist particles tracking are summarized in Table 4.5. In
this table, different number of tries are used in the discrete random walk model. If the
number of tries is greater than or equal to 1, then Ansys Fluent will consider the influ-
ence of turbulence on particles in the particle force balance equation when calculating the
particle trajectory. If the number of tries is greater than 1, the particle trajectory will be
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Table 4.5: Percentage of exhausted particles for 4 cases

Number of tries Case a Case b Case a + Case b Case c Case d

1 489 / 636 569 / 624 1058 / 1260 1035 / 1260 103 / 1260

2 988 / 1272 1138 / 1248 2126 / 2520 2075 / 2520 208 / 2520

3 1473 / 1908 1706 / 1872 3179 / 3780 3102 / 3780 309 / 3780

4 1961 / 2544 2274 / 2496 4235 / 5040 4134 / 5040 410 / 5040

5 2453 / 3180 2844 / 3120 5297 / 6300 5182 / 6300 523 / 6300

Average 0.77 0.91 0.84 0.82 0.08

Standard deviation 0.0029 0.0003 0.0015 0.0013 0.0007

calculated multiple times. For each trajectory calculation, a new random representation
of the turbulent is used in the particle balance equation. If the particle trajectory is cal-
culated several times, then the trajectory calculation includes the statistical characteristic
quantities of the particle flow affected by turbulence.

As we see from the Table 4.5, the percentage of exhausted particles in the case a and case
b (average: 84%) is always a little bit greater than that of the case c (average: 82%), which
means that the effects of the novel TLVG on the suction of cooking fumes will decrease a
little bit when three jets generators turning on at the same time in case c. Nevertheless,
the effects on the suction of cooking fumes of case c is much better than that of case d
(average: 8%). Fig. 4.10 shows the corresponding pressure contours on the vertical plane.
It can be noticed that in the case c, the absolute value of the negative pressure around the
mist maker is less than those of case a and case b, but it is still much greater than that
of case d. Fig. 4.11 shows the experimental results for these four situations, which are
consistent with the simulation results.

4.5 Side-Suction Range Hood

A side-suction range hood is also tested on this TLVG device to adapt to all the popular
types of range hood on the market. The main difference between the top-suction range
hood and side-suction range hood is the position of the exhaust outlet. As shown in Fig.
4.12, the exhaust outlet is on the side of the range hood, and it is close to the front of the
table. From Fig. 4.12, because the volume of the side-suction range hood is greater than
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(a) Turning on the middle and right air jets
generators.

(b) Turning on the middle and left air jets
generators.

(c) Turning on all three air jets generators. (d) Turning off all three air jets generators.

Figure 4.10: Pressure contour on the vertical cross plane.

that of the top-suction range hood, the length of the tube need to be shorter, which results
in fewer flow rate of air jets.

The results of the orthogonal experiment are also applied to the TLVG with side-suction
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(a) Turning on middle and right jets generators. (b) Turning on middle and left jets generators.

(c) Turning on all three air jets generators. (d) Turning off all three air jets generators.

Figure 4.11: Mist distribution comparison in the experiment.

range hood. The proposed responses for the factors of jet velocity, exhaust flow velocity,
the jet angle, the mounting height and the distance between tubes are 2.9 m/s, 2 m/s, 0,
0.85 m, and 0.35 m, respectively. The pressure contours on the vertical plane are shown
in Fig. 4.13, and the path lines of the jet flow from the holes of the tubes are shown in
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Figure 4.12: The side-suction range hood.

Figure 4.13: Pressure on the vertical plane with side-suction range hood.
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Figure 4.14: Pathline of jet flow with side-suction range hood.

Fig. 4.14. From Fig. 4.13, it shows that the absolute value of the negative pressure for
side-suction range hood is generally less than that for top-suction range hood, which is
caused by the further distance between the exhaust outlet and the mist maker and the less
flow rate of air jets. However, these two figures indicate that the tornado-like vortex can
also be generated for a side-suction range hood, and effect on suction of cooking fumes is
better than that of side-suction range hood without TLVG.

4.6 Intelligent Controller of TLVG

4.6.1 Results of Standard ANFIS

Fig. 4.15 shows the architecture of ANFIS controller generated by Matlab Simulink. After
training the 33-rows training data for maximum 1000 iterations, Figure 4.16a shows the 5
optimized membership functions for exhaust flow velocity of range hood, and Figure 4.16b
shows the 5 optimized membership functions for mounting height.

Figure 4.17 shows surface plot showing relationship between two inputs and one output
after trained. Input 33-row checking data using this fuzzy logic system after training, the
results are in Figure 4.18. The sub-figure on the top compares the checking data and the
ANFIS system outputs. The blue line represents the checking data outputs, and the red line
represents the standard neural fuzzy system real outputs. The sub-figures on the bottom
shows the errors for each sample. They indicate that the mean squared error (MSE) and

51



Figure 4.15: Matlab ANFIS Architecture.

(a) Input: exhaust flow velocity.

(b) Input: mounting height.

Figure 4.16: Membership Functions of inputs for basic ANFIS.
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Figure 4.17: Relationship Between Two Inputs and One Output.

Figure 4.18: Checking Data and System Outputs for standard ANFIS.
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the root mean square error (RMSE) are 0.63691 and 0.79807, respectively. The mean value
and standard deviation of all the errors are −6.6479x10−15 and 0.81044, respectively.

4.6.2 Results of ANFIS with PSO

The optimal membership functions ANFIS with PSO are shown in Figure 4.19a and Figure
4.19b. Input 33-row checking data to this ANFIS with PSO, the results are in Figure 4.20.
It indicates that the mean squared error (MSE) and the root mean square error (RMSE)
are 0.16638 and 0.4079, respectively. The mean value and standard deviation of all the
errors are 0.021048 and 0.41367, respectively.

(a) Input: exhaust flow velocity.

(b) Input: mounting height.

Figure 4.19: Membership Functions of inputs for ANFIS with PSO.

Comparing the prediction results of the basic ANFIS controller and the ANFIS with
PSO controller, the latter controller outputs obviously predict more checking data outputs
correctly. The mean squared error of standard ANFIS is 0.63691, while the mean squared
error of ANFIS with PSO is 0.16638. This means that, at the same situation (same training
data and same number of iteration), the ANFIS with PSO controller performs better.
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Figure 4.20: Checking Data and System Outputs for ANFIS with PSO.
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Chapter 5

Conclusion and Future Works

5.1 Conclusion

In this thesis, a novel tornado-like-vortex generator (TLVG) was constructed and analyzed.
The vertical pressure difference produced by the range hood and the horizontal shear force
generated by the air jets from tubes in this TLVG are two main components of tornado-
like vortex generation. A series of experiments and numerical simulations were designed
to validate the TLVG’s efficiency.

In the experiment, when the TLVG jet generator was switched on, the mist was drawn
into the vortex column and exhausted through the range hood, while the mist dispersed
around the mist maker when the TLVG jet generator was turned off. The numerical
simulation results also showed that the TLVG offers a high-efficiency solution to enhance
the performance of the exhaust. The region of negative pressure was extended to the source
of the cooking fumes.

The numerical simulation and orthogonal experimental design were used to perform
parametric analyses on jet velocity, range hood exhaust flow velocity, horizontal jet angle,
mounting height, and distance between tubes to test the effects of the novel TLVG on the
suction of cooking fumes. Those variables are sensitive to tornado-like vortex generation,
and the associated results are summarized as follows:

The jet velocity, which is regulated by the DC fans in the generator of jets, directly
affects the shear force intensity. Lower negative pressure is present in the cases of higher
jet velocities, which will help concentrate and exhaust the mist. Jets with greater velocity,
however, would consume more power.
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The exhaust flow velocity only slightly affects the pressure around the cooking fumes’
source, but if the value of the exhaust flow velocity is too high, the tornado-like vortex can
not be produced.

The findings also show that the key factor affecting the performance of the TLVG is
the horizontal jet angle. The suggested responses to the jet angle, mounting height, and
tube distance factors are 0, 0.85 m, and 0.35 m, respectively.

This TLVG produces two tornado-like vortices at the same time, and their forms are
not disturbed by one another. However, when two vortices are produced simultaneously,
the effects of the novel TLVG on the suction of cooking fumes will decrease marginally
compared to when they are produced separately.

The result also shows the feasibility of the TLVG with the side-suction range hood.
This new TLVG is a high-efficiency indoor cooking fume suction solution. The findings in
this paper provide a basis for the energy-saving direction of the range hood, which means
that without high range hood capacity, the cooking fumes can be depleted.

In the end, the ANFIS controller is designed with the exhaust flow velocity and the
mounting height as the inputs and the optimal jet velocity as the output. According to
the results of the Matlab simulation, the controller can predict the optimal jet velocity
of TLVG successfully. The results also reveal that the ANFIS-Swarm controller, which
predicts more checking data outputs correctly under the same conditions, performs better
than the traditional ANFIS controller.

5.2 Future Work

The design of the tubes of the novel TLVG including their shape, size, and arrangement
is significate to the performance of the TLVG. To optimize the design, some quantitative
tests should be conducted by numerical simulation methods.

• Shape of Tubes: The flow features of the jets may be related to the shape of the
tube used in the TLVG device. Round tubes are easy to be bought or manufactured,
but the rectangle tubes are more good looking in the industrial design. To find out
the influence from the shape of tubes, cases of flow in a round tube and a rectangle
tube need to be simulated in ANSYS FLUENT.

• Length of Tubes: The length of the tubes in this TLVG is restricted by many
factors. Different types of range hoods and mounting heights require different lengths
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of tubes. Besides, the heat of the stove will be reduced if the tube is too long and too
close to the stove. Therefore, the numerical simulation needs to be done for different
types of range hoods to find the optimal length of tubes in view of the efficiency of
suction of cooking fumes and temperature distribution.

• Structure of TLVG: Fig. 5.1a is a schematic view of the first new version of the
design of the top-suction range hood with a TLVG device. Only two tubes with the
air channels are mounted on the back two corners below the range hood. However,
it may be difficult to keep the tornado-like vortex in good shape. Fig. 5.1b is a
schematic view of the second new version of the design of the top-suction range hood
with a TLVG device. The tube with the air channel is mounted on the vertical central
line of the backsplash. Two side panels are placed on both sides to concentrate the
flow. To get enough power with only one tube, a small DC fan can not be chosen,
which may bring a difficulty to the industrial design of this production. Fig. 5.1c is a
schematic view of the third new version of the design of the side-suction range hood
with a TLVG device. On the vertical central line of the backsplash, a shorter tube
with an air channel is installed. Two longer tubes on both sides will move forward
because of the position of the exhaust port of the side-suction range hood. Two side
panels are placed on both sides to concentrate the flow. These designs need to be
simulated and tested to compare their effectiveness.

(a) Version 1 (b) Version 2 (c) Version 3

Figure 5.1: New structures of TLVG.
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A. Ren, J. Zhang, et al. Epidemiological evidence that indoor air pollution from cook-
ing with solid fuels accelerates skin aging in chinese women. Journal of dermatological
science, 79(2):148–154, 2015.

[16] Y. Li and A. Delsante. Derivation of capture efficiency of kitchen range hoods in a
confined space. Building and Environment, 31(5):461–468, 1996.

[17] K. Lim and C. Lee. A numerical study on the characteristics of flow field, temperature
and concentration distribution according to changing the shape of separation plate of
kitchen hood system. Energy and Buildings, 40(2):175–184, 2008.

[18] X. Liu, X. Wang, and G. Xi. Orthogonal design on range hood with air curtain and its
effects on kitchen environment. Journal of occupational and environmental hygiene,
11(3):186–199, 2014.

[19] A. Lohani, N. Goel, and K. Bhatia. Takagi sugeno fuzzy inference system for modeling
stage–discharge relationship. Journal of Hydrology, 331(1-2):146–160, 2006.

[20] T. Lundstedt, E. Seifert, L. Abramo, B. Thelin, Å. Nyström, J. Pettersen, and
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Appendix A

Orthogonal Table

Orthogonal experimental design (OED) is created by Taguchi in 1950s. It is a design
method that studies multiple factors and levels, and it finds the optimal level combination
only upon part of the experiments.

The orthogonal table is the foundation of the orthogonal experimental design, which
forms as follow:

Ln(km)

where the L is the symbol of the orthogonal table; n is the number of schemes (rows) in
the orthogonal table; k is the number of levels for every factor; m is the number of factors
(columns) in the orthogonal table;

The orthogonal experimental design may use existing orthogonal table, and it can also
use mathematical model to create an orthogonal table. The orthogonal table primarily
uses the abstract algebra theory, and there are several existing standard orthogonal tables,
such as L4(23), L8(27), L9(34), L16(45), L18(35), etc.

Let’s take L9(34) as an example. 27 intersection points of the cube, which prepresent
the full experiment’s 27 experimental points, and 9 experimental points of OED are shown
in Fig. A.1 [37]. For each plane containing 9 intersection points, there are happen to be
3 experimental points in the orthogonal table. There are 6 lines on each plane, and there
is happen to be 1 experimental point in the orthogonal table for each line. Therefore,
among these intersection points, 9 experimental points chosen by the orthogonal table are
distributed uniformly in the three-dimensional space.

There are two key properties of the L9(34) orthogonal table (Table A.1):
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Figure A.1: Nine experimental points in the three-dimensional space.

Table A.1: L9(34) orthogonal table.

Exp. No. Factor 1 Factor 2 Factor 3 Factor 4

1 level A level A level A level A

2 level A level B level B level B

3 level A level C level C level C

4 level B level A level B level C

5 level B level B level C level A

6 level B level C level A level B

7 level C level A level C level B

8 level C level B level A level C

9 level C level C level B level A

• The number of occurrences of different levels in each column should be the same.
For example, the levels in each column are A, B and C, and each of them appears 3
times;
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• The number of occurrences of any two factors with different level combinations should
be the same. For example, there are 9 level combinations: (A, A), (A, B), (A, C), (B,
A), (B, B), (B, C), (C, A), (C, B) and (C, C). Each of these combinations appears
once.

The standard L18(35) orthogonal table used in this thesis is list in Table A.2.

Table A.2: L18(35) orthogonal table.

Exp. No. Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

1 level A level A level A level A level A

2 level A level B level B level B level B

3 level A level C level C level C level C

4 level B level A level A level B level B

5 level B level B level B level C level C

6 level B level C level C level A level A

7 level C level A level B level A level C

8 level C level B level C level B level A

9 level C level C level A level C level B

10 level A level A level C level C level B

11 level A level B level A level A level C

12 level A level C level B level B level A

13 level B level A level B level C level A

14 level B level B level C level A level B

15 level B level C level A level B level C

16 level C level A level C level B level C

17 level C level B level A level C level A

18 level C level C level B level A level B
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Appendix B

Matlab Code

%%%% main.m %%%%

% create initial fis with 5 clusters

fis=CreateInitialFIS(trn,5);

% training fis using PSO

fisPSO=TrainAnfisUsingPSO(fis,trn);

% plot

TrainOutputs=evalfis(trn(:,1:2),fis);

TrainOutputsPSO=evalfis(trn(:,1:2),fisPSO);

PlotResults(trn(:,3),TrainOutputs,’Checking Data for standard ANFIS’);

hold on;

PlotResults(trn(:,3),TrainOutputsPSO,’Checking Data for ANFIS with PSO’);

%%%% CreateInitialFIS.m %%%%

function fis=CreateInitialFIS(data,nCluster)

if ~exist(’nCluster’,’var’)

nCluster=’auto’;

end

x = data(:,1:2); % inputs

t = data(:,3); % output

fcm_U=2;
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fcm_MaxIter=1000;

fcm_MinImp=1e-5;

fcm_Display=false;

opt = genfisOptions(’FCMClustering’);

opt.FISType = ’sugeno’;

opt.NumClusters = nCluster;

opt.Exponent = fcm_U;

opt.MaxNumIteration = fcm_MaxIter;

opt.MinImprovement = fcm_MinImp;

opt.Verbose = fcm_Display;

fis = genfis(x,t,opt);

end

%%%% TrainAnfisUsingPSO.m %%%%

function bestfis=TrainAnfisUsingPSO(fis,data)

%% Problem Definition

p0=GetFISParams(fis);

Problem.CostFunction=@(x) TrainFISCost(x,fis,data);

Problem.nVar=numel(p0);

Problem.VarMin=-25;

Problem.VarMax=25;

%% PSO Params

Params.MaxIt=1000;

Params.nPop=50;

%% Run PSO

results=RunPSO(Problem,Params);

%% Get Results

p=results.BestSol.Position.*p0;
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bestfis=SetFISParams(fis,p);

end

function results=RunPSO(Problem,Params)

disp(’Starting PSO ...’);

%% Problem Definition

CostFunction=Problem.CostFunction; % Cost Function

nVar=Problem.nVar; % Number of Decision Variables

VarSize=[1 nVar]; % Size of Decision Variables Matrix

VarMin=Problem.VarMin; % Lower Bound of Variables

VarMax=Problem.VarMax; % Upper Bound of Variables

%% PSO Parameters

MaxIt=Params.MaxIt; % Maximum Number of Iterations

nPop=Params.nPop; % Population Size (Swarm Size)

w=1; % Inertia Weight

wdamp=0.99; % Inertia Weight Damping Ratio

c1=1; % Personal Learning Coefficient

c2=2; % Global Learning Coefficient

% Velocity Limits

VelMax=0.1*(VarMax-VarMin);

VelMin=-VelMax;

%% Initialization

empty_particle.Position=[];

empty_particle.Cost=[];
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empty_particle.Velocity=[];

empty_particle.Best.Position=[];

empty_particle.Best.Cost=[];

particle=repmat(empty_particle,nPop,1);

BestSol.Cost=inf;

for i=1:nPop

% Initialize Position

if i>1

particle(i).Position=unifrnd(VarMin,VarMax,VarSize);

else

particle(i).Position=ones(VarSize);

end

% Initialize Velocity

particle(i).Velocity=zeros(VarSize);

% Evaluation

particle(i).Cost=CostFunction(particle(i).Position);

% Update Personal Best

particle(i).Best.Position=particle(i).Position;

particle(i).Best.Cost=particle(i).Cost;

% Update Global Best

if particle(i).Best.Cost<BestSol.Cost

BestSol=particle(i).Best;

end

end

BestCost=zeros(MaxIt,1);

70



%% PSO Main Loop

for it=1:MaxIt

for i=1:nPop

% Update Velocity

particle(i).Velocity = w*particle(i).Velocity ...

+c1*rand(VarSize).*(particle(i).Best.Position-particle(i).Position) ...

+c2*rand(VarSize).*(BestSol.Position-particle(i).Position);

% Apply Velocity Limits

particle(i).Velocity = max(particle(i).Velocity,VelMin);

particle(i).Velocity = min(particle(i).Velocity,VelMax);

% Update Position

particle(i).Position = particle(i).Position + particle(i).Velocity;

% Velocity Mirror Effect

IsOutside=(particle(i).Position<VarMin | particle(i).Position>VarMax);

particle(i).Velocity(IsOutside)=-particle(i).Velocity(IsOutside);

% Apply Position Limits

particle(i).Position = max(particle(i).Position,VarMin);

particle(i).Position = min(particle(i).Position,VarMax);

% Evaluation

particle(i).Cost = CostFunction(particle(i).Position);

% Update Personal Best

if particle(i).Cost<particle(i).Best.Cost

particle(i).Best.Position=particle(i).Position;

particle(i).Best.Cost=particle(i).Cost;

% Update Global Best

if particle(i).Best.Cost<BestSol.Cost
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BestSol=particle(i).Best;

end

end

end

BestCost(it)=BestSol.Cost;

disp([’Iteration ’ num2str(it) ’: Best Cost = ’ num2str(BestCost(it))]);

w=w*wdamp;

end

disp(’End of PSO.’);

disp(’ ’);

%% Results

results.BestSol=BestSol;

results.BestCost=BestCost;

end

%%%% GetFISParams.m %%%%

function p=GetFISParams(fis)

p=[];

nInput=numel(fis.input);

for i=1:nInput

nMF=numel(fis.input(i).mf);

for j=1:nMF

p=[p fis.input(i).mf(j).params];

end

end
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nOutput=numel(fis.output);

for i=1:nOutput

nMF=numel(fis.output(i).mf);

for j=1:nMF

p=[p fis.output(i).mf(j).params];

end

end

end

%%%% SetFISParams.m %%%%

function fis=SetFISParams(fis,p)

nInput=numel(fis.input);

for i=1:nInput

nMF=numel(fis.input(i).mf);

for j=1:nMF

k=numel(fis.input(i).mf(j).params);

fis.input(i).mf(j).params=p(1:k);

p(1:k)=[];

end

end

nOutput=numel(fis.output);

for i=1:nOutput

nMF=numel(fis.output(i).mf);

for j=1:nMF

k=numel(fis.output(i).mf(j).params);

fis.output(i).mf(j).params=p(1:k);

p(1:k)=[];

end

end

end
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%%%% TrainFISCost.m %%%%

function [z, out]=TrainFISCost(x,fis,data)

MinAbs=1e-5;

if any(abs(x)<MinAbs)

S=(abs(x)<MinAbs);

x(S)=MinAbs.*sign(x(S));

end

p0=GetFISParams(fis);

p=x.*p0;

fis=SetFISParams(fis,p);

x = data(:,1:2);

t = data(:,3);

y=evalfis(x,fis);

e=t-y;

MSE=mean(e(:).^2);

RMSE=sqrt(MSE);

z=RMSE;

out.fis=fis;

out.MSE=MSE;

out.RMSE=RMSE;

end

%%%% PlotResults.m %%%%

function PlotResults(Targets, Outputs, Name)

figure;
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Errors=Targets-Outputs;

MSE=mean(Errors.^2);

RMSE=sqrt(MSE);

error_mean=mean(Errors);

error_std=std(Errors);

subplot(2,2,[1 2]);

plot(Targets,’k’);

hold on;

plot(Outputs,’r’);

legend(’Target’,’Output’);

title(Name);

xlabel(’Sample Index’);

grid on;

subplot(2,2,3);

plot(Errors);

legend(’Error’);

title([’MSE = ’ num2str(MSE) ’, RMSE = ’ num2str(RMSE)]);

grid on;

subplot(2,2,4);

histfit(Errors, 50);

title([’Error Mean = ’ num2str(error_mean) ’, Error St.D. = ’ num2str(error_std)]);

end
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