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Abstract

In portfolio risk management, the main foci are to control the aggregate risk of the
entire portfolio and to understand the contribution of each individual risk unit in the
portfolio to the aggregate risk. When univariate risk measures are used to quantify the
risks associated with a portfolio, there is usually a lack of consideration of correlations
between individual risk units and the aggregate risk and of dependence among these risks.
For this reason, multivariate risk measures defined by considering the joint distribution of
risk units in the portfolio are more desirable. In this thesis, we define new multivariate risk
measures by minimizing multivariate loss functions subject to various. constraints. With
the proposed multivariate risk measures, we obtain risk measures for the entire portfolio
and each individual risk unit in the portfolio at the same time.

In Chapter 2, we introduce a multivariate extension of Conditional Value-at-Risk
(CVaR) based on a multivariate loss function associated with different risks related to
portfolio risk management. We prove that the defined multivariate risk measure satisfies
many desirable properties such as positive homogeneity, translation invariance and subad-
ditivity. Then, we provide numerical illustrations with multivariate normal distribution to
show the effects of the parameters in the model. After that, we also perform a comparison
between our multivariate CVaR and other traditional univariate risk measures such as VaR
and CVaR.

In Chapter 3, we define a multivariate risk measure for capital allocation purposes.
Unlike most of the existing allocation principles that assume the total capital is exogenously
given, we obtain the optimal total capital for the entire portfolio and the optimal capital
allocation to all the individual risk units in the portfolio at the same time. In this chapter,
we first discuss our model with a two-level organization/portfolio structure. Then, we
move to a more complex three-level organization/portfolio structure. We find that many
of the existing allocation principles can be seen as special or limiting cases of our model.
In addition, our model can explain those allocation principles as solutions to optimization
problems. Finally, we provide a numerical example for the two-level organization/portfolio
structure model with two different error functions.

In Chapter 4, we introduce a multivariate shortfall risk measure induced by cumulative
prospect theory (CPT) and give the corresponding risk allocations under the multivariate
shortfall risk measure. To obtain this risk measure, we make an extension of previously
studied univariate generalized shortfalls induced by CPT and incorporate the idea of sys-
temic risk. In this study, we discuss the properties of the risk measure and conditions
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for its existence and uniqueness. Also, we perform a simulation study and a comparison
to a previously studied multivariate shortfall to show that our model can provide a more
reasonable risk measure and allocation result.
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Chapter 1

Introduction

1.1 Background

In portfolio risk management, two of the most important questions are to quantify
the risk for the entire portfolio and the risk units in the portfolio and to find the optimal
allocation of the available capital to each risk unit in the portfolio. In this thesis, we use
multivariate risk measure approaches to accomplish those two tasks.

1.1.1 Risk measures

To quantify risks, many risk measures have been developed, and their properties have
been studied in detail. A risk measure ρ is a mapping from X to R = (−∞,+∞), where
X is the set of loss random variables, namely, for any X ∈ X , ρ(X) ∈ (−∞,+∞). Some
definitions and desirable properties of a risk measure are listed below:

A risk measure ρ defined on a convex cone X containing all the constants is coherent
if the following four properties hold:

1. Monotonicity: ρ(X) ≤ ρ(Y ) for all X, Y ∈ X with X ≤ Y almost surely (a.s.).

2. Translation-invariance: ρ(X + c) = ρ(X) + c for all X ∈ X and all c ∈ R.

3. Positive homogeneity: ρ(λX) = λρ(X) for all λ ∈ R+ = [0,∞) and all X ∈ X .

4. Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X, Y ∈ X .
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A risk measure ρ defined on a convex set X that is closed under translation is convex
if it satisfies monotonicity, translation-invariance and

5. Convexity: ρ(aX + (1− a)Y ) ≤ aρ(X) + (1− a)ρ(Y ) for all X, Y ∈ X and a ∈ (0, 1).

One of the popular risk measures used in risk management is Value at Risk (VaR). It
has an intuitive interpretation and is easy to implement. However, it is also criticized by
many researchers and regulators as not providing a proper measurement for the loss severity
in a rare event, and as not satisfying the subadditivity property. Artzner et al. (1999) define
the axiomatic properties of a desirable risk measure and introduce the concept of a coherent
risk measure. These ideas play an essential role in modern quantitative risk management.
Föllmer and Schied (2002) follow a similar idea by defining convex risk measure, and
Rockafellar, Uryasev, et al. (2000) introduce Conditional Value at Risk (CVaR, also called
expected shortfall). Following this, Bellini and Frittelli (2002) and Frittelli and Gianin
(2002) incorporate expected utility theory in risk measures. Researchers also use distortion
functions to model preference in risk management. For related literature, please refer to
Wang (1995), Acerbi (2002), Belles-Sampera et al. (2014), Mao and Cai (2018) and so
on. While univariate risk measures have many desirable properties, they may not be
suitable for portfolio risk management. Univariate risk measures can define the risk of
every single unit. However, as a univariate risk measure is determined based only on its
single distribution, it is hard to incorporate the correlation between individual risk units
within the same large portfolio under the same scenario. For example, a 99% VaR for unit
1 is very likely to have a different scenario than 99% VaR for unit 2 in the portfolio. It
is also hard to determine the contribution of each risk unit to the aggregate risk of the
portfolio under the same scenario.

In portfolio risk management, multivariate risk measures can help us to understand
the risk structure of a portfolio and the correlation between the risk units in the portfolio
better than univariate risk measures. Literature on multivariate risk measures can be
found in Cai and Li (2005), Embrechts and Puccetti (2006), Lee and Prékopa (2013),
Noyan and Rudolf (2013), Cousin and Di Bernardino (2014), Huerlimann (2014), Cossette
et al. (2016), Landsman et al. (2016), Cai et al. (2017), Prékopa and Lee (2018), Herrmann
et al. (2020), Shushi and Yao (2020), and references therein.

Most multivariate risk measures use a random vector, say X = (X1, ..., Xn), to rep-
resent the portfolio, where each component of the random vector, Xi, for i = 1, ..., n,
corresponds to each risk unit in the portfolio respectively. Then, this random vector is
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used to calculate the multivariate risk measure. During this process, the aggregate ran-
dom variable, S = ∑n

i=1Xi, is not directly involved, and the risk measure for the aggregate
risk, S, is not obtained from these multivariate risk measures. In this thesis, we obtain
the risk measures for the aggregate risk of the entire portfolio, S, and each risk unit in the
portfolio at the same time by minimizing a multivariate objective function. In this way,
we can confidently say the obtained multivariate risk measure, including the risk measure
for the aggregate risk, is the optimal solution that satisfies the risk manager’s objective or
preference based on the given objective funtion. In this thesis, we provide two approaches.
In the first approach, we derive the multivariate risk measure by including the aggregate
risk random variable, S, in the multivariate objective function. The obtained multivariate
risk measure has a dimension of n + 1 and is in the form of (ρ1(X1), ..., ρn(Xn), ρS(S))
where the first n components of the vector are the risk measures for the risk units in the
portfolio and the last component of the vector is the risk measure for the aggregate risk of
the entire portfolio. In the second approach, we combine the concept of systemic risk man-
agement with cumulative prospect theory (CPT). In systemic risk management, portfolio
managers focus on analyzing the risk of failure of the entire system/portfolio caused by the
failure of each risk unit in the system/portfolio. Systemic risk measures have been widely
studied since the financial crisis of 2008. The literature on systemic risk measure studies
includes Bartram et al. (2007), Chen et al. (2013), Kromer et al. (2016), Feinstein et al.
(2017), Weber and Weske (2017), Acharya et al. (2017), Armenti et al. (2018), Biagini et al.
(2019) and Brunnermeier and Cheridito (2019). In this approach, we use the acceptance
set concept in systemic risk measures to define the acceptable monetary allocation, which
is a vector of dimension n. When combining with CPT, we can represent the portfolio
manager’s risk appetite more accurately. Defining the risk measure for the entire portfolio
to be the minimum of the sum of the n components of each acceptable monetary allocation,
the acceptable monetary allocation that corresponds to this minimum is used to be the
risk measure for each risk unit in the portfolio.

In comparison to the existing approaches for deriving multivariate risk measures,
our approach can obtain risk measures for the entire portfolio and each risk unit in the
portfolio at the same time as the optimal solution to a multivariate objective function.
In this way, our approach can incorporate the correlations between all risk units and the
aggregate risk. Our defined risk measure can help portfolio managers and shareholders to
understand the relative importance of each individual risk in the system, information which
can then be used to provide a guideline for more reasonable capital allocation method. Also,
our approach can provide an intuitive meaning for the obtained risk measure, namely the
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optimal solution of the portfolio manager’s objective based on the given objective function.

1.1.2 Capital allocation principles

Another important topic in portfolio risk management is finding an optimal capital
allocation method. The portfolio manager/business owner needs to hold enough capital to
make sure the portfolio/business can survive some extreme scenarios. At the same time,
a portfolio/business may have many sub-portfolios/sub-business lines. In this situation, a
proper allocation of the total capital to each sub-portfolio/sub-business line is important.
This can be seen from different perspectives. For accounting purposes, capital allocation
can help a portfolio manager to allocate costs and expenses. As pointed out by Dhaene,
Tsanakas, et al. (2012), there are usually costs associated with holding capital, which
may be either frictional costs or opportunity costs. After the capital allocation process,
the portfolio manager can assign costs to each risk unit, and can also can allocate other
direct and indirect expenses of portfolio management based on the allocated capital. For
performance evaluation purposes, the portfolio manager can use the allocated capital to
calculate the return on capital. For risk management, the portfolio manager can allocate
regulatory or economic capital to each risk unit within the portfolio. The allocated capital
can then be viewed as the risk exposure of each risk unit. In this case, the capital allocation
process is also the risk allocation process. Furthermore, as pointed out in Hesselager and
Andersson (2002), the risk allocation result can then be used to decide the premium for
each risk unit in the insurance field. In all of the situations above, it is crucial to find the
optimal allocation method.

In a capital allocation problem, we assume there are n individual risk units in a system
with losses represented by X1, X2, ..., Xn, as in a multivariate risk measure problem. The
aggregated loss S is given by S = ∑n

i=1Xi. We have an additional variable K representing
the total available capital, and variables Ki, for i = 1, 2, ..., n representing the capital
allocated to each individual risk unit. We can also extend this two-level structure portfolio
to a three-level structure. In this case, each Ki will be considered as the allocated capital
for each sub-portfolio Xi, and will then be distributed again to the next level. The goal is to
find an optimal strategy for determining the allocation under some optimization criteria.
In the past two decades, much research has been done on capital allocation strategies.
The literature on capital allocations includes Overbeck (2000), Cummins (2000), Myers
and Read Jr (2001), Denault (2001), Dhaene et al. (2003), Tsanakas (2004), Kalkbrener
(2005), Sherris (2006), Tsanakas (2007), Dhaene et al. (2008), Dhaene, Tsanakas, et al.
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(2012),Zaks and Tsanakas (2014), Cai and Wang (2020), and references therein.

Here, we give some of the commonly used capital allocation methods:

(a) Haircut: for given α ∈ (0, 1) and i = 1, 2, ..., n,

Ki =
F−1
Xi

(α)∑n
i=1 F

−1
Xi

(α)
K,

where F−1
Xi

(α) is the VaR at confidence level α for Xi.

(b) Covariance: for i = 1, 2, ..., n,

Ki = Cov(Xi,
∑n
i=1Xi)

Var(∑n
i=1Xi)

K.

(c) Conditional Tail Expectation (CTE): for given α ∈ (0, 1) and i = 1, 2, ..., n,

Ki = E[Xi|S > F−1
S (α)]

E[S|S > F−1
S (α)]

K,

where S = ∑n
i=1Xi.

For all of the capital allocation methods above, the total capital K is calculated sepa-
rately. Then, in the process of deriving the capital allocation method, we assume that the
total capital K is given, obtaining the allocation method by minimizing objective functions
that involve risk random variables Xi, for i = 1, ..., n, under some constraints. In this thesis,
we provide a new approach to the capital allocation method. In our approach, we obtain
the optimal total capital K and the allocation to each risk unit Ki simultaneously. To
achieve this goal, we incorporate the aggregate loss random variable, S, in the multivariate
objective function, and obtain the total capital, K, as part of our optimization process. In
comparison to other approaches, our total capital K and allocated capital Ki are derived
under the same framework, and they are consistent with the portfolio manager’s objective.
In additional to claiming the allocation method is optimal under the portfolio manager’s
objective, we can confidently claim that the total required capital is also optimal under the
same objective. Moreover, our allocation method also generalizes many existing allocation
methods and provides explanations for those allocation methods from the perspective of
optimization problems.
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1.2 Outline of the thesis

In Chapter 2, we extend the univariate CVaR to a multivariate CVaR. Our study
is motivated by the multivariate geometric VaR and expectile risk measures studied in
Chaudhuri (1996), Maume-Deschamps et al. (2017), and Herrmann et al. (2018). In this
chapter, we propose a new multivariate CVaR (MCVaR) risk measure by defining a mul-
tivariate loss function from the perspective of systemic risk management. In contrast to
Chaudhuri (1996), Maume-Deschamps et al. (2017), Herrmann et al. (2018), and most
existing multivariate risk measures, our MCVaR will consider both individual and aggre-
gate risks of portfolios, but will prioritize aggregate risks. In this chapter, we discuss the
conditions for existence and uniqueness of a solution, following by desirable properties of
the risk measure. We round out the chapter with a numerical illustration of our defined
risk measure and a comparison with existing risk measures.

In Chapter 3, inspired by the idea of systemic risk measures, which consider the risk
measure of the entire system and the contribution of the risk of each individual risk unit
at the same time, we propose a new method of capital allocation which can simultaneously
decide the optimal total capital and the capital allocation to each individual unit in the
system. Our model extend the models proposed in Furman and Zitikis (2008) and Cai and
Wang (2020), using additional components in the model to consider the risk of the entire
system/portfolio. In this chapter, we discuss the optimal solution for a system with two
or three layers of structures. We provide the conditions for existence and uniqueness of
solutions. We also provide numerical illustrations of our proposed allocation and make a
comparison with the results of existing allocation methods.

In Chapter 4, we extend the idea of generalized shortfalls induced by cumulative
prospect theory (CPT) in Mao and Cai (2018) to multivariate risk measures with the con-
cept of systemic risk, a common acceptance set technique used in systemic risk and the
method used in Armenti et al. (2018). In systemic risk, we consider the risk of the entire
system and how the failure of each individual unit in the system may lead to the failure of
the entire system. In our model, we extend the univariate generalized shortfalls induced by
CPT. This model can also be applied to the problem of capital allocation. In this chapter,
we first review the concept of CPT and the model, univariate generalized shortfalls induced
by CPT, followed by the technique used to extend the univariate model to our multivariate
generalized shortfalls induced by CPT. Then, we discuss the existence and uniqueness of
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the solution. Also, we perform a simulation study based on Armenti et al. (2018)’s original
study and make a comparison with Armenti et al. (2018)’s result to show why our model
can provide a more reasonable result.

In Chapter 5, we provide a summarization for each chapter and for the whole thesis.
In this part, we revisit our approach for defining new multivariate risk measures and the
shared common approach for defining them.

Throughout this thesis, “increasing” means “non-decreasing” rather than “strictly
increasing”, and likewise “decreasing” means “non-increasing”.
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Chapter 2

A multivariate CVaR risk measure
derived from minimizing a
multivariate loss function

2.1 Introduction

In portfolio risk management, one important step is to quantify the risk of the entire
portfolio and the risk of each individual component in the portfolio. To perform this task,
many types of risk measures have been developed. Currently, the most commonly used
risk measures are univariate risk measures due to their simplicity. Generally speaking,
a univariate risk measure is a mapping from a set of random variables to real numbers.
In insurance and finance risk management, a risk measure of a random variable X can
provide not only an assessment of the severity of risk X, but also a guideline about how
to prepare the required capital or to determine the insurance premium for risk X. When
a decision maker faces a random vector or risk portfolio X = (X1, ..., Xd), the decision
maker wants to assess not only the severities of all individual risks, but also the severities
of other risks in the portfolio, in particular, the severity of the aggregate risk ∑d

i=1Xi

of the portfolio, which is the main concern in portfolio risk management as pointed out
by Burgert and Rüschendorf (2006). A decision scheme of determining required capital
or insurance premiums for risk portfolios often involves both individual and aggregate
risks. To manage risk portfolios, many multivariate risk measures have been proposed
from different perspectives. Many of these multivariate risk measures are extensions of the
commonly used univariate VaR, CVaR, and expectile risk measures. To understand the
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ideas behind these extensions, we recall the definitions of the univariate VaR, CVaR, and
expectile risk measures. More examples of univariate risk measures can be found in Mao
and Cai (2018), Cai and Mao (2020), and the references therein. The value-at-risk (VaR)
risk measure VaRα(X) of any random variable X with distribution FX at confidence level
α ∈ (0, 1) is its quantile at level α and is defined by

VaRα(X) = inf{x ∈ R : FX(x) ≥ α}. (2.1.1)

In addition, VaRα(X) is also the smallest minimizer to the optimization problem min
c∈R

E(fα(X−
c)), where the loss function fα(t) is defined as

fα(t) = α(t)+ + (1− α)(t)− = 1
2(|t|+ (2α− 1)t), (2.1.2)

where for any x ∈ R, x+ = max(x, 0) and x− = max(−x, 0) satisfying x = x+ − x−

and |x| = x+ + x−. The expectile risk measure eα(X) of a random variable X with
E(X2) < ∞ at confidence level α ∈ (0, 1) is the unique minimizer to the optimization
problem min

c∈R
E(fα(X − c)), where the loss function fα(t) is defined as

fα(t) = α((t)+)2 + (1− α)((t)−)2 = 1
2 |t| (|t|+ (2α− 1)t). (2.1.3)

The conditional value-at-risk (CVaR) risk measure CVaRα(X) of a random variable X

with E|X| < ∞ at confidence level α ∈ (0, 1) is the minimum value of an expected loss
function E(fX,α(c)), namely

CVaRα(X) = min
c∈R

E(fX,α(c)) = min
c∈R

{
c+ 1

1− α E(X − c)+
}
, (2.1.4)

where the loss function fx,α(t) is defined as

fx,α(t) = t+ (x− t)+

1− α = t+ |x− t|+ (x− t)
2(1− α) . (2.1.5)

It is well known (see, for example, Rockafellar, Uryasev, et al. (2000)) that VaRα(X) is
the smallest minimizer to optimization problem (2.1.4) and that

CVaRα(X) = VaRα(X) + 1
1− α E(X − VaRα(X))+ (2.1.6)

= E(X|X > VaRα(X)) (if X has a continuous distribution).(2.1.7)

In fact, problem (2.1.4) can be viewed as the problem a regulator wishes to solve for mini-
mizing a weighted sum of the total capital (premium) provided by shareholders (insureds)
and the expected shortfall borne by the debtholder (insurer).
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A multivariate VaR is defined in Cousin and Di Bernardino (2013) by extending the
critical interval in (2.1.1) to a multidimensional critical set. Several multivariate condi-
tional tail expectation (CTE) risk measures are introduced by extending the conditional
expectation in (2.1.7) to multivariate forms conditioning on different extreme events asso-
ciated with a random vector. See, for example, Cai and Li (2005), Embrechts and Puccetti
(2006), Lee and Prékopa (2013), Noyan and Rudolf (2013), Cousin and Di Bernardino
(2014), Huerlimann (2014), Cossette et al. (2016), Landsman et al. (2016), Cai et al.
(2017), Prékopa and Lee (2018), Herrmann et al. (2020), Shushi and Yao (2020), and the
references therein. For the purposes of portfolio risk management, another important way
to define multivariate risk measures is to extend loss functions (2.1.2) and (2.1.3) to mul-
tivariate loss functions, and to define multivariate risk measures as optimal solutions that
minimize the expectations of these multivariate loss functions. Indeed, Chaudhuri (1996)
proposes a multivariate quantile/VaR by extending loss function (2.1.2) to a multivariate
case. Maume-Deschamps et al. (2017) and Herrmann et al. (2018) discuss multivariate
expectiles by extending loss function (2.1.3) to multivariate forms. Other multivariate
risk measures proposed in this way can be found in Prékopa (2012), Torres et al. (2015),
Meraklı and Küçükyavuz (2018), and the references therein.

For x = (x1, ..., xd), y = (y1, ..., yd) ∈ Rd, and a ∈ R, ‖x‖2 =
√∑d

i=1 x
2
i is the

Euclidean norm of x, 〈x,y〉 = ∑d
i=1 xiyi is the inner product of x and y, x + y =

(x1 + y1, ..., xd + yd), and ax = (ax1, ..., axd). For a random vector X = (X1, . . . , Xd)
and real vector u = (u1, . . . , ud) ∈ Bd = {x ∈ Rd : ‖x‖2 < 1}, Chaudhuri (1996) de-
fines a multivariate geometric quantile/VaR for X with preference vector u, denoted by
MVaRu(X) = (MVaR1(X), ...,MVaRd(X)), as the unique minimizer to the optimization
problem min

c∈Rd
E(Φu(X− c)) if such a unique minimizer exists, where the loss function Φu(t)

is defined as
Φu(t) = 1

2(‖t‖2 + 〈u, t〉), t ∈ Rd, (2.1.8)

and MVaRi(X) is the risk measure of Xi, i = 1, ..., d, and called the marginal VaR of Xi.
Chaudhuri (1996) shows that if X has a joint density function, then there exists a unique
c∗ = (c∗1, ..., c∗d) = MVaRu(X) ∈ Rd such that E(Φu(X− c∗)) = min

c∈Rd
E(Φu(X− c)), and c∗

is the unique solution to the following system of equations:

E
(
Xi − ci
‖X− c‖2

)
= −ui, i = 1, ..., d. (2.1.9)

Following the idea of Chaudhuri (1996), Herrmann et al. (2018) define a multivariate
geometric expectile ρu(X) for a random vector X = (X1, ..., Xd) with preference vector
u ∈ Bd as the unique minimizer to the optimization problem min

c∈Rd
E(ϕu(X− c)) if such a
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unique minimizer exists, where the loss function ϕu(t) is defined as

ϕu(t) = 1
2 ‖t‖2 (‖t‖2 + 〈u, t〉), t ∈ Rd.

Herrmann et al. (2018) show that if E(Xi)2 < ∞, i = 1, .., d, then there exists a unique
c∗ = (c∗1, ..., c∗d) = ρu(X) ∈ Rd such that E(ϕu(X− c∗)) = min

c∈Rd
E(ϕu(X− c)).

Motivated by the multivariate geometric VaR and expectile risk measures studied
in Chaudhuri (1996), Maume-Deschamps et al. (2017), and Herrmann et al. (2018), in
this chapter we propose a new multivariate CVaR (MCVaR) risk measure by defining a
multivariate loss function from the perspective of systemic risk management. In contrast
to Chaudhuri (1996), Maume-Deschamps et al. (2017), Herrmann et al. (2018), and most
existing multivariate risk measures, our MCVaR will consider both individual risks and
aggregate risks of portfolios, but prioritize aggregate risks of portfolios.

In a standard approach to risk management of a set of risks, the risk measurement
of the sum of risks is first determined by a univariate risk measure of the sum such as
VaR or CVaR, which is then allocated among the set of risks by an allocation principle
such as the haircut or CTE principles. Such a standard approach usually entails a top-
down risk decomposition strategy. In a top-down approach, the risk measurement of the
sum of risks depends only on the distribution of the sum or aggregate risk, and does not
consider the relative importance of each individual risk to the aggregate risk and/or the
dependence between each individual risk and the aggregate risk. In risk management of
finance and insurance, the risk measurement of the sum of risks and of individual risks can
be used to determine the required capital for a corporation and its subsidiaries, respectively,
or to calculate the premiums for the combined risk and individual risks of an insurance
portfolio, respectively. In a standard or top-down approach, the risk measurement of
the sum of risks and the risk measurements of individual risks are determined in a two-
step procedure. In the proposed multivariate CVaR approach, these risk measurements
are determined simultaneously in a single-step procedure. Using the multivariate CVaR
approach, a decision maker such as a regulator or an insurer can take into consideration
the relative importance of each individual risk to the aggregate risk and/or the dependence
between each individual risk and the aggregate risk when determining required capital for
a corporation or premiums for an insurance portfolio. Generally speaking, such a one-step
approach provides a way to determine risk measurements for a set of risks from a systemic
point of view. In addition, the multivariate CVaR also provides a new way to determine
the risk measurement of the sum of risks, which can be used in a standard or top-down
approach to risk measurement of a set of risks.
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In this chapter, we consider the risk measurement of a random vector or set of risks
that represents the risk of a corporation or an insurance portfolio. We refer the systemic risk
of the corporation or portfolio to the situation when the aggregate risk of the corporation
or portfolio is greater than the required capital for the corporation or portfolio. Not only
does the systemic risk of the corporation or portfolio depend on the aggregate risk of
the corporation or portfolio, but it also links to the individual risks of the corporation
or portfolio, the relative importance of each individual risk to the aggregate risk, the
dependence between each individual risk and the aggregate risk, and the dependence among
the individual risks. This motivates us to propose the multivariate CVaR risk measure
from a systemic viewpoint or from the perspective of systemic risk management. A decision
maker (a regulator or an insurer) may use this multivariate CVaR to determine the required
capital for a corporation and its subsidiaries or to calculate premiums for the combined
risk and individual risks of an insurance portfolio from a systemic point of view. In fact,
determining the required capital for a corporation or premiums for an insurance portfolio
is an important application of multivariate risk measures in risk management for finance
and insurance.

The rest of this chapter is structured as follows. In Section 2.2, we give preliminary
lemmas about convex optimization problems and consider a generalization of loss function
(2.1.5) associated with the univariate CVaR. In Section 2.3, we extend this loss function
(2.1.5) to a multivariate loss function considering the systemic risk of a portfolio and define
a new multivariate CVaR (MCVaR) risk measure, which places emphasis on aggregate
risks. In Section 2.4, we give sufficient conditions for the existence of the new MCVaR risk
measure and obtain an expression for its solution. In Section 2.5, we discuss the properties
of the new MCVaR including positive homogeneity, translation invariance, subadditivity,
and monotonicity under some assumptions. In Section 2.6, we illustrate the MCVaR by
numerical examples and explore the effect of dependence among individual risks on the
MCVaR. Concluding remarks are given in Section 2.7.

2.2 Preliminary lemmas about convex optimization
problems

In this section, we present preliminary lemmas about convex optimization problems
and consider a generalization of loss function (2.1.5) associated with the univariate CVaR.

Definition 2.2.1. Let f : Rd −→ R be a function.
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(i) f is said to be convex (strictly convex) on Rd if f(λx + (1−λ)y) ≤ (<)λf(x) + (1−
λ)f(y) for any x,y ∈ Rd and any λ ∈ [0, 1].

(ii) f is said to be coercive on Rd if lim‖x‖2→∞ f(x) =∞.

In the following two lemmas, we recall some well-known results (see, for example,
Niculescu and Persson (2006)) about convexity, coercivity, and solutions to convex opti-
mization problems.

Lemma 2.2.1. (i) If fi(xi) is a convex (coercive) function of xi on R, i = 1, ..., d, then∑d
i=1 fi(xi) is a convex (coercive) function of x = (x1, ..., xd) on Rd.

(ii) If g(x) is a coercive function of x on Rd and f(x) ≥ g(x) for all x ∈ Rd, then f(x)
is also a coercive function of x on Rd.

Lemma 2.2.2. (i) If f : Rd −→ R is a coercive and convex function on Rd. Then
there exists an element x∗ = (x1, ..., xd) ∈ Rd such that f(x∗) = infx∈Rd f(x), and
x∗ = (x1, ..., xd) is a solution to the following system of inequalities:

∂−

∂xi
f(x1, ..., xd) ≤ 0 ≤ ∂+

∂xi
f(x1, ..., xd), i = 1, ..., d. (2.2.1)

If, moreover, f is also differentiable, then x∗ = (x1, ..., xd) ∈ Rd such that f(x∗) =
infx∈Rd f(x) is a solution to the following system of equations:

∂

∂xi
f(x1, ...., xd) = 0, i = 1, ..., d. (2.2.2)

(ii) If f : Rd −→ R a coercive and strictly convex function on Rd, then there exists
a unique element x∗ ∈ Rd such that f(x∗) = infx∈Rd f(x). In addition, if f also
differentiable, then x∗ = (x1, ..., xd) ∈ Rd such that f(x∗) = infx∈Rd f(x) is the
unique solution to the equations in (2.2.2).

Next, we discuss the properties of a generalization of loss function (2.1.5).

Lemma 2.2.3. For random variable X with E|X| < ∞ and real numbers a, b, v, define
(expected) loss function lX,b,v(x) by

lX,b,v(x) = ax+ bE|X − x|+ v E(X − x) (2.2.3)

= ax+ λE(X − x)+ − γ E(X − x)−, (2.2.4)

where λ = b+ v, γ = v − b, or equivalently, b = λ−γ
2 , v = λ+γ

2 . The following results hold.
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(i) For any b ≥ 0 and any a, v ∈ R, lX,b,v(x) is a convex function of x on R.

(ii) If v − b < a < v + b, or equivalently, if γ < a < λ, then lX,b,v(x) is coercive and
convex on R.

Proof. (i) Since ax+ v E(X − x) is a linear function of x on R and bE|X − x| is a convex
function of x on R for b ≥ 0. Hence, lX,b,v(x) is a convex function of x ∈ R by (2.2.3).
(ii) Note that |x| = 2(x)+ − x and (x)− = (x)+ − x. Thus (2.2.3) and (2.2.4) have the
equivalent expressions:

lX,b,v(x) = (a− γ)x+ γEX + (λ− γ)E(X − x)+ (2.2.5)

= (a− λ)x+ λEX − (γ − λ)E(X − x)−. (2.2.6)

By the monotone convergence theorem and E|X| < ∞, we have limx→∞ E(X − x)+ = 0
and limx→−∞ E(X − x)− = 0. Thus, it follows from γ < a < λ that limx→∞ lX,b,v(x) = ∞
by (2.2.5) and that limx→−∞ lX,b,v(x) =∞ by (2.2.6). Hence, lX,b,v(x) is coercive.

Lemma 2.2.4. For v− b < 1 < v+ b or equivalently γ < 1 < λ, and any random variable
X with E|X| <∞, denote mapping GCVaRb,v(X) from X to R by

GCVaRb,v(X) = min
c∈R
{c+ bE|X − c|+ v E(X − c)}

= min
c∈R
{c+ λE(X − c)+ − γ E(X − c)−}. (2.2.7)

Then,

GCVaRb,v(X) = γ E(X) + (1− γ) CVaRα(X), (2.2.8)

where

α = b+ v − 1
2b = λ− 1

λ− γ
. (2.2.9)

Proof. Note that (x)− = (x)+ − x, we have

GCVaRb,v(X) = min
c∈R
{(1− γ)c+ (λ− γ)E(X − c)+ + γ EX}

= γ EX + (1− γ) min
c∈R

{
c+ λ− γ

1− γ E(X − c)+
}

= γ EX + (1− γ)CVaRα(X),

where the last equality follows from (2.1.4). We point out that (2.2.7) can be also obtained
by using (2.19), (2.24), and Example 2.39 of Pflug and Romisch (2007).

By setting γ < 1 < λ, it implies that we focus more on the shortfall risk. Furthermore,
if γ > 0, the surplus will partially offset the shortfall risk. If γ < 0, we consider the surplus
to be an additional risk.
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2.3 A multivariate CVaR considering the systemic
risk of a portfolio

Motivated by the multivariate loss functions used in Chaudhuri (1996) and Herrmann
et al. (2018), we would extend loss function (2.1.5) for the univariate CVaR to a multivariate
loss function considering the systemic risk of a portfolio/company. In doing so, for any
c = (c1, ..., cd) ∈ Rd and random vector X = (X1, ..., Xd), define multivariate loss function
fX,λ,γ,b,β(c) by

fX,λ,γ,b,β(c) =
d∑
i=1

ci + λ
( d∑
i=1

Xi −
d∑
i=1

ci

)
+
− γ

( d∑
i=1

Xi −
d∑
i=1

ci

)
−

+
d∑
i=1

(
λi
(
Xi − ci

)
+
− γi

(
Xi − ci

)
−

)
+ β‖X− c‖2, (2.3.1)

where λ, γ, β, λi, γi, i = 1, ..., d, are real numbers, and b = (λ1, ..., λd, γ1, ..., γd). Prac-
tically, λ and λi for i = 1, ..., d should be positive as shortfall risks should always be
controlled. At the same time, γ and γi for i = 1, ..., d can be both positive and negative as
we can treat a surplus to be an additional risk or an offset to the shortfall risks depending
on risk managers’ preferences.

In this chapter, we denote S(x) by the sum of the components of a vector x, namely,
for any x = (x1, ..., xn) ∈ Rn, S(x) = ∑n

i=1 xi.

We first provide an interpretation of the loss function fX,λ,γ,b,β(c) in terms of capital
requirements and then define a multivariate CVaR risk measure based on the loss function.
In the loss function fX,λ,γ,b,β(c) with expression (2.3.1), ci can be viewed a base capital for
individual risk Xi;

∑d
i=1 ci is the total base capital for the aggregate risk ∑d

i=1Xi or for the
portfolio/company;

(∑d
i=1Xi −

∑d
i=1 ci

)
+

is the shortfall risk on the aggregate risk if the
total base capital is not sufficient;

(∑d
i=1Xi−

∑d
i=1 ci

)
−

is the surplus risk on the aggregate
risk if the total base capital is over budgeted; (Xi − ci)+ is the shortfall risk on risk Xi if
the base capital for it is not sufficient; (Xi − ci)− is the surplus risk on risk Xi if the base
capital for it is over budgeted; and ‖X− c‖2 is the Euclidean distance between the risk
vector X and the base capital vector c and represents an overall deviation risk between the
risk vector X and the base capital vector c. In addition, the parameters λ, λi, γ, γi, and β
represent the relative importances of the corresponding shortfall risks, surplus risks, and
the overall deviation risk in the portfolio or reflects on decision maker’s preferences on the
corresponding shortfall risks, surplus risks, and the overall deviation risk in the portfolio.

Hence, the loss function fX,λ,γ,b,β(c) with expression (2.3.1) can be understood in a
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similar way to the univariate CVaR and it can be viewed as the sum of the total base
capital S(c) = ∑d

i=1 ci for the aggregate risk plus the total backup/additional capital
λ
(
S(X)− S(c)

)
+
− γ

(
S(X)− S(c)

)
−

+∑d
i=1

(
λi
(
Xi− ci

)
+
− γi

(
Xi− ci

)
−

)
+ β‖X− c‖2.

To buffer the impact of the shortfall risks, surplus risks, and overall deviation risk in the
portfolio, it is reasonable to hold these backup/additional capital. However, holding too
much capital reserves for a portfolio or a company would reduce the potential investment
of the company. Hence, like the idea behind the univariate CVaR in (2.1.4), we would
like to minimize the expected total required capital for the portfolio, namely to minimize
E(fX,λ,γ,b,β(c)), and then use minc∈Rd E(fX,λ,γ,b,β(c)) as the risk measure of the aggregate
risk S(X) or as the required capital for the aggregate risk S(X). Thus, if there exists a
unique c∗ = (c∗1, ..., c∗d) = arg minc∈Rd E(fX,λ,γ,b,β(c)), where c∗i is the base capital for risk
Xi or subunit i, then, the risk measure for the aggregate risk S(X) of the portfolio, denoted
by ρ(S(X)), is

ρ(S(X)) = E(fX,λ,γ,b,β(c∗)) = min
c∈Rd

E(fX,λ,γ,b,β(c))

= S(c∗) + λE
(
S(X)− S(c∗)

)
+
− γ E

(
S(X)− S(c∗)

)
−

+
d∑
i=1

(
λiE(Xi − c∗i )+ − γiE(Xi − c∗i )−

)
+ β E

(
‖X− c∗‖2

)
. (2.3.2)

Note that when d = 1, (2.3.2) is degenerated to

c∗1 + λE
(
X1 − c∗1

)
+
− γ E

(
X1 − c∗1

)
−

+ λ1E(X1 − c∗1)+ − γ1E(X1 − c∗1)− + β E|X1 − c∗1|

= c∗1 + (λ1 + λ+ β)E
(
X1 − c∗1

)
+
− (γ1 + γ − β)E

(
X1 − c∗1

)
−
,

which means that the required capital for risk X1 or subunit 1 is the base capital c∗1 plus
the backup capital (λ1 +λ+β)E(X1− c∗1)+− (γ1 + γ−β)E(X1− c∗1)−. Hence, for risk Xi,
i = 1, ..., d, we can set that the required capital for risk Xi or subunit i is the base capital
c∗i plus the backup capital (λi + λ + β)E(Xi − c∗i )+ − (γi + γ − β)E(Xi − c∗i )− under the
preference parameter λi+λ+β on the expected shortfall risk and the preference parameter
−(γi + γ− β) on the expected surplus risk. Thus, denote the risk measure of Xi by ρi(X),
then we can set that

ρi(X) = c∗i + (λi + λ+ β)E(Xi − c∗i )+ − (γi + γ − β)E(Xi − c∗i )−, i = 1, ..., d.(2.3.3)

Hence, for risk portfolio X = (X1, ..., Xd), we could use (2.3.2) as the risk measure of the
aggregate risk S(X) and use (2.3.3) as the risk measure of Xi, and thus we obtain a multi-
variate risk measure (ρ1(X), ..., ρd(X), ρ(S(X))) for the risk portfolio X = (X1, ..., Xd). In
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such a multivariate risk measure, the priority is to consider the aggregate risk of a port-
folio, which is described in Burgert and Rüschendorf (2006) as a natural idea to take the
aggregate risk of a portfolio as a main concern. Note that the real numbers c∗i = c∗i (X) in
(2.3.2) and (2.3.3), i = 1, ..., d, depend on X or its distribution.

Definition 2.3.1. For random vector X = (X1, ..., Xd) and loss function fX,λ,γ,b,β(c)
defined in (2.3.1), let c∗ = (c∗1, ..., c∗d) ∈ Rd be the unique minimizer to optimization
problem min

c∈Rd
E(fX,λ,γ,b,β(c)) if such a unique minimizer exists, namely

c∗ = (c∗1, ..., c∗d) = arg min
c∈Rd

E(fX,λ,γ,b,β(c)). (2.3.4)

The multivariate CVaR (MCVaR) risk measure of X, denoted by MCVaRλ,γ,b,β(X), is a
mapping from X to Rd+1 and defined by

MCVaRλ,γ,b,β(X) =
(
ρ1(X), . . . , ρd(X), ρ(S(X)

)
, (2.3.5)

where ρ(S(X)) is the risk measure of the aggregate risk S(X) defined by (2.3.2), and ρi(X)
is the risk measure of Xi defined by (2.3.3). �

In multivariate loss function (2.3.1), ∑d
i=1 ci,

(∑d
i=1Xi−

∑d
i=1 ci

)
+

,
(∑d

i=1Xi−
∑d
i=1 ci

)
−

can be viewed as the total capital (premium) provided by subsidiaries of a corporation (in-
sureds of an insurer), the shortfall borne by the corporation (insurer), and the over-required
capital to the corporation (the overcharged premium by the insurer), respectively, while(
Xi−ci

)
+

and
(
Xi−ci

)
−

can be viewed as the shortfall borne by subsidiary (insured) i and
the over-required capital (the overcharged premium) to subsidiary (insured) i, respectively.
In addition, ‖X− c‖2 can be viewed as a penalty or cost faced by the corporation (insurer)
due to the deviation between risk vector X and capital (premium) vector c. Therefore,
problem (2.3.4) can be seen as the problem a regulator (insurer) wishes to solve for mini-
mizing a weighted sum of the total capital (premium) provided by subsidiaries (insureds),
the expected shortfall borne by the corporation (insurer), the expected over-required cap-
ital to the corporation (the expected overcharged premium by the insurer), the expected
shortfalls borne by subsidiaries, the expected overcharged premiums to insureds, and the
expected penalty or cost of the corporation (insurer). This multivariate loss function (2.3.1)
considers a set of risks from a systemic view.

Remark 2.3.1. If β = 0, λi = 0, γi = 0, i = 1, ..., d, the loss function fX,λ,γ,b,β(c) defined
in (2.3.1) is reduced to

fX,λ,γ(c) =
d∑
i=1

ci + λ
( d∑
i=1

Xi −
d∑
i=1

ci

)
+
− γ

( d∑
i=1

Xi −
d∑
i=1

ci

)
−
. (2.3.6)
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Thus, if γ < 1 < λ, by Lemma 2.2.4, the risk measure ρ(S(X)) of the aggregate risk S(X)
in the multivariate CVaR risk measure MCVaRλ,γ,b,β(X) is reduced to

ρ(S(X)) = min
c∈Rd

{ d∑
i=1

ci + λE
( d∑
i=1

Xi −
d∑
i=1

ci
)

+
− γE

( d∑
i=1

Xi −
d∑
i=1

ci
)
−

}
= min

c∈R

{
c+ λE

(
S(X)− c

)
+
− γE

(
S(X)− c

)
−

}
= γ E(S(X)) + (1− γ) CVaRα(S(X)),

where α = λ−1
λ−γ . This means that in this case, the risk measure ρ(S(X)) of the aggregate

risk S(X) is a linear combination of the expected value of S(X) and its CVaR at the
confidence level λ−1

λ−γ . In addition, if γ = 0, the risk measure ρ(S(X)) of the aggregate
risk S(X) is reduced to its CVaR at the confidence level λ−1

λ
. By (2.3.6), we see that

if the required capital for the aggregate risk of a portfolio or company is determined by
CVaR, such a required capital only considers the shortfall risk on the aggregate risk. If
MCVaRλ,γ,b,β(X) is used to determine required capital or premiums of a portfolio, then
the systemic risk of the portfolio, including the shortfall and surplus risks from individual
risks and the aggregate risk and the overall deviation risk of the portfolio, is taken into
consideration. �

2.4 Existence and solution expression of the MCVaR
risk measure

In this section, we give sufficient conditions such that the MCVaR defined in Definition
2.3.1 is well defined. Then, we derive the solution expression of the MCVaR under certain
conditions. To do so, we first study the properties of the objective function E(fX,λ,γ,b,β(c))
in (2.3.4).

Note that x+ = 1
2(|x| + x) and x− = 1

2(|x| − x). Thus, fX,λ,γ,b,β(c) defined in (2.3.1)
has the following equivalent expression:

fX,λ,γ,b,β(c) = S(c) + β0

∣∣∣S(X)− S(c)
∣∣∣+ v0

(
S(X)− S(c)

)
+

d∑
i=1

βi |Xi − ci|+ 〈v,X− c〉+ β‖X− c‖2, (2.4.1)

where

β0 = λ− γ
2 , v0 = λ+ γ

2 , βi = λi − γi
2 , vi = λi + γi

2 , i = 1, ..., d, (2.4.2)
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and v = (v1, ..., vd), u = (β1, ..., βd, v1, ..., vd). The relationships in (2.4.2) are equivalent to

λ = v0 + β0, γ = v0 − β0, λi = vi + βi, γi = vi − βi, i = 1, ..., d. (2.4.3)

Proposition 2.4.1. Let X = (X1, ..., Xd), d ≥ 2, be a random vector with finite expec-
tation, namely E|Xi| < ∞, i = 1, ..., d, and fX,λ,γ,b,β(c) be the loss function defined in
(2.3.1). Then, the following statements hold.

(i) For any λ, γ, b, and β in the loss function fX,λ,γ,b,β(c), E(fX,λ,γ,b,β(c)) is a finite-
valued function of c ∈ Rd, namely for any c ∈ Rd,

∣∣∣E(fX,λ,γ,b,β(c))
∣∣∣ <∞.

(ii) If β ≥ 0, λ ≥ γ, λi ≥ γi, i = 1, ..., d, then E(fX,λ,γ,b,β(c)) is a convex function of
c ∈ Rd.

(iii) If β > 0, λ ≥ γ, λi ≥ γi, i = 1, ..., d, and the distribution of X is not supported on a
single straight line, then E(fX,λ,γ,b,β(c)) is a strictly convex function of c ∈ Rd.

(iv) If β ≥ 0, λ ≥ γ, λi ≥ γi, i = 1, ..., d, and
d∑
i=1

(λi + γi + λ+ γ − 2)2 < (2β + β∗)2, (2.4.4)

then E(fX,λ,γ,b,β(c)) is a coercive function of c ∈ Rd, where β∗ = min{λ1−γ1, ..., λd−
γd}.

(v) If β ≥ 0, λ ≥ 0, γ = 0, γi < 1 < λi, i = 1, ..., d, then E(fX,λ,0,b,β(c)) is a coercive
and convex function of c ∈ Rd.

Proof. For any x = (x1, ..., xd),y, z ∈ Rd and a, b ∈ R, the following inequalities hold:

|a+ b| ≤ |a|+ |b|, ‖x + y‖2 ≤ ‖x‖2 + ‖y‖2, |〈x,y〉| ≤ ‖x‖2 ‖y‖2, (2.4.5)

and
|a− b| ≥ |b| − |a|, ‖x− y‖2 ≥ ‖y‖2 − ‖x‖2,

d∑
i=1
|xi| ≥ ‖x‖2. (2.4.6)

For any c = (c1, ..., cd), v = (v1, ..., vd) ∈ Rd, and any random vector X = (X1, ..., Xd), by
(2.4.1), we have

fX,λ,γ,b,β(c)

=
d∑
i=1

(1− vi − v0)ci + β0

∣∣∣S(X)− S(c)
∣∣∣+ β||X− c||2 +

d∑
i=1

(vi + v0)Xi +
d∑
i=1

βi |Xi − ci|

= 〈v∗, c〉+ β0

∣∣∣S(X)− S(c)
∣∣∣+ β||X− c||2 + 〈w∗, X〉+

d∑
i=1

βi |Xi − ci|, (2.4.7)
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where

v∗ = 1− v− v01 = (1− v0)1− v, w∗ = v + v01, (2.4.8)

and 1 ∈ Rd is a vector with all components of 1’s.

(i) Applying the inequalities in (2.4.5) and (2.4.6) to (2.4.7), we obtain

|fX,λ,γ,b,β(c)| ≤ |〈v∗, c〉|+ |β0|
n∑
i=1
|Xi|+ |β0| |S(c)

∣∣∣+ |β| d∑
i=1
|Xi|+ |β| ‖c‖2

+ ‖w∗‖2

d∑
i=1
|Xi|+

d∑
i=1
|βi| |Xi|+

d∑
i=1
|βi| |ci|,

which implies
∣∣∣E(fX,λ,γ,b,β(c))

∣∣∣ ≤ E
∣∣∣fX,λ,γ,b,β(c)

∣∣∣ <∞ as E|Xi| <∞, i = 1, ..., d.

(ii) Note that S(c), 〈v,X− c〉, and v0
(
S(X)−S(c)

)
are linear in c, and thus are convex

functions of c on Rd. In addition, if β ≥ 0, λ ≥ γ, λi ≥ γi, i = 1, ..., d, or equivalently
if β ≥ 0, β0 ≥ 0, βi ≥ 0, i = 1, ..., d, then β0

∣∣∣S(X) − S(c)
∣∣∣, β||X− c||2, and∑d

i=1 βi |Xi− ci|, are convex functions of c on Rd by the triangle inequalities. Hence,
by the expression (2.4.1), E(fX,λ,γ,b,β(c)) is a convex function of c ∈ Rd.

(iii) Note that the assumptions that β > 0, λ ≥ γ, λi ≥ γi, i = 1, ..., d, are equivalent to
β > 0, β0 ≥ 0, βi ≥ 0, i = 1, ..., d, By (2.4.1), if β > 0, then E(fX,λ,γ,b,β(c)) has the
following equivalent expression:

E(fX,λ,γ,b,β(c)) = S(c) + β0E
∣∣∣S(X)− S(c)

∣∣∣+ v0E
(
S(X)− S(c)

)
+

d∑
i=1

βi E|Xi − ci|

+ E
(
〈v, X− c〉

)
+ βE‖X− c‖2.

Note that functions S(c), v0E
(
S(X)−S(c)

)
, and E

(
〈v, X− c〉

)
are linear in c ∈ Rd

and that β0E
∣∣∣S(X)−S(c)

∣∣∣ and ∑d
i=1 βi E|Xi− ci| are convex in c ∈ Rd if β0 ≥ 0 and

βi ≥ 0, i = 1, ..., d. In addition, it follows from Theorem 2.17 of Kemperman (1987)
that E‖X− c‖2 is a strictly convex function of c ∈ Rd if d ≥ 2 and the distribution of
X is not supported on a single straight line. Thus, β E‖X− c‖2 is a strictly convex
function of c ∈ Rd if β > 0. Hence, E(fX,λ,γ,b,β(c)) is a strictly convex function of
c ∈ Rd.

(iv) If β ≥ 0, λ ≥ γ, λi ≥ γi, i = 1, ..., d, that is, β ≥ 0, β0 ≥ 0, βi ≥ 0, i = 1, ..., d,
applying the inequalities in (2.4.6) to (2.4.7) and noting that |S(X)− S(c)| ≥ 0 and
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β∗ = min{λ1 − γ1, ..., λd − γd} = 2 min{β1, ..., βd}, we have

fX,λ,γ,b,β(c) ≥ (β − ‖v∗‖2) ‖c‖2 − β‖X‖2 + 〈w∗, X〉+ β∗

2

d∑
i=1
|ci| −

d∑
i=1

βi |Xi|

≥ (β − ‖v∗‖2) ‖c‖2 − β‖X‖2 + 〈w∗, X〉+ β∗

2 ‖c‖2 −
d∑
i=1

βi |Xi|

=
(
β + β∗

2 − ‖v
∗‖2
)
‖c‖2 − β‖X‖2 + 〈w∗, X〉 −

d∑
i=1

βi |Xi|.

Hence, we have

E(fX,λ,γ,b,β(c)) ≥
(
β + β∗

2 − ‖v
∗‖2
)
‖c‖2 − βE‖X‖2

+ E
(
〈w∗, X〉

)
−

d∑
i=1

βi E|Xi|. (2.4.9)

Note that E‖X‖2, E
(
〈w∗, X〉

)
, E|Xi|, i = 1, ..., d, are all finite. Thus, if β + β∗

2 −
‖v∗‖2 > 0 or equivalently (2.4.4) holds, then (2.4.9) implies

lim
‖c‖2→∞

E(fX,λ,γ,b,β(c)) =∞,

which means that E(fX,λ,γ,b,β(c)) is coercive on c ∈ Rd.

(v) If β ≥ 0, λ ≥ 0, γ = 0, by (2.3.1), we have

E(fX,λ,0,b,β(c)) =
d∑
i=1

(
ci + λiE(Xi − ci)+ − γiE(Xi − ci)−

)

+λE
( d∑
i=1

Xi −
d∑
i=1

ci
)

+
+ β E‖X− c‖2 (2.4.10)

≥
d∑
i=1

(
ci + λiE(Xi − ci)+ − γiE(Xi − ci)−

)
. (2.4.11)

Further, if γi < 1 < λi, i = 1, ..., d, by Lemma 2.2.3(ii), we have that ci + λiE(Xi −
ci)+−γiE(Xi− ci)− is a coercive and convex function of ci ∈ R, and thus, by Lemma
2.2.1(i), ∑d

i=1

(
ci + λiE(Xi − ci)+ − γiE(Xi − ci)−

)
is a coercive and convex function

of c ∈ Rd. Hence, by (2.4.11) and Lemma 2.2.1(ii), we have that E(fX,λ,0,b,β(c)) is
a coercive function of c ∈ Rd. In addition, by (2.4.10), E(fX,λ,0,b,β(c)) is a convex
function of c ∈ Rd as both λE

(∑d
i=1 Xi −

∑d
i=1 ci

)
+

and βE‖X− c‖2 are convex
functions of c ∈ Rd. �

Now, we make the following assumption, which gives sufficient conditions such that
the new MCVaR risk measure in Definition 2.3.1 is well defined.
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Assumption 2.4.1. For random vector X with finite expectation and loss function fX,λ,γ,b,β(c)
defined in (2.3.1), assume that the following conditions hold for pair (X, fX,λ,γ,b,β(c)) :

(i) X has a continuous joint distribution function with a joint density function,

(ii) and that β > 0, λ ≥ γ, λi ≥ γi, i = 1, ..., d, and

d∑
i=1

(λi + γi + λ+ γ − 2)2 < (2β + β∗)2, (2.4.12)

where β∗ = min{λ1 − γ1, ..., λd − γd}. �

Remark 2.4.2. Under Assumption 2.4.1, by Proposition 2.4.1(iii)-(iv), we know that
E(fX,λ,γ,b,β(c)) is a coercive and strictly convex function of c on Rd. Thus, by Lemma
2.2.2(ii), there exists a unique c∗ = (c∗1, ..., c∗d) ∈ Rd such that

E(fX,λ,γ,b,β(c)) = min
c∈Rd

E(fX,λ,γ,b,β(c)). (2.4.13)

Hence, Assumption 2.4.1 gives sufficient conditions such that the multivariate CVaR risk
measure MCVaRλ,γ,b,β(X) in Definition 2.3.1 is well defined. We also point out that the
assumption that X has a joint density or has the absolute continuous distribution is also
assumed in Chaudhuri (1996) to guarantee that the multivariate geometric quantile/VaR
MVaRu(X) is well defined. �

Theorem 2.4.3. Under Assumption 2.4.1, there exists a unique c∗ = (c∗1, ..., c∗d) ∈ Rd such
that (2.4.13) holds, and moreover, c∗ = (c∗1, ..., c∗d) is the unique solution to the following
system of equations:

β E
(
Xi − ci
||X− c||2

)
= 1− λ− λi + (λi − γi)FXi(ci) + (λ− γ)FS(X)

( d∑
i=1

ci

)
, i = 1, ..., d.(2.4.14)

Proof. Under Assumption 2.4.1, by Remark 2.4.2, there exists a unique c∗ = (c∗1, ..., c∗d) ∈
Rd such that (2.4.13) holds. By (2.3.1), we have

E(fX,λ,γ,b,β(c))

=
d∑
i=1

ci + λE
( d∑
i=1

Xi −
d∑
i=1

ci

)
+
− γE

( d∑
i=1

Xi −
d∑
i=1

ci

)
−

+ β E
( d∑
i=1

(Xi − ci)2
) 1

2

+
d∑
i=1

λiE(Xi − ci)+ −
d∑
i=1

γiE(Xi − ci)−. (2.4.15)
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Let gi(ci) = E(Xi − ci)+ =
∫∞
ci
F̄X(x)dx, hi(ci) = E(Xi − ci)− =

∫ ci
−∞ FX(x)dx, and

g(c1, ..., cd) = E
( d∑
i=1

Xi −
d∑
i=1

ci

)
+

=
∫ ∞∑d

i=1 ci
F̄S(X)(x)dx,

h(c1, ..., cd) = E
( d∑
i=1

Xi −
d∑
i=1

ci

)
−

=
∫ ∑d

i=1 ci

−∞
FS(X)(x)dx.

Under Assumption 2.4.1(i), g(c1, ..., cd), h(c1, ..., cd), gi(ci), hi(ci) are differentiable with

∂

∂ci
g(c1, ..., cd) = −F̄S(X)

( d∑
i=1

ci

)
,

∂

∂ci
h(c1, ..., cd) = FS(X)

( d∑
i=1

ci

)
,

∂

∂ci
gi(ci) = −F̄Xi(ci),

∂

∂ci
hi(ci) = FXi(ci).

Under Assumption 2.4.1(i), it is pointed out in Chaudhuri (1996) that E
(∑d

i=1(Xi−ci)2
) 1

2

is differentiable with

∂

∂ci
E
( d∑
i=1

(Xi − ci)2
) 1

2
= 1

2 × E
[( d∑

i=1
(Xi − ci)2

)− 1
2
× 2(Xi − ci)(−1)

]
.

Thus, E(fX,λ,γ,b,β(c)) is differentiable with

∂

∂ci
E(fX,λ,γ,b,β(c))

= 1− λiF̄Xi(ci)− γiFXi(ci)− λF̄S(X)

( d∑
i=1

ci

)
− γFS(X)

( d∑
i=1

ci

)
− βE

(
Xi − ci
||X− c||2

)
.

By Lemma 2.2.2(ii), c∗ = (c∗1, ..., c∗d) is the unique solution to equations ∂
∂ci

E(fX,λ,γ,b,β(c)) =
0, i = 1, ..., d, thus, we obtain

β E
(
Xi − ci
||X− c||2

)
= 1− λiF̄Xi(ci)− γiFXi(ci)− λF̄S(X)

( d∑
i=1

ci

)
− γFS(X)

( d∑
i=1

ci

)

= 1− λ− λi + (λi − γi)FXi(ci) + (λ− γ)FS(X)

( d∑
i=1

ci

)
, i = 1, ..., d,

which yields (2.4.14).

Remark 2.4.4. In Theorem 2.4.3, if λ = γ, λi = γi, i = 1, ..., d, the equations in (2.4.14)
are reduced to

E
(
Xi − ci
||X− c||2

)
= −λ+ λi − 1

β
, i = 1, ..., d,

23



which are equivalent to those in (2.1.9) with u = (λ+λ1−1
β

, ..., λ+λd−1
β

). Thus, in this
case, the minimizer c∗ defined in (2.3.4) is reduced to the multivariate geometric quan-
tile MVaRu(X), namely c∗i = MVaRi(X), i = 1, ..., d. The MCVaR risk measure of X is
(ρ1(X), ..., ρd(X), ρ(S(X))) with the following expression:

ρi(X) = (λ+ λi)E(Xi) + (1− λ− λi) MVaRi(X)

+ β E
∣∣∣Xi −MVaRi(X)

∣∣∣, (2.4.16)

ρ(S(X)) =
d∑
i=1

(
(λ+ λi)E(Xi) + (1− λ− λi) MVaRi(X)

)

+ β E
( d∑
i=1

(
Xi −MVaRi(X)

)2
) 1

2
. (2.4.17)

The expression (2.4.16) means that the required capital for risk Xi is a linear combination
of the expected value of Xi and its marginal VaR in the portfolio plus a loading that
is proportional to the expected absolute deviation between Xi and its marginal VaR in
the portfolio. In addition, the expression (2.4.17) means that the required capital for
the aggregate risk S(X) is the total of all linear combinations of an individual risk and its
marginal VaR in the portfolio plus a loading that is proportional to the expected Euclidean
distance between the risk portfolio X and its MVaR. �

Next, we consider a special case of the loss function defined in (2.3.1) when λ > 0,
γ = 0, β = 0, λi > 1, γi = 0, i = 1, ..., d. In this case, by (2.3.1), the loss function
fX,λ,γ,b,β(c) is reduced to

fX,λ,Λ(c) =
d∑
i=1

ci + λ
( d∑
i=1

Xi −
d∑
i=1

ci

)
+

+
d∑
i=1

λi(Xi − ci)+, (2.4.18)

where Λ = (λ1, ..., λd). The loss function fX,λ,Λ(c) means that the total required capital
for the aggregate risk is equal to the total base capital plus the additional capital on the
shortfall risks of the aggregate risk and individual risks. This form (2.4.18) of multivariate
loss function is similar to (2.1.5), in which the decision maker is concerned only about
shortfall risks. By Proposition 2.4.1(v), E(fX,λ,Λ(c)) is a coercive and convex function of
c ∈ Rd. Thus, by Lemma 2.2.2(i), there exists c∗ ∈ Rd such that

E(fX,λ,Λ(c∗)) = min
c∈Rd

E(fX,λ,Λ(c)). (2.4.19)

In the following theorem, we show under some conditions, there exists unique c∗ ∈ Rd

such that (2.4.19) holds. Moreover, we give the explicit solution to the unique c∗ satisfying
(2.4.19).
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Assumption 2.4.2. For random vector X = (X1, ..., Xd) with finite expectation and loss
function fX,λ,Λ(c) defined in (2.4.18), assume that the following conditions hold for pair
(X, fX,λ,Λ(c)):

(i) Distribution functions FS(X)(x), FXi(x), i = 1, ..., d, are continuous on R, the left-
continuous inverse functions F−1

Xi
(q) of FXi are continuous on (0, 1) with limq→1 F

−1
Xi

(q) =
∞, i = 1, ..., d,

(ii) and that λ > 1, γ = 0, β = 0, λi > 1, γi = 0, i = 1, ..., d.

Theorem 2.4.5. Under Assumption 2.4.2, there exists a unique c∗ = (c∗1, ..., c∗d) ∈ Rd such
that (2.4.19) holds, and c∗ has the following solution

c∗i = F−1
Xi

(Hi,S(X)(x0)), i = 1, ..., d, (2.4.20)

where 0 < Hi,S(X)(x0) < 1, i = 1, ..., d,

Hi,S(X)(x) = λi + λ− 1− λFS(X)(x)
λi

= λi − 1 + λ F̄S(X)(x)
λi

, (2.4.21)

and x0 = x0(X, λ,Λ) is the unique solution to equation

x−
d∑
i=1

F−1
Xi

(
Hi,S(X)(x)

)
= 0, x > F−1

S(X)

(λ− 1
λ

)
. (2.4.22)

Proof. Under Assumption 2.4.2, by Proposition 2.4.1(v), we know that h(c) = E(fX,λ,Λ(c))
is a coercive and convex function of c ∈ Rd. Thus, by Lemma 2.2.2(i), there exists c∗ ∈ Rd

such that h(c∗) = minc∈Rd h(c). In this case, by (2.4.18),

h(c) = E(fX,λ,Λ(c)) =
d∑
i=1

ci + λE
( d∑
i=1

Xi −
d∑
i=1

ci

)
+

+
d∑
i=1

λiE
(
Xi − ci

)
+
.

Under Assumption 2.4.2(i), h(c) is differentiable. Thus, by Lemma 2.2.2(i), we know that
c∗ = (c∗1, ..., c∗d) is a solution to the system of equations

∂

∂ci
h(c1, ...., cd) = 0, i = 1, ..., d. (2.4.23)

By taking partial derivatives of h(c) with respect to ci, we easily see that the equations in
(2.4.23) are reduced to

1− λ− λi + λiFXi(ci) + λFS(X)

( d∑
i=1

ci

)
= 0, i = 1, ..., d,
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which is equivalent to

FXi(ci) =
λi + λ− 1− λFS(X)

(∑d
i=1 ci

)
λi

=
λi − 1 + λ F̄S(X)

(∑d
i=1 ci

)
λi

= Hi,S(X)
( d∑
i=1

ci
)
, i = 1, ..., d, (2.4.24)

where function Hi,S(X)(x) is defined in (2.4.21). Under the assumptions of λ > 1 and
λi > 1, i = 1, ..., d, we have that 0 < λ−1

λ
< 1, Hi,S(X)(x) > 0, i = 1, ..., d, and that

0 < Hi,S(X)(x) < 1, i = 1, ..., d ⇐⇒ FS(X)(x) > λ− 1
λ

⇐⇒ x > F−1
S(X)

(
λ− 1
λ

)
def= x∗,

which means that if ∑d
i=1 ci > x∗, then

0 < Hi,S(X)
( d∑
i=1

ci
)
< 1, i = 1, ..., d. (2.4.25)

Hence, if ∑d
i=1 ci > x∗, by (2.4.24), we have

ci = F−1
Xi

(
Hi,S(X)

( d∑
i=1

ci
))
, i = 1, ..., d, (2.4.26)

which imply that

d∑
i=1

ci =
d∑
i=1

F−1
Xi

(
Hi,S(X)

( d∑
i=1

ci
))
. (2.4.27)

Let g(x) = x −∑d
i=1 F

−1
Xi

(
Hi,S(X)(x)

)
for x ∈ (x∗, ∞). Note that Hi,S(X)(x) is decreasing

in x and F−1
Xi

(x) is increasing for i = 1, ..., d, hence, g(x) is strictly increasing as function x
is strictly increasing. In addition, g(x) is also continuous under Assumption 2.4.2(i). For
any i = 1, ..., d,

lim
x→∞

Hi,S(X)(x) = λi − 1
λi

, lim
x↓x∗

Hi,S(X)(x) =
λ+ λi − 1− λ× λ−1

λ

λi
= 1.

Hence, limx↓x∗ F
−1
Xi

(
Hi,S(X)(x)

)
= ∞, i = 1, ..., d, which, together with −∞ < x∗ < ∞,

implies limx↓x∗ g(x) = −∞. Obviously, we have limx→∞ g(x) = ∞. Thus, there exists a
unique x0 ∈ (x∗, ∞) such that g(x0) = 0, which, together with (2.4.27), implies ∑d

i=1 ci =
x0. Hence, by (2.4.26), we have (2.4.20). In addition, by (2.4.25), we have 0 < Hi,S(X)(x0) <
1, i = 1, ..., d.
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Remark 2.4.6. Under Assumption 2.4.2 and the notations in Theorem 2.4.5, denote
qi = qi(X, λ,Λ) = Hi,S(X)(x0), i = 1, ..., d, and the multivariate CVaR risk measure
MCVaRλ,γ,b,β(X) of X by MCVaRλ,Λ(X) = (ρ1(X), ..., ρd(X), ρ(S(X))), then by (2.4.20),
(2.3.3), (2.3.2), we have

ρi(X) = F−1
Xi

(qi) + (λi + λ)E
(
Xi − F−1

Xi
(qi)

)
+
, i = 1, ..., d, (2.4.28)

ρ(S(X)) =
d∑
i=1

F−1
Xi

(qi) + λE
( d∑
i=1

Xi −
d∑
i=1

F−1
Xi

(qi)
)

+

+
d∑
i=1

λi E
(
Xi − F−1

Xi
(qi)

)
+
. (2.4.29)

Expression (2.4.28) means that if the base capital for each individual risk is its VaR at
confidence level qi, then the required capital for the individual risk is the VaR plus an
additional capital which is proportional to the expected shortfall risk at the preference
parameter λi + λ. We point out that the confidence level qi depends on the whole risk
portfolio X. In addition, expression (2.4.29) means the required capital for the aggregate
risk is the total VaRs of individual risks at their own confidence levels plus the total
additional capital for the shortfall risks from the aggregate risk and individual risks. �

2.5 Properties of the MCVaR risk measure

In this section, we discuss the properties of the new MCVaR. For risk vector X =
(X1, ..., Xd) with MCVaRλ,γ,b,β(X) = (ρ1(X), ..., ρd(X), ρ(S(X))), the risk measure ρ(S(X))
of the aggregate risk S(X), and the risk measure ρi(X) of individual risk Xi, i = 1, ..., d,
are all depending on the whole portfolio risk X = (X1, ..., Xd). The priority in our MCVaR
is the risk measure of the aggregate risk. In the following propositions, we show that under
some conditions, MCVaRλ,γ,b,β(X) satisfies positive homogeneity, translation invariance,
subadditivity, and monotonicity.

Proposition 2.5.1. (Positive homogeneity) For random vector X and loss function fX,λ,γ,b,β(c)
defined in (2.3.1), assume that minimization problem minc∈Rd E(fX,λ,γ,b,β(c)) has a unique
minimizer. Then for any a > 0,

MCVaRλ,γ,b,β(aX) = aMCVaRλ,γ,b,β(X), (2.5.1)

which means that ρi(aX) = aρi(X), i = 1, ..., d, and ρ(S(aX)) = ρ(aS(X)) = aρ(S(X)).
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Proof. Denote by c∗(X) = (c∗1(X), ..., c∗d(X)) the unique minimizer of minc∈Rd E(fX,λ,γ,b,β(c)),
that is,

E(fX,λ,γ,b,β(c∗(X))) = min
c∈Rd

E(fX,λ,γ,b,β(c)).

Note that E(faX,λ,γ,b,β(ac)) = aE(fX,λ,γ,b,β(c)) for any a > 0 and c ∈ Rd and that c ∈
Rd ⇐⇒ ac ∈ Rd. Hence,

min
c∈Rd

E(faX,λ,γ,b,β(c)) = min
c∈Rd

E(faX,λ,γ,b,β(ac)) = amin
c∈Rd

E(fX,λ,γ,b,β(c))

= aE(fX,λ,γ,b,β(c∗(X))) = E(faX,λ,γ,b,β(ac∗(X))),

which means that minimization problem minc∈Rd E(faX,λ,γ,b,β(c)) has a unique minimizer
ac∗(X). Thus, by (2.3.2) and (2.3.3), we can easily verify that for i = 1, . . . , d

ρi(aX) = ac∗i (X) + (λi + λ+ β)E(aXi − ac∗i (X))+ − (γi + γ − β)E(aXi − ac∗i (X))−
= aρi(X)

and

ρ(S(aX)) = S(ac∗(X)) + λE
(
S(aX)− S(ac∗(X))

)
+
− γ E

(
aS(X)− aS(c∗(X))

)
−

+
d∑
i=1

(
λiE(aXi − ac∗i (X))+ − γiE(aXi − ac∗i (X))−

)
+ β E

(
‖a(X− c∗(X))‖2

)
= aρ(S(X)).

Positive homogeneity of MCVaR provides a similar concept as positive homogeneity
of a univariate risk measure, however, positive homogeneity of MCVaR is in terms of the
whole business entity. For instance, if the risk size doubles for all risk units within the
business entity, the risk measures for all units and the aggregate risk will double.

Proposition 2.5.2. (Translation invariance) For random vector X and loss function
fX,λ,γ,b,β(c) defined in (2.3.1), assume that minimization problem minc∈Rd E(fX,λ,γ,b,β(c))
has a unique minimizer. Then, for any real vector a = (a1, . . . , ad) ∈ Rd,

MCVaRλ,γ,b,β(X + a) = MCVaRλ,γ,b,β(X) + (a, S(a)), (2.5.2)

which means that ρi(X+a) = ρi(X)+ai, i = 1, ..., d, and ρ(S(X+a)) = ρ(S(X)+S(a)) =
ρ(S(X)) + S(a).
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Proof. Denote by c∗(X) = (c∗1(X), ..., c∗d(X)) the unique minimizer of minc∈Rd E(fX,λ,γ,b,β(c)),
then

E(fX,λ,γ,b,β(c∗(X))) = min
c∈Rd

E(fX,λ,γ,b,β(c)).

Note that E(fX+a,λ,γ,b,β(c + a)) = E(fX,λ,γ,b,β(c)) for any a, c ∈ Rd and that c ∈ Rd ⇐⇒
c + a ∈ Rd. Hence,

min
c∈Rd

E(fX+a,λ,γ,b,β(c)) = min
c∈Rd

E(fX+a,λ,γ,b,β(c + a)) = min
c∈Rd

E(fX,λ,γ,b,β(c))

= E(fX,λ,γ,b,β(c∗(X))) = E(fX+a,λ,γ,b,β(c∗(X) + a)),

which means that minimization problem minc∈Rd E(fX+a,λ,γ,b,β(c)) has a unique minimizer
c∗(X) + a. Thus, by (2.3.2) and (2.3.3), for i = 1, . . . , d

ρi(X + a) = c∗i (X) + ai + (λi + λ+ β)E(Xi − c∗i (X))+ − (γi + γ − β)E(Xi − c∗i (X))−
= ρi(X) + ai

and

ρ(S(X + a)) = S(c∗(X + a)) + λE
(
S(X)− S(c∗(X))

)
+
− γ E

(
S(X)− S(c∗(X))

)
−

+
d∑
i=1

(
λiE(Xi − c∗i (X))+ − γiE(Xi − c∗i (X))−

)
+ β E

(
‖X− c∗‖2

)
= ρ(S(X)) + S(a).

This translation invariance property of MCVaR means that if the risk of a subunit
is increased by a constant amount, then the corresponding risk measure for each subunit
will increase by the same amount. Furthermore, the risk measure of the aggregate risk will
increase by the total of increased amounts.

In the following proposition, we discuss the subadditivity of the MCVaR. Unlike the
subadditivity of a univariate risk measure, for a multivariate risk measure, the concept of
subadditivity may not apply for any two random vectors since two random vectors may
have different dimensions. From the purpose of portfolio risk management, we expect that
the risk measure of the aggregate risk in an portfolio is not larger than the total of the
risk measures of sub-portfolios. For instance, the premium of a combined policy is not
larger than the total of premiums of individual policies or the required reserve on a merged
company is not larger than the total of the required reserves on separated companies.
In the following proposition, we show that MCVaR holds the subadditivity within a risk
vector or a portfolio.

29



Proposition 2.5.3. (Subadditivity within a risk vector) For random vector X = (X1, ..., Xd)
and loss function fX,λ,γ,b,β(c) defined in (2.3.1), assume that minimization problem

min
c∈Rd

E(fX,λ,γ,b,β(c)) (2.5.3)

has a unique minimizer. Then MCVaRλ,γ,b,β(X) = (ρ1(X), ..., ρd(X), ρ(S(X))) satisfies

ρ(S(X)) ≤
d∑
i=1

ρi(X). (2.5.4)

Proof. Denote by c∗(X) = (c∗1(X), ..., c∗d(X)) the unique minimizer of minc∈Rd E(fX,λ,γ,b,β(c)).
For the sake of simplicity, write c∗(X) = (c∗1(X), ..., c∗d(X)) as c∗ = (c∗1, ..., c∗d). Note that
‖X− c∗‖2 ≤

∑d
i=1 |Xi − c∗i |. Therefore, by (2.4.7), we have

ρ(S(X)) = E(fX,λ,γ,b,β(c))

= 〈v∗, c∗〉+ β0E
∣∣∣S(X)− S(c∗)

∣∣∣+ βE‖X− c∗‖2 + E
(
〈w∗, X〉

)
+

d∑
i=1

βi E|Xi − c∗i |

≤
d∑
i=1

v∗i c
∗
i + β0

d∑
i=1

E|Xi − c∗i |+ β
d∑
i=1

E|Xi − c∗i |+
d∑
i=1

w∗i E(Xi) +
d∑
i=1

βi E|Xi − c∗i |

=
d∑
i=1

v∗i c
∗
i +

d∑
i=1

w∗i E(Xi) +
d∑
i=1

(β + β0 + βi)E|Xi − c∗i |

=
d∑
i=1

(1− v0 − vi)c∗i +
d∑
i=1

(v0 + vi)E(Xi) +
d∑
i=1

(β + β0 + βi)E|Xi − c∗i |

=
d∑
i=1

(
c∗i + (β + β0 + βi)E|Xi − c∗i |+ (v0 + vi)E(Xi − c∗i )

)

=
d∑
i=1

(
c∗i + (λi + λ+ β)E(Xi − c∗i )+ − (γi + γ − β)E(Xi − c∗i )−

)

=
d∑
i=1

ρi(X),

where the last equality follows from (2.3.3).

The subadditivity within a random vector means that if we manage the total risks of
all subunits of a business entity at the enterprise level, the risk measure of the aggregate
risk should be no larger than the total of the risk measures of the subunits. In the proposed
MCVaR, we determine the risk measures of each subunit and the aggregate risk or the entire
business entity simultaneously. However, the priority of our MCVaR is the risk measure
of the aggregate risk or the entire business entity. In next proposition, we discuss the
subadditivity of MCVaR for aggregate risks when risk vectors have the same dimension.
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Proposition 2.5.4. (Subadditivity among aggregate risks) For random vectors X, Y, X+
Y ∈ Rd, and loss function fZ,λ,γ,b,β(c) defined in (2.3.1), assume minc∈Rd E(fX,λ,γ,b,β(c)),
minc∈Rd E(fY,λ,γ,b,β(c)), and minc∈Rd E(fX+Y,λ,γ,b,β(c)) have unique minimizers, respec-
tively. Then, the risk measures ρ(S(X)), ρ(S(Y)), and ρ(S(X + Y)) in MCVaRλ,γ,b,β(X),
MCVaRλ,γ,b,β(Y), and MCVaRλ,γ,b,β(X + Y), respectively, satisfy

ρ(S(X + Y)) = ρ(S(X) + S(Y)) ≤ ρ(S(X)) + ρ(S(Y)).

Proof. For any c = (c1, ..., cd), c′ = (c′1, ..., c′d) ∈ Rd, by (2.4.7) and triangle inequalities,
we have

fX+Y,β0,v0,u,β(c + c′)

= 〈v∗, c + c′〉+ β0

∣∣∣S(X + Y)− S(c + c′)
∣∣∣+ β ‖X + Y − (c + c′)‖2 + 〈w∗, X + Y〉

+
d∑
i=1

βi |Xi + Yi − (ci + c′i)|

≤ 〈v∗, c〉+ 〈v∗, c′〉+ β0

∣∣∣S(X)− S(c)
∣∣∣+ β0

∣∣∣S(Y)− S(c′)
∣∣∣

+β ‖X− c‖2 + β ‖Y − c′‖2 + 〈w∗, X〉+ 〈w∗, Y〉+
d∑
i=1

βi |Xi − ci|+
d∑
i=1

βi |Yi − c′i|

= fX,λ,γ,b,β(c) + fY,λ,γ,b,β(c′).

Hence, we have for any c, c′ ∈ Rd,

E(fX+Y,λ,γ,b,β(c + c′)) ≤ E(fX,λ,γ,b,β(c)) + E(fY,λ,γ,b,β(c′)). (2.5.5)

Denote by c∗X, c∗Y, and c∗X+Y the unique minimizers of minimization problems min
c∈Rd

E(fX,λ,γ,b,β(c)),
min
c∈Rd

E(fY,λ,γ,b,β(c)), and min
c∈Rd

E(fX+Y,λ,γ,b,β(c)), respectively. Then, by the definition of
MCVaR, we have ρ(S(X + Y)) = E(fX+Y,λ,γ,b,β(c∗X+Y)). In addition, by the definition of
c∗X+Y, we have for any c ∈ Rd, E(fX+Y,λ,γ,b,β(c∗X+Y)) ≤ E(fX+Y,λ,γ,b,β(c)). Hence,

E(fX+Y,λ,γ,b,β(c∗X+Y)) ≤ E(fX+Y,λ,γ,b,β(c∗X + c∗Y))

≤ E(fX,λ,γ,b,β(c∗X)) + E(fY,λ,γ,b,β(c∗Y))

= ρ(S(X)) + ρ(S(Y)),

where the second inequality follows from (2.5.5).

At the end of this section, we explore the monotonicity of the MCVaR. We notice
that if random vectors X and Y have different dimensions, it does not make sense to
compare the components of the two vectors. In addition, even if X and Y have the same
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dimension, the monotonicity of MCVaR may not hold for the components of two random
vectors since the risk measure of one individual risk depends on the whole portfolio risk
and its relative importance in the portfolio. However, in the next proposition, we will show
that the monotonicity holds for the aggregate risks S(X) and S(Y) in the MCVaR under
some special cases.

Proposition 2.5.5. (Monotonicity on aggregate risks) For random vectors X,Y ∈ Rd, if
Assumptions 2.4.2 holds for pairs (X, fX,λ,Λ(c)) and (Y, fY,λ,Λ(c)), and X ≤ Y, then, the
risk measures ρ(S(X)) and ρ(S(Y)) in the multivariate CVaR risk measures MCVaRλ,Λ(X)
and MCVaRλ,Λ(Y), respectively, satisfy ρ(S(X)) ≤ ρ(S(Y)).

Proof. Under Assumptions 2.4.2, by Theorem 2.4.5, MCVaRλ,Λ(X) and MCVaRλ,Λ(Y)
are well defined. Note that X = (X1, ..., Xd) ≤ Y = (Y1, ..., Yd) means that Xi ≤ Yi,
i = 1, ..., d. For any real number c ∈ R, function h(x) = (x − c)+ is increasing in x ∈ R.
In addition, for any c = (c1, ..., cd) ∈ Rd, by (2.4.18), we have

E(fX,λ,Λ(c)) =
d∑
i=1

ci + λE
( d∑
i=1

Xi −
d∑
i=1

ci
)

+
+

d∑
i=1

λiE(Xi − ci)+

≤
d∑
i=1

ci + λE
( d∑
i=1

Yi −
d∑
i=1

ci
)

+
+

d∑
i=1

λiE(Yi − ci)+

= E(fY,λ,Λ(c)),

which implies ρ(S(X)) = minc∈Rd E(fX,λ,Λ(c)) ≤ minc∈Rd E(fY,λ,Λ(c)) = ρ(S(Y)).

2.6 Numerical illustrations of MCVaR

In this section, we use a multivariate risk portfolio to illustrate the proposed MCVaR
and the effect of dependence among risks in a portfolio on MCVaR. We also compare
MCVaR with VaR and CVaR if required capital is determined by these risk measures.
In this section, risk portfolio X = (X1, ..., Xd) is assumed to be a d-dimensional normal
random vector with a d-dimensional normal distribution Nd(µ,Σ), where µ = E(X) =
(µ1, ..., µd) is the mean vector, µi = E(Xi), i = 1, ..., d, Σ = (Cov(Xi, Xj))i,j=1,...,d is a
positive-definite covariance matrix of X, Cov(Xi, Xj) = ρij σi σj, where σi =

√
V ar(Xi),

σj =
√
V ar(Xj), and ρij is the correlation coefficient between Xi and Xj satisfying −1 <

ρij = ρji < 1 for 1 ≤ i < j ≤ d. The joint density function of (X1, ..., Xd) is

f(x) = f(x1, ..., xd) = 1√
(2π)d det(Σ)

e−
1
2 (x−µ)Σ−1(x−µ)′ , x ∈ Rd. (2.6.1)
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Thus, Xi and S(X) have normal distributions N(µi, σ2
i ) and N(µS, σ2

S), respectively, where
µS = ∑d

i=1 µi, σS =
√
V ar(S(X)), and V ar(S(X)) = ∑d

i=1 σ
2
i + 2∑1≤i<j≤d ρij σi σj. Let

φ and Φ be the density and distribution functions of the standard normal distribution
N(0, 1), respectively. If required capital for risks are determined by VaR at confidence
level α, then

VaRα(Xi) = µi + σi Φ−1(α), i = 1, ..., d, (2.6.2)

VaRα(S(X)) = µS + σS Φ−1(α). (2.6.3)

If required capital for risks are determined by CVaR at confidence level α, then

CVaRα(Xi) = E (Xi |Xi > VaRα(Xi)) = µi + σi ×
φ
(

VaRα(Xi)−µi
σi

)
1− Φ

(
VaRα(Xi)−µi

σi

) , i = 1, ..., d,(2.6.4)

and

CVaRα(S(X)) = E (S(X) |S(X) > VaRα(S(X))) = µS + σS ×
φ
(

VaRα(S(X))−µS
σS

)
1− Φ

(
VaRα(S(X))−µS

σS

) .(2.6.5)

See Johnson et al. (1995) for these results about normal distributions. In the following
two subsections, we use the above normal random vectors and Theorems 2.4.3 and 2.4.5
to illustrate MCVaR.

2.6.1 Applications of Theorem 2.4.3

In this subsection, we consider a special case of loss function (2.3.1) discussed in
Theorem 2.4.3 when λ > 0, β > 0, γ = 0, λi = 0, γi = 0, i = 1, ..., d. In this case, loss
function (2.3.1) is reduced to

fX,λ,β(c) =
d∑
i=1

ci + λ
( d∑
i=1

Xi −
d∑
i=1

ci

)
+

+ β‖X− c‖2. (2.6.6)

For loss function (2.6.6) and the normal random vector X, Assumption 2.4.1 is reduced to
the following condition: ∣∣∣∣2− λ2

∣∣∣∣√d < β. (2.6.7)

By Theorem 2.4.3, the multivariate risk measure MCVaRλ,β(X) = (ρ1(X), ..., ρd(X), ρ(S(X)))
has the following expression:

ρi(X) = c∗i + λE(Xi − c∗i )+ + β E|Xi − c∗i |, i = 1, ..., d, (2.6.8)

ρ(S(X)) =
d∑
i=1

c∗i + λE
( d∑
i=1

Xi −
d∑
i=1

c∗i

)
+

+ β E
( d∑
i=1

(Xi − c∗i )2
) 1

2
, (2.6.9)
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where (c∗1, ..., c∗d) = (c∗1(X, λ, β), ..., c∗d(X, λ, β)) is the unique solution to the following sys-
tem of equations:

β E
(
Xi − ci
‖X− c‖2

)
= 1− λ+ λFS(X)

( d∑
i=1

ci

)
, i = 1, ..., d. (2.6.10)

In loss function (2.6.6), the additional capital is prepared for the shortfall risk
(∑d

i=1Xi−∑d
i=1 ci

)
+

of the aggregate risk and for the overall deviation ‖X− c‖2 of the portfolio.

Remark 2.6.1. We point out that in loss function (2.6.6), if λ = 2, then Assumption 2.4.1
or condition (2.6.7) is reduced to β > 0 and system (2.6.10) of equations has the unique
solution c = E(X) or ci = E(Xi), i = 1, ..., d. To see that, for any normal random variable
X, we have FX(E(X)) = P{X ≤ E(X)} = 1

2 . Thus, if λ = 2 and ci = E(Xi), i = 1, ..., d,
then the right-hand side of equation (2.6.10) is reduced to 1− 2 + 2FS(X)

(
E(S(X))

)
= 0.

Note that X has the joint normal density function (3.5.1), thus, Y = X − E(X) has the
following joint normal density function:

g(y) = g(y1, ..., yd) = 1√
(2π)d det(Σ)

e−
1
2 y Σ−1 y′ , y ∈ Rd, (2.6.11)

which is an even symmetric function on Rd satisfying g(y) = g(y1, ..., yd) = g(−y1, ...,−yd) =
g(−y) for any y = (y1, ..., yd) ∈ Rd. Hence, for any i = 1, ..., d,

E
(
Xi − E(Xi)
‖X− E(X)‖2

)
= E

(
Yi
‖Y‖2

)
=
∫ ∞
−∞
· · ·

∫ ∞
−∞

yi
‖y‖2

× g(y1, ..., yd)dy1...dyd = 0,

which holds since yi
‖y‖2

is odd symmetric on Rd satisfying yi
‖y‖2

= −1 × −yi
‖−y‖2

for any
y = (y1, ..., yd) ∈ Rd. In fact, based on the above arguments, we can confirm that if λ = 2
and Y = X − E(X) has an even symmetric joint density function, then c = E(X) is the
unique solution to system (2.6.10) of equations. �

Next, we give numerical illustrations of MCVaRλ,β(X). To do so, we set d = 3
or consider X = (X1, X2, X3). Further, we assume that the marginal normal distribu-
tions of X = (X1, X2, X3) have the following expectations and variances: E(X1) = 130,
V ar(X1) = 900, E(X2) = 150, V ar(X2) = 2500, E(X3) = 170, and V ar(X3) = 400. In
addition, to investigate effect of dependence among risks on MCVaR, we consider three
cases of dependence: positive dependence, negative dependence, and mixed dependence.
For each case of dependence, we calculate MCVaRλ,β for different combinations of (λ, β)
and compare these numerical results of MCVaRλ,β with the corresponding results deter-
mined by VaR0.99 and CVaR0.99. In this section, numerical calculations are performed by
using MATLAB.
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(i) Positive dependence: Assume that risks in portfolio (X1, X2, X3) are positively de-
pendent and that the correlation coefficient of any two risks in the portfolio is positive
with ρ12 = 0.8, ρ13 = 0.2, and ρ23 = 0.3. By solving system (2.6.10) of equations,
we first obtain the numerical solutions (base capital) c∗1, c∗2, and c∗3, and then cal-
culate the expected shortfall E

(∑d
i=1Xi −

∑d
i=1 c

∗
i

)
+

of the aggregate risk and the

expected overall deviation E‖X− c‖2 = E
(∑d

i=1(Xi−c∗i )2
) 1

2 of the portfolio, for each
of the different combinations of (λ, β) in Table 2.2. Next, by (3.5.2), (3.5.3), (3.5.4),
(3.5.5), (2.6.8) and (2.6.9), we obtain the numerical results of VaR0.99, CVaR0.99,
MCVaRλ,β(X), which are presented in Table 2.1.

From Table 2.2, we observe that the expected shortfall of the aggregate risk is less
than the expected overall deviation of the portfolio. For λ = 2, the base capital, the
expected shortfall of the aggregate risk, and the expected overall deviation of the
portfolio are independent of β, since in this case of λ = 2, by Remark 2.6.1, the base
capital is equal to the mean vector of the portfolio, which is independent of β. For a
fixed β (=2), the base capital and the expected overall deviation of the portfolio are
increasing in λ while the expected shortfall of the aggregate risk is decreasing in λ,
which means that there is a trade-off between the expected shortfall of the aggregate
risk and the expected overall deviation of the portfolio.

From Table 2.1, we find that for a fixed λ (= 2), the required capital for the individual
risks and the aggregate risk are increasing in β. For a fixed β (= 2), the required
capital for the individual risks and the aggregate risk are increasing in λ. In addition,
the required capital for the individual risks and the aggregate risk determined by
MCVaRλ,β(X) vary in the choices of (λ, β) and can produce less or larger required
capital than those determined by VaR and CVaR.

(ii) Negative dependence: Assume that risks in portfolio (X1, X2, X3) are negatively
dependent and that the correlation coefficient of any two different risks in the portfolio
is negative with ρ12 = −0.4, ρ13 = −0.1, and ρ23 = −0.1. Similarly to (i), we obtain
the corresponding numerical results, which are reported in Tables 2.5 and 2.4.

From Tables 2.5 and 2.4, we find that the remarks on Tables 2.2 and 2.1 in case
(i) still apply to Tables 2.5 and 2.4 in case (ii). However, by comparing Table 2.5
with Table 2.2, we notice that the expected shortfalls of the aggregate risk in case
(ii) are less than those corresponding ones in case (i). Furthermore, by comparing
MCVaRλ,β(X) in Table 2.4 with those in Table 2.1, we observe that the required
capital for the aggregate risk in case (ii) are less than those corresponding ones in
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case (i). These results are reasonable since in a portfolio with negatively dependent
risks, the aggregate risk may be reduced due to the risk offsets from the negatively
dependent risks. In general, the aggregate risk in a portfolio with negatively depen-
dent risks is less risky than the aggregate risk in a portfolio with positively dependent
risks. In addition, for λ = 2, the required capital for the individual risks in case (ii)
are the same as those corresponding ones in case (i) since in this case of λ = 2,
the base capital is equal to the mean vector of the portfolio and dependence has no
impact on the required capital for the individual (marginal) risks.

(iii) Mixed dependence: Assume that risks in portfolio (X1, X2, X3) are mixedly depen-
dent and that some of the correlation coefficients of two risks in the portfolio are
positive while some are negative with ρ12 = 0.2, ρ13 = 0.8, and ρ23 = −0.3. Similarly
to (i), we obtain the corresponding numerical results, which are reported in Tables
2.8 and 2.7.

From Tables 2.8 and 2.7, we find that the remarks on Tables 2.2, 2.1, 2.5, and
2.4 in cases (i) and (ii) still apply to Tables 2.8 and 2.7 in case (ii). However,
comparing Table 2.8 with Tables 2.2 and 2.5, we notice that the expected shortfalls
of the aggregate risk in case (iii) are less than those corresponding ones in case (i)
but larger than those corresponding ones in case (ii). Furthermore, by comparing
MCVaRλ,β(X) in Table 2.7 with those in Tables 2.1 and 2.4, we observe that the
required capital for the aggregate risk in case (iii) are less than those corresponding
ones in case (i) but larger than those corresponding ones in case (ii). These results
are also reasonable since portfolios with positively and negatively dependent risks
are two extreme cases, the aggregate risk in the former portfolio is in the most risky
situation, while the one in the latter portfolio is in the least risky situation.

2.6.2 Applications of Theorem 2.4.5

In this subsection, we consider a special case of loss function (2.4.18) discussed in
Theorem 2.4.5 when λi = λ0, i = 1, ..., d. In this case, loss function (2.4.18) is reduced to

fX,λ,λ0(c) =
d∑
i=1

ci + λ
( d∑
i=1

Xi −
d∑
i=1

ci

)
+

+ λ0

d∑
i=1

(Xi − ci)+. (2.6.12)

For loss function (2.6.12) and the normal random vector X, Assumption 2.4.2 is reduced
to

λ > 1, λ0 > 1. (2.6.13)
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By Theorem 2.4.5, the multivariate risk measure MCVaRλ,λ0(X) = (ρ1(X), ..., ρd(X), ρ(S(X)))
has the following expression:

ρi(X) = F−1
Xi

(q) + (λ+ λ0)E
(
Xi − F−1

Xi
(q)
)

+
, i = 1, ..., d, (2.6.14)

ρ(S(X)) =
d∑
i=1

F−1
Xi

(q) + λE
( d∑
i=1

Xi −
d∑
i=1

F−1
Xi

(q)
)

+
+ λ0

d∑
i=1

E
(
Xi − F−1

Xi
(q)
)

+
,(2.6.15)

where q = q(X, λ, λ0) = Hλ,λ0,S(X)(x0),

Hλ,λ0,S(X)(x) = λ0 + λ− 1− λFS(X)(x)
λi

= λ0 − 1 + λ F̄S(X)(x)
λ0

, (2.6.16)

and x0 = x0(X, λ, λ0) is the unique solution to equation

x−
d∑
i=1

F−1
Xi

(
Hλ,λ0,S(X)(x)

)
= 0, x > F−1

S(X)

(λ− 1
λ

)
. (2.6.17)

In loss function (2.6.12), the additional capital is prepared for the shortfall risk
(∑d

i=1Xi−∑d
i=1 ci

)
+

of the aggregate risk and for the total shortfall ∑d
i=1(Xi − ci)+ of the individual

risks. Note that by (2.6.17) and the definitions of x0 and q, we have x0 = ∑d
i=1 F

−1
Xi

(q),
which means that x0 = x0(X, λ, λ0) is the base capital for the aggregate risk.

Like Subsection 2.6.1, we set d = 3 or consider X = (X1, X2, X3) and use the same
distribution and dependence settings for (X1, X2, X3) as those assumed in Subsection 2.6.1.
For each of the three dependence cases, we calculate MCVaRλ,λ0(X) for different combi-
nations of (λ, λ0) and compare these numerical results of MCVaRλ,λ0(X) with the corre-
sponding results determined by VaR0.99 and CVaR0.99.

(i) Positive dependence: ρ12 = 0.8, ρ13 = 0.2, and ρ23 = 0.3. By solving equation
(2.6.17), we first obtain the numerical solution x0 = x0(X, λ, λ0), and then get the
base confidence level q = q(X, λ, λ0), the base capital x0 = ∑d

i=1 F
−1
Xi

(q) for the
aggregate risk, the expected shortfall E

(∑d
i=1Xi − x0

)
+

of the aggregate risk, and
the total expected shortfall ∑d

i=1 E(Xi−F−1
Xi

(q))+ of the individual risks, for each of
the different combinations of (λ, λ0) in Table 2.3. Next, by (2.6.14) and (2.6.15), we
obtain the numerical results of MCVaRλ,λ0(X), which are presented in Table 2.1.

From Table 2.3, we observe that the expected shortfall of the aggregate risk is less
than the total expected shortfall of the individual risks. For a fixed λ0 (=2), the
base confidence level q = q(X, λ, λ0) and the base capital for the aggregate risk are
increasing in λ, hence, the expected shortfall of the aggregate risk and the total
expected shortfall of the individual risks are decreasing in λ. For a fixed λ (=15),
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the base confidence level q = q(X, λ, λ0) and the base capital for the aggregate risk
are increasing in λ0, hence, the expected shortfall of the aggregate risk and the total
expected shortfall of the individual risks are decreasing in λ0.

From Table 2.1, we find that for a fixed λ0 (= 2), the required capital for the in-
dividual risks and the aggregate risk are increasing in λ. For a fixed λ (= 15), the
required capital for the individual risks and the aggregate risk are increasing in λ0.
In addition, the required capital for the individual risks and the aggregate risk deter-
mined by MCVaRλ,λ0(X) vary in the choices of (λ, λ0) and can produce less or larger
required capital than those determined by VaR and CVaR.

(ii) Negative dependence: ρ12 = −0.4, ρ13 = −0.1, and ρ23 = −0.1. Similarly to (i), we
obtain the corresponding numerical results, which are reported in Tables 2.6 and 2.4.

From Table 2.6, we find that the remarks on Table 2.3 in case (i) still apply to Table
2.6 in case (ii). However, by comparing Table 2.6 with Table 2.3, we notice that the
expected shortfalls of the aggregate risk in case (ii) are less than those corresponding
ones in case (i). Furthermore, by comparing MCVaRλ,λ0(X) in Table 2.4 with those
in Table 2.1, we observe that the required capital for the aggregate risk in case (ii)
are less than those corresponding ones in case (i). These results are consistent with
those in cases (ii) of Subsection 2.6.1, and further indicate that the aggregate risk in
a portfolio with negatively dependent risks is less risky than the aggregate risk in a
portfolio with positively dependent risks.

From Table 2.4, we find that all the remarks on Table 2.1 in case (i) still apply to
Table 2.4 in case (ii), expect that for a fixed λ (= 15), the required capital for the
individual risks are neither increasing nor decreasing in λ0, which is different from
case (i).

(iii) Mixed dependence: ρ12 = 0.2, ρ13 = 0.8, and ρ23 = −0.3. Similarly to (i), we obtain
the corresponding numerical results, which are reported in Tables 2.9 and 2.7.

From Tables 2.9 and 2.7, we see that the remarks on Tables 2.3 and 2.1 in case (i)
still apply to Tables 2.9 and 2.7 in case (iii). However, comparing Table 2.9 with
Tables 2.3 and 2.6, we find that the base confidence levels q = q(X, λ, λ0) in case (iii)
are less than those corresponding ones in case (i) but larger than those corresponding
ones in case (ii). Furthermore, by comparing Table 2.7 with Tables 2.1 and 2.4, we
observe that the required capital for the aggregate risk in case (iii) are less than those
corresponding ones in case (i) but larger than those corresponding ones in case (ii).
These results are consistent with those in cases (iii) of Subsection 2.6.1.
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2.7 Conclusions

The novel MCVaR risk measure proposed in this chapter balances the systemic risks
resulting from individual risks and the aggregate risk of a portfolio, and gives first priority
to the aggregate risk. The risk measures for individual risks and the aggregate risk in a
portfolio resulting from this MCVaR depend not only on their own distributions, but also
on correlations among the individual risks and the relative importance of the individual
risks and the aggregate risk to a portfolio. This MCVaR is an objective-driven multivariate
risk measure and it can minimize expected systemic risk in a risk portfolio.
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X1 X2 X3 S(X)
VaR0.99 199.79 266.32 216.53 645.19
CVaR0.99 209.96 283.26 223.30 673.62
MCVaRλ=2, β=1 177.87 229.79 201.92 570.38
MCVaRλ=2, β=2 201.81 269.68 217.87 623.82
MCVaRλ=2, β=3 225.75 309.58 233.83 677.25
MCVaRλ=2, β=4 249.68 349.47 249.79 730.69
MCVaRλ=3, β=2 212.53 287.39 225.19 652.02
MCVaRλ=4, β=2 221.23 301.70 231.31 673.03
MCVaRλ=5, β=2 228.49 313.74 236.52 689.67
MCVaRλ=13, λ0=2 189.60 249.33 209.73 617.63
MCVaRλ=14, λ0=2 190.56 250.94 210.38 619.80
MCVaRλ=15, λ0=2 191.46 252.44 210.98 621.81
MCVaRλ=16, λ0=2 192.31 253.85 211.54 623.70
MCVaRλ=15, λ0=3 192.08 253.47 211.39 625.80
MCVaRλ=15, λ0=25 200.56 267.60 217.04 672.50
MCVaRλ=15, λ0=50 205.64 276.11 220.43 694.84

Table 2.1: VaR0.99, CVaR0.99, MCVaRλ,β, and MCVaRλ,λ0 with positively dependent risks

c∗1 c∗2 c∗3 E(∑d
i=1Xi −

∑d
i=1 c

∗
i )+ E‖X− c∗‖2

(λ, β) = (2, 1) 130 150 170 33.47 53.43
(λ, β) = (2, 2) 130 150 170 33.47 53.43
(λ, β) = (2, 3) 130 150 170 33.47 53.43
(λ, β) = (2, 4) 130 150 170 33.47 53.43
(λ, β) = (3, 2) 136.87 158.87 175.44 23.94 54.50
(λ, β) = (4, 2) 141.68 165.02 179.30 18.51 56.50
(λ, β) = (5, 2) 145.36 169.64 182.29 15.01 58.67

Table 2.2: Base capital, expected shortfalls of aggregate risks, and expected overall devia-
tions with positively dependent risks based on model (2.6.6)
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q x0 = ∑d
i=1 F

−1
Xi

(q) E(∑d
i=1Xi − x0)+

∑d
i=1 E(Xi − F−1

Xi
(q))+

(λ, λ0) = (13, 2) 0.9018 579.19 2.2448 4.6319
(λ, λ0) = (14, 2) 0.9063 581.85 2.0856 4.3770
(λ, λ0) = (15, 2) 0.9104 584.31 1.9468 4.1513
(λ, λ0) = (16, 2) 0.9141 586.60 1.8247 3.9500
(λ, λ0) = (15, 3) 0.9163 588.07 1.7502 3.8258
(λ, λ0) = (15, 25) 0.9681 635.39 0.3990 1.2449
(λ, λ0) = (15, 50) 0.9819 659.21 0.1716 0.6611

Table 2.3: Base confidence levels, expected shortfalls of aggregate risks, and total expected
shortfalls of individual risks with positively dependent risks based on model (2.6.12)
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X1 X2 X3 S(X)
VaR0.99 199.79 266.31 216.53 561.08
CVaR0.99 209.96 283.26 223.30 577.26
MCVaRλ=2, β=1 177.87 229.79 201.92 543.03
MCVaRλ=2, β=2 201.81 269.68 217.87 597.97
MCVaRλ=2, β=3 225.75 309.58 233.83 652.91
MCVaRλ=2, β=4 249.68 349.47 249.79 707.84
MCVaRλ=3, β=2 212.50 287.73 224.97 613.61
MCVaRλ=4, β=2 221.33 303.11 230.68 624.83
MCVaRλ=5, β=2 228.97 316.83 235.45 633.53
MCVaRλ=13, λ0=2 207.41 279.02 221.61 566.07
MCVaRλ=14, λ0=2 210.00 283.34 223.33 566.92
MCVaRλ=15, λ0=2 212.52 287.54 225.02 567.71
MCVaRλ=16, λ0=2 214.98 291.64 226.66 568.46
MCVaRλ=15, λ0=3 211.28 285.46 224.19 578.36
MCVaRλ=15, λ0=25 201.95 269.96 217.94 665.46
MCVaRλ=15, λ0=50 205.93 276.58 220.62 692.09

Table 2.4: VaR0.99, CVaR0.99, MCVaRλ,β, and MCVaRλ,λ0 with negatively dependent risks

c∗1 c∗2 c∗3 E(∑d
i=1Xi −

∑d
i=1 c

∗
i )+ E‖X− c∗‖2

(λ, β) = (2, 1) 130 150 170 19.05 54.94
(λ, β) = (2, 2) 130 150 170 19.05 54.94
(λ, β) = (2, 3) 130 150 170 19.05 54.94
(λ, β) = (2, 4) 130 150 170 19.05 54.94
(λ, β) = (3, 2) 134.21 155.48 174.04 12.97 55.49
(λ, β) = (4, 2) 137.03 159.10 176.75 9.76 56.46
(λ, β) = (5, 2) 139.12 161.75 178.77 7.78 57.48

Table 2.5: Base capital, expected shortfalls of aggregate risks, and expected overall devia-
tions with negatively dependent risks based on model (2.6.6)
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q x0 = ∑d
i=1 F

−1
Xi

(q) E(∑d
i=1Xi − x0)+

∑d
i=1 E(Xi − F−1

Xi
(q))+

(λ, λ0) = (13, 2) 0.7912 531.06 0.8785 11.7987
(λ, λ0) = (14, 2) 0.7951 532.42 0.8190 11.5156
(λ, λ0) = (15, 2) 0.7987 533.69 0.7671 11.2582
(λ, λ0) = (16, 2) 0.8020 534.87 0.7213 11.0226
(λ, λ0) = (15, 3) 0.8158 539.93 0.5510 10.0554
(λ, λ0) = (15, 25) 0.9601 624.75 0.0015 1.6275
(λ, λ0) = (15, 50) 0.9800 655.29 0.0001 0.7359

Table 2.6: Base confidence levels, expected shortfalls of aggregate risks, and total expected
shortfalls of individual risks with negatively dependent risks based on model (2.6.12)

43



X1 X2 X3 S(X)
VaR0.99 199.79 266.32 216.53 610.50
CVaR0.99 209.96 283.26 223.30 633.88
MCVaRλ=2, β=1 177.87 229.79 201.92 559.35
MCVaRλ=2, β=2 201.73 269.58 217.81 613.67
MCVaRλ=2, β=3 225.75 309.58 233.83 667.99
MCVaRλ=2, β=4 249.53 349.28 249.69 722.32
MCVaRλ=3, β=2 212.40 287.41 224.99 636.63
MCVaRλ=4, β=2 221.02 302.13 230.86 653.50
MCVaRλ=5, β=2 228.19 314.88 235.78 666.76
MCVaRλ=13, λ0=2 193.98 256.63 212.65 594.85
MCVaRλ=14, λ0=2 195.33 258.88 213.55 596.43
MCVaRλ=15, λ0=2 196.61 261.02 214.41 597.91
MCVaRλ=16, λ0=2 197.84 263.06 215.22 599.29
MCVaRλ=15, λ0=3 196.81 261.36 214.54 603.99
MCVaRλ=15, λ0=25 201.33 268.89 217.55 667.13
MCVaRλ=15, λ0=50 205.86 276.48 220.57 692.51

Table 2.7: VaR0.99, CVaR0.99, MCVaRλ,β, and MCVaRλ,λ0 with mixedly dependent risks

c∗1 c∗2 c∗3 E(∑d
i=1Xi −

∑d
i=1 c

∗
i )+ E‖X− c∗‖2

(λ, β) = (2, 1) 130 150 170 27.52 54.30
(λ, β) = (2, 2) 130 150 170 27.52 54.30
(λ, β) = (2, 3) 130 150 170 27.52 54.30
(λ, β) = (2, 4) 130 150 170 27.52 54.30
(λ, β) = (3, 2) 136.52 156.89 174.89 19.34 55.15
(λ, β) = (4, 2) 140.98 161.60 178.30 14.80 56.71
(λ, β) = (5, 2) 144.32 165.13 180.90 11.93 58.38

Table 2.8: Base capital, expected shortfalls of aggregate risks, and expected overall devia-
tions with mixedly dependent risks based on model (2.6.6)
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q x0 = ∑d
i=1 F

−1
Xi

(q) E(∑d
i=1Xi − x0)+

∑d
i=1 E(Xi − F−1

Xi
(q))+

(λ, λ0) = (13, 2) 0.8636 559.68 1.6427 6.9052
(λ, λ0) = (14, 2) 0.8682 561.78 1.5288 6.6238
(λ, λ0) = (15, 2) 0.8723 563.73 1.4294 6.3915
(λ, λ0) = (16, 2) 0.8760 565.54 1.3419 6.1436
(λ, λ0) = (15, 3) 0.8819 568.42 1.2119 5.7939
(λ, λ0) = (15, 25) 0.9629 628.53 0.1050 1.4812
(λ, λ0) = (15, 50) 0.9804 656.06 0.0276 0.7208

Table 2.9: Base confidence levels, expected shortfalls of aggregate risks, and total expected
shortfalls of individual risks with mixedly dependent risks based on model (2.6.12)
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Chapter 3

A new approach to determine the
required capital for the aggregate
risk and individual risks

3.1 Introduction

In portfolio risk management, after quantifying risk with risk measures, deciding how
to allocate the available capital in the most efficient way is also an important topic. The
rules for deciding capital allocation are usually guided by risk measures. In this chapter, we
will develop a risk measure from the capital allocation perspective. Instead of discussing
risk measure properties, we focus more on comparing currently existing allocation principles
and with allocation principle based on our risk measure, and on how our model can be
viewed as a generalization of many existing allocation principles. In this model, we use
a similar idea to derive our multivariate risk measure as in the previous chapter: we
simultaneously obtain the risk measure for the entire portfolio, which is used as the optimal
total capital, and the risk measures for all the individual risk units in the portfolio which
are used as the optimal allocation to the individual risk units.

Currently, in most optimal capital allocation studies, it is assumed that a given total
capital K for a company will be allocated among its n (main) business lines with losses
X1, ..., Xn, respectively, and the predetermined total capital K is often determined by a de-
cision maker based on the aggregate risk S = ∑n

i=1Xi of the company under a total capital
criterion, such as K = VaRq(S) (VaR criterion) or K = CTEq(S) = E(S|S > VaRq(S))
(CTE criterion), where 0 < q < 1. The VaR and CTE criteria are two important ways to
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determine the required total capital for insurance companies and financial institutions. In
addition, under certain assumptions, VaRq(S) and CTEq(S) are the unique solutions to
the optimization problem

min
x∈R

E
(ξ
v

(S − x)2
)

(3.1.1)

with respective choices of ξ and v, where ξ is a random variable and v is a real number
such that ξ

v
≥ 0 and E[ξ]

v
> 0. See, for instance, Furman and Zitikis (2008) and Cai

and Wang (2020). In fact, it is easy to see that the unique minimizer of problem (3.1.1)
is E( ξ

v
S). If ξ = I{S>VaRq(S)} and v = P{S > VaRq(S)}, then CTEq(S) = E( ξ

v
S). If

ξ = I{S∈A} and v = P{S ∈ A}, where A ⊂ R is a set satisfying E(S|S ∈ A) = VaRq(S),
then VaRq(S) = E( ξ

v
S). The existence of such a set A is proved in Proposition 3.7 of Cai

and Wang (2020) if S is a continuous random variable.

When a decision maker allocates the predetermined capital K among the n business
lines, they use a criterion to allocate a capital Ki for business line i, i = 1, ..., n, so that∑n
i=1Ki = K. For example, the allocation (K1, ...., Kn) may be a solution that minimizes

an expected loss function that concerns the decision maker. For instance, (K1, ..., Kn)
could be a solution to the optimization problem min(K1,...,Kn)∈Rn

∑n
i=1 viE

(
ξiD

(
Xi−Ki
vi

))
s.t. ∑n

i=1Ki = K,
(3.1.2)

where ξi and vi are non-negative random variables and positive real numbers, respectively,
i = 1, ..., n, and D is a function. With suitable choices of ξi and vi for, i = 1, ..., n
and of D, the optimal solution (K1, ..., Kn) to problem (3.1.2) can yield many interesting
capital allocation principles including CTE, haircut, covariance and proportional allocation
principles, and so on. See Dhaene, Tsanakas, et al. (2012) and Cai and Wang (2020)
for details. In such a capital allocation scheme, the required total capital K and the
corresponding allocation scheme are considered separately. If the required total capital K
is determined by the CTE or VaR criterion, the deviation between the aggregate risk S

and the required total capital K is the main concern for the decision maker. In this way,
the required total capital K only depends on the distribution of the aggregate risk and
ignores relationships among X1, ..., Xn, S such as dependences and covariances.

When determining the required total capital K for the aggregate risk S of a company
and allocating the total capital K to business lines or individual risks of the company, the
decision maker is concerned not only with the deviation between the total capital K and the
aggregate risk S, but also with the total of the allocation deviations between the allocated
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capital Ki and the individual risk Xi, i = 1, ..., n. To balance the deviation between the
total capital K and the aggregate risk S and the total of the allocation deviations between
individual allocated capital Ki and risk Xi, i = 1, ..., n, in Section 3.2 we first consider how
to determine the optimal required total capital K∗ for a company and the corresponding
optimal allocation scheme (K∗1 , ..., K∗n) among the n business lines of the company, which
is formulated as the following optimization problem: min(K,K1,...,Kn)∈Rn+1

{
(1− α)v E

(
ξD1

(
S−K
v

))
+ α

∑n
i=1 vi E

(
ξiD2i

(
Xi−Ki
vi

))}
s.t. ∑n

i=1Ki = K,
(3.1.3)

where 0 < α < 1, v and vi, are positive real numbers, ξ and ξi, are non-negative random
variables, i = 1, ..., n, and D1 and D2i, i = 1, ..., n are real functions used to measure the
deviation between the total capital K and the aggregate risk S and the allocation deviation
between the allocated capital Ki and the individual risk Xi, respectively. We point out
that in optimization problem (3.1.3), there are n+ 1 control variables K,K1, ..., Kn and a
constraint ∑n

i=1Ki = K.

As discussed in Zaks and Tsanakas (2014) and Cai and Wang (2020), in practice each
(main) business line of a company may further have several sub-business lines, assuming
that business line i has ni sub-business lines with loss random vector (Xi1, ..., Xini), i =
1, ..., n, the capital Ki allocated to business line i needs to be further allocated among the
ni sub-business lines of business line i, say, a capital kij is allocated to Xij, j = 1, ..., ni,
so that ∑ni

j=1 kij = Ki, i = 1, ..., n. In this scenario, the decision maker is also concerned
with the total of the allocation deviations between the capital kij allocated to sub-business
line ij and the risk Xij, j = 1, ..., ni, i = 1, ..., n. To balance the deviations resulting
from the three levels (company, main business lines, and sub-business lines), in Section 3.3
we discuss how to determine the optimal required total capital K∗ for the company and
the corresponding optimal allocated capital K∗i , k∗ij, i = 1, ..., n, j = 1, ..., ni, among the
two levels of main business lines and sub-business lines at the same time. Such an optimal
allocation scheme can be formulated as follows: Let K = (K,K1, ..., Kn), ki = (ki1, ..., kini),
i = 1, ..., n, and consider the following optimization problem:

min(K,k1,...,kn)∈Rd
{
α1wE

[
ψD1

(
S−K
w

)]
+ α2

∑n
i=1wiE

[
ψiD2i

(
Xi−Ki
wi

)]
+α3

∑n
i=1

∑ni
j=1wijE

[
ψijD3ij

(
Xij−kij
wij

)]}
s.t. ∑n

i=1Ki = K,
∑ni
j=1 kij = Ki, i = 1, ..., n,

(3.1.4)

where d ∆= 1 + n + ∑n
i=1 ni, the αi and 0 < αi < 1, i = 1, 2, 3, satisfy ∑3

i=1 αi = 1, and
in addition, w, wi, and wij are positive real numbers and ψ, ψi, and ψij are nonnegative
random variables.
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Note that in optimization problem (3.1.4), there are d control variables K, Ki, kij,
i = 1, ..., n, j = 1, ..., ni, and 1+n constraints ∑n

i=1Ki = K and ∑ni
j=1 kij = Ki, i = 1, ..., n.

The rest of the chapter is organized as follows. In Section 3.2, we derive the unique
solution (K∗, K∗1 , ..., K∗n) to problem (3.1.3) when D1(x) = x2 and D2i(x) = x2, i =
1, ..., n, namely the allocation deviations are measured by (weighted) squared errors. We
show that many existing approaches for determining the required total capital, such as
VaR and CTE criteria, and allocation schemes such as CTE, haircut, proportional and
covariance allocation principles, and so on, are special or limiting cases of the unique
solution (K∗, K∗1 , ..., K∗n) to optimization problem (3.1.3) when D1(x) = x2 and D2i(x) =
x2, i = 1, ..., n. Moreover, these results clearly show the impact of a decision maker’s
attitude toward the allocation deviations at the three levels of company, main business
lines, and sub-business lines on the optimal required total capital and the optimal allocation
scheme. In Section 3.3, we extend the model in Section 3.2 to a three-level structure. We
again use the squared error deviation function to measure the allocation deviation for all of
the three levels and derive the unique solution for the three-level model. Furthermore, we
show that under special conditions, this model can be reduced to the model in Zaks and
Tsanakas (2014). In Section 3.4, we replace the squared error deviation function with an
absolute error deviation function as the measurement of allocation deviation. Under this
model, we discuss the conditions to guarantee the existence and uniqueness of the solution.
In Section 3.5, we provide a numerical illustration of the allocation method with two-level
model with both square error and absolute error deviation functions. We also compare our
allocation method with current existing allocation methods such as the haircut and CTE
principles. Concluding remarks are given in Section 3.6.

3.2 Optimal solutions based on weighted squared er-
rors for a company with main business lines

In this section, we discuss optimal required total capital and optimal allocation scheme
for a company with multiple business lines and consider problem (3.1.3) when D1(x) = x2

and D2i = x2, i = 1, ..., n, namely the allocation deviations are measured by weighted
squared errors. In this case, problem (3.1.3) is reduced to the following problem: min(K,K1,...,Kn)∈Rn+1

{
(1− α)E

[
ξ
v

(
S −K

)2]
+ α

∑n
i=1 E

[
ξi
vi

(
Xi −Ki

)2]}
s.t. ∑n

i=1Ki = K.
(3.2.1)
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To guarantee that problem (3.2.1) has a unique solution (K∗, K∗1 , ..., K∗n), we assume
that the following conditions hold.

Assumption 3.2.1. For problem (3.2.1), we assume that real numbers v and vi, and
random variables ξ and ξi, i = 1, ..., n, satisfy

ξ

v
≥ 0, ξ

vi
≥ 0, E[ξ]

v
> 0, E[ξi]

vi
> 0, i = 1, ..., n, (3.2.2)

and that expectations E[ ξ
v
S2], E[ ξ

v
S], E[ ξi

vi
X2
i ], E[ ξi

vi
Xi], i = 1, ..., n, exist. �

Denote the objective function in problem (3.2.1) by J(K,K1, ..., Kn), namely,

J(K,K1, ..., Kn) = (1− α)E
[
ξ

v

(
S −K

)2
]

+ α
n∑
i=1

E
[
ξi
vi

(
Xi −Ki

)2
]
. (3.2.3)

Note that by Assumption 3.2.1, we have

0 ≤ E
(
ξ

v

(
S −K

)2
)

= E
(ξ
v
S2
)
− 2K E

(ξ
v
S
)

+K2 E
(ξ
v

)
<∞

for any K ∈ R. Similarly, by Assumption 3.2.1, we have 0 ≤ E
(
ξi
vi

(
Xi − Ki

)2)
< ∞ for

any Ki ∈ R, i = 1, ..., n. Hence, the objective function J(K,K1, ..., Kn) for problem (3.2.1)
is well defined.

Lemma 3.2.1. Under Assumption 3.2.1, the objective function J(K,K1, ..., Kn) defined
in (3.2.3) is a convex and coercive function of (K,K1, ..., Kn) ∈ Rn+1.

Proof. Note that a quadratic function ax2 + bx + c is a convex and coercive function of
x ∈ R when a > 0. Thus, under Assumption 3.2.1, E

[
ξ
v

(
S − K

)2]
and E

[
ξi
vi

(
Xi − Ki

)2]
are convex and coercive functions of K,Ki ∈ R, respectively, i = 1, ..., n.

It is well known that if fi(xi) is a convex and coercive function of xi ∈ R, i =
1, . . . ,m, then f(x) = ∑m

i=1 fi(xi) is a convex and coercive function of x ∈ Rm, where
x = (x1, . . . , xm). Hence, J(K,K1, ..., Kn) defined in (3.2.3) is a convex and coercive
function of (K,K1, ..., Kn) ∈ Rn+1.

Theorem 3.2.2. Under Assumption 3.2.1, problem (3.2.1) has the following unique solu-
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tion:

K∗ = β̃(α) E[ξS]
E[ξ] + β(α)

n∑
i=1

E[ξiXi]
E[ξi]

(3.2.4)

=
n∑
i=1

E[ξiXi]
E[ξi]

+ β̃(α)
(E[ξS]

E[ξ] −
n∑
i=1

E[ξiXi]
E[ξi]

)
, (3.2.5)

K∗i = E[ξiXi]
E[ξi]

+ βi(α)
(E[ξS]

E[ξ] −
n∑
i=1

E[ξiXi]
E[ξi]

)
(3.2.6)

= E[ξiXi]
E[ξi]

+
vi

E[ξi]∑n
i=1

vi
E[ξi]

(
K∗ −

n∑
i=1

E[ξiXi]
E[ξi]

)
, i = 1, ..., n, (3.2.7)

where

β(α) = 1− β̃(α) =
α v

E[ξ]

α v
E[ξ] + (1− α)∑n

i=1
vi

E[ξi]
(3.2.8)

and

βi(α) =
(1− α) vi

E[ξi]

α v
E[ξ] + (1− α)∑n

i=1
vi

E[ξi]
. (3.2.9)

Proof. By Lemma 3.2.1, we know that problem (3.2.1) is a constrained convex optimization
problem and that the objective function J(K,K1, ..., Kn) of the problem is convex and
coercive in (K,K1, ..., Kn) ∈ Rn+1. Hence, an optimal solution for problem (3.2.1) exists.
Denote the Lagrangian of problem (3.2.1) by

L(K,K1, ..., Kn, λ) = (1− α)E
(
ξ

v

(
S −K

)2
)

+ α
n∑
i=1

E
(
ξi
vi

(
Xi −Ki

)2
)

+ λ
( n∑
i=1

Ki −K
)
.

Then, under Assumption 3.2.1, E
(
ξ
v

(
S − K

)2)
= E

(
ξ
v
S2
)
− 2K E

(
ξ
v
S
)

+ K2 E
(
ξ
v

)
is

differentiable with respect to K and

∂ E
(
ξ
v

(
S −K

)2)
∂K

= −2E
(
ξ

v
(S −K)

)
. (3.2.10)

Similarly, we have that E
(
ξi
vi

(
Xi −Ki

)2)
is differentiable with respect to Ki and

∂ E
(
ξi
vi

(
Xi −Ki

)2)
∂Ki

= −2E
(
ξi
vi

(Xi −Ki)
)
. (3.2.11)

Thus, the Lagrangian function L(K,K1, ..., Kn, λ) is differentiable with respect to each
of K,K1, ..., Kn. Hence, a solution to problem (3.2.1) is any solution to the following
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equations or any solution satisfying the following Karush-Kuhn-Tucker (KKT) conditions:
∂L
∂K

= 0,
∂L
∂Ki

= 0, i = 1, ..., n,∑n
i=1Ki = K.

(3.2.12)

By (3.2.10) and (3.2.11), we see that (3.2.12) is equivalent to
−2(1− α)E

[
ξ
v

(
S −K

)]
− λ = 0,

−2αE
[
ξi
vi

(
Xi −Ki

)]
+ λ = 0, i = 1, ..., n,∑n

i=1Ki = K.

(3.2.13)

The above equations are further equivalent to
E[ξS]
E[ξ] −K = − λv

2(1−α)E[ξ] ,
E[ξiXi]
E[ξi] −Ki = λvi

2αE[ξi] , i = 1, ..., n,∑n
i=1Ki = K.

(3.2.14)

Summing two sides of the equations on the second line in (3.2.14) for i = 1, ..., n and using
the constraint on the third line in (3.2.14), we obtain

n∑
i=1

E[ξiXi]
E[ξi]

−K = λ

2α

n∑
i=1

vi
E[ξi]

,

which, together with the equation on the first line in (3.2.14), yields

E[ξS]
E[ξ] −

n∑
i=1

E[ξiXi]
E[ξi]

= − λv

2(1− α)E[ξ] −
λ

2α

n∑
i=1

vi
E[ξi]

.

From the above equation, we obtain

−λ = 2α(1− α)E[ξ]
αv + (1− α)E[ξ]∑n

i=1
vi

E[ξi]

(E[ξS]
E[ξ] −

n∑
i=1

E[ξiXi]
E[ξi]

)

= 2(1− α)E[ξ]β(α)
v

(E[ξS]
E[ξ] −

n∑
i=1

E[ξiXi]
E[ξi]

)
. (3.2.15)

Thus, using (3.2.15) and the equation on the first line in (3.2.14), we obtain

K = β̃(α) E[ξS]
E[ξ] + β(α)

n∑
i=1

E[ξiXi]
E[ξi]

,

which yields the first expression (3.2.4) for K∗. Then, the second expression (3.2.5) for K∗

follows from (3.2.4) and β(α) = 1 − β̃(α). Furthermore, using (3.2.15) and the equation
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on the second line in (3.2.14), we obtain

Ki = E[ξiXi]
E[ξi]

− λvi
2αE[ξi]

= E[ξiXi]
E[ξi]

+ vi
2αE[ξi]

× 2(1− α)E[ξ]β(α)
v

(E[ξS]
E[ξ] −

n∑
i=1

E[ξiXi]
E[ξi]

)

= E[ξiXi]
E[ξi]

+ βi(α)
(E[ξS]

E[ξ] −
n∑
i=1

E[ξiXi]
E[ξi]

)
,

which yields the first expression (3.2.6) for K∗i . Furthermore, by (3.2.5), we have

E[ξS]
E[ξ] −

n∑
i=1

E[ξiXi]
E[ξi]

= 1
β̃(α)

(
K∗ −

n∑
i=1

E[ξiXi]
E[ξi]

)
,

which, together with the first expression (3.2.6) for K∗i , yields that the second expression
(3.2.7) for K∗i . It completes the proof of Theorem 3.2.2.

Remark 3.2.3. By (3.2.8) and (3.2.9), we observe that 0 < β(α), β̃(α), βi(α) < 1, i =
1, ..., n, and β̃(α) = ∑n

i=1 βi(α). From the first expression (3.2.4) for K∗, we see that
the optimal required total capital K∗ is between E[ξS]

E[ξ] (the expected weighted aggregate
risk) and ∑n

i=1
E[ξiXi]
E[ξi] (the total of the expected weighted individual risks). From the first

expression (3.2.6) for K∗i , we see that the optimal capital K∗i allocated to business lines i is
equal to the base capital E[ξiXi]

E[ξi] , which is the expected weighted risk for business line i, plus a
loading or backup capital βi(α)

(
E[ξS]
E[ξ] −

∑n
i=1

E[ξiXi]
E[ξi]

)
, which is proportional to the difference

between the expected weighted aggregate risk and the total of the expected weighted
individual risks with the loading factor βi(α). While from the second expression (3.2.5)
for K∗, we see that the optimal required total capital K∗ is equal to the total of the base
capital for individual risks plus a loading or backup capital β(α)

(
E[ξS]
E[ξ] −

∑n
i=1

E[ξiXi]
E[ξi]

)
, which

is proportional to the difference between the expected weighted aggregate risk and the total
of the expected weighted individual risks with the loading factor βi(α) = ∑n

i=1 βi(α), which
is the total of the loading factors for individual risks.

We also point out that the expected weighted aggregate risk E[ξS]
E[ξ] is not necessar-

ily equal to the total of the expected weighted individual risks ∑n
i=1

E[ξiXi]
E[ξi] . The opti-

mal required total capital K∗ for the company satisfies that if E[ξS]
E[ξ] <

∑n
i=1

E[ξiXi]
E[ξi] , then

E[ξS]
E[ξ] < K∗ <

∑n
i=1

E[ξiXi]
E[ξi] ; if ∑n

i=1
E[ξiXi]
E[ξi] < E[ξS]

E[ξ] , then ∑n
i=1

E[ξiXi]
E[ξi] < K∗ < E[ξS]

E[ξ] ; and if
E[ξS]
E[ξ] = ∑n

i=1
E[ξiXi]
E[ξi] , then K∗ = E[ξS]

E[ξ] . The relation between E[ξS]
E[ξ] and ∑n

i=1
E[ξiXi]
E[ξi] depends

on the decision maker’s attitudes toward the aggregate risks and individual risks, which
are represented by the weighting factors ξ, ξi, i = 1, ..., n. �
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3.2.1 Special or limiting cases of Theorem 3.2.2

In this subsection, we consider some special or limiting cases of Theorem 3.2.2 and
show that Theorem 3.2.2 can yield many interesting results about how to determine the
optimal required total capital of a company and how to allocate the optimal required total
capital among its main business lines at the same time.

Proposition 3.2.4. (i) In Theorem 3.2.2, if

vi = E[ξiXi], i = 1, ..., n,

then the optimal allocation is reduced to the following proportional allocation principle

K∗i =
E[ξiXi]
E[ξi]∑n

i=1
E[ξiXi]
E[ξi]

×K∗, (3.2.16)

where the optimal required total capital K∗ is given in Theorem 3.2.2.

(ii) In Theorem 3.2.2, if

v = E[ξ]
n∑
i=1

E[ξiXi]
E[ξi]

, vi = E[ξiXi], i = 1, ..., n, (3.2.17)

then the optimal allocation is the proportional allocation principle (3.2.16) and the optimal
required total capital K∗ is given

K∗ = (1− α) E[ξS]
E[ξ] + α

n∑
i=1

E[ξiXi]
E[ξi]

. (3.2.18)

Proof. Under the condition that vi = E[ξiXi], i = 1, ..., n, by (3.2.7), we have

K∗i = E[ξiXi]
E[ξi]

+
E[ξiXi]
E[ξi]∑n

i=1
E[ξiXi]
E[ξi]

(
K∗ −

n∑
i=1

E[ξiXi]
E[ξi]

)

= E[ξiXi]
E[ξi]

+
E[ξiXi]
E[ξi]∑n

i=1
E[ξiXi]
E[ξi]

K∗ − E[ξiXi]
E[ξi]

=
E[ξiXi]
E[ξi]∑n

i=1
E[ξiXi]
E[ξi]

K∗, i = 1, ..., n.

Further, if the conditions in (3.2.17) holds, then ∑n
i=1

vi
E[ξi] = ∑n

i=1
E[ξiXi]
E[ξi] = v

E[ξ] , and hence
β(α) and βi(α) defined in (3.2.8) and (3.2.9) are reduced to β(α) = 1 − β̃(α) = α. Thus,
(3.2.4) is reduced to (3.2.18).
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Remark 3.2.5. Proportional allocation principle (3.2.16) has the same proportional weights
as the proportional allocation principle given in Proposition 3.11 of Cai and Wang (2020).
However, in our proportional allocation principle (3.2.16), the optimal required total cap-
ital K∗ is specified as well. We now discuss applications of Proposition 3.2.4 and give
interesting samples of the optimal required total capital and the proportional allocation
principle.

For any finite-valued mappings/risk measures ρ(S), ρi(Xi), i = 1, ..., n, if there exist
sets A, Ai ∈ R, i = 1, ..., n, satisfying

E(S|S ∈ A) = ρ(S), E(Xi|Xi ∈ Ai) = ρi(Xi), i = 1, ..., n,

then by setting

ξ = I{S∈A}
P{S ∈ A}

, ξi = I{Xi∈Ai}
P{Xi ∈ Ai}

, vi = E[ξiXi] i = 1, ..., n, v =
n∑
i=1

vi, (3.2.19)

in Proposition 3.2.4, we see that E[ξ] = 1, E[ξi] = 1, i = 1, ..., n, the conditions in (3.2.17)
hold, and that

E[ξS]
E[ξ] = E[S|S ∈ A] = ρ(S), E[ξiXi]

E[ξi]
= E[Xi|Xi ∈ Ai] = ρi(Xi), i = 1, ..., n.

Thus, (3.2.16) is reduced to the following proportional principle in terms of risk measures:

K∗i = ρi(Xi)∑n
i=1 ρi(Xi)

×K∗, (3.2.20)

and the optimal required total capital K∗ in 3.2.18 is reduced to

K∗ = (1− α)ρ(S) + α
n∑
i=1

ρi(Xi). (3.2.21)

This proportional principle not only gives the optimal proportional weights, but also spec-
ifies the optimal required total capital K∗, which is equal to the weighted sum of the risk
measure of the aggregate risk S and the total of the risk measures of individual risks. �

Remark 3.2.6. Assume that X1, ..., Xn, S are continuous random variables.

(a) By Proposition 3.7 of Cai and Wang (2020), we know that there exist a set A ⊂ R
satisfying E(S|S ∈ A) = VaRq(S), furthermore, we take Ai = {S > VaRq(S)},
i = 1, ..., n, thus, (3.2.20) and (3.2.21) are reduced to the following CTE allocation
principle

K∗i = E(Xi|S > VaRq(S))
CTEq(S) ×K∗, (3.2.22)
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where

K∗ = (1− α)VaRq(S) + αCTEq(S). (3.2.23)

The optimal total capital criterion (3.2.23) and the corresponding CTE allocation
principle (3.2.22) are very interesting. As pointed out in Belles-Sampera et al. (2014),
if the required total capital for a company is determined by VaR, this capital may not
be sufficient for buffering the impact of a potential right-tail risk. If the required total
capital for a company is determined by CTE, this capital may be too conservative
or too much. A reasonable required total capital for a company might be between
VaR and CTE. Belles-Sampera et al. (2014) proposed a risk measure called GlueVaR,
which is between VaR and CTE, for the purpose of determining the required capital.
Total capital criterion (3.2.23) gives a simple way to determine the optimal required
total capital. If the decision maker puts more weight (small α) on the aggregate risk,
the required total capital will be close to VaR. If the decision maker puts more weight
(large α) on individual risks, the required total capital will be close to CTE. Hence,
using VaR or CTE as the reqired total capital for a company represents the decision
maker’s attitude towards the aggregate risk and individual risks. In general, our
results (3.2.23) and (3.2.22) say the optimal scheme to allocate an optimal required
total capital amounting between VaR and CTE, is the CTE allocation principle.

(b) In addition, by Proposition 3.7 of Cai and Wang (2020), we know that there exist
sets A, Ai ⊂ R, i = 1, ..., n, satisfying E(S|S ∈ A) = VaRq(S) and E(Xi|Xi ∈
Ai) = VaRq(Xi), i = 1, ..., n. Thus, (3.2.20) and (3.2.21) are reduced to the following
haircut principle

K∗i = VaRq(Xi)∑n
i=1 VaRq(Xi)

×K∗, (3.2.24)

where

K∗ = (1− α)VaRq(S) + α
n∑
i=1

VaRq(Xi). (3.2.25)

(c) If we take sets A = {S > VaRq(S)} and Ai ⊂ R so that E(S|S ∈ A) = CTEq(S) and
E(X|X ∈ Ai) = VaRq(Xi), i = 1, ..., n, then, (3.2.20) and (3.2.21) are reduced to the
following haircut principle

K∗i = VaRq(Xi)∑n
i=1 VaRq(Xi)

×K∗, (3.2.26)
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where

K∗ = (1− α)CTEq(S) + α
n∑
i=1

VaRq(Xi). (3.2.27)

Note that the optimal required total capital K∗ in (3.2.26) and (3.2.24) are different
and they are determined by (3.2.27) and (3.2.25), respectively.

(d) If we take sets A = {S > VaRq(S)} and Ai = {Xi > VaRq(Xi)}, i = 1, ..., n, then,
(3.2.20) and (3.2.21) are reduced to the following CTE principle

K∗i = CTEq(Xi)∑n
i=1 CTEq(Xi)

×K∗, (3.2.28)

where

K∗ = (1− α)CTEq(S) + α
n∑
i=1

CTEq(Xi). (3.2.29)

�

Example 3.2.1. Similarly the assumptions used in Dhaene, Tsanakas, et al. (2012), in
Theorem 3.2.2, if E[ξ] = 1, E[ξi] = 1, ∑n

i=1 vi = v, i = 1, ..., n, then, by (3.2.8), we have
β(α) = 1 − β̃(α) = α, and the optimal required total capital and the optimal allocation
are reduced to

K∗ = (1− α)E[ξS] + α
n∑
i=1

E[ξiXi]

K∗i = E[ξiXi] + vi
v

(
K∗ −

n∑
i=1

E[ξiXi]
)
, i = 1, ..., n.

We point out that the optimal allocation expressions for K∗i are the main result of Theorem
1 in Zaks and Tsanakas (2014) when the required total capital is calculated as (1−α)E[ξS]+
α
∑n
i=1 E[ξiXi]. �

Example 3.2.2. In Theorem 3.2.2, if ξi = ξ, i = 1, ..., n, then the optimal required total
capital and the optimal allocation are reduced to K∗ = E[ξS]

E[ξ] ,

K∗i = E[ξXi]
E[ξ] , i = 1, ..., n.

(3.2.30)

In this special case, we notice that the exposure parameters v and vi and the preference
parameter α do not affect the optimal solution. In fact, from the proof of Theorem 3.2.2,
we find that if ξi = ξ, i = 1, ..., n, then, from (3.2.15), we have λ = 0, which, together with
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(3.2.14), yields (3.2.30) and shows how the effects of the exposure parameters v and vi and
the preference parameter α disappear in the optimal solution. Intuitively, when ξi = ξ,
i = 1, ..., n, the sum ∑n

i=1 ξiXi of the weighted losses from all the business lines is equal to
the weighted loss ξS of the enterprise, and the decision maker’s attitudes towards all the
business lines and the enterprise are the same. Hence, the exposure parameters v and vi

and the preference parameter α do not affect the optimal solution.

In particular, if ξi = ξ = I{S>VaRq(S)}
P{S>VaRq(S)} , i = 1, ..., n, then (3.2.30) is reduced to the

well-known CTE principle: K∗ = CTEq(S),
K∗i = E[Xi|S > VaRq(S)], i = 1, ..., n.

(3.2.31)

In this principle, the required total capital is determined by CTE of the aggregate risk and
the capital allocated to a business lines is the conditional expected risk of the business line
conditioning on that the aggregate risk of a company exceeds its VaR. Hence, the CTE
allocation principle is a special case of our model.

In addition, from (3.2.30), we find that many of the existing multivariate CTE risk
measures can be viewed as the special cases of Theorem 3.2.2 when ξi = ξ, i = 1, ..., n. In
fact, if ξ = ξi = IA, i = 1, ..., n, where A is an event associated with X1, ..., Xn, S, then
(3.2.30) is reduced to  K∗ = ∑n

i=1 E[Xi|A],
K∗i = E[Xi|A], i = 1, ..., n.

(3.2.32)

In the followings, we list several interesting examples of the event A.

(i) If

A = {X1 > VaRq(X1), ..., Xn > VaRq(Xn)}, (3.2.33)

then (3.2.32) recovers the MCTE risk measure of Landsman et al. (2016). In this
case, event A means that the losses of all the n business lines exceed the respective
threshold levels that are determined by VaRq.

(ii) If

A = {X1 > VaRq(X1)} ∪ · · · ∪ {Xn > VaRq(Xn)}, (3.2.34)

then (3.2.32) recovers the example of Cai et al. (2017). In this case, event A means
that the loss of at least one of the n business lines exceeds the its threshold level that
is determined by VaRq.
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(iii) Moreover, we can also consider the event A as the joint situation of the business lines
and the company such as:

A = {X1 > VaRq(X1), ..., Xn > VaRq(Xn), S > VaRq(S)} (3.2.35)

and

A = {X1 > VaRq(X1)} ∪ · · · ∪ {Xn > VaRq(Xn)} ∪ {S > VaRq(S)}. (3.2.36)

All of the four extreme events of A involve all of the business lines or individual risks.
In those scenarios, the optimal required total capital for the company is the conditional
expectation of the aggregate risk of the company conditioning on occurrence of the extreme
event A, and the optimal capital allocated to business line i or individual risk Xi is the
conditional expected risk of this business line conditioning on occurrence of the same
extreme event A. �

Example 3.2.3. (i) In Theorem 3.2.2, if

ξ = I{S>VaRq(S)}, ξi = I{Xi>VaRqi (Xi)}, vi = E[ξi]E[Xi] > 0, v = E[ξ]E[S] > 0,

where 0 < q < 1, 0 < qi < 1, i = 1, ..., n, then, the optimal required total capital and the
optimal allocation are reduced to K∗ = (1− α)CTEq(S) + α

∑n
i=1 CTEqi(Xi)

K∗i = CTEqi(Xi) + (1− α)E[Xi]
E[S] ×

(
CTEq(S)−∑n

i=1 CTEqi(Xi)
)
, i = 1, ..., n.

(3.2.37)

In this example, the optimal required total capital K∗ is a weighted sum of the CTE of
the aggregated risk at the required confidence level q for the company and the total of the
CTEs of the individual risks at their own required confidence levels qi, i = 1, ..., n. The
optimal capital K∗i allocated to business line i is equal to the base capital CTEqi(Xi), which
is the CTE of the risk of business line i at the required confidence level qi for business line
i, plus a loading or backup capital (1− α)E[Xi]

E[S] ×
(
CTEq(S)−∑n

i=1 CTEqi(Xi)
)
, which is

proportional to the difference between the CTE of the aggregate risk and the total of the
CTEs of individual risks with the loading factor (1− α)E[Xi]

E[S] .

(ii) In Theorem 3.2.2, if

ξ = I{S>VaRq(S)}, ξi = I{Xi>VaRqi (Xi)}, vi = E[ξi]Cov(Xi, S) > 0, v = E[ξ]V ar(S) > 0,

where 0 < q < 1, 0 < qi < 1, i = 1, ..., n, then, the optimal required total capital and the
optimal allocation are reduced to K∗ = (1− α)CTEq(S) + α

∑n
i=1 CTEqi(Xi),

K∗i = CTEqi(Xi) + (1− α)Cov(Xi, S)
V ar(S) ×

(
CTEq(S)−∑n

i=1 CTEqi(Xi)
)
, i = 1, ..., n.

(3.2.38)
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(iii) In general, let ρ(X, S), h(X, S), ρi(X, S) hi(X, S), i = 1, ..., n, be mappings/risk
measures from (X, S) to R, where X = (X1, ..., Xn) and ∑n

i=1 hi(X, S) = h(X, S). Thus,
in Theorem 3.2.2, if

ξ = I{S∈A}, v = E[ξ]h(X, S) > 0, ξi = I{Xi∈Ai}, vi = E[ξi]hi(X, S) > 0, i = 1, ..., n,

where the sets A,Ai ∈ R, i = 1, ..., n, satisfy

E(S|S ∈ A) = ρ(X, S), E(Xi|Xi ∈ Ai) = ρi(X, S), i = 1, ..., n,

then, the optimal required total capital and the optimal allocation are reduced to K∗ = (1− α)ρ(X, S) + α
∑n
i=1 ρi(X, S),

K∗i = ρi(X, S) + (1− α)hi(X, S)
h(X, S) ×

(
ρ(X, S)−∑n

i=1 ρi(X, S)
)
, i = 1, ..., n.

(3.2.39)

�

Example 3.2.4. (i) In Theorem 3.2.2, if α → 0, then β(α) → 0, β̃(α) → 1, βi(α) →
vi

E[ξi]∑n

i=1
vi

E[ξi]

∆= βi(0), and


K∗ → E[ξS]

E[ξ] ,

K∗i →
E[ξiXi]
E[ξi] +

vi
E[ξi]∑n

i=1
vi

E[ξi]

(
E[ξS]
E[ξ] −

∑n
i=1

E[ξiXi]
E[ξi]

)
, i = 1, ..., n.

(3.2.40)

In this limiting case of α → 0, from (3.2.1), we see that the main concern of the decision
maker is the deviation between the aggregate risk and the required total capital. The
optimal required total capital K∗ is approximating to the expected weighted aggregated
risk and the optimal capital K∗i allocated to main business line i is approximating to the
base capital E[ξiXi]

E[ξi] , which is the expected weighted risk for business line i, plus a loading
βi(0)

(
E[ξS]
E[ξ] −

∑n
i=1

E[ξiXi]
E[ξi]

)
, which is proportional to the difference between the expected

weighted aggregate risk and the total of the expected weighted individual risks with the
loading factor βi(0). By (3.2.40), we see Theorem 1 of Dhaene, Tsanakas, et al. (2012) is the
limiting case of Theorem 3.2.2 when α→ 0 and the given total capital K in Theorem 1 of
Dhaene, Tsanakas, et al. (2012) is determined by the expected weighted aggregate risk E[ξS]

E[ξ] .
In addition, we notice that the exposure parameter v does not affect the optimal solution in
this limiting case. In fact, from Theorem 3.2.2, we find that the exposure parameter v affect
the optimal solution only through the weights β(α), β̃(α), β̃i(α), i = 1, ..., n. Obviously,
when α → 0, the exposure parameter v disappears in all the weights β(α), β̃(α), β̃i(α),
i = 1, ..., n, in the limiting case.
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(ii) In Theorem 3.2.2, if α→ 1, then β(α)→ 1, β̃(α)→ 0, βi(α)→ 0, and K∗ → ∑n
i=1

E[ξiXi]
E[ξi] ,

K∗i →
E[ξiXi]
E[ξi] , i = 1, ..., n.

(3.2.41)

In this limiting case of α → 1, from (3.2.1), we see that the main concern of the decision
maker is the total of the allocation deviations among individual risks and the corresponding
allocated capital. The optimal required total capital K∗ is approximating to the total of the
expected weighted individual risks and the optimal capital K∗i allocated to main business
line i is approximating to the expected weighted risk of the business line. In this limiting
case, we notice that all the exposure parameters v, vi, i = 1, ..., n, have no effect in the
optimal solution in the limiting case. In fact, from Theorem 3.2.2, we find that the exposure
parameters v, vi, i = 1, ..., n, affect the optimal solution only through the weights β(α),
β̃(α), β̃i(α), i = 1, ..., n. Obviously, when α→ 1, the exposure parameters v, vi, i = 1, ..., n,
disappear in all the weights β(α), β̃(α), β̃i(α), i = 1, ..., n, in the limiting case. �

3.3 Optimal solutions based on weighted squared er-
rors for a company with main business lines and
sub-business lines

In this section, we discuss optimal required total capital and optimal allocation scheme
for a company with main business lines and sub-business lines and consider problem (3.1.4)
when D1(x) = x2 and D2i = x2, i = 1, ..., n, namely the allocation deviations are measured
by (weighted) squared errors. In this case, problem (3.1.4) is reduced to the following
problem:

min(K,k1,...,kn)∈Rd
{
α1E

[
ψ
w

(
S −K

)2]
+ α2

∑n
i=1 E

[
ψi
wi

(Xi −Ki)2
]

+α3
∑n
i=1

∑ni
j=1 E

[
ψij
wij

(Xij − kij)2
]}

s.t. ∑n
i=1Ki = K,

∑ni
j=1 kij = Ki, i = 1, ..., n.

(3.3.1)

To guarantee that problem (3.3.1) has a unique solution (K∗,k∗1, ...,k∗n), we assume that
the following conditions hold.

Assumption 3.3.1. For problem (3.3.1), we assume that real numbers w, wi, wij, and
random variables ψ, ψi, ψij, i = 1, ..., n, j = 1, ..., ni, satisfy

ψ

w
≥ 0, ψi

wi
≥ 0, ψij

wij
≥ 0, E[ψ]

w
> 0, E[ψi]

wi
> 0, E[ψij]

wij
> 0, i = 1, ..., n, j = 1, ..., n,(3.3.2)
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and expectations E[ψ
w
S2], E[ψ

w
S], E[ψi

wi
X2
i ], E[ψi

wi
Xi], E[ψij

wij
X2
ij], E[ ξij

wij
Xij], i = 1, ..., n,

j = 1, ..., ni, exist. �

Denote the objective function in problem (3.3.1) by J(K,k1, ...,kn), namely,

J(K,k1, ...,kn) = α1E
[
ψ

w

(
S −K

)2
]

+ α2

n∑
i=1

E
[
ψi
wi

(Xi −Ki)2
]

+ α3

n∑
i=1

ni∑
j=1

E
[
ψij
wij

(Xij − kij)2
]
. (3.3.3)

Lemma 3.3.1. Under Assumption 3.3.1, the objective function J(K,k1, ...,kn) defined in
(3.3.3) is a convex and coercive function of (K,k1, ...,kn) in Rd, where d = 1+n+∑n

i=1 ni.

Proof. Clearly, under Assumption 3.3.1, E
[
ψ
w

(
S−K

)2]
, E
[
ψi
wi

(
Xi−Ki

)2]
, and E

[
ψij
wij

(
Xij−

kij
)2]

are convex and coercive functions of K, Ki, kij, respectively. Hence, J(K,k1, ...,kn)
defined in (3.3.3) is a convex and coercive function of (K,k1, ...,kn) on Rd.

Theorem 3.3.2. Under Assumption 3.3.1, problem (3.3.1) has the following unique solu-
tion:

K∗ = δ(α1, α2, α3) E[ψS]
E[ψ] + δ̃(α1, α2, α3)

n∑
i=1

(
βi(α2, α3) E[ψiXi]

E[ψi]
+ β̃i(α2, α3)

ni∑
j=1

E[ψijXij]
E[ψij]

)
,

K∗i = βi(α2, α3) E[ψiXi]
E[ψi]

+ β̃i(α2, α3)
ni∑
j=1

E[ψijXij]
E[ψij]

+ θi(α1, α2, α3)
(E[ψS]

E[ψ] −
n∑
i=1

(
βi(α2, α3) E[ψiXi]

E[ψi]
+ β̃i(α2, α3)

ni∑
j=1

E[ψijXij]
E[ψij]

))
,

= βi(α2, α3) E[ψiXi]
E[ψi]

+ β̃i(α2, α3)
ni∑
j=1

E[ψijXij]
E[ψij]

+ θi(α1, α2, α3)
δ(α1, α2, α3)

(
K∗ −

n∑
i=1

(
βi(α2, α3) E[ψiXi]

E[ψi]
+ β̃i(α2, α3)

ni∑
j=1

E[ψijXij]
E[ψij]

))
, i = 1, ..., n,

k∗ij = E[ψijXij]
E[ψij]

+
wij

E[ψij ]∑ni
j=1

wij
E[ψij ]

(
K∗i −

ni∑
j=1

E[ψijXij]
E[ψij]

)
, i = 1, ..., n, j = 1, ..., ni,

where

δ̃(α1, α2, α3) = 1− δ(α1, α2, α3) =
α2

w
E(ψ)

α2
w

E(ψ) + α1
∑n
i=1 βi(α2, α3) wi

E(ψi)
, (3.3.4)

β̃i(α2, α3) = 1− βi(α2, α3) =
α3

wi
E(ψi)

α3
wi

E(ψi) + α2
∑ni
j=1

wij
E[ψij ]

, (3.3.5)

θi(α1, α2, α3) = βi(α2, α3)
α2

w
E(ψ) + α1

∑n
i=1 βi(α2, α3) wi

E(ψi)
× α1wi

E[ψi]
. (3.3.6)
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Proof. By Lemma 3.3.1, we know that problem (3.3.1) is a constrained convex optimization
problem and that the objective function of the problem is convex and coercive. Hence,
optimal solutions for problem (3.3.1) do exist. Denote the Lagrangian of problem (3.3.1)
by

L(K,k1, ...,kn, λ, λ1, ..., λn) = α1E
[ψ
w

(
S −K

)2]
+ α2

n∑
i=1

E
[ψi
wi

(Xi −Ki)2
]

+ α3

n∑
i=1

ni∑
j=1

E
[ψij
wij

(Xij − kij)2
]

+ λ
( n∑
i=1

Ki −K
)

+
n∑
i=1

λi

(
Ki −

ni∑
j=1

kij

)
.

Under Assumption 3.3.1, it is easy to see that the Lagrangian function L(K,k1, ...,kn, λ, λ1, ..., λn)
is differentiable. Hence, a solution to problem (3.3.1) is any solution to the following equa-
tions or any solution satisfying the following Karush-Kuhn-Tucker (KKT) conditions:

∂L
∂K

= 0,
∂L
∂Ki

= 0, i = 1, ..., n,
∂L
∂kij

= 0, i = 1, ..., n, j = 1, ..., ni,∑n
i=1Ki = K,

∑ni
j=1 kij = Ki, i = 1, ..., n.

(3.3.7)

It is easy to see that (3.3.7) is equivalent to

−2α1E
[
ψ
w

(
S −K

)]
− λ = 0,

−2α2E
[
ψi
wi

(
Xi −Ki

)]
+ λ+ λi = 0, i = 1, ..., n,

−2α3E
[
ψij
wij

(
Xi − kij

)]
− λi = 0, i = 1, ..., n, j = 1, ..., ni∑n

i=1Ki = K,
∑ni
j=1 kij = Ki, i = 1, ..., n.

(3.3.8)

The above equations are further equivalent to

E[ψS]
E[ψ] −K = − λw

2α1E[ψ] ,
E[ψiXi]
E[ψi] −Ki = (λ+λi)wi

2α2E[ψi] , i = 1, ..., n,
E[ψijXij ]
E[ψij ] − kij = − λiwij

2α3E[ψij ] , i = 1, ..., n, j = 1, ..., ni,∑n
i=1Ki = K,

∑ni
j=1 kij = Ki, i = 1, ..., n.

(3.3.9)

Summing two sides of the equations on the third line in (3.3.9) for j = 1, ..., ni and using
the constraint on the fourth line in (3.3.9), we obtain

ni∑
j=1

E[ψijXij]
E[ψij]

−Ki = − λi
2α3

ni∑
j=1

wij
E[ψij]

, (3.3.10)

which yields

λi = −
2α3

∑ni
j=1

E[ψijXij ]
E[ψij ]∑ni

j=1
wij

E[ψij ]
+ 2α3Ki∑ni

j=1
wij

E[ψij ]
= −2α3hi

gi
+ 2α3Ki

gi
, (3.3.11)
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where

hi =
ni∑
j=1

E[ψijXij]
E[ψij]

, gi =
ni∑
j=1

wij
E[ψij]

.

Substituting (3.3.11) into the second line of (3.3.9), we get

E[ψiXi]
E[ψi]

−Ki = λwi
2α2E[ψi]

− hiα3wi
giα2E[ψi]

+ α3wi
giα2E(ψi)

Ki.

Rearranging the above equation, we get,

E[ψiXi]
E[ψi]

−
(

1 + α3wi
giα2E(ψi)

)
Ki = λwi

2α2E[ψi]
− hiα3wi
giα2E[ψi]

. (3.3.12)

Note that

1
1 + α3wi

giα2E(ψi)
=

α2E(ψi)
∑ni
j=1

wij
E[ψij ]

α3wi + α2E(ψi)
∑ni
j=1

wij
E[ψij ]

= βi(α2, α3) = 1− β̃i(α2, α3),

where βi(α2, α3) and β̃i(α2, α3) are defined in (3.3.5). Thus, equation (3.3.12) is reduced
to

βi(α2, α3)E[ψiXi]
E[ψi]

−Ki = βi(α2, α3)
(

λwi
2α2E[ψi]

− hiα3wi
giα2E[ψi]

)
, i = 1, ..., n.

Summing two sides of the above equations for i = 1, ..., n and using the constraint on the
fourth line in (3.3.9), we obtain

n∑
i=1

βi(α2, α3)E[ψiXi]
E[ψi]

−K =
n∑
i=1

βi(α2, α3)
(

λwi
2α2E[ψi]

− hiα3wi
giα2E[ψi]

)
,

which, together with the equation on the first line in (3.3.9), yields

E[ψS]
E[ψ] −

n∑
i=1

βi(α2, α3)E[ψiXi]
E[ψi]

= − λw

2α1E[ψ] −
n∑
i=1

βi(α2, α3)
(

λwi
2α2E[ψi]

− hiα3wi
giα2E[ψi]

)
.(3.3.13)
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Thus, solving (3.3.13) for λ, we get

λ = −
(

w

2α1E(ψ) +
n∑
i=1

βi(α2, α3) wi
2α2E(ψi)

)−1

×(
E[ψS]
E[ψ] −

n∑
i=1

βi(α2, α3)E[ψiXi]
E[ψi]

−
n∑
i=1

βi(α2, α3) hiα3wi
giα2E[ψi]

)

= −

 2α1E(ψ)
w + 2α1E(ψ)∑n

i=1 βi(α2, α3) wi
2α2E(ψi)

×
E[ψS]

E[ψ] −
n∑
i=1

βi(α2, α3)E[ψiXi]
E[ψi]

+ βi(α2, α3)
α3wi

∑ni
j=1

E[ψijXij ]
E[ψij ]

α2E[ψi]
∑ni
j=1

wij
E[ψij ]


= −

 2α1E(ψ)
w + 2α1E(ψ)∑n

i=1 βi(α2, α3) wi
2α2E(ψi)

×
E[ψS]

E[ψ] −
n∑
i=1

βi(α2, α3)E[ψiXi]
E[ψi]

+ β̃i(α2, α3)
ni∑
j=1

E[ψijXij]
E[ψij]

 , (3.3.14)

where, the last equality follows from

β̃i(α2, α3)
βi(α2, α3) = α3wi

α2E[ψi]
∑ni
j=1

wij
E[ψij ]

.

Next, from (3.3.10) and the second line of (3.3.9), we get

E[ψiXi]
E[ψi]

− E[ψijXij]
E[ψij]

= (λ+ λi)wi
2α2E[ψi]

+ λi

ni∑
j=1

wij
2α3E[ψij]

,

which implies

λi =
E[ψiXi]

E[ψi]
−

ni∑
j=1

E[ψijXij]
E[ψij]

− λwi
2α2E[ψi]

×
 wi

2α2E[ψi]
+

ni∑
j=1

wij
2α3E[ψij]

−1

=
E[ψiXi]

E[ψi]
−

ni∑
j=1

E[ψijXij]
E[ψij]

− λwi
2α2E[ψi]

× 2α2E[ψi]
wi + 2α2E[ψi]

∑ni
j=1

wij
2α3E[ψij ]

.(3.3.15)

Substituting equation (3.3.14) into the first line of equation (3.3.9), we get

K = E[ψS]
E[ψ] −

 w

w + 2α1E(ψ)∑n
i=1 βi(α2, α3) wi

2α2E(ψi)


×

E[ψS]
E[ψ] −

n∑
i=1

βi(α2, α3)E[ψiXi]
E[ψi]

+ β̃i(α2, α3)
ni∑
j=1

E[ψijXij]
E[ψij]


= δ(α1, α2, α3) E[ψS]

E[ψ] + δ̃(α1, α2, α3)
n∑
i=1

βi(α2, α3)E[ψiXi]
E[ψi]

+ β̃i(α2, α3)
ni∑
j=1

E[ψijXij]
E[ψij]

 ,
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which yields the expression for K∗ in Theorem 3.3.2, where δ(α1, α2, α3) and δ̃(α1, α2, α3)
are defined in (3.3.4).

Next, we derive the expressions for K∗i in Theorem 3.3.2. From the second line of
equation (3.3.9), we get

Ki = E[ψiXi]
E[ψi]

− (λ+ λi)wi
2α2E[ψi]

. (3.3.16)

By (3.3.15), we have

λ+ λi = λ+
(E[ψiXi]

E[ψi]
−

ni∑
j=1

E[ψijXij]
E[ψij]

− λwi
2α2E[ψi]

)
×
( 2α2E[ψi]
wi + α2E[ψi]

∑ni
j=1

wij
α3E[ψij ]

)

= λ
(

1− wi
wi + α2E[ψi]

∑ni
j=1

wij
α3E[ψij ]

)

+
(E[ψiXi]

E[ψi]
−

ni∑
j=1

E[ψijXij]
E[ψij]

)
×
( 2α2E[ψi]
wi + α2E[ψi]

∑ni
j=1

wij
α3E[ψij ]

)
,

which, together with (3.3.16), implies

Ki = E[ψiXi]
E[ψi]

− wi
2α2E[ψi]

λ

1− wi
wi + α2E[ψi]

∑ni
j=1

wij
α3E[ψij ]


− wi

2α2E[ψi]

E[ψiXi]
E[ψi]

−
ni∑
j=1

E[ψijXij]
E[ψij]

×
 2α2E[ψi]
wi + α2E[ψi]

∑ni
j=1

wij
α3E[ψij ]


=

1− wi
wi + α2E[ψi]

∑ni
j=1

wij
α3E[ψij ]

 E[ψiXi]
E[ψi]

+ wi
wi + α2E[ψi]

∑ni
j=1

wij
α3E[ψij ]

ni∑
j=1

E[ψijXij]
E[ψij]

− wi
2α2E[ψi]

λ

1− wi
wi + α2E[ψi]

∑ni
j=1

wij
α3E[ψij ]


= βi(α2, α3)E[ψiXi]

E[ψi]
+ β̃i(α2, α3)

ni∑
j=1

E[ψijXij]
E[ψij]

− wiλβi(α2, α3)
2α2E[ψi]

.
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By (3.3.14), we have

−wiλβi(α2, α3)
2α2E[ψi]

=
 α1E(ψ)
w + α1E(ψ)∑n

i=1 βi(α2, α3) wi
α2E(ψi)

 βi(α2, α3) wi
α2E[ψi]

×

E[ψS]
E[ψ] −

n∑
i=1

βi(α2, α3)E[ψiXi]
E[ψi]

+ β̃i(α2, α3)
ni∑
j=1

E[ψijXij]
E[ψij]


= δ̃(α1, α2, α3)βi(α2, α3)α1E(ψ)wi

α2E[ψi]w

×

E[ψS]
E[ψ] −

n∑
i=1

βi(α2, α3)E[ψiXi]
E[ψi]

+ β̃i(α2, α3)
ni∑
j=1

E[ψijXij]
E[ψij]


= θi(α1, α2, α3)×

E[ψS]
E[ψ] −

n∑
i=1

βi(α2, α3)E[ψiXi]
E[ψi]

+ β̃i(α2, α3)
ni∑
j=1

E[ψijXij]
E[ψij]

 ,
where

θi(α1, α2, α3) = δ̃(α1, α2, α3) βi(α2, α3) α1E(ψ)wi
α2E[ψi]w

= βi(α2, α3)
α2

w
E(ψ) + α1

∑n
i=1 βi(α2, α3) wi

E(ψi)
× α1wi

E[ψi]
,

which is the definition θi(α1, α2, α3) given in (3.3.6). Thus, we get

Ki = βi(α2, α3)E[ψiXi]
E[ψi]

+ β̃i(α2, α3)
ni∑
j=1

E[ψijXij]
E[ψij]

+ θi(α1, α2, α3)
(E[ψS]

E[ψ] −
n∑
i=1

(
βi(α2, α3)E[ψiXi]

E[ψi]
+ β̃i(α2, α3)

ni∑
j=1

E[ψijXij]
E[ψij]

))
,

which yields the first expression for K∗i in Theorem 3.3.2.

By replacing δ̃(α1, α2, α3) by 1 − δ(α1, α2, α3) in the expression of K∗ in Theorem
3.3.2, we obtain

E[ψS]
E[ψ] −

n∑
i=1

(
βi(α2, α3)E[ψiXi]

E[ψi]
+ β̃i(α2, α3)

ni∑
j=1

E[ψijXij]
E[ψij]

)

= 1
δ(α1, α2, α3)

(
K∗ −

n∑
i=1

(
βi(α2, α3)E[ψiXi]

E[ψi]
+ β̃i(α2, α3)

ni∑
j=1

E[ψijXij]
E[ψij]

))
,

which, together with the first expression of K∗i in Theorem 3.3.2, yields the second expres-
sion of K∗i in Theorem 3.3.2.
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Next, by the third line of equation (3.3.9) and equation (3.3.11), we get

kij = E[ψijXij]
E[ψij]

− λiwij
2α3E[ψij]

= E[ψijXij]
E[ψij]

−
(∑ni

j=1
E[ψijXij ]
E[ψij ]∑ni

j=1
wij

E[ψij ]
− Ki∑ni

j=1
wij

E[ψij ]

)
wij

E[ψij]

= E[ψijXij]
E[ψij]

+
wij

E[ψij ]∑ni
j=1

wij
E[ψij ]

(
Ki −

ni∑
j=1

E[ψijXij]
E[ψij]

)
,

which yields the expression for k∗ij in Theorem 3.3.2.

Remark 3.3.3. From Theorem 3.3.2, we observe that 0 < δ(α1, α2, α3), δ̃(α1, α2, α3) < 1
and that 0 < βi(α2, α3), β̃i(α2, α3), θi(α1, α2, α3) < 1, i = 1, ..., n. From the expressions of
K∗, K∗i , and k∗ij given in Theorem 3.3.2, we see that the optimal required total capital K∗

for the company is between the expected weighted aggregate risk of the company and the
weighted sum of the expected weighted losses of main business and sub-business lines. We
point out that the expected weighted aggregate risk of a company is not necessarily equal
to the total of the expected weighted risks of the main business and sub-business lines of
the company. If fact, the optimal required total capital K∗ for the company satisfies that
if E[ψS]

E[ψ] <
∑n
i=1

(
βi(α2, α3) E[ψiXi]

E[ψi] + β̃i(α2, α3)∑ni
j=1

E[ψijXij ]
E[ψij ]

)
, then

E[ψS]
E[ψ] < K∗ <

n∑
i=1

(
βi(α2, α3) E[ψiXi]

E[ψi]
+ β̃i(α2, α3)

ni∑
j=1

E[ψijXij]
E[ψij]

)
;

if ∑n
i=1

(
βi(α2, α3) E[ψiXi]

E[ψi] + β̃i(α2, α3)∑ni
j=1

E[ψijXij ]
E[ψij ]

)
< E[ξS]

E[ξ] , then

n∑
i=1

(
βi(α2, α3) E[ψiXi]

E[ψi]
+ β̃i(α2, α3)

ni∑
j=1

E[ψijXij]
E[ψij]

)
< K∗ <

E[ξS]
E[ξ] ;

and if E[ψS]
E[ψ] = ∑n

i=1

(
βi(α2, α3) E[ψiXi]

E[ψi] + β̃i(α2, α3)∑ni
j=1

E[ψijXij ]
E[ψij ]

)
, then

K∗ = E[ψS]
E[ψ] .

The relation between E[ψS]
E[ψ] and ∑n

i=1

(
βi(α2, α3) E[ψiXi]

E[ψi] + β̃i(α2, α3)∑ni
j=1

E[ψijXij ]
E[ψij ]

)
depends

on the decision maker’s attitudes toward the aggregate risks of the company and individ-
ual risks of the main business lines and sub-business lines, which are represented by the
weighting factors ψ, ψi, ψij, i = 1, ..., n, j = 1, ..., ni.

Moreover, from the expression for K∗ in Theorem 3.3.2, we observe that at the top
level, the optimal required capital K∗ for the enterprise is the weighed sum of the adjusted

68



expected losses from all the three levels: the enterprise, the main business lines, and the
sub-business lines. At the second level, from the second expression for K∗i in Theorem
3.3.2, we find that the optimal capital K∗i allocated to main business line i is equal to a
base capital, which is a weighed sum of the adjusted expected losses of all the main business
lines and the sub-business lines in the enterprise, plus a loading or a back up capital, which
is proportional to the difference between the required total capital K∗ for the enterprise
and the weighed sum of the adjusted expected losses from all the main business lines and
the sub-business lines in the enterprise, with a loading factor θi(α1,α2,α3)

δ(α1,α2,α3) . At the bottom
level or the level of the sub-business lines, the optimal capital k∗ij allocated to sub-business
lines ij is equal to a base capital, which is the adjusted expected loss of sub-business line
ij, plus a loading or a back up capital, which is proportional to the difference between the
capital allocated to main business line i and the total of the adjusted expected losses from

all the sub-business lines in main business line i, with a loading factor
wij

E[ψij ]∑ni
j=1

wij
E[ψij ]

. �

3.3.1 Special or limiting cases of Theorem 3.3.2

In this subsection, we consider some special or limiting cases of Theorem 3.3.2 and
show Theorem 3.3.2 can yield many interesting results about how to determine the optimal
required total capital of a company and how to allocate the optimal required total capital
among the main business lines and their sub-business lines at the same time.

Proposition 3.3.4. (i) In Theorem 3.3.2, if

wi = E[ψiXi], wij = E[ψijXij], i = 1, ..., n, j = 1, ..., ni, (3.3.17)

then, the optimal allocations among the main business lines and the sub-business lines are
respectively reduced to the following proportional allocation principles

K∗i =
βi(α2, α3)E[ψiXi]

E[ψi]∑n
i=1 βi(α2, α3)E[ψiXi]

E[ψi]

×K∗, i = 1, ..., n, (3.3.18)

k∗ij =
E[ψijXij ]
E[ψij ]∑ni

j=1
E[ψijXij ]
E[ψij ]

×K∗i , i = 1, ..., n, j = 1, ..., ni, (3.3.19)

where the optimal required total capital K∗ and the weights βi(α2, α3), i = 1, ..., n, are given
in Theorem 3.3.2.

(ii) In Theorem 3.3.2, if wi = E[ψiXi], wij = E[ψijXij], i = 1, ..., n, j = 1, ..., ni,
w = E[ψ] ∑n

i=1 βi(α2, α3) E[ψiXi]
E[ψi] ,

(3.3.20)
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then, the optimal allocations among the main business lines and the sub-business lines are
reduced to the proportional allocation principles (3.3.18) and (3.3.19), respectively, and the
optimal required total capital K∗ is given by

K∗ = α1

α1 + α2
× E[ψS]

E[ψ] + α2

α1 + α2

n∑
i=1

(
βi(α2, α3) E[ψiXi]

E[ψi]
+ β̃i(α2, α3)

ni∑
j=1

E[ψijXij]
E[ψij]

)
,(3.3.21)

where βi(α2, α3), β̃i(α2, α3), i = 1, ..., n, are given in Theorem 3.3.2.

Proof. By (3.3.4), (3.3.5), and (3.3.6), we have

βi(α2, α3) = β̃i(α2, α3)×
α2
∑ni
j=1

wij
E[ψij ]

α3
wi

E(ψi)

and

θi(α1, α2, α3)
δ(α1, α2, α3) =

βi(α2, α3)× wi
E[ψi]∑n

i=1 βi(α2, α3) wi
E(ψi)

=
β̃i(α2, α3)×∑ni

j=1
wij

E[ψij ]∑n
i=1 β̃i(α2, α3)×∑ni

j=1
wij

E[ψij ]
.

(i) Under the conditions in (3.3.17), by the second expression for K∗i in Theorem 3.3.2,
we have

K∗i = βi(α2, α3) E[ψiXi]
E[ψi]

+ β̃i(α2, α3)
ni∑
j=1

E[ψijXij]
E[ψij]

+ θi(α1, α2, α3)
δ(α1, α2, α3) ×K

∗

−θi(α1, α2, α3)
δ(α1, α2, α3)

n∑
i=1

(
βi(α2, α3) E[ψiXi]

E[ψi]

)
− θi(α1, α2, α3)
δ(α1, α2, α3)

n∑
i=1

(
β̃i(α2, α3)

ni∑
j=1

E[ψijXij]
E[ψij]

)
,

= θi(α1, α2, α3)
δ(α1, α2, α3) ×K

∗ + βi(α2, α3) E[ψiXi]
E[ψi]

+ β̃i(α2, α3)
ni∑
j=1

E[ψijXij]
E[ψij]

−
βi(α2, α3)E[ψiXi]

E(ψi)∑n
i=1 βi(α2, α3)E[ψiXi]

E(ψi)

n∑
i=1

βi(α2, α3) E[ψiXi]
E[ψi]

−
β̃i(α2, α3)×∑ni

j=1
E[ψijXij ]
E[ψij ]∑n

i=1 β̃i(α2, α3)×∑ni
j=1

E[ψijXij ]
E[ψij ]

n∑
i=1

(
β̃i(α2, α3)

ni∑
j=1

E[ψijXij]
E[ψij]

)
,

= θi(α1, α2, α3)
δ(α1, α2, α3) ×K

∗

=
βi(α2, α3)E[ψiXi]

E[ψi]∑n
i=1 βi(α2, α3)E[ψiXi]

E[ψi]

, i = 1, ..., n.

Moreover, under the conditions in (3.3.17), by the expression for k∗ij in Theorem 3.3.2, we
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have

k∗ij = E[ψijXij]
E[ψij]

+
E[ψijXij ]
E[ψij ]∑ni

j=1
E[ψijXij ]
E[ψij ]

(
K∗i −

ni∑
j=1

E[ψijXij]
E[ψij]

)

= E[ψijXij]
E[ψij]

+
E[ψijXij ]
E[ψij ]∑ni

j=1
E[ψijXij ]
E[ψij ]

K∗i −
E[ψijXij]
E[ψij]

=
E[ψijXij ]
E[ψij ]∑ni

j=1
E[ψijXij ]
E[ψij ]

K∗i , i = 1, ..., n, j = 1, ..., ni.

(ii) If the conditions in (3.3.20) hold, then by (3.3.4), we see that δ̃(α1, α2, α3) is
reduced to

δ̃(α1, α2, α3) = 1− δ(α1, α2, α3) = α2

α2 + α1
,

which, together with the expression for K∗ in Theorem 3.3.2, yields (3.3.21).

Remark 3.3.5. The above proposition is an extension of the proportional allocation prin-
ciple for a two-level company in Proposition 3.2.4 to a three-level organization structure.
We point out that besides the conditions in (3.3.20), if

E[ψiXi] = E[ψi]
ni∑
j=1

E[ψijXij]
E[ψij]

, i = 1, ..., n, (3.3.22)

then the proportional allocation principles (3.3.18) and (3.3.19) and the optimal required
total capital (3.3.21) are reduced to

K∗i =
E[ψiXi]
E[ψi]∑n

i=1
E[ψiXi]
E[ψi]

×K∗, i = 1, ..., n,

k∗ij =
E[ψijXij ]
E[ψij ]∑ni

j=1
E[ψijXij ]
E[ψij ]

×K∗i , i = 1, ..., n, j = 1, ..., ni,

K∗ = α1

α1 + α2
× E[ψS]

E[ψ] + α2

α1 + α2

n∑
i=1

(
α2

α2 + α3
× E[ψiXi]

E[ψi]
+ α3

α2 + α3
×

ni∑
j=1

E[ψijXij]
E[ψij]

)

= α1

α1 + α2
× E[ψS]

E[ψ] + α2

α1 + α2

n∑
i=1

E[ψiXi]
E[ψi]

respectively. If fact, the conditions in (3.3.22) imply

β̃i(α2, α3) = 1− βi(α2, α3) = α3

α3 + α2
, i = 1, ..., n.
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For instance, in Proposition 3.3.4, let sets A, Ai, Aij satisfy

E(S|S ∈ A) = VaRq(S), Ai = {Xi > VaRq(Xi)}, Aij = {Xi > VaRq(Xi)}, i = 1, ..., n, j = 1, ..., ni,

and let

ψ = I{S∈A}
P{S ∈ A}

, ψi = I{Xi∈Ai}
P{Xi ∈ Ai}

, ψij =
I{Xij∈Aij}

P{Xij ∈ Aij}
, i = 1, ..., n, j = 1, ..., ni,

and

w = α2

α2 + α3

n∑
i=1

E[ψiXi], wi = E[ψiXi], wij = E[ψijXij], i = 1, ..., n, j = 1, ..., ni,

thus E[ψ] = 1, E[ψi] = 1, E[ψij] = 1, E[ψS] = VaRq(S), E[ψiXi] = E[Xi|Xi > VaRq(Xi)] =
CTEq(Xi), E[ψijXij] = E[Xij|Xi > VaRq(Xi)], i = 1, ..., n, j = 1, ..., ni, and

E[ψiXi] = E[Xi|Xi > VaRq(Xi)] =
ni∑
j=1

E[Xij|Xi > VaRq(Xi)] = E[ψi]
ni∑
j=1

E[ψijXij]
E[ψij]

, i = 1, ..., n,

which mean that the conditions in (3.3.22) hold and βi(α2, α3) = α2
α2+α3

. Hence, all the con-
ditions in (3.3.20) and (3.3.22) hold. Thus, the proportional allocation principles (3.3.18)
and (3.3.19) and the optimal required total capital (3.3.21) are reduced to

K∗i = CTEq(Xi)∑n
i=1 CTEq(Xi)

×K∗, i = 1, ..., n,

k∗ij = E[Xij|Xi > VaRq(Xi)]
CTEq(Xi)

×K∗i , i = 1, ..., n, j = 1, ..., ni,

K∗ = α1

α1 + α2
VaRq(S) + α2

α1 + α2

n∑
i=1

E[Xi|Xi > VaRq(Xi)]

= α1

α1 + α2
VaRq(S) + α2

α1 + α2

n∑
i=1

CTEq(Xi).

respectively. Note that the above example, we assume Xi = ∑ni
j=1Xij, i = 1, ..., n, j =

1, ..., ni. �

Example 3.3.1. Similarly to the assumptions used in Zaks and Tsanakas (2014), in The-
orem 3.3.2, if E[ψ] = 1, E[ψi] = 1, E[ψij] = 1, ∑n

i=1wi = w, ∑n
i=1wij = wi, i = 1, ..., n,

j = 1, ..., ni, then, by (3.3.5), (3.3.4), and (3.3.6), we have

β̃i(α2, α3) = 1− βi(α2, α3) = α3

α3 + α2
,

δ̃(α1, α2, α3) = 1− δ(α1, α2, α3) = α2 + α3,

θi(α1, α2, α3) = α1wi
w

.
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Thus, the optimal solution in Theorem 3.3.2 are reduced to

K∗ = α1E[ψS] + α2

n∑
i=1

E[ψiXi] + α3

n∑
i=1

ni∑
j=1

E[ψijXij],

K∗i = α2

α2 + α3
E[ψiXi] + α3

α3 + α2

ni∑
j=1

E[ψijXij]

+ α1wi
w

(
K∗ − α2

α2 + α3

n∑
i=1

E[ψiXi]−
α3

α2 + α3

n∑
i=1

ni∑
j=1

E[ψijXij]
)
, i = 1, ..., n,

k∗ij = E[ψijXij] + wij
wi

(
K∗i −

ni∑
j=1

E[ψijXij]
)
, i = 1, ..., n, j = 1, ..., ni.

We point out that the optimal allocation expressions for K∗i and kij are the main results
of section 3 in Zaks and Tsanakas (2014) when the required total capital is calculated as
K∗ = α1E[ψS] + α2

∑n
i=1 E[ψiXi] + α3

∑n
i=1

∑ni
j=1 E[ψijXij]. �

Note that α1, α2, α3 represent the decision maker’s attitudes towards the allocation
deviations of at the levels of the company, the main business lines, and the sub-business
lines, respectively. In the rest of this section, we consider the following three limiting cases
of Theorem 3.3.2.

Limiting case 1: α3 → 0, α3
α2
→ 0. In this case, we have α1 + α2 → 1 and α2 > α3,

which mean that the main concern of the decision maker is the allocation deviations among
the main business lines and the derivation between the aggregate risk and the required total
capital. The allocation deviations among the sub-business lines are less important.

Limiting case 2: α1 → 1 and α3
α2
→ 0. In this case, we have α2+α3 → 0 and α2 > α3,

which mean that the main concern of the decision maker is the derivation between the
aggregate risk and the required total capital. The allocation deviations among the main
business lines the sub-business lines are less important.

Limiting case 3: α1 → 0 and α1
α2
→ 0. In this case, we have α2+α3 → 1 and α2 > α1,

which mean that the main concern of the decision maker is the allocation deviations among
the main business lines the sub-business lines. The derivation between the aggregate risk
and the required total capital are less important.

Proposition 3.3.6. In Theorem 3.3.2, if α3 → 0, α3
α2
→ 0, then β̃i(α2, α3)→ 0, βi(α2, α3)→
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1,

δ̃(α1, α2, α3) →
α2

w
E(ψ)

α2
w

E(ψ) + α1
∑n
i=1

wi
E(ψi)

,

δ(α1, α2, α3) →
α1
∑n
i=1

wi
E(ψi)

α2
w

E(ψ) + α1
∑n
i=1

wi
E(ψi)

,

θi(α1, α2, α3) →
α1wi
E[ψi]

α2
w

E(ψ) + α1
∑n
i=1

wi
E(ψi)

,

and the optimal required total capital and the optimal allocations have the following limits:

K∗ →
α1
∑n
i=1

wi
E(ψi)

α2
w

E(ψ) + α1
∑n
i=1

wi
E(ψi)

× E[ψS]
E[ψ] +

α2
w

E(ψ)

α2
w

E(ψ) + α1
∑n
i=1

wi
E(ψi)

×
n∑
i=1

E[ψiXi]
E[ψi]

,

K∗i → K∗i (α1, α2, 0) ∆= E[ψiXi]
E[ψi]

+
α1wi
E[ψi]

α2
w

E(ψ) + α1
∑n
i=1

wi
E(ψi)

×
(E[ψS]

E[ψ] −
n∑
i=1

E[ψiXi]
E[ψi]

)
, i = 1, ..., n,

k∗ij →
E[ψijXij]
E[ψij]

+
wij

E[ψij ]∑ni
j=1

wij
E[ψij ]

(
K∗i (α1, α2, 0)−

ni∑
j=1

E[ψijXij]
E[ψij]

)
, i = 1, ..., n, j = 1, ..., ni.

Note that in the proof of Theorem 3.3.2 and its proof, it is assumed that 0 < αi < 1,
i = 1, 2, 3. If fact, the condition of αi > 0, i = 1, 2, 3 is used in the proof of Theorem 3.3.2.
Hence, we could not obtain Theorem 3.2.2 by simply setting α3 = 0 in Theorem 3.3.2 and
its proof. Although the proof of Theorem 3.2.2 is similar to that for Theorem 3.3.2 and the
optimal required total capital K∗ and the optimal allocation (K∗1 , ..., K∗n) are equal to the
limiting forms of K∗ and K∗i in Theorem 3.3.2, we keep the proof of Theorem 3.2.2 since
the proof of Theorem 3.2.2 is helpful for one to understand the proof of Theorem 3.3.2.

Proposition 3.3.7. In Theorem 3.3.2, if α1 → 1 and α3
α2
→ 0, then

βi(α2, α3)→ 1, β̃i(α2, α3)→ 0, δ̃(α1, α2, α3)→ 0, δ(α1, α2, α3)→ 1, θi(α1, α2, α3)→
wi

E(ψi)∑n
i=1

wi
E(ψi)

,

and the optimal required total capital and the optimal allocations have the following limits:

K∗ → E[ψS]
E[ψ] ,

K∗i → K∗i (1, 0, 0) ∆= E[ψiXi]
E[ψi] +

wi
E(ψi)∑n

i=1
wi

E(ψi)

(
E[ψS]
E[ψ] −

∑n
i=1

E[ψiXi]
E[ψi]

)
k∗ij → E[ψijXij ]

E[ψij ] +
wij

E[ψij ]∑ni
j=1

wij
E[ψij ]

(
K∗i (1, 0, 0)−∑ni

j=1
E[ψijXij ]
E[ψij ]

)
, i = 1, ..., n, j = 1, ..., ni,

In this proposition, as α1 → 1, the optimal required total capital at the enterprise
level is completely decided by the weighted aggregate loss of the enterprise.
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Proposition 3.3.8. In Theorem 3.3.2, if α1 → 0 and α1
α2
→ 0, then δ̃(α1, α2, α3) → 1,

δ(α1, α2, α3)→ 0, θi(α1, α2, α3)→ 0, and the optimal required total capital and the optimal
allocation are reduced to

K∗ →
n∑
i=1

(
βi(α2, α3)E[ψiXi]

E[ψi]
+ β̃i(α2, α3)

ni∑
j=1

E[ψijXij]
E[ψij]

)
,

K∗i → βi(α2, α3)E[ψiXi]
E[ψi]

+ β̃i(α2, α3)
ni∑
j=1

E[ψijXij]
E[ψij]

∆= K∗i (0, α2, α3), i = 1, ..., n,

k∗ij →
E[ψijXij]
E[ψij]

+
wij

E[ψij ]∑ni
j=1

wij
E[ψij ]

(
K∗i (0, α2, α3)−

ni∑
j=1

E[ψijXij]
E[ψij]

)
, i = 1, ..., n, j = 1, ..., ni.

3.4 Optimal solutions based on weighted absolute er-
rors for a company with main business lines and
sub-business lines

In this section, we discuss optimal required total capital and optimal allocation scheme
for a company with main business lines and sub-business lines and consider problem (3.1.4)
when D1(x) = |x| and D2i = |x|, i = 1, ..., n, namely the allocation deviations are measured
by (weighted) absolute errors. In this case, problem (3.1.4) is reduced to the following
problem:

min(K,k1,...,kn)∈Rd
{
α1E

[
ψ
∣∣∣S −K∣∣∣]+ α2

∑n
i=1 E

[
ψi
∣∣∣Xi −Ki

∣∣∣]
+α3

∑n
i=1

∑ni
j=1 E

[
ψij
∣∣∣Xij − kij

∣∣∣]}
s.t. ∑n

i=1Ki = K,
∑ni
j=1 kij = Ki, i = 1, ..., n.

(3.4.1)

To guarantee that problem (3.4.1) has an optimal solution (K∗,k∗1, ...,k∗n), we assume that
the following conditions hold.

Assumption 3.4.1. For problem (3.4.1), we assume that random variables ψ, ψi, ψij,
i = 1, ..., n, j = 1, ..., ni, satisfy

ψ ≥ 0, ψi ≥ 0, ψij ≥ 0, E[ψ] > 0, E[ψi] > 0, E[ψij] > 0, i = 1, ..., n, j = 1, ..., ni,

and that expectations E(ψ|S|), E(ψi|Xi|), E(ψij|Xij|), i = 1, ..., n, j = 1, ..., ni, exist. �

Denote the objective function in problem (3.4.1) by J(K,k1, ...,kn), namely,

J(K,k1, ...,kn) = α1E
[
ψ
∣∣∣S −K∣∣∣]+ α2

n∑
i=1

E
[
ψi
∣∣∣Xi −Ki

∣∣∣]+ α3

n∑
i=1

ni∑
j=1

E
[
ψij
∣∣∣Xij − kij

∣∣∣].(3.4.2)
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To solve problem (3.4.1), we follow the similar approach used in the proof of Theorem
4.2 of Cai and Wang (2020). We first recall the inverses of distribution functions. For the
distribution function F (x) = Pr{X ≤ x} of a random variable X, the left-continuous and
right-continuous inverse functions of F are respectively defined as F−1(q) = inf{x ∈ R :
F (x) ≥ q}, F−1+(q) = sup{x ∈ R : F (x) ≤ q}, and the p-mixed inverse function F−1(p) of
the distribution function F is defined as

F−1(p)(q) = pF−1(q) + (1− p)F−1+(q),

where 0 ≤ p ≤ 1 and 0 < q < 1. By the definition of F−1(p), we see that if 0 < q < 1, then

[F−1(q), F−1+(q)] = {F−1(p)(q), p ∈ [0, 1]}. (3.4.3)

For problem (3.4.1), we define functions F, Fi, Fij, G,Gi, Gij on R as F (x) = E[ψI{S≤x}]
E[ψ] , Fi(x) = E[ψiI{Xi≤x}]

E[ψi] , Fij(x) = E[ψijI{Xij≤x}]
E[ψij ] ,

G(x) = E[ψI{S<x}]
E[ψ] , Gi(x) = E[ψiI{Xi<x}]

E[ψi] , Gij(x) = E[ψijI{Xij<x}]
E[ψij ] .

(3.4.4)

It is easy to see that under Assumption 3.4.1, F , Fi and Fij are distribution functions
and that G(x) = limy→x− F (y) = F (x−), Gi(x) = limy→x− Fi(y) = Fi(x−), Gij(x) =
limy→x− Fij(y) = Fij(x−), which mean that G, Gi, and Gij are left-continuous distribution
functions. In addition, we have that 0 ≤ G(x) ≤ F (x) ≤ 1, 0 ≤ Gi(x) ≤ Fi(x) ≤ 1,
and 0 ≤ Gij(x) ≤ Fij(x) ≤ 1. Furthermore, for distributions F, Fi, Fij, i = 1, ..., n, j =
1, ..., ni, denote their p-mixed inverses by

F−1(p)(q) = pF−1(q) + (1− p)F−1+(q), (3.4.5)

F
−1(p)
i (q) = pF−1

i (q) + (1− p)F−1+
i (q), (3.4.6)

F
−1(p)
ij (q) = pF−1

ij (q) + (1− p)F−1+
ij (q). (3.4.7)

Moreover, for left-continuous distribution functions G, Gi and Gij, denote their right-
continuous inverses by G−1+(q) = sup{x ∈ R : G(x) ≤ q}, G−1+

i (q) = sup{x ∈ R :
Gi(x) ≤ q}, and G−1+

ij (q) = sup{x ∈ R : Gij(x) ≤ q}, 0 < q < 1, i = 1, ..., n, j = 1, ..., ni.
Thus, by Lemma 4.1 of Cai and Wang (2020), we have that for any 0 < q < 1,

G−1+(q) = F−1+(q), G−1+
i (q) = F−1+

i (q), G−1+
ij (q) = F−1+

ij (q), (3.4.8)

and that for any x ∈ R and any 0 < q < 1,

G(x) ≤ q ≤ F (x) ⇐⇒ F−1(q) ≤ x ≤ F−1+(q), (3.4.9)

Gi(x) ≤ q ≤ Fi(x) ⇐⇒ F−1
i (q) ≤ x ≤ F−1+

i (q), (3.4.10)

Gij(x) ≤ q ≤ Fij(q) ⇐⇒ F−1
ij (q) ≤ x ≤ F−1+

ij (q). (3.4.11)
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Lemma 3.4.1. Let g(c) = E
(
ξ|X−c|

)
, where ξ ≥ 0 and X are random variables. Assume

g(c) < +∞ for any c ∈ R. Then,

g′−(c) = −E
[
ξI{X≥c}

]
+ E

[
ξI{X<c}

]
, (3.4.12)

and

g′+(c) = −E
[
ξI{X>c}] + E

[
ξI{X≤c}

]
. (3.4.13)

Proof. The result follows from Lemma A.2 of Mao and Cai (2018) by the relation |x| =
(x)+ + (x)−.

Theorem 3.4.2. Under Assumption 3.4.1, solutions to problem (3.4.1) do exist and a
solution (K,k1, ...,kn) to problem (3.4.1) has the following expression:

K = F−1(p)
(E[ψ] + λ

α1

2E[ψ]

)
,

Ki = F
−1(pi)
i

(E[ψi]− λ+λi
α2

2E[ψi]

)
, i = 1, . . . , n,

kij = F
−1(pij)
ij

(E[ψij] + λi
α3

2E[ψij]

)
, i = 1, ..., n, j = 1, . . . , ni,

(3.4.14)

for any p, pi, pij ∈ [0, 1], and any λ, λi ∈ R, i = 1, ..., n, j = 1, ..., ni, providing that the
parameters p, λ, pi, λi, pij, i = 1, ..., n, j = 1, ..., ni, satisfy the following equations and
inequalities:

n∑
i=1

F
−1(pi)
i

(E[ψi]− λ+λi
α2

2E[ψi]

)
= F−1(p)

(E[ψ] + λ
α1

2E[ψ]

)
,

ni∑
j=1

F
−1(pij)
ij

(E[ψij] + λi
α3

2E[ψij]

)
= F

−1(pi)
i

(E[ψi]− λ+λi
α2

2E[ψi]

)
, i = 1, . . . , n,

(3.4.15)

and 

− E[ψ] < λ

α1
< E[ψ],

M < −λ+ λi
α2

< M, i = 1, . . . , n,

m <
λi
α3

< m, i = 1, ..., n,

(3.4.16)

where 

M = min{E[ψi], i = 1, ..., n},

M = max{−E[ψi], i = 1, ..., n},

m = min{E[ψij], i = 1, ..., n, j = 1, ..., ni},

m = max{−E[ψij], i = 1, ..., n, j = 1, ..., ni}.

(3.4.17)
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Proof. Denote the Lagrangian of problem (3.4.1) by

L(K,k1, ...,kn, λ, λ1, ..., λn) = J(K,k1, ...,kn) + λ
( n∑
i=1

Ki −K
)

+
n∑
i=1

λi

(
Ki −

ni∑
j=1

kij

)
.

Under Assumption 3.4.1, it ie easy to see that E
[
ψ
∣∣∣S−K∣∣∣], E[ψi∣∣∣Xi−Ki

∣∣∣], and E
[
ψij
∣∣∣Xij−

kij
∣∣∣] are convex and coercive functions of K, Ki, kij, respectively. Hence, J(K,k1, ...,kn)

defined in (3.4.2) is a convex and coercive function of (K,k1, ...,kn) on Rd. Thus,
L(K,k1, ...,kn, λ, λ1, ..., λn) is a convex and coercive function of (K,k1, ...,kn) on Rd.
Hence, optimal solutions to the constrained convex optimization problem (3.4.1) do ex-
ist and (K,k1, ...,kn) is an optimal solution to problem (3.4.1) if it satisfies the following
Karush-Kuhn-Tucker (KKT) conditions:

0 ∈
[
∂−L

∂K
,
∂+L

∂K

]
,

0 ∈
[
∂−L

∂Ki

,
∂+L

∂Ki

]
, i = 1, . . . , n,

0 ∈
[
∂−L

∂kij
,
∂+L

∂kij

]
, i = 1, ..., n, j = 1, ..., ni,

n∑
i=1

Ki = K,
ni∑
j=1

kij = Ki, i = 1, ..., n.

⇐⇒



∂−L

∂K
≤ 0, ∂+L

∂K
≥ 0,

∂−L

∂Ki

≤ 0, ∂+L

∂Ki

≥ 0, i = 1, . . . , n,

∂−L

∂kij
≤ 0, ∂+L

∂kij
≥ 0, i = 1, ..., n, j = 1, ..., ni,

n∑
i=1

Ki = K,
ni∑
j=1

kij = Ki, i = 1, ..., n.

By applying Lemma 3.4.1, we see that the above KKT conditions are reduced to the
following system of inequalities and equations:

α1 E
[
ψ I{S≤K}

]
≥ α1 E

[
ψ I{S>K}

]
+ λ,

α2 E
[
ψi I{Xi≤Ki}

]
≥ α2 E

[
ψi I{Xi>Ki}

]
− λ− λi, i = 1, ..., n,

α3 E
[
ψij I{Xij≤kij}

]
≥ α3 E

[
ψij I{Xij>kij}

]
+ λi, i = 1, ..., n, j = 1, ..., ni,

α1 E
[
ψ I{S≥K}

]
≥ α1 E

[
ψ I{S<K}

]
− λ,

α2 E
[
ψi I{Xi≥Ki}

]
≥ α2 E

[
ψi I{Xi<Ki}

]
+ λ+ λi, i = 1, . . . , n,

α3 E
[
ψij I{Xij≥kij}

]
≥ α3 E

[
ψij I{Xij<kij}

]
− λi, i = 1, . . . , n, j = 1, ..., ni,

n∑
i=1

Ki = K,
ni∑
j=1

kij = Ki, i = 1, ..., n.

(3.4.18)

Note that I{x>a} = 1− I{x≤a} and I{x≥a} = 1− I{x<a} for any x, a ∈ R. The above system
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(3.4.18) is equivalent to

2α1 E
[
ψ I{S≤K}

]
≥ α1 E

[
ψ
]

+ λ,

2α2 E
[
ψi I{Xi≤Ki}

]
≥ α2E[ψi]− λ− λi, i = 1, ..., n,

2α3 E
[
ψij I{Xij≤kij}

]
≥ α3 E

[
ψij
]

+ λi, i = 1, ..., n, j = 1, ..., ni,

α1 E
[
ψ
]
≥ 2α1 E

[
ψ I{S<K}

]
− λ,

α2 E
[
ψi
]
≥ 2α2 E

[
ψi I{Xi<Ki}

]
+ λ+ λi, i = 1, . . . , n,

α3 E
[
ψij
]
≥ 2α3 E

[
ψij I{Xij<kij}

]
− λi, i = 1, . . . , n, j = 1, ..., ni,

n∑
i=1

Ki = K,
ni∑
j=1

kij = Ki, i = 1, ..., n.

(3.4.19)

By the definitions of functions F , G, Fi, Gi, Fij, and Gij, we see that system (3.4.19) is
equivalent to

G(K) ≤
E[ψ] + λ

α1

2E[ψ] ≤ F (K),

Gi(Ki) ≤
E[ψi]− λ+λi

α2

2E[ψi]
≤ Fi(Ki), i = 1, . . . , n,

Gij(kij) ≤
E[ψij] + λi

α3

2E[ψij]
≤ Fij(kij), i = 1, ..., n, j = 1, . . . , ni,

n∑
i=1

Ki = K,
ni∑
j=1

kij = Ki, i = 1, ..., n.

(3.4.20)

Hence, if 

0 <
E[ψ] + λ

α1

2E[ψ] < 1,

0 <
E[ψi]− λ+λi

α2

2E[ψi]
< 1, i = 1, . . . , n,

0 <
E[ψij] + λi

α3

2E[ψij]
< 1, i = 1, ..., n, j = 1, ..., ni,

(3.4.21)

by (3.4.9), (3.4.10) and (3.4.11), we know that system (3.4.20) is equivalent to

F−1
(E[ψ] + λ

α1

2E[ψ]

)
≤ K ≤ F−1+

(E[ψ] + λ
α1

2E[ψ]

)
,

F−1
i

(E[ψi]− λ+λi
α2

2E[ψi]

)
≤ Ki ≤ F−1+

i

(E[ψi]− λ+λi
α2

2E[ψi]

)
, i = 1, . . . , n,

F−1
ij

(E[ψij] + λi
α3

2E[ψij]

)
≤ kij ≤ F−1+

ij

(E[ψi] + λi
α3

2E[ψij]

)
, i = 1, . . . , n, j = 1, ..., ni,

n∑
i=1

Ki = K,
ni∑
j=1

kij = Ki, i = 1, ..., n.

(3.4.22)
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Note that conditions in (3.4.21) are equivalent to those in (3.4.16). Hence, by (3.4.22) and
(3.4.3), we see that any (K,k1, ...,kn) with expression (3.4.14) satisfies the KKT conditions
in (3.4.18), providing that the parameters p, λ, pi, λi, pij, i = 1, ..., n, j = 1, ..., ni, satisfy
the equations in (3.4.15) and the inequalities in (3.4.16). It completes the proof of Theorem
3.4.2.

From Theorem 3.4.2, we know that optimal solutions to problems (3.4.1) are not
unique. However, under some additional conditions, problems (3.4.1) has the following
unique solution:

Theorem 3.4.3. Under the assumptions and notations of Theorem 3.4.2, if F−1(q),
F−1
i (q) and F−1

ij (q) are continuous and strictly increasing in q ∈ (0, 1), i = 1, ..., n,
j = 1, ..., ni, G1(b+) > G2(b+) and G1(b−) < G2(b−), where

G1(x) =
n∑
i=1

F−1
i

(E[ψi]− qi(x)
α2

2E[ψi]

)
,

G2(x) = F−1
(E[ψ] + x

α1

2E[ψ]

)
,

qi(x) = x+ f−1
i (−x),

fi(x) = x+ α2
(
2E[ψi]Fi

(
gi
( x
α3

))
− E[ψi]

)
,

gi(x) =
ni∑
j=1

F−1
ij

(E[ψij] + x

2E[ψij]

)
,

(3.4.23)

and b = max{−α1E[ψ], −fi(α3m), q−1
i (−α2M), i = 1, ..., n},

b = min{α1E[ψ], −fi(α3m), q−1
i (−α2M), i = 1, ..., n},

(3.4.24)

then, problem (3.4.1) has the following unique solution:

K∗ = F−1
(E[ψ] + λ∗

α1

2E[ψ]

)
,

K∗i = F−1
i

(E[ξi]− λ∗+f−1
i (−λ∗)
α2

2E[ψi]

)
, i = 1, . . . , n,

k∗ij = F−1
ij

(E[ψij] + f−1
i (−λ∗)
α3

2E[ψij]

)
, i = 1, ..., n, j = 1, . . . , ni,

(3.4.25)

where λ∗ ∈ (b, b) is the unique solution to equation

n∑
i=1

F−1
i

(E[ψi]− λ∗+f−1
i (−λ∗)
α2

2E[ψi]

)
= F−1

(E[ψ] + λ∗

α1

2E[ψ]

)
. (3.4.26)
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Proof. If F−1(q), F−1
i (q) and F−1

ij (q) are continuous and strictly increasing on (0, 1), then
we know that F−1(p)(q) = F−1(q), F−1(p)

i (q) = F−1
i (q) and F

−1(p)
ij (q) = F−1

ij (q) for any p ∈
[0, 1] and q ∈ (0, 1), and that F (x), Fi(x) and Fij(x) are continuous on R. Moreover, gi(x)
defined in (3.4.23) and F−1

i

(
E[ψi]+x
2E[ψi]

)
are continuous and strictly increasing respectively on

x ∈ (m, m) and x ∈ (M, M). Thus, by (3.4.14), (3.4.15), and (3.4.16), we see that an
optimal solution (K,k1, ...,kn) for problem (3.4.1) has the following expression:

K = F−1
(E[ψ] + λ

α1

2E[ψ]

)
,

Ki = F−1
i

(E[ψi]− λ+λi
α2

2E[ψi]

)
, i = 1, . . . , n,

kij = F−1
ij

(E[ψij] + λi
α3

2E[ψij]

)
, i = 1, ..., n, j = 1, . . . , ni,

(3.4.27)

where the parameters λ, λi, i = 1, ..., n, are solutions to the following system of equations
and inequalities:

n∑
i=1

F−1
i

(E[ψi]− λ+λi
α2

2E[ψi]

)
= F−1

(E[ψ] + λ
α1

2E[ψ]

)
,

ni∑
j=1

F−1
ij

(E[ψij] + λi
α3

2E[ψij]

)
= F−1

i

(E[ψi]− λ+λi
α2

2E[ψi]

)
, i = 1, . . . , n.

− E[ψ] < λ

α1
< E[ψ],

M < −λ+ λi
α2

< M, i = 1, . . . , n,

m <
λi
α3

< m, i = 1, ..., n.

(3.4.28)

By the definition of gi in (3.4.23), the second line of (3.4.28) is rewritten as

gi
( λi
α3

)
= F−1

i

(E[ψi]− λ+λi
α2

2E[ψi]

)
, i = 1, ..., n. (3.4.29)

Note that distribution function Fi(x) is increasing and continuous in x ∈ R, hence Fi(F−1
i (y)) =

y for any 0 < y < 1. Thus, it follows from (3.4.29) that

Fi
(
gi
( λi
α3

))
=

E[ψi]− λ+λi
α2

2E[ψi]
, i = 1, ..., n. (3.4.30)

By (3.4.30) and the definition of fi in (3.4.23), we obtain

−λ = λi + α2
(
2E[ψi]Fi

(
gi
( λi
α3

))
− E[ψi]

)
= fi(λi), i = 1, ..., n. (3.4.31)
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Note that Fi
(
gi
(
x
α3

))
is continuous and increasing on x ∈ (α3m, α3m). Hence, fi(x) is

continuous and strictly increasing on (α3m, α3m). Thus, f−1
i (x) is continuous and strictly

increasing on (fi(α3m), fi(α3m)). Therefore, (3.4.31) implies

λi = f−1
i (−λ), i = 1, ..., n. (3.4.32)

Hence, the condition on the fifth line of (3.4.28) is equivalent to

m <
f−1
i (−λ)
α3

< m, i = 1, ..., n,

which is further equivalent to −fi(α3m) < λ < −fi(α3m), i = 1, ..., n. Hence, λ satisfies

c < λ < c, (3.4.33)

where c = max{−fi(α3m), i = 1, ..., n} and c = min{−fi(α3m), i = 1, ..., n}.

It is well-known that any increasing function has non-negative derivatives almost
everywhere on its domain. Hence, by the definition of fi in (3.4.23) and noticing that Fi
and gi are increasing, we have

f ′i(x) = 1 + 2α2E[ψi]F ′i
(
gi
( x
α3

))
g′i
( x
α3

) 1
α3

> 1.

Thus, by the definition of qi in (3.4.23) and the derivative rule for an inverse function, we
have

q′i(x) = 1 + 1
f ′i(f−1

i (−x))× (−1)
> 0.

Therefore, qi(x) = x+f−1
i (−x) is continuous and strictly increasing on (−fi(α3m), −fi(α3m)).

Now, the condition on the fourth line of (3.4.28) is reduced to

M < −qi(λ)
α2

< M, i = 1, ..., n, (3.4.34)

which is equivalent to −α2M < qi(λ) < −α2M , i = 1, ..., n. Thus, it follows from (3.4.34)
that

q−1
i (−α2M) < λ < q−1

i (−α2M), i = 1, ..., n,

which imply

d < λ < d, (3.4.35)

where d = max{q−1
i (−α2M), i = 1, ..., n} and d = min{q−1

i (−α2M), i = 1, ..., n}.
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In addition, the condition on the first line of (3.4.28) is reduced to

G1(λ) =
n∑
i=1

F−1
i

(E[ψi]− qi(λ)
α2

2E[ψi]

)
= F−1

(E[ψ] + λ
α1

2E[ψ]

)
= G2(λ). (3.4.36)

Note that the intersection of the domains of qi(λ), i = 1, ..., n, is ⋂ni=1(−fi(αm), −fi(αm)) =
(c, c). In addition, the intersection of the domains of F−1

i

(
E[ψi]+x
2E[ψi]

)
, i = 1, ..., n, is (M, M).

Hence, − qi(λ)
α2

, i = 1, ..., n, in function G1(λ) should satisfy

M < −qi(λ)
α2

< M, i = 1, ..., n,

which are equivalent to (3.4.34) or (3.4.35). Furthermore, λ
α1

in G2(λ) should satisfy
−E[ψ] < λ

α1
< E[ψ], which is equivalent to

−α1E[ψ] < λ < α1E[ψ]. (3.4.37)

Let b = max{−α1E[ψ], c, d} and b = min{α1E[ψ], c, d}, which are respectively equiv-
alent to the definitions of b and b in (3.4.24). Note that G1(λ) is continuous and strictly
decreasing while G2(λ) is continuous and strictly increasing in λ ∈ (b, b). Thus, if
G1(b+) > G2(b+) and G1(b−) < G2(b−), then there exists a unique λ∗ ∈ (b, b) satis-
fying G1(λ∗) = G2(λ∗), which means that equation (3.4.26) has the unique solution λ∗.
Thus, by (3.4.32), we have λ∗i = f−1

i (−λ∗), hence problem (3.4.1) has the unique solution
(3.4.25).

If α3 = 0, problem (3.1.4) is reduced to the following problem: min(K,K1,...,Kn)∈Rn+1

{
(1− α)E

[
ψ
∣∣∣S −K∣∣∣]+ α

∑n
i=1 E

[
ψi
∣∣∣Xi −Ki

∣∣∣]}
s.t. ∑n

i=1Ki = K,
(3.4.38)

where 0 < α < 1. Solutions to problem (3.4.38) will give the optimal required total capital
and optimal allocation scheme for a company with main business lines.

Assumption 3.4.2. For problem (3.4.38), we assume that random variables ψ, ψi, i =
1, ..., n, satisfy

ψ ≥ 0, ψi ≥ 0, E[ψ] > 0, E[ψi] > 0, i = 1, ..., n,

and that expectations E(ψ|S|), E(ψi|Xi|), i = 1, ..., n, exist. �

Following the same arguments used in the proofs for Theorem 3.4.2 and Theorem
3.4.3, we easily obtain the general solution and the unique solution to problem (3.4.38) in
the following two theorems.
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Theorem 3.4.4. Under Assumption 3.4.2 and the notations of Theorem 3.4.2, solutions
to problem (3.4.38) do exist and a solution (K,K1, ..., Kn) to problem (3.4.38) has the
following expression: 

K = F−1(p)
(E[ψ] + λ

1−α
2E[ψ]

)
,

Ki = F
−1(pi)
i

(E[ψi]− λ
α

2E[ψi]

)
, i = 1, . . . , n,

(3.4.39)

for any p, pi ∈ [0, 1], i = 1, ..., n, and any λ ∈ R, providing that the parameters p, λ, pi,
i = 1, ..., n, satisfy the following system of equations and inequalities:

n∑
i=1

F
−1(pi)
i

(E[ψi]− λ
α

2E[ψi]

)
= F−1(p)

(E[ψ] + λ
1−α

2E[ψ]

)
,

− E[ψ] < λ

1− α < E[ψ],

M < −λ
α
< M, i = 1, . . . , n.

(3.4.40)

Theorem 3.4.5. Under the assumptions and notations of Theorem 3.4.4, if F−1(q) and
F−1
i (q) are continuous and strictly increasing in q ∈ (0, 1), i = 1, ..., n, H1(λ+) > H2(λ+)

and H1(λ−) < H2(λ−), where
H1(x) =

n∑
i=1

F−1
i

(E[ψi]− x
α

2E[ψi]

)
,

H2(x) = F−1
(E[ψ] + x

1−α
2E[ψ]

)
,

(3.4.41)

and λ = max{−(1− α)E[ψ], −αM},

λ = min{(1− α)E[ψ], −αM},
(3.4.42)

then, problem (3.4.38) has the following unique solution:
K∗ = F−1

(E[ψ] + λ∗

1−α
2E[ψ]

)
,

K∗i = F−1
i

(E[ψi]− λ∗

α

2E[ψi]

)
, i = 1, . . . , n,

(3.4.43)

where λ∗(= λ∗(α)) ∈ (λ, λ) is the unique solution to equation

n∑
i=1

F−1
i

(E[ψi]− λ∗

α

2E[ψi]

)
= F−1

(E[ψ] + λ∗

1−α
2E[ψ]

)
. (3.4.44)
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3.5 Numerical illustrations

Now, we would like to provide some numerical examples based on model (3.2.1) or
Theorem 3.2.2 and model (3.4.38) or Theorem 3.4.5. We will illustrate the result with
multivariate normal distribution.

Let X = (X1, ..., Xd) be a d-dimensional normal random vector with a d-dimensional
normal distribution Nd(µ,Σ), where µ = E(X) = (µ1, ..., µd) is the mean vector, µi =
E(Xi), i = 1, ..., d, Σ = (Cov(Xi, Xj))i,j=1,...,d is a positive-definite covariance matrix of X,
Cov(Xi, Xj) = ρij σi σj, where σi =

√
V ar(Xi), σj =

√
V ar(Xj), and ρij is the correlation

coefficient between Xi and Xj satisfying −1 < ρij = ρji < 1 for 1 ≤ i < j ≤ d. The joint
density function of (X1, ..., Xd) is

f(x) = f(x1, ..., xd) = 1√
(2π)d det(Σ)

e−
1
2 (x−µ)Σ−1(x−µ)′ , x ∈ Rd. (3.5.1)

Thus, Xi and S(X) have normal distributions N(µi, σ2
i ) and N(µS, σ2

S), respectively, where
µS = ∑d

i=1 µi, σS =
√
V ar(S(X)), and V ar(S(X)) = ∑d

i=1 σ
2
i + 2∑1≤i<j≤d ρij σi σj. Let

φ and Φ be the density and distribution functions of the standard normal distribution
N(0, 1), respectively. If required capital for risks is determined by VaR at confidence level
α, then

VaRα(Xi) = µi + σi Φ−1(α), i = 1, ..., d, (3.5.2)

VaRα(S(X)) = µS + σS Φ−1(α). (3.5.3)

If required capital for risks is determined by CVaR at confidence level α, then

CTEα(Xi) = E (Xi |Xi > VaRα(Xi)) = µi + σi ×
φ
(

VaRα(Xi)−µi
σi

)
1− Φ

(
VaRα(Xi)−µi

σi

) , i = 1, ..., d,(3.5.4)

and

CTEα(S(X)) = E (S(X) |S(X) > VaRα(S(X))) = µS + σS ×
φ
(

VaRα(S(X))−µS
σS

)
1− Φ

(
VaRα(S(X))−µS

σS

) .(3.5.5)

See Johnson et al. (1995) for these results about normal distributions.

Here we consider d = 3. We assume that the marginal normal distributions of X =
(X1, X2, X3) have the following expectations and variances: E(X1) = 130, V ar(X1) = 900,
E(X2) = 150, V ar(X2) = 2500, E(X3) = 170, and V ar(X3) = 400. Further more, by affine
transformation of multivariate normal distribution, the joint distribution of (Xi, S) where
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i = 1, 2, 3 isN2(Aiµ,AiΣAT
i ) where Ai is a constant 2×d matrix such that (Xi, S) = AiX.

In our case, we set d = 1 and we can derivate that

A1 =
1 0 0

1 1 1

 , A2 =
0 1 0

1 1 1

 , A3 =
0 0 1

1 1 1

 . (3.5.6)

We use the above normal risk vector (X1, X2, X3) and the allocation principles of
(3.2.22), (3.2.24), and (3.2.26) to illustrate the applications of model (3.2.1) and Theo-
rem (3.2.2) and show the influences of dependence on the optimal allocations. With the
definition of ξ, ξi, v and vi in (3.2.19), the model in (3.2.1) is reduced to min(K,K1,...,Kn)∈Rn+1

{
(1− α)

E
[(
S−K

)2
|A
]

∑n

i=1 E(Xi|Ai)
+ α

∑n
i=1

E
[(
Xi−Ki

)2
|Ai
]

E(Xi|Ai)

}
s.t. ∑n

i=1Ki = K.

(3.5.7)

with different definition of event A and Ai, i = 1, 2, 3.

Then, we set q = 0.99 in (3.2.22), (3.2.24), (3.2.26), and (3.2.28), thus, the CTE
principle (3.2.22) is reduced to

K∗i = E(Xi |S > VaR0.99(S))
CTE0.99(S) ×K∗ (3.5.8)

with K∗ = (1 − α)VaR0.99(S) + αCTE0.99(S), and by Proposition 3.7 of Cai and Wang
(2020), we know that there exist sets A ⊂ R, satisfying E(S|S ∈ A) = VaR0.99(S) and
Ai = {S > VaR0.99(S)}, i = 1, ..., n ; the haircut principle (3.2.24) is reduced to

K∗i = VaR0.99(Xi)∑n
i=1 VaR0.99(Xi)

×K∗ (3.5.9)

with K∗ = (1 − α)VaR0.99(S) + α
∑n
i=1 VaR0.99(Xi), and by Proposition 3.7 of Cai and

Wang (2020), we know that there exist sets A, Ai ⊂ R, i = 1, ..., n, satisfying E(S|S ∈
A) = VaR0.99(S) and E(Xi|Xi ∈ Ai) = VaR0.99(Xi), i = 1, ..., n; the haircut principle
(3.2.26) is reduced to

K∗i = VaR0.99(Xi)∑n
i=1 VaR0.99(Xi)

×K∗ (3.5.10)

with K∗ = (1 − α)CTE0.99(S) + α
∑n
i=1 VaR0.99(Xi), and A = {S > VaR0.99(S)}, and by

Proposition 3.7 of Cai and Wang (2020), we know that there exist sets Ai ⊂ R, i = 1, ..., n,
satisfying E(Xi|Xi ∈ Ai) = VaR0.99(Xi), i = 1, ..., n; and, the CTE principle (3.2.28) is
reduced to

K∗i = CTE0.99(Xi)∑n
i=1 CTE0.99(Xi)

×K∗ (3.5.11)
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with K∗ = (1 − α)CTE0.99(S) + α
∑n
i=1 CTE0.99(Xi), and A = {S > VaR0.99(S)} and

Ai = {S > VaR0.99(S)}, i = 1, ..., n.

With the joint density function of (Xi, S), E(Xi|S > VaR0.99(S)) in (3.5.8) is calcu-
lated by the following formula

E(Xi|S > VaR0.99(S)) = 1
P{S > VaR0.99(S)}

∫ ∞
−∞

∫ ∞
VaR0.99(S)

xfXi,S(x, s)dsdx

= 1
0.01

∫ ∞
−∞

∫ ∞
VaR0.99(S)

xfXi,S, (x, s)dsdx

where fXi,S, i = 1, 2, 3 is the joint density function of Xi and S.

In the following numerical results, we will illustrate the allocation result for posi-
tive dependence, negative dependence and mixed dependence. The numerical results are
calculated with Matlab and shown in the tables below.

Note that, for all case (i) (ii) and (iii), we have VaR0.99(X1) = 199.79, VaR0.99(X2) =
266.32, VaR0.99(X3) = 216.53.

(i) Positive dependence: Assume that risks in portfolio (X1, X2, X3) are positively de-
pendent and that the correlation coefficient of any two risks in the portfolio is positive
with ρ12 = 0.8, ρ13 = 0.2, and ρ23 = 0.3.

In this case, we have σ2
S = 7040, ρX1,S = 0.8820, ρX2,S = 0.9535, ρX3,S = 0.4886. Also,

we have VaR0.99(S) = 645.19, CTE0.99(S) = 673.62, E(X1|S > VaR0.99(S)) = 200.52,
E(X2|S > VaR0.99(S)) = 277.06, E(X3|S > VaR0.99(S)) = 196.05. The optimal
allocation results are presented in the following table.
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K∗ K∗1 K∗2 K∗3

α = 0.05 646.61 192.48 265.95 188.19
α = 0.10 648.03 192.90 266.53 188.60

CTE principle (3.5.8) α = 0.50 659.41 196.29 271.21 191.91
α = 0.90 670.78 199.67 275.89 195.22
α = 0.95 672.20 200.09 276.47 195.63
α = 0.05 647.06 189.38 252.44 205.24
α = 0.10 648.94 189.93 253.17 205.84

Haircut principle (3.5.9) α = 0.50 663.91 194.31 259.01 210.59
α = 0.90 678.89 198.69 264.86 215.34
α = 0.95 680.76 199.24 265.59 215.93
α = 0.05 674.07 197.29 262.98 213.81
α = 0.10 674.53 197.42 263.15 213.95

Haircut principle (3.5.10) α = 0.50 678.13 198.47 264.56 215.10
α = 0.90 681.73 199.53 265.97 216.24
α = 0.95 682.18 199.66 266.14 216.38
α = 0.05 675.77 198.02 267.15 210.60
α = 0.10 677.91 198.64 268.00 211.27

CTE principle (3.5.11) α = 0.50 695.07 203.67 274.78 216.62
α = 0.90 712.23 208.70 281.56 221.97
α = 0.95 714.38 209.33 282.41 222.64

Table 3.1: Capital allocation result of model (3.2.1) for multivariate normal distribution
with correlation ρ12 = 0.8, ρ13 = 0.2, and ρ23 = 0.3

(ii) Negative dependence: Assume that risks in portfolio (X1, X2, X3) are negatively
dependent and that the correlation coefficient of any two different risks in the portfolio
is negative with ρ12 = −0.4, ρ13 = −0.1, and ρ23 = −0.1.

In this case, we have σ2
S = 2280, ρX1,S = 0.1675, ρX2,S = 0.7539, ρX3,S = 0.2513. Also,

we have VaR0.99(S) = 561.08, CTE0.99(S) = 577.26, E(X1|S > VaR0.99(S)) = 143.40,
E(X2|S > VaR0.99(S)) = 250.47, E(X3|S > VaR0.99(S)) = 183.40. The optimal
allocation results are presented in the following table.
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K∗ K∗1 K∗2 K∗3

α = 0.05 561.89 139.58 243.80 178.51
α = 0.10 562.70 139.78 244.15 178.77

CTE principle (3.5.8) α = 0.50 569.18 141.39 246.96 180.83
α = 0.90 575.64 142.99 249.77 182.88
α = 0.95 576.45 143.20 250.12 183.14
α = 0.05 567.16 165.99 221.27 179.90
α = 0.10 573.24 167.77 223.64 181.83

Haircut principle (3.5.9) α = 0.50 621.86 182.00 242.61 197.25
α = 0.90 670.48 196.23 261.58 212.67
α = 0.95 676.56 198.01 263.95 214.60
α = 0.05 582.53 170.49 227.26 184.77
α = 0.10 587.80 172.03 229.32 186.45

Haircut principle (3.5.10) α = 0.50 629.95 184.37 245.76 199.82
α = 0.90 672.10 196.71 262.21 213.18
α = 0.95 677.37 198.25 264.26 214.86
α = 0.90 681.73 199.53 265.97 216.24
α = 0.95 682.18 199.66 266.14 216.38
α = 0.05 584.23 171.19 230.96 182.07
α = 0.10 591.19 173.23 233.71 184.24

CTE principle (3.5.11) α = 0.50 646.89 189.55 255.73 201.60
α = 0.90 702.60 205.88 277.76 218.96
α = 0.95 709.56 207.92 280.51 221.13

Table 3.2: Capital allocation result of model (3.2.1) for multivariate normal distribution
with correlation ρ12 = −0.4, ρ13 = −0.1, and ρ23 = −0.1

(iii) Mixed dependence: Assume that risks in portfolio (X1, X2, X3) are mixedly depen-
dent and that some of the correlation coefficients of two risks in the portfolio are
positive while some are negative with ρ12 = 0.2, ρ13 = 0.8, and ρ23 = −0.3.

In this case, we have σ2
S = 4760, ρX1,S = 0.8117, ρX2,S = 0.7247, ρX3,S = 0.4203. Also,

we have VaR0.99(S) = 610.50, CTE0.99(S) = 633.88, E(X1|S > VaR0.99(S)) = 194.90,
E(X2|S > VaR0.99(S)) = 246.58, E(X3|S > VaR0.99(S)) = 192.41. The optimal
allocation results are presented in the following table.
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K∗ K∗1 K∗2 K∗3

α = 0.05 611.67 188.07 237.94 185.66
α = 0.10 612.84 188.43 238.39 186.02

CTE principle (3.5.8) α = 0.50 622.19 191.30 242.03 188.86
α = 0.90 631.54 194.18 245.67 191.70
α = 0.95 632.71 194.54 246.12 192.05
α = 0.05 614.11 179.73 239.58 194.79
α = 0.10 617.71 180.79 240.99 195.93

Haircut principle (3.5.9) α = 0.50 646.57 189.23 252.25 205.09
α = 0.90 675.42 197.68 263.50 214.24
α = 0.95 679.03 198.73 264.91 215.38
α = 0.05 636.32 186.23 248.25 201.84
α = 0.10 638.76 186.95 249.20 202.61

Haircut principle (3.5.10) α = 0.50 658.26 192.66 256.81 208.79
α = 0.90 677.76 198.36 264.42 214.98
α = 0.95 680.20 199.08 265.37 215.75
α = 0.90 681.73 199.53 265.97 216.24
α = 0.95 682.18 199.66 266.14 216.38
α = 0.05 638.01 186.95 252.22 198.84
α = 0.10 642.14 188.16 253.86 200.12

CTE principle (3.5.11) α = 0.50 675.20 197.85 266.93 210.43
α = 0.90 708.26 207.53 279.99 220.73
α = 0.95 712.39 208.75 281.63 222.02

Table 3.3: Capital allocation result of model (3.2.1) for multivariate normal distribution
with correlation ρ12 = 0.2, ρ13 = 0.8, and ρ23 = −0.3

Next, we illustrate the applications of model (3.4.38) and Theorem 3.4.5 by setting
ψ = I{S∈A}

P{S∈A} , ψi = I{Xi∈Ai}
P{Xi∈Ai} , i = 1, ..., n, in model (3.4.38). Then, the model is reduced to

 min(K,K1,...,Kn)∈Rn+1

{
(1− α)E

[∣∣∣S −K∣∣∣ |A]+ α
∑n
i=1 E

[∣∣∣Xi −Ki

∣∣∣ |Ai]}
s.t. ∑n

i=1Ki = K,
(3.5.12)

Thus, by (3.4.43), the optimal allocation (K∗, K∗1 , ..., K∗n) for model (3.4.38) is reduced
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to 
K∗ = F−1

(1 + λ∗

1−α
2

)
= F−1(q∗),

K∗i = F−1
i

(1− λ∗

α

2

)
= F−1

i (q∗0), i = 1, . . . , n,
(3.5.13)

where F (x) = P{S ≤ x |A}, Fi(x) = P{Xi ≤ x |Ai}, S = X1 +X2 +X3,

q∗ =
1 + λ∗

1−α
2

and

q∗0 =
1− λ∗

α

2 ,

and λ∗(= λ∗(α)) ∈ (λ, λ) is the unique solution to equation

n∑
i=1

F−1
i

(1− λ∗

α

2

)
= F−1

(1 + λ∗

1−α
2

)
.

We consider the following four choices of the sets A and Ai.

(a) Take A ⊂ R so that E(S|S ∈ A) = VaR0.99(S) and let Ai = {S > VaR0.99(S)},
i = 1, ..., n. By Proposition 3.7 of Cai and Wang (2020), if VaR0.99(S) > E(S), then
there exists a unique x∗ ∈ R so that A = (x∗, ∞) and E[S|S ∈ A] = E[S|S > x∗] =
VaR0.99(S). In this case, the distribution functions F (x) and Fi(x) are reduced to

F (x) = P{S ≤ x |A} = P{S ≤ x |S > x∗} =
 0 x ≤ x∗,

FS(x)−FS(x∗)
1−FS(x∗) , x > x∗,

(3.5.14)

and

Fi(x) = P{Xi ≤ x |S > VaR0.99(S)} = P{Xi ≤ x , S > VaR0.99(S)}
P{S > VaR0.99(S)}

= 1
0.01

∫ x

−∞

∫ ∞
VaR0.99(S)

fXi,S(t, s)dsdt, −∞ < x <∞, (3.5.15)

where fXi,S, i = 1, 2, 3 is the joint density function of Xi and S.

(b) Let A = {S > VaR0.99(S)} and take Ai ⊂ R so that E(X|X ∈ Ai) = VaR0.99(Xi),
i = 1, ..., n. By Proposition 3.7 of Cai and Wang (2020), if VaR0.99(Xi) > E(Xi), then
there exists a unique x∗i ∈ R so that Ai = (x∗i , ∞) and E[Xi|Xi ∈ Ai] = E[Xi|Xi >
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x∗i ] = VaR0.99(Xi). In this case, the distribution functions F (x) and Fi(x) are reduced
to

F (x) = P{S ≤ x |S ∈ A} = P{S ≤ x |S > VaR0.99(S)}

=
 0 x ≤ VaR0.99(S),

FS(x)−FS(VaR0.99(S))
1−FS(VaR0.99(S)) , x > VaR0.99(S),

=
 0 x ≤ VaR0.99(S),

FS(x)−0.99
0.01 , x > VaR0.99(S),

(3.5.16)

and

Fi(x) = P{Xi ≤ x |Ai} = P{Xi ≤ x |Xi > x∗i } =
 0 x ≤ x∗i ,

FXi (x)−FXi (x
∗
i )

1−FXi (x
∗
i ) , x > x∗i .

(3.5.17)

(c) Take sets A,Ai ⊂ R so that E(S|S ∈ A) = VaR0.99(S), E(X|X ∈ Ai) = VaR0.99(Xi),
i = 1, ..., n. In this case, the distribution functions F (x) = P{S ≤ x |A} = P{S ≤
x |S > x∗} and Fi(x) = P{Xi ≤ x |Ai} = P{Xi ≤ x |Xi > x∗i } are given in (3.5.14)
and (3.5.17), respectively.

(d) Tabe A = {S > VaR0.99(S)}, Ai = {Xi > VaR0.99(Xi)}, i = 1, ..., n. In this case,
the distribution function F (x) = P{S ≤ x |A} = P{S ≤ x |S > VaR0.99(S)} is given
in (3.5.16) and the distribution function Fi(x) = P{Xi ≤ x |Ai} = P{Xi ≤ x |Xi >

VaR0.99(Xi)} is given by

Fi(x) = P{Xi ≤ x |Xi ∈ Ai} = P{Xi ≤ x |Xi > VaR0.99(Xi)}

=
 0 x ≤ VaR0.99(Xi),

FXi (x)−FXi (VaR0.99(Xi))
1−FXi (VaR0.99(Xi)) , x > VaR0.99(Xi),

=
 0 x ≤ VaR0.99(Xi),

FXi (x)−0.99
0.01 , x > VaR0.99(Xi),

(3.5.18)

Then, we use the same normal risk vector (X1, X2, X3) as that used in the applications
of model (3.2.1) and Theorem 3.2.2. We obtain the optimal allocation (K∗, K∗1 , K∗2 , K∗3)
for each of the four choices of sets A, A1, A2, A3 and for each of the three dependence
settings by Matlab. The numerical results for the three choices of sets A, A1, A2, A3

and one dependence setting are presented in one table. In particular, in the following
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tables, the first five-row numerical results are for the choice (a) of sets A, A1, A2, A3, the
second five-row numerical results are for the choice (b) of sets A, A1, A2, A3, the third five-
row numerical results are for the choice (c) of sets A, A1, A2, A3, and the fourth five-row
numerical results are for the choice (d) of sets A, A1, A2, A3,

Note that E(X1) = 130, E(X2) = 150, E(X3) = 170, E[S] = 450, VaR0.99(X1) =
199.79, VaR0.99(X2) = 266.32, VaR0.99(X3) = 216.53.. For both choices of (b) and (c) for
sets A, A1, A2, A3, we find that x∗1 = 188.41, x∗2 = 247.35, and x∗3 = 208.94. In fact, the
vale of x∗i only depends on the distribution of Xi, i = 1, 2, 3.

(i) Positive dependence: Assume that risks in portfolio (X1, X2, X3) are positively de-
pendent and that the correlation coefficient of any two risks in the portfolio is positive
with ρ12 = 0.8, ρ13 = 0.2, and ρ23 = 0.3. In this case, we have VaR0.99(S)) = 645.19,
CTE0.99(S) = 673.62, and x∗ = 613.36.

From Theorem 3.4.5 , we know that one of the condition to guarantee the uniqueness
of the solution is that H1(λ+) > H2(λ+) and H1(λ−) < H2(λ−). Therefore, we have
derived equation for H1 and H2 here. In the following tables, we do have the cases
that such condition is not satisfied. We have identified the cases that the condition
is not satisfied. In those situations, we list one of the possible solution in the tables.

As we don’t have q∗0 = 0 for case (a), we only derived the H1 and H2 function for
case (b) and (c).

For case (b), we have

F (x) = FS(x)− 0.99
0.01 =

1 + y
1−α

2 , x > VaR0.99(S). (3.5.19)

Therefore,

FS(x) = 0.01
1 + y

1−α
2 + 0.99, (3.5.20)

and

x = H2(y) = F−1
S

(
0.01

1 + y
1−α

2 + 0.99
)
, (3.5.21)

where F−1
S is the inverse function of cdf function of S. Similarly, we have

x = H1(y) = F−1
X1

(
(1− FX1(x∗1))

1− y
α

2 + FX1(x∗1)
)

(3.5.22)

+ F−1
X2

(
(1− FX2(x∗2))

1− y
α

2 + FX2(x∗2)
)

(3.5.23)

+ F−1
X3

(
(1− FX3(x∗3))

1− y
α

2 + FX3(x∗3)
)
, (3.5.24)
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where F−1
Xi

is the inverse function of cdf function of Xi for i = 1, 2, 3.

For case (c), we have same H1 as case (b), and for H2, we have

x = H2(y) = F−1
S

(
(1− FS(x∗))

1 + y
1−α

2 + FS(x∗)
)
, (3.5.25)

λ λ λ∗ q∗ q∗0 K∗ K∗1 K∗2 K∗3

α = 0.05 -0.05 0.05 0.0238 0.5125 0.2617 637.91 189.94 263.23 184.73
α = 0.10 -0.10 0.10 0.0465 0.5258 0.2674 638.80 190.21 263.55 185.04
α = 0.50 -0.50 0.50 0.1612 0.6612 0.3388 649.43 193.42 267.35 188.66
α = 0.90 -0.10 0.10 0.0621 0.8103 0.4655 666.78 198.64 273.65 194.49
α = 0.95 -0.05 0.05 0.0325 0.8250 0.4829 669.11 199.34 274.51 195.26
α = 0.05 -0.05 0.05 0.0091 0.5048 0.4089 666.40 194.92 258.20 213.28
α = 0.10 -0.10 0.10 0.0174 0.5096 0.4132 666.69 195.01 258.34 213.34
α = 0.50 -0.50 0.50 0.0506 0.5506 0.4494 669.20 195.76 259.60 213.84
α = 0.90 -0.10 0.10 0.0190 0.5949 0.4895 672.16 196.65 261.08 214.43
α = 0.95 -0.05 0.05 0.0101 0.6006 0.4947 672.56 196.77 261.28 214.51
α = 0.05 -0.05 0.05 0.05 0.5263 0 638.83 186.45 245.21 207.17
α = 0.10 -0.10 0.10 0.1 0.5555 0 640.88 187.17 245.97 207.74
α = 0.50 -0.50 0.50 0.2391 0.7391 0.2609 657.39 192.22 253.69 211.48
α = 0.90 -0.10 0.10 0.0663 0.8316 0.4632 670.20 196.06 260.10 214.04
α = 0.95 -0.05 0.05 0.0340 0.8397 0.4821 671.60 196.48 260.80 214.32
α = 0.05 -0.05 0.05 0.05 0.5263 0 667.69 194.90 261.07 211.76
α = 0.10 -0.10 0.10 0.10 0.5555 0 669.52 195.47 261.68 212.37
α = 0.50 -0.50 0.50 0.2966 0.7966 0.2034 691.05 202.31 270.52 218.21
α = 0.90 -0.10 0.10 0.0761 0.8803 0.4577 704.77 206.43 277.38 220.95
α = 0.95 -0.05 0.05 0.0387 0.8869 0.4796 706.20 206.86 278.10 221.24

Table 3.4: Capital allocation result of model (3.4.38) for multivariate normal distribution
with correlation ρ12 = 0.8, ρ13 = 0.2, and ρ23 = 0.3 for case a, b, and c (from top to bottom
separated by horizontal line)

(ii) Negative dependence: Assume that risks in portfolio (X1, X2, X3) are negatively
dependent and that the correlation coefficient of any two different risks in the portfolio
is negative with ρ12 = −0.4, ρ13 = −0.1, and ρ23 = −0.1. In this case, we have
VaR0.99(S)) = 561.08, CTE0.99(S) = 577.26, and x∗ = 542.97.
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λ λ λ∗ q∗ q∗0 K∗ K∗1 K∗2 K∗3

α = 0.05 -0.05 0.05 0.0096 0.5050 0.4043 556.65 136.22 241.75 178.69
α = 0.10 -0.10 0.10 0.0190 0.5105 0.4052 556.86 136.29 241.83 178.74
α = 0.50 -0.50 0.50 0.0814 0.5814 0.4186 559.72 137.31 243.01 179.40
α = 0.90 -0.10 0.10 0.0550 0.7748 0.4695 570.51 141.13 247.48 181.91
α = 0.95 -0.05 0.05 0.0312 0.8116 0.4836 573.48 142.18 248.71 182.59
α = 0.05 -0.05 0.05 0.05 0.5263 0 573.88 164.98 222.89 186.02
α = 0.10 -0.10 0.10 0.1 0.5555 0 574.93 165.16 224.07 185.70
α = 0.50 -0.50 0.50 0.4975 0.9977 0.0025 644.81 188.44 247.40 208.96
α = 0.90 -0.10 0.10 0.0999 0.9998 0.4445 668.85 195.66 259.43 213.77
α = 0.95 -0.05 0.05 0.0499 0.9998 0.4737 670.97 196.29 260.49 214.19
α = 0.05 -0.05 0.05 0.05 0.5263 0 557.46 149.15 229.15 179.15
α = 0.10 -0.10 0.10 0.01 0.5555 0 558.63 149.54 229.54 179.54
α = 0.50 -0.50 0.50 0.4991 0.9991 0.00088 612.16 188.41 247.35 208.94
α = 0.90 -0.10 0.10 0.09999771 0.9999886 0.4445 668.85 195.66 259.43 213.77
α = 0.95 -0.05 0.05 0.049947 0.99999111 0.4737 670.97 196.29 260.49 214.19
α = 0.05 -0.05 0.05 0.05 0.5263 0 574.12 163.55 229.80 180.30
α = 0.10 -0.10 0.10 0.10 0.5555 0 574.93 163.99 229.92 181.02
α = 0.50 -0.50 0.50 0.499945 0.999945 0.000055224 682.64 199.79 266.32 216.53
α = 0.90 -0.10 0.10 0.0999989 0.9999947 0.4444 703.92 206.18 276.96 220.78
α = 0.95 -0.05 0.05 0.499996 0.999996 0.4737 705.80 206.74 277.90 221.16

Table 3.5: Capital allocation result of model (3.4.38) for multivariate normal distribution
with correlation ρ12 = −0.4, ρ13 = −0.1, and ρ23 = −0.1 for case a, b, and c (from top to
bottom separated by horizontal line)

(iii) Mixed dependence: Assume that risks in portfolio (X1, X2, X3) are mixedly depen-
dent and that some of the correlation coefficients of two risks in the portfolio are
positive while some are negative with ρ12 = 0.2, ρ13 = 0.8, and ρ23 = −0.3. In this
case, we have VaR0.99(S)) = 610.50, CTE0.99(S) = 633.88, and x∗ = 584.3282.
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λ λ λ∗ q∗ q∗0 K∗ K∗1 K∗2 K∗3

α = 0.05 -0.05 0.05 0.0154 0.5081 0.3458 604.27 187.14 232.01 185.12
α = 0.10 -0.10 0.10 0.0304 0.5169 0.3482 604.75 187.26 232.25 185.24
α = 0.50 -0.50 0.50 0.1196 0.6196 0.3804 611.01 188.87 235.33 186.81
α = 0.90 -0.10 0.10 0.0603 0.8013 0.4665 627.14 193.02 243.27 190.85
α = 0.95 -0.05 0.05 0.0325 0.8249 0.4829 630.16 193.80 244.75 191.61
α = 0.05 -0.05 0.05 0.05 0.5263 0 629.00 183.31 241.69 204.00
α = 0.10 -0.10 0.10 0.1 0.5555 0 630.50 183.79 242.26 204.45
α = 0.50 -0.50 0.50 0.3329 0.8329 0.1671 652.45 190.73 251.22 210.49
α = 0.90 -0.10 0.10 0.0853 0.9265 0.4526 669.44 195.83 259.72 213.89
α = 0.95 -0.05 0.05 0.0433 0.9329 0.4772 671.24 196.37 260.62 214.25
α = 0.05 -0.05 0.05 0.05 0.5263 0 605.27 165.09 245.09 195.09
α = 0.10 -0.10 0.10 0.10 0.5555 0 606.96 165.65 245.65 195.65
α = 0.50 -0.50 0.50 0.4211 0.9211 0.0789 648.21 189.46 249.10 209.64
α = 0.90 -0.10 0.10 0.0942 0.9710 0.4477 669.08 195.72 259.54 213.82
α = 0.95 -0.05 0.05 0.0474 0.9737 0.4751 671.08 196.32 260.54 214.22
α = 0.05 -0.05 0.05 0.05 0.5263 0 629.00 182.02 247.92 199.06
α = 0.10 -0.10 0.10 0.10 0.5555 0 630.50 182.49 248.60 199.41
α = 0.50 -0.50 0.50 0.4652 0.9652 0.0348 683.96 200.19 266.98 216.79
α = 0.90 -0.10 0.10 0.0977 0.9884 0.4457 704.00 206.20 277.00 220.80
α = 0.95 -0.05 0.05 0.049 0.9896 0.4742 705.84 206.75 277.92 221.17

Table 3.6: Capital allocation result of model (3.4.38) for multivariate normal distribution
with correlation ρ12 = 0.2, ρ13 = 0.8, and ρ23 = −0.3 for case a, b, and c (from top to
bottom separated by horizontal line)

Note that, for the cases where q∗0 = 0, we have checked that the condition of H1(λ−) <
H2(λ−) in Theorem 3.4.5 is not satisfied. In those cases, the solutions are not unique and
we present one of them in the table.

Remark 3.5.1. From both models in (3.5.7) and (3.5.12) and all of the allocation princi-
ples, we found that our total capital K increases as we put more weight on individual unit
level risk. The intuition behind this is that if we focus on the aggregated risk on enterprise
level, the risks that are from different individual risk units may offset each other which lead
to the reduction of total capital. If we focus more on the individual risk unit level, then we
ignore the offset effect which can lead to more total required capital.
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Example 3.5.1. When ψ = γ > 0, ψi = γi > 0, ψij = γij > 0 i = 1, ..., n, j = 1, ..., ni,
are positive real numbers, problem (3.4.1) is reduced to the following optimal allocation
problem: 

minK,k1,...,kn

{
α1γE

[∣∣∣S −K∣∣∣]+ α2 γi
∑n
i=1 E

[∣∣∣Xi −Ki

∣∣∣]
+α3

∑n
i=1

∑ni
j=1 γijE

[∣∣∣Xij − kij
∣∣∣]}

s.t. ∑n
i=1Ki = K,

∑ni
j=1 kij = Ki, i = 1, ..., n,

(3.5.26)

In this case, functions defined in (3.4.4) are reduced to F (x) = FS(x), Fi(x) = FXi(x),
Fij(x) = FXij(x), G(x) = FS(x−), Gi(x) = FXi(x−), Gij(x) = FXij(x−). The parameters
γ, γi, and γij in this case because penalty factors at enterprise, subsidiary and business
line level respectively.

Example 3.5.2. When ψ = γ IA
Pr{A} , ψi = γi IAi

Pr{Ai} , and ψij = γij IAij
Pr{Aij} , where A, Ai and Aij are

extreme tail events associated with X, Xi and Xij, respectively, γ > 0, γi > 0, γij > 0, are
positive real numbers, problem (3.4.1) is reduced to

minK,k1,...,kn

{
α1γE

[∣∣∣S −K∣∣∣|A]+ α2 γi
∑n
i=1 E

[∣∣∣Xi −Ki

∣∣∣|Ai]
+α3

∑n
i=1

∑ni
j=1 γijE

[∣∣∣Xij − kij
∣∣∣|Aij]}

s.t. ∑n
i=1Ki = K∑ni
j=1 kij = Ki, i = 1, ..., n,

(3.5.27)

In this case, functions defined in (3.4.4) are reduced to F (x) = P{S ≤ x |A}, Fi(x) =
P{Xi ≤ x |Ai}, Fij(x) = P{Xij ≤ x |Aij}, G(x) = P{S < x |A}, Gi(x) = P{Xi < x |Ai},
Gij(x) = P{Xij < x |Aij}. Similarly to Example 3.5.1, the parameters γ, γi, and γij in this
case because penalty factors at enterprise, subsidiary and business line level respectively.
The examples of the sets A, Ai and Aij can be those used in 3.2.33, 3.2.34, 3.2.35, 3.2.36.

3.6 Conclusions

In the traditional capital allocation problem, we usually have a given total capital
and try to find an optimal way to allocate the given capital to all individual risk units. In
this chapter, we proposed a new method of capital allocation based on a similar idea as in
the previous chapter. We are trying to decide the optimal total capital and the optimal
allocated capital to each individual risk unit at the same time. As in the previous chapter,
this allocation method depends not only on the distributions of each individual risks, but
also on correlations among the individual risks and the relative importance of the individual
risks and the aggregate risk to a portfolio. This study also provides an explanation for
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previously studied allocation methods as the result of optimization problems, providing an
intuitive explanation for why those allocation methods are reasonable.

98



Chapter 4

A multivariate shortfall risk measure
based on cumulative prospect theory

4.1 Introduction

In the previous two chapters, we have developed two multivariate risk measures with
applications in capital allocations that are motivated by portfolio risk management pur-
poses. In this chapter, we will present another multivariate risk measure that can be very
useful for portfolio risk management from another point of view. In this model, we com-
bine the acceptance set concept, distortion risk measures, and cumulative prospect theory
(CPT). Before we move to the details of our model, we would like to provide some back-
ground on the involvement of risk measures and how those concepts that we mentioned
above are developed and used in risk management.

Risk measures provide numerical references on risks’ severity and frequency and guide
risk managers in preparing appropriate capital based on regulatory requirements and their
own risk appetites. Therefore, obtaining an adequate risk measure that can represent a risk
position accurately is a crucial question in quantitative risk management. Risk measure
develops from a starting point of univariate risk measures.

For a long time, the financial industry has used VaR as a risk measure due to its
simplicity. However, VaR has some serious weaknesses such as its tendency to underes-
timate the severity of a rare event and the fact that it does not satisfy subadditivity. In
Artzner et al. (1999), the well-known concept of coherent risk measure is brought up. In
this paper, the desirable properties of a risk measure are defined and since then they have
played an essential role in modern quantitative risk management. In Föllmer and Schied
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(2002), the condition of positive homogeneity is relaxed and the concept of convex measure
is defined. This concept is also widely used in this research area. As time has passed, uni-
variate risk measures have become more and more sophisticated. For example, there are
many simple risk measures like the most commonly used risk measure, VaR. There are also
more complicated univariate risk measures such as expectile and Conditional Value at Risk
(CVaR/expected shortfall) by Rockafellar, Uryasev, et al. (2000). For more complicated
models, such as those in Bellini and Frittelli (2002) and Frittelli and Gianin (2002), ex-
pected utility theory is also involved. Furthermore, per th Ellsberg paradox (see Bellini and
Frittelli (2002)), we know that expected utility theory may not always create appropriate
models to represent risk managers’ preferences, and that models that involve a distortion
function can appear. For these topics, please refer to the distortion risk measure as gener-
alized by Wang (1995), spectral measures of risk in Acerbi (2002), the GlueVaR distortion
risk measure in Belles-Sampera et al. (2014), generalized quantiles based on RDEU theory
in Mao and Cai (2018), and so on.

Although many sophisticated univariate risk measures have been developed, one of
the shared weaknesses of univariate risk measures is that they define the risk of every
single unit one at a time, making it hard to incorporate the correlation between individual
risk units within the same large portfolio and their contribution to the aggregated risk
of the portfolio under the same scenario. However, the correlation structure is especially
important for portfolio risk management, as it can help us to understand the contribution
to the aggregated risk from each individual risk unit. Therefore, multivariate risk measures
have been developed. One of the most common ways to define a multivariate risk measure
is to extend a univariate risk measure. Many difficulties can arise with this procedure.
For example, some univariate risk measures use a coefficient, α, to represent the risk level.
When the univariate risk measure is extended to a multivariate risk measure, how we define
the risk level can present a challenge. From existing contexts, there are a few ways to define
the multivariate risk level. Cousin and Di Bernardino (2013) extend CTE to multivariate
CTE by defining a critical layer and a level set. Cai and Li (2005), Cai et al. (2017) and
Landsman et al. (2016) extend univariate risk measures to multivariate ones by defining a
level for each component of the random vector and applying a univariate risk measure at
the corresponding level to each component. Prékopa (2012) uses a concept called “p-level
efficient point” to represent the level. Chaudhuri (1996) and Herrmann et al. (2018) use
the norm of a directional vector to represent the level.

Besides defining the level explicitly, there is also a way to define the level implicitly. In
this approach, we need to employ the concept of an acceptance set, first used in Artzner et
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al. (1999), who use the concept of an acceptance set and its properties to define coherent risk
measure. This concept gives the risk measure an intuitive and practical explanation and
a solid mathematical definition at the same time. Usually, regulatory bodies or corporate
management teams have a risk appetite that can be represented by an acceptance set A.
We say a risk random variable X defined on a probability space (Ω,F ,P) is acceptable if
X ∈ A. Otherwise, a capital c needs to be prepared for the extreme situation so that the
remaining risk, X − c, is acceptable, i.e., X − c ∈ A. Since that paper, the acceptance set
idea has been widely used in defining risk measures including the convex risk measure in
Föllmer and Schied (2002), systemic risk measure in Biagini et al. (2019), and Feinstein
et al. (2017). In Frittelli and Gianin (2002), although an acceptance set is not explicitly
used, the idea of an acceptable position is mentioned. It has already been shown in Mao
and Cai (2018) that in the univariate case, with this method, the risk level can be implicitly
defined via the choice of preference functions and distortion functions. In the multivariate
case, Armenti et al. (2018) also use this method.

In this chapter, we extend the idea of generalized shortfall induced by cumulative
prospect theory (CPT) in Mao and Cai (2018) to a multivariate risk measure with the
acceptance set concept used in systemic risk measurement and the method employed by
Armenti et al. (2018). The concept of systemic risk involves considering the risk of the
entire system and how the failure of each individual unit in the system may lead to systemic
failure. In our model, we extend the univariate generalized shortfall induced by CPT based
on this concept. Although we use an approach similar to CPT, we provide a different
explanation for the utility functions used in our model. We would call this function a
preference function since instead of using the utility function to describe people’s behaviour,
we use it to represent stakeholders’ risk preferences. For example, a shareholder who
worries more about the default probability of the company may choose a preference function
that puts more weight on undercapitalization scenarios than the overcapitalization ones.
This would provide a more reasonable meaning for a risk measure as normally used to
represent people’s risk appetites and preferences, instead describing people’s behaviours
from a observer’s perspective. With this model, we can obtain a risk measure for the
whole risk system and risk allocation to the risk units in the system at the same time.
This model can be applied to the problem of capital allocation.

The rest of this chapter is structured as follows. In Section 4.2, we start with pre-
liminary theory that includes the notations that we are going to use later, the definition
of a coherent risk measure, a distortion risk measure, and univariate generalized shortfall
induced by the CPT model. In Section 4.3, we discuss the properties of the risk set, the
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set of acceptable monetary allocation, and multivariate generalized shortfalls induced by
CPT. We also discuss the existence and uniqueness of multivariate generalized shortfalls
induced by CPT with the properties of objective functions. In Section 4.4 we provide
some numerical illustrations with possible selections of distortion functions and preference
functions. Finally, in Section 4.5, we provide a conclusion for this chapter.

4.2 Preliminaries

4.2.1 Basic notation

First, we introduce some notations that we are going to use in this chapter. Let
(Ω,F , P ) be the probability space and let L0(Rd) := L0(Ω,F ;Rd) be the space of random
vectors with dimension d. For X and Y ∈ Rd, we say X ≥ Y or X > Y if P (X ≥ Y) = 1
or P (X > Y) = 1. Let X = (X1, . . . , Xd) ∈ L0(Rd) be a random vector of financial
losses, which means that the negative values of Xk are used to represent the profits. Let
U denote the set of all continuous increasing functions on R. Let C denote the set of all
continuous functions on R. Let H be the set of all distortion functions h : [0, 1] → [0, 1]
which are increasing with h(0) = 0, h(1) = 1 and have no jumps at 0 and 1. Let h∗ be the
dual distortion function of h defined by h∗(x) = 1 − h(1 − x). Let X+ = max(X, 0) and
X− = −min(X, 0). For a function v defined on R, v+(x) = v(x) on R+ and v−(x) = v(−x)
on R−. Let ∂+

∂x
f(x) = f ′+(x) and ∂−

∂x
f(x) = f ′−(x).

Definition 4.2.1. A risk measure ρ defined on a convex cone X containing all the constants
is coherent if the following four properties hold:
(P1) Monotonicity: ρ(X) ≤ ρ(Y ) for all X, Y ∈ X with X ≤ Y almost surely (a.s.).
(P2) Translation-invariance: ρ(X + c) = ρ(X) + c for all X ∈ X and all c ∈ R.
(P3) Positive homogeneity: ρ(λX) = λρ(X) for all λ ∈ R+ = [0,∞) and all X ∈ X .
(P4) Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X, Y ∈ X .
A risk measure ρ defined on a convex set X that is closed under translation is convex if it
satisfies (P1) monotonicity, (P2) translation-invariance and
(P5) Convexity: ρ(aX + (1− a)Y ) ≤ aρ(X) + (1− a)ρ(Y ) for all X, Y ∈ X and a ∈ (0, 1).

Similar to univariate risk measures, we discuss these properties for our multivariate
risk measures. However, in multivariate risk measures, some property may be not properly
defined such as subadditivity. For example, we have two companies A and B with n and
m risk units respectively such that n 6= m. We use X to represent the risk random vector
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of the company A and Y to represent the risk random vector of the company B. In this
way, X has a dimension of n, and Y has a dimension of m. If those two companies merge,
we may not simply merge n risk units of company A into m risk units of the company B.
In this case, the subadditivity cannot be applied directly to the random vectors X and Y .
One of the possible solutions is to define the subadditivity on the aggregate risk measure
of company A and B.

4.2.2 Distortion risk measures

To start, we review the definition of distortion risk measure and some related trans-
formation of distortion risk measure. There are a few different variant in the definition of
distortion risk measure such as Dhaene, Kukush, et al. (2012) and Cai et al. (2020). Here,
we stay with Cai et al. (2020).

Definition 4.2.2. Given a random variable X, and h ∈ H, the functional

ρh(X) :=
∫ +∞

0
(1− h(P(X ≤ x)))dx−

∫ 0

−∞
h(P(X ≤ x))dx (4.2.1)

=
∫ +∞

0
h∗(P(X > x))dx−

∫ 0

−∞
(1− h∗(P(X > x)))dx. (4.2.2)

is called a distortion risk measure, where h∗ is the dual distortion function of h.

In the next proposition, we can see that under some certain conditions, distortion risk
measure can be written as the expectation of a function with respect to a new probability
measure.

Proposition 4.2.1. If h is right continuous, (4.2.1) can be also written as

ρh(X) =
∫
R
xdh(F (x)) =

∫
[0,1]

VaRα(X)dh(α). (4.2.3)

Proof. For details, see Lemma 2.1 of Cai et al. (2020).

4.2.3 Univariate model

After we go over some basic concepts that we are going to use, we move to the
preference function involved risk model. Before we talk about multivariate generalized
shortfalls induced by cumulative prospect theory (CPT), we go through the background
of CPT and related concept in univariate cases.
Expected loss/utility based on cumulative prospect theory (CPT)
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The idea of expected loss/utility based on CPT was first brought up by Tversky and
Kahneman (1992). Later, a few researchers came up with several applications based on
CPT including Kaluszka and Krzeszowiec (2012a), Kaluszka and Krzeszowiec (2012b),
and Mao and Cai (2018). The definition given by two researchers is in different forms.
In Kaluszka and Krzeszowiec (2012a) and Kaluszka and Krzeszowiec (2012b), expected
loss/utility based on CPT is defined as

ρg
(
u1
(
X+

))
− ρg

(
u2
(
(−X)+

))
(4.2.4)

where u1, u2 ∈ U , h1, h2 ∈ H and ρg (ui (X+)) is defined as the form of (4.2.1), for i = 1, 2..
The concept is used in insurance premium calculation. In Mao and Cai (2018), Expected
loss based on CPT is defined as

Hv,h1,h2(X) =
∫ ∞

0
v(x)dh1(FX(x)) +

∫ 0

−∞
v(x)dh2(FX(x)), (4.2.5)

where F is the distribution function of X. In this form, CPT is viewed as the expectation
of preference function v with respect to probability measure h1◦F for the positive part and
with respect to probability measure h2 ◦F for negative part. Both definitions are generally
not equivalent. In this chapter, we will stay with the definition in Mao and Cai (2018).

In Mao and Cai (2018), the function v is restricted to be continuous increasing function
on both R+ and R−. In this chapter, as a generalization, we would like to ease the restriction
on v to make it continuous only and study the properties of the model on new restrictions.
Generalized shortfall induced by CPT
For the following content, we use the definition of of Mao and Cai (2018) for generalized
shortfall induced by CPT.

Definition 4.2.3. For v ∈ U , and h1, h2 ∈ H, the risk set is defined as

X v
h1,h2 = {X ∈ L0(R) : Hv,h1,h2(X − x) <∞, ∀x ∈ R}, (4.2.6)

Then, define ρv,h1,h2 : X h1,h2
v → R and

ρv,h1,h2(X) = inf{x ∈ R : Hv,h1,h2(X − x) ≤ 0}. (4.2.7)

Such a risk measure is called a generalized shortfall induced by CPT.

Some properties of CPT include that L∞ ⊆ X v
h1,h2 and that X v

h1,h2 is closed under
translations. Our multivariate risk measure will be extended from univariate generalized
shortfall induced by CPT.
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4.3 Multivariate extension of univariate generalized
shortfalls induced by CPT

One of the challenge, when a univariate distortion risk measure is extended to multi-
variate distortion risk measure, is how do we properly apply the distortion function. One
approach used by Estany et al. (2018) is to apply the distortion function g to joint survival
function S(x1, . . . , xd). Then the distortion risk measure for multivariate nonnegative risks
is defined as

ρ(X) =
∫ ∞

0
. . .
∫ ∞

0
g(S(x1, . . . , xd))dx1 . . . dxd. (4.3.1)

However, one of the obvious limitations is that this can be only applied to nonnegative
multivariate risks. In this chapter, we use a different approach similar to Armenti et al.
(2018). In this approach. we first apply an aggregation function l which is called loss
function in Armenti et al. (2018). The loss function l transforms a random vector X to a
univariate random variable Y = l(X). In this way, we can apply the distortion function
just like in the univariate case.

4.3.1 Risk set and set of acceptable monetary allocation

Similar to the univariate case, we first define the risk set. Also, we define the set of
acceptable monetary allocation. Before we go any deeper, we propose some conditions on
loss function l which are useful to guarantee the existence of risk measure and desirable
properties of the obtained risk measure.

Assumption 4.3.1. Let l : Rd → R be strictly increasing, proper convex function where
strictly increasing means that if x < y for each xi < yi, then l(x) < l(y) and strictly
decreasing means that if x < y for each xi < yi, then l(x) > l(y) for all 1 ≤ i ≤ d,.
Furthermore, assume inf l < 0, l(0) = 0 and l(x) ≥ ∑d

i=1 xi. Let v ∈ C, and h1, h2 ∈ H.

In this assumption, the properness of l is used in Lemma 4.3.17 to show the properness
of H. The convexity of l is used in Proposition 4.3.3 to show the convexity of function H,
Proposition 4.3.18 to show the unbias of function l and Theorem 4.3.22 to solve the solution
of the objective function. Furthermore, the assumpton that l(0) = 0 is used in Theorem
4.3.19 to show the existence of solution. Finally, the assumption that l(x) ≥ ∑d

i=1 xi is also
used in Theorem 4.3.19 to show the existence of solution. Here, we provide an example of
possible selection of l.
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Example 4.3.1 (Armenti et al. (2018), (6.1)). Let x = (x1, . . . , xd) ∈ Rd. Consider
l(x) = ∑d

i=1 x
+
i − 1

2
∑d
i=1 x

−
i . We show that this l satisfies Assumption 4.3.1.

First, we show that l is strictly increasing. As x = x+ − x−, if x < y, then we need to
have either x+ < y+ and −x− ≤ −y−, or x+ ≤ y+ and −x− < −y−. In either case,
x+ − 1

2x
− < y+ − 1

2y
−. Now, if x < y,

l(x) =
d∑
i=1

x+
i −

1
2

d∑
i=1

x−i =
d∑
i=1

(
x+
i −

1
2x
−
i

)
<

d∑
i=1

(
y+
i −

1
2y
−
i

)
= l(y). (4.3.2)

Next, it is obvious that l(0) = 0. Then, Finally, as xi → −∞ for i = 1, . . . , d, l(x) =∑d
i=1 x

+
i − 1

2
∑d
i=1 x

−
i = −1

2
∑d
i=1 x

−
i → −∞. Therefore, inf l < 0.

Finally, we see that

l(x) =
d∑
i=1

x+
i −

1
2

d∑
i=1

x−i =
d∑
i=1

x+
i −

d∑
i=1

x−i + 1
2

d∑
i=1

x−i =
d∑
i=1

xi + 1
2

d∑
i=1

x−i ≥
d∑
i=1

xi. (4.3.3)

Therefore, l(x) ≥ ∑d
i=1 xi.

Next, we introduce the notations Hv,h1 (X) and X d,v,l
h1,h2 which will be used as decision

criterion for our risk measure. Let X ∈ R, let

Hv,h (X)) =
∫
R
v(x)dh (FX(x)) . (4.3.4)

The risk set is defined as

X d,v,l
h1,h2 = {X ∈ L0(Rd) : Hv,h1,h2(l(X− x)) <∞, ∀x ∈ Rd}. (4.3.5)

As we mentioned before, since we use the loss function l to transform X from the dimension
of d to univariate random variables, we can directly apply the distortion function to the
new random variable. Therefore, we can define the objective function same as univariate
generalized shortfall induced by CPT in Mao and Cai (2018).

Remark 4.3.1. In the above setup, technically, we can combine the aggregation function
l with the adjustment function v to form a single function. We separate them mainly for
two purpose. First, since our model can be also viewed as an extension of Armenti et al.
(2018)’s model, we would like to be consistent with the structure in Armenti et al. (2018)
in order to make further comparison. Also, the separation of two functions can make the
model easier to be understood and implemented. While the aggregation function l is usually
based on some subjective aggregation rules, the adjustment function v totally depends on
the stakeholders’ risk appetite. As the reasons above, we decide to leave the aggregation
function l and adjustment function v as two separate components in the model.
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In the next proposition, we provide a sufficient condition for the risk set to be convex,
and we start with a lemma that would be used in the proof of the proposition.

Lemma 4.3.2. Let X ∈ X 1,v,l
h1,h2, v+(x) = v(x) and v−(x) = v(−x), then

Hv,h1,h2(X) = Hv+,h1

(
X+

)
+Hv−,h∗2

(
X−

)
. (4.3.6)

Proof. We start with right hand side of the equation.

Hv+,h1

(
X+

)
+Hv−,h∗2

(
X−

)
=
∫
R
v+(x)dh1 (FX+(x)) +

∫
R
v−(x)dh∗2 (FX−(x)) from (4.3.4)

=
∫
R
v+(x)dh1(P (X+ ≤ x)) +

∫
R
v−(x)dh∗2(P (X− ≤ x))

=
∫ ∞

0
v+(x)dh1(P (X+ ≤ x)) +

∫ ∞
0

v−(x)dh∗2(P ((−X)+ ≤ x))

=
∫ ∞

0
v+(x)dh1(P (X ≤ x)) +

∫ ∞
0

v−(x)dh∗2(P (−X ≤ x))

=
∫ ∞

0
v+(x)dh1(P (X ≤ x)) +

∫ ∞
0

v−(x)dh∗2(P (X ≥ −x))

=
∫ ∞

0
v+(x)dh1(P (X ≤ x))−

∫ ∞
0

v−(x)dh(P (X < −x))

=
∫ ∞

0
v+(x)dh1(P (X ≤ x))−

∫ −∞
0

v−(−x)dh(P (X < x))

=
∫ ∞

0
v+(x)dh1(P (X ≤ x)) +

∫ 0

−∞
v−(−x)dh(P (X < x))

=
∫ ∞

0
v(x)dh1(P (X ≤ x)) +

∫ 0

−∞
v(x)dh(P (X < x))

=
∫ ∞

0
v(x)dh1(P (X ≤ x)) +

∫ 0

−∞
v(x)dh(P (X ≤ x)) (4.3.7)

where the last line is by the definition of Lebesgue–Stieltjes (L-S) integral. For details,
please see Merkle et al. (2014).

Proposition 4.3.3. The risk set X d,v,l
h1,h2 is convex if

(a) v is convex and strictly increasing on R+ and convex and strictly decreasing on R− and
h1, h2 ∈ H, h1 is convex and h2 is concave; or
(b) v is strictly increasing and convex on both R+ and R−, h1, h2 are convex, and there
exists a constant d such that

d ≥ sup
p∈(0,1)

(h2)′−(p)
(h1)′+(p) . (4.3.8)

Proof. This proof is modified from Proposition A.1 of Mao and Cai (2018).
(a) From Lemma 4.3.2, we know that

Hv,h1,h2(l(X− x)) = Hv+,h1

(
(l(X− x))+

)
+Hv−,h∗2

(
(l(X− x))−

)
, (4.3.9)
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where h∗2(p) = 1 − h2(1 − p). Next, let X and Y ∈ X d,v,l
h1,h2 , and λ ∈ (0, 1). Set Z =

λX + (1− λ)Y. As v+ is convex, for any x ∈ Rd,

v+
(
(l(Z− x))+

)
=v+

(
(l(λ(X− x) + (1− λ)(Y − x)))+

)
≤v+

(
(λl(X− x) + (1− λ)l(Y − x))+

)
by convexity of l and v+ is increasing,

≤v+
(
λ(l(X− x))+ + (1− λ)(l(Y − x))+

)
by convexity of (·)+,

≤λv+
(
l(X− x))+

)
+ (1− λ)v+

(
l(Y − x))+

)
by convexity of v+.

(4.3.10)

Next, by property of distortion risk measure, Hv+,h1(X) = ρh∗1(v+(X)) for any random
variable X if h1 is left continuous (see Dhaene, Kukush, et al. (2012)), where ρh is the
distortion risk measure defined in 4.2.1. Next,

Hv+,h1

(
(l(Z− x))+

)
≤Hv+,h1

(
λv+

(
l(X− x))+

)
+ (1− λ)v+

(
l(Y − x))+

))
(4.3.11)

≤λHv+,h1

(
(l(X− x))+

)
+ (1− λ)Hv+,h1

(
(l(Y − x))+

)
(4.3.12)

<∞

where (4.3.11) is because h1 ◦Fl(X) defines a probability measure and (4.3.12) is from Hong
et al. (1987), we know that rank-dependent utility Hu,h(X) is convex if and only if u is
convex and h is convex.
For Hv−,h∗2

((l(X− x))−), since v is decreasing on R−, v− is increasing on R−. With similary
approach, we can show that Hv−,h∗2

((l(Z− x))−) is also finite for any x ∈ Rd.
(b) First, we notice that since l is convex, for Z = λX + (1− λ)Y, we have

l(Z) =l(λX + (1− λ)Y)

≤λl(X) + (1− λ)l(Y) (4.3.13)

Therefore, Hv,h1,h2(l(Z)) ≤ Hv,h1,h2(λl(X) + (1−λ)l(Y)). The rest of the proof follows the
proof of Theorem 2.7 (iii)→(i) in the Appendix of Mao and Cai (2018) by letting X = l(X)
and Y = l(Y).

With our basic setup defined, now, we are going to define the concept of acceptance
set and acceptable monetary allocation set.

Definition 4.3.1. We call a risk random vector X is acceptable if it satisfies

Hv,h1,h2(l(X)) ≤ c. (4.3.14)
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The set
A := {X ∈ X d,v,l

h1,h2 : Hv,h1,h2(l(X)) ≤ c} (4.3.15)

is called acceptance set of our risk measure.

In this definition, we set an acceptable risk level which is represented by a constant
c. We use objective function H with preference function v, distortion function h1, h2 and
loss function l together to measure the total risk level of risk random vector X. If the
measured risk level is below c, that means the risk is under control and we can accept this
risk position. Otherwise, the risk level is too high and we should manage the risk to make
it acceptable or avoid it.

Remark 4.3.4. The idea of acceptable monetary allocation is very similar to the idea of
acceptance set what was first brought up in Artzner et al. (1999). In Artzner et al. (1999),
the author defines a coherent risk measure based on the properties of the acceptance set.
After that, this idea is also used by many other researchers. In Föllmer and Schied (2002),
the authors use this idea to define a convex risk measure. In Feinstein et al. (2017) and
Biagini et al. (2019), both authors use acceptance set to define risk measures for systemic
risk.

Next, using the idea of acceptance set and following the idea of Armenti et al. (2018),
we define the set of acceptable monetary allocation.

Definition 4.3.2. A monetary allocation x ∈ R is acceptable for X if

Hv,h1,h2(l(X− x)) ≤ c (4.3.16)

for some constant c. The set of accepatable monetary allocation A(X) is

A(X) := {x ∈ Rd : X− x ∈ A} = {x ∈ Rd : Hv,h1,h2(l(X− x)) ≤ c}. (4.3.17)

Remark 4.3.5. The idea for acceptable monetary allocation is that if a risk random vector
X is not acceptable, we should prepare the risk capital x. After subtracting the risk capital
from the random vector, the new uncertain risk position should be acceptable. The amount
of capital that makes the risk position acceptable is called acceptable monetary allocation.
Naturally, the acceptable monetary allocation is not unique as if a capital x is acceptable,
then any other capital y ≥ x should also be acceptable. We notice that the acceptable
monetary allocation itself can be used as a risk measure for capital allocation. However,
as a set of values, the nonuniqueness may create confusions when it is applied to risk
management. Therefore, based on the set of acceptable monetary allocation, we define our
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multivariate generalized shortfalls induced by CPT with corresponding risk allocation in
Section 4.3.3.

Remark 4.3.6. Generally, the acceptance criterion can be set to be any level c ∈ R such
that Hv,h1,h2(l(X− x)) ≤ c. In Mao and Cai (2018), c is set to be 0. However, in this
chapter we go back to use general value c as the value of c together with selection of v, l, h1

and h2 will decide the existence and uniqueness of acceptable monetary allocation and our
risk measure.

Before we talk about the properties of acceptable monetary allocation set, we provide
an example of possible selection of v, h1, and h2 to give a direct impression of the possible
application of our risk measure.

Example 4.3.2. If we set v(x) = x, h1(x) = x, and h2(x) = x, then our acceptance
criterion is reduced to

Hv,h1,h2(l(X− x)) =
∫ ∞

0
sd(P (l(X− x) ≤ s) +

∫ 0

−∞
sdP (l(X− x) ≤ s)

=
∫ ∞
−∞

sd(Fl(X−x)(s))

=E(l(X− x)) (4.3.18)

This acceptance criterion is used in Armenti et al. (2018). With this acceptance criterion,
the risk measure defined later in Definition 4.3.3 is reduced to Multivariate shortfall risk
defined in Armenti et al. (2018).

Remark 4.3.7. Here, we would like to provide an interpretation for this acceptable money
allocation. First, the acceptable money allocation decision criterion H is decided by the sum
of two parts: the undercapitalization part X+ and the overcapitalization X−. Both risks
are reweighted with preference function v and the distribution is distorted by the function
h1 and h2 for the positive part and negative part respectively. If an acceptable monetary
allocation x is applied, the risk level that is measured by our decision criterion functions
H should be below c.

4.3.2 Properties of acceptable monetary allocation set

In this section, we first discuss the properties of acceptable monetary allocation set
under certain restrictions applied to the preference function, distortion functions and value
c which would make this risk measure desirable and then consider the conditions that are
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sufficient for the existence of solutions. We follow this order as the existence of solutions de-
pends on the properties of preference functions, distortion functions and c. We would only
provide the existence conditions for some cases. We introduce the following propositions
by the order of complexity of the restrictions on v, h1 and h2. We start with translation
invariance property.

Proposition 4.3.8 (Translation invariance). For X, Y ∈ X d,v,l
h1,h2, A(X + m) = A(X) + m

for any m ∈ Rd;

Proof. By (4.3.17), A(X + m) = {y ∈ Rd : Hv,h1,h2(l(X + m− y)) ≤ c}. Let x = y−m,
we have A(X + m) = {x + m ∈ Rd : Hv,h1,h2(l(X− x)) ≤ c} = A(X) + m.

The translation invariance property has a similar interpretation as the univariate risk
measure’s. If the risk random vector is increased by a constant amount for each component,
then the capital needed to make the position acceptable for each risk component is also
increased by the same constant amount. In the next proposition, we are going to show
sufficient conditions for the permutation invariance property of the acceptable monetary
allocation set.

Proposition 4.3.9. Let X, Y ∈ X d,v,l
h1,h2. Let π be a permutation function and π−1 be the

inverse function of π. We define πA(X) = {y ∈ Rd : ∃x ∈ A,y = π(x)} and we say a
function l is permutation invariance if l(X) = l(π(X)). If l is permutation invariant, then
A(π(X)) = πA(X) for every permutation π.

Proof. A(π(X)) = {x ∈ Rd : Hv,h1,h2(l(π(X)− x)) ≤ c}. If l is permutation invariant, then
Hv,h1,h2(l(π(X)− x)) = Hv,h1,h2(l(π(X− π−1(x)))) = Hv,h1,h2(l(X− π−1(x))). Therefore,
x ∈ A(π(X)) iff π−1(x) ∈ A(X). As π(π−1(x)) = x, π−1(x) ∈ A(X) implies x ∈ πA(X).
Finally, we have x ∈ A(π(X)) iff x ∈ πA(X).

This proposition provides us with a condition to guarantee the permutation invariance
property of the acceptable monetary allocation set. This property is necessary as only
changing the order of risk component should not change the risk measure for each risk
component. This can prevent the incentive of reducing the risk for certain risk component
by changing the order of the risk component. In the next proposition, we show sufficient
conditions to make the acceptable monetary allocation set convex which is used later to
show the existence and uniqueness of the risk measure.
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Proposition 4.3.10. For X, Y ∈ X d,v,l
h1,h2, if v is strictly increasing and convex on both R+

and R−, h1, h2 are convex, and there exists a constant d such that

d ≥ sup
p∈(0,1)

(h2)′−(p)
(h1)′+(p)

then, it holds:
(i) A(X) is convex;
(ii) Define A(X)+(1−α)A(Y) := {z|∃x ∈ A(X),∃y ∈ A(Y ), such that z = αx+(1−α)y}.
Then, A(αX + (1− α)Y) ⊇ αA(X) + (1− α)A(Y), for any α ∈ (0, 1).

Proof. (i) Since l(X− z) ≤ λl(X− x) + (1− λ)l(X− y), similar to Proposition 4.3.3 (b),
we have Hv,h1,h2(l(X − z)) ≤ λHv,h1,h2(l(X − x)) + (1 − λ)Hv,h1,h2(l(X − y)) ≤ c which
implies the set A(X) is convex.
(ii)We need to show that if x satisfiesHv,h1,h2(l(X− x)) ≤ c, and y satisfiesHv,h1,h2(l(Y − y)) ≤
c, then αx + (1−α)y satisfies Hv,h1,h2(l(αX + (1−α)Y− (αx + (1−α)y))) ≤ c. This can
be easily shown with the same method as Proposition 4.3.3.

In this proposition, we provide a condition that can make this set convex. In the next
proposition, we provide the condition that makes the acceptable monetary allocation set
monotonic.

Proposition 4.3.11. For X, Y ∈ X d,v,l
h1,h2, if

v is increasing on both R+ and R−, h1, h2 ∈ H,
then A(X) ⊇ A(Y) whenever X ≤ Y.

Proof. This is equivalent to show that if X ≤ Y, then Hv,h1,h2(l(X− x)) ≤ Hv,h1,h2(l(Y−
x)). Let X ≤ Y. Then, due to the increasing of v+ on R+ and l is increasing, we have
v+((l(X− x))+) ≤ v+((l(Y − x))+). As h1 ◦ Fl(X) defines a probability measure, we have
Hv+,h1 ((l(X− x))+) ≤ Hv+,h1 ((l(Y − x))+). For Hv−,h2 ((l(X− x))−), as both v and l

are increasing, we have v− is decreasing and l(X− x) ≤ l(Y − x). Then, (l(X− x))− ≥
(l(Y − x))− and v−(l(X− x)−) ≤ v−(l(Y − x)−) as v− is decreasing. Finally, Hv−,h2 ((l(X− x))−) ≤
Hv−,h2 ((l(Y − x))−) and by 4.3.9, Hv,h1,h2(l(X− x)) ≤ Hv,h1,h2(l(Y − x)).

Mathematically, this proposition shows that if a risk random vector X is less than
Y componentwise almost surely, then the acceptable monetary allocation for Y is also
acceptable for X. Intuitively, this is also reasonable since acceptable capital allocation for
larger risk should be acceptable for smaller risk.
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Remark 4.3.12. Proposition 4.3.10, 4.3.11 provide sufficient conditions for the acceptable
monetary allocation set to satisfy the above properties. We observe that in Example 4.3.2,
v satisfies conditions in all of above propositions. For details, please see Armenti et al.
(2018).

In the next proposition, we provide conditions that can make the acceptable monetary
allocation set positive homogeneous.

Proposition 4.3.13. For h1, h2 ∈ H, if the distortion function h1 is continuous at q1 =
inf{p : h1(p) = 1} and h2 is continuous at q2 = sup{p : h2(p) = 0} with q1 > q2, and l

is positive homogeneous, then A(cX) = cA(X) for every c > 0 if and only if there exist
β > 0, and arbitrary constant a1, a2 such that

v(x) =

a1x
β, x ≥ 0,

a2(−x)β, x < 0.
(4.3.19)

Proof. As l is positive homogeneous, l(λ(X− x)) = λl(X− x) for λ > 0. The rest of the
proof follows the proof of Proposition 2.9 of Mao and Cai (2018) by replacing X − x with
l(X− x). Furthermore, as we remove of the restriction of v(x) is strictly increasing, the
resulted a1 a2 does not have to be positive as the result in Mao and Cai (2018). This is
because from the proof of Proposition 2.9 of Mao and Cai (2018), it is shown that the
solution of v(x) is that v(x) = v1(x) for x ≥ 0 and v(x) = −v2(−x) for x < 0. Then by
solving the equation of v1(x) and v2(x), we have the general solution is that v1(x) = a1x

β

and v2(x) = a2x
β. Now, from the continuity of v(x), we need to have v1(0) = −v2(−0).

Therefore, we have β > 0. As we remove the restriction of strictly increasing of v(x), a1

and a2 can be arbitrary constants.

This property is the same as the univariate positive homogeneity’s. If the risk is
magnified, the acceptable capital is also magnified by the same factor.

After we discuss the properties of acceptable monetary allocation set, we move to the
sufficient conditions for the existence of solutions if the preference functions and distortion
functions are defined as in Proposition 4.3.10.

Proposition 4.3.14. For X, Y ∈ X d,v,l
h1,h2, if c ∈ (infx∈Rd Hv,h1,h2(l(X− x)),∞), then

∅ 6= A(X) 6= Rd. Furthermore, if v is strictly increasing on both R+ and R−, then
infx∈Rd Hv,h1,h2(l(X− x)) ≤ 0.
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Proof. Hv,h1,h2(l(X− x)) can also be written as

Hv,h1,h2(l(X− x)) = Hv,h1

(
(l(X− x))+

)
+Hv,h2

(
−(l(X− x))−

)
, (4.3.20)

This is obvious if infx∈Rd Hv,h1,h2(l(X− x)) = −∞. Therefore, we only need to prove the
case that infx∈Rd Hv,h1,h2(l(X− x)) > −∞.
Let x∗ = arg infx∈Rd l(x). Let xn →∞ for each xi where 1 ≤ i ≤ d. Then, as inf l < 0,

Hv,h1,h2(l(X− xn)) =Hv,h1 (0) +Hv,h2

(
−(l(X− xn))−

)
≤Hv,h1 (0) +Hv,h2 (0)

≤0, (4.3.21)

Therefore, infx∈Rd Hv,h1,h2(l(X− x)) ≤ 0. To see A(X) 6= Rd, similar to (a), we let xn →
−∞ for each xi with 1 ≤ i ≤ d. ThenHv,h1 ((l(X− x))+)→∞ andHv,h2 (−(l(X− x))−)→
0 as l is strictly increasing on S+ and v+ is strictly increasing on R+, which implies
Hv,h1,h2(l(X− xn)) > c.

This proposition is useful to show the existence of risk measure. Also, the second part
A(X) 6= Rd shows that not all capital allocation methods are acceptable.

4.3.3 Properties of multivariate generalized shortfalls induced by
CPT

In this section, we define the risk measure multivariate generalized shortfalls induced
by CPT and risk allocation and then following by its properties. After that, we discuss
conditions that can guarantee the existence and uniqueness of risk allocation.

Definition 4.3.3. Multivariate generalized shortfall induced by CPT is defined as

ρd,l,gh1,h2(X) = inf
{

d∑
k=1

xk : x ∈ A(X)
}

= inf
{

d∑
k=1

xk,x ∈ Rd : Hv,h1,h2(l(X− x)) ≤ c

}
.

(4.3.22)

This risk measure can be viewed as the minimum total capital needed of a company
or a system with acceptable monetary allocation to each risk component. Next, we define
the concept of risk allocation based on acceptable monetary allocation set. We use same
definition as Armenti et al. (2018) for risk allocation.
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Definition 4.3.4. A risk allocation is an acceptable monetary allocation x = (x1 . . . , xd) ∈
A(X) such that R(X) := ρd,l,gh1,h2(X) = ∑d

i=1 xi. When a risk allocation is uniquely deter-
mined, we denote it by RA(X).

Before we talk about the properties of multivariate generalized shortfalls induced by
CPT, we would like to draw the connection between multivariate generalized shortfalls in-
duced by CPT and univariate generalized shortfall induced by CPT (Mao and Cai (2018)).
Univariate generalized shortfall induced by CPT (Mao and Cai (2018)) can be seen as a
special case of our multivariate generalized shortfall induced by CPT. We show that in the
next example.

Example 4.3.3. Let l(x) = ∑d
i=1 xi and d = 1, the decision criterion becomes

Hv,h1,h2(l(X− x)) = Hv,h1,h2(X − x), (4.3.23)

and our risk measure is reduced to

ρ1,l,g
h1,h2(X) = inf

{
x ∈ R1 : Hv,h1,h2(X − x)) ≤ c

}
(4.3.24)

which is generalized shortfall induced by CPT in Mao and Cai (2018). Here, we notice
that the loss function l satisfies Assumption 4.3.1.

In next theorem, we show that under certain conditions, multivariate generalized
shortfalls induced by CPT is convex, monotone, translation invariant, and positive homo-
geneous. Those properties play an essential role in univariate risk measure and also make
our multivariate risk measure a desireble one.

Theorem 4.3.15. For X, Y ∈ X d,v,l
h1,h2, and c ∈ (infx∈Rd Hv,h1,h2(l(X− x)),∞), if v is

strictly increasing and convex on both R+ and R−, h1, h2 are convex, and there exists a
constant d such that

d ≥ sup
p∈(0,1)

(h2)′−(p)
(h1)′+(p)

and l is positive homogeneous strictly increasing on R,
then ρd,l,gh1,h2(X) is real valued, convex, monotone, and translation invariant where translation
invariance is defined as ρ(X + m) = ρ(X) +∑d

i=1mi for m = (m1, . . . ,md) ∈ Rd.
In addition, if the distortion function h1 is continuous at q1 = inf{p : h1(p) = 1} and h2 is
continuous at q2 = sup{p : h2(p) = 0} with q1 > q2, and there exist β, a1, a2 such that

v(x) =

a1x
β, x ≥ 0,

a2(−x)β, x < 0.
(4.3.25)

then ρd,l,gh1,h2(X) is positive homogeneous.
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Proof. The proof will follow the properties of A(X). The convexity can be derived from
Proposition 4.3.10. As A(αX + (1− α)Y) ⊇ αA(X) + (1− α)A(Y),

ρd,l,gh1,h2(αX + (1− α)Y) = inf
{

d∑
k=1

xk : x ∈ A(αX + (1− α)Y)
}

≤ inf
{

d∑
k=1

xk : x ∈ αA(X) + (1− α)A(Y)
}

=α inf
{

d∑
k=1

xk : x ∈ A(X)
}

+ (1− α) inf
{

d∑
k=1

xk : x ∈ A(Y)
}

=αρd,l,gh1,h2(X) + (1− α)ρd,l,gh1,h2(Y). (4.3.26)

The second last equality is because that if z ∈ αA(X)+(1−α)A(Y), from definition, there
exists an x ∈ A(X), and y ∈ A(Y), such that z = αx + (1 − α)y. Then, let {zn}|∞n=1 ⊆
A(X) + (1 − α)A(Y) be a sequence of vectors such that infA(X)+(1−α)A(Y)

∑d
k=1 zk =

lim∞n=1
∑d
i=1 zni where zn = (zn1, . . . , znd). Then, infA(X)+(1−α)A(Y)

∑d
k=1 zk = lim∞n=1

∑d
i=1 αxni+

(1−α)yni, where xn = (xn1, . . . , xnd) and yn = (yn1, . . . , ynd). At the same time, {xn}|∞n=1 ⊆
A(X) and {yn}|∞n=1 ⊆ A(Y). Therefore, lim∞n=1

∑d
i=1 xni ≤ infA(X)

∑d
i=1 xi and lim∞n=1

∑d
i=1 yni ≤

infA(Y)
∑d
i=1 yi. Therefore,

inf
{

d∑
k=1

xk : x ∈ αA(X) + (1− α)A(Y)
}

≥α inf
{

d∑
k=1

xk : x ∈ A(X)
}

+ (1− α) inf
{

d∑
k=1

xk : x ∈ A(Y)
}
. (4.3.27)

On the other hand, we can find a sequence of vectors {xn}|∞n=1 ⊆ A(X) and {yn}|∞n=1 ⊆
A(Y) such that infA(X)

∑d
k=1 xk = lim∞n=1

∑d
i=1 xni and infA(Y)

∑d
k=1 yk = lim∞n=1

∑d
i=1 yni.

Then, by definition of A(X) + (1 − α)A(Y), for every xn = (xn1, . . . , xnd) and yn =
(yn1, . . . , ynd), there exists a zn ∈ A(X)+(1−α)A(Y) such that zn = αxn+(1−α)yn. Then,
infA(X)+(1−α)A(Y)

∑d
k=1 zk ≤

∑d
i=1 zni = ∑d

i=1 αxni + (1 − α)yni where zn = (zn1, . . . , znd).
Finally, as n→∞, we have

inf
{

d∑
k=1

xk : x ∈ αA(X) + (1− α)A(Y)
}

≤α inf
{

d∑
k=1

xk : x ∈ A(X)
}

+ (1− α) inf
{

d∑
k=1

xk : x ∈ A(Y)
}
. (4.3.28)

By combining, (4.3.27) and (4.3.28), we have the second last equality.
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Monotonicity can be derived from Proposition 4.3.11. As A(X) ⊇ A(Y) we have

ρd,l,gh1,h2(X) = inf
{

d∑
k=1

xk : x ∈ A(X)
}

≤ inf
{

d∑
k=1

xk : x ∈ A(Y)
}

=ρd,l,gh1,h2(Y). (4.3.29)

Translation invariance can be derived from Proposition 4.3.8. As A(X + m) = A(X) + m,
we have

ρd,l,gh1,h2(X + m) = inf
{

d∑
k=1

xk : x ∈ A(X + m)
}

= inf
{

d∑
k=1

xk : x ∈ A(X) + m
}

= inf
{

d∑
k=1

xk +mk : x ∈ A(X)
}

=ρd,l,gh1,h2(X) +
d∑
i=1

mi. (4.3.30)

Positive homogeneity can be derived from Proposition 4.3.13. As A(cX) = cA(X), we have

ρd,l,gh1,h2(cX) = inf
{

d∑
k=1

xk : x ∈ A(cX)
}

= inf
{

d∑
k=1

xk : x ∈ cA(X)
}

= inf
{
c

d∑
k=1

xk : x ∈ A(X)
}

=cρd,l,gh1,h2(X). (4.3.31)

Another important problem that we need to consider is that if this risk allocation is
attainable and unique. In other words, we need to make sure this risk allocation is in set
A(X). In this case, we first need A(X) to be closed. In the next proposition, we provide
conditions that can make A(X) a closed set.

Proposition 4.3.16. For X ∈ X d,v,l
h1,h2, and c ∈ (infx∈Rd Hv,h1,h2(l(X− x)),∞), if l is

continuous, then A(X) is closed. Furthermore, if infx∈Rd Hv,h1,h2(l(X− x)) is attainable,
for
c = infx∈Rd Hv,h1,h2(l(X− x)), A(X) is closed.
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Proof. We want to show that for any xn ∈ A(X) for n ∈ 1, 2, · · · , and xn → x, then x ∈
A(X). First, we want to show that Hv,h1 ((l(X− x))+) < ∞ and Hv−,h∗2

((l(X− x))−) <
∞. Since we have xn ∈ A(X), this impliesHv,h1 ((l(X− xn))+) <∞ andHv−,h∗2

((l(X− xn))−) <
∞. By translation invariance of A(X) (Proposition 4.3.8), we have x ∈ A(X + x − xn)
which implies Hv,h1 ((l(X− x))+) <∞ and Hv−,h∗2

((l(X− x))−) <∞.
Next, we have X− xn → X− x. Then, by continuity of l, we have l(X− xn)→ l(X− x).
Furthermore, we have (l(X− xn))+ → (l(X− x))+ and (l(X− xn))− → (l(X− x))−. As
Hv,h1 ((l(X− x))+) < ∞ and Hv−,h∗2

((l(X− x))−) < ∞, by dominated convergence the-
orem, we have Hv,h1 ((l(X− xn))+) → Hv,h1 ((l(X− x))+) and Hv−,h∗2

((l(X− xn))−) →
Hv−,h∗2

((l(X− x))−). As Hv,h1h2(l(X − x)) = Hv,h1 ((l(X− x))+) + Hv−,h∗2
((l(X− x))−),

we have Hv,h1h2(l(X− xn))→ Hv,h1h2(l(X− x)).
Now, since xn ∈ A(X), if H(l(X − xn)) = c for some n ∈ N, we have H(l(X − xm)) = c

∀m ≥ n. In this case, H(l(X− x)) = c, and we conclude x ∈ A(X). If H(l(X− xn)) < c,
then, as H(l(X − xn)) → H(l(X − x)), we have H(l(X − x)) < c, then we also have
x ∈ A(X) which complete our proof.

Next, we also need the objective function HX,l
v,h1,h2(x) = Hv,h1,h2(l(X − x)) to be a

proper closed convex function which will be used in Theorem 4.3.19 and we state the
definition of closed function here.

Definition 4.3.5 (Boyd and Vandenberghe (2004), A.3.3). A function f : Rn → R is said
to be closed if, for each α ∈ R, the sublevel set

{x ∈ domf |f(x) ≤ α} (4.3.32)

is closed.

In the following lemma, we provide a sufficient condition to make H a proper closed
convex function.

Lemma 4.3.17. Let X ∈ X d,v,l
h1,h2, and l be a continuous function. If v is strictly increasing

and convex on both R+ and R−, h1, h2 ∈ H, h1, h2 are convex, and there exists a constant
d2 such that

d2 ≥ sup
p∈(0,1)

(h2)′−(p)
(h1)′+(p) ,

then HX,l
v,h1,h2(x) = Hv,h1,h2(l(X− x)) is a proper closed convex function.

Proof. Convex property can be seen from Proposition 4.3.3 and Proposition 4.3.10. We
prove the closed property with Definition 4.3.5 and Lemma 4.3.17. Let α ∈ (infx∈Rd Hv,h1,h2(l(X− x)),∞).
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Then, from Lemma 4.3.17, the sublevel set {x ∈ domHX,l
v,h1,h2(x)|HX,l

v,h1,h2(x) ≤ α} = A(X)
is closed. If α = infx∈Rd Hv,h1,h2(l(X− x)), then if infx∈Rd Hv,h1,h2(l(X− x)) is attainable,
by Lemma 4.3.17 again, the sublevel set is closed. If infx∈Rd Hv,h1,h2(l(X− x)) is not at-
tainable, the sublevel set is empty, thus closed. If α ∈ (−∞, infx∈Rd Hv,h1,h2(l(X− x))),
the sublevel set is again, empty, thus closed.

Now, we need to show thatHv,h1,h2(l(X−x)) is proper. It is obvious thatHv,h1,h2(l(X−
x)) < ∞ for some x. We only need to show that Hv,h1,h2(l(X − x)) > −∞ for all x. We
have

Hv,h1,h2(l(X− xn)) =Hv,h1

(
(l(X− xn))+

)
+Hv,h2

(
−(l(X− xn))−

)
≥Hv,h1 (0) +Hv,h2

(
−(l(X− xn))−

)
>−∞, (4.3.33)

where the last inequality is from l is proper.

Now, we define the concept of an unbiased function which will also be used to show
the existence of the solution.

Definition 4.3.6. We call a loss function l unbiased if, for every zero-sum allocation
u = (u1, . . . , ud), l(λu) = 0 for any λ > 0 implies that l(−λu) = 0 for any λ > 0 where
zero-sum allocation means that ∑d

i=1 ui = 0.

Here, we would like to provide sum examples of biased and unbiased functions.

Example 4.3.4 (Armenti et al. (2018) ,Example 3.3). Consider the loss function

l(x, y) =

x+ y + (x+y)+

1−y − 1 if y < 1

∞ otherwise.
(4.3.34)

If we let x = 0.5 and y = 0, and λ = 1, we have l(0.5, 0) = 0. However, l(−λ(x, y)) =
l(−0.5, 0) = −1.5 6= 0. Therefore, the function is biased.

Before we discuss the example of unbiased functions, we state a lemma. From the
lemma, we draw a connection between homogeneous and permutation invariant function
and an unbiased loss function.

Lemma 4.3.18. If loss function l is positive homogeneous and permutation invariant, then
the function l is unbiased loss function.
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Proof. Since ∑d
i=1 ui = 0, we have ui = ∑d

j=1,j 6=i uj. Now, if l(λu) = 0, as l is convex and
permutation invariante, we have

l(−λu)
d!− 1 = l

(
−λu
d!− 1

)
= l

λ∑d!
i=1,πi(u)6=u πi(u)
d!− 1

 ≤ ∑d!
i=1,πi(u)6=u l(λπi(u))

d!− 1 = l(λu) = 0,

(4.3.35)

where the first equality is from homogeneity of l and second equality is from zero-sum
allocation property of u. The last inequality is from convexity of l. On the other hand, we
have

0 = l

(
λu

d!− 1

)
= l

λ∑d!
i=1,πi(u)6=u πi(−u)

d!− 1

 ≤ ∑d!
i=1,πi(u) 6=u l(λπi(−u))

d!− 1 = l(−λu).

(4.3.36)

It follows that l(−λu) = 0 and thus l is unbiased.

Example 4.3.5. Again, we consider the loss function in Example 4.3.1. l(x) = ∑d
i=1 x

+
i −

1
2
∑d
i=1 x

−
i . Obviously, the loss function l is positive homogeneous and permutation invari-

ant. Therefore, by Lemma 4.3.18, the loss function l is unbiased.

Now, with our tools ready, we can move to show the existence of solution under certain
conditions.

Theorem 4.3.19. If l is a continuous, positive homogeneous, unbiased loss function, fur-
thermore, v is strictly increasing and convex on both R+ and R−, h1, h2 ∈ H, h1, h2 are
convex, and there exists a constant d such that

d ≥ sup
p∈(0,1)

(h2)′−(p)
(h1)′+(p) .

Then, for every X ∈ X d,v,l
h1,h2, risk allocations exists.

Proof. Let x ∈ A(X), then by Definiton 4.6.1 in Appendix,

0+A(X) = {u ∈ Rd : Hv,h1,h2(l(X− (x + λu))) ≤ c, for all λ > 0}. (4.3.37)

Since A(X) is closed from 4.3.16, by Theorem 4.6.1, if u satisfies Hv,h1,h2(l(X−(x+λu))) ≤
c for any x ∈ A(X), it satisfies Hv,h1,h2(l(X− (x + λu))) ≤ c for all x ∈ A(X). By Lemma
4.3.17, we know thatHv,h1,h2 is a proper closed convex function. Then, by Theorem 4.6.2(2),
we have 0+A(X) = 0+Hv,h1,h2 . It turns out that

0+A(X) = 0+Hv,h1,h2 = {u ∈ Rd : (Hv,h1,h20+)(y) ≤ 0}. (4.3.38)
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Then by Theorem 4.6.2(3), we have

0+A(X) =0+Hv,h1,h2

=
{

u ∈ Rd : sup
λ>0

Hv,h1,h2(l(X− (x + λu)))−Hv,h1,h2(l(X− x))
λ

≤ 0
}
(4.3.39)

Next, we define

f(x) =
d∑
i=1

xi + δ(x|A(X)) =


∑d
i=1 xi if x ∈ A(X),

∞ if x /∈ A(X).

Then, it follows that f is increasing, convex, lower semicontinuous, proper and such that
R(X) = inf f . Let B := {x ∈ Rd : f(x) ≤ γ} 6= ∅. Then

0+B = {u ∈ Rd : f(x + λu) =
d∑
i=1

(xi + λui) + δ(x + λu|A(X)) ≤ γ, for all λ > 0}.

(4.3.40)

We know that f is a proper closed convex function as a proper convex function is closed if
and only if it is lower semi-continuous. Then, by Theorem 4.6.2(2), we have 0+f = 0+B.
It turns out that

0+f = 0+B = {u ∈ Rd : (f0+)(y) ≤ 0}. (4.3.41)

Then by Theorem 4.6.2(3), we have

0+f = 0+B =
{

u ∈ Rd : sup
λ>0

f(x + λu)− f(x)
λ

≤ 0
}

=
{

u ∈ Rd : sup
λ>0

(∑d
i=1(xi + λui) + δ(x + λu|A(X)))− (∑d

i=1 xi + δ(x|A(X)))
λ

≤ 0
}

=
{

u ∈ Rd : sup
λ>0

d∑
i=1

ui + δ(x + λu|A(X)))− δ(x|A(X))
λ

≤ 0
}

(4.3.42)

which can be satisfied only if x + λu ∈ A(X) which implies u ∈ 0+A(X). At the same
time, from the definition of 0+B, we have

0+B := {u ∈ Rd : f(x + λu) ≤ γ, for all λ > 0}. (4.3.43)

Then, with x + λu ∈ A(X), we must have

−∞ < R(X) ≤
d∑
i=1

xi + λ
d∑
i=1

ui < γ <∞ (4.3.44)
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for all λ. Therefore, we conclude that ∑d
i=1 ui = 0 and 0+f = {u ∈ Rd : ∑d

i=1 ui =
0}∩0+A(X). By Theorem 27.1 (b) of Rockafellar (2015), the solution exists if f is constant
along its directions of recession 0+f . For u ∈ f+0, we have lim infλ→∞ f(x + λy) < ∞.
Then, by Theorem 4.6.2(1) and (4), we know that u is the direction of recession of f .
Therefore, we want to prove that f(x + λy) is constant for all λ > 0 which by Theorem
4.6.2(5) is equivalent to show that u ∈ f+0 and −u ∈ f+0. Let u ∈ f+0. By 4.3.39
and Proposition 4.3.11, we have l(X − (x + λu)) ≤ l(X − x) for all x ∈ A(X) and λ > 0
which implies l(−λu) ≤ l(0) = 0. Furthermore, we have l(−λu) ≥ −λ∑i=1 u

d
i = 0 from

Assumption 4.3.1. Therefore, l(−λu) = 0. As l is unbiased, l(λu) = 0. From homogeneity
and convexity of l, we have

l(x + λu)
2 = l

(
x + λu

2

)
≤ l(x)

2 + l(λu)
2 = l(x)

2 (4.3.45)

for any x ∈ Rd. Therefore, l(X − x + λu) ≤ l(X − x) which implies −u ∈ 0+A(X) ⇒
−u ∈ f+0.

Remark 4.3.20. Lemma 4.3.18 provides a practical way go find an unbiased function as
a homogeneous and permutation invariante loss function is unbiased.

Corollary 4.3.21. If l is a homogeneous and permutation invariante loss function, then,
for every X ∈ X d,v,l

h1,h2, risk allocations exists.

Proof. It follows that by Lemma 4.3.18 l is unbiased. Then, by Theorem 4.3.19, the risk
allocation exists.

After we show the existence of the solution, we need to provide a method on how the
risk allocation can be calculated. In the next theorem, we show that the risk allocation
can be calculated by solving a system of equation.

Theorem 4.3.22. If all the conditions in Theorem 4.3.19 hold, and c is selected following
Proposition 4.3.14. Then the risk allocation x∗ will be the solution of

∇f(x) + λ∇Hv,h1,h2 (l(X− x)) = 0, (4.3.46)

where ∇ =
(

∂
∂x1
, . . . , ∂

∂xd

)
, and

Hv,h1,h2 (l(X− x)) = c, (4.3.47)

where λ is a Lagrange multiplier. Furthermore, if the condition in Theorem 4.3.19 holds,
then the solution can be further reduced to the solutions to the system of the following
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equations:

1 + λ
∫
{x:l(X−x)>0}

∂

∂xi
(v(l(X− x))) dµ1 + λ

∫
{x:l(X−x)≤0}

∂

∂xi
(v(l(X− x))) dµ2 = 0,

(4.3.48)
for i = 1, . . . , d, and

Hv,h1,h2 (l(X− x)) = c. (4.3.49)

where µ1 = h1 ◦ Fx and µ2 = h2 ◦ Fx.

Proof.

Hv,h1,h2 (l(X− x)) =
∫ ∞

0
v(s)dh1

(
Fl(X−x)(s)

)
+
∫ 0

−∞
v(s)dh2

(
Fl(X−x)(s)

)
=
∫
{x:l(X−x)>0}

v(l(X− x))dµ1 +
∫
{x:l(X−x)≤0}

v(l(X− x))dµ2,

(4.3.50)

where µ1 = h1 ◦ Fx and µ2 = h2 ◦ Fx. Then, we have a convex optimization problem

minimize f(x)

subject to Hv,h1,h2 (l(X− x)) ≤ c,

The associated Lagrangian L is defined as

L(x, λ) = f(x) + λ(Hv,h1,h2 (l(X− x))− c).

We can see that the slaters condition is hold with proper selected c. Then, the solution to
this convex optimization problem, by KKT condition, is

∇f(x) + λ∇Hv,h1,h2 (l(X− x)) = 0,

⇒ 1+λ
∂

∂xi

∫
{x:l(X−x)>0}

v(l(X−x))dµ1 +λ
∂

∂xi

∫
{x:l(X−x)≤0}

v(l(X−x))dµ2 = 0, (4.3.51)

for i = 1, . . . , d, and
λ((Hv,h1,h2 (l(X− x))− c) = 0. (4.3.52)

If the conditions in Theorem 4.3.19 holds, let δi = (0, . . . , 0, δ︸︷︷︸
i-th

, 0, . . . , 0) and ei = (0, . . . , 0, 1︸︷︷︸
i-th

, 0, . . . , 0).

Let

wδi(X,x) = v(l(X− (x + δi)))− v(l(X− x))
δ

. (4.3.53)
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Then, ∂
∂xi
v(l(X − x)) = limδ→0wδi(X,x), and the derivative exists since v and l are con-

tinuous. Now, as v is convex and increasing, l is convex and increasing, v ◦ l is convex and
increasing. Let −wei(X,x) = v(l(X− (x + ei)))− v(l(X− x)). Then, it is integrable with
respect to µ1 and µ2. Furthermore, we have

|wδi(X,x)| ≤ −wei(X,x) for all x ∈ Rd and δ > −1, δ 6= 0. (4.3.54)

Therefore, we can apply the change of integral and partial derivative is by Proposition
4.6.3. Finally, from equation 4.3.55 and 4.3.56, we have

⇒ 1 + λ
∫
{x:l(X−x)>0}

∂

∂xi
(v(l(X− x))) dµ1 + λ

∫
{x:l(X−x)≤0}

∂

∂xi
(v(l(X− x))) dµ2 = 0,

(4.3.55)
for i = 1, . . . , d, and

Hv,h1,h2 (l(X− x)) = c. (4.3.56)

Generally, risk allocation is not unique. However, with the following additional re-
striction, the risk allocation can be unique.

Theorem 4.3.23. If all the assumptions in Theorem 4.3.19 are satisfied, furthermore, H
is strictly convex outside Rd

− along zero-sums allocations, then the risk allocation is unique.

Proof. Assume the risk allocation is not unique. Then, we have two risk allocation m and
n such that m 6= n and ρd,l,gh1,h2(X) = ∑d

i=1mi = ∑d
i=1 ni. As α∑d

i=1mi + (1− α)∑d
i=1 ni =

ρd,l,gh1,h2(X) for any α ∈ [0, 1], αm + (1 − α)n is also a risk allocation. Furthermore, as∑d
i=1mi−ni = 0, m−n is a zero-sum allocation. Also, αm+(1−α)n = n+α(m−n) is a risk

allocation along zero-sum direction. Now, as m, n and αm+(1−α)n are all risk allocation,
from Theorem 4.3.22, they satisfy Hv,h1,h2 (l(X−m)) = c, Hv,h1,h2 (l(X− n)) = c and
Hv,h1,h2 (l(X− αm− (1− α)n)) = c. By convexity,

c = Hv,h1,h2 (l(X− αm− (1− α)n)) ≤ αHv,h1,h2 (l(X− n))+(1−α)Hv,h1,h2 (l(X−m)) = c.

Therefore, asH is not strictly convex along αm+(1−α)n, we must have αm+(1−α)n ∈ Rd
−

which implies αm+(1−α)n ≤ 0. By monotonicity, we haveHv,h1,h2 (l(X− αm− (1− α)n)) ≤
Hv,h1,h2 (l(0)) ≤ 0 < c which is a contradiction.

In next example, we provide a simple case of selection of l, v, h1 and h2 to illustrate
the conditions in Theorem 4.3.22 and Theorem 4.3.23.
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Example 4.3.6. (i) Let h1(x) = x, h2(x) = x, v(x) = x, and l(x) := ∑d
i=1 gi(xi), where

gk : R → R is univariate loss function that satisfies Assumption 4.3.1 for k = 1, . . . , d.
Furthermore, gk is strictly convex on R+. In this way, we can see that v, h1 and h2 satisfy
conditions in Theorem 4.3.19. Also, in this way, H satisfies the condition in Theorem
4.3.23. This objective function is actually reduced to Proposition 3.9 of Armenti et al.
(2018). Therefore, the risk allocation exists and unique.
(ii) For an example that the risk allocation exists but not unique, we have same set up for v,
h1, and h2, but let l be the loss function defined as l(x) = g(∑d

i=1 xi) where g(x) = x+−βx−

and 0 ≤ β < 1 (Example 3.8 of Armenti et al. (2018)). We can see that l is positive
homogeneous and permutation invariant. Therefore, by Lemma 4.3.18, it is unbiased.
Then, by Theorem 4.3.19, the risk allocation exist. However, if x is a risk allocation and
u is a zero-sum allocation, then ∑d

i=1 xi + ui = ∑d
i=1 xi. Therefore,

Hv,h1,h2 (l(X− x + u)) = Hv,h1,h2

(
g

(
d∑
i=1

Xk − (xk + uk)
))

= Hv,h1,h2

(
g

(
d∑
i=1

Xk − xk
))
≤ c,

(4.3.57)
which means x+u is another risk allocation. This risk allocation is not unique because l is
not strictly increasing outside Rd

−. To see that, let x ∈ Rd and y ∈ Rd, then λx+(1−λ)y ∈
Rd.

l(λx + (1− λ)y) = g

(
d∑
i=1

(λxi + (1− λ)yi)
)

=
d∑
i=1

(λxi + (1− λ)yi). (4.3.58)

On the other hand,

l(x) = g

(
d∑
i=1

xi

)
=

d∑
i=1

xi. (4.3.59)

Therefore, l(λx + (1− λ)y) = λl(x) + (1− λ)l(y), and l is not strictly increasing outside
Rd
−.

Remark 4.3.24. From the properties of this model, we can obtain a risk measure for the
entire risk system and risk allocation to each risk unit at the same time. Therefore, it is
desirable for the capital allocation problem.

4.4 Numerical illustrations and empirical studies

In Armenti et al. (2018), researchers performed a empirical study for a default fund
allocation. In this study, let RA(X) be the unique capital allocation for random vector X

125



calculated with the method provided in Armenti et al. (2018), then the allocation of the
default fund (DF) for unit k = 1, . . . , d is calculated as

Ak(X) = DF
RAk(X)∑d
j=1 RAj(X)

. (4.4.1)

In this study, we first provide a simple numerical illustration to show why Multivariate
generalized shortfall induced by CPT is a superior risk measure comparing to the risk
measure defined in Armenti et al. (2018). Then, we will use the same data as the one used in
Armenti et al. (2018) which is “based on an LCH real dataset corresponding to the clearing
of 74 portfolios of equity derivatives bearing on 90 underlyings” and it is available online at
https://github.com/yarmenti/MSRA, to illustrate the real life application of multivariate
generalized shortfalls induced by CPT. The simulation method and distributions has been
discussed in Armenti et al. (2018). As the code are provided online, for comparison purpose,
we modified the original code, regenerate the simulations and use the same simulation
results to compare the allocation result from Armenti et al. (2018) and the allocation
result from our risk measures.

4.4.1 Loss functions and distortion functions

In Example 4.3.1, we have an unbiased loss function:

l(x) =
d∑
i=1

x+
i −

1
2

d∑
i=1

x−i . (4.4.2)

We would like to combine this loss function with different choice of distortion functions. In
Example 3.4 of Mao and Cai (2018), researchers provide two distortion functions defined
as following

1)

h1(x) =

0 if 0 ≤ x < α

x−α
1−α if α ≤ x ≤ 1.

(4.4.3)

2)

h∗2(x) =


x

1−β if 0 ≤ x < 1− β

1 if 1− β ≤ x ≤ 1.
(4.4.4)

We see that h1(x) is a convex function and h∗2(x) is a concave function. Therefore, we use
distortion function h1(x) and h2(x) in our risk measure. In this way, we have h1 and h2
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to be convex. In this way, h∗1(x) is distortion function for TVaRα and h∗2(x) is distortion
function for TVaRβ and furthermore, TVaR0 = E(X).

As we have shown in Theorem 4.3.19, the allocation exists and with Theorem 4.3.23,
the allocation is unique. Then, we can calculate of allocation with the method provided in
Theorem 4.3.22. Then, we use the allocation method in (4.4.1) to calculate the allocation
for default fund explicitly and comparing the result with the one in Armenti et al. (2018).
We can also adjust the level of α to see the effect on the allocation result.

4.4.2 Risk measure calculation

As our risk measure is calculated as

ρd,l,gh1,h2(X) = inf
{

d∑
k=1

xk,x ∈ Rd : Hv,h1,h2(l(X− x)) ≤ c

}
, (4.4.5)

we set c = 0, and we will use

H̄v,h1,h2(l(X− x)) =
∑

xi≥0, i∈{2,...,n}
v(xi)

(
h1(F̄l(X−x)(xi))− h1(F̄l(X−x)(xi−1))

)
+

∑
xi≤0 i∈{2...,n}

v(xi)
(
h2(F̄l(X−x)(xi))− h2(F̄l(X−x)(xi−1))

)
+v(x1)h1(F̄l(X−x)(x1)) (4.4.6)

to estimate

Hv,h1,h2(l(X− x)) =
∫ ∞

0
v(x)dh1(Fl(X−x)(x)) +

∫ 0

−∞
v(x)dh2(Fl(X−x)(x)), (4.4.7)

where x1 . . . , xn are simulated data points in increasing order and F̄l(X−x)(xi) is the em-
pirical cdf of l(X− x). Furthermore, xj ≥ 0 and xj−1 < 0. WLOG, we assume x1 < 0 and
xn > 0. Thus, we need to show that H̄v,h1,h2(l(X− x)) converges to Hv,h1,h2(l(X− x)).

Proposition 4.4.1. Let Hv,h1,h2(l(X− x)) be defined as in (4.4.6) and let H̄v,h1,h2(l(X− x))
be defined as in (4.4.7). Then, as n→∞, H̄v,h1,h2(l(X− x))→ Hv,h1,h2(l(X− x)) almost
surely.

Proof. First, by law of large number, we have F̄l(X−x)(xi) converges to Fl(X−x)(xi) almost
surely as n → ∞. Now, we look at h1 and h2. As h1 and h2 are monotone function on
[0, 1], by Froda’s theorem, they have at most countably numbers of discontinuities. Then,
let SF be the set that F̄l(X−x)(xi) converges to Fl(X−x)(xi) and Shi be the set that hi is
continuous for i = 1, 2, then hi(F̄l(X−x)(x)) converges to hi(Fl(X−x)(x)) on Shi ∩ SF . As
P ((Shi ∩ SF )c) = 0, hi(F̄l(X−x)(x)) converges to hi(Fl(X−x)(x)) almost surely. Finally, we
have H̄v,h1,h2(l(X− x))→ Hv,h1,h2(l(X− x)) almost surely.
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4.4.3 Allocation result and comparison

First, we would like to use a numerical illustration to show the flexibility of our risk
measure. Let (X, Y ) be a bivariate discrete distribution to represent the loss distribution of
a company with two business units. The probability distribution is defined in the following
table:

X=x Y=y Pr(X=x, Y=y)
280 1000 0.05
280 200 0.45
0 0 0.45
-1000 -1000 0.05

Then, the risk measure and allocation result obtained based on Armenti et al. (2018)’s
risk measure is listed in the Table 4.1.

Risk measure Allocation percentage
X 120.38 39.25%
Y 186.29 60.75%

Table 4.1: Allocation result and percentage weight based on Armenti et al. (2018)’s method

The risk measure and allocation result obtained based on our risk measure based on
different α and β level are listed in the Table 4.2 and Table 4.3.

Risk measure Allocation percentage
X 280 29.61%
Y 665.72 70.39%

Table 4.2: Allocation result and percentage weight based on Multivariate generalized short-
fall induced by CPT with α = 0.95, β = 0.05

Risk measure Allocation percentage
X 280 27.14%
Y 751.72 72.86%

Table 4.3: Allocation result and percentage weight based on Multivariate generalized short-
fall induced by CPT with α = 0.95, β = 0.5

128



From the result in the tables above, we can see that based on Armenti et al. (2018)’s
method, there are 50% chance that the company is going to be insolvent and under insolvent
situation, unit X is very unlikely to get extra funding to become solvent as the loss 280 is
more than twice of the allocation capital 120.38. In terms of the allocation percentage, as
the unit Y has a much heavier tail, intuitively, we should allocate more capital to unit Y .
However, under Armenti et al. (2018)’s method, the allocation weight does not emphasis
enough on the heavy tail of Y .

Under multivariate generalized shortfall induced by CPT with the preference function
v and distortion functions h1, h2 we selected, as we have two more level parameters α and
β, the risk measure becomes more flexible. If α = β = 0, then we can obtain the same
risk measure as Armenti et al. (2018)’s method. If we set α = 0.95 and β = 0.05, then
it means that we look at the the tail, top (1 − 0.95)% loss, and ignore the top 5% profit.
Then, the obtained risk measure is shown in table 4.2. With this risk measure, we can see
that there are only 5% chance that unit Y will be insolvent and the extra funding it needs
to reach the solvent point is much smaller. If we set the parameter α = 0.95 and β = 0.5,
then we ignore more profit to 50% level, then the risk measure for Y will increase further
to 751.72. That means, in this case, the extra funding it needs to reach the solvent point
is getting smaller. From the allocation weight aspect, the weight on Y is getting bigger
and bigger as we increase the value of α and β.

Therefore, as a comparison result, multivariate generalized shortfall induced by CPT
is superior to Armenti et al. (2018)’s risk measure and the superiority comes from the
great flexibility of the preference function v and distortion function h1, h2. With different
selection of v, h1, and h2, we can emphasis more on profit, loss, tail distribution and more
other aspects.

In next part, we will apply multivariate generalized shortfall induced by CPT with
same selection of v, h1, and h2 to real life data used in Armenti et al. (2018).

From simulated risk values, the allocation result for highest 10 portfolios and its
percentage weight based on Armenti et al. (2018) is shown in Table 4.4:
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portfolio
name

ν = 2 ν = 6 ν = 50

PB7 15812895 16.93% 15200883 16.23% 15797036 16.79%
PB56 11324746 12.13% 10803504 11.53% 11051189 11.74%
PB59 8690535 9.31% 8998567 9.61% 8720702 9.27%
PB50 5868323 6.28% 6052060 6.46% 5725238 6.08%
PB32 4881761 5.23% 5040400 5.38% 4861512 5.17%
PB45 4258280 4.56% 4392386 4.69% 4294089 4.56%
PB41 3840451 4.11% 3977165 4.25% 3843467 4.08%
PB34 3632838 3.89% 3566306 3.81% 3752219 3.99%
PB15 3298364 3.53% 3102467 3.31% 3196824 3.40%
PB22 3211442 3.44% 3061508 3.27% 3137539 3.33%

Table 4.4: Allocation result and percentage weight based on Armenti et al. (2018)’s method

The allocation result for highest 10 portfolios and its percentage weight based on our
risk measure at different α and β levels are shown in Table 4.5 and Table 4.6:

portfolio
name

ν = 2 ν = 6 ν = 50

PB7 32972614 16.96% 32259869 16.69% 32739120 16.90%
PB56 23630313 12.16% 22770629 11.78% 23169112 11.96%
PB59 18501877 9.52% 18567673 9.61% 18357995 9.48%
PB50 12386177 6.37% 12375210 6.40% 12032855 6.21%
PB32 10348629 5.32% 10415175 5.39% 10265705 5.30%
PB45 9001322 4.63% 9121441 4.72% 9018360 4.65%
PB41 8157867 4.20% 8192979 4.24% 8098012 4.18%
PB34 7534564 3.88% 7513720 3.89% 7801296 4.03%
PB15 6846814 3.52% 6591190 3.41% 6654228 3.43%
PB22 6707251 3.45% 6445806 3.33% 6565776 3.39%

Table 4.5: Allocation result and percentage weight based on our method with α = 0.9
β = 0.1
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portfolio
name

ν = 2 ν = 6 ν = 50

PB7 40439562 17.04% 39077500 16.66% 39166399 16.68%
PB56 28770683 12.12% 27673622 11.80% 27619335 11.76%
PB59 22532256 9.49% 22541031 9.61% 22466488 9.57%
PB50 15057948 6.34% 14907017 6.35% 14810419 6.31%
PB32 12613429 5.31% 12615961 5.38% 12580794 5.36%
PB45 10948603 4.61% 11057596 4.71% 11046438 4.70%
PB41 9951034 4.19% 9939243 4.24% 9920986 4.23%
PB34 9234160 3.89% 9123470 3.89% 9255543 3.94%
PB15 8402953 3.54% 7992394 3.41% 7988451 3.40%
PB22 8166736 3.44% 7849559 3.35% 7816522 3.33%

Table 4.6: Allocation result and percentage weight based on our method with α = 0.95
β = 0.1

As a recap, the allocation result based on Armenti et al. (2018)’s method is equivalent
to our risk measure with α = 0 and β = 0. From the allocation result, we can see that the
risk measure for each portfolio increases as α and β increase. This is because at the level of
α increases, we only consider the expectation of loss based on top (1− α)%. Similarly, at
the level of β, we only consider the expectation of profit ignoring the top β%. Therefore,
at the level of (α, β), we are making the risk measure more conservative. The allocation
weight for each portfolio also changes as our emphasis on tail changes.

4.5 Conclusions

In this chapter, we define a multivariate risk measure called multivariate generalized
shortfall induced by CPT which is an extension of univariate generalized shortfall induced
by CPT as defined by Mao and Cai (2018). This risk measure includes a total measure
for the whole risk system and risk allocation to the risk units within the system. It
can also be viewed as a generalization of the model proposed by Armenti et al. (2018).
In this chapter, we have discussed the desirable properties of the risk measure and the
conditions and restrictions on the distortion functions and preference function to guarantee
desirable properties and the existence and uniqueness of the risk measure. We have also
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provided some simple examples to illustrate the possible selections of preference functions
and distortion functions.

In future study, we will consider posible applications by choosing more specific dis-
tortion functions and real life data, and compare with other existing allocation methods
including haircut, quantile, covariance, and CTE principles.

4.6 Appendix

In the appendix, we provide some properties for the convex function and the condition
for interchangeability of integral and derivative which we need for the proofs in the main
context.

4.6.1 Convex function properties

Here, we quote the summarization of definition and theorems of recession cone that
is provided in Armenti et al. (2018) Appendix A which was originally stated in Rockafellar
(2015).

Definition 4.6.1. For any non-empty set C ⊆ Rd, recession cone is defined as

0+C := {y ∈ Rd : x + λy for every x ∈ C and λ ∈ R+}

Definition 4.6.2. We denote by f0+ the recession function of f , that is, the function with
epigraph given as the recession cone of the epigraph of f , and we call

0+f := {y ∈ Rd : (f0+)(y) ≤ 0}.

Theorem 4.6.1. If C is non-empty, closed and convex, and y 6= 0,

0+C = {y ∈ Rd : there exists x ∈ C such that x + λy ∈ C for every λ ∈ R+}

Theorem 4.6.2. Let f be a proper, closed and convex function on Rd.
1. Given x,y ∈ Rd, if lim infλ→∞ f(x + λy) <∞, then λ→ f(x + λy) is decreasing.
2. All the non-empty level sets B := {x ∈ Rd : f(x) ≤ γ} 6= ∅ of f have the same recession
cone, namely the recession cone of f . That is:

0+f = 0+B, for every γ ∈ R such that B 6= ∅.
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3. f0+ is a positively homogeneous, proper, closed and convex function, such that

(f0+)(y) = sup
λ>0

f(x + λy)− f(x)
λ

= lim
λ→∞

f(x + λy)− f(x)
λ

,y ∈ Rd,

for every x ∈ dom(f).
4. There exists x ∈ dom(f) such that the map λ → f(x + λy) is decreasing, that is, y is
a direction of recession of f , if and only if this map is decreasing for every x ∈ dom(f),
which in turn is equivalent to (f0+)(y) ≤ 0.
5. The map λ→ f(x + λy) is constant for every x ∈ dom(f) if and only if (f0+)(y) ≤ 0
and (f0+)(−y) ≤ 0.

4.6.2 Interchange of integral and derivative

Proposition 4.6.3. Let I ∈ R be a nontrivial open interval and let f : Ω × I → R be a
map with the following properties.
(i) For any x ∈ I, the map ω 7→ f(ω, x) is in L1(P)
(ii) For almost all ω ∈ Ω, the map I → R, x 7→ f(ω, x) is differentiable with derivative f ′

(iii) There is a map h ∈ L1(P), h ≥ 0, such that |f ′(·, x)| ≤ h a.s. for all x ∈ I.
Then, for any x ∈ I, f ′(·, x) ∈ L1(P) and the function F : x 7→

∫
f(ω, x)P(dω) is differen-

tiable with derivative
F ′(x) =

∫
f ′(ω, x)P(dω),

where L1(P) is the set of Lebesgue integrable function with respect to measure P.

Proof. Please see Klenke (2012) for details.

133



Chapter 5

Conclusions

In Chapter 2, we introduce a new multivariate CVaR. This risk measure extends
the CVaR defined by Rockafellar, Uryasev, et al. (2000) to a multivariate context with
dimension d and is motivated by the multivariate geometric quantile/VaR and multivariate
geometric expectile. It shares the same strategy of extending the expected loss function to
the multivariate case that was first introduced by Chaudhuri (1996). After we define the
risk measure, we give an interpretation of it and provide the restrictions on parameters
and the conditions necessary to guarantee the existence and uniqueness of the minimum
value of the expected loss function. In the following sections, we discuss the properties of
the risk measure. Since it may not make sense to directly apply the risk axioms of the
univariate case to our measure, we first modify some properties such as subadditivity to
fit our multivariate model. Also, for a given property, for example monotonicity, that does
not apply to our model or may not be suitable for it, we provide an explanation for that
exception. Finally, we provide a numerical illustration to show how changes in parameters
and a change of covariance between random variables would affect the risk measure, and
also provide a comparison between univariate risk measures and multivariate geometric
CVaR.

Chapter 3 introduces a new capital allocation principle which can be seen as an
extension of the allocation principle studied in Furman and Zitikis (2008) and Cai and
Wang (2020). Using this allocation principle, we can obtain the optimal total capital
and the optimal capital allocation to each individual risk in the portfolio at the same
time by including the component that considers the risk of the entire portfolio in our
objective function. In this chapter, we discuss the conditions needed to guarantee the
existence and uniqueness of the solution, and we also provide numerical illustrations and
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comparisons with the existing allocation principles. Our allocation principle can be viewed
as the generalization of many existing allocation principles, and our model can be used
to provide explanations for those allocation principles from the viewpoint of optimization
problems.

In Chapter 4, we define a multivariate risk measure called multivariate generalized
shortfall induced by CPT, which is an extension of univariate generalized shortfall induced
by CPT introduced by Mao and Cai (2018). This risk measure includes a total measure
for the whole risk system and risk allocation to the risk units in the system. It can also
be viewed as a generalization of the multivariate shortfall risk allocation and systemic
risk introduced by armentFi2018multivariate. In this chapter, we discuss the desirable
properties of the risk measure and the conditions and restrictions on the distortion functions
and preference function to guarantee desirable properties and the existence and uniqueness
of the risk measure. We also provide some examples to illustrate the possible selections
of preference functions and distortion functions. Finally, we provide a similar simulation
study to those in Armenti et al. (2018) to show the superiority of our defined risk measure.

In this thesis, we propose a new approach for portfolio risk management with multi-
variate risk measures. With this new approach, we define three multivariate risk measures.
We obtain these risk measures for the entire portfolio and each risk unit in the portfolio
at the same time as optimal solutions to multivariate objective functions.
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