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Abstract

In this paper we consider a variant of Open Shortest Path First
(OSPF) routing that accounts for Random Early Detection (RED),
an Active Queue Management method for backbone networks. In the
version of OSPF we consider in this paper we only require a single
network path be available between each origin and destination, a sim-
plification of the OSPF protocol. We formulate a mixed integer non-
linear program to determine the data paths, referred to as a routing
policy. We prove that determining an optimal OSPF routing policy
that accounts for RED is NP-Hard. Furthermore, in order for the gen-
erated routing policies to be real-world implementable, referred to as
realizable, we must determine weights for all arcs in the network such
that solving the all-pairs shortest path problem using these weights
reproduces the routing policies. We show that determining if a set of
all-pairs routes is realizable is also NP-Hard. Fortunately, using traf-
fic data from three real-world backbone networks, we are able to find
realizable routing policies for these networks that account for RED,
using an off-the-shelf solver, and policies found perform better than
those used in each network at the time the data was collected.
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1. INTRODUCTION

bone networks

1 Introduction

Today’s world is witnessing the fast growth of the Internet while embracing
the benefits it brings. Over the past decade, Internet usage has increased
by nearly 40% year by year [5], and according to an estimate by Cisco [0],
this upward trend is likely to continue over the next few years at a con-
sistent pace. As much as people enjoy the convenience offered by the vast
development of the Internet, they have to occasionally contend with slow
speeds, especially when networks fail to accommodate large demands, result-
ing in network congestion [30, 26]. To resolve the slow speeds resulting from
congestion, network service providers may use network provisioning, usually
associated with hardware upgrades. However, network provisioning may re-
quire investment in network infrastructure, and this process could be very
costly. Alternatively, network operators may reconfigure the protocols used
by the existing infrastructure to obtain a better traffic distribution, thereby
reducing the degree of congestion without further network investment. In
this paper, we show one method that can indeed deliver more traffic in a
network simply by reconfiguring existing network protocols. Specifically, we
discuss a mathematical model that maximizes the amount of traffic deliv-
ered in a network under a congestion control mechanism while accounting
for the behavior of standard network protocols for backbone networks. In
our research the backbone networks we found tend to be small in size, ap-
proximately fifteen routers and each router is connected to approximately
two to three other routers, and there is traffic between each pair of routers
in the network.

We model a computer backbone network as a simple graph that contains
nodes to represent routers and arcs to represent links. Based on this graphi-
cal model, we develop a mathematical optimization program, inspired by the
classical multi-commodity flow problem [21], to model the network traffic
flow process. This model finds routing policies, i.e., the paths that the data
must take from its source to destination, that maximize the total weighted
data received at all destinations, while accounting for Random Early De-
tection (RED), to deal with congestion. RED is a type of Active Queue
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Management protocol that is implemented on each router. A router with
RED enabled increasingly drops incoming data as the flow of data across
that router increases. In conjunction with other network protocols, RED is
able to control the data transmission rate and hence reduces network con-
gestion.

Our model determines the routing policies that take into account the data
dropping mechanism of RED, and indeed, our model minimizes data loss
from such dropping mechanisms by maximizing the total data delivered. We
show that the developed model is computationally intractable when deter-
mining simplified OSPF routing policies. However, using an off-the-shelf
solver we can obtain good solutions to three real-world backbone network
instances [1]. The results of our experiments show that our generated poli-
cies perform better than the policies used by the real-world networks. We
also develop a revised formulation that provides robust routing policies that
account for different demand realizations, and the results of the correspond-
ing experiments show that the generated robust routing policies outperform
the policies used in real-world networks. In addition, we examine the re-
alizability problem for generated routing policies; that is, we would like to
determine whether routing policies generated by our mathematical programs
can be configured using standard routing protocols, so that these policies
are real-world applicable. In particular, we consider the Open Shortest Path
First (OSPF) routing protocol [35], where OSPF requires paths be the same
as those found by solving an all-pairs shortest path problem, or simply put,
the paths must be the shortest with respect to a set of pre-determined arc
weights. We show that we can find OSPF arc weights for the corresponding
network graph for each of our instances in the experiments even though, in
general, this problem is computationally intractable, one thing that is also
shown in this paper.

To summarize the contributions of this work are as follows:

e Define the mathematical model to find the all-pairs routing policies
that account for RED.

e Prove that the model above is NP-Hard.

e Formulate the all-pairs inverse shortest path problem, used to deter-
mine OSPF arc weights that realize a prescribed set of paths as shortest
paths.
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e Prove that the all-pairs inverse shortest path problem is NP-Hard.

e Show, using the models above, we can generate realizable all-pairs
OSPF routing policies for three real-world networks, and the ones found
are better than those currently used.

This paper is organized as follows. Section 2 introduces the background and
context of our research, as well as the related work. Section 3 formulates
the mathematical model for network traffic flow under RED and shows the
properties associated with the model. Proofs of the two main theorems in
Section 3 are omitted due to length (47 pages total) but short proof outlines
are provided; we refer interested readers to the work of Liu [34, Chapters
5 and 6] for the complete proofs. Sections 4 and 5 discuss the practical
implications of the model in Section 3, through a series of practical and
algorithmic considerations and experiments. Finally, Section 6 concludes the
paper and discusses future research directions.

2 Background

In this section, we introduce the background of our work, focusing on the
structure of the network protocol stack and review related work in intra-
domain traffic engineering and Random Early Detection. In general, config-
urations of routing protocols tend to be stable. For example, according to
Cisco’s suggestion [1], OSPF arc weights can be set as the reciprocals of arc
capacities. Arc capacities are unlikely to change, unless hardware upgrades
are made; therefore, Cisco’s standard arc weights are likely to remain con-
stant. This stability may seem reliable in normal situations, but it does not
guarantee good network performance, which is important especially as net-
work usage increases. Typical network performance measures include average
delay, packet loss percentage, and total throughput. As traffic increases due
to increased network usage, it may be preferable for network operators to re-
configure routing protocols so that some performance measure(s) is (are) op-
timized. This idea motivates work in Traffic Engineering. Traffic Engineering
(TE) [9, 8] is the process that provides decisions in the construction and ad-
ministration of a network by using the measurement, modeling, application,
and control of Internet traffic in order to optimize network performance mea-
sures. In particular, the intra-domain TE problem deals with intra-domain
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routing protocols, routing protocols for a set of routers that are administered
by one entity. Many researchers studied the intra-domain TE problem and
have focused specifically on variants where shortest path routing protocols
are used [7, 28, 12]. In order to restrict the model under the context of the
shortest path routing protocols, the inverse shortest path problem [19] is in-
corporated as part of the problem. Even though most of these TE problems
are proven to be hard to solve, they are still able to perform well for certain
real-world situations, findings that echo those in our paper. Some national
research networks have used relevant results from solving their TE problems
in designing their routing policies for a few years [13].

Intra-domain TE problem under shortest path routing has been studied ex-
tensively in the past decade [28, 12]. A survey conducted in 2009 [7] by a
group of outstanding researchers in this field has a thorough breakdown of
this field. Fortz and Thorup present a formulation based on the multicom-
modity flow problem [24] and prove the NP-Hardness of the TE problem with
Equal Cost Multipath rule [28], and discuss local-search heuristics. Bley fo-
cuses on the unique shortest path rule [12], and proves the NP-Hardness of
the inverse shortest path problem for the unique shortest path rule as well
as the routing problem. The path realizability complexity result we derive is
motivated by Bley’s proof [12].

Some Internet traffic carries Transmission Control Protocol (TCP) segments,
while others carry User Datagram Protocol (UDP). As network utilization
increases, congestion may occur and lead to datagrams being dropped from
the network. In the case of a drop event TCP exponentially reduces the
sending rate in an effort to alleviate network congestion. However, traffic
that is not congestion or flow sensitive, such as UDP, will not reduce the
rate of sending, potentially leading to a disproportionate amount of UDP
traffic being delivered. Further, in the case of a burst of traffic, TCP may
be too slow to react [15]. In a response to such situations, Active Queue
Management (AQM) was developed and standardized in the early 2000s [15].
One of the earliest AQM disciplines, Random Early Detection (RED), is
widely considered and extended during the past two decades [27]. Since its
first introduction variations of RED have been proposed, but for simplicity
we only consider RED in this paper. RED is defined with respect to an
interface queue length, in which the probability that an incoming packet is
enqueued into the interface queue decreases proportionally with the length.
As discussed in the next section, we model RED similarly to Dimitrov [22].

5
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3 Model

In this section, we formally introduce the main routing problem considered,
the OSPF routing problem under RED. We reexamine RED from a mathe-
matical perspective, and develop functions that approximate the RED pro-
cess. To solve the routing problem, we propose and discuss a mathematical
program that incorporates the RED functions. We discuss the inverse short-
est path problem used to determine arc metrics based on the derived routing
policy from the math program. Finally, we show several properties associated
with the models.

3.1 RED functions

In this section we present RED’s active queue management algorithm and
the associated mathematical functional model. Before we present the math-
ematical model we make two modeling abstractions for a link connecting two
routers, A and B: 1) We assume that there is only a single buffer where
queuing may occur between two interfaces that are physically connected to
one another; 2) Queue lengths may be approximated as the rate of data
arriving on the queue, more on this assumption later in this section. The
first assumption is an abstraction of the fact that each interface, outgoing or
incoming, has its own buffer on which RED may be implemented. Consider
data being sent from router A to router B. For example if A’s switching fab-
ric is faster than the line speed connecting A to B, then queuing may occur
on the output interface of A. Conversely, if the line speed connecting A to
B is faster than the switching fabric of B, then queuing may occur on the
input interface of B. To alleviate this we assume that queuing only occurs
either at A or B, not both, and we call the buffer where queuing occurs as
the line buffer.

In order to implement RED with respect to this single buffer, we need to
specify two parameters,  and u, of buffer length, the starting and ending
points of the interface queue where incoming packets are dropped probabilis-
tically and all future packets are dropped, respectively. According to RED,
all incoming packets will be dropped when the queue length exceeds u, so we
refer to u as the effective capacity of the queue. Note that in a traditional
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Drop-Tail mechanism, all incoming packets are dropped when the buffer is
full, i.e., the queue length reaches the capacity of the buffer, or u in our
case. Thus [ is the effective starting point of data dropping: if the queue
length is less than g then all incoming packets will be successfully enqueued.
For any routing to take place in a network the following must hold: £ < w.
Let t;, be the variable representing the current queue length in the buffer.
Then the surviving probability of the data packet is 1 if ¢, < 8 and 0 if
tin > u. We also highlight that in our research most network operators use
the values of v and [ that are recommended by the manufacturer, and in
this paper we assume that these values are exogenously fixed. A direction for
future research would be to determine the values of u and g while achieving
some sort of quality-of-service guarantee. We note that if the objective to
maximize the total flow received, and all traffic is equally important, then
B = u = queue capacity and that is why we do not consider this variation in
this paper.

When § < ti, < u, any incoming data packet is assigned a probability, whose
value is determined by the queue length. RED assumes that the relationship
between the dropping probability and the queue length is linear. With the
notations and assumptions above, we define a function g : Z* — [0,1] of
queue length, to represent the surviving probability as follows:

1 Ogtmgﬁ
g(tm): 1_% Bgtmgu
0 uétin

In the definition of g(fsextin) let 5 = 3, and uw = 10. If there are less than
3 packets in the queue, then an incoming packed will be enqueued into the
queue. However, if there are say 4 packets in the queue, then an incoming
packet will be enqueued with probability 6/7, if there were 5 packets, then
an incoming packet will be enqueued with probability 5/7, etc. When there
are 10 packets in the queue no incoming packet will be enqueued.

Note that the domain of the surviving probability function is all positive
integers, since we are counting the number of packets in the queue. It is
much more convenient to extend the domain into all the real numbers, so we
have to tweak some concepts here and make our second assumption. As each
packet is of variable size, we consider the rate of flow through a queue to
determine the dropping probability. Therefore, we redefine g : Rt — [0, 1].

7
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tin = tout - 9(tin)
I—l\

AN/ e ——B

Figure 1: A visual presentation of the relationship between t;, and t,.

Note that the function g determines the retained data according to the flow
received ¢y, (see Figure 1, i.e., enqueued packets are those that were not
dropped and it follows that the probability of a future packet not being
dropped is a function of the number of packets that have been successfully
enqueued). However, it is more convenient to express the retained data in
terms of the flow sent over the arc, t.,;. We introduce a function to quantify
the percentage of data retained over an arc in terms of ¢,,;. Consider an arc
(A, B). Specifically, suppose we send t,; units of traffic flow over (A, B) from
A. Note that the buffer at B is not accepting all ¢, units of flow, due to
probabilistic dropping. We define a function f : RT — [0, 1] of flow sent from
the head node, A, to represent the proportion of flow received at the tail node,
B. With this function, we see that tou - f(tout) represent the amount of flow
that is enqueued at node B, i.e., t,. By definition, g(tin) = g(tous - f(tout)) is
the proportion of flow received at node j, which equals to f(tou). Thus we

have:
out 9 out f out

(1)

0 < toutf( ) S ﬁ
toutf tout) B B < toutf( ) < U
u S toutf( out)

Note that since f(touw) < 1, toutS (tous) < B if tows < B, 80 f(tou) = 1 for
all 0 < toyy < B. Also when to > 5, we havef(toy) = 1 — %,

and solving the equation for f(tou) gives f(tow) = ;=g Moreover, as

tous grows, f(touw) decreases, and touf(touwr) Will never be greater than wu,
therefore, f(tou) Will never be zero. Thus, we have the following closed-form

formula for f:
1 if 0 < tow <
f(toua:{ W e (2)
wBttow 1B = tout
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3.2 Problem Definition

We define the All-Pairs routing problem under RED as follows.

Given: Let G = (N, A) be a directed graph, T' be the set of all-pair com-
modities such that |T'| = |[N|- (|[N| —1). For each Commodity k € T,
let ¢* be the weight, s* > 0 be the units of flow at the source node
o® € N to be sent to the destination node d* € N.

Find: A unique simple path {a*} C A, set of arcs that are a subset of all
arcs in the directed graph G, for each k € T.

Objective: Maximize the total weighted flow delivered under RED.

Considering an Internet backbone network, we assume that there is positive
demand across all pairs of nodes in the network. Therefore in the problem
definition, there are |N| - (|V| — 1) commodities to indicate that every or-
dered pair induces a commodity, and s* > 0,Vk € T indicates that all the
commodities have positive demands.

We show that this problem is NP-Hard, deducing that the original OSPF
Routing Problem under RED is NP-Hard.
Theorem 1. All-Pairs OSPF Routing Problem under RED is NP-Hard.

The proof is shown in Liu [34, Chapter 5]. The theorem follows from a reduc-
tion from Set Cover, a known NP-Hard problem [30]. We create a network
instance with a set of four commodities each with different weights. We then
create a feasible solution and show that it is optimal and satisfies OSPF
constraints that may be used to determine a solution to the Set Cover prob-
lem. The key step in the proof is to set the commodity demands, s*, and
weights, c¥, such that a solution of the set cover problem may be determined
using a solution to the all-pairs routing problem under RED, mathematical
program (3). One may point out that the input consists of all pairs of com-
modities and does not necessarily consider OSPF constraints. As we find in
the complete reduction, we may find single unique paths for all commodi-
ties in the network, i.e., those that satisfy OSPF constraints. As such, the
reduction will hold even if we consider OSPF constraints.
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3.3 The Mathematical Program

We define the following variables and notations:

e 2. the amount of flow of commodity k € T present at node i € N

) afj: binary variables indicating whether commodity £ € T' is sent

through arc (i, j), for each arc (i,j) € A
e fi;: the RED function f as in equation (2), for arc (4,j) € A

We propose a model to solve the All-Pairs routing problem under RED as
follows:

K
max Z ik, (3a)
a,r P

s.t. aho=s" keT (3b)
Z o/;kal keT (3c)

JETT (0F)
Y afu=1 kerT (3d)

jE&—(d¥)
Z Oé?ok =0 EeT (38)

J€I (k)
Y ak,=0 keT (3f)

jea+(dr)
Zafj: Zafi keT,j+# o d* (3g)

€5 (4) €0t (5)
Y af<1 kel j#0d" (3h)
€5 (4)
K
Z ozfjxffw(z ozéjxli) - xf =0 keT,jeN:j#" (30
ies—(j) =1

aj;€{0,1}" () eAkeT (3j)
zf e R. (3k)
Liu [34] shows that mathematical program (3) is non-convex. The objective,

equation (3a), is the weighted total flow received of all commodities k at

10
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their respective destinations d*. The weight of commodity & is ¢* that is de-
termined exogenously of the model. The Source Constraints, equation (3b),
represent the value of the flow units at the origin node for each commodity.
The four constraints (3c), (3d), (3e), (3f) ensure that there will be exactly
one arc out of the origin selected and one arc into the destination selected
for a fixed commodity, and a commodity does not return to its source or
leave its destination. The Balance Constraints, equation (3g), guarantees
the outflow and inflow of each commodity is the same for all non-source and
non-destination nodes. The next constraint, inequality (3h), ensures there
is at most one arc used to send each commodity out of each non-source and
non-destination node in the network, and guarantees that there will not be
any cycles (notice that o may induce some node disjoint cycles, but these
cycles are disconnected with either the origin or destination of any commod-
ity and therefore are ignored). Finally, equation (3i) is the arc flow balance
constraint, however now it is augmented by the behavior of RED. Recall
that for RED we must define the total flow on an arc, this is Z{il aﬁjxé;
FOoE, alial) is the fraction of the total flow that will successfully be re-
ceived at the destination, node j. For commodity k, the total amount sent
on arc (i,7) is the fraction of commodity k sent from i to j, denoted as
k .k

;7 , meaning that the total amount of commodity & available at node j is

E _ k .k K 1.
Ty = Zieé—(j) Q5 Ly fis (O, aijxi)'
In summary, the constraints ensure there is one simple path between each

origin-destination pair as the routing path and data flow is sent through these
paths subject to RED, and the total weighted flow is maximized.

3.4 OSPF Path Realizability

Since our ultimate goal is to find an improved OSPF routing policy, we need
to verify the computed routing policy from mathematical program (3) is
indeed OSPF-configurable, or OSPF-realizable. In general, this is a decision
problem in which given a set of simple paths, we decide if there is a set of
arc metrics with which the paths can be realizable. This problem is called
the Inverse Shortest Path (ISP) problem. ISP has been studied since the
early 1990s [19]. Multiple researchers [12, 18, 20] show how to apply ISP to
network applications, OSPF in particular. A detailed review paper discusses
various developments in not only OSPF routing but also ISP [14].

11
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For each node v € N, we define a vector y* € RVI and formulate the Inverse
Shortest Path problem as follows:

Yoo — Yo < Awaw), Vu € N, V(v,w) € A (4a)
Yo — Yy = Awaw), Vu € Nyu= 0", (v,w) € P,Vk €T (4b)
A> 1,0 e N4 (4c)

where P, in equation (4b) is the prescribed path for commodity k. One may
interpret A(,.) as the weight of arc (v, w), and y; may be interpreted as the
weight of the shortest path from u to v. Note that mathematical program (4)
is a feasibility problem and thus has no explicit objective function; when
implementing mathematical program (4) in practice, a constant may be used
as an objective if one is required.

Note that if we allow A to take values from all non-negative real numbers,
we can just set A = 0 to be the trivial solution and the problem is solved.
Therefore, we want to set the weight to be positive and for practical purposes,
we let A > 1.

Note that mathematical program (4) is polynomially solvable when all the
parameters are rational, because we can solve it as a linear program and
round the solution to integer values. However, in the context of network
routing, as arc weights used by shortest path routing protocols, such as OSPF
and IS-IS, are bounded above, so we need to add an additional constraint to
accommodate this feature, obtaining the following formulation:

(4a)(4b) (5a)
A>1, A e N4 A<D, (5b)

where D is the upper bound on the arc weights.

Most of the inverse shortest path formulations in the literature are based on
the one above. Many researchers [29, 12] in the field of network design have
studied this problem to help better understand the OSPF path realizability
problem. For example, Ben-Ameur and Gourdin [11] and Ben-Ameur [10]
consider the realizability problem using a MIP and LP formulations. Sim-
ilar to Ben-Ameur and Gourdin [I1], Brostrom and Holmberg [16, 17] de-
rives necessary conditions for a set of routing policies to be realized. In the
presented computational work we do not enforce the determined necessary

12
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conditions. Finally, we like to highlight that computing weights is not solely
restricted to OSPF networks; work has been done to find link weights for
the Private Network-to-Network Interface routing protocol in Asynchronous
Transfer Mode networks [33, 25]. Bley [12] proved an inapproximability re-
sult for the inverse shortest path problem with unique shortest paths. We
consider a revised version of this problem such that a path between any pair
of nodes is prescribed as the shortest path while the paths do not have to be
unique.

In our research we consider backbone networks where routing policies for all
pairs of nodes need to be found, we also need to consider the All-Pairs variant
of the Inverse Shortest Path Problem, which to our knowledge has yet to be
addressed in the literature.

3.4.1 All-Pairs Inverse Shortest Path Problem

Similar to the All-Pairs OSPF Routing under RED, we also study the All-
Pairs variant of the Inverse Shortest Path Problem where the inputs are paths
between every pair of nodes. We show that this variant of the problem, where
the paths are not necessarily unique shortest paths, is NP-Hard. Note that
this is a generalization of the work we have done so far. In our work in finding
OSPF routing policies we restricted attention to unique routing policies, see
mathematical program (3). However, when determining if the resulting poli-
cies are realizable, we solve a slightly more general instance where the paths
between each origin and destination need not be unique. Work by Bley [12]
looks at the ISP variants for directed networks and where the commodities
are a subset of all pairs of nodes. We note that the approach by Bley can-
not be trivially extended to the scenario we consider as the directed graphs
generated in Bley’s work are not strongly connected, while the graphs we
construct in our proof are strongly connected. Similarly, work by Call and
Holmberg [20] consider the complexity of the ISP in which the inputs are a
set of paths that are on the shortest path and a set of paths that are not on
the shortest path. We consider a slightly relaxed version of this ISP variant,
in that we want all given paths to be shortest paths, but other paths may
or may not be shortest paths as well, i.e., we do not enforce uniqueness. We
relax the uniqueness requirement in our proof as variants of OSPF allow for
multiple paths between an origin and destination, though we do not consider

13



4. ALGORITHMIC CONSIDERATIONS

it in the mathematical models presented in Section 3.3.

Given: a graph G = (V, E), where V' is the node set and E is the arc set,
and a set of paths of G: {P,; C E : 4,5 € V,i # j}, a positive number
D.

Find: arc weights A\, € Nj,e € E, s.t. Ac < D, and F;; is a shortest path
between i and j. (The shortest paths are not necessarily unique.).
Theorem 2. The All-Pairs Non-Unique Inverse Shortest Path Problem is

NP-Hard.

The proof is shown in Liu [34, Chapter 6]. Our proof is inspired by Bley’s
proof. We show our result by presenting a reduction from a variant of the
set partitioning problem. In this variant each set has exactly three elements
and each element is contained in exactly three sets, and is a known NP-
Hard problem [31]. Motivated by the work of Bley [12], we construct, in a
polynomial number of steps, an instance of the ISP described above. The
construction involves a set of graphs that represent an element and a set of the
set partitioning problem, arcs connect elements that are common amongst
sets in our construction. Due to the repetitive nature of the graph we build,
we characterize the arc weights between each type of node we introduce in the
graph through exhaustive enumeration, leading to a lengthy and lucid proof.
We show how the all-pairs inverse shortest path instance we create may be
used to generate a solution to the three-element, three-set set partitioning
problem and vice versa. This key step in the reduction is addressing the
paths used by all pairs of nodes in an exhaustive manner.

4 Algorithmic Considerations

Before we present the results of our numerical experiments, we discuss some
algorithmic considerations we made to reduce the computation time for each
network instance.

14
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4.1 Possibility of Merging the Routing Problem and
the Realizability Problem

We study the All-Pairs Routing Problem under RED and the All-Pairs In-
verse Shortest Path Problem separately and examine properties associated
with the individual problems. We use the paths generated by mathematical
program (3) as input into mathematical program (5) to see if the paths are
realizable. It should be noted that it is not necessary to separate the All-
Pairs Routing Problem under RED and the All-Pairs Inverse Shortest Path
Problem. We could incorporate mathematical program (5) constraints into
mathematical program (3) and solve the combined problem. However, com-
bining the formulations introduces additional integer variables of the order
of |A| and therefore can potentially increase the runtime. In fact, when we
merged the two models in our experimental networks, for the smallest net-
work instances, a single instance could not be solved for over three months.
Furthermore, we find that it might not be necessary to restrict a in mathe-
matical program (3) with the ISP constraints, as our experiments show that
all the computed routing policies from the All-Pairs Routing Problem are
realizable. The details of the experiments are shown in Section 5.

4.2 Modification of the formulation

We illustrate a few approaches in modifying mathematical program (3) in
this section.

4.2.1 Approximating the RED function

Recall that the RED function defined in equation (2) is a continuous, piece-
wise function. Since f(t) <1 for all t > 3, we can rewrite the function as a
capped function, i.e.,

Tn all of the instances all other simplifications, discussed in Section 5, were carried
out, and only the models were merged.

15
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In general, the original RED function defined in equation (2), being a non-
smooth function, brings computational difficulty to the problem. In fact,
the problem was not solvable with all of the non-linear solvers we attempted
using the original RED function. Our understanding of the issue is that
the non-smoothness of the original RED function made approximating gra-
dients impossible or extremely difficult for the solvers we tried; note that
we tried the non-linear solvers available on the NEOS servers at the time of
this study [21, 23, 32]. Preliminary results suggest that the problem scales
exponentially, and for a medium sized network with 11 nodes and 14 arcs,
most solvers cannot stop iterating after weeks of computation. To address
this computational issue, we propose approximating the RED function with
a smooth function, with which the modified model can still produce a fea-
sible routing policy, . Even with this approximation, some instances took
multiple hours to solve for the largest network instance.

The approximated RED function, denoted by f*(¢), should satisfy the fol-
lowing three properties:

1. f*is a smooth function with closed-form formula,

2. f* should be less than or equal to 1 to preserve its probabilistic defini-
tion,

3. f* should be a strictly decreasing function and converges to 0 when
t — oo.
We define 5
u —
* t - =

which satisfies all three properties above.

(6)

Thus, we can formulate the approximated model as follows:

max Z ok, (7a)

a,T

s.t. ZamZUZa”l—x =0 keT,jeN:j#o (7b)
€6~ (j)
(3b)(3¢)(3d)(3¢) (31)(32) (3h) (3))(3k) (7c)
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4. ALGORITHMIC CONSIDERATIONS

Note that mathematical program (7) only differs from mathematical pro-
gram (3) by the RED functions. In order to better understand how the two
mathematical programs relate, we briefly compare the two functions. We
first rewrite equation (2):

f(tout): {1 ifoétoutgﬁ'

" .
i Biton P S tou

We make the following observations with respect to equations (2) and (6): 1)
f(t) > f*(t) for t < 3, this follows from the first condition. 2) f(¢) > f*(¢)
for t > (3, as u_% i ulig'it It immediately follows that for the same set of
« values the objective function value of mathematical program (7) is at most
the objective function value of mathematical program (3). With the approx-
imated RED function defined above, the runtime of most solvers is reduced
significantly, from weeks to hours, and thus we are able to obtain feasible
solutions for many larger instances. We use mathematical program (7) only
to determine «. Treating the determined « as a parameter, we use math-
ematical program (3) to determine the corresponding = and use that z to
evaluate the performance of mathematical program (7). In the numerical
results that we present later in this paper we present the objective function
value of mathematical program (3) and not of mathematical program (7) or
its derivative, mathematical program (8).

4.2.2 Tree Constraints

In addition to addressing the computational issues of the RED functions of
mathematical program (3), we must help with the realizability, finding cor-
responding arc weights, given a. We add tree constraints into mathematical
program (7) in order to determine arc weights. To accommodate the new
tree constraints, we define the new variables

,u€ N, (i,7) € A.

. )1 if some path rooted from u uses arc (i, j)
i 0 o.w.

We add the tree constraints to mathematical program (7) to have the formu-
lation used in our experiments:
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4. ALGORITHMIC CONSIDERATIONS

K
max Z ik, (8a)

e k=1
s.t. i < uwe N,o* =u (8b)
> = IN|-1 ue N (8¢)

(i,7)EA

(7b)(7¢) (8d)
i € 10,1} (1,7) € A,u € N. (8e)

The constraints (8b) describe the relationship between the a and 7 variables,
and together with the tree constraints (8c), they ensure that every subgraph
induced by shortest paths rooted from each node is a spanning tree. We
highlight the fact that the paths constructed in the proof of Theorem 1
satisfy the tree constraints and thus even model (8) is still NP-Hard.

4.2.3 Robust Model

In practice, network arc weights are updated very infrequently. To find a
good, long term policy, we formulate and solve the robust formulation of
mathematical program (8). The robust formulation maximizes the minimum
weighted flow delivered across a set of realizations.

max z (9a)
a7y,
K
Fahl g e (9b)
k=1
s.t. xk,‘f =5 keT,qeq (9¢)
Y ab=1 kel (9d)
je&T(ok)
Z ajdkzl keT (9e)
j€8~(d)
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Y afy=0 kerT (9f)
J€s~ (k)
Z Oédk =0 keT (9g)
jest(dr)
Z ozzj— Z a - keT,j+#o dr (9h)
€67 (5) €6t (5
Z %§1 keT,j+od, d (91)
€6~ ()
K
Z az] A fZ] Z 1] iq)_qu:() keijEN:j#Okaqu
1€6~ =1
(9))
zj—,yU UGN7Ok:u (9k>
Y i =INl-1 ueN (91)
(i,7)EA
af; €{0,1} (i,j) e A keT (9m)
vi; €40,1} (i,j) € A,u € N, (9n)

where () represents the collection of traffic demands scenarios. In the numer-
ical experiments presented in Section 5 we have |Q] = 8. In particular, we
considered a week as our basis and determined the average daily demand for
each 3 hour period, i.e., we had 8 demand instances in total. For example de-
mand instance 1 is the average demand for all commodities Monday through
Sunday for the hours of 1 AM through 3 AM, instance 2 is the average de-
mand for all commodities Monday through Sunday for 4 AM through 6 AM,
etc. We experimented with larger uncertainty sets, for example we tried ev-
ery hour, but we found there was too much variability for hourly observations
and the resulting routing policies were too conservative. In addition, with
fewer demand instances, we were able to have faster computational times for
our robust instances, relative to larger robust instances.
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5. NUMERICAL EXPERIMENTS

5 Numerical Experiments

Even though the All-Pairs Routing Problem under RED is NP-hard, in this
section, we show how we can solve the problem for three real-world networks.
We use mathematical programs (8) and (9) to determine the routing policies
for non-robust and robust instances, respectively. Note that we solve the
robust model once using the first week of data available. Given a routing
policy, we use mathematical program (3) to determine its objective function
value. We highlight the fact that our work is focused on finding OSPF
routing policies for backbone networks, those with demand from all origin
and destination pairs. As such, the network instances, all of which are real-
world networks, may be considered small, but backbone networks tend to
be rather small networks relative to tier 3 or access networks, though those
networks do not have demand between all node pairs. We also would like to
note that computation times for the largest network are rather long, taking
over a day to complete. Thus we do not consider larger networks.

5.1 Experiments and Results

For the experiments, we use Bonmin [!] as the solver, as it is one of the
few solvers available that are able to handle non-linear, non-convex math
programs and obtain a feasible solution in a relatively short amount of time.
Like many other off-the-shelf solvers, Bonmin ensures optimality for convex
optimization but does not guarantee optimality for non-convex problems;
however, as we will see, it produces a relatively “good” solution for these
problems.

5.1.1 Networks

Our experiments use data from three real-world networks, all of which are
National Research and Education Networks (NREN). NREN is a backbone
network dedicated to research and education institutes; the routers in the net-
work are typically located at major cities and universities. Abilene Network
is the United States’ NREN prior to 2007, when it was retired and upgraded
into the current “Internet2 Network”. Taiwan Advance Research and Edu-
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T [

(a) Abilene Network (b) TWAREN (c) CANARIE
Figure 2: NREN Networks

cation Network (TWAREN) [3] is the current Taiwanese NREN. Canada’s
Advanced Research and Innovation Network (CANARIE) [2] is the current
Canadian NREN.

Abilene Network contains 11 nodes and 14 arcs; TWAREN contains 13 nodes
and 20 arcs; CANARIE contains 7 nodes and 11 arcs. The networks are
illustrated in Figure 2.

For each network, we take the hourly traffic demands for a one-week period
as input and solve mathematical program (8) for each. For Abilene, traffic
demands between all pairs of nodes are collected, so we directly use them.
For TWAREN and CANARIE, we estimate the traffic demands using link
utilization. The « in the solutions are then used in mathematical program (3)
to determine the objective value. We then use mathematical program (5) to
check whether the obtained paths induced by « are realizable. The objective
values over one week of instances are compared with those using the industry
standard routing policies and are illustrated by the dashed and solid lines
in Figure 4. It is of no surprise that a policy determined for each instance
using mathematical program (8) performs better than the industry policy,
as mathematical program (8) considers the demand for that instance when
setting the routing policy. We look at setting one policy for all demand
instances in the next subsection.
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5.1.2 Robust Model Numerical Results

Figure 4 shows the comparison of three sets of routing policies: the industry
benchmark, the policy found by mathematical program (8) and the policy
found by the robust mathematical program model (9). As expected, the
robust model performs slightly worse than the optimal policy found in math-
ematical program (8), however, it still outperforms the benchmark in most
cases. Note that the robust policy is determined using data from a week
other than the week on which it is tested that occurred prior to the tested
week and the robust instances were determined by averaging three hour time
intervals into a single instance, leading to eight demand instances for the
robust problem.

Before we continue we would like to discuss the computational time of the
problems we consider. For example, the largest network we consider is the
TWAREN network, and for a week to compute the optimal OSPF routing
policies that account for RED may take up to 38 hours, with an average of
about 12 hours and a standard deviation of about 3.5 hours; see Figure 3(a).
As expected the computational time for the robust instance increases: it may
take up to 540 hours to complete, though the average computation time is
100 hours with a minimum of 27 hours (Figure 3(b)). The key takeaway
from our computational time discussion is: even though we improved the
computational time of our method, using improved models, even the new
method does not scale well for larger networks. We were not able to solve
larger problem instances, for example, networks of 20 or more nodes were not
solved after a week or more of computation. Finding computationally more
attractive models and methods is something of interest especially if larger
networks are considered. One issue to keep in mind is that larger networks
may not require all-pairs communication which may make the problem easier,
something we do not consider in our research.

5.1.3 Analysis

For all three networks, the traffic demands over time all share a diurnal pat-
tern as well as the weekday-weekend pattern, as seen in Figure 4. Specifically,
the demands are higher in the daytime versus in the night time, and higher
during weekdays than weekends. For Abilene, the highest total demand in
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Runtime for TWAREN

Hours of Computation

6 5136 37 40 43 46 43 52 55 59 61 64 67 70 73 76 75 82 85 88 91 94 57
Instance Number

(a) TWAREN computation time

Abilene Interior-routing Metrics

Haw York City

- cf3?
356 16 matre: 6 M 2008

(b) TWAREN robust instance computation time

Figure 3: Computation time for TWAREN network

a week is two times the lowest total demand, while for TWAREN and CA-
NARIE, the highest is about four times the lowest. Therefore, for Abilene,
the total flow received is relatively stable (Figure 4(a)) but TWAREN and
CANARIE show a much greater variation in total flow received over a week;
see Figures 4(b) and 4(c). The demand variation is significantly exhibited
in the comparison between the Industry policy and our policy; suppose the
demand drops below the minimum threshold, 5 in equation (2), then under
RED, every node will retain all the flow that is sent over, and therefore,
the total flow received would be the same for any policy. In addition, we
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note that the robust policy does not perform that much worse relative to
the best found policy for each instance, something we explore further in the
next set of plots. As shown in Figure 5, for TWAREN and CANARIE, the
percentage improvement of the total flow received from the industry policy
compared to our derived robust policy shows a similar diurnal pattern. For
Abilene, the percentage increase is around 10%. Overall, these results show
that our method outperforms the industry benchmark, for OSPF routing
problem under RED.

5.1.4 Realizability

So far, we have obtained a feasible policy for each demand instance of Abi-
lene, TWAREN and CANARIE. In order to make sure that these policies
gain better performance without losing the OSPF compatibility, we need to
solve model mathematical program (5) to make sure we can find the cor-
responding OSPF arc weights for each policy. Recall that in mathematical
program (8), we introduce a tree constraint, a necessary condition of OSPF
configurability. Our results show that every single one of the policies, regard-
less of whether it is a regular policy or robust policy, is OSPF-configurable,
i.e., we obtain feasible arc metrics for each policy. This means that not only
are we generating routing policies that deliver more traffic, but these routing
policies may be implemented in practice using OSPF.

24



5. NUMERICAL EXPERIMENTS

Industry OSPF, Derived OSPF and Robust OSPF
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(a) Abilene
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Figure 4: Industry OSPF, Derived OSPF and Robust OSPF
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Improvement of Derived OSPF over Industry OSPF

Improvement of Robust OSPF over Industry OSPF
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Figure 5: Percent improvement of derived and robust vs industry for NREN
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6 Conclusion

In this paper, we presented a mathematical model for single source single
path end-to-end routing problem that accounts for active congestion control,
namely Random Early Detection (RED). We showed that the resulting prob-
lem not only is non-convex, but also NP-Hard. Using an off the shelf solver,
we showed that routing policies that perform better than those currently
used in three real-world backbone networks may be found when considering
the robust instance of our model. Further, we showed that when determining
if a routing policy is OSPF realizable in the all-pairs setting, arc weights may
be found such that solving the all-pairs shortest path problem generates the
same routing policy, is also NP-Hard. However, all routing policies generated
in our computational experiments are OSPF realizable.

In the future, we would like to consider more than just OSPF by considering
all shortest path protocols in general, by removing the single path between
origin and destination requirement. In addition, in the presented work we
assumed that the RED parameters were exogenously given and fixed, so
one natural extension is to endogenize the value of the RED parameters.
Finally, it is surprising that all of the over one thousand real-world instances
we considered (we only displayed a subset of the ones we considered) had
routing policies that were realizable. We would like to understand if our
instances have special structure making all instances realizable.
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