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Abstract

Consider the formal synthesis problem in the continuous dynamical systems. A system-
atic approach is the abstraction-based method: constructing an abstraction of the original
continuous system in the discrete space, and then consider the control problem in the ab-
straction. We consider our abstraction as a non-deterministic transition system (NTS),
and describe our control specifications as linear temporal logic (LTL) formulas. The stan-
dard procedure is to convert the LTL formula as a deterministic automaton (DA) with
a corresponding accepting condition, taking the product of the NTS and DA, and then
solve it as an infinite game in the product space. The winning condition of the infinite
game corresponds to the accepting condition of the DA, which often has polynomial or
even exponential theoretical worst case time complexity.

With the development of more powerful computation platforms, the enormous scale of
the NTS with millions of states and billions of transitions becomes relatively affordable.
Such space complexity suggests that practical implementations should solve the infinite
games in linear time at most. This motivates us to examine the gap between theoret-
ical complexity upper bounds for solving infinite games and the run-time complexity of
practical implementations of abstraction-based methods for solving temporal logic control
problems. We give detailed analysis of different games such as reachability, safety, Biichi,
co-Biichi, generalized Biichi, generalized co-Biichi, and Rabin from an algorithmic and im-
plementation perspective to try to show that the theoretical upper bound is indeed too
loose in practice. Better still, we implement an efficient Biichi solver to systematically solve
for the control specifications as general as deterministic Biichi automata (DBA) translat-
able LTL formulas. The experimental results show that the program always terminates
within one or two iterations. We conclude that as a result of the huge gap between the-
ory and implementation, we can expect a linear time complexity to solve for the infinite
game in practice, thus it is feasible to solve complicated specifications efficiently using
abstraction-based methods.
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Chapter 1

Introduction

Formal methods are systematic approaches of studying a certain specifications such as
verification and synthesis in a dynamical system. It balances the theoretical rigorousness
and the computational efficiency.

In the formal verification problem [3], our goal is to check whether the execution of
a system always satisfies a certain property, often expressed as a temporal logic formula
such as a linear temporal logic (LTL) formula. While formal verification has been well-
studied in the past thirty years, its dual problem of formal synthesis has also been studied
for decades in computer science [29]. However, the synthesis of controller for continuous
dynamical system hasn’t aroused much attention until recently [34], [4]. In the formal
synthesis problem, our goal is to synthesize or to control a system according to a temporal
logic control specification.

We look into the formal synthesis problem from the perspective of an abstraction-
based approach, which converts a control problem in a continuous dynamical system to a
control problem in its abstraction in the discrete space. Our particular interest into this
method is that, it uses the strategy of divide and conquer that separates a complicated
control problem in a continuous dynamical system into two subproblems: constructing
the abstraction and solving the control problem in the abstraction. With this separation,
the continuous portion of the problem is restricted in the construction of the abstraction,
which allows us to consider the various control specifications described as LTL formulas in
the discrete space.

Central to the abstraction-based approach for formal verification and synthesis of an
infinite-state system is, namely, the construction of the abstraction. Roughly, the abstrac-
tion can be considered as a finite graph, whose nodes map the partition of sets of states



of the original continuous system, and whose edges project the trajectories of the original
continuous system of the equivalence classes. The abstraction of a continuous dynamical
system can be constructed by over-approximating the dynamics using symbolic models [39],
[32], [21] or interval analysis [26]. Such abstractions are conservative in order to preserve
soundness. A sound abstraction guarantees that any discrete controller synthesized using
the abstraction can be implemented in the original system to guarantee soundness in terms
of satisfying LTL specifications. non-deterministic transition system (NTS) is commonly
used as the model for the abstraction to more precisely approximate the original system.

In this thesis, we focus on the control problems in the NTS, which is the discrete
portion of the continuous control problem. We describe our control specification as an
LTL formula, which can be automatically converted into a graph based automaton with
a corresponding accepting condition by some tools such as Spot [13]. The token in the
automaton tracks the status of the agent in the NTS. In both verification and control
problems, we first take the product of the NTS and the automaton, and then consider the
problem in an infinite two player game formulation [I5]. The infinite game models the
interactive behavior of the agent in the system and the uncertainty of the environment.
We use one player to represent the agent and the other to represent the uncertainty of the
environment. The game structure captures the worst uncertainty of the environment to
include any uncertainty of the N'TS.

In a verification problem, we would like to check whether all the trajectories satisfy the
accepting condition of the specification. Since one counter-example is sufficient enough to
falsify the verification, the idea of solving a verification problem is to find a contradiction.
It only requires traversing the graph once by the variation of some standard searching
approaches such as breadth first search (BFS) or depth first search (DFS), thus the time
complexity is linear w.r.t. the size of the graph, and a non-deterministic Biichi automaton
(NBA) is enough to do the tracking.

In a control problem, we would like to find all the initial set of states such that all the
controlled trajectories initiated in this set satisfy the accepting condition of the control
specification regardless of the non-determinism of the NT'S. We enumerate all the possible
trajectories to construct the product graph, and we require a deterministic automaton
(DA) to track the trajectory uniquely. The winning condition of the game is converted
from the accepting condition of the DA. A special case is that, if the control specification
@ is defined by the system states in the NTS, then the infinite game is played in the NTS
directly.

The time complexity of the commonly converted games such as Biichi and co-Biichi is
polynomial, whereas the time complexity of the more general Rabin and Street game even



has exponential or factorial terms [16], [28]. This shows that the control problem is much
more complicated than the verification problem. However, due to the enormous size of
the NTS, and the exponential blow up w.r.t. the number of dimensions when scaling, only
linear time complexity is feasible in practice. This motivates us to show that the theoretical
polynomial worst case time complexity does not often happen in practice; otherwise the
abstraction-based method wouldn’t have much implementation value in practice.

With the help of the computational tools such as SCOTS [32] and ROCS [23] that
construct the NTS of a continuous dynamical system, we implement a program to solve
the control problems in NTS with the control specifications as general as the deterministic
Biichi automaton (DBA) translatable LTL formulas. The experimental results show that
the program terminates within one or two iterations w.r.t. the size of the product space
of NTS and DBA, which implies a linear time complexity. This converts the bottleneck
of the abstraction-based method from time complexity to space complexity, which further
motivates us to look back into the continuous system to try to reduce the size of the
abstraction for future work.

Since the result of the implementation may vary significantly case by case, it is not
convincing without any theoretical analysis. Much efforts in this thesis is contributed to
organically connect the NTS, the DA, and the LTL together to convert our control problem
in NTS into an infinite game. The infinite game structure is more abstract than the control
problem itself, which allows us to discuss from a high level algorithmic perspective. In each
particular game, we give detailed analysis in an effort to show that a polynomial algorithm
in theory is likely to be linear in practice without even adding heuristic optimizations.

1.1 Contributions of the Thesis

The main contributions of the thesis are as follows.

e In chapter 5, we give detailed analysis of each game from an algorithmic and imple-
mentation perspective. We present the algorithms in a form that is close to imple-
mentation. We give algorithms from the perspective of player 1 for both of the dual
games. We give relatively tighter upper bounds and heuristic optimizations for games
such as Biichi and generalized Biichi. We give examples of worst case scenarios for
different games. We give a sound but not complete algorithm for the k pairs Rabin
game with O(kn?m) time complexity.



e In chapter 6, we give a procedure of how to solve different control problems in N'T'S
more efficiently. We give detailed quantification and complexity analysis of the dif-
ferent control problems, including reachability, safety, Biichi, co-Biichi, generalized
Biichi, generalized co-Biichi, and Rabin.

e We implemented an efficient Biichi solver in ROCS [23] that systematically solves for
the control specifications as general as DBA translatable LTL formulas.

1.2 Organization of the Thesis

The rest of the thesis is organized as follows.

e In chapter 2 Abstraction, we will discuss the brief idea of how to project the dynamical
system from the continuous space to the discrete space as an abstraction.

e In chapter 3 Linear Temporal Logic (LTL), we will discuss the connection among

w-language, automata, and linear temporal logic in the automata theory.

e In chapter 4 Formulation of Infinite Games, we will discuss the problem formulation
of infinite games which is closely related to the automata theory in chapter 3.

e In chapter 5 Solution of Infinite Games, we will discuss the algorithms and the
complexity analysis of different infinite games. The background for graph theory,
data structure, and algorithm can be found in Appendix A.

e In chapter 6 Non-deterministic Transition System (NTS), we will discuss the conver-
sion of a control problem in NTS to an infinite game problem, and how to perform
the simulation in the continuous space using the information in the discrete space.

e In chapter 7 Implementations, Conclusions and Future Work, we will discuss some
analysis and results related to the implementations. We will conclude our analysis
and implementation results and discuss several directions of future work.

e In Appendix A, we will introduce some background in graph theory, data structure
and algorithm as preparation for chapter 5.

e In Appendix B we will discuss JiushaoQin’s algorithm to explain what we mean by
encoding and decoding in various scenarios.



Chapter 2

Abstraction

In this chapter, we will discuss how to project the dynamical system from the continuous
space to the discrete space as an abstraction. We will leave the mapping from the discrete
space back to the continuous space in the simulation section in chapter 6 when we have
our winning set and winning strategy in the discrete space ready for simulation in the
continuous space.

Since the focus of this thesis falls in the discrete space, we will only give the idea of the
conversion between continuous space and the discrete space. There are actually several
approaches of constructing the abstraction of a continuous dynamical system using some
numerical methods.

2.1 Motivation

In this section, we will discuss the motivation of converting a continuous problem to a
discrete problem.

Problems in a Continuous System

First we would like to explain our motivation to work in the abstraction of the contin-
uous dynamical system in the discrete space instead of in the continuous space directly.

There are mainly two problems in a continuous system:

1. infinite states in the continuous space;



2. expensive to compute repeatedly in the continuous space.

1. Infinite States in the Continuous Space

In theory, there are infinitely many states in the continuous space. However, when it
comes to computation, infinitely many states may not be representable or feasible to
compute directly. We would like a computer to solve a problem for us in finite time
using finite space, otherwise it is not practical. Therefore, it is inevitable for us to
discretize the continuous system at some point.

2. Expensive to Compute Repeatedly in the Continuous Space

In computation, real numbers are more expensive to compute than integers. Also,
the general control specifications require at least polynomial time to solve. Therefore,
it is more efficient to convert the dynamical system from the continuous space to the
discrete space in linear time, then solve the control problem in the discrete space in
polynomial time, and finally map back to the continuous space in linear time. In this
way, we only need to compute the dynamics in the continuous space once. Solving
the control problem in the continuous space directly requires repetitive computing of
the dynamics in the continuous space, thus is more expensive in computation.

These two problems in a continuous system motivates us to separate a continuous
control problem into two parts:

1. mapping from the continuous space to the discrete space and mapping from the
discrete space back to the continuous space;

2. solving the control problem in the discrete space.

Setting Abstraction-based Method as Reference

Another motivation for us to adopt the abstraction-based method is that, since the idea
of the method is quite intuitive and has a wide range of applications, we would like to set
it up as a reference to the other more advanced methods. We would like to play with the
data structure and optimize the graph searching algorithms in the discrete space to the
extreme to see how it performs in space and time. The implementations somehow show
that the theoretical high complexity is almost acceptably linear in practice. We would like
to compare it with the other methods that focus more in the continuous space to figure out
a better way to balance the techniques in the continuous space and the discrete space. We
would also like to consider the result of the abstraction-based method as a reference when
we implement other more complicated methods to see whether their results are compatible.



2.2 Abstraction — from Continuous to Discrete

In this section, we will discuss how to project a continuous dynamical system to a discrete
dynamical system as an abstraction.

We will first give the definition of a continuous dynamical system and the definition of
its abstraction in the form of an N'TS. Then we give the procedure to construct the NTS
from the continuous dynamical system.

Definition 2.2.1 (continuous dynamical system). A continuous dynamical system is a
4-tuple (X, Xe.&e, L), where

1. X, is the set of continuous system states;
2. Y. is the set of continuous control actions;

3. & 1s a transition function described by an ordinary differential equation (ODE) &(t) =

fa(t),0);
4. L C 247 s the set of labels.

The abstraction of a continuous system is a discretization of the continuous system.
Here we choose the model of an NTS as our model for abstraction.

Definition 2.2.2 (non-deterministic transition system). A Non-deterministic Transition
System (NTS) is a 4 tuple (X, %, &, L), where

1. X, is the set of discrete system states;

2. Xq 18 the set of discrete control actions;

3. &g Xg X Bg — 2%4 s a non-deterministic transition function;

4. L C 247 s the set of labels.

Idea of the Abstraction

Now we give the idea of the abstraction. The main idea of the abstraction is to map
a continuous system into a discrete graph according to the equivalence relation or the
partition. There are mainly three factors from the continuous dynamical system that
influence the abstraction:



e the choice of the partition of the set of continuous system states X_;

We partition the set of continuous system states X, into different regions.

e the choice of finitely many continuous control actions from X;

We select a finite number of continuous control actions from 3.

e the choice of the unit time step At.

We select a fixed unit time step At¢. This also implies that we detect the status of
the agent in the system per At time. We may also choose to detect the status of the
agent in the system after applying each control action, where the time step may not
be unified.

After we fix the unit time step At, we can convert the ODE #(t) = f(z(t),0) to a
difference equation (DE) x4y = f(x,0)At + x4. Then we can compute the transitions of
one time step of the dynamics according to some numerical scheme of our choice.

Discussion. Here we only give a conceptual idea of the conversion of dynamics from con-
tinuous to discrete. The more rigorous way to present is to over-approrimate by adding
validated upper bounds.

A commonly used numerical scheme is the 4" order Runge-Kutta method.

We will discuss the mapping from the continuous dynamical system to the NTS from
5 perspectives: system states, control actions, transition function, non-determinism and
compatibility for errors.

System States
We partition the set of continuous system states X. into ngy regions, i.e.,

X, =R ® - B R,,, and map it to the set of discrete system states Xy = {zq4]1 < i < ng}.
Such mapping projects a set of infinite points in the same region z.; € R; C X, to a node
g € X4, 1 <i < ng. In other words, we map a set of infinite points into one integer. We
consider the system states as nodes in the discrete graph.

The most intuitive idea to discretize the continuous space is to use the uniform grid,
which uses a linear data structure. We set up precision for each dimension, and then
partition the continuous space according to the precision. We also have other methods
that use non-linear data structures to partition the continuous space such as using bisection
method to partition each dimension of the state space until desired precision, or partition
the state space as triangles or polygons.



Control Actions

We map the finite number of continuous control actions {o.|1 < i < |E4]} C X, to the
finite number of discrete control actions ¥4 = {o4|l < i < [34]}. Such mapping is 1-1
correspondence. We consider the control actions as either colouring on the edges, or nodes
depending on different graph representations in the discrete graph.

We can use the method of uniform grid or bisection to select the finite set of continuous
control actions as our representatives.

Transition Function

For a set of infinite points in each region, we calculate the DE under each control action
o. for one time step At, i.e., 2., = f(x., 0.)At + x.. The continuous transition is given by
(e, 0c,2L). The projection of this continuous transition to the discrete graph is given by
(4,04, 7). The continuous transitions that starts in the same region =, € R under the
same control action ., and ends in the same region z/, € R’ forms an equivalence class
which can be represented by (24, 04, 2;) according to the projection. The equivalence class
allows us to use one discrete transition to represent infinitely many continuous transitions.
This allows us to compute each continuous transition only once, and the number of discrete
transitions is also greatly reduced. In practice, we only need to compute finitely many con-
tinuous transitions in each region to conservatively approximate the behavior of infinitely
many continuous transitions starting in the same region. It is likely that only some bound-
ary points or even the corner points plus some approximate bounds are sufficient enough
according to different numerical schemes, which is computationally efficient. We consider
the transitions as edges in the discrete graph.

Non-determinism

The continuous transitions that start in the same region may end in different regions
under the same control action. For example, we may have (2.1, 0., Te2) and (2%, 0c, Zc3),
where x.1,2.; € Ry, xo € Ry, and x.3 € R3. The projection to the discrete space is thus
(x41.04, Tg2) and (xg1.04, T43). Equivalently, we have &;(z41,04) = {Za2, 243} in the form of
a non-deterministic transition. The two graph representations of the non-determinism of
the transition function is shown in Figure 2.1.

Since we would like to use a single node to represent a set of infinite points in a region,
the projection of the transitions may go to several different nodes under the same control
action. This is where the non-determinism comes from.

Compatibility for Errors

The numerical errors, measuring errors, perturbations, and uncertainties can all be
considered in the non-determinism.



Figure 2.1: Two Graph Representations of the Non-determinism of the Transition Function

For the labelling, we use under approximation for the positive atomic propositions and
over approximation for the negative atomic propositions.

The gap between the nominal abstraction and the real continuous system is increasingly
closing by the non-deterministic transition function as we increase the precision of our
refinement.

2.3 Problem Formulation

Problem Formulation in Continuous Setting

Given a continuous dynamical system (X, ., &., L) and a control specification ¢, find
the initial set and the winning control strategy such that all the trajectories induced by the
initial state and the sequence of control inputs inductively satisfy the accepting condition
of .

We consider control synthesis in a dynamical system. Therefore, the problem consists
of two parts: the dynamical system and the control specifications. We consider our system
as a continuous dynamical system described by the ODE. The control specifications can
be directly defined by the states in the dynamical system. A more general and systematic
approach is to describe our control specification as an LTL formula.

Approach:

We adopt a systematic abstraction-based approach:

1. Project the dynamical system from the continuous space to the discrete space as an
NTS.
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2. Describe the control specification as an LTL formula .

3. Convert ¢ to a DA with a corresponding accepting condition Acc in an automation
process.

4. Convert the control problem in N'T'S to an infinite two player game problem.
5. Solve for the winning set and the winning control strategy of the control problem.

6. Use the information in the discrete space to guide the controller back in the original
continuous space.

Considering the control problem in the abstraction of the original continuous system
allows us to consider the control problem in the discrete setting.

Problem Formulation in Discrete Setting

Given an NTS = (X, X4, &4, L) and a control specification ¢, find the initial set and
the winning control strategy such that all the trajectories induced by the initial state and
the sequence of control inputs inductively satisfy the accepting condition of ¢ regardless
of the non-determinism of the NTS.

A brief explanation of the problem formulation in the discrete setting is given at the
end of chapter 3 when we have discussed the form of the control specification as an LTL
formula. The detailed definition of the problem formulation is given in chapter 6 after
we have discussed the formulation and the solution of infinite games in chapter 4 and 5
respectively.

2.4 More about Non-determinism

We use the equivalence relation and the partition to map between a continuous dynamical
system and its abstraction. Therefore, there must be some trade-offs, which is the non-
determinism. We will show how the non-determinism connects the continuous dynamical
system and its abstraction.

In Figure 2.1, we can see how it works in an N'T'S: at a system state x4, we choose a
control action o4, and it will randomly go to the next system state x4, or x4,. Therefore,
we can consider the NTS as a bipartite graph of state nodes and action nodes.

How does the NTS match up with the continuous system?

11



Consider the non-deterministic transition function {;(xa1,04) = {Za2, xq3} in the NTS.
It implies that back in the continuous space, there exist continuous transitions (.1, o¢, Z¢2)
and (zl,, 0., T.3), where x., 2., € Ry, To € Ry and x.3 € Rs.

Therefore, if we want all the continuous transitions (x., 0., x.) for one time step At,
where z.,; € R; to contribute to the satisfaction of the control specification ¢ in the
continuous space, we require all the non-deterministic transitions (x4, 04) for one time
step to contribute to the satisfaction the control specification ¢ in the discrete space.

Conversely, if a non-deterministic transition (z41, 04, £42) violates the satisfaction of the
control specification ¢ in the NTS, then it implies that back in the continuous system, the
exist some point x., € R; such that (z., 0., ze) violates the satisfaction of the control
specification ¢.

Defects of a Deterministic Transition System

The non-determinism leads to uncertainty. So why don’t we choose the deterministic
transition system as our model for the abstraction instead?

The reason is that there are mainly two defects of a deterministic transition system:

1. if we only consider the control actions that lead to deterministic transitions, then the
number of available transitions may be too restrictive;

2. it is even possible that no deterministic transitions exist in the first place.

2.5 Pros and Cons

The pros and cons both come from the comparison between the properties of a discrete
problem and a continuous problem.

Pros

1. Turn an infinite system into a finite system

Mapping a continuous system into a discrete graph turns an infinite system into a
finite system. In other words, this may turn the problem from unsolvable to solvable,
even though the size of the system might be huge as we increase the precision.

2. Save Computation for Later Work

12



We only compute the necessary transitions in the continuous space once, then we
convert the continuous problem into a discrete one in the abstraction.

Also, most infinite games converted from our control problem in the NTS have poly-
nomial time complexity. Therefore, it would be even better for us to compute the
continuous transitions just once.

3. Less Unpredictable Errors in Discrete Space

We may have more confidence in solving a discrete problem than in solving a con-
tinuous problem for the reason that there may be more unpredictable errors in the
continuous space. The abstraction-based method decomposes a continuous problem
to the construction of the abstraction in the continuous space and a discrete prob-
lem. We only need to focus on the continuous space when projecting the continuous
system to its abstraction in the discrete space. Then we can apply the efficient graph
searching algorithms in the discrete space which are easier to debug as a result of
less uncertainty.

Mapping from the discrete space back to the continuous space is already contained
in the mapping from the continuous space to the discrete space because their relation
is like that of the necessary condition and the sufficient condition.

4. Less Requirements on Assumptions

By discretizing the continuous problem in the first place, we are taking the advan-
tage of the computational power of a computer to violently enumerate the system.
Therefore, this may avoid the problem that the continuous dynamical system doesn’t
possess nice assumptions such as convexity.

5. Nice Extension Properties

The abstraction-based method converts a continuous problem to a discrete graph
searching problem. Therefore, it is convenient for us to add other factors into con-
sideration such as stochastics and weights.

Cons
1. Model Mismatch

There may be a mismatch of the abstraction and the original system by inaccurate
over-approximations.
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2. Expensive in Space for Refinement

Theoretically, it is possible that the abstraction-based method can be sound and
complete as we refine the abstraction up to any precision. However, in practice it is
quite expensive if the set of continuous system states X, and the set of continuous
control actions X, have several dimensions and the requirement for the precision is
high. The blow up is exponential w.r.t. the number of dimensions. For example, if
we have k£ dimensions and we equally partition each dimension into two parts, then
the number of states will blow up by a factor of 2.

3. Expensive in Time for Refinement

The carry on aftermath of the exponential blow up in space is an exponential blow
up in time as we refine our abstraction. This comparison is for the abstraction-based
method with different scaling.

We can expect a linear time complexity in practice for solving a theoretically polyno-
mial time complexity problem in the discrete space. Therefore, the abstraction-based
method may still outperform other methods that work directly in the continuous
space in time with a trade-off of extra space complexity.
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Chapter 3

Linear Temporal Logic (LTL)

In this chapter, we will discuss the mechanism to define our control specifications. We will
first introduce the w-regular languages which is the formulation we use to depict infinite
sequences [15, Chapter 1]. All the propositions involving infinite sequences is related to the
w-regular languages. We will then discuss automaton which is a graph based mechanism
that we use to keep track of the status of the agent in a system [3, Chapter 4], [15, Chapter
1], and [7]. The accepting condition of an automaton is defined by the formulation of
the w-regular languages, which is define in the same fashion as the winning condition of
an infinite two player game [15, Chapter 2]. Finally, we will introduce LTL, which is the
general language we use to define our control specification [3, Chapter 5. Our interest
in the LTL is that, an LTL formula can be converted to an automaton in an automation
process.

Since there is rich literature in the automaton theory and LTL, we only extract out the
necessary ingredients to define our control problem.

3.1 Omega-Regular Languages

In this section, we will introduce the notations and the basic ingredients to define the
w-regualar language.

Omega

We use w to denote a non-negative integer or the “infinity”: w € {0,1,2,3,---,00}.
We use w to denote “infinity” most of the time.
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Atomic Propositions

AP = {a;|1 <1i < |AP|} is the finite set of atomic propositions, with length |AP| being
its cardinality. The different a € AP are used to label the different properties of a state
xr € X in the NTS.

Label

L C 247 is the set of labels consisting of the |AP| atomic propositions, where 247 is
the powerset of AP.

A label [ € L can therefore be considered as a |AP|-tuple of 0 and 1 representing the
status of the |AP| atomic propositions, where the 0 and 1 on the i** projection of the tuple
stands for —a; and a; respectively.

It follows that each label [ € L can also be considered as a number in binary represen-
tation, or in decimal representation. We consider a label [ in the more compact decimal
representation most of the time unless evaluating the Boolean functions defined on APs.
Since L is the set of atomic propositions in logic, we prefer to call L as the set of labels
than alphabet.

Word
A word is a sequence of labels.

The set of finite words over L, denoted by L*, is a set of finite sequences of labels. A
finite word w € L* has length |w| = w being a non-negative integer. We denote a finite
word w as w = w(0)w(1l)---w(n) =lply - - - I, with w(i) =1; € L, |w| = n.

The set of infinite words (or w-words) over L, denoted by L¥ is a set of infinite sequences
of labels. An infinite word a € L* has length |w| = w being infinity. We denote an infinite
word v as @ = a(0)a(1) -+ = lply - -+ with a(i) =1; € L, |a] = co.

Language
A language is a set of words.

A set of finite words over a given set of labels L, denoted by L*, is called a finite
language.

A set of w-words over a given set of labels L, denoted by L%, is called an w-language.
Occurrence

The occurrence of a word w or « is the set of labels [ € L occurring in the word w or «.
Formally, Occ(w) = {l € L|3i > 0 s.t. w(i) =1} or Occ(a) ={l € L|Fi > 0 s.t. a(i) =1}.
The number of occurrences of a label [ € L in a word w or « is denoted by |w|; or |a;.
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Infinity Set

The infinity set of an w-word o € L* is the set of labels [ € L occurring infinitely many
often in a. Formally, Inf(a) = {l € L|Vi > 0,35 > i s.t. a(j) =1}.

Discussion. The occurrence and the infinity set can be applied to different sequences in
different scenarios:

o A trajectory p, is a sequence of system states in the NTS;
o A run p, is a sequence of automaton states in the automaton;

o A play m, is a sequence of nodes in the infinite game.

We use the the occurrence or the infinity set of a sequence and some states of the system
to define the specification:

e For a control specification defined by the states in the NTS, the accepting condition
of a tragectory is defined as a proposition using the occurrence set Occ(p,) or the
infinity set Inf(p,), and the subsets of X;

e For an automaton, the accepting condition of a run is defined as a proposition using
the occurrence set Occ(p,) or the infinity set Inf(p,), and the accepting set Acc;

e For an infinite game, the winning condition of a play is defined as a proposition using
the occurrence set Occ(m,) or the infinity set Inf(m,), and the objective set Obj.

Therefore, we use the w-reqular language to connect the NTS, the automaton, and the
infinite game.

3.2 Deterministic Automaton

Since the idea of an automaton is to use a finite machine to keep track of an infinite process,
our discussion will be focused on automata of finite size, i.e., the number of states n; and
transitions m, of the automaton is finite, which will be abbreviated as automaton. By finite
automaton, we mean the input word w and the accepting condition of the automaton is
finite. This differentiates from the automaton with an infinite input word « and an infinite
accepting condition called w-automaton, where w denotes infinity as in w-word and w-
language.
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The general automata are non-deterministic. However, since our focus is on the control
synthesis, which requires keeping track of every automaton state ¢ in a run r. Therefore,
in order to guarantee the run of an automaton induced by the initial state gy and the input
word « is unique, the automaton must be deterministic.

A non-deterministic automaton is used in the falsification of a model-checking problem,
and in the construction of an automaton from an LTL formula.

3.2.1 Definition of Deterministic Automaton

Definition 3.2.1 (deterministic automaton). A Deterministic Automaton (DA) is a
5-tuple DA = (Q, L, T, qo, Acc), where

e () is the set of automaton states;
o L C 247 s the set of labels;

o 7: L XQ — Q is a deterministic transition function;

qo € Q is the unique initial state;

Acc C 29 is the set of final states in a finite automaton or the set of accepting states
m an w-automaton.

Remark. The counterpart of a DA is the more general case non-deterministic automaton
(NA), where the generalization only lies in the initial states and the transition function:
the initial states is generalized from a unique initial state qo € Q) to a set of initial states
Qo C Q, and the transition function is generalized from a deterministic transition function
7:LxQ — Q to a non-deterministic transition function 7: L x Q — 29,

Discussion. Now we will discuss the use of a DA. We place a token on the initial state
qo of the DA, and then move the token according to the transition function T to track the
status of the agent in a system:

e a DA can be considered as a graph, where the automaton states () are the nodes and
the transition function T is hidden in the edges;

e a token is initially placed on the initial state qo;

e for the transition function T, we input the label | of the current NTS state x and the
current DA state q, and output the next DA state ¢, i.e., 7(l,q) = ¢'; we move the
token from q to ¢ .
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3.2.2 Classification of Automata

An automaton can be classified and correspondingly abbreviated as

{0,G} x {D,N} x {F,B,C, R, S} x {A} according to:

e the number of objectives in the accepting condition: one (omit) or more (G for
generalized);

e its determinacy: deterministic (D) or non-deterministic (NV);

e its accepting condition: finite (F'), Biichi (B), co-Biichi (C'), Rabin (R), and Streett

(S);
e A is for automaton.

Remark. We use A to denote an automaton when its determinacy is not specified.

For the accepting conditions, only the first one F' requires finite words w as input; all
the latter ones require infinite words o as input. This is why the first one is called a finite
automaton (FA), and the latter ones are called w-automata.

Example. Two examples of the abbreviations of automata are NF A for non-deterministic
finite automaton and GDBA for generalized deterministic Biichi automaton.

3.2.3 Run

The concept of run is the mechanism we use to keep track of an infinite process using an
automaton.

A run is a sequence of automaton states.
Definition 3.2.2 (finite run). Let DFA = (Q, L, T, qo, Acc) be a deterministic finite au-
tomaton. A finite run of DA on a finite word w = w(0)w(1)---w(n) =lply -+ -1, € L* is a
finite sequence of atomaton states r = r(0)r(1)---r(n+1) = qq1 - Gnr1 € Q" induced
by r(0) = qo and r(i + 1) = 7(1;,7(2)),0 < i < n, where w(i) =1; € L and r(i) = ¢; € Q,
lw| =n,|r|=n+1.
Discussion. In the non-deterministic case, given a finite word w, the runs

r=r0)r1)-r(n+1) = g g1 € Q"2 are induced by r(0) = qo € Qo and
r(i+1) € 7(li,r(0)),0 <i<n.
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Thus one finite word w would induce Z (H |7 (s, r(z))|> many different runs,

r(0)=go€Qo \i=0
where the non-determinacy |7(l;,r(7))| roughly grows exponentially w.r.t. the length of the
input word |w| = n. Roughly, the number of finite runs induced by a single word w is
|Qol - |7]".
Definition 3.2.3 (infinite run). Let DA = (Q, L, 7, qo, Acc) be a deterministic w-automaton.
An infinite run of DA on an w-word a = a(0)a(1l)--- = lyly--- € L¥ is an infinite se-
quence of automaton states p = p(0)p(1) -+ = qoq1 --- € Q¥ induced by p(0) = qo and

p(i+1) =7(l;,p(i),i >0, where a(i) =1; € L and p(i) = ¢; € Q, |a] = |p| = 0.
Discussion. In the non-deterministic case, given an w-word «, the runs
p=p0)r) - =qq- - € Q¥ are induced by r(0) = qo € Qo and r(i + 1) € 7(l;,r(7)),
i>0.

In the control synthesis, we would like to use runs to keep track of all the possibilities in
an infinite process, the number of runs induced by a single input word must thus be finite
and small, otherwise not feasible. However, when the automaton is non-deterministic, the

number of runs induced by a single word w in the finite case is already |Qo| - |7|", not to
say in the infinite case where n — oo.

When the automaton is deterministic, |Qo| = || = 1, thus the infinite run p induced
by an w-word « is unique, which satisfies our requirement. That’s why we must use DA
instead of N A in control synthesis.

Acceptance of Run, Word, and Language

The acceptance of run, word and language are inductively defined. Without specifying
the determinacy, let A be an automaton.

In a finite automaton A, the acceptance of a finite run r, a finite word w, and a finite
language L£* is inductively defined as:

1. a finite run r = r(0)r(1)---r(n+ 1) = goq1 - - - Gns1 € Q"% of A is accepted by A iff
it satisfies the accepting condition of A;

2. afinite word w = w(0)w(1) - --w(n) = lyly - - - 1, € L* is accepted by A iff there exists
a run r of A on w that satisfies the accepting condition of A;

3. the finite language accepted by A is the set of finite words in L* accepted by A. In
other words, the finite language recognized by A is defined as

L*(A) ={w € L*| A accepts w}.
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In an w-automaton A, the acceptance of an infinite run p, an w-word «, and an w-
language £ is inductively defined as:

1. an infinite run p = p(0)p(1) -+ = qoq1 - -+ € Q¥ of A is accepted by A iff it satisfies
the accepting condition of A;

2. an w-word a = a(0)a(l)--- = lply --- € L¥ is accepted by A iff there exists a run p
of A on « that satisfies the accepting condition of A;

3. the w-language accepted by A is the set of w-words in L* accepted by A. In other
words, the w-language recognized by A is defined as £2(A) = {a € L¥| A accepts a}.

3.2.4 Accepting Condition of a Run

To close the logic for the definitions of the acceptance of run, word, and language, we need
to define the accepting conditions for the runs, which is also how the accepting conditions
of the automata are defined. The accepting condition of A is defined as a proposition using
the occurrence set Occ(p) or the infinity set Inf(p), and the accepting set Acc.

Finite Automaton

The first accepting condition is for the finite automaton, where the input word w to
induce the run r is finite.

For a finite automaton F'A, Acc = F C ( is the set of final states. A finite run
r is accepted by F'A iff one of the states in F occurs in r. Formally, r is accepting iff

Oce(r)N F # 0.
w-Automaton

The rest of the accepting conditions are for the w-automaton, where the input word «
to induce the run p is infinite.

These accepting conditions enjoy a dual property, i.e., Biichi and co-Biichi, generalized
Biichi and generalized co-Biichi, Rabin and Streett are all mutually dual to each other,
which can be seen from how they are defined. The duality allows us to look into a problem
from both sides. Closer relations between the two duals will be shown later in the infinite
two player games.

e Biichi Condition For a Biichi automaton BA, Acc = F C (@ is the set of accept-
ing states. An infinite run p is accepted by BA iff at least one of the states in F
occurs infinitely many often in p. Formally, p is accepting iff Inf(p) N F # 0.
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e co-Biichi Condition For a co-Biichi automaton C'A, an infinite run p is accepted
by C'A iff only the accepting states occur in p eventually, or equivalently, the rejecting
states occur only finitely many often in p. Therefore, there are two ways to define
the co-Biichi accepting condition:

1. Acc = F C Q is the set of accepting states. p is accepting iff Inf(p) C F.
2. Acc = F C (@ is the set of rejecting states. p is accepting iff Inf(p) N F = 0.

e Generalized Biichi Condition For a generalized Biichi automaton GBA,

Acc = {Fy, -, Fy}, where F; C Q, 1 <i < k are the k sets of accepting states. An
infinite run p is accepted by GBA iff at least one of the states in F; occurs infinitely
k

many often in p for all i, 1 <i < k. Formally, p is accepting iff /\ (Inf(p) N F; # ().
i=1

e Generalized co-Biichi Condition Similar to the co-Biichi condition, there are
also two ways to define the accepting condition for a Generalized co-Biichi automaton

GCA:

1. Acc = {Fy, -, Fy}, where F; C @, 1 < i < k are the k sets of accepting
states. An infinite run p is accepted by GCA iff only the states in F; occur in

k

p eventually for some 7, 1 < ¢ < k. Formally, p is accepting iff \/ (Inf(p) C F;).
i=1

2. Acc = {Fy,---,F}}, where F; C Q, 1 <i < k are the k sets of rejecting states.

An infinite run p is accepted by GC A iff the states in F; occur only finitely many
k

often in p for some ¢, 1 <14 < k. Formally, p is accepting iff \/ (Inf(p) N F; = 0).
i=1

e Rabin Condition For a Rabin Automaton RA, Acc = {(Gy, B1),- -+, (G, Br)},
where G;, B; C Q, 1 <1 < k. “G” refers to the set of “Good” states that we would
like to occur infinitely many often in a run p, whereas “B” refers to the set of “Bad”
states that we would like to occur only finitely many often in p. An infinite run p
is accepted by RA iff at least one of the states in G; occurs infinitely many often
in p and the states in B; occur only finitely many often in p for some 7, 1 <7 < k.

k
Formally, p is accepting iff \/ ((Inf(p) N G; # 0) A (Inf(p) N B; = 0)).

=1
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e Streett Condition For a Streett Automaton SA, Acc = {(G1, B1), -+, (Gk, Bx) },
where G;, B; C Q, 1 < i < k. “G” refers to the set of “Good” states that we would
like to occur infinitely many often in a run p, whereas “B” refers to the set of “Bad”
states that we would like to occur only finitely many often in p. An infinite run p is
accepted by SA iff at least one of the states in G; occurs infinitely many often in p
or the states in B; occur only finitely many often in p for all ¢, 1 < ¢ < k. Formally,

k
p is accepting iff /\ ((Inf(p) NG, # 0) V (Inf(p) N B; = 0)).

i=1

3.2.5 Expressive Power

The language of an automaton A, denoted by L(.A), is the set of words accepted by A.
We also say that A recognizes L£(.A).

The expressive power of an automaton A is therefore measured by the number of words
accepted by A.

We say two automata A; and A, have the same expressive power, or are equivalent iff
L(A;) = L(Ay). We say an automaton .4, is more expressive than Ay if £(A4;) D L(A,),
and vise versa. In other words, A; is more expressive than A, if all the words accepted by
A, are also accepted by A;, and there exists a word accepted by A; that is not accepted
by ./42.

We use G to denote “generalized” for an accepting condition with more than one
objective.

For the determinacy, we use D and N to denote “deterministic” and “non-deterministic”
respectively.

For the accepting conditions, we use B, R, and S to denote “Biichi”, “Rabin”, and
“Streett” respectively.

We have the following results:

e (GBA can be converted to a BA, and BA is a special case of GBA, therefore they
have the same expressive power in both deterministic and non-deterministic case.

e DBA is less expressive than NBA.

e RA and SA have the same expressive power in both deterministic and non-deterministic
case, which recognize the complete w-regular language.

e N BA also recognizes the complete w-regular language.
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3.2.6 More about the Transition Function

e Implicitly, there is a Boolean function bf : L — {0, 1} on each edge of the automaton.

e For each of the automaton state g;, let bf,, be the Boolean function on the out-going
edge (¢;,qa), where g, € POST(q;). Consider all of the Boolean functions on its
out-going edges, we have two properties:

1. the disjunction of all the Boolean functions is logic 1:

\/ bfwzzlu

anPOST(qZ’)
2. the conjunction of any two distinct Boolean functions is logic 0:

e The DA state ¢ chooses the unique transition on which the Boolean function bf given
the input [ outputs logic 1 to go to the next DA state ¢'.

e At an NTS state x and a DA state ¢, we input the label [ at x to the deterministic
transition function 7, and go through the transition on which the Boolean function
bf given the input [ returns logic 1 to the next DA state ¢’. We express this process
as T_next(l,q) = ¢'.

We can see that there can be two forms of the transition function:

1. calculate the transition function 7_next on the fly;

2. pre-calculate the transition function into a 7_prime table.
In practice, it is more efficient to use a 7_prime table. More analysis will be given when
we discuss taking the product of an NTS and a DA.
3.2.7 Non-deterministic Automaton

In this section, we will explain why it can’t be used to solve a control problem and what
it can be used for.

There are two differences between a deterministic automaton and a non-deterministic
automaton: the transition function and the initial state.
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1. Transition Function
In DA: T: L x @ — @ is a deterministic transition function.
In NA: T: L x Q — 29 is a non-deterministic transition function.

IN an NA, some of the states ¢; have non-deterministic transitions, i.e., the Boolean
functions bf on the out-going edges of ¢; given the input [ that output logic 1 is not
unique.

In other words, the conjunction of two distinct Boolean functions on the out-going
edges of ¢; may not be logic 0, which violates the second property of the transition
function in a DA.

2. Initial State
In DA: ¢y € @ is the unique initial state.
In NA: @y C (@ is the set of initial states, which may not be unique.

Discussion. Why can’t we use an NA to solve a control problem?

As discussed above, given a label | to a NA state q;, there may be more than one
transitions on which the Boolean function returns logic 1, which causes us to lose track of
the status of the token.

This is why an NA can’t be used to verify a run or to solve a game.

An NA can only be used in a posteriori explanation, i.e., the reason why the run of the
token satisfies the accepting condition of the NA or not.

Discussion. What can we use an NA for?

There are mainly two places that we uses an NA:

1. solving a verification problem in model checking;

2. converting an LTL formula to an automaton.

3.3 Linear Temporal Logic

Since we would like to take advantage of the automation tools such as Spot [13] to help
us convert an LTL formula to an automaton, we will only give the syntax of the LTL. We
refer the reader to [3, Chapter 5] for a complete discussion of LTL. The arithmetics and
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the reasoning of the LTL is much more complicated than that of the propositional logic.
Therefore, our focus is on using the LTL formula to define our control specification, and
leave the conversion from an LTL formula to a DA in an automation process.

This is similar to how we address a maximum flow problem in computer science: we
only focus on setting up the problem, and then leave the solving process to the linear
programming solver, which reduces our working load and divide a big problem into sub-
problems.

3.3.1 Syntatic Rules

The basic ingredients of LTL formulas are the logic 1, the atomic propositions a € AP,
the Boolean connectors conjunction (“and”) A and negation —, and two basic temporal
modalities X (reads “next”) and U (reads “until”). The propositional logic can be recur-
sively defined by the former four ingredients, thus the construction of an LTL formula can
be considered as propositional logic plus the two temporal modalities X and U.

The negation of the logic 1 is the logic 0. The atomic proposition a € AP stands for
one of the |AP| dimensions in the state label [ € 247 in an NTS.

The Boolean connector conjunction (“and”) A is a binary infix operator that takes two
LTL formulas ¢; and @9 as arguments. 1 A o holds at the current moment iff both ¢,
and @9 hold at the current moment.

The Boolean connector negation — is a unary prefix operator that takes one LTL formula
¢ as an argument. —@ holds at the current moment iff ¢ doesn’t hold at the current
moment.

The “next” modality X is a unary prefix operator that takes one LTL formula ¢ as an
argument. X holds at the current moment if ¢ holds in the next moment.

The “until” modality U is a binary infix operator that takes two LTL formulas ¢,
and @9 as arguments. ¢1Upy holds at the current moment either ¢, holds at the current
moment, or ¢; holds from the current moment on until ¢, holds in some future moment.
In other words, ¢, must hold at some moment starting from the current moment, and ¢,
must hold at each moment before s holds.

Definition 3.3.1 (Syntax of LTL). A propositional Linear Temporal Logic (LTL) formula
© over a set of atomic propositions AP is recursively defined as

@ == 1lalpr A pa|=0| X |1 Ups,

where a € AP is an atomic proposition and @, @1 and py are LTL formulas.
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In words, a propositional Linear Temporal Logic (LTL) formula ¢ over a set of atomic
propositions AP, formula for short, is inductively defined by the following four rules:

1. The logic 1 is a formula.
2. Any atomic proposition a € AP is a formula.
3. If ¢, @1, and @, are formulas, then 1 A o, =, X, and Uy are also formulas.

4. Nothing else is a formula.

3.3.2 Precedence Order

In a hope to simplify a formula by shortening its length and omitting the brackets whenever
possible, it is standard to use derived operators and to declare a precedence order on the
basic and derived operators.

A standard precedence order assigns a higher priority to the unary operators than the
binary operators. The unary operators “negation” — and “next” X bind equally strong.
The temporal operator “until” takes precedence over the conjunction operator A, and the
conjunction operator A takes precedence over the other derived Boolean operators. This is
because 1 A o holds if and only if both ¢; and ¢y hold, which has more restriction than
the other derived Boolean operators.

The operator “until” U is right-associative, i.e., p1UpaUps < 01U (p2Ups); the unary
operators are also right-associative; all the other operators are left-associative.

Discussion. The right-associative property of the “until” operator U somehow indicates
that for a control specification described by the LTL formula, we should start from right to
left to solve the problem. This indication also holds for the derived temporal operators F
(“eventually” operator) and G (“always” operator), and the joint temporal operators GF

and FG.

From the perspective of graph searching problem, we should search the graph backwards
through the in-going edges. We should start our searching from the right-most objective to
the left. It may require repetitive searching until fized point iteration for the specifications
involving GF and FG.
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3.3.3 Derived Operators

In this subsection, we will discuss the derived propositional operators, the derived temporal
operators, and the joint temporal operators.

Derived Propositional Operators

The full power of propositional logic can be obtained by using only the Boolean con-
nectors A and —: other common Boolean connectors such as disjunction V, implication —,
equivalence (not exclusive or) <+, and parity (exclusive or) & can be derived as follows:

01V 2 1= (71 A 3) disjunction (“or”)
p1 = P2 1= 1 Vo implication
P14 P2 1= (1 = @2) A (2 = ¢1) equivalence (“xnor”)
1 © P2 1= (1 A =p2) A (2 A 1) parity (“xor”).

Discussion. A tricky thing about using LTL formulas to describe the specification of a
graph searching problem is that, the propositions composed of atomic propositions that are
equivalent may not be equivalent for the sets composed of the set of nodes labeled by these
atomic propositions.

For example, let A1, As be the set of nodes labeled by the atomic propositions a; and as
respectively. In propositional logic, we have a; — as = —ay V as = (a3 A ag) V —ay. For the
sets, we have AjUA, = (A4 ﬂAg)UfL. A1NAy and Ay are distinct, whereas A; and Ay may
have intersection. Therefore, for an LTL formula such as ¢ = GFay; — GFas that requires
repetitive searching, the two different interpretations of implications “—” from proposition
to set may result in different winning sets. The reason is that the one with intersection has
“larger” sets than the two sets that are distinct, thus may have larger winning sets when
we require repetitive searching.

Derived Temporal Operators

There are two important dual temporal operators that can be derived from the “until”
operator U:

1. the “eventually” operator ¢ or F' (finally): F := 1Ug;

2. and the “always” operator O or G (globally): Gy := —~F—¢.

“Eventually”, aka “finally”, stands for the current moment or some future moment;
and “always”, aka “globally”, stands for from the current moment on and forever.
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We choose to use F' and G to express the “eventually” operator and the “always”
operator instead of using ¢ and [J for the reason that the former is more readable and
contains more effective information than the later.

Fo, reads “eventually ¢”, means that ¢ will eventually be satisfied. More specifically,
Fp holds at the current moment if ¢ holds at the current moment or some future moment.
Since F'a can be interpreted as eventually reach a state labeled with a, Fa is also known
as the reachability objective.

G, reads “always ¢”, means that ¢ is always satisfied. More specifically, G holds at
the current moment if ¢ holds from the current moment on and forever. In other words,
G holds if eventually —¢ never happens. If we consider the states labeled with a as the
safe region, then Ga can be interpreted as always stay in the safe region. That’s why Ga
is also known as the safety objective.

Joint Temporal Operators

F and G are often jointly used together as combinations to obtain two new temporal

modalities: GF (”always eventually”, aka Biichi) and FG ("eventually always”, aka co-
Biichi).

GFyp, reads “always eventually ¢”, means that ¢ will eventually be satisfied for a first
time, and then it will be satisfied for a second time, a third time, - - -, up to infinitely many
times. Therefore, “always eventually ¢” can also be phrased as “infinitely many often
satisfy ¢”. GFa can thus be interpreted as always eventually reach, or infinitely many
often reach the states labeled with a, which is also known as the Biichi objective. Since
G Fa requires reaching a infinitely many times, the Biichi objective is stronger than the
reachability objective F'a which requires reaching a only once.

FGyp, reads “eventually always ¢”, means that ¢ will eventually always be satisfied,
which allows a finitely many violations of ¢. Therefore, “eventually always ¢” can also
be phrased as “finitely many often violate ¢”. F'Ga can thus be interpreted as eventually
always stay in the states labeled with a, or finitely many often reach the states labeled
with —a, which is also known as the co-Biichi objective. Since F'Ga allows reaching —a
finitely many times, the co-Biichi objective is weaker than the safety objective Ga which
requires always staying in a.

3.3.4 Conversion from LTL Formula to Automaton

Since we leave the conversion from LTL formula to automaton to the automation process,
we will only give the brief idea
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Length of a Formula

The length of an LTL formula ¢, denoted |¢|, is the number of operators in ¢. Since
only the asymptotic size O(|¢|) is needed in the complexity analysis, we directly count the
number of operators appearing in ¢ without restricting the use of the original operators
defined in the syntax.

Conversion from LTL Formula to Automaton

An LTL formula ¢ can be algorithmically converted into a NBA. The intermediate
step is to construct a generalized non-deterministic Biichi automaton (GNBA), and then
convert the GNBA into an equivalent NBA. The semantics of ¢ is encoded in the states
and the transitions of the automaton.

Benefits of Automatic Conversion

We prefer to use a computer to convert an LTL formula to a DA instead of by human
for the following reasons:

e it is complicated and easy to make mistakes to do the conversion by human;
e the automation process provides a systematic approach to do the conversion;

e we can encode all the optimizations in the automation process according to the
arithmetics of the LTL to reduce the size of the automaton to increase the efficiency.

Discussion. After o is converted into an NBA, we try to determinize it into a DBA, which
is not always possible. However, we can always determinize an NBA into a deterministic
Rabin automaton (DRA) or a deterministic Streett automaton (DSA). The trade-off is
that, a Rabin game or a Streett game is much more complicated and has much higher time
complexity than a Bichi game.

Remark. The conversion from an LTL formula ¢ to an NBA can lead to exponential
blowup w.r.t. the length of ¢.

3.3.5 LTL and DA in Control Setting

Human and Computer

We would like to combine the strong points of human and computer to help us solve
the control problem.
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Humans are good at reasoning, thus it is relatively easy for us to convert our control
specification from human language to an LTL formula.

Computers are good at computing in graph structure, thus a graph based automaton
is friendly to computers. The merit of an automaton is that it can track the status of an
agent in the N'T'S in an infinite process using only a small finite graph.

Connection between LTL and DA

Our particular interest in the logic languages such as LTL is that, an LTL formula ¢
can be converted into an automaton in an automation process. This allows us to formulate
the control specification as an LTL formula ¢, and then leave the rest of converting ¢ to
a DA with a corresponding accepting condition to the computer.

Once the LTL formula is converted to a DA, we try to solve the control problem as a
graph searching problem.

What is our control problem?

The trajectory of the agent p, satisfies the accepting condition of the LTL formula ¢ if
its input word oy satisfies the accepting condition of the DA converted from . Our control
problem is to find the winning set and the winning strategy such that all the trajectory
initiated in the winning set induced by the winning strategy satisfy the accepting condition
of ¢ regardless of the non-determinism of the NTS.

How do we solve it?

We can see that there is a hidden product graph behind the NTS and the DA. Therefore,
we enumerate all the possible paths of the agent, token pair to construct the product graph.
We take the product of the NTS and the DA, and then convert the control problem to
an infinite two player game in the product arena converted from the product NTS. The
winning condition of the game corresponds to the accepting condition of the DA. We then
use the corresponding algorithm of the game to solve the winning set and the winning
strategy by computer.

Discussion. The product graph connects the NTS and the DA, and once we convert the
logic from an LTL formula to a graph as DA, the control problem can be automatically
solved by the computer as a graph searching problem.

For the conversion from an LTL formula ¢ to a DA, even there may be an exponential
blow up w.r.t. || in theory, this is actually not the case in practice for the following
reasons:

e the length of ¢ is short;
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e the automation tool can simplify the conversion in both space and time.

The size of the NTS is much larger than the size of the DA, thus the size of the NTS
s the dominating factor.

An assumption for our control problem to be feasible to solve is that, the size of the DA
15 small, and the game in the product space can be solved in almost linear time; otherwise
the control problem is not feasible to solve as a result of the large size of the NTS.

Remark. Since we don’t really have an infinite run, the ability of a DA to keep track of the
status of the agent in the NTS is limited. So how can we tell whether a trajectory satisfies
the accepting condition of the LTL formula ©? This is done by mapping the accepting
condition of the DA converted from ¢ to the winning condition of an infinite game in the
product space. The satisfaction of the trajectory is constructed and showed inductively in
solving the game.
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Chapter 4

Formulation of Infinite Games

In this chapter, we will introduce the infinite two player games on directed graphs. We will
define what a game is, how it is played, when a player wins, what his winning strategy is,
etc. We will introduce the properties such as determinacy, time independent strategies and

duality. For more about the formulation of infinite games, one may refer to [15, Chapter
2].
4.1 Game

A game is comprised of an arena and an objective set. The arena is the environment where
the game is played, and the objective set defines the winning condition the game. We will
first study the arena and then add the different objectives on top of the arena.

4.1.1 Arena

Definition 4.1.1 (arena). An arena A = (V, E) is a pair of nodes V=V, &V, and edges
ECV V.

We use “arena” in short for a two player game graph.

We abuse the notation of A for both automaton and arena for the reason that the
winning condition of a two player game is defined analogously to the accepting condition
of an automaton: a run is accepted by an automaton A iff it satisfies the accepting condition
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of A, whereas a play wins a game in an arena A iff it satisfies the winning condition of the
game.

An infinite two player game is played by two players, named player 1 and player 2.
Since the two players are dual to each other, we will simply fix ¢ € {1,2} when consider
player i, and the other player is consequently denoted as i = 3 — i.

An arena is a finite directed graph where the nodes are partitioned into player 1 nodes
(O) and player 2 nodes (O), ie., V=ViaV, = VUV =V)A(ViNV,=10). In the
general case, we don’t restrict our arena to be a bipartite graph with the corresponding
partition V = V] @ V,. We will show later, that an N'T'S can naturally be represented as a
bipartite arena. More discussions between control problems in NTS and two player games
in arena will be saved for later when the entire game is introduced.

Remark. We allow self-loops (A.1.4) but not multi-edges (A.1.5) in an arena.

We also require each node to have at least one out-going edge to guarantee that the
infinite flow of the game would never terminate.

4.1.2 Play

Recall that in the graph theory, a path is a sequence of nodes, which can be both finite and
infinite. Here, the play is the same as the path in the game setting. A play is a sequence
of arena nodes, which can also be both finite and infinite. Since our focus is on the infinite
games, the play we indicate is an infinite play if not specified.

A finite play p = p(0)p(1) - - - p(n) = vovy - - - v, € V* is a finite sequence of arena nodes,
where p(0) = vy is the initial node and p(j + 1) € Post(p(j)), 0 < j < n, |p| = n.

An infinite play 7 = 7(0)7(1) - - - = vovy - - - € V¥ is an infinite sequence of arena nodes,
where 7(0) = vy is the initial node and 7(j + 1) € Post(n(j)), j > 0, |7| = oc.

After we have introduced what a play is, we can further introduce how an infinite play
is played by the two players:

e we start the game by placing a token on an initial node vy, thus 7(0) = vy;
e if the token is on a player i node, then it is player ¢’s turn to play the game;

e player ¢ plays the game by moving the token to one of the successors of vy, i.e.,
7(1) € Post(vy);

34



e this process continues as when the node 7(j) = v; that the token is on is a player i
node, player ¢ plays the game by moving the token to one of the successors of v;, i.e.,
7(j+ 1) € Post(v;).

More precisely, an infinite play is induced by:

1. Initially placing the token on 7(0) = wp;

2. if m(j) = v; € V;, then player ¢ moves the token to m(j +1) = vj41 € Post(v;), j > 0,
i€ {1,2}.

A play is consequently the path traveled by the token in a game.

When the token is on a player i node v € V;, the nodes v’ that player i can move the
token to is defined by the edge relation of the arena v’ € Post(v). Moving the token each
time is also called making a move. A special thing about a bipartite arena is that the two
players take turns to make a move.

4.1.3 Objective Set

We use Obj C 2V to denote the objective set in an arena A that contains one or more
labeled sets. These labeled sets are used to define the winning condition of the game.

For example, in a Biichi game, Obj = T', where T is the target set. For player 1, the
winning condition is to place the token infinitely many often on a node in 7. Player 2 wins
the game if the objective for player 1 is not achieved.

Based on the arena and the objective set of a game, now we can define what a game is.

Definition 4.1.2 (game). A game G = (A, Obj) is a pair of arena and objective set, where
A=V =Vi® Vo, ECV xV) is the arena of the game, and Obj C 2V is the objective set
used to define the winning condition of the game.

4.1.4 Winning Condition of a Play

Player ¢ declares to be the winner of a play 7 in the game G iff 7 satisfies the winning
condition of G for player ¢. In other words, the play = is a winning play for player ¢ in a
game G iff 7 satisfies the winning condition of G for player 7.
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The winning condition of a play 7 in a game G is always positively defined for player
1; player 2 is the winner of 7 in G if 7 doesn’t satisfy the winning condition for player 1.
Therefore, the infinite two player games we consider are all 0-sum games with no ties.

The winning condition of a play in a game corresponds to the accepting condition of a
run in an automaton. The winning condition of a play in a game is defined as a proposition
using the occurrence set Occ(7) or the infinity set Inf(7), and the objective set Obj.

Finite Game

The first winning condition is for the finite reachability game, where the play p is finite.
The finite reachability game can be extended to an infinite reachability game by extending
the finite play p to an infinite play 7 according to m(i + 1) € Post(nw(i)) once the target
set is reached.

For a finite reachability game, Obj = T C V is the set of target nodes. A finite play
p wins the reachability game iff one of the nodes in 7" occurs in p. Formally, p wins iff
Occ(p) N'T # 0.

The finite reachability game corresponds to the finite automaton F'A, whereas the
target set T in the reachability game corresponds to the final set ' in F'A.

Infinite Game
The rest of the winning conditions are for the infinite games, where the play 7 is infinite.

We use G to denote “generalized” for a game with more than one objective. We use B,
C, R, and S to denote “Biichi”, “co-Biichi”, “Rabin”, and “Streett” respectively. These
winning conditions enjoy a dual property, i.e., Biichi and co-Biichi, generalized Biichi and
generalized co-Biichi, Rabin and Streett are all mutually dual to each other, which can be
seen from how they are defined.

The duality allows us to look into a problem from both sides, which gives us a clearer
picture of the game. For example, when the algorithm that we use to solve for the winning
set of a game G = (A, Obj) terminates, the winning set of the two players W; and W,
will partition the nodes of the arena A = (V, E), i.e., V.= W; & W,. This also helps us
to understand why an algorithm has a certain worst case time complexity, and why this
worst case time complexity is not likely to reduce.

The duality also allows us to consider only the behaviour of player 1 instead of also
looking into the behaviour of player 2, which simplifies the analysis by half. This is because
the behaviour of the player 2 in a game G can be seen as the behaviour of the player 1 in
its dual game G.
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A special case, also the simplest case of duality is between a finite reachability game
and an infinite safety game. The analysis for the later more complicated games are all
based on the dual property between these two games.

e Safety Game For a safety game, Obj = S C V is the set of safe nodes and
correspondingly, V/S is the set of unsafe nodes. An infinite play 7 wins the safety
game iff only the nodes in S occur in 7, or equivalently, the nodes in /S never occur
in 7. Formally, 7 wins iff Occ(r) C S, or equivalently, Occ(m) N (V/S) = 0.

e Biichi Game For a Biichi game BG, Obj =T C V is the set of target nodes. An
infinite play m wins the BG iff at least one of the nodes in T" occurs infinitely many
often in 7. Formally, 7 wins iff Inf(7) N T # (.

The Biichi game BG corresponds to the Biichi automaton BA, whereas the target
set T in BG corresponds to the accepting set F' in BA.

e co-Biichi Game For a co-Biichi game C'G, Obj = S C V is the set of safe nodes
and correspondingly, V/S is the set of unsafe nodes. An infinite play 7 wins the
CG iff only the nodes in S occur in 7 eventually, or equivalently, the nodes in V/S
occur only finitely many often in 7. Formally, 7 wins iff Inf(7) C S, or equivalently,

Inf(7) N (V/S) = 0.
The co-Biichi game C'G corresponds to the co-Biichi automaton C' A, whereas the safe

set S or the unsafe set V/S in CG corresponds to the accepting set or the rejecting
set ' in C'A;

e Generalized Biichi Game For a generalized Biichi game GBG, Obj = {Ty,--- ,T}.},
where T; C V, 1 <i < k are the k sets of target nodes. An infinite play m wins the

GBG iff at least one of the nodes in T; occurs infinitely many often in 7 for all 4,
k

1 <i < k. Formally, 7 wins iff /\ (Inf(7) NT; # 0).

i=1
The generalized Biichi game GBG corresponds to the generalized Biichi automaton
GBA, whereas the k target sets Ti,--- , T} in GBG corresponds to the k accepting
sets Fy,--- , F in GBA.

e Generalized co-Biichi Game For a generalized co-Biichi game GCG,

Obj = {S1,---, Sk}, where S; C V, 1 < i < k are the k sets of safe nodes and
correspondingly, {V/Sy,---,V/S,} are the k sets of unsafe nodes. An infinite play
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7 wins the GCG iff only the nodes in S; occur in 7 eventually for some i, 1 <i <k,
or equivalently, the nodes in V/S; occur only finitely many often in 7 for some 7,
k k
1 < i < k. Formally, 7 wins iff \/ (Inf(7) C S;), or equivalently, \/ (Inf(m) N (V/S;) = 0).
i=1 i=1
The generalized co-Biichi game GCG corresponds to the generalized co-Biichi au-
tomaton GC A, whereas the k safe sets Sy, - - - | Sk, or the k unsafe sets V/Sy,--- | V/Sy
in GCG corresponds to the k accepting sets or the k rejecting sets Fy, - -- , Fj in GC'A.

Rabin Game For a Rabin game RG, Obj = {(G1,B1), -, (Gk, Bx)}, where
Gi,B; CV,1<i<k. “G”refers to the set of “Good” nodes that we would like
to occur infinitely many often in a play m, whereas “B” refers to the set of “Bad”
nodes that we would like to occur only finitely many often in 7. An infinite play 7
wins the RG iff at least one of the nodes in G; occurs infinitely many often in 7 and

the nodes in B; occur only finitely many often in 7 for some i, 1 < i < k. Formally,
k

\/ ((Inf(x) N G; # 0) A (Inf(7) N B; = 0)).

i=1

The Rabin game RG corresponds to the Rabin automaton RA, whereas the k£ Rabin
pairs Obj = {(G4, B1), -+ , (Gg, By)} in RG corresponds to the & Rabin pairs

Acc = {(Gl,Bl), ce ,(Gk,Bk)} in RA.

Streett Game For a Streett game SG, Obj = {(Gy, By),- -+, (Gy, Bx)}, where
Gi,B; CV,1<i<k. “G”refers to the set of “Good” nodes that we would like
to occur infinitely many often in a play m, whereas “B” refers to the set of “Bad”
nodes that we would like to occur only finitely many often in 7. An infinite play m
wins the SG iff at least one of the nodes in GG; occurs infinitely many often in 7 or

the nodes in B; occur only finitely many often in 7 for all 7, 1 < ¢ < k. Formally,
k

A\ ((Inf(r) N G; # 0) v (Inf() N B; = 0)).

i=1

The Streett game SG corresponds to the Streett automaton S A, whereas the k Streett
pairs Obj = {(G1, By), -+ , (G, Bx)} in SG corresponds to the k Streett pairs Acc =
{(Gl, Bl), R (Gk, Bk)} in SA.
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4.2 Winning Condition of a Game

In this section, we will introduce the winning condition of a game, and why it is difficult
to determine the winner of a play.

The winning condition of a game indicates the objective of the game that we are playing.
For example, we are playing the Biichi game if the winning condition is a Biichi condition.

The winning condition of a game is based on the winning condition of a play.

Since we always stand on the behalf of player 1, the winning condition is positively
defined for player 1, and the winning condition for player 2 is just the complement of
player 1. For this reason, the winning condition of a game refers to the winning condition
for player 1 of the game for simplicity.

4.2.1 Problem Formulation of Infinite Game

In the previous section, we introduced the concept of game and the winning condition of
a play in different games. But what exactly are we solving for in each game? This leads
to the problem formulation of an infinite game.

Problem Formulation of Infinite Game

Given an infinite game G = (A, Obj), where A = (V =V ® Vo, E C V x V) is the
arena and Obj C 2V is the objective set used to define the winning condition of G, find the
winning set W; C V and the winning strategy II; for v € V3 N W; for player 1 such that
all the plays m = vgvivs - - - induced by the initial node vy € Wy, II;, and Il inductively
satisfy the winning condition of G regardless of Il,, where Il; is any strategy for player 2.

From the problem formulation, we can see that we want to find the winning set W,
and the winning strategy II; for player 1 in each infinite game. To fully understand what
the problem formulation is talking about, we need to introduce three concepts: strategy,
determinacy, and duality.

In the next subsection, we will discuss why it is difficult to determine the winner of a
play directly, which lead us to the concept of strategy.

To understand why player 1 is the determined winner of all the plays initialized at
vy € Wy induced by the winning strategy II; for player 1 and any strategy for player 2 Ils,
we need to introduce the concept of determinacy.

With the concept of strategy and determinacy, we can define the winning set.
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To understand why we only need to consider the winning set and the winning strategy
of player 1 in each game, we need to introduce the concept of duality.

4.2.2 Difficulty in Determining the Winner of a Play

In the previous section, we have introduced the winning play and the different winning
conditions of a play in different games. Since the most of the games we consider are
infinite games, the infinity set of a play is hard to define in practice since we can only have
finite information of the play.

Consider an infinite play 7 in an infinite game G = (A, Obj). Recall that the infinity
set of an infinite play m € V* is the set of nodes v € V' occurring infinitely many often in
7, where V' is the set of nodes in the arena A.

Formally, Inf(7) = {v € V|Vi > 0,35 > i s.t. 7n(j) = v}.

Assume the Game G starts at moment 0, and the two players make a move at each
moment. Then at the j* moment, we only have the information of the infinite play 7 from
moment 0 to moment j, i.e., a finite sub-play p = w(0)7(1) - - - 7(j).

Since we only have the information of the history of the play 7, but not the information
of the future of 7, it is not possible to determine Inf(x), which is closely related to the
winning conditions of a play. Therefore, it is likely to be either hard to verify, or hard to
falsify the winning conditions of a game, which makes the winner of the play undetermined.

For a play 7 in a game G, there are two exceptions:

1. in a reachability game, if the token reaches a target node, then player 1 wins the
game; otherwise the winner of 7 is undetermined;

2. in a safety game, if the token reaches an unsafe node, then player 2 wins the game;
otherwise the winner of 7 is undetermined.

We can see that the two exceptions are dual to each other, and the winner is still undeter-
mined if the token hasn’t reached a target node in a reachability game or the token hasn’t
reached an unsafe node in a safety game.

Therefore, in order to determine the winner of an infinite game, we need to introduce
two new concepts, strategy and determinancy to resolve the problem of the infinity set of
the play.

40



We are particularly interested in whether the winner of a play 7 in a game G is already
determined in the first place as early as the token is placed on an initial node vy € V.
We claim the answer is positive, which means if player 7 is the determined winner of all
the plays initiated at 7(0) = vy € V, then there exists a strategy for player i such that
regardless of any strategy player 7 plays, all the induced plays are winning plays for player
1. Player ¢ can satisfy the winning condition of the play 7 because by following the strategy
for player 7, we can inductively show that the infinity set in the winning condition can be
satisfied again and again, up to infinitely many times, which resolves the problem of Inf(7).

Before looking deep into strategy and determinancy, we will show an example of a finite
game.

Number Counting Game

In a number counting game, the two players take turns to count numbers from 1 to n.
Each time a player must count 1 number up to a numbers, where 1 < a < n. The player
who counts the number n wins the game.

The idea of the strategy for the two players are constructed in the same way: forcing
the other player into an a + 1 loop.

Suppose player 1 counts first.
If n = a, then player 1 wins the game by counting from 1 to a.

If n = a+ 1, then player 2 can always count the number a + 1 and wins the game. The
strategy for player 2 is as follows: suppose player 1 counts b numbers from 1 to b, where
1 < b < a, then player 2 counts a + 1 — b numbers from b+ 1 to a + 1 and wins the game.
We can see that the latter player who counts in the a + 1 loop wins the game.

If n =m(a+ 1), m > 0, then player 2 wins the game by following the strategy in the
n = a + 1 case, because player 2 is the latter player who counts in the a + 1 loops.

Ifn=m(a+1)+k, m>0,1<k <a, then player 1 wins the game by first counting
from 1 to k, then the game converts to counting from k£ + 1 to n = m(a + 1) + k, with
player 2 counting first. Now player 1 is the latter player who counts in the a + 1 loops and
wins the game.

The determinancy of a game means that, given a certain condition of the game, the
winner of the game is determined if this player plays correctly and the other player will
always lose even before the game is played.

In the number counting game, the determinancy for n = m(a+1)+k,m>0,0<k <a
is as follows: when k = 0, the player who counts first wins; when 1 < k£ < a, the player
who counts first loses.
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We can generalize the game a little bit by setting different counting numbers for the
two players: one player must count 1 number up to a numbers each time, the other player
must count 1 number up to b numbers each time.

If we let 1 < b < a < n, then the player who can count more numbers each time always
has a winning strategy. The player who can count a numbers each time can always force
the other player into a b+ 1 loop no matter who counts first, because this player can count
from 1 number up to a > b+ 1 numbers.

4.2.3 Strategy

In a two player game, it is player ¢’s turn to move the token if the token is placed on a
player i node. Therefore, the strategy of player ¢ is the guide or the rule for player i to
move the token when it is his turn.

Consider a play 7 in a game G. Suppose at the current moment j > 0, w(j) € V;,
then the token is on a player ¢ node and it is player ¢’s turn to make a move. The
strategy for player ¢ at the moment j can at most take reference of the finite sub-play
p=m(0)m(1)---m(j). Therefore, the input for the strategy is a sub-play of p.

In general, the strategies are time dependent, which requires the information of the
history of the play to make a decision for the next move.

Definition 4.2.1 (time dependent strategy). For a play m in a game G, a time dependent
strategy for player i € {1,2} at moment j is a function Il; : V* — V, where p’ € V* is a
sub-play of p = w(0)w(1)---7w(5), 7(5) € V;. The memory of the strategy is defined as the
size of the input of the function, i.e., 1 < |p/| < j.

If T1I; takes exactly p = 7(0)m(1)---m(j) at moment j, then |p| = j, and as j goes to
infinity, the memory of the strategy for player ¢ at moment j goes to infinity, which is
infeasible in practice.

Therefore, we require the memory of our strategy to be finite, i.e., doesn’t grow linearly
w.r.t. the length of the play.

All the games we consider have finite memory for strategy.
Time Independent Strategy

In this subsubsection, we will discuss the time independent strategy.
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A common and maybe the most ideal case of strategy is when the strategy is indepen-
dent of the history of the play, i.e., the player only needs the information of the node at the
current moment where the token is on to decide which node to go to for the next moment.

From the time perspective, such strategy is memoryless because it is independent of
the past.

From the space perspective, such strategy is also local, or positional since we only need
the information of the current node where the token is on to decide which node to go to
next.

When we talk about “memory”, it can indicate a process is time dependent, or it can
indicate the amount of space required to do a job in computer science. Therefore, to
avoid the ambiguity, we will only use the later meaning of “memory”, and call the time
independent strategy as “local” or “positional” instead of “memoryless”.

Definition 4.2.2 (time independent strategy). A time independent strategy for player
i € {1,2} is a function I1; : V; — V. Such strategy is also called local, positional, or
memoryless.

For player 1, games with one objective such as reachability, safety, Biichi, and co-Biichi,
have local strategy; games with more than one objective such as generalized co-Biichi and
Rabin also have local strategy since these two objectives are of an “or” condition, meaning
that we only need to satisfy one of the k£ objectives to satisfy the winning condition.
Therefore, each node only focusing on satisfying one objective is sufficient to satisfy the
winning condition.

Time Dependent Strategy

In this subsubsection, we will discuss the time dependent strategy.

For player 1, games with more than one objective such as generalized Biichi and Streett
require a more complicated structure of strategy that is time dependent.

Since these two objectives are of an “and” condition, meaning that we need to satisfy
all the k objectives to satisfy the winning condition.

If we would like to satisfy k objectives infinitely many often, then a naive strategy is
to repeatedly satisfy the objectives from objective 1 to objective k in order.

Therefore, we need to keep track of which of the k objectives is to satisfy at the current
moment. Since there are k objectives to satisfy, we need to store k local strategies at each
node.
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From the general definition of the strategy of player 1 at moment j, we need to at least
store a sub-play of 7 containing the satisfaction of the latest kK — 1 objectives to guide the
player to choose the strategy for the next objective. Once which of the £ objectives is to
satisfy is determined, the strategy is again local. We can now see that the time dependent
part for the strategy comes from determining which of the k objectives is to satisfy.

In practice, we can simply reduce the time and space complexity of storing a sub-play
of m containing the satisfaction of the latest k — 1 objectives by a counter indicating which
of the k objectives is to satisfy: when the counter count = j, it means we would like to
satisfy the j% objective; once the j™* objective is satisfied, it increments to count = j + 1.
Whether the counter repeats from 1 to £ or simply increments and then mod k when in
use is a choose of design.

We can see that even in games like generalized Biichi, the strategy for player 1 still only
consists of k local strategies for the k objectives at each node, with an additional counter
indicating which of the k objectives is to satisfy. Therefore, the time dependent strategy
we consider is still almost time independent: the time dependent strategy consists of a
time independent strategy where each node takes O(k) space, and the additional dynamic
counter takes O(1) space, and O(1) time each time to determine which local strategy to
choose.

The winning condition of the Streett game with k Streett pairs requires satisfying the k
Streett conditions at the same time. Each Streett condition is in the form of a disjunction
rather than a single case in the generalized Biichi. Therefore, the strategy for the Streett
game with £ Streett pairs is even much more complicated than that of the generalized
Biichi, since it also needs to coordinate the conflicts among the k Streett conditions. In
other words, we can easily construct a local strategy for each Streett condition, but the
satisfaction of one Streett condition may violate the other. In the worst case, the conflict
exists only if we consider the k Streett conditions together. Therefore, there doesn’t exist
a simple local strategy for each Streett condition, and we will omit the discussion for the k
pairs Streett game here. In fact, the theoretical upper bound of the local strategy for the
k pairs Streett game can be up to O(k!) due to the permutation [10], [28].

Winning Strategy

In this subsubsection, we will discuss the winning strategy.
The winning strategy of a player is defined for an initialized play m with 7(0) = vy € V.

If a play 7 starts with 7(0) = vy € V, we say 7 is an initialized play at vy.
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Definition 4.2.3 (winning strategy). For an initialized play m with w(0) = vy € V in a
game G, a strategy 11; is a winning strategy for player i if any play m induced by 7(0) = vy,
I1;, and IT; is a winning play for player i, where 1I; is any strategy for player i.

It is clear that if player ¢ has a winning strategy II; for an initialized play m at vy, then
player i is the determined winner for any play 7 initialized at vy by following II;.

What remains to discuss is whether there is a determined winner for a play 7 initialized
at each vy € V in a game G, which leads to the discussion of determinacy.

4.2.4 Determinacy

The determinacy of a game G tells us that, given certain conditions of the game, the winner
of the game is determined even before the game is actually played.

In other words, if a game G given certain conditions has a determined winner player 7,
then player ¢ has a winning strategy II; such that any play 7 induced by II; and II; is a
winning play for player i, where II; is any strategy for player i.

A game is undetermined if the winner of the game can’t be predicted, i.e., there exists
a winning strategy for neither player 1 nor player 2.

The condition we consider in the discussion of determinacy of a game is to initialize
our play 7 at each vg € V in a game G.

A game @G initialized at vy € V' is a determined game if it has a determined winner.

A game G is a determined game if each initialization of the game vy € V has a deter-
mined winner.

4.2.5 Winning Set

The winning set of a game is defined based on the concepts of strategy and determinancy.
The strategy of a player i guides the player to move the token when the token is on a
player ¢ node. The determinancy shows that the winner of all the plays initialized at each
node vy € V' is determined if that player plays correctly.

The winning set of a game G is defined by the winning set of the initialized play in the
game.
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Definition 4.2.4 (winning set). The winning set of player i € {1,2} in a game G, denoted
by Wi, is the set of nodes vy € V' such that player v has a winning strateqy for any play
iatialized at vg.

For a game G, our focus is to solve for the winning sets for the two players, with their
corresponding winning strategies respectively. The winning strategy of each player can
be solved in the process of solving the winning sets by the particular algorithm of the
corresponding game. When the algorithm terminates, the winning sets of the two players
partition the set of nodes of the arena A, i.e., V.= W; & W,. For this reason, the games
that we consider are all determined games.

Remark. The construction of the winning strategies, the proof of soundness and complete-
ness of the winning sets, and the complexity analysis of the algorithm will be all included
in the construction of the algorithm of the corresponding game. The fact that a game is
determined follows directly from the proof of completeness and soundness of the winning
sets. A short answer for the reason that the games we consider are all determined games
would be the winning conditions of the two players in each game we consider are mutually
exclusive, i.e., these games are 0-sum games with no ties.

Time Independent Property of Winning Play

The winning condition of a reachability game or a safety game is based on the occurrence
set of a play, i.e., Occ(m), which is a finite condition.

The winning conditions of the other games are based on the infinity set of a play, i.e.,
Inf(7), which is an infinite condition.

For the simplicity of the discussion of the winning set, we will focus on the more
complicated winning conditions based on Inf(7) for now, and leave the discussion for the
simpler ones based on Occ(7) until we look into these two games.

We haven’t discussed the local winning strategies are assigned on which nodes for each
player, but let us assume the two players always follow their winning strategies if assigned
for now.

Since the fundamental ingredient of the algorithm for each game originates from the
linear BFS algorithm in a classic graph searching problem which is time independent
and has local strategy, the algorithms for most of the games we consider are also time
independent and have local strategy. For the ones that are not time independent such as
generalized Biichi, the time dependent part only depends on a unit counter to determine
which of the k£ objectives is to satisfy, whereas the strategy remains local.
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For vy € W, there exists a winning strategy II; for player ¢ such that any play 7 induced
by 7(0) = vy, II;, and II; is winning for player i, where II; is any strategy for player i. We
can see that the winning play 7 of player 7 is induced by the winning strategy of player i,
IT;. Since II; is time independent, 7 is also time independent. Also, since 7 is an infinite
play, truncating any finite part from the front of the play doesn’t change the infinity set of
the play. Therefore, the evaluation of the winning condition of the play doesn’t change, and
the winner of the play doesn’t change. In other words, if we truncate a play = initialized
at m(0) € W; after any moment j > 0, then player ¢ remains to be the determined winner
for the truncated play 7’ = 7(j 4+ 1)7(j +2) - - -. Therefore, the truncated play 7’ can also
be seen as a play initialized at w(j + 1) € W,;. Since player i is the determined winner
of 7/ for any j > 0, we have that any play 7 initialized from W; stays in W;. Formally,
(w(0) € W;) — (Oce(m) € W;). Tt follows that the plays initialized from W, and W, are
disjoint.

Now we can see that from the time independent property of the play, the definition of
the winning set can be generalized from the initial node of a play to any node in a play.

Definition 4.2.5 (time independent winning set). In a game G that is time independent,
the winning set of player i, denoted by W;, is the set of nodes v € V such that player i
has a winning strategqy for any play ©™ with v occurring in w. Also, © always stays in W;.

Formally, (v e (W; N Oce(m))) — (Oce(m) TW).

The time independent property allows us to look into a play 7 from any moment j > 0
instead of always starting from moment 0. This allows us to look into the arena A locally
when constructing the winning sets and the winning strategies of the game G.

In a game G = (A, Obj), since the set of nodes V' in the arena A can be partitioned by
either the type of nodes V; and V5, or the winning sets YW, and Ws, V' can also be partitioned
into four sets by combining these two partitions. Formally, with V =V} & Vo = W, & W,
we have V = (Vin W) @& (Vi N Wy) @ (VoNnWy) @ (Va N Ws). Now we can discuss where

we can assign winning strategies for the two players.

Since player ¢ plays when v € V;, and player ¢ wins when v € W;, the winning strategy
II; is assigned for v € (V; N W;). Since V; N W; C W is in the winning set of player 4,
regardless of what strategy player i use, player ¢ will win the game. Therefore, no strategies
are assigned in V; N W;. The strategy distribution on arena can be seen in table 4.1.

V Vi Vs
W Vinw | Van W,
1 I Vv 11,
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VinWsy | Von W,
v I I1,
Table 4.1: Strategy Distribution on Arena

W

Relation between the Winning Set and the Winning Strategy

The winning set and the winning strategy of player ¢ always come in pair. The winning
set is inductively guaranteed by the winning strategy. Conversely, the winning strategy of
player i is defined in nodes v € V;NW,. Therefore, they can only be considered jointly but
not separately.

Judgment of Winner

After we have discussed time independent strategy, determined game and winning set,
we can now look back and ask how to determine a winner of a game? Why can we predict
the winner of a determined game before the game is actually played?

Consider a game G whose winning condition is defined based on the infinity set of the
play Inf(). Since we can’t practically keep track of an infinite play m and we don’t know
how 7 will be played in the future, the winner can neither be verified nor be falsified by
analyzing the 7 itself. In fact, the way we show a player i is the winner of G is by induction
of the winning strategy II;: if player ¢ declares to be the winner of a game initializing
at m(0) € W;, then we can inductively show that any play 7 induced by 7(0) € W;, I1;,
and II; satisfies the winning condition of the play regardless of any II;. Player i is the
determined winner as long as he always follows the winning strategy II; to play the game.
The winning strategy is solved and proved in the algorithm of the corresponding game,
which is a backward process starting from the result.

Even for games whose winning condition is defined based on the occurrence set of the
play Occ(7), we still need the winning strategy to inductively verify or falsify the winner
because such play can still be infinite. For example, in a reachability game, we need to
inductively show whether the token will reach a target node in 7T'; in a safety game, we
need to inductively show whether the token will always stay in the safe nodes S.

4.2.6 Duality

Consider a game G = (A, Obj), we say it is a certain game for player ¢ when its winning
condition ¢ is positively defined for player i. Player i wins the game if player i doesn’t.
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Therefore, the winning condition for player 7 is —. If we take the negation into ¢, then
- is in the form of a positively defined winning condition of the dual game G of this game
G. Therefore, a game G and its dual game G is essentially the same game, just from the
perspective of different players. If from the perspective of player ¢ its a game G, then from
the perspective of player ¢ its a dual game G.

For example, the winning condition for a reachability game is Occ(p) N T # () where T'
is the target set, and the winning condition for a safety game is Occ(m) N (V/S) = () where
S is the safe set. Let ¢ = (Occ(m) N T # () be the winning condition for player 1, then
the winning condition for player 2 would be =¢ = (Oce(m) N T = ). We can see that in
the same game, the winning condition for player 1 is a reachability condition, whereas the
winning condition for player 2 is a safety condition if we consider the target set 1" as the
unsafe set V/S.

We can see that the duality of a game comes from the mutually exclusive property of
the winning conditions of two players.

Benefits of Duality

The duality enables us to look into a game G from the sides of both players. This helps
especially in the construction of the algorithm to solve for the winning sets and the winning
strategies of the game. The algorithm for a game G and its dual game G is essentially the
same: the algorithm for G is for solving the winning set and the winning strategy of player
1 in G, and the algorithm for G can be used for solving the winning set and the winning
strategy of player 2 in G. If the winning set for one player WW; is determined in a game,
then the winning set for the other player W; is also determined as a result of the partition
relation of the winning sets V' = W; & Wh.

Therefore, in the algorithm for G, we only need to show the winning set and the winning
strategy for player 1. Leaving the winning strategy for player 2 in G saves a lot of analysis.
For example, the winning strategy for player 1 in generalized Biichi game and Street game
requires a counter, dually the winning strategy for player 2 in generalized co-Biichi game
and Rabin game also requires a counter. The winning strategies in all the other cases are
local. This tells us that the winning strategies for the two players in a game G may be
constructed differently.

The other benefit of the duality is that, sometimes a property of a game G is intuitive
from the perspective of player 1 but not from the perspective of player 2, therefore it is
hard to analyze the dual game G from the perspective of player 1. However, if we analyze
from the perspective of player 2 in the dual game G which is equivalent as analyzing from
the perspective of player 1 in game G, then the result would be intuitive. The reason
for this to hold is that the algorithms for G and G operate almost in the same way. For
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example, it is hard to do a relatively tight complexity analysis for generalized co-Biichi,
but we know it must be the same as that of the dual game generalized Biichi because the
algorithms for the dual games are essentially the same.

The slight differences of the algorithms for G and G is that, the algorithm is particularly
designed from the perspective of player 1 to achieve some optimization.

There is often a one layer difference in algorithms for G and G in each iteration if we
don’t tailor the algorithm for a specific game. The improvement can accumulate if we use
the tailored algorithm as the iteration number goes up.

Another benefit about the algorithms for G and G is that we can do some heuristic
optimizations. We don’t really know which of the two algorithms is slightly more efficient,
but we can borrow the idea from the bi-direction BF'S to implement the two algorithms
together for better performance. This also induces a relatively tighter bound for the worst
case time complexity.

Focusing on the behaviour of only one player also benefits if we don’t care about the
winning strategy of the other. For example, in control synthesis, we often use player 1 to
depict the agent of the system and player 2 to depict the uncertainty of the environment.
Therefore, we only care about the winning set and the winning strategy for player 1. If we
stand on behalf of player 1 to look into a game G, we only care about the winning set and
the winning strategy of player 1, which can achieve some optimality by not considering
the winning strategy for player2. We do not need to look into W to solve for the winning
strategy in Vo N W, which allows us to work in a monotonically reducing sub-arena in
the algorithm. Solving the winning strategy for player 2 in G is the same as solving the
winning strategy for player 1 in G. Therefore, it is redundant and distractive if we present
the algorithm for solving the winning strategy of player 2 in G.
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Chapter 5

Solution of Infinite Games

In this chapter, we will discuss the algorithms for solving the winning set and the winning
strategy of player 1 in different games. One may refer to [15], [9], [10], [8], [28], and [10]
for more related contents.

5.1 Introduction

Since a game G and its dual game G are essentially the same game, we will present the
dual games in pairs, i.e., reachability and safety, Biichi and co-Biichi, generalized Biichi
and generalized co-Biichi, Rabin and Streett. We will extract the one pair Rabin and
Streett game out before we introduce the more general k pair Rabin and Streett game to
decompose the complexity of analysis.

Since the role of player 2 in a game G is identical to the role of player 1 in the dual game
G, we will present on behalf of player 1 in each game. This benefits us to only compute
for the winning set and winning strategy of player 1 in the algorithm for G, and leave the
computation of the winning strategy of player 2 in G in the algorithm for G. Fixing our
role to be player 1 also simplifies our notation since all the behavior is from the perspective
of player 1. We will use 7 for our current number of iteration, and 7 for the number of our
fixed point iteration.

Formulation and Solution of Infinite Games

The formulation of an infinite game is defined based on an infinite play 7, where the
token moves along the out-going edges between the nodes. In the algorithm to solve for
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the winning set and the winning strategy of player 1 in a game, we do the computation
backwards along the in-going edges between the nodes.

When we talk about a node v, what we mean is that we assume the token is on v. For
example, when we say a node v' € Pre(v) can move to v, what we mean is that we assume
the token is on ¢', and it can move through the edge (v, v) to v.

Sub-arena

Since the arena A is monotonically decreasing as the algorithm implements, we will
introduce the concept of sub-arena before we look into the actual problems. The sub-arena
A" = (V' E") of the arena A = (V, F) is an arena induced by the set of nodes V' C V|
where the edges in E’ are the edges in F such that the two end nodes are in V.

Definition 5.1.1 (sub-arena). Given an arena A = (V,E), where V.=V, @& V4 is the set
of nodes and E CV x V is the set of edges. The sub-arena A" induced by the set of nodes
V' CV is defined as A = (V' E'), where V! CV and E' = (V' x V') N E.

Remark. Note that a sub-arena may not satisfy the condition that all the nodes have an
positive out-degree, but this can be resolved by doing a safety process which will be discussed
in the safety game.

Recall that the set of nodes V' in the arena A = (V| F) can also be partitioned by the
winning sets of the two players, i.e., V=W, & W,. The two sub-arenas A;, Ay induced
by W; and W, are disjoint. This is because the set of edges E can be partitioned as
E=W xW)NE®W xWo)NE® Wy x W) NE® Wy x W) N E. The two
sub-arenas are defined as A; = Wi, (W, x W) N E) and Ay = Wh, Wy x Wh) N E).
Therefore, the set of edges that connect A; and Aj, i.e., W) x Wo)NE and (W, x W) NE
is never visited by the token. This shows that a play 7 initializing in an sub-arena A; or
A, will always stay in that sub-arena.

5.2 Reachability and Safety

In this section, we will introduce the reachability game and the safety game. The algorithms
used in these two games, i.e., reach(-) and safe(-), will serve as atomic algorithms in the
latter more complicated algorithms.
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5.2.1 Reachability Game

In this subsection, we will introduce the reachability game that requires reaching the target
set T"in at least O steps.

Reachability is the only finite game that we consider, where the play p is finite.
Winning Condition of the Game

In a reachability game G = (A, Obj), the objective set Obj = T" C V' is the set of target
nodes. The winning condition for player 1 is to force the token to eventually reach a node
in T in at least 0 step. Formally, player 1 wins iff Occ(p) N T # ().

Idea of the Algorithm
The fundamental idea of the algorithm is the BF'S.

Our goal is to force the token to eventually reach a node in 7. Therefore, if the token
is initially on a node v in 7', then this node naturally satisfies our winning condition, i.e.,

T CW.

Now we look for the set of nodes that is guaranteed to reach a node in T', therefore
we look for the predecessors of T', i.e., Pre(T'). The player 1 nodes in Pre(T) are willing
to reach T', whereas the player 2 nodes in Pre(T') are reluctant to reach 7. Therefore, a
player 1 node in Pre(T) is guaranteed to reach 7' if there is an out-going edge to 7', and
a player 2 node in Pre(T) is guaranteed to reach T if all the out-going edges go to 7. In
other words, a player 2 node in Pre(T') can only be forced to reach 7.

Formally, the set of nodes in Pre(T') that is guaranteed to reach T is defined as

pre(T) = {v € Vi|Post(v) N T # 0} @ {v € Va|Post(v) C T'}.

We consider the nodes in 7" as on layer 0 of Wy, and the nodes in pre(T")/T as on layer
1 of W;. Each node in W, can be assigned a layer number only once.

Next we consider the set of nodes that is guaranteed to reach a node on layer 1 of W,
that hasn’t been assigned a layer number. This can be computed by applying pre(-) to the
layer 1 nodes to find the layer 2 nodes of W, that haven’t been assigned a layer number.

We continue this process until no more layer can be assigned, and the maximum number
of layer 4 is the number of our fixed point iteration. Since our arena is finite, this process
must terminate. We can see that each layer of W, partitions W;. Also, because of the
unique layer number of each node in W, each node and each edge is visited at most once
in the algorithm, which gives a linear time complexity w.r.t. |V| and |E].

Algorithm
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Algorithm 1 is the algorithm we use to solve for the reachability game. It is a variation
of the classic BFS algorithm in a graph searching problem. The procedure to implement
BFS is as follows:

e First we add the initial nodes into the queue as base.

e Each time we pick out the node at the head of the queue, and search for its adjacent
nodes according to the enqueue rule.

e If an adjacent node hasn’t been searched yet, then we add it to the tail of the queue.

e We continue this process until the queue is empty.
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Algorithm 1: A (W) = reach>¢(A,T)

=

oA W N

L. A=(V=ViaVECV XxV);
2.TCV;

1. A/(W1);
Initialize V' as unvisited;
/* Enqueue T as base. x/
for (queue = head = tail; allv € T;) do
mark v as visited;
v.flag = 0;
xtail + + = v;

/* BFS to do reach. *x/

6 for (; head < tail; head++) do

7 | for (v =xhead; allv' € Pre(v);) do
8 if v" € V| then
9 if v' is not visited then
10 mark v’ as visited:;
11 v'.flag = v.flag + 1;
12 v .strategy = v;
13 xtail + 4+ = ';
14 else if v € V5 then
15 v'.outdeg — —;
16 if v".outdeg == 0 then
17 mark v’ as visited:;
18 v'.flag = v.flag + 1;
19 xtail + 4+ = ';
/* W; is the entire queue. */
20 Wy = V/Wy;

1. Winning set Wy @ Wy = V;
2. Layer number of each v € W is labeled by v.flag > 0;
3. Winning strategy of each node in V; N W), is computed;

Enqueue Rules of Different BFS
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The difference in different variations of Breadth First Search is the rule to enqueue an
adjacent node. The enqueue rules in different variations of BF'S are given by:

e Classic searching problem: post(T) = {v|Pre(v) N T # 0};

e Topological sort: post(T) = {v|Pre(v) C T}

e Reachability for A(Vi, E): pre(T) = {v € Vi|Post(v) NT # (0};
e Reachability for A(Vs, E): pre(T) = {v € V4|Post(v) C T'}.

Here, in our reachability game, the enqueue rule is given by
pre(T) = {v € Vi|Post(v) N T # 0} @ {v € Va|Post(v) C T'}.

Proof of Soundness and Completeness

Soundness

Conceptually, the process of solving W; in a reachability game can be seen as a fixed
point iteration induced by Ry and R;1; = R; U pre(R;), where Ry = T and pre(-) is
given above. The fixed point iteration terminates in the " iteration when pre(R;) = 0,
i.e., R;,1 = R; Upre(R;). The number of fixed point iteration i is thus defined as the
minimum number of ¢ such that pre(R;) = ), or equivalently R;;; = R; U pre(R;). Since
the arena is finite, the iteration must terminate in ¢ < |V| iterations. We have W) = R;
and Wy = V/W),. This gives the proof of soundness.

Completeness

From the enqueue rule pre(-), the reason why v € W, can’t reach T is straightforward:

e if v € Vi, then Post(v) N W; = ();
e if v € V5, then Post(v) N W, # .

Therefore, v € W, can never reach W, thus never reach T. This gives the proof of
completeness.

Algorithmic Perspective of BFS

In practice, we partition W, into i+ 1 layers, where layery = Ry, and layer; = R;/R;_y
for 1 < i < i. Instead of computing pre(R;) to get Riy1 = R; U pre(R;) in the i"
iteration, we are actually computing pre(layer;) to get layer;y1 = pre(layer;)/R;, where
R; = layery & layery @ - - - @ layer;. Since Wy = layerg ® layer, @ - - - @ layer;, each node
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and each edge in the arena is visited at most once. This shows that the time complexity
for solving the reachability game is linear w.r.t. |V| and |E|. The relation between R; and
layer; is given below.

Ry=T layery = Ry

Ry = Ry U pre(Ry) layer; = R1/ Ry
Ry = Ry Upre(Ry) layers = Ry/ Ry
R; = R;_y Upre(R;_y) layer; = R;/ R;_,

Strategy

For v € Wy, v.flag marks the layer number of v. Suppose a node v € W; is on layer
1. If v € Vi N Wy, then v can reach T in at least ¢ steps, and 7 is one more than the layer
number of v.strategy; if v € VoNWy, then v can reach T' in at most ¢ steps, and 7 is at least
one more than the layer number of any successors of v. Also, the nodes in 7" is on layer 0.
Therefore, as long as player 1 follows the given strategy, the layer number of all the plays
p initialized on a node vy € W; is monotonically decreasing to 0, thus eventually reaching
a node in T'. This shows that such strategy is indeed a winning strategy for player 1. The
local strategy takes 1 unit for each node v € Vi N W;.

Complexity Analysis
In a reachability game G = (A, Obj), A = (V, E) is the arena and Obj =T C V is the

objective set. |V| = n is the number of nodes and |E| = m is the number of edges.

Proposition 5.2.1. A reachability game can be solved in O(m) space, O(m) time, and
the local strateqy takes 1 unit for each node v € Vi N W;.

Space Complexity: O(n + m)

Since the size of the arena is depicted by n nodes and m edges, the space complexity
of the algorithm is O(n + m).

Time Complexity: O(n + m)

Guaranteed by each node being enqueued at most once, each node and each edge is
thus visited at most once, and the time complexity of the algorithm is thus linear w.r.t. n
and m, i.e., O(n + m).
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5.2.2 Variation of the Reachability Game

In this subsection, we will introduce a variation of the reachability game that requires
reaching the target set T" in at least one step. This is one of the atomic algorithms that we
will use in the latter more complicated polynomial algorithms. Since this reachability game
is just a variation of the previous one, we will only present the differences for simplicity.

In the previous reachability game, we apply reach>((.A, T') to find the set of nodes that
can reach T in at least 0 steps. We consider nodes in 7" as on layer 0, and is naturally in
the reachable set of T'.

Here, we will introduce a variation of the reachability game which is used to solve for
the set of nodes that can reach T in at least 1 step, which has a higher restriction that a
node v in T"is in reach> (A, T) iff v can reach T in at least one step. By iteratively applying
this algorithm, we can find the set of nodes that can reach T two times, three times, up
to infinitely many often times in at least one step, which satisfies a Biichi objective of
infinitely many often times reaching 7'

When we start the BFS for A’ (W) = reachs1 (A, T), the layer number of the nodes in
T is 0, which doesn’t mean T" C W; yet. A node v in T is in W iff its layer number turns
positive, which means v can reach T in at least 1 step. Therefore, the layer number of the
nodes in W, starts from 1 instead of 0.

Winning Condition of the Game

In this variation of the reachability game G = (A, Obj), the objective set Obj =T C V
is the set of target nodes. The winning condition for player 1 is to force the token to
eventually reach a node in T in at least one step.

Formally, player 1 wins iff Occ(p(:)) NT # 0,7 > 1.
Idea of the Algorithm

This algorithm is a variation of the previous one, thus the fundamental idea of the
algorithm is still the BF'S.

In this reacability game, the layer number of W, is from 1 to i instead of from 0 to 7
in the previous one. The set of nodes in T is initially on layer 0, but it can be assigned a
positive layer number once if it can reach 7" in at least one step. All the other nodes in
V/T can only be assigned a layer number once. Everything else is identical to the previous
reachability game.

Algorithm
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Algorithm 2 is the algorithm we use to solve for the variation of the reachability game.

Algorithm 2: A'(W),;) = reach>(A,T)

Input:
L. A=(V=ViaV, ECV xV);
2. T CV,
Output:
1. A (Wy);
1 Initialize V' as unvisited;
/* Enqueue T as base. */
2 for (queue = head = tail; all v € T;) do
/* Do not mark v as visited. x/
v.flag = 0;
4 *tail + + = v;
/* BFS to do reach. x/
5 for (i = 1, marker=tail, Wy = 0; head < tail; i++, head++) do
6 if head == maker then marker = tail, i + +;
7 | for (v =xhead; all v' € Pre(v);) do
8 if v € V| then
9 if v’ is not visited then
10 Wi+ =1,
11 mark v’ as visited:;
12 V. flag = 1,
13 v .strategy = v;
14 if v ¢ T then xtail + + = v';
15 else if v/ € V5 then
16 v .outdeg — —;
17 if v'.outdeg == 0 then
18 Wi+ = ';
19 mark v’ as visited;
20 V. flag = 1;
21 if v ¢ T then xtail + + = v';
22 Wh = V/Wi;
Result:

1. Winning set W) @ Wy =V
2. Layer number of each v € W is labeled by v.flag > 1;
3. Winning strategy of each node in V; N W is computed;
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Fixed Point Iteration

Conceptually, the process of solving W in this variation of the reachability game can be
seen as a fixed point iteration induced by R; and R;,; = R; Upre(R;), where Ry = pre(T)
and pre(-) is given by pre(T) = {v € Vi|Post(v)NT # 0} ®{v € Va|Post(v) C T} as in the
previous one. The fixed point iteration terminates in the i* iteration when pre(R;) = 0,
i.e., Ri,1 = R; Upre(R;). The number of fixed point iteration i is thus defined as the
minimum number of ¢ such that pre(R;) = ), or equivalently R;;; = R; U pre(R;). Since
the arena is finite, the iteration must terminate in i < |V| iterations. We have W) = R;
and WQ = V/ Wl.

Algorithmic Perspective of BFS
In practice, we partition W, into i layers, where layer; = Ry, layer; = R; /R;_1 for
2 < i <. layery = T/R; is not in W. Instead of computing pre(R;) to get

Ri;1 = R; Upre(R;) in the i iteration, we are actually computing pre(layer;) to get
layer;.1 = pre(layer;)/R;, where R; = layer; & layers @ - - - @ layer;.

Since W, = layer; @ layers @ - -- & layer;, each node and each edge in the arena is
visited at most once. This shows that the time complexity for solving this variation of the
reachability game is linear w.r.t. |V| and |E|. The relation between R; and layer; is given
below.

Ry = pre(T) layer, = Ry

Ry = Ry Upre(Ry) layers = Ry/ Ry
R3 = Ry U pre(Ry) layers = R3/ Ry
R; = R;_; Upre(R;_;) layer; = R;/ R;_,

layero =T/ R;

In the implementation, it can be even more concise as shown in algorithm 2. The trick is
that, in the conventional BFS, we mark a node v as visited when we enqueue v, but here
we do not mark v as visited when we enqueue v. Also, we enqueue a node only if it hasn’t
been enqueued yet to guarantee that we enqueue each node only once in the BFS. The
marker is used to separate the different layers, which can be removed together with ¢'. flag
and i if we don’t care about the layer numbers. We can even remove the v'.strategy if we
only want the winning set but not the winning strategy, or in the intermediate process of
a polynomial algorithm such as Biichi for the reason that only the strategy assigned in the
last iteration is real, whereas all the strategies assigned in the previous ones are nominal.
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Strategy

The reasoning to show the given strategy is a winning strategy for player 1 is similar to
that in the previous game. As long as player 1 follows the given strategy, the layer number
of all the plays p initialized on vy € W; is monotonically decreasing to 1, and the next
node v € T can have any layer number from 0 to 7. The local strategy takes 1 unit for
each node v € V; N Wj.

Complexity Analysis

Since this algorithm is also a variation of the BFS, the space complexity and the time
complexity are both linear w.r.t. the number of nodes |V| = n and the number of edges
|E| = m in the arena A = (V, E), i.e., O(n +m).

Discussion. Relation Between the Two Reachability Games

Let A'(R>o) = reach>o(A,T) and A'(R>1) = reach>1(A,T). Then the set of nodes in
T that can’t reach T' again, denoted by T', is given by T' = R>o/R>1 or T' = T/R>1. In
other words, R>o =T1" @& R>1.

We will give more discussions when we talk about the Bichi game.

5.2.3 Safety Game

In this subsection, we will introduce the safety game that requires always staying in the
safe set S. We will present the safety game in a dual way of the reachability game.

Safety is the first infinite game that we consider, where the play 7 is infinite.
Winning Condition of the Game

In a safety game G = (A, Obj), the objective set Obj =S C V is the set of safe nodes
and correspondingly, V/S is the set of unsafe nodes. The winning condition for player 1 is
to force the token to always stay in S, or equivalently, never reach V/S. Formally, player
1 wins iff Oce(r) C S, or equivalently, Occ(m) N (V/S) = 0.

Idea of the Algorithm

The idea of the safety algorithm is to delete the unsafe nodes in S that can reach V/S,
and the remaining nodes in .S are the safe ones that can always stay in S. The fundamental
idea of the algorithm is still the BF'S, thus it enjoys all the nice properties of BFS.

The essence of a safety game is to solve a reachability game starting from the unsafe
nodes V/S to delete the unsafe nodes that can escape from the safe nodes S. Therefore,
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when we say “doing a safety“, what we mean is to do a reachability to delete the unsafe
nodes. The player 2 nodes in Pre(V/S) are willing to reach V/S, whereas the player 1
nodes in Pre(V/S) are reluctant to reach V/S. Therefore, a player 2 node in Pre(V/S)
is guaranteed to reach V/S if there is an out-going edge to V/S, and a player 1 node in
Pre(V/S) is guaranteed to reach Pre(V/S) when all the out-going edges go to V/S. In
other words, a player 1 node in Pre(V/S) can only be forced to reach V/S.

Algorithm
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Algorithm 3 is the algorithm we use to solve for the safety game.

Algorithm 3: A'(W),) = safe(A, S)
Input:
L. A=V =VieVL, ECV xV);
2. SCV,
Output:
1. A/(W1);
1 Initialize V' as safe;
/* Enqueue V/S as base. */
2 for (queue = head = tail; allv € V/S;) do
3 L mark v as unsafe;

4 *tail + 4 = v;
/* BFS to delete unsafe nodes. x/
5 for (; head < tail; head++) do
6 for (v = xhead; all v' € Pre(v);) do
7 if v € V; then
8 if v is safe then
9 mark v’ as unsafe;
10 L xtail + + = v';
11 else if v € V| then
12 v .outdeg — —;
13 if v.outdeg == 0 then
14 mark v' as unsafe;
15 L xtail + 4+ = ';
/* W, is the entire queue. */
16 W) = V/Wh;
Result:

1. Winning set Wy & Wy, = V;
2. Winning strategy of each node v € V; N W, is computed by
v.strategy = {V'|Vv' € Post(v) s.t. v' € Wy };

Enqueue Rules of Different Safety Game

We use the idea of BF'S to solve for the different safety games, while the differences lies
in the different enqueue rules:
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e Safety for A(Vy, E): pre(V/S) = {v € V1| Post(v) C (V/S)};
e Safety for A(Va, E): pre(V/S) = {v € Va|Post(v) N (V/S) # 0}.

Here in our safety game, the enqueue rule is given by

pre(V/)S) = {v € W|Post(v) N (V/S) # 0} & {v € Vi|Post(v) C (V/S)}, which is the
combination of the enqueue rules for the safety games of A(V3, E) and A(Vs, E). The
ideas of the safety games of A(V}, F) and A(V,, F) originate from the topological sort and
the classic graph searching problem respectively.

Proof of Soundness and Completeness
Completeness

W, is computed as the set of nodes that are guaranteed to reach V/S regardless of how
player 1 plays. Therefore, v € W, will eventually reach V/S, thus violating the winning
condition of always staying in S. This gives the proof of completeness.

Soundness
W\ is the set of safe nodes after deleting the unsafe nodes, i.e., W) = V/W;.

From the enqueue rule pre(-) above, the reason why v € W, can always stay in S is
straightforward:

o if v € V5, then Post(v) N Wy = 0);
e if v € V4, then Post(v) N W, # 0.

Therefore, v € W, can always stay in W; C S. This gives the proof of soundness.
Strategy

From the proof of soundness, we can see that v € Vo N W, can not move to W in the
next step since Post(v) N Wy = (). In other words, Post(v) CW,; C S.

Also, v € Vi N W, can move to W, in the next step since Post(v) N W; # ). Tt follows
that the strategy for v € Vi N W, can be any successor of v in W;.

Formally, for v € Vi N Wy, v.strategy = {v'|Vv' € Post(v) s.t. v/ € W, }.

With this strategy, Post(W;) C W; C S, thus inductively any play 7 initialized in W,
is trapped in W; C S. Therefore, the token always stays in W; C S and such strategy
is indeed a winning strategy for player 1. The local strategy takes 1 unit for each node

vGVlﬂV\/l.
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Complexity Analysis

Since this algorithm is also a variation of the BFS, the space complexity and the time
complexity is both linear w.r.t. the number of nodes |V| = n and the number of edges
|E| = m in the arena A = (V, E), i.e.,, O(n+ m).

Proposition 5.2.2. A safety game can be solved in O(m) space, O(m) time, and the local
strategy takes 1 unit for each node v € Vi N W;.

Discussion. More about Safety Game

Since we don’t care that much about nodes in Wy can reach V/S in how many steps,
we don’t label the layers in the safety algorithm. This can be done in a similar process as
i a reachability game iof we want to.

An optimization of the safety game is that, we can enqueue pre(V/S) instead of V/S
as base nodes, which allows us to restrict to the sub-arena A'(S). This small change will
safe us one step of enqueue calculation in a co-Biichi game, which can accumulate in a
polynomial algorithm.

reachso(+, ), reach>1(+,-), together with safe(-,-) are all variations of BFS. These linear
algorithms are the atomic algorithms that we use to construct the latter more complicated
polynomial algorithms.

5.3 Buchi and co-Buchi

In this section, we will introduce the Biichi game and the co-Biichi game. The algorithms
used in these two games are constructed by the atomic algorithms introduced in the pre-
vious section.

5.3.1 Biichi Game

In this subsection, we will introduce the Biichi game that requires reaching the target set
T infinitely many often.

Winning Condition of the Game

In a Biichi game BG = (A, Obj), the objective set Obj = T" C V is the set of target
nodes. The winning condition for player 1 is to force the token to reach 7" infinitely many
often. Formally, player 1 wins iff Inf(7) N T # (.
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Idea of the Algorithm

The basic idea of the algorithm is to iteratively apply reachs;(-,-) until fixed point
iteration.

We find the set of nodes that can reach T in at least 1 step once after applying
reachs1(A'(V'),T) once. We find the set of nodes that can reach T in at least 1 step
twice after iteratively applying reachs;(A’(V),T') twice. After applying reach>;(-,-) each
time, the nodes in T' that can’t reach T again are deleted, thus the size of T reduces by at
least 1 each time. The set of nodes after iterating reachs(-,-) 7 times can reach 7" in at
least 1 step for at least 7 times. We continue this process until the iteration terminates in
the 7! iteration when the size of T doesn’t reduce any more, thus the size of the reachable
set of T" doesn’t reduce, even if we iterate for more times. Now this reachable set of T" after
1 iterations forms a closed loop that guarantees any node in this set can reach a node in
T, thus inductively satisfies the winning condition of infinitely many often reach T

Algorithm

Algorithm 4 is a naive algorithm we use to solve for the Biichi game. It’s a fixed point
iteration of reachs;(-,-).

Algorithm 4: A'(W),) = Biichi(A, T') Fixed Point Iteration of Reach

Input:
L. A=(V=ViaV,ECV xV);
2.TCV;
Output:
1. A (W);
1 for (Viiterate =0,V =V, T"=T,i=1;;i+ +) do
2 | A(R;) =reachs(A'(V"), T');
3 Ry.iterate = 1;
4 if V! == R; then break;
5 V' = Rl;
6 =T NV
7 W1 = V/;
8 Wh =V/Wiy;
Result:

1. Winning set W) @ Wy, =V
2. Iterate number of each v € V' is labeled by v.iterate > 0;
3. Winning strategy of each node in V; N W, is computed by reachs(-,-);

Proof of Soundness and Completeness
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Soundness

Conceptually, the process of solving W; in a Biichi game can be seen as a fixed point
iteration induced by A'(R;;1) = reachs(A'(R;),T;), where Ry =V, T} =T, and

Tiy1 = Ry N'T;. The fixed point iteration terminates in the i’ iteration when T, = T},
i.e., R;;; = R;. The number of fixed point iteration 7 is thus defined as the minimum
number of ¢ such that T;,; = T}, or equivalently R;,;; = R;. The nodes in R; can reach T’
in at least 1 step for at least ¢ times. Since the fixed point iteration is achieved after the
1" iteration, a closed loop is formed in R;. The nodes in R; can thus reach T infinitely
many often inductively. Since the size of T reduces by |R;/R; 1| > 1 in the i*" iteration,
the iteration must terminate in ¢ < |T'| iterations. We have W, = R; and W, = V/W).
This gives the proof of soundness.

Completeness

In algorithm 4, each node v € V' is labeled with a iterate number indicating the number
of times v participated in the iterations.

We have W, = {v|v.iterate = i}, and W, = {v|0 < v.iterate < i}.

Nodes in W, has v.iterate = 7, indicating v has participated in all of the i*" iterations
for 1 <i <i.

Nodes in W, has v.iterate = i < 14, indicating v has only participated in the first *
iterations from 1 to ¢. Such nodes can reach T in at least 1 step for ¢ times, but not the
(i + 1)" time. Therefore, v € W, can at most reach T in at least 1 step for i < ¢ times
which is finite, thus can’t reach T infinitely many often times. This gives the proof of
completeness.

Alternative Algorithm

Algorithm 5 is an improved algorithm based on algorithm 4 that we use to solve for
the Biichi game. It’s a fixed point iteration of reachs;(-,-) and safe(-,-). reach>o(-,-) is for
the use of presenting the sub-arena in the ¥ iteration only.

Algorithm 5 does an extra safety process that deletes the nodes that can’t reach T' for
the next time after doing each reach iteration. After the i*" iteration of reachs;(-,-), we
find the set of nodes that can reach T in at least 1 step for 7 times. Before we iterate
reachs;(+,-) for an (i + 1) time to find the set of nodes that can reach T for an (i 4+ 1)™"
time, we apply the safety algorithm safe(-, ) to delete the nodes that can’t reach T for an
(i +1)" time since these nodes can reach W, and then get trapped in W,. We do an extra
safety after each reach iteration in a hope that the nodes in 7" can be deleted in the safety
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process in order to reduce the number of iterations of reachability.

Algorithm 5: A'(W;) = Biichi(.A, T') Fixed Point Iteration of Reach and Safe

Input:
L. A=V =ViaVL, ECV XxV);
2.TCV;
Output:
1. A/(W1);
1 for (Viterate =0,V =V, T"=T,i=1;;i+ +) do
2 A'(Ry) = reachso(A'(V'), T");
3 | A(R;) =reachs (A (V'),T");
4 V' = RQ,
5 if Ry == R; then R;.iterate = i; break;
6 A'(V") = safe(A'(Ry), R1);
7 =T NV
8 if 7" == () then V' = (); break;
9 V'.iterate = i,
10 W, =V
11 Wy =V/Wiy;
Result:

1. Winning set W) @ Wy =V
2. Iterate number of each v € V' is labeled by v.iterate > 0;
3. Winning strategy of each node in V3 N W is computed by reachs(-,-);

Proof of Soundness and Completeness
Soundness

Conceptually, the process of solving W, in a Biichi game using the improved algorithm
can be seen as an alternating fixed point iteration induced by A’(R;;1) = reachs; (A'(R;), T;)
and A'(R;y1) = safe(A'(R;), Rix1), where Ry =V, Ty = T, and T;1; = T, N R;y. The
fixed point iteration terminates in the i* iteration when T, = T}, i.e., R;,; = R;. The
number of fixed point iteration 4 is thus defined as the minimum number of i such that
T, 1 = T;, or equivalently R; 1 = R;. The nodes in R; can reach T in at least 1 step for at
least i times. Since the fixed point iteration is achieved after the 7" iteration, a closed loop
is formed in R;. The nodes in R; can thus reach 7" infinitely many often inductively. Since
the size of T reduces by |R;/R;.1| > 1 in the " iteration, the iteration must terminate in
1 < |T| iterations. We have Wy = R; and W, = V/W),. This gives the proof of soundness.

Completeness
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In algorithm 5, each node v € V is labeled with a iterate number indicating the number
of times v participated in the iterations.

We have W, = {v|v.iterate = i}, and W, = {v|v.iterate < i}.

Nodes in W, has v.iterate = i, indicating v has participated in all of the i*" iterations
for 1 <i <.

Nodes in W, has v.iterate = i < i, indicating v has only participated in the first '
iterations from 1 to ¢. Such nodes can reach 7T in at least 1 step for ¢ times, or reach W,
after the (i + 1)™ time. Therefore, v € W, can at most reach T in at least 1 step for i < i
times which is finite, thus can’t reach T infinitely many often times. This gives the proof
of completeness.

Strategy

The strategies in the two algorithms of the Biichi game are the strategies computed in
the reachsi(-,-) process. The strategies of the two algorithms should be the same since
the winning sub-arena A’(W)) is the same. If we apply reachs;(-,-) again in A'(W)), the
strategy for v € V4 N W), should be the same.

Since the reachable set of T" is reducing after each iteration, the strategy of the remaining
V1 nodes may be updating each time, thus only the strategy in the last iteration 7 is the real
strategy. All the strategies computed in the previous iterations are nominal. Therefore,
we can choose to compute the strategy in each iteration, or after the fixed point iteration
is achieved depending on the implementation.

For v € Vi, N Wi, from the analysis of the strategy in a reachability game, we know
that such strategy can guarantee v to reach a node v € T'NW); in at least one step, and
v' can reach a node v" € T'N W in at least one step again, thus inductively v can reach
T infinitely many often times. This shows that such strategy is indeed a winning strategy
for player 1. The local strategy takes 1 unit for each node v € Vi N W;.

Complexity Analysis
In a Biichi game BG = (A, Obj), A = (V, E) is the arena and Obj = T C V is the

objective set. |V| = n is the number of nodes and |E| = m is the number of edges.

Proposition 5.3.1. A Biichi game can be solved in O(m) space, O(nm) time, and the
local strategy takes 1 unit for each node v € Vi N W;.

Space Complexity: O(n + m)

Since the size of the arena is depicted by n nodes and m edges, the space complexity
of the algorithm is O(n + m).
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Time Complexity: O(nm)
In the first naive Biichi algorithm 4, each reachs(-,-) costs O(m). |T’| reduces by at

least one after each iteration, thus there can be at most i < |T| < n iterations. Therefore,
the time complexity of the algorithm is polynomial w.r.t. n and m, i.e., O(|T|-m) = O(nm).

In the second improved Biichi algorithm 5, the analysis is the same as in algorithm
4, with an additional cost for the safety process. The total cost of safe(-,-) is linear, i.e.,

O (Z safe(+,-) | = O(m). Therefore, with an additional cost of at most linear O(m),
i=1

we are likely to reduce the number of iterations if any v € T is deleted in the safety
process, which may result in a smaller multiple of O(m). This is usually the case in
practice. The time complexity of the algorithm is thus polynomial w.r.t. n and m, i.e,
O(|T| - m) = O(nm).
More Detailed Analysis

Now we have that the time complexity of the Biichi algorithm is O(|T'| - m) = O(nm),

where the number of iterations is upper bounded by |T'|. Our goal is to see whether we
can reduce this upper bound or even make it a constant to make the algorithm linear.

We can easily get a relatively smaller lower bound inspired by the improved Biichi
algorithm 5, or from the dual game co-Biichi in the next subsection.

After each iteration of reachs(-, ), |T'| reduces by at least one. We should also notice
that the new unsafe trap after each iteration also has size at least 1. This shows that
the target nodes and the unsafe nodes are deleted “in pairs”. Therefore, we should have
deleted at least two nodes in each iteration. It follows that we have a relatively smaller
lower bound O(min(|T|,n — |T|) - m) = O(nm).

Remark. We explicitly give this relatively smaller lower bound.

Is it possible to have a linear algorithm for Biichi?

It seems like doing a safety can save us many iterations of reachability. So is it possible
to reduce the number of iterations to a constant to have a linear algorithm for Biichi? The
answer is no, and we will give the reason after we provide two linear algorithms for Biichi
when the arena has only one type of player nodes.

1. If we only have player 1 nodes in the arena, i.e., A = (V4, E).

This is a classic graph in the graph theory. We can first use a linear algorithm to
solve for the strongly connected components (SCC) of Vi. The remaining arena is
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a directed acyclic graph (DAG). We treat all the nodes in the same SCC as one
node, and choose the non-trivial SCCs that contain a target node as the target set,
and then apply reachso(-,-) to find Wj. Since all the nodes are V;, player 1 is fully
controllable of the arena. Therefore, v € W iff v is reachable to a non-trivial SCC
that contains a node in T'. The reason is that, once v reaches a non-trivial SCC that
contains a node in 7', it can infinitely many often reach a target node in the SCC,
thus satisfying the winning condition. Conversely, if v can’t reach a non-trivial SCC
that contains a node in 7', then v can reach a node in 7" at most finitely many times
since there is no loop that contains a target node which doesn’t satisfy the winning
condition.

Since solving SCC and reachability are both linear O(n + m), the time complexity
for solving the Biichi game in A = (V4, E) is also linear O(n + m).

2. If we only have player 2 nodes in the arena, i.e., A = (V5, E).

Player 2 is fully controllable of the arena. This Biichi game can be solved by doing
one iteration of reachability and safety in the algorithm 5. The time complexity is
clearly linear O(n 4+ m). The reason is that, in a safety game for A = (V5, E), all the
V5 nodes that are reachable to the unsafe set is deleted. The remaining set doesn’t
lose the reachability property.

We have given two linear algorithms to solve for the Biichi game when the arena has only
Vi or V5. So why is it hard when the arena has both V; and V57 Even the fully uncontrollable
A = (V, E) case has linear algorithm. In other words, why does the improved algorithm
5 still requires multiple iterations to become polynomial?

This can be answered by how the algorithm is performed. After applying reachs(-, ),
we find the set of nodes that can reach a node in 7" in at least one step. Then we apply
safe(, ) to delete the unsafe nodes that can reach W.

Now the current set is safe in a sense that it won’t be trapped in W,. However, it may
lose the property of reachability that it can reach a node in T'. This is because a target
node that the current set can reach before is deleted in the safety process. This happens
when we have an “SCC” without a target node that contains V; nodes. We can’t delete
this “SCC” since it has edges that can self-circular inside, but it doesn’t have a target node
so it doesn’t satisfy reaching a target node.

The difference between the current safety and the next reachability are such “SCC”s
that can’t be deleted in the safety process. Therefore, the most efficient way is to solve for
the reachability again, but then we lose the property of safety again. The purpose for us
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to alternatively iterate reachability and safety is to gain the property of reachability and
safety at the same time when the fixed point is achieved. This is the reason that requires
us to apply reachability and safety multiple times.

Back to the Biichi game in A = (V5, E), we won’t have an “SCC” without a target node
after doing a reachability followed by a safety since such “SCC” won’t be included in the
reachable set in the first place, or it must be deleted in the safety since all the nodes are
V5. Therefore, the set after applying the reachability and the safety preserves the property
of both reachability and safety, thus satisfies the winning condition.

The difficulty of solving a Biichi game in A = (V = Vi@V, E) lies in the switching roles
of player 1 and player 2 in reachability and safety. V) are easy to include in reachability,
while V5 are easy to delete in safety. The most tricky part comes from Vj being hard to
delete in safety because of “SCC”, which requires doing reachability again.

Construction of O(nm) Example

It is easy to construct an example that requires O(nm) time to solve. We will show
the performance of the naive algorithm 4 and the improved algorithm 5 by constructing
multiple variations of examples. Our final example requires O(nm) time which shows the
worst case for solving Biichi is polynomial, and it can be as worse as O(nm).

1. Basic set up We alternatively lie V; nodes and V5 nodes in a line, with a 1} node
with self-loop being the head. Each node points to its former node. Each V5 node is
a target node. The picture is shown in Figure 5.1.

For A= (V,E), |V| =n and |E| =m.
Now, O(m) = O(n).

For algorithm 4, it takes about O(n) iterations of reachability and each reachability
takes O(n) time, thus taking O(n?) = O(nm) time.

For algorithm 5, it takes only one iteration of reachability and safety, thus taking
linear O(n +m) = O(n) time.

From this example, we can see that algorithm 5 outperforms algorithm 4.

2. First variation Add self-loop to each V; node. The picture is shown in Figure 5.2.
Now, O(m) = O(n).

For algorithm 4, it takes about O(n) iterations of reachability and each reachability
takes O(n) time, thus taking O(n?) = O(nm) time.
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Figure 5.1: Biichi Example 1

For algorithm 5, it takes about O(n) iterations of reachability and safety, thus taking
O(n?) = O(nm) time. We can see that the reason for the time complexity to be
polynomial is the self-loops of the V; nodes, which are of the simplest form of non-
trivial SCC. However, we can do an heuristic optimization to the arena by deleting
the self-loops of V; nodes, and then the algorithm turns linear again.

Therefore, from this example, we can see that algorithm 5 still outperforms algorithm

4.

Figure 5.2: Biichi Example 2

. Second variation For each V] node, add edges to all of its former nodes.

For each V5 node, add edges to all of its latter nodes. We can also add self-loops for
the V5 nodes. The picture is shown in Figure 5.3.

Now, O(m) = O(n?).

For algorithm 4, it takes about O(n) iterations of reachability and each reachability
takes O(n?) = O(m) time, thus taking O(n®) = O(nm) time.

For algorithm 5, it takes about O(n) iterations of reachability and safety, thus taking
O(n?) = O(nm) time.

If we don’t know how the arena is constructed, then it is impossible for us to solve the

Biichi game without iteratively applying reachability (and safety). A subtle change
can change W from ) to V.

Therefore, from this example, we can see that algorithm 5 even takes O(n+m) more
operations than algorithm 4. The extra operations come from the extra linear safety
process.
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Figure 5.3: Biichi Example 3

Heuristic Optimization

The problem that causes algorithm 5 to be polynomial is the “SCC”s that can’t be
deleted in a safety, but can be deleted in the next reachability. Therefore, we give some
heuristic optimizations to try to delete these “SCC”s by simplifying the arena and breaking
down a big problem into small subproblems. This is using the idea of reducing branches
in the graph searching problems, and the idea of divide and conquer.

The nodes in the arena can be partitioned by the types of player or whether it is a
target node. Therefore, we partition V into four sets of nodes labeled from 0 to 3, the
smaller number has relatively higher priority:

O:veVinT; 1l:velVonT; 2:veVin(V/T); 3:veVoan(V/T).

The picture is shown in Figure 5.4.

O:veVinT l:veVo,nT 2:veV,n(VIT) 3:ve V,n(VIT)

Figure 5.4: Labels of Different Nodes

1. Delete self-loops We can delete the self-loops of a node if we know the its type.
Deleting each self-loop takes O(1) time. We will analyze what we can do to a node
v of each type 0, 1, 2, 3 when we delete its self-loop.

74



e 0: v eW,, A(R) =reach>o(A'(V),v), Wi+ = R.
e 1: We can delete its self-loop first.
If v.outdeg == 0, then v € Wy, A'(R) = reach>o(A(V),v), Wi+ = R.
e 2: We can delete its self-loop first.
If v.outdeg == 0, then v € Wy, A'(S) = safe(A'(V),V/{v}), Wo+ =V/S.
o 3: veW,, A(S) =safe(A(V),V/{v}), Wa+ =V/S.

2. Delete loop between a pair of nodes (u,v) We can also delete most of the
loops between a pair of nodes (u,v). Deleting each loop between (u,v) takes O(1)
time. Since u and v each has 4 types, there are a total of 16 cases. Each (u,v) pair
can be represented by a number encoded by u x 4+ v from 0 to 15. We can cancel out
the repetitive cases such as (u,v) and (v,u) to reduce to 10 cases. We will analyze
what we can do to a loop between a pair of nodes (u,v).

o 0: u,v € W, A(R) =reachso(A'(V),{u,v}), Wi+ = R.
o l:u—w

If v.outdeg == 0, then u,v € Wy, A'(R) = reach>o(A(V),{u,v}), Wi+ = R.
e 2: u,v € Wy, A(R) = reachso(A(V),{u,v}), Wi+ = R.
e J:u—w

If v.outdeg == 0, then u,v € Wy, A'(R) = reachso(A(V),{u,v}), Wi+ = R.
e 5: We can combine u, v into 1 node v’.

If v'.outdeg == 0, then u,v € Wy, A'(R) = reach>o(A'(V), {u,v}), Wi+ = R.
o 6:u<+w

If u.outdeg == 0, then u,v € W, A'(R) = reach>o(A'(V),{u,v}), Wi+ = R.
e 7: This is the only case that can’t be simplified.
e 10: We can combine u, v into 1 node v'.

If v'.outdeg == 0, then u,v € Wy, A'(S) = safe(A'(V), V/{u,v}), Wo+ =V/S.
o 11: u<+w

If u.outdeg == 0, then u,v € Wy, A'(S) = safe(A'(V), V/{u,v}), Wa+ =V/S.
o 15: u,v € Wy, A(S) =safe(A'(V),V/{u,v}), Wa+ =V/S.

3. Combine SCC The more general case is to calculate the SCCs directly, and then
combing each SCC into a single node of that type. Calculating all the SCCs takes
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O(n+m) in total. However, classifying the SCCs allows us to separate a big problem
into several small subproblems, which is using the idea of divide and conquer. We
can use an inequality to represent this idea:

m

n=y ki, O(f(n)=0(), f(n)= Zf(kz‘)'

=1

We will analyze what we can do after we contract an SCC of a certain type to a
single node v of that type.

0: v e Wy, A(R) = reachso(A(V),v), Wi+ = R.

1: If v.outdeg == 0, then v € Wy, A'(R) = reachso(A'(V),v), Wi+ = R.

2: If v.outdeg == 0, then v € Wy, A'(S) = safe(A'(V),V/{v}), Wa+ = V/S.
3: v €Wy, A(S) =safe(A(V),V/{v}), Wo+ =V/S.

SCC of 0 and 2: v € Wy, A (R) = reach>o(A'(V),v), Wi+ = R.

After each iteration of reachability and safety in the improved algorithm 5, we
can add a calculation of SCCs to the entire remaining sub-arena to see whether
it has been partitioned into several disjoint sub-arenas. If that is the case, then
we can apply algorithm 5 to each of these disjoint sub-arenas instead of solving
them together, which will give us some optimality.

[f these heuristic optimizations still can’t delete the “SCC”s, then we have to iterate
multiple times. These “SCC”s are composed of player 1 nodes and player 2 nodes, which
can only be deleted in the next reachability.

However, since our arena is not deliberately designed in practice, the safety process can
help us reduce most of the iterations by deleting the unsafe target nodes. Therefore, we
can expect an almost linear time complexity O(n + m) to solve a Biichi game in practice
even without adding any heuristic optimizations.

5.3.2

co-Buchi Game

In this subsection, we will introduce the co-Biichi game that requires eventually always
staying in the safe set S. We will present the co-Biichi game in a dual way of the Biichi

game.

Winning Condition of the Game
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In a co-Biichi game CG = (A, Obj), the objective set Obj = S C V is the set of safe
nodes and correspondingly, V/S is the set of unsafe nodes. The winning condition for
player 1 is to force the token to eventually always stay in S, or equivalently, finitely many
times reach V/S. Formally, player 1 wins iff Inf(7) C S, or equivalently, Inf(7)N(V/S) = 0.

Idea of the Algorithm

The co-Biichi algorithm we will present is the dual algorithm of the improved Biichi
algorithm 5. The basic idea of the algorithm is to iteratively apply safe(-, -) and reachsq(+, -)
until fixed point iteration.

Our goal is to force the token to eventually always stay in S. We consider the problem
backwards, which is to find the set of nodes that satisfies our final condition first. The final
condition is to find the nodes X C S that can always stay in S, which is a safety game.
It is clear that X C W),. Then we find the set of nodes that can reach X by applying
reach>q(+, ), which also satisfies eventually always stay in S. In this reachability process,
we first find nodes in V/S, then we may find nodes back in S. This reachable set of X
is in Wy, so in the next iteration, we are working in the sub-arena A’'(V/W), which is
monotonically decreasing. We have to repeat the process of safety and reachability because
in the remaining sub-arena, there may contain a safe set X C S again. In each iteration,
at least 1 node in S is determined to be in W;. We continue this process until the iteration
terminates in the ¢** iteration when the safe set X C S is empty. Then no more nodes can
satisfy eventually always staying in S since there is no safe set X C S.

Algorithm

Algorithm 6 is the algorithm we use to solve for the co-Biichi game. It’s a fixed point
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iteration of safe(-,-) and reachq(-,-).

Algorithm 6: A’ (W) = co-Biichi(A, S) Fixed Point Iteration of Safe and Reach
Input:
LA=V=VaoW ECV V)

2.5CV;
Output:
L AW,
1 for (Viiterate =0,V' =V, 8" =S,i=1,W; =0;;i++) do
2 | A(X) =safe(A'(V),S");
3 if X == () then break;
4 | A(R) =reachso(A(V"), X);
5 Wi+ = R;
6 R.iterate = t;
7 | if (R==X)V(R==1V’)then break;
8 | V'—=R;
9 S'=5"nV
10 if S’ == () then break;
11 Wy =V/Wy;
Result:

1. Winning set Wy @ Wy = V;

2. Iterate number of each v € V is labeled by v.iterate > 0;

3. Winning strategy of each node in V; N W, is computed by safe(-,-) and
reach>o(+,-) in the corresponding process;

Proof of Soundness and Completeness
Soundness

Conceptually, the process of solving W; in a co-Biichi game can be seen as a fixed
point iteration induced by A'(X;) = safe(A'(V;),S;) and A'(R;) = reachso(A'(V;), X)),
where V; =V, S =5, V.1 =V, — R; and S;.1 = S; N V1. The fixed point iteration
terminates in the 7*" iteration when X; = (). The number of fixed point iteration 7 is thus
defined as the minimum number of ¢ such that X; = 0. W, = Ri ® Ry ® --- ® R; and
Wy = V; = V/W,. The nodes in R; can leave S for at most ¢ times, 1 < i < 7. If a node
v € Wy is not in S, then it will return to S within |V| steps which is finite. Since the fixed
point iteration is achieved after the i** iteration, the nodes in W; can leave S for at most
1 times which is finite. Therefore, the nodes in W, will eventually stay in S, even though
we can’t determine when that eventually is. What we do know is that the nodes in W,
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can violate staying in S for at most 7 times. Since the size of S reduces by |S;/S; 1] > 1
in the " iteration, the iteration must terminate in ¢ < |S| iterations. This gives the proof
of soundness.

Completeness

Since the fixed point iteration is achieved after the 7" iteration, the safe set X; C S; is
empty. Therefore, no nodes in W, = V5 can eventually stay in S.

In algorithm 6, each node v € V is labeled with an iterate number indicating the
number of times v participated in the iteration of reachability.

We have W, = {v|1 < v.iterate < i}, and W, = {v|v.iterate = 0}.

Nodes in W, has 1 < v.iterate = i < 4, indicating v has participated in the i*" iteration
of reachability, and v can leave S for at most ¢ times.

Nodes in W» has v.iterate = 0, indicating v can’t be attracted into a safe set. In other
words, v € Vo N Ws has a strategy from the Biichi game to force the token infinitely many
often reach V/S, thus violating the winning condition. This gives the proof of completeness.

Strategy

Consider the nodes v € V; N W;. If v is determined in a safety process, i.e., v € X;,
then v.strategy is given by the safety algorithm to “stay” in X; C S. If v is determined in
a reachability process, v € R;/X;, then v.strategy is given by the reachability algorithm
to reach X; € S. We quoted “stay” for the nodes in X; C S, since a node v' € Vo N X;
may choose to stay in X;, or, to leave X; to enter R;, i < 7, but then we know the nodes
in R; are in X; C S or can reach X; C S in finite steps. Since i can only be reduced to 1,
and X; C S is a real safe set of S, thus inductively v can leave S for at most finitely many
times.

We can see that the iterate number of the nodes in a play « initiated at vy € W is
non-increasing:

e The iterate number stays the same in the process from R; to reach X; C S, or staying

e The iterate number is decreasing in the process from X; to R;, < i.

We can’t determine when that “eventually” is to satisfy always staying in S because it
may depend on player 2 to choose whether to stay in X; or leave X;. But even if player 2
chooses to leave X, it can still leave S for at most ¢ times, or more precisely, for at most
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W, /S| steps, which is finite. This allows us to claim that our strategy satisfies eventually
always staying in S. If player 2 violates staying in S, then we can argue that it’s not the
time for “eventually” yet, and player 2 can violate staying in S for at most finitely ¢ times
or [Wy /S| steps, so that our argument still holds.

This shows that such strategy is indeed a winning strategy for player 1. The local
strategy takes 1 unit for each node v € Vi N W;.

Complexity Analysis

In a co-Biichi game CG = (A, Obj), A = (V, E) is the arena and Obj = S C V is the
objective set. |V| = n is the number of nodes and |E| = m is the number of edges.

Proposition 5.3.2. A co-Biichi game can be solved in O(m) space, O(nm) time, and the
local strategy takes 1 unit for each node v € Vi N W.

Space Complexity: O(n + m)

Since the size of the arena is depicted by n nodes and m edges, the space complexity
of the algorithm is O(n + m).

Time Complexity: O(nm)

In the co-Biichi algorithm 6, each safe(:,-) costs O(m). |S| reduces by at least one after
each iteration, thus there can be at most i < |S| < n iterations. The total cost of safe(-, -)
is thus O(|S| - m) = O(nm).

The total cost of reachsg(-,-) is linear, i.e., O (Z reachso(-,-) | = O(m). It is likely

i=1
to reduce the number of iterations if any v € S is determined in the reachability process,
which may result in a smaller multiple of O(m). This is usually the case in practice
since co-Biichi is the dual game for Biichi. The time complexity of the algorithm is thus
polynomial w.r.t. n and m, i.e, O(|S|-m) = O(nm).

More about co-Biichi Game

In the co-Biichi game, we can restrict the arena of the safety algorithm to A’(S). The
safe set is defined as S/pre(V/S). This makes the algorithm polynomial in S and linear
in V/S, which can save all the unnecessary operations in V/S. This shows that one step
of enqueue calculation pre(V/S) in the first iteration allows us to work in A’(S) instead
of in A'(V'), which saves us all the calculations in V/S. Such savings accumulate in a
polynomial algorithm like co-Biichi.
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Similar to the analysis for the Biichi algorithm, we can easily get the same relatively
smaller lower bound for co-Biichi. After each iteration of safe(-,-), |S| reduces by at least
one. We should also notice that the new reachable set R;/X; after each iteration also has
size at least 1, otherwise the safe set in the next iteration would be empty and the fixed point
will be achieved. We can see that the safe nodes and the reachable nodes are determined “in
pairs”. Therefore, we should have determined at least two nodes in each iteration for W;.
It follows that we have a relatively smaller lower bound O(min(|S|,n—|S])-m) = O(nm).

We can also get this relatively smaller lower bound for Biichi and co-Biichi when con-
sidering these two games together: the target set 7' in a Biichi game is the unsafe set V/S
in its dual co-Biichi game. Since Biichi and co-Biichi are essentially the same game from
the perspective of different players, the time complexity for the two games should be the
same. From the perspective of the Biichi game, we have O(|T'| - m) = O(|V/S| - m); from
the perspective of the co-Biichi game, we have O(|S|-m). This directly gives us a tighter
bound by taking the min of these two: O(min(|S|,n —|S]) - m) = O(nm).

n
Note that min(|S|,n—15]) < 5 Actually, if we really want to do a detailed analysis to

see how small the coefficient for O(nm) can be, then we can introduce the average degree
of the arena a given by m = a - n.

In the 4" iteration, it takes O(a - i) operations. The number of nodes reduces by at

min(|S|,n—|S]) n 1 an® 1
least two in each iterations, th (n—2i) <a-(1 5T T
east two in each iterations, thus ; a-(n—2i) <a-(1+n) 59 1 4nm

Therefore, the polynomial part of the time complexity is given by

(@) Z a-1i| = O(an), with a coefficient "

=1

5.4 Generalized Buchi and Generalized co-Buchi

In this section, we will introduce the generalized Biichi game [3] and the generalized co-
Biichi game. The algorithms used in these two games are constructed by modifying the
algorithms for Biichi and co-Biichi respectively.
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5.4.1 Generalized Bichi Game

In this subsection, we will introduce the generalized Biichi game that requires reaching the
target sets T; infinitely many often for all 7, 1 <17 < k.

Winning Condition of the Game

In a generalized Biichi game GBG = (A, Obj), the objective set Obj = {T1,--- , Tx},
where T; C V', 1 <4 < k are the k sets of target nodes. The winning condition for player 1

is to force the token to reach T; infinitely many often for all 7, 1 < i < k. Formally, player
k

1 wins iff /\ (Inf(m) N T; # 0).
i=1
Three Methods to Solve the Game
There are at least three methods to solve a generalized Biichi game with k target sets

in A:

1. Method 1 Solve it as a generalized Biichi game in A.
2. Method 2 Convert the game to a Biichi game in k-copies of A.

3. Method 3 Convert the game to a Biichi game in (k + 1)-copies of A.

In a generalized Biichi game with £ Biichi objectives, we require satisfying all of the
k Biichi objectives. Therefore, a generalized k Biichi objective is also considered as the
conjunction of k£ Biichi objectives as shown in the form of the winning condition.

As in method 2 and 3, we unfold the arena A to k or (k + 1) copies to convert the
generalized Biichi game to a Biichi game. The benefit of introducing the generalized Biichi
algorithm in method 1 is for efficiency in both time and space.

Method 1 is the composition of method 2 and 3, and method 2 and 3 are the decom-
positions of method 1. We will first introduce method 2 and 3 to give the conversion from
a generalized Biichi game to a Biichi game, and then introducing a new generalized Biichi
algorithm in method 1.

Method 2

In this subsubsection, we will discuss method 2 that converts the generalized k Biichi game
to a Biichi game in k-copies of A.
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Since a game G = (A, Obj) is a pair of arena A and objective set Obj, we will show
the conversion by constructing the Biichi game G’ = (A’, Obj’) from the generalized Biichi
game G = (A, Obj).

Arena

The procedure to convert the arena A of the generalized Biichi game to the arena A’
of the Biichi game is as follows:

1. list k-copies of A from 1 to k, i.e., Ay, -+, A;

2. on A; for 1 < i <k, for each v € T}, connect each of its out-going edges from A; to
the corresponding A;, 1, where a + b is defined as (@ mod k) + b.

The idea behind this construction of arena A’ is that, when T} is reached in A;, the out-
going edges bridge us to A;y,1. In other words, the token can reach A, ; from A; iff it
can reach T; in A;. Therefore, A" forms a closed loop, and the bridges are the outgoing
edges of T; in A;.

Objective Set

The procedure to convert the objective set Obj of the generalized Biichi game to the
objective set Obj’ of the Biichi game is as follows: we can choose any of the target set T}
in A; as our target set for the Biichi game.

W.L.O.G., we consider T} in A; as our target set, since the other choices are only a
matter of permutations.

The idea behind this construction of objective set Obj’ is that, from the construction
of A’, reaching 77 in A; infinitely many often is equivalent to reaching 7T; in \A; infinitely
many often for all 7, 1 < ¢ < k. This is because A’ forms a closed loop and is connected
by each T; in A;.

Winning Condition

The winning condition of the Biichi game G’ = (A’,Obj’) is defined as reaching 7T} in
Aj infinitely many often, i.e., Inf(7) N7} # 0, T} is in A;.

Winning Set from Biichi back to generalized Biichi

The winning set in any copy of A in G’ is the winning set for G since the winning set
in each copy of A in G’ is identical. This result is not surprising since A’ can be seen as
piling up k-copies of A.

Winning Strategy from Biichi back to generalized Biichi
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The mapping of the strategy from the Biichi game G’ back to the generalized Biichi
game @G is straightforward: we start from using the strategy in A; to reach 77, and then
using the strategy in A, to reach T;, etc. Generally, we use the strategy in 4; to reach T;.
We satisfy the generalized Biichi objective by reaching 71,--- , T} in a row over and over
again. The local strategy takes 1 unit for each node v € V; N W;.

Complexity Analysis

In a generalized Biichi game GBG = (A, Obj), the objective set Obj = {11, -+, Tx},
where T; C V', 1 < i < k are the k sets of target nodes. |V| = n is the number of nodes
and |E| = m is the number of edges.

Now we consider the converted Biichi game G’ = (A’, Obj').

Proposition 5.4.1. Converting a generalized k Bichi game to a Buchi game in k—copies
of A can be solved in O(km) space, O(knm) time, and the local strategy takes 1 unit for
each node v € Vi N W;.

Space Complexity: O(km)

Since A’ is k-copies of A, and O(|A|) = O(n+m), we have A’ = (V', E'), O(|V'| = kn),
O(|E'| = km), and O(|A'|) = O(k(n +m)) = O(km).

Time Complexity: O(knm)
Since the target set for the Biichi game is T} in Ay, |T1| < n.

From the complexity analysis of the Biichi game, the time complexity for G’ is given
by O(|Ty| - |E'|) = O(|T1] - km) = O(k - |T1| - m) = O(knm).

Method 3

In this subsubsection, we will discuss method 3 that converts the generalized k Biichi game
to a Biichi game in (k + 1)-copies of A.

The conversion in method 3 is similar to that in method 2, which can be seen as a
rougher version based on method 2. The method 3 adds an additional copy of A from
method 2 as a counter, and choose this copy of A as the target set for the Biichi game.

Since a game G = (A, Obj) is a pair of arena A and objective set Obj, we will show the
conversion by constructing the Biichi game G” = (A”,Obj”) from the generalized Biichi

game G = (A, Obj).

Arena
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The procedure to convert the arena A of the generalized Biichi game to the arena A”
of the Biichi game is as follows:

1. list (k+ 1)-copies of A from 1 to k+ 1, i.e., Ay, -+, Axiq;

2. on A; for 1 <1 < k, for each v € T;, connect each of its out-going edges from A; to
the corresponding A 1;

3. on Ay, for each v € Ay, connect each of its out-going edges from A, to the
corresponding A;.

The idea behind this construction of arena A” is that, for 1 < ¢ < k, when T; is reached
in A;, the out-going edges bridge us to A;,1; the out-going edges in Ay, directly bridge
us to A;. In other words, the token can reach A;; from A; iff it can reach T; in A; for
1 <i <k, and Aj,q only serves as a counter since if the token is in A1, then it will go
to A; in the next move anyway. Therefore, A” forms a closed loop, and the bridges are
the outgoing edges of T; in A; connecting A; and A;,; for 1 <i <k, and Ay, closes the
loop by connecting A;.

Objective Set

The procedure to convert the objective set Obj of the generalized Biichi game to the
objective set Obj” of the Biichi game is as follows: we can choose any of the target set T;
in A;, for 1 <i <k, or the nodes in A, as our target set for the Biichi game.

Choosing any of the target set T; in A;, for 1 <1 < k, is the same as in method 2, and
is less efficient since it takes one more copy of A. Therefore, we only consider choosing the
nodes in Ag,1 as our target set for the Biichi game G” here.

The idea behind this construction of objective set Obj” is that, from the construction of
A" reaching A, infinitely many often is equivalent to reaching T; in A; infinitely many
often for all 4, 1 < ¢ < k. This is because nodes in Ay, directly go to A; in the next
move, and reaching A, again requires traveling through each A; in A”.

Winning Condition

The winning condition of the Biichi game G” = (A", Obj") is defined as reaching Ay,

infinitely many often, i.e., Inf(7) N Vi1 # 0, Vipq is in Agyy.
Winning Set from Biichi back to generalized Biichi
The winning set in any copy of A in G” is the winning set for G since the winning set

in each copy of A in G” is identical. This result is not surprising since .A” can be seen as
piling up (k + 1)-copies of A.
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Winning Strategy from Biichi back to generalized Biichi

The mapping of the strategy from the Biichi game G” back to the generalized Biichi
game @G is straightforward: we start from using the strategy in A; to reach 77, and then
using the strategy in A, to reach T5, etc. Generally, we use the strategy in A; to reach T;,
for 1 < i < k. We satisfy the generalized Biichi objective by reaching Ti,--- , T} in a row
over and over again. Reaching A;,; each time means we have reached each of T,--- , T}
once again. The local strategy takes 1 unit for each node v € V; N W.

Complexity Analysis

In a generalized Biichi game GBG = (A, Obj), the objective set Obj = {T1,--- , Tx},
where T; C V', 1 < i < k are the k sets of target nodes. |V| = n is the number of nodes
and |E| = m is the number of edges.

Now we consider the converted Biichi game G” = (A", Obj").

Proposition 5.4.2. Converting a generalized k Biichi game to a Bichi game in

(k4 1)—copies of A can be solved in O((k+ 1)m) space, O((k + 1)nm) time, and the local
strategy takes 1 unit for each node v € Vi N W;.

Space Complexity: O((k + 1)m)

Since A” is (k + 1)-copies of A, and O(|A|) = O(n + m), we have A" = (V" E"),
O(V"| = (k+1)n), O(|E"| = (k+1)m), and O(|]A"|) = O((k+1)(n+m)) = O((k+1)m).
Time Complexity: O((k + 1)nm)

Since the target set for the Biichi game is V41, which is the set of nodes in Ay,
Vi1 = n.

However, if we look closer, we can see that choosing Vj..1 as the target set is equivalent
as choosing Ty in A, as the target set. This is because the only nodes in A;,; that have
in-going edges are the ones whose predecessors are the Tj in A,. The other nodes in Ay 4
have in-degree 0 and will not form a closed loop. In other words, Pre(Vjyy1) = Tk, T} is in

Ap.

Therefore, when computing the time complexity of the Biichi game, we can treat the
target set as Ty in Ay, |Tx| < n.

From the complexity analysis of the Biichi game, the time complexity for G” is given
by O([Visal - [E"]) = O(|Tk| - (k + 1)m) = O((k + 1) - [Ti| - m) = O((k + 1)nm).

We can change T}, to any T}, --- , T} since the other choice is only a matter of permu-
tation.
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Method 1

In this subsubsection, we will discuss method 1 that solves the generalized £ Biichi game
using the generalized Biichi algorithm in A.

Method 1 works in A, thus can be seen as a more compact expression of method 2
and 3. Since method 1 is more compact, it is more efficient than method 2 and 3 in
implementations.

Idea of the Algorithm

The basic idea of the generalized Biichi algorithm is to iteratively apply the Biichi
algorithm until fixed point iteration.

The question is what is the order for us to apply the Biichi algorithm? Our focus is
always on achieving the Biichi objective for T7:

e step 1: when T} hasn’t achieved Biichi objective, we apply the improved Biichi
algorithm 5 for 77 to achieve Biichi objective for Ti;

e step 2: when 77 has achieved Biichi objective, we apply the Biichi algorithm for
Ty, - Ty to see whether T, --- , T} achieve the Biichi objective;

if one of T, --- , T} doesn’t achieve the Biichi objective, then we go back to step 1;
else the Biichi objective has been achieved for each T7,--- T}, thus the generalized
Biichi objective is achieved.

Algorithm

Algorithm 7 is the algorithm we use to solve for the generalized Biichi game. It’s a
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fixed point iteration of the k& Biichi objectives.

Algorithm 7: A'(W;) = Generalized Buichi(A, T3, -+, T})
Input:
1L A=(V=VaVaECV xV);
2. T CV,1<i<k:

Output:
1. A/(W1);
tfor (VI=VTI =T, - T, =Tki=1,j=0;i < k;j++) do
9 7}/ — Tvi/ N V/;
3 | A'(Ry) =reachso(A'(V'),T));
4 | A(Ry) =reachs,(A'(V"),T));
5 if Ry ==V’ then i + +; continue;
6 V' = RO;
7 if |R0| > ’R1| then
8 A (V") = safe(A'(Ry), R1);
9 L if V/ == () then break;
10 1=1;
1 W, =V’
12 Wy = V/Wiy;
Result:

1. Winning set W) @ Wy =V
2. Winning strategy of each node in V; N W; for each Biichi objective is computed
by reachsi(-,-);

Proof of Soundness and Completeness
Soundness

The generalized Biichi algorithm terminates when all of the k target sets satisfy the
Biichi objectives. Therefore, the nodes in W; can reach T; infinitely many often for all
1 <4 < k by reaching T3,--- ,T; in a row again and again. This gives the proof of
soundness.

Completeness

For any v € W,, it must have been deleted in the iterations for one of the Biichi
objectives T;, 1 < ¢ < k. Therefore, v can’t reach T; infinitely many often for all 4,
1 <14 < k. This gives the proof of completeness.

Strategy
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The strategy for reaching 7; is computed in the reachs;(A'(V’),T) process for each
1< <k,

Similar to the Biichi game, only the strategy in the last iteration when all the k Biichi
objectives are achieved at the same time is the real strategy. All the strategies computed
in the previous iterations are nominal.

For v € V1 NW;, from the analysis of the strategy in a reachability game, we know that
the strategy to reach T; can force the token to reach T;, for 1 <i < k.

Our strategy to satisfy the generalized Biichi objective is to reach 71, --- , T} in a row
again and again. We use a unit counter to indicate the current target T; to reach. After
reaching T; using the strategy for reaching 7}, the counter increments to ¢ + 1 and we use
the strategy for reaching 7;,; to reach T;,;. For the counter, we clear the number to 1
each time when T}, is reached.

By repeatedly reaching Ti,--- ,T;, we inductively show that v € W, can reach T;
infinitely many often for all ¢, 1 < ¢ < k. This shows that such strategy is indeed a
winning strategy for player 1.

The local strategy takes k units for each node v € V; N W), since we need one unit for
the local strategy for each of the k£ Biichi objectives. We can see that the strategy for the
generalized Biichi game consists of k local strategies for the k Biichi objectives, and an
additional counter indicating the current Biichi objective. Therefore, the strategy for the
generalized Biichi game is still almost local.

Complexity Analysis
In a generalized Biichi game GBG = (A, Obj), A = (V, E) is the arena and

Obj = {T},--- ,T}} is the objective set, where T; C V', 1 < i < k are the k sets of target
nodes. |V| = n is the number of nodes and |FE| = m is the number of edges.

Proposition 5.4.3. A generalized k Biichi game can be solved using generalized Biichi
algorithm in O(m) space, O(knm) time, and the local strategqy takes k units for each node
NS Vi N Wl.

Space Complexity: O(n + m)

Since the size of the arena is depicted by n nodes and m edges, the space complexity
of the algorithm is O(n + m).

Time Complexity: O(knm)

We always focus on achieving the Biichi objective for T}.
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After each iteration of reachability and safety before the Biichi objective for T} is
achieved, the size of |T}| reduces by at least one.

When 77 has achieved Biichi objective, we apply the Biichi algorithm for 75, --- T} to
see whether 75, --- | T}, achieve the Biichi objective.

If T;, for 2 < i < k, doesn’t achieve the Biichi objective, then the size of |T;| reduces
by at least one. We claim that the size of |T}| also reduces by at least one.

The reason is that, when the Biichi objective for T; is achieved, we have

A'(R;) = reachs (A (Ry),T]), and A'(R;) is the current sub-arena. If T; doesn’t achieve
that Biichi objective, for 2 < i < k, we have A'(R}) = reach>(A'(Ry),T}), and |R}| < |Ry|.

We claim that 7] C R; but T € R} by contradiction.
Suppose 1] C R}, then A'(R;) = reachs(A'(Ry),1]) gives A'(R;) = reach> (A'(Ry), R}).
The reachability property tells us that, if A'(R}) = reach>,(A'(Ry),T), then
A'(R}) = reachs,(A'(Ry), R}), since T C R.
This gives R = Ry, which contradicts to |R}| < |Ry|.

Therefore, after the iteration of reachability for T;, 2 < i < k, whose Biichi objective is
not achieved yet, the size of |T| reduces by at least one.

In algorithm 7, doing reachability for each target set T3, i.e., reachs1(-,-), costs O(m).
|T1| reduces by at least one after doing reachability for at most k target sets, which costs
O(km). Since |T1| < n, the total cost of reachs(-,-) is given by
O(|T1| - km) = O(k - |T1] - m) = O(knm).

After algorithm 7 terminates, j gives the total number of iteration for reachs(-,-) and
safe(, -), which is upper bounded by j < |Ti| - k < nk.

J
The total cost of safe(,-) is linear, i.e., O <Z safe(-, )) =0O(m).
i=1
Therefore, the time complexity of the algorithm is given by O(k - |T1| - m) = O(knm).
When does this worst case time complexity occur?

In each iteration, the Biichi objective is not achieved for the last target set T}, only, |T}|
reduces by 1 each time, and O(|T}|) = O(n), which gives the worst case time complexity

O(|T1| - km) = O(k - |T1| - m) = O(knm). We can see that this worst case time complexity
rarely happens in practice unless deliberately designed. Therefore, we can expect a linear
time complexity O(km) in practice.
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Comparison among the Three Methods

In this subsubsection, we will give the comparison among the three methods.

From the complexity analysis of the three methods, we can see that method 1 performs
better than method 2, and method 2 performs slightly better than method 3.

For the space complexity, method 1 uses one copy of arena O(m), while method 2 and
3 use k- and (k + 1)- copies of arena, i.e., O(km) and O((k + 1)m) respectively.

For the time complexity, method 1 and 2 use O(knm) time, while method 3 uses
O((k + 1)nm) time.

These information is shown in table 5.1.

Space Complexity | Time Complexity | Local Strategy
Method 1 O(m) O(knm) k
Method 2 O(km) O(knm) 1
Method 3 O((k+1)m) O((k + 1)nm) 1

Table 5.1: Comparison among Three Methods for GBG

Now we give some more detailed analysis among the three methods.

Even though method 1 and method 2 have the same worst case time complexity
O(knm), method 1 still outperforms method 2 in practice. This is because the key point
to accelerate the fixed point iteration for Biichi is the linear safety process: in method 1,
we can apply the safety algorithm once the reachability algorithm detects that a Biichi ob-
jective is not achieved; in method 2, however, we can apply the safety algorithm only after
applying reachability algorithm in k arenas for the k target sets each time. In method 3,
we need to apply reachability algorithm in (k 4+ 1) arenas before applying safety algorithm
each time, which is even worse.

In method 2 and 3, when we convert a generalized Biichi game to a Biichi game, first
we convert the arena A to A" or A”. The idea behind the two ways of converting the arena
is the same as converting a generalized Biichi automaton to a Biichi automaton.

Heuristic Optimization of the Time Complexity

Since the time complexity in method 1 and 2 is given by O(k - |T|-m) = O(knm), and
the order of the target sets is just a matter of permutation, we can always place the target
set with the smallest size first. Therefore, the relatively optimal time complexity is given
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by O(k - {mini<;<x|T;|} - m) = O(knm). A similar result also applies for method 3, i.e.,
O((k +1) - {mini<i<x|T;|} - m) = O((k + 1)nm).

Remark. In [8], the heuristic improvements end here. We continue to give two more steps
of heuristic improvements below.

From the analysis of Biichi and co-Biichi, we know that the multiple iterations of O(m)
comes from the size of the target set in Biichi or the safe set in co-Biichi. Therefore, the
time complexity for method 1 and 2 can be further reduced to

O(k - mini<;<x(|T3|,n — |Ti]) - m) = O(knm). A similar result also applies for method 3,
ie., O((k+1) - mini<i<k(|Til,n — |Ti]) - m) = O((k + 1)nm).

We can reduce the time complexity even further by replacing the target set with the
currently smallest miny<;<i(|T}|,n — |T]) to the first place each time after detecting a
Biichi objective that is not achieved. This is because the target set with the smallest |T7]
or n—|7T}| may change during the iterations. The upper bound is the same as the previous
one, i.e., O(k-mini<i<x(|T;|,n —|T;|) -m) = O(knm). However, this optimization can only
apply to method 1 because it involves changing the target sets.

The effort above is trying to reduce the theoretical upper bound for the generalized
Biichi game. In practice, however, we can expect an almost linear time complexity O(km),
thus applying method 1 directly should be efficient enough. From the analysis, we can see
that the reason for us to use the generalized Biichi algorithm whenever applicable is to
improve the efficiency in both space and time.

Disjunction of Biichi Objectives

A generalized Biichi game with k£ Biichi objectives can be considered as a conjunction
of k£ Biichi objectives. What about a disjunction of k Biichi objectives?

For a conjunction of k Biichi objectives, we need to satisfy all of the £ Biichi objectives
T;, for 1 < ¢ < k. In other words, we need to infinitely many often reach T; for all i,
1 <i < k. The time complexity is O(knm).

For a disjunction of k Biichi objectives, we only need to satisfy some of the k£ Biichi
objectives T}, for 1 < ¢ < k. In other words, we only need to infinitely many often reach 7;
for some i, 1 <17 < k. Therefore, we can take the union of the k target sets as one target

k
set UTZ" The disjunction of £ Biichi objectives is thus equivalent to a Biichi objective

i=1
k

with target set U T;. The space and time complexity are O(m) and O(nm) respectively
i=1
as in the analysis of a Biichi game.
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5.4.2 Generalized co-Biichi Game

In this subsection, we will introduce the generalized co-Biichi game that requires eventually
always staying in the safe set S; for some i, 1 <17 < k.

Similar to the generalized Biichi game, we can also convert the generalized co-Biichi
game to a co-Biichi game using k- or (k 4+ 1)- copies of arena. The analysis and the results
are similar to the generalized Biichi game as a merit of the duality.

Therefore, we will only present the method of using the generalized co-Biichi algorithm
to solve the generalized co-Biichi game. We will present the generalized co-Biichi game in
a dual way of the generalized Biichi game.

Winning Condition of the Game

In a generalized co-Biichi game GCG = (A, Obj), the objective set Obj = {S, -+, Sk},
where S; C V1 < < k are the k sets of safe nodes and correspondingly, {V/Sy, -+, V/Sk}
are the k sets of unsafe nodes. The winning condition for player 1 is to force the token to

eventually always stay in .S; for some i, 1 <7 < k, or equivalently, finitely many times reach
k

V/S; for some i, 1 < i < k. Formally, player 1 wins iff \/ (Inf(r) C S;), or equivalently,
i=1

\/ (Inf(7) N (V/S;) = 0).

In a generalized co-Biichi game with k co-Biichi objectives, we only require satisfying
some of the k co-Biichi objectives. Therefore, a generalized k co-Biichi objective is also
considered as the disjunction of k co-Biichi objectives as shown in the form of the winning
condition.

Idea of the Algorithm

The basic idea of the generalized co-Biichi algorithm is to iteratively apply the co-Biichi
algorithm until fixed point iteration.

Similar to the generalized Biichi algorithm, the order for us to apply the co-Biichi
algorithm is to always focus on achieving the co-Biichi objective for S;:

e step 1: when S; hasn’t achieved co-Biichi objective, we apply the co-Biichi algorithm
for S to achieve co-Biichi objective for Sy;

e step 2: when S; has achieved co-Biichi objective, we apply the co-Biichi algorithm
for Sy, .-+, Sk to see whether Sy, -, S achieve the co-Biichi objective;
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if one of Sy, .-+, .S, doesn’t achieve the co-Biichi objective, then we go back to step
1; else no more co-Biichi objective can be achieved for any Si,---,Sg, thus the
generalized co-Biichi objective is achieved.

Algorithm

Algorithm 8 is the algorithm we use to solve for the generalized co-Biichi game. It’s a

fixed point iteration of the k& co-Biichi objectives.

Algorithm 8: A'(W;) = Generalized co-Biichi(A, Sy, -+, Sk)

© 00 N O A W N =

Jun
o

Input:
L. A=(V=ViaV,, ECV xV);
2.5, CV, 1<i<k

Output:

LA (W)

for (V/:‘/’Si :Sla"‘ asllg:Sk,izl,j:O,Wl ZQ,ZSIC,]—{——{—) do
Si=8 NV,
A'(S) = safe(A'(V'), S;);
if S == () then i + +; continue;
A'(R) = reachsq(A'(V'), S);
Wi+ = R;
if R ==V’ then break;
V'— =R,
1= 1;

W2 - V/Wl,

Result:

1. Winning set W) @ Wy =V,
2. Winning strategy of each node in V; N W, is computed by safe(-,-) and
reach> (-, -) in the corresponding process;

Proof of Soundness and Completeness

Soundness

The generalized co-Biichi algorithm terminates when no more safe sets in the k safe

sets satisfy the co-Biichi objectives. Therefore, the nodes in W; can eventually always stay
in S; for some 1 <7 < k by following the local strategy constructed through the iteration.
This gives the proof of soundness.

Completeness

94



After the generalized co-Biichi algorithm 8 terminates, the remaining nodes in the
arena V"’ are the nodes in W,. The nodes in W, can’t be attracted to W;. We apply the
generalized co-Biichi algorithm again in W, to analyze the behavior of the nodes in W.

After the safety process A'(S) = safe(A'(V’),S;), S must be empty for all i, 1 <1i < k.
Therefore, the nodes in W, can’t eventually always stay in S; for any ¢, 1 < i < k. In other
words, for any v € Ws, dually, it must satisfy the generalized Biichi objective of infinitely
many often reach the unsafe set V/S; for all i, 1 < ¢ < k. Therefore, v can’t eventually
always stay in S; for some i, 1 <14 < k. This gives the proof of completeness.

Strategy

The strategy for the generalized co-Biichi algorithm is computed by safe(:,-) and
reachs;(+,-) in the corresponding process. Each strategy is computed once since the current
sub-arena A’ is monotonically decreasing and W, is monotonically increasing through the
process of iterating the co-Biichi objectives.

The reason of the strategy for the generalized co-Biichi game is similar to that for the
co-Biichi game, which guarantees that play 7 to eventually always stay in S; for some
1<i <k

The difference is that, we don’t know which S; the token will eventually always stay
in, unless it is the initial real safe set that activates the iteration.

We also can’t determine when that “eventually” is to satisfy eventually always stay in
S; for some 1 < i < k because it may depend on player 2 to choose whether to stay in .5;
or leave S;. However, once left S;, the token is being forced to reach an S;, 1 < j < k.
The total number of times and steps that the token can leave S; for all 7, 1 < i < k is

k
bounded by (W, / (U S;)|, which is finite. This allows us to claim that our strategy satisfies

i=i
eventually always staying in S; for some i, 1 < ¢ < k. If player 2 violates staying in S;

for some i, 1 < i < k, then we can argue that it’s not the time for “eventually” yet, and
k

wi/(lUJs:)

that the argument still holds. This shows that such strategy is indeed a W;nning strategy
for player 1.

player 2 can violate staying in S; for some i, 1 < i < k for at most steps, so

The local strategy takes 1 unit for each node v € V; N W since even though we have k
co-Biichi objectives, we only need to satisfy one of them to satisfy the generalized co-Biichi
condition. Therefore, we only need 1 unit for the local strategy to focus on 1 co-Biichi
objective for each node v € Vi N W;.
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Complexity Analysis
In a generalized co-Biichi game GCG = (A, Obj), A= (V, E) is the arena and

Obj = {S1, -+, Sk} is the objective set, where S; C V| 1 < ¢ < k are the k sets of safe
nodes and correspondingly, {V/Si,---,V/Sk} are the k sets of unsafe nodes. |V| = n is
the number of nodes and |E| = m is the number of edges.

Proposition 5.4.4. A generalized k co-Biichi game can be solved using generalized

co-Biichi algorithm in O(m) space, O(knm) time, and the local strategy takes 1 unit for
each node v € Vi N Wj.

Space Complexity: O(n + m)

Since the size of the arena is depicted by n nodes and m edges, the space complexity
of the algorithm is O(n + m).

Time Complexity: O(knm)

Similar to the generalized Biichi game, we always focus on achieving the co-Biichi
objective for 5.

Whenever doing a safety for S; is not empty for some i, 1 < i < k, the size of |S]
reduces by at least one. The consequent reachability process may reduce |.S;| further more.

In algorithm 8, doing safety for each safe set S;, i.e., safe(:,-), costs O(m), where
1 <i < k. |S;| reduces by at least one after doing safety for at most k safe sets, which

k
Us

=1

i) -ofc !

costs O(km). Since

oL

< |V| = n, the total cost of safe(-,-) is given by

k k
s s
i=1 =1

m) = O(knm).

After algorithm 8 terminates, j gives the total number of iteration for safe(-,-) and
k

Us

=1

reachs(+, -), which is upper bounded by j < -k < nk.

J
The total cost of reachsg(-,-) is linear, i.e., O (Z reachs(-, )) = O(m).
i=1

Therefore, the time complexity of the algorithm is given by
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k
Us
=1

ofs |

-m) = O(knm).

When does this worst case time complexity occur?

In each iteration, doing a safety is not empty for the last safe set Sy only, |Sk| reduces
by 1 each time. When S} is empty, doing a safety is not empty for the second last safe set

k
Us
i=1

Sk_1 only, etc. With O (
~km> =0 (k

k
@ ( s
=] =1

k

Us:

=1
time complexity rarely happens in practice unless deliberately designed. Therefore, we can
expect a linear time complexity O(km) in practice.

More Detailed Analysis

Note that we can’t deduct an upper bound as tight as O(k-|S;|-m) = O(knm) directly
since generalized Biichi algorithm enjoys a conjunction property that the reduction of any
|T;| implies the reduction of |T1| for 1 < i < k, whereas generalized co-Biichi algorithm
only has a disjunction property that doesn’t satisfy a corresponding implication.

) = O(n), the worst case time complexity is given by

m) = O(knm). We can see that this worst case

However, with the merit of the duality, if we consider the generalized co-Biichi game as
a generalized Biichi game from the perspective of player 2, then we obtain the conjunction
property that the reduction of any |V/S;| implies the reduction of |V/S;| for 1 < i < k.
This gives O(k - [V/Si| - m) = O(knm), where V/S; is considered as T; in a generalized
Biichi game for player 2.

Other heuristic optimizations in the generalized Biichi game also applies for the gener-
alized co-Biichi game here. The time complexity can be reduced to

O(k - miny<i<k(|Si|,n — |Si]) - m) = O(knm). We can reduce the time complexity even
further by replacing the safe set with the currently smallest min<;<x(|S!|,n — |S:|) to the
first place each time after detecting a new co-Biichi objective.

From the duality, we know that the analysis and results for the generalized co-Biichi
should be exactly the same as that for the generalized Biichi since they are like the two
sides of one coin.

In practice, we can also expect an almost linear time complexity O(km), thus applying
algorithm 8 directly should be efficient enough.

Conjunction of co-Biichi Objectives
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This is the dual problem of the disjunction of Biichi objectives.

A generalized co-Biichi game with k co-Biichi objectives can be considered as a dis-
junction of k£ co-Biichi objectives. What about a conjunction of k co-Biichi objectives?

For a disjunction of £ co-Biichi objectives, we only need to satisfy some of the k

co-Biichi objectives .S;, for 1 < ¢ < k. In other words, we only need to eventually always
stay in S; for some i, 1 <i < k. The time complexity is O(knm).

For a conjunction of k co-Biichi objectives, we need to satisfy all of the k co-Biichi
objectives S;, for 1 < i < k. In other words, we need to eventually always stay in S; for

all 7, 1 <1 < k. Therefore, we can take the intersection of the k safe sets as one safe set
k

ﬂ S;. The conjunction of k£ co-Biichi objectives is thus equivalent to a co-Biichi objective

i=1
k

with safe set ﬂ S;. The space and time complexity are O(m) and O(nm) respectively as

i=1
in the analysis of a co-Biichi game.

5.5 One Pair Rabin and Streett

In this section, we will introduce the one pair Rabin game and the one pair Streett game.

This is a warm up for the more general Rabin and Street games with & pairs. We choose
to extract the one pair Rabin and Streett games out as an intermediate step because the 1
pair Rabin and Streett games are already quite complicated; the k pairs Rabin and Streett
games are even more comprehensive, which involve analysis of inner loops and outer loops.
Therefore, we will discuss the core inner loops of the algorithms in this section for one
pair Rabin and Streett games, and leave the discussion of the additional outer loops of the
algorithms in the next section for & pairs Rabin and Streett games based on the discussion
in this section. Also, the worst case scenario is also different in Rabin and Streett games
for one pair and k pairs.

The algorithms used in the one pair Rabin and Streett games are constructed by com-
bining the algorithms for Biichi and co-Biichi together.
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5.5.1 Omne Pair Rabin Game

In this subsection, we will introduce the one pair Rabin game that requires reaching the
“Good” set (G infinitely many often times and the “Bad” set B finitely many often times.

Winning Condition of the Game
In a one pair Rabin game RG, Obj = {(G, B)}, where G,B C V. “G” refers to the

set of “Good” nodes that we would like to reach infinitely many often times, whereas “B”
refers to the set of “Bad” nodes that we would like to reach only finitely many often times.

The winning condition for player 1 is to force the token to reach G infinitely many often
and reach B only finitely many often. Formally, player 1 wins iff

(Inf(7) NG # 0) A (Inf(7) N B = 0).
Partition of the Arena

We assume that the “Good” set G and the “Bad” set B are disjoint, i.e., GN B = ().
Otherwise the Rabin pair (G, B) is equivalent to (G/B, B). The reason is that, if the
intersection of G' and B is not empty, i.e., G N B # (), then in order to satisfy the one
pair Rabin condition that reaching some nodes in GG infinitely many often and reaching all
nodes in B finitely many often, (G N B) C B can’t be reached for infinitely many often
times, and thus can be reached for at most finitely many often times. Therefore, G U B
can be partitioned as G/B and B, i.e., GUB = (G/B) & B.

With M = V/(G U B), we can partition V as V = G @& M & B, where “M” refers to
“Middle” or “Mutual”.

If M =0, then V = G ® B. The winning condition can be simplified as
(Inf(m) NG # 0) A (Inf(7) N B = () < (Inf(r) NG # 0) A (Inf(r) C G) < Inf(r) C G,
which is a co-Biichi condition.

Idea of the Algorithm

The basic idea of the one pair Rabin algorithm is to iteratively apply a Biichi algorithm
within a co-Biichi algorithm until fixed point iteration. It can be seen as a generalization
of the co-Biichi algorithm.

As always, the algorithm is constructed backwards according to the winning condition
of the one pair Rabin game. W), is initially empty.

We would like the token to reach some nodes in G infinitely many often and reach all
nodes in B finitely many often. Therefore, the token must eventually always stay in V/B,
i.e.,in G @ M. This is done by considering G @ M as the safe set and do a safety process,
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ie., A(S) = safe(A'(V'),G" + M’). Since we also need to infinitely many often reach
G, we consider G' NS as the target set and solve a Biichi game within S to get X, i.e.,
X = Biichi(A'(S),G’' N S). The nodes in X satisfies always staying in V//B and infinitely
many often reaching G, thus satisfies the winning condition of the game. We consider
X as our base set in the winning set to activate our iteration and apply the reachability
algorithm to find the reachable set of X i.e., A'(R) = reach>o(A’(V'), X). The nodes in
R satisfies eventually always staying in V/B and infinitely many often reaching G, thus
satisfies the winning condition of the game. We add R to the winning set W, and reduce
the current set of nodes in the arena V' by R. This finishes our one iteration. We repeat
this process until W, doesn’t increase any more. We may need to apply this iteration
multiple times because after doing the reachability from X to R, we may induce a new
safe set in the remaining V’/R, which activates our next iteration.

We know that the co-Biichi algorithm is a fixed point iteration of safety and reachability.
Here in the one pair Rabin algorithm, we insert a Biichi between safety and reachability in
each iteration. Therefore, the one pair Rabin algorithm is a fixed point iteration of Biichi
within co-Biichi.

Algorithm

Algorithm 9 is the algorithm we use to solve for the one pair Rabin game. It’s a fixed
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point iteration of Biichi within co-Biichi.

Algorithm 9: A'(W;) = One Pair Rabin(A, G, B)

Input:
LA=(V=V@VyECV xV);
2. G.BCV:
Output:
1. A/(W1);
1\ ('=G=G/B,M' =M=V -G —B,B =B;
2 for (V' =V, j=0W,=0;;j++) do
s | G =NV, M =M NV .B =BV
4 | A(9) =safe(A'(V"),G + M');
5 if S == () then break;
6 X = Biichi(A'(S),G' N S);
7 if X == () then break;
8 | A(R)=reachso( A (V'), X);
9 W1+ = R;
10 V'— =R,
11 Wy =V/Wiy;
Result:

1. Winning set W) @ Wy =V
2. Winning strategy of each node in V3 N W, is computed by Biichi(-, -) and
reach>(-, ) in the corresponding process;

Proof of Soundness and Completeness
Soundness

The one pair Rabin algorithm 9 is a generalization of the co-Biichi algorithm 6, thus it
shares a similar reasoning as the co-Biichi algorithm.

The one pair Rabin algorithm terminates when W; doesn’t increase any more. In
each iteration, the nodes in X satisfies always staying in V’/B’ and infinitely many often
reaching G’ in the current V', thus satisfies the winning condition of the game. The nodes
in R satisfies eventually always staying in V’/B’ and infinitely many often reaching G’ in
the current V' thus satisfies the wining condition of the game.

For a token in W, if it doesn’t stay in X of a certain iteration, then it must go through
an R to an X of a previous iteration. Since the X in the first iteration satisfies always
staying in V/B and infinitely many often reaching GG, the nodes in W), satisfies eventually
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always staying in V/B and infinitely many often reaching GG, which is the winning condition
of the game. This gives the proof of soundness.

Completeness

After the one pair Rabin algorithm 9 terminates, the remaining nodes in the arena V’
are the nodes in W,. The nodes in W, can’t be attracted to W;. We apply one more
iteration of the one pair rabin algorithm to analyze the behavior of the nodes in W;.

After the safety process A'(S) = safe(A'(V'),G' + M'):

e if S is empty, then the nodes in W, can be forced to reach B infinitely many often,
which violates the winning condition of the game;

e otherwise S is not empty:

— the nodes in Wy /S can be forced to reach B;

— then we apply the Biichi algorithm in S, i.e., X = Biichi(A'(S),G'NS), and X
must be empty since the fixed point iteration has been achieved in the previous
iteration, thus the nodes in S can be forced to reach G only finitely many often
times, which violates the winning condition of the game;

— if we would like to reach G infinitely many often times, we may need to reach
W, /S first, which also leads to reaching B infinitely many often times, which
violates the winning condition of the game.

Therefore, the nodes in W, can’t satisfy the winning condition of the game. This gives the
proof of completeness.

Strategy

The strategy for the one pair Rabin algorithm is computed by Biichi(-, -) and reach>g(-, -)
in the corresponding process. Each strategy is computed once since the current sub-arena
A’ is monotonically decreasing and WW; is monotonically increasing through the process of
the iterations.

Suppose a token is initially placed on a node in W;. If the token is on a node in B, then
the token will be forced to V/B by the strategy computed in reachs(-,-). If the token is
on a node in V/B, then the token will be forced to reach G infinitely many often times by
the strategy computed in Biichi(-, ). The token can reach B for at most finitely |[W; N B|
steps, and can inductively reach G infinitely many times. This shows that such strategy

is indeed a winning strategy for player 1. The local strategy takes 1 unit for each node
NS Vi N Wl.
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Complexity Analysis

In a one pair Rabin game RG, A = (V. E) is the arena and Obj = {(G, B)} is the
objective set, where G, B C V. |V| = n is the number of nodes and |E| = m is the number
of edges.

Proposition 5.5.1. A one pair Rabin game can be solved in O(m) space, O(n*m) time,
and the local strategy takes 1 unit for each node v € Vi N W;.

Space Complexity: O(n + m)

Since the size of the arena is depicted by n nodes and m edges, the space complexity
of the algorithm is O(n + m).

Time Complexity: O(n?m)

Similar to the analysis for co-Biichi, in each iteration, the safety process costs O(m),
the Biichi process costs O(nm), and |G| and | B| reduces by at least one.

After algorithm 9 terminates, j gives the total number of iterations for safe(-, -), Biichi(-, -)
and reachsq(-, ), which is upper bounded by j < |G @ M| < |V| = n. The total cost of
safe(-, ) is given by O(n - m) = O(nm).

The total cost of Biichi(, ) is given by O(n - nm) = O(n*m).

j
The total cost of reachsg(-,-) is linear, i.e., O (Z reachs(-, )) =0O(m).
i=1
Therefore, the time complexity of the algorithm is given by
O(nm + n?m +m) = O(n*m).

When does this worst case time complexity occur?

1 1
We set |G| ~ |B| ~ i and |M| ~ —n. Since the Biichi process is the dominating

term, we would like to maximize the Biichi process.

1
We design our one pair Rabin algorithm to take j ~ " iterations.

The picture is shown in Figure 5.5.

In the first iteration, we let half of M be deleted in the safety process
1 11 1
A'(S) = safe(A'(V'),G' + M"). Since §|M| Rggn =gt nodes participate in the safety
1

process, the cost for the first safety process is O(Zm).
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Figure 5.5: Rabin Example

One node in this half of M will be added to the safe set S in each of the ;ln iterations.

In the first iteration of the Biichi process X = Biichi(A'(S),G' N 5),

1 1 11 1
|G|+ §|M| ~ " + 3 3" =3n nodes participate in the iteration for Biichi, with G being
the target nodes. Therefore, the cost for the first Biichi process is
1 1 1 1
oGl - §m) = O(Zn : §m) = O(gnm). X consists of one node in G and two nodes in M.

In the first iteration of the reachability process A’(R) = reachso(A'(V'), X), we attract
one node in B, thus the cost for the first reachability process is O(1).

The number of nodes participate in the safety process reduces by one in each iteration,

1 1
thus the total cost for safety is O(-m - —-n - =) = O(==nm).

4 4 2 32
The number of nodes participate in the Biichi process reduces by two in each iteration,
1 1 1
thus the total cost for Biichi is (’)(gnm VL 5) = O(angm). X consists of one node in

G and two nodes in M in each iteration.

One node in B is attracted to W, in each reachability process, thus the total cost for

1
reachability is O (Zm)

Therefore, the worst case time complexity is given by

1 1 1 1
O(B—an + 6—4n2m + Zm) = O(@n2m) = O(n*m).

We can see that this worst case time complexity rarely happens in practice unless
deliberately designed, and the coefficient is quite small. Therefore, we can expect a linear

time complexity O(m) in practice.

Common Mistake
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It seems like the winning condition of a one pair Rabin game is in the form of a
conjunction of Biichi and co-Biichi objectives. However, if we analogize it to a generalized
Biichi algorithm by taking conjunction of Biichi and co-Biichi until fixed point iteration,
there will be a problem. Such algorithm is complete but not sound. The problem is that,
the winning set may satisfy the Biichi and the co-Biichi objectives independently. However,
there may be a conflict in the play if we consider the Biichi objective and the co-Biichi
objective together.

A counter-example is shown in Figure 5.6. We may satisfy the Biichi condition of
infinitely many often reaching G by playing m; = (GBM)¥, and satisfy the co-Biichi
condition of finitely many often reaching B by playing 7, = M“. However, no play can
satisfy the Biichi and the co-Biichi conditions together. m; violates finitely many often
reaching B, whereas m violates infinitely many often reaching GG. The reason is that there
is a conflict of coordinating these two conditions together in the play. The proposed one
pair Rabin algorithm 9 can resolve this.

oro
64

Figure 5.6: Rabin Counter-Example

5.5.2 One Pair Streett Game

In this subsection, we will introduce the one pair Streett game that requires reaching the
“Good” set (G infinitely many often times or the “Bad” set B finitely many often times.

We will present the one pair Streett game in a dual way of the one pair Rabin game.
Winning Condition of the Game

In a one pair Streett game SG, Obj = {(G, B)}, where G,B C V. “G” refers to the
set of “Good” nodes that we would like to reach infinitely many often times, whereas “B”
refers to the set of “Bad” nodes that we would like to reach only finitely many often times.

The winning condition for player 1 is to force the token to reach G infinitely many often
or reach B only finitely many often. Formally, player 1 wins iff
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(Inf(7) NG # 0) vV (Inf(7) N B = 0).
Partition of the Arena

We can’t assume that the “Good” set G and the “Bad” set B are disjoint, i.e., GNB = ().
The reason is that, if the intersection of G and B is not empty, i.e., G N B # (), then in
order to satisfy the one pair Streett condition that reaching some nodes in G infinitely
many often or reaching all nodes in B finitely many often, G N B can be reached for
either infinitely many often times or only finitely many often times: reaching (GNB) C G
infinitely many often times can satisfy the winning condition according to reaching some
nodes in G infinitely many often times, whereas reaching (G N B) C B only finitely many
often times can satisfy the winning condition if all nodes in B are reached for only finitely
many often times according to reaching all nodes in B finitely many often times. Therefore,
we can not partition G U B.

However, with M = V/(G U B), we can partition V as V = (GU B) & M, where “M”
refers to “Middle” or “Mutual”.

If M =0 and GNB =), then V = G@® B. The winning condition can be simplified as
(Inf(m) NG # 0) V (Inf(7) N B = 0) < (Inf(7) NG # 0) V (Inf(r) C G) & Inf(r) NG # 0,

which is a Biichi condition.
Idea of the Algorithm

There is no neat way to present the one pair Streett algorithm from the perspective of
player 1, and the idea for the one pair Streett algorithm is basically the same as the one
pair Rabin algorithm. Therefore, we won’t explicitly present a one pair Streett algorithm.
Instead, we will give a conversion to solve it as a one pair Rabin game using algorithm 9
from the perspective of player 2. The conversion is straightforward: switching the roles of
V, and V5, considering the good nodes “G” in SG as bad nodes “B” in RG, and considering
the bad nodes “B” in SG as good nodes “G” in RG.

Proof of Soundness and Completeness

The reasoning for the proof of soundness and completeness for the one pair Streett
game is the same as the proof of completeness and soundness for the one pair Rabin game.

Strategy

The strategy for the one pair Streett algorithm is computed by safe(-, -) and Biichi(-, -)
in the corresponding process of the one pair Rabin algorithm 9. From the perspective of
player 1, these two processes are reachso(-, -) and co-Biichi(-, -) respectively. The reasoning
is given in the proof of completeness for the one pair Rabin game. The local strategy takes
1 unit for each node v € V; N W;.
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Complexity Analysis

In a one pair Streett game SG, A = (V, E) is the arena and Obj = {(G, B)} is the
objective set, where G, B C V. |V| = n is the number of nodes and |E| = m is the number
of edges.

Proposition 5.5.2. A one pair Streett game can be solved in O(m) space, O(n*>m) time,
and the local strategy takes 1 unit for each node v € Vi N W;.

Space Complexity: O(n + m)

Since the size of the arena is depicted by n nodes and m edges, the space complexity
of the algorithm is O(n + m).

Time Complexity: O(n’m)

We convert the one pair Street game as a one pair Rabin game for player 2. Therefore,
it has the same time complexity as the one pair Rabin game which is O(n?m).

When does this worst case time complexity occur?

We can refer the worst case scenario to that in the one pair Rabin game since from
duality they are the same problem. This worst case time complexity rarely happens in
practice unless deliberately designed, and the coefficient is quite small. Therefore, we can
expect a linear time complexity O(m) in practice.

Common Mistake

It seems like the winning condition of a one pair Streett game is in the form of a
disjunction of Biichi and co-Biichi objectives. However, if we analogize it to a generalized
co-Biichi algorithm by taking disjunction of Biichi and co-Biichi until fixed point iteration,
there will be a problem. Such algorithm is sound but not complete. The problem is that,
we may miss the winning set that does not satisfy the Biichi or the co-Biichi objective
independently. However, there may be a conflict in the play if we consider the Biichi
objective and the co-Biichi objective together, which turns out satisfying the winning
condition.

A counter-example is shown in Figure 5.7. We may violate the Biichi condition of
infinitely many often reaching G by playing m; = M“, and violate the co-Biichi condition
of finitely many often reaching B by playing my = (BG'M)*. However, no play can violate
the Biichi or the co-Biichi conditions together. 7 satisfies finitely many often reaching B,
whereas 7 satisfies infinitely many often reaching G. The reason is that there is a conflict
of violating these two conditions together in the play. The proposed conversion from the
one pair Streett game to the one pair Rabin game using algorithm 9 can resolve this.
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Figure 5.7: Streett Counter-Example

5.6 Rabin and Streett

In this section, we will only introduce the k£ pairs Rabin game but not the k pairs Streett
game. The reason is that we will only present a sound but not complete algorithm for the
k pairs Rabin game, which turns out to be a complete but not sound algorithm for the k
pairs Streett game from duality.

A sound and complete algorithm for the k£ pairs Rabin game has much higher time
complexity than a sound but not complete one, which involves factorial w.r.t. the number
of Rabin pairs k, i.e., k! [10], [28]. Also, it involves recursion into different sub-problems
which is hard in implementation and has high time complexity.

The k pairs Rabin game has a local strategy, whereas the k pairs Streett game may not
have a local strategy for each of the k Streett objectives, which may involve a complicated
design that requires much memory.

The reason why Rabin and Streett games are much more tricky than the generalized
Biichi game or the generalized co-Biichi game is that, they involve two different objectives,
i.e., Biichi and co-Biichi. It is possible to have conflicts when we want to satisfy these two
objectives together in one play if we are not careful enough. In a k pairs Rabin game, it
is also likely that we can not satisfy any of the £ Rabin conditions independently, but the
play satisfies the winning condition when we consider all the £ Rabin conditions together.
We will give a counter-example to show why our algorithm is not complete.

5.6.1 Rabin Game

In this subsection, we will introduce the k pairs Rabin game that requires reaching the
“Good” sets G; infinitely many often times and the “Bad” sets B; finitely many often times
for some i, 1 <17 < k.

Winning Condition of the Game
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In a k pairs Rabin game RG, Obj = {(Gy,B),- -, (Gy, Bx)}, where G;, B; C V,
1 <i<k. “G” refers to the set of “Good” nodes that we would like to reach infinitely
many often times, whereas “B” refers to the set of “Bad” nodes that we would like to reach
only finitely many often times.

The winning condition for player 1 is to force the token to reach G; infinitely many
often and reach B; only finitely many often for some i, 1 < ¢ < k. Formally, player 1 wins

iff \/ (Inf(7) N G; # 0) A (Inf() N B; = ).

Partition of the Arena

The partition from the 1 pair Rabin can be generalized to the k pairs Rabin. For
1 <i <k, G;U B; can be partitioned as G;/B; and B;, i.e., G; U B; = (G;/B;) ® B;. With
M,; =V/(G;U B;), we can partition V as V = G; ® M; & B;, where “M” refers to “Middle”
or “Mutual”. If M; = () for 1 <i <k, then V = G; ® B;. The winning condition can be
simplified as

k

k
\/ ((Inf(r) N G; # 0) A (Inf(7) N B; = 0)) < \/ Inf(7) N G; # 0) A (Inf(7) C G;))

i=1
k
&\ ((Inf(r) € Gy)),
=1

which is a generalized co-Biichi condition.
Idea of the Algorithm

We will present a sound but not complete algorithm for the £ pairs Rabin algorithm.
The basic idea of the k pairs Rabin algorithm is to iteratively apply the one pair Rabin
algorithm until fixed point iteration. It can be seen as a generalization of the generalized
co-Biichi algorithm.

Similar to the generalized co-Biichi algorithm, the order for us to apply the one pair
Rabin algorithm is to always focus on achieving the Rabin objective for (G1, By):

e step 1: when (G, By) hasn’t achieved Rabin objective, we apply the one pair Rabin
algorithm for (G4, B;) to achieve Rabin objective for (G4, By);

e step 2: when (G4, By) has achieved Rabin objective, we apply the one pair Rabin
algorithm for (Gq, By), -, (G, Bx) to see whether (Go, By),- -, (Gy, Bx) achieve
the Rabin objective;
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if one of (Gg, By),- -, (G, Bi) doesn’t achieve the Rabin objective, then we go back
to step 1; else no more Rabin objective can be achieved for any (G4, By), - - , (Gg, B),
thus the £ pairs Rabin objective is achieved.

Algorithm

Algorithm 10 is the algorithm we use to solve for the k£ pairs Rabin game. It’s a fixed

point iteration of the & Rabin objectives.

Algorithm 10: A (W) = Rabin(A, Gy, By, -+, Gy, By)

© 00 N O ok W N

-
- o

Juy
N

Input:
L. A=(V=ViaV,, ECV xV);

Output:
1. A(W);

G =Gy =Gi/B, M = My =V — Gy — By, Bl = Bi, 1 <i < k;
for (V' =V,i=1,=0W,=0;i<k;j++) do
G.=GNV' M =MnV' B =B/ NV
A'(S) = safe(A'(V"), G + M));

if S == () then ¢ + +; continue;
X = Biichi(A'(S),G,NS);
if X == () then i + +; continue;
A'(R) = reachso(A'(V'), X);
Wi+ = R,
V'— =R,
1= 1;

WQ = V/Wl;

Result:

1. Winning set Wy & Wy, = V;
2. Winning strategy of each node in V; N W, is computed by Biichi(-, ) and
reach>q(+,-) in the corresponding process;

Proof of Soundness

The £ pairs Rabin algorithm 10 is a generalization of the generalized co-Biichi algorithm

8, thus it shares a similar reasoning as the generalized co-Biichi algorithm.

The k pairs Rabin algorithm terminates when no more Rabin pairs in the £ Rabin pairs

satisfy the Rabin objectives. The nodes in W, can satisfy one of the k£ Rabin objectives
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by following the local strategy constructed through the iteration. This gives the proof of
soundness.

Counter-Example for Showing not Complete

Even if we are doing some smart counting by tracking the out-degree of the nodes to
build up connections among different Rabin objectives, we are still considering the k£ Rabin
objectives independently. The reason is that in each Rabin objective, it is a conjunction
of Biichi objective and co-Biichi objective. The play to violate one Rabin objective may
satisfy the other. We may not be able to satisfy any of the £ Rabin objectives independently.
However, it is possible when we consider the £ Rabin objectives together.

A counter-example is shown in Figure 5.8. We may violate the first Rabin condition
by playing m = My, and violate the second Rabin condition by playing m = (B2G2)*.
However, no play can violate the two Rabin conditions together. 7 satisfies the second
Rabin condition, whereas my satisfies the first Rabin condition. The reason is that there
is a conflict of violating these two conditions together in the play. That’s why our k£ pairs
Rabin algorithm 10 is not complete.

4!
Gl’BZ MI’GZ

Figure 5.8: k Pairs Rabin Counter-Example

Strategy

The strategy for the k pairs Rabin algorithm is computed by Biichi(, -) and reachso(-, -)
in the corresponding process. Each strategy is computed once since the current sub-arena
A’ is monotonically decreasing and WW; is monotonically increasing through the process of
the iterations.

The reason of the strategy for the k pairs Rabin game is similar to that for the general-
ized co-Biichi game, which guarantees that play 7 satisfies some of the £ Rabin objectives.
We don’t know which Rabin objective we will eventually satisfy, but we know we can even-
tually satisfy some of them by the construction of the algorithm. This shows that such
strategy is indeed a winning strategy for player 1.

The local strategy takes 1 unit for each node v € V; N W since even though we have k
Rabin objectives, we only need to satisfy one of them to satisfy the k pairs Rabin condition.
Therefore, we only need 1 unit for the local strategy to focus on 1 Rabin objective for each
node v € V; N Wj.
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Complexity Analysis
In a k pairs Rabin game RG, A = (V, E) is the arena and

Obj = {(Gy,B1), - ,(Gg, Br)} is the objective set, where G;, B; CV,1<i<k. |[V|=n
is the number of nodes and |E| = m is the number of edges.

Proposition 5.6.1. A k pairs Rabin game can be solved by a sound but not complete
algorithm in O(m) space, O(kn?*m) time, and the local strategy takes 1 unit for each node
v E ‘/1 N Wl.

Proposition 5.6.2. A k pairs Streett game can be solved by a complete but not sound
algorithm in O(m) space, O(kn*m) time, and the local strateqy takes k units for each node

veVinwWw.

Space Complexity: O(n + m)

Since the size of the arena is depicted by n nodes and m edges, the space complexity
of the algorithm is O(n + m).
Time Complexity: O(kn’m)

Similar to the analysis for generalized co-Biichi, in each iteration, the safety process

costs O(m), the Biichi process costs O(nm), and |G;| and | B;| reduces by at least one after
k iterations.

After algorithm 10 terminates, j gives the total number of iterations for safe(-,-),
k

Biichi(+, ) and reach>q(-, -), which is upper bounded by j < | U Gie M| -k <|V|k=nk.
i=1
The total cost of safe(,-) is given by O(nk - m) = O(knm).

The total cost of Biichi(+,-) is given by O(nk - nm) = O(kn*m).

J
The total cost of reachsg(-,-) is linear, i.e., O (Z reachs(-, )) = O(m).
i=1
Therefore, the time complexity of the algorithm is given by
O(knm + kn*m +m) = O(kn*m).
When does this worst case time complexity occur?

In each iteration, X is not empty for the last Rabin pair (G}, By) only,

O(|Gk|) = O(|Bx|) = O(n), and |Gg|, |Bk| reduces by 1 each time. In other words, after
iterating each Rabin objective, we always have empty winning sets for the first (k—1) Rabin
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objectives, and only one node in the winning set for the last Rabin objective. Solving each
Rabin objective costs O(nm), thus obtaining one node in the winning set costs O(knm).
Since there are a total of n nodes in V, the total time is given by O(kn?*m).

We can see that this worst case time complexity rarely happens in practice unless
deliberately designed, and the coefficient is quite small. Therefore, we can expect a linear
time complexity O(km) in practice.

How to make the Rabin algorithm complete?

Here we briefly discuss how to construct a complete algorithm based on the sound but
not complete k£ pairs Rabin algorithm 10.

Suppose after we apply algorithm 10, W, is not empty. We apply algorithm 10 again.
If the set S is empty for each Rabin objective after doing safety, then our algorithm is
complete. The corresponding k pairs Street game is reduced to a generalized k Biichi
game, and the generalized Biichi algorithm 7 gives a sound and complete solution.

If the set S is not empty for some Rabin objective 7, then we know that after we
iterate a Biichi process, X will be empty. We instead solve a (k — 1) Rabin game in S
for the remaining (k — 1) Rabin objectives. This is where the recursion comes from which
requires us to solve sub-games within sub-games. The time complexity can be as worse as
O(mn*+1kk!) [27], which is not feasible in practice.
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Chapter 6

Non-deterministic Transition System
(NTS)

In this chapter, we will introduce the problem formulation and the solution of some control
problems defined in NTS. We will discuss the relation of an N'TS in our control setting
and an arena in the infinite two player game setting. We will define the control problem in
an NTS and solve it by converting it to a graph searching problem as a infinite two player
game in a bipartite arena. For related contents about control problems in NTS, one may
refer to [1, Chapter 5|, [20], and [10].

6.1 Analysis of the NTS and DA

In this section, we will give a quantification and some analysis of the Non-deterministic
Transition System (NTS) and the Deterministic Automaton (DA). Such quantification will
be used in the complexity analysis of solving each control problem. This section serves as
a set up for the problem formulation in the next section.

6.1.1 Analysis of the NTS

We will give a definition of the NTS followed by a quantification. We will also give two
graph representations of NTS, and show that the NTS is itself in the form of a bipartite
arena introduced in the infinite two player game.
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Definition 6.1.1 (non-deterministic transition system). A Non-deterministic Transition
System (NTS) is a 4-tuple (X, %,&, L), where

1. X 1is the set of system states;
2. Y 1s the set of control actions;
3. &1 X x ¥ — 2% is a non-deterministic transition function;

4. L C 247 s the set of labels.

Quantification of the NTS

After giving the definition of NTS, we will define some quantifiers to help us quantify
the NTS.

e ng = |X| is the number of system states;

e |X| is the number of control actions;

e my = Z Z |£(z, 0)| is the number of system transitions;
rzeX c€X

e |AP| is the number of atomic propositions;

e |L| < 2P is the number of different labels;

o [¢] = Z Z K (&(x,0)) is the number of non-deterministic transition functions, or

zeX €D
the total number of control actions of the system;

_ number of non-deterministic transition functions €] .
°* 7~ = = < |X¥] is the average
number of system states ng

number of control actions of each system state;

- number of system transitions mg .
° )~ — — _ = — is the average number
number of non-deterministic transition functions €]

of non-determinism;

_ - number of system transitions  mg .
e 70~ = — is the average degree of the system.
number of system states ng
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Non-determinism

Consider a non-deterministic transition function of the simplest form &(z1, 0) = {xa, x3}.
It’s non-deterministic transitions can be written as two 3-tuples: (xy, 0, x2) and (z1, 0, z3).
Here we define the number of transitions as the number of non-determinism, which is
|€(z1,0)| = 2 in this case.

Counting Function

k is a counting function that counts the number of transition functions: 1 if a transition
function £(x, o) exists, 0 otherwise.

() = {1 if & exists

0 otherwise

Two Graph Representations of the NTS

Consider a non-deterministic transition function {(xy,0) = {2, 23}. It can be written
as two 3-tuples: (z1,0,x2) and (x1,0,23). It has two graph representations: placing o on
the edge and placing o as a new node. Here we give the two graph representations and
their corresponding quantification. The picture is shown in Figure 6.1.

1. Place o on the Edge

If we consider x1, x5, and x3 as nodes and place ¢ on the edges, then we have two
multi-edges: x L 29 and 11 S x5

Quantification of the Graph
Number of nodes: n = ng.

Number of multi-edges: m = my.

2. Place 0 as a New Node

If we consider 1, x9, and x3 as player 1 nodes and o as a player 2 node, then we
have three edges: (z1,0), (0,x2), and (o, z3).

Quantification of the Graph
Number of nodes: n = ng + |£]| = nog + ang < ng + |X| - ng = O(ny).
Number of edges: m = mg + |£] = O(my).

Remark. 1. The second representation has |§| more nodes and edges than the first one.
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Figure 6.1: Two Graph Representations of NT'S

. These two graph representations are equivalent. It’s just different aspects of under-
standing NTS. The design of data structure in the implementation is another story,
which 1s still different from these two.

. In the first representation, each system state has about & control actions. Therefore,
it 1s more compact and involves multi-edges.

. The second representation forms a bipartite graph. More precisely, a bipartite arena
in the two player game setting, where the system states are the player 1 nodes, and
the control actions are the player 2 nodes. Therefore, the NTS is just an application
of the arena in the two player game.

. The second representation is a decomposition of the first one, which is easier for us to
understand the algorithms in the two player game setting. It is easier to understand
because it is less compact, no multi-edges, and can use the duality property of the two
players.

. We consider the control specification in the NTS as a two player game, but the status
of the two players are different: since the system states are the player 1 nodes and
the control actions are the player 2 nodes, we only care about the winning set and the
winning strategies of the player 1.

. From now on, we consider the NTS as a bipartite arena.

. In the complexity analysis, we use the first representation for simplicity; in the un-
derstanding of the algorithms, we use the second representation.
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6.1.2 Analysis of the DA

We will give a definition of the DA followed by a quantification. We will also give two
representations of the deterministic transition function 7.

Definition 6.1.2 (deterministic automaton). A Deterministic Automaton (DA) is a 5-
tuple DA = (Q, L, T, qo, Acc), where

e () is the set of automaton states;
o L C 247 s the set of labels;

T:LxXQ — Q is a deterministic transition function;

qo € @Q 1is the unique initial automaton state;

Acc C 29 is the set of final states in a finite automaton or the set of accepting states
m an w-automaton.

Quantification of the DA

After giving the definition of DA, we will define some quantifiers to help us quantify
the DA.

e n; = |@| is the number of automaton states;
e m; = |7| is the number of automaton transitions;

|AP| is the number of atomic propositions;

|L| < 24P is the number of different labels;

The accepting condition Acc will be discussed later when we specify the different
automata.

More on the Transition Function and the Labels

The deterministic transition function 7 has two representations: as a boolean function
7_next and as a look-up table 7_prime.

The labels L have two representations: the binary representation and the decimal
representation.
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We will show the two representations of the Labels L in the two representations of the
deterministic transition function 7.

The two representations of the deterministic transition function 7 are as follows.

1. As a Boolean Function 7_next

e When we compute the boolean function 7_next, we use the binary representation

of the labels.

e The boolean function 7_next : Lx() — () has nq cases and m; boolean functions,
corresponding to the ny; nodes and m; edges.

e Computing each boolean function costs O(|AP|).

e Encoding from binary representation to decimal representation costs O(|AP]).
2. As a Look-Up Table 7_prime

e When we check the look-up table 7_prime, we use the decimal representation
of the labels.
e The look-up table 7_prime : L x Q — Q is of size 2/4FIn,.

e Decoding from decimal representation to binary representation costs O(|AP).

6.2 Problem Formulation and Procedure of Solution

After we have introduced the concept of winning set and winning strategy in chapter 4,
now we can formally define our control problem in NTS.

Problem Formulation

Given an NTS = (X, 3, £, L) and a control specification ¢, find the winning set Wy € X
and the winning control strategy II : X* — X such that all the trajectories p = o122 - - -
induced by the initial state zo € W, and the sequence of control inputs @ = ogo109 - - -
inductively satisfy the accepting condition of ¢ regardless of the non-determinism of the

NTS.
How is a control specification defined?

In the set of system states X in NTS, we use different atomic propositions in AP to
describe different subsets of X. For example, we can define the set of states labeled by a;
as the target set T7, the set of states labeled by as as the safe set Sy. Also, we can define
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the set of states labeled by asz as the unsafe set, which can be used to depict the obstacles
and the boundary.

We can give each state € X several meanings by assigning different atomic proposi-
tions to x, which forms [, the label of x. [ is a set of atomic propositions and thus a subset
of AP, ie.,l C AP.

Therefore, from the correspondence of the subset of X and the atomic propositions AP,

a control specification ¢ can be defined by the subsets of X, or by the atomic propositions
AP.

Describing control specification using atomic propositions allows us to describe the
control specification using logic languages such as Linear Temporal Logic (LTL), which
can be converted to a deterministic automaton (DA) in an automation process.

For example, suppose our control specification ¢ is a reachability objective, then we
can define ¢

1. by the subsets of X: eventually reach T, where T" C X is the set of states labeled by
a;

2. by the atomic propositions AP: eventually reach the set of states labeled by a;
3. by the LTL formula ¢ = Fa.

How is a trajectory constructed?

A trajectory p = zoxi12o- -+ is a sequence of system states x; € X, for ¢ > 0, which can
be finite (r) or infinite (p) depending on the control specification ¢.

A sequence of control inputs o = ggo105 - - - is a sequence of control actions o; € %, for
i > 0, which can be finite (w) or infinite («) depending on the trajectory.

We borrow the notation of run and word from the w-automata theory to represent
trajectory and control inputs in our control problem. The corresponding relation is as
follows. A run p = qoq1q2 - - - is a sequence of automaton states ¢ € (), whereas a trajectory
p = Tox1To--- is a sequence of system states x € X. An input word a = lplyly--- is a
sequence of labels [ € L, whereas a sequence of control inputs o = ogo05 - - - is a sequence
of control actions o € .

At the moment ¢, for ¢ > 0, the agent is on state z;. Based on the information such as
x;, our strategy Il gives a control action o;, and the non-determinism of the NTS leads the
agent to x;11 € £(x;,0;). The trajectory is inductively extended by this procedure.
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6.2.1 Procedure to Solve Control Problems in NTS

In this subsection, we will introduce the procedure to solve control problems in NTS in an
effort to improve the space complexity and the time complexity of solving a certain control
problem in NTS.

Classification by Control Specifications

We try to convert our control problem to a graph searching problem in the form of
an infinite two player game. The procedure is classified by the control specifications: if
the control specification can be described as a certain game G by the states in NTS, then
we use the particular algorithm of G to solve for G in N'TS; else we describe our control
specification as an LTL formula and convert it to a DA with a corresponding accepting
condition Acc.

Procedure of General Solution

Describing the control specification as an LTL formula ¢ allows us to give a general
solution of the control problems in NTS:

1. describe the control specification as an Linear Temporal Logic (LTL) formula ¢;

2. convert ¢ to a Deterministic Automaton DA with a corresponding accepting condi-
tion Acc in an automation process;

3. take product of NTS and DA to construct the product space PA;

4. use the Acc of DA to define the objective set Obj in PA, and the accepting condition
of DA to define the winning condition of the game G in PA,

5. solve the game G with the winning condition described by Obj in PA,;
6. map the winning set and the winning strategy in P.A back to NTS.

Procedure to Determine the Accepting Condition of DA

The procedure to determine the accepting condition of DA is as follows:

e if p can be converted to a finite automaton, then we convert ¢ to a deterministic
finite automaton DF A (all the finite automaton can be determinized);

e clse we convert ¢ to an w-automaton;
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— if ¢ can be converted to a deterministic Biichi automaton, then we convert ¢
to a deterministic Biichi automaton DBA;

— else if = can be converted to a deterministic Biichi automaton, then we convert
© to a deterministic co-Biichi automaton DC A;

— else we convert ¢ to a deterministic Rabin automaton DRA or a deterministic
Streett automaton DSA (DRA and DSA are both w-regular complete, just the
conversion for one may be more succinct than the other for a specific ).

Comparison between the Two Methods Classified by Control Specification

We can define the control specification in two ways. Here we give a comparison between
the two methods of solving control problems in NTS classified by the two methods of
defining control specifications.

Control Specification Described by States in NTS

If we describe the control specification by the states in NTS, then we can only address
some simple specifications. We need to design each specific algorithm for each specification,
which is not compatible. However, the benefit of designing each specific algorithm for each
specification is that, we can take advantage of the property of the specific specification to
improve the efficiency of the algorithm.

Control Specification Described by LTL formula

The reason we would prefer to describe our control specification ¢ as a logic formula
such as an LTL formula is that, ¢ can be converted into a deterministic automaton DA
in an automation process. The size of the DA is optimized by the automation tool. The
automaton process saves the working load and reduces the chance of making mistakes.

Then we take product of the NTS and the DA and solve a game G in the product space
NTS ® DA. The winning condition of the game G is defined by the accepting condition of
the DA. The accepting condition of DA can be classified into certain types, and the LTL
formulas that can be converted to DAs with the same type of accepting condition can be
solved using the same algorithm in the game, which is more compatible.

After solving the game G in the product space, we map the information from the product
space back to NTS.

This gives a systematic approach of solving control problems in NT'S.

Example
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Of course, for some common specifications described by the states in NTS, we can easily
construct the algorithms for these specifications by gluing the existing algorithms. It is
more efficient to solve the control problem in NTS than in the product space.

Here we give one example:

1. Reach T} and then reach T5.

This is a generalization of the reachability problem reach T'. It can have variations
by whether we allow reaching 75 at the same moment as reaching T}, or reaching 75
at a latter moment than reaching 7. Here we consider the former case.

We start from 75 to solve for the reachable set of T5, and then solve for the reachable
set of the intersection of the reachable set of T5 and T3.

We can describe this problem as a game G = (A, Obj), where A = (V, E) and
Obj = {T1,T>}. The procedure is as follows: A'(R2) = reachso(V,Ty), T = Ry N T7,
A’ (Wy) = reachso(V,T), where the winning set is Wi, and the winning strategy is
computed in A'(W;) = reach>o(V,T)).

Given |V| = n and |F| = m, the space complexity is O(n + m) and the time com-
plexity is O(2(n +m)). The time complexity is given by computing the reachability
twice, each taking O(n + m) time.

This control specification can be turned into a LTL formula ¢ = F(a A F'b), where a
and b are the labels for 77 and T, respectively.

@ can be converted to a DF'A with 3 states and 5 transitions.

Given |V| = n and |E| = m, the space complexity is O(3(n + m)) and the time
complexity is O(3(n+m)). The time complexity is the same as the space complexity
for a game converted from a DF'A.

From the comparison, we can see that it is more efficient to solve a control problem
in NTS than in the product space.

6.2.2 Organization of Rest of the Chapter

The idea of solving a control problem in NTS is to convert it to an infinite two player
game. The purpose of this chapter is to give the conversion and then solve the infinite
game using the algorithms given in the previous chapter.

A control problem in NTS consists of the environment NT'S and the control specification
Q.
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An infinite two player game G = (A, Obj) consists of the arena 4 and the winning
condition of the game defined by the objective set Obj.

The matching between the control problem and the infinite game is now straightforward:

e control problem corresponds to infinite game;
e environment corresponds to arena;

e accepting condition of control specification ¢ corresponds to winning condition of G.

The control specification is classified by a proposition using states in NT'S and as an LTL
formula. The control specification also classifies the two methods of solving the control
problem.

We will discuss the general part of the conversion in the following two sections, which is
converting from environment to arena. We will leave the conversion of accepting condition
of control specification to winning condition of the game when we discuss each specific
control specification in the latter section.

6.3 Control Specification Defined by States in NTS

In this section, we will introduce the procedure to solve the control problem in NTS with
control specification ¢ defined by states in NTS.

6.3.1 Conversion from NTS to Arena

We will show that N'TS is a bipartite arena and discuss the specialties of NTS from a
general arena. We will first give the definition of a bipartite graph, and then the definition
of a bipartite arena. We will conclude by showing NTS is a bipartite arena.

Definition 6.3.1 (bipartite graph). A graph G = (V, E) is bipartite if V =V & V5 and
EC(VixVa@ Vi x 3).

In other words, in a bipartite graph, the set of nodes V is partitioned as two sets V)
and V5, and there only exist edges from V; to Vs, or from V5 to V.
Definition 6.3.2 (bipartite arena). An arena A= (V =V, @& Vo, E CV x V) is bipartite
ifEC (Vi x Va@ Vs x ).
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In other words, since there is a natural partition of V into V; and V5, we bipartite the
edges in a bipartite arena according to this partition of nodes.

Consider an NTS = (X,%,¢, L) and an arena A = (V =V, & Vo, E CV x V). The
conversion of NTS to arena A is as follows:

e V7 = X is the set of player 1 nodes;
o Vo ={o,]r e X,0¢eX [{(x,0)] >0} is the set of player 2 nodes;
o £ C (Vi xVo®Vy x V) is the set of edges constructed by
EU Wi x Vo) ={(z,0:)|z € X,0 € 3,[{(z,0)| > 0} and
EU (Vs x Vi) = {(00 )|z € X,0 € 3, [6(2,0)| > 0,4 € £(x,0)}.
We convert an NTS to an arena A according to the second graph representation of NTS.
This conversion clearly shows that an NT'S can be considered as a bipartite arena.
Quantification of Arena by Quantifiers of NTS

Now we give a quantification of the bipartite arena A converted from the NTS by the
quantifiers of NT'S.

Recall that in the quantification of an N'T'S,

e ny = | X]| is the number of system states;

|X| is the number of control actions;

my = Z Z |€(z, 0)| is the number of system transitions;
zeX oceX

€] = Z Z k (&(x,0)) is the number of non-deterministic transition functions, or

zeX oeX
the total number of control actions of each system state;

_ number of non-deterministic transition functions €] ,
o7~ = = < |X]| is the average
number of system states No
number of control actions of each system state.

The quantification of the bipartite arena A converted from the NTS is thus given by
o Vil = [X]|=no;
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V| = [EU (Vi x Va)| = [€] = ano < [E]ng;

[EUVax Vi)=Y [&,0)] = mo;

zeX oc€X

‘Vl = |‘/1| + |‘/2| =ng+ |§| X ng+onyg = (1 +6)n0 X 0ng;

[El = [EU (Vi x Vo) + [EU (Vo x V)| = [€] + mo = oo + mo = mo.

For simplicity, if we would like to do the complexity analysis using two quantifiers, then
we can quantify the number of nodes |V| = ny and the number of edges |E| = mg as in
a classic graph or an arena. The average number of control actions & is absorbed in the
operations of each system state x.

If we would like to do a more detailed complexity analysis, then we can add the average
number of control actions & as a third quantifier.

Our complexity analysis for the NTS is quantified by two quantifiers ng and mg for
simplicity. If we want to take & into consideration, then we can simply replace ng by ang
in the result for space complexity. ¢ doesn’t affect the time complexity.

Mapping behind Conversion

Considering the NTS as a bipartite arena is an application of the graph searching
method in the control setting. In this conversion, we consider the system states as player
1 nodes and the control actions as the player 2 nodes.

In the infinite two player game, we always “play” the game from the perspective of
player 1. Therefore, the player 1 nodes are fully controllable, and the player 2 nodes are
fully uncontrollable.

In the NTS, the system states are fully controllable since we can choose a control action
at each system state; however, the control actions are fully uncontrollable since we can not
choose the next system state to go to after applying a control action as a result of the
non-determinism of the NT'S.

Therefore, the bipartite arena in the infinite two player game is a suitable model to
depict the controllable and the uncontrollable part of the NTS. The player 1 nodes are
often used to depict the system states, while the player 2 nodes are often used to depict
the uncertainty of the environment. In fact, from the property that the infinite two player
game is a 0-sum game, it can capture the worst case uncertainty of the environment, thus
giving a conservative result that is guaranteed to be sound. The missing of completeness
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is almost unavoidable when constructing the abstraction from continuous space to discrete
space, yet it can be alleviated in a cost of refinement to increase precision.

Looking at a non-deterministic transition function 2’ € £(z,0) from the perspective
of the bipartite arena, at the player 2 node o, it is possible to go to any of the node
x’ such that 2’ € £(z,0). This is because when constructing the abstraction, there exist
points x. in one region such that after taking control action o, in one time step, the agent
will reach z.. The mapping from the continuous space to the discrete space gives the
non-deterministic transition function 2’ € {(x, o).

However, we may not really have the worst case uncertainty in the dynamics all the
time, i.e., acting as player 2 in each step. This is where the conservatism comes from.
Therefore, the agent may still satisfy the accepting condition of the control specification
even if we consider some non-deterministic transitions as deterministic ones. This is the
motivation for further research by relaxing the non-determinism by adding probabilities to
the transitions. The probabilities can be approximated from the frequency of the samplings,
or through theoretical analysis.

For example, consider a non-deterministic transition function &(x1,0) = {z1,22}. In
the infinite two player game setting, if the objective of player 1 is to escape from xq, then
this is impossible because the player 2 can trap player 1 in x; by choosing (x1,0,21). In
the control setting, when we apply the control action o at x;, we may get trapped at x;
by the self-loop of z1. However, it is also possible that the agent get trapped in x; in the
first few steps and then escape to x9, which has a potentially larger chance of satisfying
the control specification.

Specialties of Bipartite Arena

Since our focus is on solving the control problem in N'TS, we will discuss the specialties
of bipartite arena from arena in a control setting. We tailor our settings and functions in
the infinite two player game to fit our control problem.

Since we consider NTS as a bipartite arena, the system states x are considered as the
player 1 nodes V; and the control actions ¢ are considered as the player 2 nodes V5. Also,
the edges are from z to o, or from ¢ to x. There are no edges from x to x, or from o to
o. A play m = xqogr107 - - - in a bipartite arena is thus an alternating sequence between x
and o, initializing from x.

Therefore, our emphasis is on Vi, and V5 is secondary. We only consider the system
states z in the winning set, and the winning strategy of x, which are control actions 0. We
omit the winning set and the winning strategy for player 2.
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6.3.2 Control Specification Defined by States in NTS

In this subsection, we will introduce the procedure to solve the control problem in NTS
with the control specification ¢ defined by the states in NTS.

If the accepting condition of the control specification ¢ is in the form of the winning
condition of a game G, then we convert NT'S to a bipartite arena A, followed by converting
the control problem with control specification ¢ in NTS to a infinite game G in the bipartite
arena A.

Same Logic behind Control Problem and Infinite Two Player Game

After the matching between N'TS and bipartite arena, we will show that the general logic
behind the control problem and the infinite two player game is the same. The detailed
conversion will be discussed in each specific game because that depends on the specific
objective set Obj and the winning condition, which may differ from game to game.

We will tailor our discussion of the infinite game to fit our control problem. We will
show the correspondence of control problem and infinite game by presenting the related
materials in pairs.

Problem Formulation of Control Problem

Given an NTS = (X, 3, ¢, L) and a control specification ¢, find the winning set Wy C X
and the winning control strategy II : X* — ¥ such that all the trajectories p = xqzi25 - - -
induced by the initial state xy € W, and the sequence of control inputs o = ogo109 - - -

inductively satisfy the accepting condition of ¢ regardless of the non-determinism of the
NTS.

The key point of solving a control problem is to solve for the winning set W, C X
and the winning control strategy II : X* — ¥ in NTS. The winning set W, C X is
the set of initial system states to place our agent. By placing our agent initially in a
system state zo € Wy, and applying the winning control strategy II : X* — > at each

system state, a sequence of control inputs o = ogoi0o--- is induced. The output of
the winning control strategy is a control action ¢ € ¥. We can also expect that all
the trajectories p = xgr125--- induced by xy and « according to the non-deterministic

transition function x;4; € &(x;,0;), ¢ > 0 to inductively satisfy the accepting condition of
the control specification ¢, regardless of the non-determinism of NTS. If ¢ is described by
the subsets in X, then the accepting condition of ¢ is defined as a proposition using the
occurrence set Occ(p) or the infinity set Inf(p), and the subsets of X; otherwise ¢ is in the
form of an LTL formula and the accepting condition of ¢ will be discussed later.

Problem Formulation of Infinite Game
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Given an infinite game G = (A, Obj), where A= (V =V, @& V5, E C (Vi xVa@® Vo x V)))
is the bipartite arena and Obj C 2" is the objective set used to define the winning condition
of G, find the winning set WW; C V] and the winning strategy II; : V* — V5 for v € W,
such that all the plays m = vgvivs - -+ induced by the initial node vy € Wy, I, and Il
inductively satisfy the winning condition of G regardless of II,, where II, : V* — V] is any
strategy for player 2.

The key point of solving an infinite game G is to solve for the winning set WW; C V; and
the winning strategy II; : V* — V5 in A. The winning set W; C V] is the set of initial
nodes to place our token. By placing our token initially in a node vy € W, and applying
the winning strategy II; : V* — V; at each V; node, and any strategy Il : V* — V) at each
V5 node, a play m = vgvivy - - - is induced. We can expect that all the plays © = vovyvs - - -
induced by vy, I1; and II; according to the edges (v;, vi41) € F, i > 0 to inductively satisfy
the winning condition of G, regardless of II,. The winning condition of G is defined as a
proposition using the occurrence set Occ(p) or the infinity set Inf(p), and the objective set
Obj.

Consider the system states X as player 1 nodes Vi, and the control actions ¥ as player
2 nodes V5. The play is thus m = xqogr1012205 - - -, which can be considered as a trajectory
p = ToT1xo - - - induced by the control inputs o« = ggo109 - - -.

From our analysis, the control problem and the infinite game matches up, thus they
are equivalent.

6.4 Control Specification Defined as an LTL Formula

In this section, we will introduce the accepting condition of LTL in NT'S and the procedure
to solve the control problem in NTS with the control specification ¢ defined as an LTL
formula.

6.4.1 Accepting condition of LTL in NTS

In this subsection, we will introduce the accepting condition of an LTL formula ¢ in NTS.

In a control problem in NTS, consider the control specification ¢ defined as an LTL
formula. What exactly does it mean for a trajectory p = xoxixs - - - to satisfy the accepting
condition of the LTL formula ¢?
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We first convert ¢ to a Deterministic Automaton DA in an automation process. The
accepting condition of DA is defined by the accepting condition of the run p. The accepting
condition of DA is defined as a proposition using the occurrence set Occ(p) or the infinity
set Inf(p), and the accepting set Acc.

Recall that a run p, = qoqi1g2 - - - is a sequence of automaton states ¢ € (), and a word
a; = lglils - - - is a sequence of labels [ € L. Each label [; is also the label of the system state
x; in the trajectory p, = xor122---, for i« > 0. A run p, = ¢oq1q2 - - - is uniquely induced
by the unique initial automaton state ¢y € ) and the input word «o; = lylyls - - - according
to the deterministic transition function 7(l;,¢;) = gi+1, @ > 0. An input word «; satisfies
the accepting condition of DA if its induced run p, satisfies the accepting condition of DA.

Therefore, a trajectory p, = xorixs--- satisfies the accepting condition of the LTL
formula ¢ if its input word a; = lplils - - - satisfies the accepting condition of DA converted
from ¢.

Now we have four sequences: the trajectory p, = xorixs-- -, the control inputs

0, = 000102+, the run p, = qoq1q2- - -, and the input word «; = lplyla---. They are
induced jointly by the initial states xg and gy, the control strategy Il : - — X, the non-
deterministic transition function of the NTS ¢ : X x ¥ — 2%, and the deterministic
transition function of the DA 7 : L x Q — @, where [; is the label of x;, i« > 0. We will
discuss more about how these four sequences work jointly later when we talk about how
to use the winning set and the winning control strategy constructed in the discrete space
to do simulation in the continuous space.

6.4.2 Procedure to Solve the Control Problem

We have defined our control problem where the control specification ¢ is an LTL formula.
Now it comes to how do we solve the problem?

Consider the NTS and the DA converted from the LTL formula ¢ as two graphs. The
agent is initiated at zop € X in the NTS and moves according to the non-deterministic
transition function of the NTS ¢ : X x ¥ — 2%, The token is initiated at gy € Q in the DA
and moves according to the deterministic transition function of the DA 7: L x @Q — @. In
other words, the agent moves in the NTS according to the trajectory p, and the control
inputs o, whereas the token moves in the DA according to the run p, and the input word
.

If we consider the NTS and the DA together, the system state z and the automaton
state ¢ come in pairs at each time step, i.e., (z,q). We can see that there is a product graph
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of NTS and DA hidden implicitly behind. Since we consider the NTS as a bipartite arena,
it turns out that we can convert the product NTS to a product bipartite arena P.A as well.
By constructing the product NTS explicitly, we enumerate all the possible extensions of
the agent, token pair (z,q) initiated from zo € X and ¢y € @ in the forward direction.
Then we convert our control problem as a game G defined in the bipartite product arena
PA and solve it in the backward direction. After we solve the game G, we map the winning
set W, and the winning strategy I1; from P.A back to the winning set W, and the winning
control strategy II in the N'TS.

6.4.3 Product of NTS and One DA

How does an NTS work?

e We consider an NTS as a bipartite arena of system states X and control actions X:
an edge can only point from a state x to an action ¢ or from an action o to a state
2’ where [{(x,0)| > 0 and 2’ € {(z,0).

e At a state x, we may choose to apply more than one actions. If we choose an action
o, it will go through one of its non-deterministic transitions £(x,0) and go to the
next state x’, i.e., 2’ € &(x, 0).

How does a DA work?

e At an NTS state z and a DA state ¢, we input the label [ of x to the deterministic
transition function 7 : L x Q — @, and go through the transition on which the
boolean function bf : L — {0,1} given the input [ returns logic 1 to the next DA
state ¢’. We express this process as 7_next(l,q) = ¢'.

From how the NTS and the DA work jointly together, we can see there is a hidden
product graph behind, and the process of taking product is to explicitly construct this
product graph out.

How to take product?

e The product states are (z,q) where z € X and q € Q.

e The initial states of the product are (x,qy) where x € X and ¢y € @ is the unique
initial DA state.
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e For an NTS transition (z,0,2’) given by 2’ € {(z,0),
e and a DA transition (g, ¢') derived from 7_next(l,q) = ¢,

e the product transition is given by ((z,q), 0, (2',¢)).

Definition of Product NTS

After we have introduced how an NTS and a DA work together as in a product space,
now we give a formal definition of the product N'TS.

Definition 6.4.1 (product NTS). Foran NTS = (X,%,£, L) and a DA = (Q, L, 7, qo, Acc),
the product NTS is a 5-tuple NTS @ DA = (Xp, %, &p, L, Xo), where

Xp =X xQ is the set of product states;

Y is the set of control actions as in NTS;

Ep: Xp x ¥ — 2%P is a non-deterministic transition function such that
(2',q) € €p((x,q),0) iff |€(x,0)| >0, 2’ € £(x,0), and 7(1,q) = ¢;
L C 247 s the set of labels as in NTS and DA;

Xo =X x{qo} is the set of initial product states.

Quantification of the Product NTS

After giving the definition of the product NTS, we will give a quantification of the
product N'TS based on the quantifiers of the NTS and the DA.

NTS

e ny = | X]| is the number of system states;

|| is the number of control actions;

my = Z Z |£(z, 0)| is the number of system transitions;
zeX o€X

|AP| is the number of atomic propositions;

|L| < 24P1'is the number of different labels;
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o [¢] = E E k (&(x,0)) is the number of non-deterministic transition functions, or

zeX oc€X
the total number of control actions of the system;

_ number of non-deterministic transition functions €] ,
7~ = = < |X¥] is the average
number of system states No

number of control actions of each system state.

DA

e n; = |@| is the number of DA states;

e m; = |7| is the number of DA transitions.
Product NTS NTS® DA

o | Xp|=|X x Q| =ngny is the number of product states;

|2 is the number of control actions;

Z Z|§p r,q),0)| = ZZ £(x,0)| - |Q| = mony is the number of product

(z,9)eXp oeX zeX o€X
transitions.

|AP| is the number of atomic propositions;

|L| < 2M4P1 is the number of different labels;

€p| = Z Z &p((7,q), ZZ )-|@Q| = |&] -y is the number of

(z,9)eXp o€X z€X o€X
non-deterministic transition functions, or the total number of control actions of the

product NT'S;

_ number of non-deterministic transition functions  [{p| €] -n1 [¢] <3|
e 0~ — — _ 5l
number of product states NoN1 NNy ng

is the average number of control actions of each product state;

| Xo| = |X % {qo}| =no -1 = nyg is the number of initial product states.
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The two quantifiers that we care about the most are the number of product states
n = ngn; and the number of product transitions m = mgn; when we convert the product
NTS NTS® DA to a product arena PA. A third quantifier, the average number of control
actions of each product state, & may be also of interest if we would like a more detailed
analysis. Therefore, we will give a brief derivation and discussion of these three quantifiers
here.

Number of Product States: n = ngn;

There are ng NTS states z and n; DA states q.

Therefore, the number of product states (z,q) is n = ngn;.
Number of Product Transitions: m = mgn;

There are my NTS transitions (z, 0, z’) and n; DA states q.

Each pair of NTS transition (x, o, z") and DA state ¢ corresponds to a product transition
((x,q),0,(2',q")), where 2’ € {(x,0), 7(l,q) = ¢’ and [ is the label of z.

Therefore, the number of product transitions ((z,q), o, (', ¢’)) is m = mgyn;.

Note that the number of product transitions is only related to the number of NTS
transitions mgy and the number of DA states ny, but not the number of DA transitions
my. The number of DA transitions m; is involved in the time complexity to take product,
which will discussed later in the implementation chapter.

Average Number of Control Actions of Each Product State: ¢ = @
o
There are |£p| = |£] - ny control actions, and nyn; product states in the product NTS.

Therefore, the average number of control actions of each product state is

5 €p| €] -ni [€]

= = = < |¥|, which is the same as the average number of control
nony nony Un
actions of each system state in the NTS. In implementation, & of the product NTS is

probably smaller than that of the NTS due to the optimizations when taking product.
This is another reason that we would like to depict the complexity using only the first two
quantifiers.

Conversion from Product NTS to Product Arena

After introducing the product NTS, we now give a conversion from the product NTS
NTS ® DA to the product arena PA to convert the control problem in NTS to an infinite
game in PA. This conversion is very much similar to the conversion from NTS to arena

A
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Consider a product NTS NTS ® DA = (Xp, 3, &p, L, Xo) and a product arena

PA=(V =Vi® Vo, E CV x V). The conversion of product NTS to product arena PA
is as follows:

e 1} = Xp is the set of player 1 nodes;
o Vo ={0@wgl(z,q) € Xp,o€X, [(p((w,q),0)] > 0} is the set of player 2 nodes;

o £ C (Vi xVo®dVy x V) is the set of edges constructed by
EU Wi xVa) ={((z,9), 0@g)l(z,q) € Xp,0 € 5, [¢p((z,9),0)] > 0} and
EU (Vs X Vi) = {000, (@', @) (. 4) € Xp, 0 € 3, €p((2,4),0)| > O,
(=',q') € &p((z,9), 0)}.

We can see that the product arena PA is a bipartite arena, i.e.,

PA=(V =VigV,, E C (Vi xVodV;yxV7)). The conversion from product NTS to product
arena shows that the product NTS can be considered as a product bipartite arena.

Quantification of Product Arena by Quantifiers of Product NTS

Now we give a brief quantification of the bipartite product arena P.A converted from
the product NTS by the quantifiers of the product NTS.

The quantification of the bipartite product arena PA converted from the product NTS
NTS ® DA is given by

o [Vi| = |Xp| =noni;
o [Va| =[EU (V1 x V2)| = [€p| & anony < [E[nona;
o [EU(Vax W)= Y Y lr((x,q),0) = moni;
(z,9)eXp 0EX
o |V]=[Vi|+ |Va| = noni + |Ep| ~ nony + ongny = (1 + )neny = onona;

o |[E|=[|EU (Vi xVa)[+[EU(Vax V)| = [¢p|+ moni = dnoni + mony = moni.

In complexity analysis, if we use two quantifiers for simplicity, then we quantify

V| = n = ngny, and |E| = m = mon;. We can also add a third quantifier ¢ for more
details. If we want to take & into consideration, then we can simply replace ny by ong in
the result for space complexity. & doesn’t affect the time complexity.
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The conversion of the accepting condition of DA Acc to the objective set Obj in the
game G = (P.A,Obj), and the the conversion of the accepting condition of the control
specification ¢ to the winning condition of the game G will be discussed separately in each
control problem.

6.4.4 Multiple Product

In this subsection, we will give a generalization of the product space to multi-product
space. The product of NTS and multiple DAs and the product of multiple DAs may be
used in solving the control problem when the control specification ¢ can be converted as a
conjunction of DBAs and a disjunction of deterministic co-Biichi automaton (DCA)s.

Product of NTS and Multiple DAs

Definition 6.4.2 (multi-product NTS). For an NTS = (X,%,&,L) and k DAs
DA; = (Qs, L, 73, gio, Accy), 1 < i <k, the multi-product NTS is a 5-tuple
NTS® DAy ® --- ® DA, = (Xuyp, B, §up, L, Xo), where

o Xyp=XXQq xX---x Qg is the set of multi-product states;

e Y is the set of control actions as in NTS;

Evip s Xup X X — 2%MP s q non-deterministic transition function such that

(xlvqllv' o aqg) € fMP((fE,Qh"' ,Qk),o-) ’Lﬁ|€(l‘,0‘)| > 07 s g(w70-)7 and

L C 247 s the set of labels as in NTS and each DA;

Xo =X x{quo} x -+ x {qro} is the set of initial multi-product states.

Quantification of the Multi-Product NTS

After giving the definition of the multi-product NTS, we will give a quantification of
the multi-product NT'S based on the quantifiers of the NTS and the £ DAs.

NTS
e ny = | X]| is the number of system states;
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|X| is the number of control actions;

my = Z Z |€(z, 0)| is the number of system transitions;
rzeX oceX

|AP| is the number of atomic propositions;

|L| < 24P1'is the number of different labels;

€] = Z Z K (&(x,0)) is the number of non-deterministic transition functions, or

zeX 0EX
the total number of control actions of the system,;

B number of non-deterministic transition functions €] _
7 ~ = = < |X¥]| is the average
number of system states ng
number of control actions of each system state.

k DAs

e n; = |Q;| is the number of DA; states;

e m; = |1;| is the number of DA; transitions.

Multi-Product NTS NTS® DA ® --- @ DA

k
o | Xyp|l=|XXxQ1 - xQk = Hnl is the number of multi-product states;
i=0
e |X| is the number of control actions;
k k
o D D (@@ o)l = YO e o) []1Qil = mo - [ [ is
i=1 i=1

(7,91, ,qk)EX M p 0EX r€X 0€X
the number of multi-product transitions.

|AP| is the number of atomic propositions;

|L| < 2M4P1 is the number of different labels;
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‘gMP‘ = Z Z/f(fMP((QZCIl,"' 7qk)?0))

(x:‘h:”' ,Qk)GX]Wp gEY
k k
= 3> ko TT1@id = kel - T n
reX o€X i=1 i1

is the number of non-deterministic transition functions, or the total number of control
actions of the multi-product NT'S;

number of non-deterministic transition functions

number of multi-product states

k
|§| ) n;
379 _ g

k k
[ IIn
i=0 =0

is the average number of control actions of each multi-product state;

- By
no

k
o | Xo| =|Xx{q:0}x---x{q0}| = nO-H 1 = nyp is the number of initial multi-product

i=1
states.

The two quantifiers that we care about the most are the number of multi-product states
k k

n = n; and the number of multi-product transitions m = my n; when we convert
11 p

the rriu(l)ti—product NTS NTS® DA ®---® DA to a multi—produclt ;rena MPA. A third
quantifier, the average number of control actions of each multi-product state, & may be
also of interest if we would like a more detailed analysis. Therefore, we will give a brief
derivation and discussion of these three quantifiers here.

k
Number of Multi-Product States: n = Hnl
i=0
There are ng NTS states x and n; DA, states ¢;, 1 <1 < k.
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k
Therefore, the number of product states (z,qp, -+ ,qx) is n = an
i=0

k
Number of Multi-Product Transitions: m = my H n;
i=1
There are my NTS transitions (z,0,z’) and n; DA; states ¢;, 1 < i < k.

Each copy of NTS transition (z,0,2’) and DA; state ¢;, 1 < i < k corresponds to a
multi-product transition ((x,q1, -+ ,q), 0, (@', ¢}, -+ ,q,)) where o’ € £(z,0), Ti(l,q:) = ¢}
and [ is the label of x.

Therefore, the number of multi-product transitions ((z,q1, - ,qx), 0, (', 4}, - ,q),)) is

k
m = Tmy H n;.
=1

Note that the number of multi-product transitions is only related to the number of NTS
transitions mgy and the number of D A; states n;, but not the number of DA; transitions m;.
The number of D A; transitions m; is involved in the time complexity to take multi-product,
which will discussed later in the implementation chapter.

Average Number of Control Actions of Each Multi-Product State: 6 = E
o
k k
There are |Epp| = €] H n; control actions, and H n; multi-product states in the multi-
=1 =0

product NTS. Therefore, the average number of control actions of each multi-product state

1S
k

. 11 €

o = — = = < |¥|, which is the same as the average number of control
L
IIn  IIn
i=0 i=0
actions of each system state in the NTS. In implementation, & of the multi-product NTS
is probably smaller than that of the NTS due to the optimizations when taking multi-

product. This is another reason that we would like to depict the complexity using only the
first two quantifiers.

Conversion from Multi-Product NTS to Multi-Product Arena

After introducing the multi-product NTS, we now give a conversion from the multi-
product NTS NTS ® DA; ® - -+ ® DAy to the multi-product arena M PA to convert the
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control problem in NTS to an infinite game in M P.A. This conversion is also very much
similar to the conversion from NTS to arena A.

Consider a multi-product NTS NTS® DA ®---®@ DAy = (Xup, 2, Evp, L, Xo) and a
multi-product arena MPA = (V =V, @ Vo, B CV x V). The conversion of multi-product
NTS to multi-product arena M PA is as follows:

o V1 = Xyp is the set of player 1 nodes;

L4 ‘/2 - {U(z,ql,-",Qk)|(w7ql7'" an) € XMPaa S 27 |§MP(($7q1a"' 7qk)70)| > O} is the
set of player 2 nodes;

o £ C (Vi xVo®dVyx Vi) is the set of edges constructed by
EU(WixVa) ={((z.q1,* k), O@qr . @) (@ 01+ ak) € X,
oe X &up((z,q1, -+ ,qx),0)| >0} and
EU (Ve x Vi) = {(0@aq a0 (@ a1 @)@, a0, qr) € Xarp,
o €% [Eup((®,q1, -+ a),0)] > 0, (2, a4, @) € Enp((zq1, -+ qi) o)}

We can see that the multi-product arena M PA is a bipartite arena, i.e.,

MPA =V =Vi@V,E C (V3 x Vo @V, xV;)). The conversion from multi-product
NTS to multi-product arena shows that the multi-product NTS can be considered as a
multi-product bipartite arena.

Quantification of Multi-Product Arena by Quantifiers of Multi-Product NTS

Now we give a brief quantification of the bipartite multi-product arena M P.A converted
from the multi-product NTS by the quantifiers of the multi-product N'TS.

The quantification of the bipartite multi-product arena M PA converted from the multi-
product NTS NT'S ® DA; ® --- ® DAy is given by

o |[Vi|=|Xunp|= Hnu

k k
o Vol = [EU(Vi x V)| = [éup| = | [ < 21 ] s

=0 1=0

e [EU(WVax W)= > > [ur((,q1, - q),0 r—moan,

(%,q1, ,qx)EX M p OEX
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k k k k k
o [V[=Vi|+ V2| = HnH— |Enp| ~ Hni—i—&Hni = (1+5)Hni z&Hni;
i=0 i=0 i=0 i=0 i=0

[E] = [EU(WVixVa)[+[EU (V2 x V)

k k k k
= |£MP| —l—moHni ~ 5Hni +m0HTLZ’ ~ mOHni.
=1 1=0 =1 i=1

In complexity analysis, if we use two quantifiers for simplicity, then we quantify
k k
[V|=n= H n;, and |E| = m = my H n;. We can also add a third quantifier  for more
i=0 i=1
details. If we want to take ¢ into consideration, then we can simply replace ng by ong in
the result for space complexity. & doesn’t affect the time complexity.

The conversion of the accepting condition of DA; Acc; to the objective set Obj in the
game G = (M PA, Obj), and the the conversion of the accepting condition of the control
specification ¢ to the winning condition of the game G will be discussed separately in each
control problem.

Product of Multiple DAs

We sometimes take the product of multiple DAs with the same accepting condition, i.e.,
Biichi or co-Biichi, together to construct a multi-product DA when we need to consider
these multiple DAs together.

Definition 6.4.3 (multi-product DA). For k DAs
DA; = (Qi, L, 73, gio, Acc;), 1 < i <k, the multi-product DA is a 5-tuple
DAy @ ® DAy = (Qup, L, Tmp, qo, Acc), where

o Qup=0Q1 X+ X Qy is the set of multi-product DA states;

o L C 247 is the set of labels as in each DA;

e Typ: L XQyup— Qup is a deterministic transition function such that

TMPU? (QL" : anz)) = (qiv T 7Q;<:) ZﬁTz(la%> = qZ/: 1< < k;'
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o o ={qo} x - x{qro} is the unique initial multi-product DA state;

o Acc={Fy, -+, Fy} C29M7 F; = Qy XX Qi1 X Acti X Qi1 X +++ X Qy, is the set
of final states in a finite automaton or the set of accepting states in an w-automaton.

Quantification of the Multi-Product DA

After giving the definition of the multi-product DA, we will give a quantification of the
multi-product DA based on the quantifiers of the k& DAs.

k DAs

e n; = |Q;| is the number of DA; states;
e m; = |1;| is the number of DA; transitions;
e || = 1 is the number of initial DA; states;

e 1 < |Acc;| < n; is the number of accepting states in DA;.

Multi-Product DA DA, ® ---® DA,

k
o |Qup|=|Q1 X X Qkl = an is the number of multi-product DA states;
i=1
k k
o |Typ| = H |7i| = H m; is the number of multi-product DA transitions;
i=1 i=1
e |AP| is the number of atomic propositions;
e |L| < 24P 'is the number of different labels;
k
e |qo| = {10} x -+ x {qr0}| = H 1 = 1 is the number of initial multi-product states;
i=1
F |Acc;| .
o |Fi| =Q1 x - X Qi1 X Acc; X Qi1 X -+ X Q| = n; - —— is the number of

j=1 !

the it accepting set of multi-product DA.
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6.5 Detailed Analysis of Each Control Specification

We will classify the control specifications as reachability, safety, Biichi, co-Biichi, general-
ized Biichi, generalized co-Biichi, and Rabin.

In each case, we will also discuss the two methods classified by the control specification:
defining by the N'T'S states and as an LTL formula. The latter is the generalization of the
former. For each of the two methods, we will give the conversion of the accepting condition
of a trajectory p, of the control specification ¢ to the winning condition of a play m, of the
infinite game G = (A, Obj). We will then use the conclusion from the previous chapter to
give a complexity analysis.

Briefly, the target set for the NTS and the arena A is the same.

The safe set of A consists of the safe set of NTS and its control actions. However, when
computing time complexity, we can only consider the safe set in NTS which are the V;
nodes in G. We don’t need to consider the control actions of the safe set of NTS which are
the V5 nodes in G. The reason is that, the V5 nodes can’t form an “SCC” by itself, thus
the safe set computed after each safe(-,-) must contain at least 1 V; node if not empty.

6.5.1 Reachability

In this subsection, we will introduce the control specification classified as reachability in
NTS.

The generalization of a reachability specification is the LTL formulas that can be con-
verted to a deterministic finite automaton (DFA).

Control Specification Defined by States in N'TS

We convert the control problem with a reachability control specification in NTS to a
reachability game in A.

Control Specification

For a reachability control specification ¢, T' C X is the set of target states labeled with
a. A finite trajectory r, satisfies ¢ iff one of the states in T" occurs in r,. Formally, r,
satisfies ¢ iff Oce(r,) N'T # 0.

Conversion to a Reachability Game
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Consider a finite reachability game G = (A, Obj). A = (V, E) is the bipartite arena
converted from NTS, where V = V; @ V5 is the set of nodes and E C (V) x Vo@® Vo x 1)) is the
set of edges. Obj =T C V] is the set of target nodes. A finite play p, wins the reachability
game iff one of the nodes in T occurs in p,. Formally, p, wins iff Occ(p,) N T # 0.

Complexity Analysis

In a reachability game G = (A, Obj), A = (V, E) is the arena and Obj =T C V is the
objective set. |V| = ng is the number of nodes and |E| = myq is the number of edges. We
have the following results according to proposition 5.2.1 from the reachability game.

Space Complexity: O(ng + mg) = O(my).
Time Complexity: O(ng+ mg) = O(my).
Number of Control Actions on Each Winning State: 1.

Control Specification Defined as an LTL Formula
We convert the control problem with a DFA translatable LTL formula as control specifi-
cation in NTS to a reachability game in PA.

For a reachability control specification ¢, we convert ¢ to a DFA. ¢ = Fa is a char-
acteristic LTL formula that can be converted to a DFA, where a is the label of the set of
target states T' C X. The picture of DFA is shown in Figure 6.2.

We can also convert the finite reachability game to an infinite reachability game by
converting the finite run r, to an infinite run p,, and converting the DFA to a DBA or
DCA by adding a self-loop with logic 1 for ¢;. The picture of converting from DFA to
DBA or DCA is also shown in Figure 6.2.

-a -q 1

o a @ a
DFA DBA/ DCA

Figure 6.2: DFA and DBA/ DCA of ¢ = Fa, with initial state gy and final or accepting
state F' = {q}
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Fora DFA = (Q, L, T, qo, Acc), the accepting condition Acc = F' C (@ is the set of final
states. A finite run r, is accepted by DFA iff one of the states in F' occurs in r,. Formally,
r, is accepting iff Occ(r,) N F # 0.

Satisfaction of LTL

A finite trajectory r, satisfies  iff its finite input word w; satisfies the accepting con-
dition of DFA converted from .

Conversion to a Reachability Game

In the product NTS NTS ® DA, T = {(z,q)|r € X,q € F} C Xp is the set of target
states.

Consider a finite reachability game G = (PA,Obj). PA = (V,E) is the bipartite
product arena converted from product NTS, where V' = V; @& V5 is the set of nodes and
E C (Vi xVo@ Vo x Vi) is the set of edges. Obj =T C Vj is the set of target nodes. A
finite play p, wins the reachability game iff one of the nodes in T" occurs in p,. Formally,
py wins iff Oce(p,) N T # 0.

Complexity Analysis
In a reachability game G = (PA, Obj), PA = (V, E) is the product arena and
Obj =T C Vj is the objective set. |V| = n = ngn, is the number of nodes and

|E| = m = mgny is the number of edges. We have the following results according to
proposition 5.2.1 from the reachability game.

Space Complexity: O(n+ m) = O(ngny + mony) = O(meny).
Time Complexity: O(n +m) = O(noni + moni) = O(mony).
Number of Control Actions on Each Winning State: 1.

Specifically, when ¢ = Fa, the DFA has n; = 2 and m; = 2 as shown in Figure 6.2.
The control problem can be solved in O(2my) space and time. This shows that solving a
reachability problem in NTS directly is more efficient than taking product.

6.5.2 Safety

In this subsection, we will introduce the control specification classified as safety in NTS.

This is a special problem in NTS. It’s the dual problem of a reachability problem, and
the first infinite specification that we consider. When we express the safety specification
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as an LTL formula ¢ = Ga, it can be converted to either a DBA or a DCA. The converted
DA has only 1 liveness state, thus can be solved in the NTS directly. The picture of DBA/
DCA converted from ¢ = Ga is shown in Figure 6.3.

a 1

a

DBA/ DCA

Figure 6.3: DBA/ DCA of ¢ = Ga, with initial state ¢y and accepting state F' = {qo}

An important use of the safety specification is that, when we consider an infinite spec-
ification, we assume that each node in the arena has positive out-degree to guarantee an
infinite play. However, this assumption may not hold for our NTS computed in the ab-
straction for efficiency. Therefore, we need to consider the obstacles and the boundary as
the unsafe nodes and solve a safety game to resolve this. We prefer to leave this step when
we solve the control problem.

When we need to take the product to solve a control problem, we also solve a safety
game before taking the product. After taking the product, we solve a safety game again
before solving the actual problem in PA for efficiency as a safety game can be solved in
linear time.

Control Specification Defined by States in N'TS

We convert the control problem with a safety control specification in N'T'S to a safety game

in A.
Control Specification

For a safety control specification ¢, S C X is the set of safe states labeled with a and
correspondingly, X/S is the set of unsafe states labeled with —a. An infinite trajectory
p. satisfies ¢ iff only the states in S occur in p,, or equivalently, the states in X /S never
occur in p,. Formally, p, satisfies ¢ iff Occ(p,) C S, or equivalently, Occ(p,) N (X/S) # 0.

Conversion to a Safety Game
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Consider an infinite safety game G = (A,Obj). A = (V,F) is the bipartite arena
converted from NTS, where V = V] @ V5 is the set of nodes and £ C (V; x Vo & Vo x V)
is the set of edges. Obj =S C V is the set of safe nodes consisting of the safe set S in the
NTS and its control actions. An infinite play m, wins the safety game iff only the nodes in
S occur in 7, or equivalently, the nodes in V/S never occur in m,. Formally, 7, wins iff

Occ(m,) C S, or equivalently, Occ(m,) N (V/S) # 0.
Complexity Analysis

In a safety game G = (A,Obj), A = (V, E) is the arena and Obj = S C V is the
objective set. |V| = ng is the number of nodes and |E| = my is the number of edges. We
have the following results according to proposition 5.2.2 from the safety game.

Space Complexity: O(ng + mg) = O(my).
Time Complexity: O(ng+ mgy) = O(my).
Number of Control Actions on Each Winning State: 1.

6.5.3 Biichi

In this subsection, we will introduce the control specification classified as Biichi in NTS.

The generalization of a Biichi specification is the LTL formulas that can be converted
to a DBA.

Control Specification Defined by States in NTS

We convert the control problem with a Biichi control specification in NTS to a Biichi game
in A.
Control Specification

For a Biichi control specification ¢, T C X is the set of target states labeled with a.
An infinite trajectory p, satisfies ¢ iff one of the states in T" occurs infinitely many often
in p,. Formally, p, satisfies ¢ iff Inf(p,) N'T # (.

Conversion to a Buchi Game

Consider an infinite Biichi game BG = (A, Obj). A = (V, E) is the bipartite arena
converted from NTS, where V =V @ V5 is the set of nodes and F C (V}; x Vo, &V, x V)
is the set of edges. Obj =T C V] is the set of target nodes. An infinite play m, wins the
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Biichi game iff one of the nodes in T" occurs infinitely many often in 7,. Formally, 7, wins
iff Inf(m,) N'T # 0.

Complexity Analysis

In a Biichi game BG = (A,Obj), A = (V, E) is the arena and Obj = T C V] is the
objective set. |V| = ng is the number of nodes and |E| = my is the number of edges. We
have the following results according to proposition 5.3.1 from the Biichi game.

Space Complexity: O(ng + mg) = O(my).
Time Complexity: O(ngmy).
Number of Control Actions on Each Winning State: 1.

Control Specification Defined as an LTL Formula

We convert the control problem with a DBA translatable LTL formula as control specifi-
cation in NTS to a Biichi game in PA.

For a Biichi control specification ¢, we convert ¢ to a DBA. ¢ = GFa is a characteristic
LTL formula that can be converted to a DBA, where a is the label of the set of target
states T C X. The picture of DBA is shown in Figure 6.4.

a —d

DBA

Figure 6.4: DBA of ¢ = GFa, with initial state ¢y and accepting state F' = {q}

For a DBA = (Q, L, T,qo, Acc), the accepting condition Acc = F' C @ is the set of
accepting states. An infinite run p, is accepted by DBA iff one of the states in F' occurs
infinitely many often in p,. Formally, p, is accepting iff Inf(p,) N F # 0.

Satisfaction of LTL

An infinite trajectory p, satisfies ¢ iff its infinite input word «; satisfies the accepting
condition of DBA converted from ¢.
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Conversion to a Biichi Game

In the product NTS NTS ® DA, T = {(z,q)|r € X,q € F} C Xp is the set of target
states.

Consider an infinite Biichi game BG = (PA,Obj). PA = (V,E) is the bipartite
product arena converted from product NTS, where V' = Vi & V5 is the set of nodes and
E C (Vi x Vo @ Va x V) is the set of edges. Obj =T C V; is the set of target nodes. An
infinite play 7, wins the Biichi game iff one of the nodes in 7" occurs infinitely many often
in 7,. Formally, 7, wins iff Inf(7,) NT # 0.

Complexity Analysis
In a Biichi game BG = (PA, Obj), PA = (V, E) is the product arena and

Obj =T C Vj is the objective set. |V| = n = ngn; is the number of nodes and

|E| = m = mgn; is the number of edges. |T| = ng - |F'| is the number of target nodes.
We have the following results according to proposition 5.3.1 from the Biichi game.

Space Complexity: O(n +m) = O(nony + mony) = O(mony).

Time Complexity: O(nm) = O(ngn; - mgni) = O(ngmon?).

Number of Control Actions on Each Winning State: 1.

Specifically, when ¢ = GFa, the DBA has n; = 2, m; = 4 and |F| = 1 as shown in
Figure 6.4. The control problem can be solved in O(2my) space and

O(|T| - m) = O(ng - 2my) = O(2nemy) time. This shows that solving a Biichi problem in
NTS directly is more efficient than taking product.

6.5.4 co-Biuchi

In this subsection, we will introduce the control specification classified as co-Biichi in NTS.

The generalization of a co-Biichi specification0 is the LTL formulas that can be con-
verted to a DCA. An LTL formula ¢ can be converted to a DCA if =y can be converted to
a DBA. To convert the DCA for ¢ from the DBA for —¢, we simply consider the accepting
set of DBA as the rejecting set of DCA.

Control Specification Defined by States in NTS

We convert the control problem with a co-Biichi control specification in NTS to a co-Biichi
game in A.

149



Control Specification

For a co-Biichi control specification ¢, S C X is the set of safe states labeled with a and
correspondingly, X/S is the set of unsafe states labeled with —a. An infinite trajectory p,
satisfies ¢ iff only the states in S occur in p, eventually, or equivalently, the states in X /S
occur only finitely many often in p,. Formally, p, satisfies o iff Inf(p,) C S, or equivalently,
Inf(p,) N (X/S) = 0.

Conversion to a co-Biichi Game

Consider an infinite co-Biichi game CG = (A, Obj). A = (V, E) is the bipartite arena
converted from NTS, where V = V] @ V5 is the set of nodes and £ C (V; x Vo @ Vo x V)
is the set of edges. Obj =S C V is the set of safe nodes consisting of the safe set S in
the NTS and its control actions. An infinite play m, wins the co-Biichi game iff only the
nodes in S occur in 7, eventually, or equivalently, the nodes in X/S occur only finitely
many often in 7,. Formally, 7, wins iff Inf(7,) C S, or equivalently, Inf(7,) N (V/S) = 0.
Complexity Analysis

In a co-Biichi game CG = (A, Obj), A = (V, E) is the arena and Obj = S C V is the
objective set. |V| = ng is the number of nodes and |E| = my is the number of edges. We
can only consider the V} nodes in S when computing the time complexity. We have the
following results according to proposition 5.3.2 from the co-Biichi game.

Space Complexity: O(ng + mg) = O(my).
Time Complexity: O(ngmy).
Number of Control Actions on Each Winning State: 1.

Control Specification Defined as an LTL Formula

We convert the control problem with a DCA translatable LTL formula as control specifi-
cation in NTS to a co-Biichi game in PA.

For a co-Biichi control specification ¢, we convert ¢ to a DCA. ¢ = F(Ga is a charac-
teristic LTL formula that can be converted to a DCA, where a is the label of the set of
safe states S C X. The picture of DCA is shown in Figure 6.5.

For a DCA = (@, L, T, qy, Acc), the accepting condition Acc = F C @ is the set of
accepting states. An infinite run p, is accepted by DCA iff only the states in /' occur in
p, eventually. Formally, p, is accepting iff Inf(p,) C F.
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a a

Figure 6.5: DCA of ¢ = FGa, with initial state ¢o and accepting state F' = {qo}

Equivalently, we can also define the accepting condition Acc = (Q/F) C @ as the set
of rejecting states. An infinite run p, is accepted by DCA iff the states in ()/F occur only
finitely many often in p,. Formally, p, is accepting iff Inf(p,) N (Q/F) = 0.

Satisfaction of LTL

An infinite trajectory p, satisfies ¢ iff its infinite input word «; satisfies the accepting
condition of DCA converted from ¢.

Conversion to a co-Biichi Game

In the product NTS NT'S ® DA, S = {(x,q)|r € X,q € F} C Xp is the set of safe
states.

Consider an infinite co-Biichi game CG = (P.A,Obj). PA = (V, E) is the bipartite
product arena converted from product NTS, where V' = V; @ V5 is the set of nodes and
E C (Vi xVo@Vy x V7) is the set of edges. Obj =S C V is the set of safe nodes consisting
of the safe set S in the product NTS and its control actions. An infinite play 7w, wins the
co-Biichi game iff only the nodes in S occur in 7, eventually, or equivalently, the nodes in
V/S occur only finitely many often in m,. Formally, m, wins iff Inf(7,) C S, or equivalently,

Inf(m,) N (V/S) = 0.
Complexity Analysis

In a co-Biichi game CG = (PA, Obj), PA = (V, E) is the product arena and
Obj = S C V is the objective set. |V| =n = ngn; is the number of nodes and

|E| = m = mgn, is the number of edges. We can only consider the V; nodes in S when
computing the time complexity, thus |S| = ng - |F| is the number of safe nodes.

We have the following results according to proposition 5.3.2 from the co-Biichi game.

Space Complexity: O(n+ m) = O(ngny + mony) = O(meny).
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Time Complexity: O(nm) = O(ngn; - mony) = O(ngmon?).
Number of Control Actions on Each Winning State: 1.

Specifically, when ¢ = FGa, the DCA has ny = 2, my = 4 and |F| = 1 as shown in
Figure 6.5. The control problem can be solved in O(2m,) space and

O(]|S]-m) = O(ng - 2mg) = O(2nemy) time. This shows that solving a co-Biichi problem
in N'TS directly is more efficient than taking product.

6.5.5 Generalized Biichi

In this subsection, we will introduce the control specification classified as generalized Biichi
in NTS.

The generalization of a generalized Biichi specification is the LTL formulas that can be
converted to a generalized deterministic Biichi automaton (GDBA).

Control Specification Defined by States in N'TS

We convert the control problem with a generalized Biichi control specification in N'TS to
a generalized Biichi game in A.

Control Specification

For a generalized Biichi control specification ¢, T; € X, 1 < ¢ < k are the k sets
of target states labeled with a;. An infinite trajectory p, satisfies ¢ iff one of the states

in T; occurs infinitely many often in p, for all 7, 1 < ¢ < k. Formally, p, satisfies ¢ iff
k

A(Inf(p,) N T # 0).

i=1
Conversion to a generalized Biichi Game

Consider an infinite generalized Biichi game GBG = (A,0bj). A = (V,E) is the
bipartite arena converted from NTS, where V = Vi @ V5 is the set of nodes and

E C (Vi x Vo@® Vy x 1) is the set of edges. Obj = {T3, -+ ,T}}, where T, C V;, 1 <i <k
are the k sets of target nodes. An infinite play m, wins the generalized Biichi game iff one
of the nodes in T} occurs infinitely many often in 7, for all 2, 1 <14 < k. Formally, 7, wins

k
iff /\(Inf(r,) N T; # 0).
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Complexity Analysis
In a generalized Biichi game GBG = (A, Obj), A = (V, E) is the arena and

Obj ={Ty---,T}}, where T; C Vi, 1 < i < k is the objective set. |V| = ng is the number
of nodes and |E| = mg is the number of edges. Here we give the complexity analysis
according to the three methods given in the generalized Biichi game.

e Method 1
We have the following results according to proposition 5.4.3.
Space Complexity: O(ng+ mg) = O(my).
Time Complexity: O(knomy).
Number of Control Actions on Each Winning State: k.

e Method 2
We have the following results according to proposition 5.4.1.
Space Complexity: O(k(ng+ mop)) = O(kmy).
Time Complexity: O(knymy).
Number of Control Actions on Each Winning State: 1.

e Method 3
We have the following results according to proposition 5.4.2.
Space Complexity: O((k + 1)(ng + mo)) = O((k + 1)my).
Time Complexity: O((k + 1)ngmo).
Number of Control Actions on Each Winning State: 1.

Control Specification Defined as an LTL Formula

We convert the control problem with a GDBA translatable LTL formula as control speci-
fication in N'TS to a generalized Biichi game in M PA.
k

For a generalized Biichi control specification ¢ = /\ @;, where each ¢;, 1 <7 < k can

i=1
be converted to a DBA, we convert ¢ to a GDBA.
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k
= /\ GFa;, where a; is the label of the set of target states T; C X, 1 <i < k is the
i=1
naive generalized Biichi objective. We prefer to solve it as a generalized Biichi game in A
directly. It is even more efficient to convert it to a DBA than to a GDBA.

For a GDBA = (Q, L, T, qo, Acc), the accepting condition Acc = {F},- -, Fi}, where
F, € Q, 1 <1 <k are the k sets of accepting states. An infinite run p, is accepted by

GDBA iff one of the states in F; occurs infinitely many often in p, for all 7, 1 <17 < k.
k

Formally, p, is accepting iff /\(Inf(pq) NF;, #0).
i=1
Satisfaction of LTL

An infinite trajectory p, satisfies ¢ iff its infinite input word «; satisfies the accepting
condition of GDBA converted from ¢.

Conversion to a Generalized Biichi Game
k

Consider the generalized Biichi control specification ¢ = /\ i, 1 < i <k, where each

i=1
@; can be converted to a DBA DA; with Acc; being the accepting set. Conceptually, there
are two ways to construct the multi-product NT'S without considering the implementations.

1. Construct a multi-product NTS with the NTS and the k& DAs.

,-Ti - {(x7QI7"' 7Qk)|x € X7qz € ACCi?Qj € Q]J] 7£ Z} g XMP7 1 S { S k are the k
sets of target states in the multi-product NT'S.

2. Construct a multi-product DA with the & DAs and then take the product of NTS
and multi-product DA to construct a multi-product NTS.

Acc = {Fla"' 7Fk}7 where E = {(q17 aq1€)|Q’L € ACCinj € Q]aj 7é Z} g QMP?
1 <i < k are the k sets of accepting states in the multi-product DA.

T ={(v,q1, - ,qi)|lr € X,q € Acci,q; € Qj,5 # i} € Xyp, 1 <i < k are the k
sets of target states in the multi-product NTS.

In the implementation, we may encode the k& DA dimensions into 1 to reduce the multi-
product N'TS into a product NTS. There are several ways of constructing the multi-product
NTS in implementation, which will be discussed in the implementation chapter later.

Consider an infinite generalized Biichi game GBG = (M PA,Obj). MPA = (V,E) is
the bipartite multi-product arena converted from multi-product NTS, where V = V; @ V5
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is the set of nodes and F C (V; x Vo & V4 x V) is the set of edges. Obj = {T1,---,T}},
where T; C Vi, 1 < i < k are the k sets of target nodes. An infinite play m, wins the

generalized Biichi game iff one of the nodes in T; occurs infinitely many often in 7, for all
k

i, 1 <i < k. Formally, 7, wins iff /\(Inf(m,) NT; #0).
i=1
Complexity Analysis
In a generalized Biichi game GBG = (M PA, Obj), MPA = (V, E) is the multi-product
arena and Obj = {71} --- ,T}}, where T; C V}, 1 <i < k is the objective set.

k k
V|=n= an is the number of nodes and |E| = m = my Hnl is the number of edges.

i=0 i=1

k
Hn]- - |Acg|
|Acc;| =0 : :

IT;|=n- = , 1 <4 < k is the number of target nodes for T;.

U Us

Here we give the complexity analysis according to the three methods given in the
generalized Biichi game.

e Method 1

We have the following results according to proposition 5.4.3.

k
Space Complexity: O(n+ m) = 0O(m) =0 (mo Hn,)

k k k
Time Complexity: O(knm) = O (k : Hnl - my Hm) =0 (knomo(H nz>2>
- = i=1

Number of Control Actions on Each Winning State: k.
e Method 2

We have the following results according to proposition 5.4.1.

k
Space Complexity: O(k(n +m)) = O(km) = O (kmo Hnl>
i=1

k k k
Time Complexity: O(knm) = O (k : an Mo an> =0 (k’nomg(H n2)2>

Number of Control Actions on Each Winning State: 1.
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e Method 3

We have the following results according to proposition 5.4.2.
k
Space Complexity: O((k+ 1)(n+m)) = O((k+1)m) =0 ((k + 1)my Hnl) :
i=1

Time Complexity:

O((k+1)nm) = O((k+1)~Hni'm0Hni>

= 0 ((k + 1)ngm0(H n,)2> .

=1

Number of Control Actions on Each Winning State: 1.

Most General Form of the Generalized Biichi Control Specification

The most general form of the generalized Biichi control specification is given by
k1 ko
Y = /\ Wi A /\ GFaj, where p;, 1 <1i < k; is a DBA translatable LTL formula and a;,
i=1 j=1
1 < j < ky is the label of the set of target states 7; C X.

The most efficient way of solving this control specification ¢ in NTS is to construct a
multi-product NTS with the NTS and the k; DAs, convert the multi-product NTS to a
multi-product arena, and then solve a generalized Biichi game with ki + ko Biichi objectives
in the multi-product arena. The idea is to solve it as a generalized Biichi game in the
smallest possible arena.

7—; = {(x7q17"' an1)|$ € X:QZ € ACCinj € Q]’j 7£ ?’} g XMPa 1 S { S kl are the kl
sets of target states in the multi-product NTS given by ;.

Tj ={(z,q1, - ,a)|r € Tj,q; € Qi} € Xup, 1 < j < ky are the extra ky sets of
target states in the multi-product NTS given by a;.

In a generalized Biichi game GBG = (M PA, Obj), MPA = (V, E) is the multi-product

arena and Obj = {11 --- , Ty,, 11, -+ , T, }, where T;,,7; C Vi, 1 <i<kj,and 1 < j <k
k ky

1
is the objective set. |V| =n = an is the number of nodes and |E| = m = my an is
i=0 i=1
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k1
H nj - |Acc]
|Acc;| o . .
= , 1 <4 < ky is the number of target
T 1

the number of edges. |T;| = n -

nodes for 7.

~

T. k .
;| =n- |n_(])| = an |T5], 1 < j < ko is the number of target nodes for 7.
i=1

We have the following results according to proposition 5.4.3 from method 1 of general-
ized Biichi game.

k1
Space Complexity: O(n+m)=0O(m) =0 <m0 Hnl> :
i=1

Time Complexity:
ky k1
O((ky + ko)nm) = O ((k’l + ko) - an - Mg an>
i=0 i=1

) ((/ﬁ + kz)nomo(H nl)2> )

=1

Number of Control Actions on Each Winning State: k; + ks.

6.5.6 Generalized co-Buchi

In this subsection, we will introduce the control specification classified as generalized co-
Biichi in NTS.

The generalization of a generalized co-Biichi specification is the LTL formulas that can
be converted to a generalized deterministic co-Biichi automaton (GDCA).

Control Specification Defined by States in N'TS

We convert the control problem with a generalized co-Biichi control specification in NTS
to a generalized co-Biichi game in A.

Control Specification
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For a generalized co-Biichi control specification ¢, S; C X, 1 < i < k are the k sets of
safe states labeled with a; and correspondingly, X/S; are the k sets of unsafe states labeled
with —a;. An infinite trajectory p, satisfies ¢ iff only the states in S; occur in p, eventually
for some i, 1 < i < k, or equivalently, the states in X/S; occur only finitely many often

k
in p, for some i, 1 < i < k. Formally, p, satisfies ¢ iff \/(Inf(pm) C S;), or equivalently,
. i=1
\/ (nf(p,) (1 (X/S;) = 0).
i=1

Conversion to a generalized co-Biichi Game

Consider an infinite generalized co-Biichi game GCG = (A, Obj). A = (V, E) is the
bipartite arena converted from NTS, where V' = V; @ V5 is the set of nodes and

E C (Vi x Vo @V, x Vi) is the set of edges. Obj = {Sy, -, Sk}, where S; C V|

1 < i < k are the k sets of safe nodes consisting of the safe set S; in the NTS and its
control actions. An infinite play m, wins the generalized co-Biichi game iff only the nodes
in .S; occur in m, eventually for some i, 1 <7 < k, or equivalently, the nodes in V/S; occur

k
only finitely many often in 7, for some ¢, 1 <7 < k. Formally, 7, wins iff \/(Inf(m) C S,

i=1
k

or equivalently, \/(Inf(ﬂv) N(V/S;) =0).
i=1
Complexity Analysis
In a generalized co-Biichi game GCG = (A, Obj), A= (V, E) is the arena and

Obj ={S1---, Sk}, where S; C V1 <i < kisthe objective set. |V| = ng is the number of
nodes and |E| = my is the number of edges. We can only consider the V} nodes in S; when
computing the time complexity. We have the following results according to proposition
5.4.4 from the generalized co-Biichi game.

Space Complexity: O(ng + mg) = O(my).
Time Complexity: O(knomy).
Number of Control Actions on Each Winning State: 1.
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Control Specification Defined as an LTL Formula

We convert the control problem with a GDCA translatable LTL formula as control speci-
fication in N'TS to a generalized co-Biichi game in M PA.
k
For a generalized co-Biichi control specification ¢ = \/ ©;, where each ¢;, 1 <1 < k
i=1
can be converted to a DCA, we convert ¢ to a GDCA.
k
Y= \/ FGa;, where a; is the label of the set of safe states S; C X, 1 < i < k is the
i=1
naive generalized co-Biichi objective. We prefer to solve it as a generalized co-Biichi game
in A directly. It is even more efficient to convert it to a DCA than to a GDCA.

For a GDCA = (Q, L, T, qo, Acc), the accepting condition Acc = {F},- -, F}}, where
F, € Q, 1 <1 <k are the k sets of accepting states. An infinite run p, is accepted by

GDCA iff only the states in F; occur in p, eventually for some ¢, 1 <14 < k. Formally, p,
k

is accepting iff \/(Inf(pq) CF).
i=1
Equivalently, we can also define the accepting condition Acc = {Q/F1, - ,Q/F},
where (Q/F;) C @, 1 < i < k as the k sets of rejecting states. An infinite run p, is
accepted by GDCA iff the states in ()/F; occur only finitely many often in p, for some i,
k

1 < i < k. Formally, p, is accepting iff \/(Inf(pq) N(Q/F;) =0).
i=1
Satisfaction of LTL

An infinite trajectory p, satisfies ¢ iff its infinite input word «; satisfies the accepting
condition of GDCA converted from ¢.

Conversion to a Generalized co-Biichi Game
k
Consider the generalized co-Biichi control specification ¢ = \/(pi, 1 <@ < k, where
i=1
each ¢; can be converted to a DCA DA; with Acc; being the accepting set. Concep-
tually, there are two ways to construct the multi-product NTS without considering the
implementations.

1. Construct a multi-product NTS with the NTS and the k& DAs.
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Si = {(z,q1,- - ,au)|r € X,q; € Accy,q; € Q5,5 # i} € Xyp, 1 < i <k are the k
sets of safe states in the multi-product NTS.

2. Construct a multi-product DA with the £ DAs and then take the product of NTS
and multi-product DA to construct a multi-product NT'S.

Acc = {F1, -+, F}}, where F; = {(q1,- -+ ,q)|¢: € Acci,q; € Qj,5 # i} € Qup,
1 <i < k are the k sets of accepting states in the multi-product DA.

Si = {(x7Q17"' 7@{)‘1' € X?Q’L € ACCi?Qj € Qjaj # Z} - XMP7 1 <i <k are the k
sets of safe states in the multi-product NTS.

In the implementation, we may encode the k& DA dimensions into 1 to reduce the multi-
product N'TS into a product NTS. There are several ways of constructing the multi-product
NTS in implementation, which will be discussed in the implementation chapter later.

Consider an infinite generalized co-Biichi game GCG = (M PA,Obj). MPA = (V, E)
is the bipartite multi-product arena converted from multi-product NTS, where V =V, &V,
is the set of nodes and F C (V; x V5 & V5 x V4) is the set of edges. Obj = {S1,---, Sk},
where S; C Vi, 1 < i < k are the k sets of safe nodes consisting of the safe set S; in
the multi-product NTS and its control actions. An infinite play m, wins the generalized
co-Biichi game iff only the nodes in S; occur in 7, eventually for some i, 1 < i < k, or

equivalently, the nodes in V/S; occur only finitely many often in 7; for some i, 1 <1i < k.
k k

Formally, m, wins iff \/(Inf(m,) C S;), or equivalently, \/(Inf(m,) N(V/S;) =0).
i=1 i=1
Complexity Analysis

In a generalized co-Biichi game GCG = (M PA,Obj), MPA = (V,E) is the multi-
product arena and Obj = {S;---, Sk}, where S; C V| 1 <i < k is the objective set.

k k

V| =n = Hn, is the number of nodes and |E| = m = mon is the number of
i=0 i=1

edges. We can only consider the Vi nodes in 5; when computing the time complexity, thus

k
n; - |ACCZ"
|Acc| ]-11) , _
|Si|=n- = , 1 <i < k is the number of safe nodes for S;.
n; n;

We have the following results according to proposition 5.4.4 from the generalized co-
Biichi game.
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k
Space Complexity: O(n+m)=0O(m) =0 (mo an> .

k k k
Time Complexity: O(knm) = O (k : an - my an> =0 (knomg(H nz)2>

Number of Control Actions on Each Winning State: 1.

Most General Form of the Generalized co-Biichi Control Specification

The most general form of the generalized co-Biichi control specification is given by
iy ko
Y = \/ w; V \/ FGaj, where ¢;, 1 < i < k; is a DCA translatable LTL formula and aj,

i=1 j=1
1 < j < kg is the label of the set of safe states S; C X.

The most efficient way of solving this control specification ¢ in NTS is to construct a
multi-product NTS with the NTS and the k; DAs, convert the multi-product NTS to a
multi-product arena, and then solve a generalized co-Biichi game with ky + ko co-Biichi
objectives in the multi-product arena. The idea is to solve it as a generalized co-Biichi
game in the smallest possible arena.

Si = {($7Q17"' 7qk1)‘x S X>qz € ACCian € Qjaj 7& Z} g XMP> 1 S ) S kl are the kl
sets of safe states in the multi-product NTS given by ¢;.

Sj ={(z,q1, - @)z € 5;,¢ € Qi} C Xup, 1 < j < ky are the extra ko sets of safe
states in the multi-product NTS given by a;.

In a generalized co-Biichi game GCG = (MPA,Obj), MPA = (V, E) is the multi-
product arena and Obj = {Sy---,Sk,S51, -+, Sk}, where S;,5; C Vi, 1 < i < Fky,

k1
and 1 < j < ko is the objective set. |V| = n = an is the number of nodes and
i=0
k1
. Hnj - [Ace|
. . |ACCi| j=0 .
|E| :m:mOHni is the number of edges. |S;| =n - = 1 <i<k
i=1 i i
is the number of safe nodes for .S;.
k
|51

15| =n- —L = an -1S;], 1 < j < ky is the number of safe nodes for S;.
(L ——
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We have the following results according to proposition 5.4.4 from the generalized co-
Biichi game.

k1
Space Complexity: O(n+m) = 0O(m) =0 (mo an> .

Time Complexity:
k1 k1
=0 =1

k1
0 ((k’l + ka)nomo (] | ni)2> .

=1

Number of Control Actions on Each Winning State: 1.

6.5.7 Rabin

In this subsection, we will introduce the control specification classified as Rabin in NT'S.

The generalization of a Rabin specification is the LTL formulas that can be converted
to a DRA.

A special case is that, we convert the control problem into a one pair Streett game if
possible.

Control Specification Defined by States in NTS

We convert the control problem with a Rabin control specification in NTS to a Rabin game

in A.
Control Specification

For a Rabin control specification ¢, G;, B; C X, 1 < i < k. G is the set of “Good”
states labeled with ¢; and correspondingly, B; is the set of “Bad” states labeled with b;.
An infinite trajectory p, satisfies ¢ iff one of the states in G; occurs infinitely many often

in p, and the states in B; occur only finitely many often in p, for some i, 1 < ¢ < k.
k

Formally, p, satisfies ¢ iff \/ ((Inf(pz) NGi # 0) A (Inf(p,) N B; = 0)).

i=1

162



Conversion to a Rabin Game

Consider an infinite Rabin game RG = (A, Obj). A = (V| E) is the bipartite arena
converted from NTS, where V = V] ® V5 is the set of nodes and
E C (Vi x Vo @V, x Vi) is the set of edges. Obj = {(G1, B1),---,(Gk, Br)}, 1 < i <k,
where G; C Vj is the set of “Good” nodes and B; C V' is the set of “Bad” nodes consisting
of the “Bad” set B; in the NTS and its control actions. An infinite play m, wins the
Rabin game iff one of the nodes in G; occurs infinitely many often in 7, and the nodes

in B; occur only finitely many often in 7, for some ¢, 1 < ¢ < k. Formally, 7w, wins iff
k

\/ ((Inf(m,) N Gi # 0) A (Inf(7,) N B; = 0)).

i=1
Complexity Analysis
In a Rabin game RG = (A, Obj), A = (V, E) is the arena and

Obj = {(G1,By),- -+ ,(Gk, By)}, where G; C Vi, B; CV, 1 <1 < k is the objective set.
|[V| = ng is the number of nodes and |E| = myg is the number of edges. We can only
consider the V] nodes in B; when computing the time complexity. We have the following
results according to proposition 5.6.1 from the Rabin game. The time complexity of the
algorithm 10 is sound and complete when k£ = 1, and is sound but may not be complete
when k > 1.

Space Complexity: O(ny + mg) = O(my).
Time Complexity: O(knimy).
Number of Control Actions on Each Winning State: 1.

The following results also hold according to proposition 5.6.2 if it is a Streett game. The
time complexity of the algorithm 10 is sound and complete when k£ = 1, and is complete
but may not be sound when k£ > 1.

Space Complexity: O(ng + mg) = O(my).
Time Complexity: O(knimy).
Number of Control Actions on Each Winning State: k.

Control Specification Defined as an LTL Formula

We convert the control problem with a Rabin translatable LTL formula as control specifi-
cation in NTS to a Rabin game in PA.
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Any LTL formula ¢ can be converted to a DRA.

k
Y= \/(Gng A FGb;), where g; is the label of the set of “Good” states G; C X, and

i=1
b; is the label of the set of “Bad” states B; C X, 1 < ¢ < k is the naive Rabin objective.
We prefer to solve it as a Rabin game in A directly.

Fora DRA = (Q, L, 7, qo, Acc), the accepting condition Acc = {(G1, By),- -+, (G, Bx) },
where G1,B; C Q, 1 < i < k. “G” refers to the set of “Good” states that we would like
to occur infinitely many often in a run p,, whereas “B” refers to the set of “Bad” states
that we would like to occur only finitely many often in p,. An infinite run p, is accepted
by DRA iff one of the states in G; occurs infinitely many often in p, and the states in B;

occur only finitely many often in p, for some i, 1 < 7 < k. Formally, p, is accepting iff
k

\/ ((Inf(p,) N G; # 0) A (Inf(py) N B; = 0)).
i=1
Satisfaction of LTL

An infinite trajectory p, satisfies ¢ iff its infinite input word «; satisfies the accepting
condition of DRA converted from ¢.

Conversion to a Rabin Game

In the product NTS NTS® DA, Gs = {(x,q)|z € X,q € G;} C Xp is the set of “Good”

states and correspondingly, B; = {(z,q)|z € X,q € B;} C Xp is the set of “Good” states,
1<i<k.

Consider an infinite Rabin game RG = (PA,Obj). PA = (V,E) is the bipartite
product arena converted from product NTS, where V' = Vi & V5 is the set of nodes and
E C (Vi x Va@® V3 x V4) is the set of edges. Obj = {(Gy,By),---,(Gr, By}, 1 < i <k,
where G’, C V] is the set of “Good” nodes and BZ C V is the set of “Bad” nodes consisting
of the “Bad” set B; in the product NTS and its control actions. An infinite play 7, wins
the Rabin game iff one of the nodes in G, occurs infinitely many often in 7, and the nodes

in B; occur only finitely many often in 7, for some ¢, 1 < ¢ < k. Formally, m, wins iff
k

\/ <(Inf(7rv) NG, # 0) A (Inf(m,) N B; = @))

i=1
Complexity Analysis

In a Rabin game RG = (PA, Obj), PA = (V, E) is the product arena and
Obj = {(G1,By) -+, (Gy, By)}, where G; C Vi, B; CV, 1 <i < k is the objective set.
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|V| = n = ngny is the number of nodes and |E| = m = mgn; is the number of edges. We can
only consider the V; nodes in B; when computing the time complexity, thus |G;| = ng - |G|
is the number of “Good” nodes for G; and correspondingly, |B;| = ng - |B;| is the number
of “Bad” nodes for EZ

We have the following results according to proposition 5.6.1 from the Rabin game. The
time complexity of the algorithm 10 is sound and complete when k& = 1, and is sound but
may not be complete when k£ > 1.

Space Complexity: O(n +m) = O(ngni + mony) = O(mony).
Time Complexity: O(kn*m) = O(k(noni)? - mony) = O(knimon?).
Number of Control Actions on Each Winning State: 1.

The following results also hold according to proposition 5.6.2 if it is a Streett game. The
time complexity of the algorithm 10 is sound and complete when k£ = 1, and is complete
but may not be sound when k& > 1.

Space Complexity: O(n+ m) = O(ngny + mony) = O(meny).
Time Complexity: O(kn?*m) = O(k(ngni)? - mony) = O(knimgn?).
Number of Control Actions on Each Winning State: k.

6.6 Simulation — from Discrete back to Continuous

In this section, we will discuss how to do simulation in the continuous space using the
information in the discrete space.

A discrete controller can be refined and implemented on the original continuous system.
Such mapping is guaranteed in the construction of the abstraction from continuous space
to discrete space: a sound abstraction guarantees that any discrete controller synthesized
using the abstraction can be implemented in the original system to guarantee soundness
in terms of satisfying LTL specifications.

Simulation is an approach to do conservative substitute experiments before, or when
we don’t have access, to do experiments in the real system.

We will first discuss the relation between the continuous dynamical system and its
abstraction, and then classify the discussion of simulation according to how the control
specification is defined.
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6.6.1 Relation between Continuous Space and Discrete Space

In this subsection, we will discuss the relation between the continuous space and the
discrete space. We will discuss the counterparts between the continuous space and the
discrete space in pairs.

System States

In the continuous space, the set of continuous system states X, is partitioned into ng
regions, i.e., X, = R @ --- ® R,,. The partition is performed by setting up precision for
each dimension using the method of uniform gird.

In the discrete space, the set of discrete system states X, is also of size | Xy4| = ng. The
ng regions in the continuous space is 1-1 correspondence to the ng system states in the
discrete space.

The conversion of a continuous system state x.; € R; to a discrete system state x4 is

an encoding process since the continuous system states may have several dimensions. We

. . encode
will represent such conversion as x.,;, —— 4;.

Control Actions

In the continuous space, we choose the finite set of continuous control actions by setting
up precision for each dimension using the method of uniform grid out of X, which is 1-1
correspondence to the finite set of discrete control actions ¥, of size |Xg4].

The conversion of a discrete control action o,z to a continuous control action o, is a

decoding process since the continuous control actions may have several dimensions. We

. . decode
will represent such conversion as 0, —— 0.

Time Step

In the continuous space, we fix the unit time step as At.

In the discrete space, we abstract the unit time step At as 1.

The LTL formula and the automaton share the same time step as the dynamical system.
Transition Function

In the continuous space, the transition function is initially described by the ODE

(t) = f(x(t),o). After we have fix the unit time step At, we convert the ODE to a DE
i1 = [y, 0) At + 2.

A continuous transition (x.1, 0., Te2) projects to a discrete transition (241, 04, T42), Where
ZTe € Ry, ko € Ry, Ry maps to x4y, 0. maps to o4, and Ry maps to zgs.
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Labelling

In the discrete space, we under approximate the positive atomic propositions of that
in the continuous space, whereas we over approximate the negative atomic propositions of
that in the continuous space.

Agent and Token

Since there is dynamics in the dynamical system, we place an agent in the dynamical
system in both continuous and discrete case. Since there is no dynamics in an automaton
or an arena, we place a token in the automaton or an arena.

Consider the control synthesis in NTS. When the control specification ¢ is defined by
an LTL formula, we convert it to a DA with a corresponding accepting condition. Then
the agent in the NTS and the token in the DA move in pairs at each time step. If we
construct a product NTS by the NTS and the DA, then the agent in the NTS and the
token in the DA combine into one new agent. If we construct a multi-product NTS by the
NTS and multiple DAs, then the agent in the NTS and the tokens in the multiple DAs
combine into one new agent.

The agent in the continuous dynamical system and the token in the DA also move in
pairs at each time step.

In the simulation, the agent is initially placed on z. € W, in the continuous space,
and correspondingly, the agent is initially placed on x4 € Wyg in the discrete space. The
token is initially placed on the unique initial automaton state if there is any DA.

Trajectory and a Sequence of Control Inputs

A trajectory p = xorixo- -+ is a sequence of system states x; € X, for ¢ > 0, which can
be finite (r) or infinite (p) depending on the control specification .

A sequence of control inputs o = ogo109 - - - is a sequence of control actions o; € X, for
i > 0, which can be finite (w) or infinite (o) depending on the trajectory.

In the continuous space, a sequence of control inputs o, = ggo109 - -+ is a sequence of
control actions o; € X, for ¢« > 0. A trajectory p. = xorixs--- is a sequence of system
states z; € X, for i > 0, where x;11 = f(z;,0;) At + ;.

In the discrete space, a sequence of control inputs ay = ogo109--- is a sequence of
control actions o; € ¥4, for ¢ > 0. A trajectory pg = xor122--- is a sequence of system
states x; € Xy, for i > 0, where x;11 € &(x;, 0;).
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6.6.2 Control Specification Defined by States in NTS

After we have done the control synthesis in the NTS, we have computed the winning set
Wha € X4 and the winning control strategy Il : - — ;. We initially choose a continuous

encode

system state x.o € X. and project it to the NTS by x.,g —— x4. If 24 € Wyg, then
the induced trajectory initiated at x. by our abstraction based method should always
satisfy the accepting condition of the control specification ¢ as long as the abstraction is
constructed conservative enough; otherwise the induced trajectory may not always satisfy
. We assume the initial continuous system state x, € Wj., and classify the simulation
according to the different winning control strategies.

Local Strategy

Here we give the procedure to simulate the trajectory for control specifications that
only require local strategy. It takes 1 unit for each x4 € Wy, to record the local winning
control strategy. Such control specifications include reachability, safety, Biichi, co-Biichi,
generalized co-Biichi, Rabin and one pair Streett. The trajectory induced by the local
strategy is constructed by iterating the following process:

encode
Te — Td;

o 1,.strategy = oy;

decode
® 0g — O¢;

i x/c = f(xca Uc)At + T

o 1. 1l

Local Strategy 4+ Counter

Here we give the procedure to simulate the trajectory for control specifications that
require local strategy and a counter. It takes k units for each x4 € Wyy to record the local
winning control strategy since there are k£ objectives in the control specifications.

The counter increments to indicate the next objective when the current objective is
satisfied. We initialize the counter i as 0, and define a module plus a+b as (e mod k) +b.
Such control specifications include generalized Biichiand k pairs Streett. The simulation
for the k pairs Streett may not be sound as a result of a conflict among different objectives.

The trajectory induced by the local strategy and the counter is constructed by iterating
the following process:
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encode
Le > Ld;

e if ;4 satisfies the i'" objective, then i < i 4, 1;

o (x4,1).strategy = og;

decode
® 0y

We can set up necessary or sufficient conditions to verify or falsify our simulation by
counting the number of occurrence of the objective set such as the target set or the safe
set:

e in a reachability objective, a sufficient condition to falsify the simulation is that, the
trajectory doesn’t reach a target set within |[Wy,| steps;

e in a safety objective, a sufficient condition to falsify the simulation is that, the tra-
jectory reaches an unsafe state;

e in a Biichi objective, a necessary condition to verify the simulation is that, the tra-
jectory should reach the target set within [Wy,| steps each time;

e in a co-Biichi objective, a sufficient condition to falsify the simulation is that, the
trajectory reaches the unsafe states more than |X;/S| times;

e in a generalized Biichi objective, a necessary condition to verify the simulation is
that, the trajectory should reach each target set within [Wy,| steps each time;

e in a generalized co-Biichi objective, a sufficient condition to falsify the simulation

Waa/ (L $)

1=1

k
is that, the trajectory reaches some states in Wy,/ (U S;) more than

1=1

times;
e in a Rabin objective, a necessary condition to verify the simulation is that, the

k k
trajectory should reach some states in ﬂ B; for at most ﬂ B;

=1

times, and reach G;

=1

within [Wy4| steps each time for some i, 1 <i < k;
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e in a one pair Streett objective, a necessary condition to verify the simulation is that,
if the trajectory reaches a state in B, then the trajectory should reach a state in G
within |Wy,| steps each time.

More detailed verification for the simulation of the Rabin objective requires considering
the k£ Rabin pairs together to check whether there is some Rabin pair that satisfies the
accepting condition.

The Streett objective requires satisfying the k Streett conditions at the same time,
where each Streett condition requires satisfying either an infinite number of occurrence of
the “Good” set or a finite number of occurrence of the “Bad” set. The trajectory can
choose to satisfy either of the two to satisfy a Streett condition. However, it is quite
complicated to track the switching between the finite and the infinite accepting condition,
and to coordinate among the k Streett conditions to avoid conflicts. Therefore, it requires
much memory to construct or to verify a trajectory that satisfies a Streett objective. This
is the reason why we omit the construction and the verification here.

6.6.3 Control Specification Defined as an LTL Formula

We will classify our discussion w.r.t. the product NTS and the multi-product NTS.
Control Synthesis in the Product NTS

After we have done the control synthesis in the product NTS, we have computed the
winning set Wp C Xp and the winning control strategy II : - — ¥;. The winning set of
the NT'S W, is the projection of the product states (x,q) € (Wp N Xy) to the NTS state
dimension X: Wy = {z|(z,q) € (Wp N Xy)}. Wp has a meaning iff W, is not empty.
We need the winning control strategy in each Wp state to do simulation. We locate a Wp
state by the agent, token pair in the NTS and the DA.

Control Synthesis in the Multi-Product NTS

After we have done the control synthesis in the multi-product NTS, we have computed
the winning set Wyp € Xp and the winning control strategy II : - — ¥;. The winning set
of the NTS W is the projection of the multi-product states (z, qio, -+ , qro) € Warp N Xo)
to the NTS state dimension X: Wy = {z|(z,q10, - , ko) € Wunp N Xo)}. Wyp has a
meaning iff W is not empty. We need the winning control strategy in each Wy, p state to
do simulation. We locate a W,,p state by the combination of the agent, and the k£ tokens
in the NTS and the k DAs.
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Since we already gave a detailed analysis of the simulation for the control specification
defined by the States in NTS in the previous subsection, here we only give the procedure
for the simulation of the control synthesis in the multi-product NTS that requires only
local strategy for simplicity. The control synthesis in the product NTS is a special case of
this where £ = 1, and we can refer the simulation of the control specification that requires
local strategy and a counter to the previous subsection.

We initially choose a continuous system state z.9 € X, and project it to the NTS by

encode

Teyg — Tq. If x5 € Wy, then the induced trajectory initiated at x. by our abstraction
based method should always satisfy the accepting condition of the control specification ¢ as
long as the abstraction is constructed conservative enough; otherwise the induced trajectory
may not always satisfy ¢. We assume the initial continuous system state z.o € Wy., and
give the procedure to simulate the trajectory for control specifications that only require
local strategy. It takes 1 unit for each xy;p € Wysp to record the local winning control
strategy. The token of DA; is initially placed on ¢; = g0, 1 < i < k.

The trajectory induced by the local strategy is constructed by iterating the following
process:

encode
® Yo — T4,

® (x4, q1, -+ ,qx)-strategy = og;

e 7(l,q;) = q;, where [ is the label of 24, 1 <i < k;

decode
® 0g —— O¢;

o &l = f(x., 0.) Al + x,;
L xc%xé,quq;,1§Z§k7
We verify whether the trajectory of the agent satisfies the accepting condition of the

LTL formula by verifying whether the runs of the tokens satisfy the accepting conditions
of the DAs.
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Chapter 7

Implementations, Conclusions and
Future Work

7.1 Implementations

In this section, we will give some analysis and examples about implementations.

7.1.1 Different Ways of Taking Multi-Product

We construct the multi-product NTS to solve a generalized Biichi control specification
k

Y= /\ ©;, where each ;, 1 < i < k can be converted to a DBA DA, with Acc; being the
i=1
accepting set.

We give five approaches of solving such problem and compare their performances.

1. Incrementally taking product of NTS and each of the k£ DAs and solve a generalized
k Biichi game [10].

2. Simultaneously taking product of NTS and the k£ DAs together and solve a generalized
k Biichi game.

3. Simultaneously taking product of the £ DAs to construct a multi-product DA, which
can be encoded to a GDBA. Then we take product of the NTS and the GDBA
together and solve a generalized k Biichi game [5].
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4. Take k copies of multi-product NTS and solve a Biichi game.

5. Take (k + 1) copies of multi-product NTS and solve a Biichi game.

In method 1, the multi-product NTS is propagated as NT'S, NTS ® DA,

NTS ® DAy ® DAy, ---, upto NTS ® DA; ® --- ® DA,. This approach doesn’t take
advantage of the conjunction property of the generalized Biichi objective, and requires
reallocating the memory and increasing the tuple number as we incrementally take the
product. Also, there may be redundant parts as we take the product with an additional

DA.
In method 2, the multi-product NTS is constructed from NT'S to

NTS ® DA; ® --- ® DA, directly and the k£ + 1 tuple is also encoded directly. We take
advantage of the conjunction property of the generalized Biichi objective, and the entire
process is monotonically increasing.

In method 3, it constructs a multi-product DA first and then take the product with the
NTS instead of constructing the multi-product NTS directly as in method 2. This method
doesn’t take advantage of the structure of the NTS in the first place, thus is slightly less
efficient than method 2, but still better than method 1.

Method 4 and 5 converts the generalized Biichi game to a Biichi game in a cost of k
or (k + 1) times of space cost, which is not advised as in the analysis for the generalized
Biichi.

Therefore, we propose method 2 which performs the best, and then method 3 and
method 1 are slightly less efficient, whereas method 4 and method 5 are even less efficient.

7.1.2 Example

In this subsection, we will give two case studies of our implementations. The program is
included in the tool ROCS [23].

Problem Formulation
Consider the model of a robot car [1] depicted in Figure 7.1.

The kinematics of the model is given by

T vecos(y + 0) cos(y) !
y| = [vsin(y +0)cos(y) " |, (7.1)
0 vtan(o)
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Figure 7.1: Model of Robot Car

where (x,y) is the planar position of center of the vehicle, 6 is its orientation, the control
variable v and ¢ is the velocity and steering angle, respectively, and v = arctan(tan(¢)/2).

We consider the 3 dimensional state space X = [0,10] x [0,10] x [—m, 7] and the 2
dimensional control space U = [—1,1] x [—1,1].

O = {01, 09,03,04} is the set of obstacles, where

o 0, = [1.6,5.7) x [4.0,5.0] x [, ];

02 = [3.0,5.0] x [5.0,8.0] x [—, 7];

03 = [4.3,5.7] x [1.8,4.0] x [—m,7];

04 = [5.7,8.5] x [1.8,2.5] x [—,7].
Ay, Ay, Az are the 3 sets of target sets, where

o Ay =[1.0,2.0] x [0.5,2.0] x [—m,7];
o Ay =1[0.5,2.5] x [7.5,8.5] x [—m,];

o Ay =[7.1,9.1] x [4.6,6.4] x [—, 7.

The workspace in the (x,y)-plane is depicted in Figure 7.2.

We consider two control specifications:

e : Patrol the three areas Ay, Ay, and As indefinitely.
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13 A,

A;

A,

Figure 7.2: Workspace

e . The robot should eventually visit area A;, and from there, it should eventually
visit area As, and from there, it should eventually visit A3, and then go back to A;
without visiting As.

The robot should remain in the set X', while avoiding the obstacle sets in O, and the
control input should take values in U.

Solution

We use an exact discrete-time model of (7.1) with sampling time 7 = 0.3s for the
control synthesis. We partition the control space U with the sample grid p = 0.3. The set
of discrete control action is of size |X4| = 7 x 7 = 49. We first use tools such as SCOTS

[32] and ROCS [23] to construct the abstraction of the original system in the form of an
NTS.

Now we classify our discussion according to the two control specifications.
Task 1

We write the control specification as an LTL formula ¢ = GFa; AGFas NG Fas, where
ai, as, and ag are the labels of Ay, Ay, and As respectively.

Then we use the tool Spot [13] to automatically convert ¢ to a DBA, shown in Figure
7.3.

It has 4 states and 13 transitions.
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al &a2 & a3

Figure 7.3: DBA for ¢

The data for Task 1 is shown in Table 7.1. The Biichi game is solved in one iteration,
thus is linear in practice.

Remark. Solving ¢ as a generalized Biichi game in the NTS is more efficient than solving
a Biichi game in the product space.

Task 2
We write the control specification as an LTL formula

w3 = F(a; AN F(az A F(asz A (—agUay)))), where aq, ag, and ag are the labels of Ay, A, and
Ajs respectively.

Then we use the tool Spot [13] to automatically convert ¢, to a DBA, shown in Figure
74.

It has 5 states and 14 transitions.

The data for Task 2 is shown in Table 7.2. The Biichi game is solved in one iteration,
thus is linear in practice.

Remark. ¢, is a generalized reachability objective, thus we are actually solving a reacha-
bility game instead of a Buichi game. Therefore, @o has linear time complezity.

176



Precision in Each Dimension 0.2 0.1 0.05

Number of System States 91035 724271 5696541
Number of System Transitions 40873755 | 344373735 | 2793066498
Time for Abstraction (s) 12.1694 121.186 988.595
Number of Product States 288629 2403698 19086724
Number of Product Transitions | 148329535 | 1320400864 | 10845804208
Time for Synthesis (s) 6.0155 56.026 547.3567
Total Time (s) 18.1849 177.212 1535.9517
Memory (GB) 1.67 24.28 199.18

Table 7.1: Data for Task 1

1l & a2 & a3

bl & a2 & a3

Figure 7.4: DBA for ¢y
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Precision in Each Dimension 0.2 0.1 0.05

Number of System States 91035 724271 5696541
Number of System Transitions 40873755 | 344373735 | 2793066498
Time for Abstraction (s) 12.1694 121.186 988.595
Number of Product States 360860 3005693 23864389
Number of Product Transitions | 185457682 | 1651151151 | 13560950147
Time for Synthesis (s) 7.7206 84.4351 635.0992
Total Time (s) 19.89 205.6211 1623.6942
Memory (GB) 3.17 29.68 243.41

Table 7.2: Data for Task 2

Discussion. The large consumption of memory is a big bottleneck of the abstraction-based
method. A personal computer can only run a precision of 0.2. However, with the support of
the computation platform Canada Compute that provides memory up to 1 TB, the memory
1ssue as been largely resolved.

7.2 Conclusions

A systematic approach of solving a control problem in NTS is to convert it into an infinite
game such as Biichi or Rabin, which has polynomial or higher theoretical worst case time
complexity. However, due to the enormous size of the NTS, the control problem is feasible
to solve only if it can be solved in linear time in practice. The main effort of this thesis is to
show that we can expect a linear time complexity in practice even though the theoretical
time complexity is polynomial or higher. We input much effort in both analysis and
implementation to show the feasibility of the abstraction-based method in implementation.

For the analysis, we showed that an implicit tighter upper bound exists in a polynomial
game, and some heuristic optimizations to reduce the time complexity. We give examples
of worst case scenarios that is deliberately designed for high complexity which is not likely
to happen in a natural system like NTS. Actually, Biichi game always terminates in one or
two iterations in implementation, which shows that the basic algorithm is efficient enough
without adding any heuristic optimizations. Our attention has thus been dragged from
the time complexity back to the space complexity. In other words, our motivation for
future work is to consider the reduction of the abstraction in the continuous space. The
current available tools only solve control specifications such as reachability, safety, Biichi
and co-Biichi in the NTS, which can not handle more general control specifications. Our
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efficient Biichi solver [23] provides a more systematic approach of solving all the control
specifications that can be translated into a DBA.

7.3 Future Work

In this section, we will discuss the directions of our potential future work.

We would like to explore our future work from the following six perspectives:

1. Reduction and refinement of the abstraction from a numerical analysis perspective;

We would consider constructing the abstraction using different numerical schemes.

2. Parallel computing in construction of the abstraction;
Since the computation of each uniform grid is independent of each other, the com-
putation can be paralleled.

3. Combination of the abstraction and specification from a data structure and algorithm
design perspective;

Since we can expect a linear time complexity for solving Biichi game in practice, we
would consider a design of non-linear data structure to store the abstraction. We
would refine the abstraction and solve a Biichi game alternatively in an effort to
reduce space complexity and time complexity.

4. Describing the problem as a Rabin game or Parity game from a completeness per-
spective;

5. Addition of rewards and costs from an optimization perspective;

6. Addition of the probability into the model from a stochastic perspective.

We would consider the uncertainty of the system described as probability such as
Markov Decision Process (MDP).
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Appendix A

Preliminaries

In this chapter, we will give some background introduction in graph theory and algorithms.

This is the background for the more complicated graph based problems of the infinite
two player games in chapter 5. We would like to introduce some of the basic terminologies
and algorithms in the Graph Theory first. Experienced readers with a computer science
background may skip this chapter. However, it is still advised to review some of the
properties and the mechanisms of the fundamental algorithms as the more complicated
algorithms will be defined and derived from the results in this chapter.

The discussions in this chapter will be detailed and elementary, whereas the discussion
in the mean thesis will focus on the higher level ideas based on the results in this chapter.

A.1 Basic Terminologies

In this section, we will introduce some basic terminologies in graph theory.
Graph

Here we define some of the terminologies related to graph.

Definition A.1.1 (graph). The environment/ arena/ graph is a pair G = (V, E), where
V' is the set of vertices/ nodes/ points/ states, |V| =mn; E CV x V is the set of edges/
arcs/ links/ transitions, |E| = m.

Definition A.1.2 (edge). An edge e = (u,v) is a pair of nodes, ordered or unordered.

185



e In an undirected graph, such edge looks like w—v; in a directed graph, such edge looks
like w — v, where the arrow points from u to v. From now on, we only consider edges
i a directed graph.

o We say (u,v) is an out-going edge of u, and an in-going edge of v. The out-
degree(outdeg) of a node v is the number of out-going edges of v; the in-degree(indeg)
of v is the number of in-going edges of v.

o The predecessors of v are the nodes that point to v, and the successors of v are the
nodes that point from v. Sometimes we use Pre and Post to abbreviate predecessors
and successors. Formally, the Pre and Post of v are defined as Pre(v) = {ul(u,v) €
E} and Post(v) = {ul|(v,u) € E}, respectively.

Definition A.1.3 (subgraph). A graph G' = (V', E') is a subgraph of a graph G = (V, E)
if V!'CV and E' CE.

A subgraph G’ = (V', E’) of a graph G = (V, E) is often induced by the subset of
nodes V' C V with the relevant edges E’ C E. Therefore, G’ is also called the V' induced
subgraph of G.

Definition A.1.4 (self-loop). A self-loop is an edge that connects a node to itself.

Definition A.1.5 (multi-edges). The edges between two nodes are called multi-edges if
there are more than one edge between these two nodes.

Definition A.1.6 (walk). A walk is a finite or infinite sequence of edges that joins a
sequence of nodes.

Definition A.1.7 (trail). A trail is a walk with no repetitive edges.
Definition A.1.8 (path). A path is a walk with no repetitive nodes.
Remark. e If without specified, we consider |V | =n and |E| =m as conversion.

o We only consider finite graphs here, i.e., the number of nodes and edges are both
finite.

e Graphs are classified as directed or undirected:

1. The undirected graphs are the simpler ones, since there is no direction/arrow
on an edge. Therefore, as long as there is an edge between two nodes, these two
nodes are connected to each other from both ends.
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2. The directed graphs are also called digraphs, where there is a direction/arrow
on an edge. This makes the direction one-way and may lose some connectivity,
therefore is more complicated.

3. We can now see that an undirected graph can be seen as a special case of a
directed graph if we add two-way arrows to all the edges of the graph.
o [f without specified, we consider directed graphs only.

e Conventionally, the graphs are represented in out-going edges.

e However, due to the structure of the problem we consider, we have to work on graphs
represented in in-going edges most of the time, which is counterintuitive.

1. Most problems in Graph Theory are defined on graphs represented in out-going
edges.

2. However, for problems related to two-player games such as Reachability, Safety,
Biichi and co-Biichi, we have to work on graphs represented in in-going edges.

3. Perhaps the only place that we will work on graphs represented in out-going
edges with problems in two-player games is when taking the product of an NTS
and DBA(s), yet we still represent the graph of the product in in-going edges,
and then solve a particular game based on that product graph.

o We allow self-loops in the graph.

e Since we would like to guarantee an infinite walk in the graph, all the nodes are
guaranteed to have outdeg(v) > 0.

Complexity Analysis

Here we define some of the terminologies for complexity analysis. Complexity analysis
refers to the analysis of the time or the space complexity of an algorithm or program,
where we use the order of growth of some parameters in the program to approximate the
execution time or the amount of memory used of the program.

There are three bounds to depict the approximations: O(:), £2(-) and O(-).

Definition A.1.9 (Big-O notation O(-)). We use big-O notation O(-) to denote asymptotic
upper bound. Formally, for a given function g(n), we denote by O(g(n)), pronounced "big-
oh of g of n”, for the set of functions:

O((g(n)) = {f(n) : 3 positive constants ¢ and ny s.t. 0 < f(n) <c-g(n), Vn >ne}.
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Definition A.1.10 (Big-Q2 notation €(-)). We use big-Q2 notation () to denote asymp-
totic lower bound. Formally, for a given function g(n), we denote by 2(g(n)), pronounced
“big-omega of g of n”, for the set of functions:

O(g(n)) = {f(n) : 3 positive constants ¢ and ny s.t. 0 < c-g(n) < f(n), Vn >ng}.
Definition A.1.11 (Big-© notation ©(:)). We use big-© notation O(-) to denote asymp-

)t
totic tight bound. Formally, for a given function g(n), we denote by ©(g(n)), pronounced
"big-theta of g of n”, for the set of functions:

O(g(n)) = {f(n) : 3 positive constants c¢1, c3 andng s.t. 0 < ¢1-g(n) < f(n) < co -
g(n), Y n>ng}t.

Remark. e There are mainly two criteria of complexity analysis: the worst case anal-
ysis and the average analysis.

e The worst case analysis is the more common one, therefore the notation that we use
the most in analysis is the over approzimation O(-).

e The reason is that:
1. for the worst case analysis, it is easier for us to directly calculate an upper
bound, even though it may not be tight;
2. for the average analysis, we have to enumerate and sum up all the cases to take

the average, which is much harder or even impossible.

e When the complexity is the summation of several terms, we only care about the largest
term that dominates, while omitting the other smaller terms.

e Tuke the linear complexity O(n + m)as an example, where n is the number of nodes
and m is the number of edges. This complezity is often simplified as O(m):

1. If m > n, i.e., m is much larger than n, then m is the dominating term.
Therefore, O(m +n) = O(m).

2. Since m > n always holds, and m + n < 2m, it follows that O(m + n) <
O(2m) = O(m).

e The constant c is often neglected in theory, but can be important in practice.

e Fven programs of the same order of complexity can have a big difference in the per-
formance in practice. The reason is that the constant ¢ may differ a lot, even up to
some order of complexity.
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e The motivation to improve an algorithm when the order of complexity is hard to
reduce is to minimize the constant c.

A.2 Sorting and Searching

They are two of the things that a computer program does the most, and are most basic
and important.

Sorting

Since sorting is not quite related in this thesis, we just list a few well-known results
here for reference.

1. The theoretical lower bound for sorting an arbitrary list of n numbers is Q(nlogn).

2. Sorting can increase the efficiency of searching: for an arbitrary list of n numbers,
searching an element is of both worst case and average case O(n); for an sorted list of
n numbers in 2(nlogn) time, searching an element is of both worst case and average
case O(logn).

3. The 3 efficient sorting algorithms that meet this bound are quicksort (gsort), merge
sort and heap sort.

4. Each algorithm has pros and cons with respect to time, space, and stability.

5. These algorithms often perform poorly on already sorted data or almost sorted data,
which is quite practical in real-world data.

6. Therefore, we may need to combine several sorting algorithms together to create
more sophisticated algorithms to expect better performance in practice.

Searching

The searching problem originates from graph traversal, which refers to the visitation of
each node in the graph. The two most common searching algorithms are BFS and DFS.

In a single node graph traversal starting from s, both searching algorithms can find all
the nodes that are reachable from s, where each node and each edge can be visited at most
once. Therefore, the time complexity for performing such algorithms are both linear w.r.t.
the number of nodes n and the number of edges m, i.e., O(n + m). The difference is just
the traversal order. Most algorithms in this thesis are based on the variation of BFS, so
less will be discussed w.r.t. DFS.
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A.3 Breadth First Search (BFS)

The Breadth First Search is a searching algorithm that is breadth oriented. It traverse the
graph layer by layer. Therefore, it has a nice property that it not only gives a path from
the starting node(s) to a traversed node, but that path is also a shortest one. Here we use
”a” shortest one instead of "the” shortest one for the reason that such shortest paths may
not be unique.

BE'S uses a data structure called queue in implementation. This data structure is an
analogy to the queue in real life. For example, we stand in a queue when waiting for a bus.
One who stands in the queue earlier gets on the bus earlier. Such property of a queue can
be summarized as first in first out (FIFO). We usually use an horizontal array to imitate
this process, where we delete from the head and insert from the tail.

Before we get into BF'S, we introduce the data structure and some terminologies related
to perform this algorithm first.

Definition A.3.1 (queue). A queue Q is a linear data structure with the property FIFO.
Some terminologies related to queue are:

o cnqueue: add/ insert an item to the end of the queue;
o dequeue: pick out/ delete the first item of the queue;
e head: the position of the first item of the queue, i.e., where we dequeue;

e tail: the position after the last item of the queue, i.e., where we enqueue.

A.3.1 Traversing a Graph from a Single Node Using BF'S

One of the simplest implementation of BFS is the graph traversal from a single starting
node s. This is to find all the nodes that are reachable from s. Note that this process may
not traverse the whole graph if there exists a node that is not reachable from s.

Remark. There are several functions that we can add to this single node graph traversal:
e Label each of the traversed node with a number that indicates the least number of

steps to reach this node from the starting node s, i.e., its layer. s is labelled with
number 0.
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1. When traversing the graph using BFS, this labelling also indicates the smallest
labelling. For any node v traversed in this single node graph traversal, the path
from s to v is a shortest path. This can be proved by Mathematical Induction.

2. Since the layer of each traversed node indicates the least number of steps to reach
this mode from the starting node s, the layer of each traversed node is unique.
Therefore, the nodes in different layers form a partition of the traversed graph.

3. If we only care about whether a node is traversed or not, we can just label the
node as visited or unvisited.

e Label each of the traversed node with a strateqy/ action/ previous step/ path/ parent
that indicates how this node is reached from a node in the previous layer.

1.

The process of implementing BFS search forms a tree structure, where the start-
ing node s is the root node.

2. The traversed nodes form the leaf nodes of the tree.

3. On

reach this node as u.

each traversed node v, we record the node in the previous layer that first

In fact, u is the parent node of v, and u is unique to v, whereas u can have
several children nodes v'’s.

The layer of a child node is one more than that of its parent node.

Using a child node to record its unique parent node is actually the reverse
storage of a tree.

All the traversed (u,v) pairs form the branches of the tree.

Instead of just recording the node u in the previous layer that first reach this
node v as parent, we can also record all the nodes u's in the previous layer
that reach this node v as parent, which will give us all the shortest paths
from s tov. The trade-off is a more complicated data structure to record all
the parents of v and the tree structure is broken, but is still a DAG.

Therefore, a BFS searching tree is formed by these leaf nodes and branches.

The path from the starting node s to any traversed node v can be constructed
by a backward recursive algorithm 12 path(v). We recursively call this path(v)
to construct a path from s to v. Each node records its previous step. In other
words, each child node records its parent node.
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Algorithm

In this subsubsection, we will give an algorithm to implement BFS single node graph
traversal and a follow up recursive algorithm for path construction.

Sketch of the Algorithm

When we do a single node graph traversal using BFS from s, we set two marks to each
node v: flag and parent. v.flag marks whether that node is visited or not, it can also
indicate the number of layer that v is on if required; v.parent marks the unique parent
node of v, which is used in the recursive algorithm 12 path(v) to construct a shortest path
after implementing BFS.

We start our algorithm by initializing our two marks v. flag and v.parent as -1. v.flag
equals to -1 implies v hasn’t been visited yet, and it is on layer ”infinity”. v.parent equals
to -1 implies v has no parent node. To set up the queue Q, we set s.flag as 0, which
implies s is visited and it is on layer 0. Then we add s into the queue.

Next we formally proceed our search by repeating the following process until the queue
is empty:

1. pick the currently first node v out of the queue;
2. print v to present a BFS traversal order;
3. for each unvisited successor v" of v:

(a) mark v" as visited, set its layer as one more than that of v;
set v as the parent node of v/;
b) set th t node of v/

(c) add v’ to the end of the queue.

We only add node that hasn’t been visited into the queue, which would save us some
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operations and guarantee that each node can be enqueued at most once.

Algorithm 11: BFS Single Node Graph Traversal
Input:
1. G=(V,E).
2. Starting node s.
Output:
1. The traversal order of the graph.
Initialization: Let Q be a queue, V.flag = —1, V.parent = —1;
for (s.flag = 0, Q.enqueue(s); Q is not empty; ) do
for (v = Q.dequeue( ), print v; all v' € Post(v);) do
L if v'.flag == —1 then

oA W =

L Q.enqueue(v'), v'.flag =v.flag + 1,V .parent = v;

Result:
1. Nodes traversed: W = {v|v.flag > —1};
2. If v.parent > —1, then v.parent is the unique parent node of v.

Path Construction

We can construct a shortest path from s to any traversed node t after applying BE'S by
calling the recursive algorithm 12 path(t), which back track from ¢ to s through the chain
of the unique parent node recorded at each node.

In a recursive step at node v:

1. if v has a parent node, then we recursively call its parent node first;

2. print the step number v. flag and node v;

This is a post order, i.e., we print v after its parent is printed. To construct a path
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from s to ¢, we simply call the recursive function path(t), which is a shortest path.

Algorithm 12: Path Construction of Single Node Graph Traversal
Input:

1. BFS traversed graph G = (V, E).

2. Starting node s.

3. Terminating node ¢ that we would like to search for a path from s.
Output:

1. The path from s to t.

The recursive algorithm path(v) is defined as:

path(v){

if v.parent > 0 then path(v.parent);

print step # v.flag : v;

}

Result:

1. This function path(v) is based on the BFS graph traversal.

2. To construct a path from s to ¢, we simply call the recursive function path(t),
which is a shortest path.

3. v.flag indicates which intermediate step v is at in the path.

[ BNV N

Proof

In this subsubsection, we show that BF'S produces a shortest path by mathematical induc-
tion.

When implementing the BF'S, we record the number of layers n of the traversed nodes,
which indicates the least number of steps for s to reach a certain node. The starting node
s is on layer 0, and the nodes that are not searched are on layer ”infinity”. For some node
w on the k" layer, if a node v is searched from u, then v is on one more layer than u, i.e.,
v is on the (k + 1)™ layer. We also record the unique parent node u of v at v.

Theorem A.3.1. Traversing a graph from a single node s using BEFS searches all the nodes
that are reachable from s. For any node t that is searched in the BFS, a path from s to t
1s constructed, and that path is a shortest path.

This is how our proof goes:

1. show BFS provides a shortest path by mathematical induction;
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2. show BFS searches all the nodes that are reachable from s by the finite property of
the graph;

3. show how a shortest path is constructed by BFS using recursion.

Proof by Mathematical Induction

Statement: It takes at least n steps for the starting node s to reach a node on the n'®
layer.

Base Case: n = 0. The starting node s is on the 0% layer, so it takes at least 0 steps to
reach itself.

Induction Hypothesis: n = k. Suppose it takes at least k steps for the starting node s
to reach some node u on the k" layer.

Induction step: Then for any node v that is searched from w, v is on one layer more
than u. Therefore, v is on the (k + 1) layer. Before v is searched from u, s can not reach
v within finite steps, therefore s can not reach v within &k steps. Also, there exists a path
s...uv that connects s and v, and that it takes at least k steps for s to reach u and 1 step
for u to reach v. Therefore, it takes at least k 4 1 steps for s to reach some node v on the
(k + 1)™ layer.

We conclude that it takes at least n steps for the starting node s to reach a node on
the n'" layer. This ends the mathematical induction.

Since the graph is finite, this BFS process would terminate eventually, and the nodes
that are still not searched at that point are the ones that are not reachable from s. The
reason is that these nodes are on layer ”infinity”, which takes at least infinitely many steps
for s to reach them. In other words, these nodes are not reachable from s. This proves
that BFS searches all the nodes that are reachable from s.

Since we record the unique parent node of each traversed node at that node, we can
therefore trace back from any traversed node t to s, which constructs a path from s to t.
Suppose t is on the nt" layer, we have shown by induction that it takes at least n steps for
s to reach t, therefore the path from s to ¢ constructed by BFS is a shortest path.

Complexity Analysis

In this subsubsection, we will show some complexity analysis for the BFS single node graph
traversal and the path construction.
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For a graph G = (V, E), |V| = n is the number of nodes, |F| = m is the number of
edges. m; is the number of out-going edges of node 7, where 1 < ¢ < n. The relation
between n and m is that:

Zmi =m (A1)

A hidden property of graph traversal is that, each node and each edge is visited at most
once with the merit of marking each traversed node, so that no node or edge would be
searched repeatedly. Therefore, the size of the graph traversal is upper bounded by the
size of the entire graph G = (V, E'). The time and space complexity of graph traversal are
both linear w.r.t. n and m.

Time Complexity: O(n + m).
Space Complexity: O(n + m).
The size of the queue Q is O(n), because each node can be enqueued at most once.

Time Complexity for path construction: O(n).

A.3.2 Traversing a Graph from a Set of Nodes using BF'S

Instead of traversing a graph using BFS from a single initial node s, we can also start
the BFS from a set of initial nodes S. The only difference from algorithm 11 is that, we
enqueue the set of nodes S instead of a single node s initially, and that all the nodes in S
are labelled as layer 0.

If we would like to traverse the entire graph using BFS, we can simply apply the single
node graph traversal multiple times until all the nodes in the graph are visited. The time
and space complexity for traversing the entire graph is still O(n + m).

A.3.3 Heuristic and Optimization of BFS

In this subsection, we will discuss some higher level ideas of the heuristic and optimization

of BFS.

Bidirectional BFS

In this subsubsection, we will discuss bidirectional BFS, which is a heuristic optimization
of BFS.
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BF'S originates from a searching problem: suppose we consider our graph as a maze,
where s is the starting point and ¢ is the terminal point. There are three natural questions
to ask:

1. Determine whether there exists a path from s to t;
2. if exists, provide such a path;

3. moreover, find a shortest one.

The first question asks about the existence of a path, the second one asks about finding
such a path if exists, and the third one is a follow up optimization problem of finding a
shortest one.

From the previous analysis, we already know that BFS is competent of solving all these
three problems. Here we would like to further introduce some heuristic ideas to optimize
BFS. When trying to find a path through a maze, we may get stuck in the middle of the
maze starting from s. An intuitive idea to resolve this is to back track from ¢. In this way,
the problem is greatly simplified.

Similarly, when applying BF'S to do a single node graph traversal from s, we can expect
the size of the layer to increase fast, which is likely to be an exponential growth. One way
to resolve this is to apply BFS layer by layer between s and ¢ alternatingly, until two
searches intersect. This is the bidirectional alternating search. By searching through two
ends instead of one, we can expect the number of traversed nodes to reduce a considerable
amount.

A more detailed approach from simply alternatingly applying BFS from two ends is
that, we always apply BFS on the side where the number of nodes on the current layer
is smaller. This is the bidirectional balanced search. With this control, the number of
traversed nodes can be further reduced. Note that for all these three BFS methods, the
number of total layers are the same, i.e., the length of the paths are the same, all being
the shortest. The difference is that the number of traversed/ searched nodes is decreasing.

In an undirected graph, we can apply the bidirectional searches directly; in a directed
graph, we search from s through out-going edges and search from ¢ through in-going edges.
We can expect the algorithms for searching and path construction to be much more com-
plicated when applying a bidirectional BF'S.
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Optimizations with BF'S

In this subsubsection, we will discuss some of the optimization problems with BFS.

Finding an optimal path through a maze can be more complicated:

adding some obstacles;

adding some special rules;

adding some rewards (positive weights);

We can apply Dijkstra’s algorithm to solve a single-source shortest path problem
with non-negative weights in O(n?) time and O(n + m) space.

adding some costs (negative weights).

We can apply Floyd’s algorithm to solve a shortest path problem with positive or
negative weights with no negative cycles for each pair of nodes in the graph in O(n?)
time and O(n?) space.

We can apply Bellman-Ford algorithm to solve a single-source shortest path problem
with positive or negative weights and with negative cycles in O(nm) time and O(n+
m) space.

These weighted variables form an optimization problem, which involves the idea of dynam-
ical programming to solve. However, all these variants of a searching problem are based
on the simple linear searching method BFS.

A.4 Depth First Search (DFS)

The Depth First Search is another searching algorithm that is depth oriented. It traverse
the graph one way down, as deep as possible, until no further path exists. Then it back
track and go along the first unsearched path. This process continues until no more node is
reachable. Since DFS also enumerates all the possible paths, it can give a path from the
starting node(s) to a traversed node, but that path is not likely to be a shortest one.

DFS uses a data structure called stack in implementation. This can be understood as
a pile of books in a box: we have to remove the books on top before we can get the books
at the bottom. Such property of a stack can be summarized as first in last out (FILO). We
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usually use an vertical array to imitate this process, where all operations such as inserting
or deleting can be implemented from the top only.

A more common approach, however, is to write a recursive algorithm, which is much
shorter, easier to understand and easier to write. The principle behind the recursive
algorithm is still using the data structure stack. A potential problem that a recursive
algorithm may cause is that, if the recursive steps are too deep, it may cause a stack
overflow, which means the system provided stack is not large enough. In that situation,
we have to explicitly implement the data structure stack.

Recall from the searching problem in section A.3.3, we can also determine whether
there exists a path from s to ¢t using DFS, and provide such a path if exists, yet there is
no guarantee that such a path is a shortest one. Therefore we have to use BFS instead of
DFS even though implementing DFS with a recursive algorithm is much easier. However,
the worst case of BFS and DFS are the same. That is, if a path from s to t doesn’t exist,
then we have to implement a single node graph traversal to traverse all the nodes from s
using BF'S or DFS. The cost of the two searches are both linear, which is O(m + n). The
difference is just the traversal order.

Despite DFS can’t be used to find a shortest path as BF'S, it has other useful applications
that BFS can’t competent such as finding all the SCCs, which we will talk about in the
next section A.5.

Before we get into DF'S, we introduce the data structure and some terminologies related
to perform this algorithm first.

Definition A.4.1 (stack). A stack S is a linear data structure with the property FILO.
Some terminologies related to stack are:

e push: add/ insert an item to the top of the stack;
e pop: pick out/ delete an item of the stack from the top;

o peck: the item on top of the stack.

A.4.1 Traversing a Graph from a Single Node Using DFS

DFS can also perform a graph traversal from a single starting node s. The difference
between BFS and DFS to perform a single node graph traversal is the data structure and
the traversal order.
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Algorithm

In this subsubsection, we will give three algorithms to implement DFS single node graph
traversal. The path construction can be shared with the one in BF'S.

Sketch of the Algorithm

There are several approaches to perform a DFS:

1. recursive algorithm;
2. iterative algorithm that pushes a new node into the stack before checking visitation;

3. iterative algorithm that pushes a new node and its next edge to visit into the stack
after checking visitation.

First Version of DFS

The first algorithm is the easiest to implement, since the data structure of a stack has
been implicitly taken care of by the recursive algorithm.

Similar to the single node graph traversal from s using BF'S, we set the same two marks
to each node v in our DFS: flag and parent. v.flag marks whether that node is visited
or not, it can also indicate the number of layer that v is on if required; v.parent marks
the unique parent node of node v, which is used in the recursive algorithm 12 path(v) to
construct a path after implementing DFS.

We start our algorithm by initializing our two marks v. flag and v.parent as -1. v.flag
equals to -1 implies v hasn’t been visited yet, and it is on layer ”infinity”. v.parent equals
to -1 implies v has no parent node.

Now we formally define our recursive algorithm 13 DF'S(v). For each recursive call on
node v, we do the following process:

1. print v to present a DFS traversal order;
2. for each unvisited successor v of v:

(a) mark v" as visited, set its layer as one more than that of v;

(b) set v as the parent node of v';
(c) call DFS(v').
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To implement this recursive DF'S single node graph traversal algorithm 13 from s, we

initialize s.flag as 0 to imply that s is visited and it is on layer 0. Then we simply call
DFS(s).

Algorithm 13: Recursive DFS Single Node Graph Traversal
Input:
1. G=(V,E).
2. Starting node s.
Output:
1. The traversal order of the graph.

1 Initialization: Let V.flag = —1,s.flag = 0, V.parent = —1;
2 The recursive algorithm DF'S(v) is defined as:

3 DFS(v){

4 for (print v; all v € Post(v);) do

5 if V. flag == —1 then

6 L L v'.flag = v.flag + 1,V .parent = v, DF'S(v');

7}
Result:
1. We simply call DF'S(s) to run this algorithm;
2. Nodes traversed: W = {v|v.flag > —1};
3. If v.parent > —1, then v.parent is the unique parent node of v.

Second Version of DFS

The second algorithm explicitly implements the operations on a stack. Unlike BFS
which checks the visitation of a new node before adding it into the queue to avoid repetitive
enqueueing, here we push a new node into the stack without checking its visitation in this
version of iterative DFS algorithm, which results in repetitively pushing new nodes into
the stack. This process presents the forward searching and the backward tracking, which
is unavoidable in DFS. A trade-off from repetitively pushing new nodes into the stack is to
record a node and its next edge to visit at each unit on the stack, which requires a more
complicated data structure. That version of DFS will be presented in the next algorithm.

Since we push a new node into the stack without checking its visitation, our mark
v.flag can only record the visitation of a node v, but not its layer in this version of DFS
algorithm. We mark v as unvisited or visited by setting v.flag as 0 or 1 respectively.
v.parent functions the same as before.

We start our algorithm by initializing our two marks v.flag as 0 (unvisited) and
v.parent as -1 (no parent node). In addition, we explicitly set up the stack S. We set
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s as the parent node of all its successors and then push s into the stack.

Next we formally proceed our search by repeating the following process until the stack
is empty:

1. take the peek node v out of the stack;
2. if v is unvisited:

(a) print v to present a DFS traversal order;
(b) mark v as visited;
(c) for each unvisited successor v" of v:

i. set v as the parent node of v/;

ii. push ¢’ into the stack.

Although each node can be pushed into the stack more than once, we can still push the
unvisited nodes only into the stack to save some operations.

Algorithm 14: Iterative DFS Single Node Graph Traversal without Iterator
Input:
1. G=(V,E).
2. Starting node s.
Output:
1. The traversal order of the graph.
1 Initialization: Let S be a stack, V.flag = 0, V.parent = —1;
2 for (;all v' € Post(s);) do v'.parent = s;
3 for (S.push(s);S is not empty; ) do

a | v=_S8pop();

5 if v.flag == 0 then

6 print v,v.flag = 1;

7 for (; all v' € Post(v);) do

8 L if v'.flag == 0 then v'.parent = v, S.push(v’);
Result:

1. Nodes traversed: W = {v|v. flag == 1};
2. If v.parent > —1, then v.parent is the unique parent node of v.

Third Version of DFS
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The third algorithm is an explicit presentation of the first one. It checks the visitation
of a new node before adding it into the stack. For each unit of the stack, instead of just
recording a node in the previous algorithm, its next edge to visit is also recorded here. The
information of the next edge to visit is used to avoid the repetitive searching of the edges
while back tracking.

We start our algorithm by initializing v.flag as -1 (unvisited) and v.parent as -1 (no
parent node), which is the same as the first algorithm. In addition, we explicitly set up
the stack S. We print s and set s.flag as 0, which implies s is visited and it is on layer 0.
Then we push (s,s’) as a unit into the stack, which indicates node s and its next edge to
visit (s, s).

Next we formally proceed our search by repeating the following process until the stack

is empty:

1. take the peek item (v,v’) out of the stack;
2. set (v,v’) as the current visiting edge of node v;

3. if v has unvisited edge (v,v”), then push the next edge to visit of v, i.e., (v,v") into
the stack;

4. if v is unvisited:
a) rename v’ as w;

(
(b
(

print w to present a DFS traversal order;

(c
d

(e) push the next edge to visit of w, i.e., (w,w’) into the stack;

)
)
) mark w as visited, set its layer as one more than that of v;
) set v as the parent node of w;

)

The third algorithm reveals the mechanism of the implicit stack data structure of the first

203



recursive algorithm.

Algorithm 15: Iterative DFS Single Node Graph Traversal with Iterator
Input:
1. G=(V,E).
2. Starting node s.
Output:
1. The traversal order of the graph.
Initialization: Let S be a stack, V.flag = —1, V.parent = —1;
A unit (v,v") in the stack records a node v and its next edge to visit (v,v’).
for (print s,s.flag = 0,S.push((s,s')); S is not empty; ) do

(0,0') = S.pop( )

if v has unvisited edge (v,v") then S.push((v,v"));

if v'. flag == —1 then

L w =, print w,w.flag = v.flag + 1, w.parent = v, S.push(w, w');

Result:
1. Nodes traversed: W = {v|v.flag > —1};
2. If v.parent > —1, then v.parent is the unique parent node of v.

BN = NS, B N S

Remark. e The second algorithm can not record the information of the layer of a
traversed node since it pushes a new node into the stack before checking its visitation
and its layer number is still undetermined.

e In the second algorithm, even though we may have nodes that are pushed into the
stack more than once, it doesn’t violate the traversal property that each node and
each edge is visited at most once. The reason is that the repetitive pushing of a node
into the stack represents the process of visiting different edges, yet each edge is still
wisited at most once.

o All of these three algorithms can construct a path by sharing the same algorithm 12

path(v) from BFS.
o The third algorithm is an explicit implementation of the first one, with three merits:

1. an iterative algorithm runs faster than a recursive one;
2. an iterative algorithm costs less memory than a recursive one;

3. we can self-define a larger capacity to a stack if we define it explicitly.
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e The DFS traversal order given by the first and the third algorithm are the same, which
is different from that of the second algorithm.

The reason is that, in the second algorithm, the edges are traversed in backward order,
which presents the process of FILO.

In the first and the third algorithm, the edges are traversed in forward order. This
doesn’t violate the property of FILO since the order between the nodes is still FILO.

o The DFS traversal order given by the first and the third algorithm has a name lexi-
cographic order, also known as the dictionary order. That is, such order follows the
rules of how words are ordered in a dictionary.

Complexity Analysis

In this subsubsection, we will show some complexity analysis for the DF'S single node graph
traversal.

For a graph G = (V, E), |V| = n is the number of nodes, |E| = m is the number of
edges. Similar to the complexity analysis of BFS, DFS also possesses the property of graph
traversal that each node and each edge is visited at most once. Also, the size of the graph
traversal is upper bounded by the size of the entire graph G = (V| E). It follows that the
time and space complexity of graph traversal is linear with respect to n and m.

Time Complexity: O(n + m).
Space Complexity: O(n + m).

The size of the stack S is O(n) in the first and the third algorithm, and is O(m) in the
second algorithm, although the size of each unit of the stack is a little larger in the former
than the later.

A.4.2 Traversing a Graph from a Set of Nodes using DFS
Instead of traversing a graph using DFS from a single initial node s, we can also start the
DFS from a set of initial nodes S by pushing the set S into the stack. However, there are

some differences between BFS and DFS in this process:

e in BFS, when we enqueue the set of nodes S instead of a single node s into the queue
initially, these nodes in S are considered as partition layer 0;
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e in DFS, pushing the set of nodes S into the stack followed by performing DFS presents
the same traversal order as performing the single node graph traversal one by one for
each node in S, a result of the FILO property.

If we would like to traverse the entire graph using DFS, we can simply apply the single
node graph traversal multiple times until all the nodes in the graph are visited. Finding
all the SCCs of a graph is of a similar process with a DFS based algorithm.

The time and space complexity for traversing the entire graph is still O(n + m).

A.5 Strongly Connected Component (SCC)

Connectivity is an important feature of a graph. It talks about whether two or more
nodes are connected to each other. If so, then we can ”shrink” these nodes into one which
simplifies the graph.

In the directed graphs, a graph is said to be strongly connected if every node is mutually
reachable. The entire graph can then be seen as one connected ”big” node.

If a graph is not strongly connected, then it can be partitioned into subgraphs (A.1.3)
of Strongly Connected Components (SCCs) that are themselves strongly connected.

The time complexity for performing algorithms to solve for SCCs are all linear w.r.t.
the number of nodes n and the number of edges m, i.e., O(n + m).

Since the algorithms for solving SCCs are not quite related to this thesis and are
quite complicated, we only list the properties related to SCCs here without providing the
algorithms.

Definition A.5.1. (strongly connected) A directed graph is said to be strongly connected
if for each pair of nodes in the graph, there are paths between them in both directions.

A pair of nodes in a directed graph is said to be strongly connected to each other if there
are paths between them in both directions.

Definition A.5.2. (Strongly Connected Component) A Strongly Connected Component
(SCC) of a directed graph is a mazimal subgraph (A.1.3) that is strongly connected.

Definition A.5.3. (A Trivial Strongly Connected Component) A Strongly Connected Com-
ponent (SCC) of a directed graph is trivial if it is a single node without self-loop (A.1.4).
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In other words, the binary relation of being strongly connected is an equivalence rela-
tion, and each strongly connected component is an equivalence class.

Remark. e SCCs are often partitioned in the pre-processing of a graph:

1. After partitioning a directed graph G into SCCs, if we contract each SCC into
a single node, then the resulting graph is a Directed Acyclic Graph (DAG), the
condensation of G, which results in a reduction in the size of the graph.

2. A topological sort can then be performed in the DAG and produce a topological
order, which will be discussed in the next section.

3. Such order is an order of dependency that can avoid repetitive computing which

may result in a reduction in the complexity of the algorithms applied to the graph.

e SCCs can be found by applying some DFS based algorithms such as Kosaraju’s algo-
rithm, Tarjan’s strongly connected components algorithm and path-based strong com-
ponent algorithm, with different features.

o All these algorithms are linear w.r.t. the number of nodes n and the number of edges
m in both time and space complezity, i.e., O(n + m).

e The strong connectivity of a directed graph can also be tested using these algorithms.

A.6 Topological Sort

In this section, we will introduce topological sort and give two algorithms to perform it.

A topological sort or a topological ordering is a linear ordering of the nodes in a Directed
Acyclic Graph (DAG). In such ordering, for each directed edge (u,v) € E, u comes before
v.

Topological sort presents the dependency of the nodes in a DAG, and such sort may
not be unique. A DAG can be constructed from a directed graph by contracting each SCC
of the graph into a single node.

If we use a DAG to represent the flow diagram of a project, then a topological sort
presents a possible working flow of the project, i.e., an order of which task should be done
before another.

The complexity of algorithms may be reduced if performed in a topological sorted DAG.
The reason is that the one-way order of a topological sort eliminates repetitive computing.
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Here we present two algorithms to implement a topological sort. The time complexity
are both linear w.r.t. the number of nodes n and the number of edges m, i.e., O(n + m).

Definition A.6.1. (DAG) A Directed Acyclic Graph (DAG) is a directed graph without
cycles.

Definition A.6.2. (cycle) If there ezists a cycle in a directed graph, then there ezists a
pair of nodes u and v such that there exist a path from u to v and a path from v to u.

A topological sort can only be performed in a DAG. Otherwise if a cycle exists, then
the one-way structure of a topological sort is violated.

A.6.1 BFS Based Topological Sort

In the original definition of a topological sort, for each directed edge (u,v) from u to v,
u comes before v. That is, a node v can be placed in the ordering only when it has no
in-going edges v < wu, i.e., the in-degree of v is 0. It follows that there are two hidden
properties in a topological sort:

1. The first node is of in-degree 0;

2. the last node is of out-degree 0.

The implementation of a BFS based topological sort is based on the idea that the first
node is of in-degree 0: we first enqueue all the nodes with in-degree 0, then we start a
BFS and reduce the graph by deleting the visited nodes and edges of the graph, which will
create more nodes with in-degree 0. We enqueue these new nodes with in-degree 0 and
continue this process until the queue is empty.

Instead of enqueueing a new node when we first visit it in a BFS graph traversal, here
we enqueue a new node when its in-degree reduces to 0. The difference just the rule to
enqueue a new node: either there exists an edge, or the node is of in-degree 0.

Algorithm

In this subsubsection, we will give an algorithm to perform BFS based topological sort.

Sketch of the Algorithm
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When we do a BF'S based topological sort in a DAG, we start by setting the in-degree of
each node in the graph. We set up the queue Q by enqueueing all the nodes with in-degree
0.

Next we formally proceed our search by repeating the following process until the queue
is empty:

1. pick the currently first node v out of the queue;
2. print v to present a topological order;
3. for each successor v’ of v:

(a) reduce the in-degree of v" by 1;

(b) if the in-degree of v" reduces to 0, then enqueue v'.

We enqueue a new node when its in-degree reduces to 0.

Algorithm 16: BFS Based Topological Sort in a DAG
Input:
1. G=(V,E).
Output:
1. A topological order of the graph.
1 Initialization: Let Q be a queue, set V.indeg;
2 for (Q.enqueue(V.indeg == 0); Q is not empty; ) do
3 for (v = Q.dequeue( ), print v; all v' € Post(v);) do
4 v'.indeg — —;
5 L if v'.indeg == 0 then Q.enqueue(v’) ;

Result:
1. This algorithm can also be used to check whether a directed graph is a DAG;
2. The topological order of a DAG may not be unique.

Remark. e This algorithm can also be used to check whether a directed graph is a DAG:
if the number of nodes presented in the topological sort is fewer than the number of
nodes of the graph, then the remaining graph has at least one non-trivial SCCs.

e Now we see that BFS can have different variations based on the enqueueing rules:

1. if there exists an edge to reach a node in a graph traversal;
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2. if for all edges to reach a node/ if the in-degree of a node reduces to 0 in a
topological sort;

3. a combination of the two cases exist and for all in a two-player Reachability
game which will be presented in chapter 5.

Complexity Analysis
In this subsubsection, we will show some complexity analysis for the BFS based topological
sort.

For a graph G = (V, E), |V| = n is the number of nodes, |E| = m is the number of
edges.

Since a BFS based topological sort is just a variation of BFS, the time and space
complexity are both linear w.r.t. n and m.

Time Complexity: O(n + m).

Space Complexity: O(n + m).

The size of the queue Q is O(n), because each node can be enqueued at most once.

A.6.2 DFS Based Topological Sort

We can also use DFS to do a topological sort in a DAG.

The implementation of a DFS based topological sort is based on the idea that the last
node is of out-degree 0: we recursively call DFS in a post order, i.e., print itself after
searching its successors. The first printed node is therefore of out-degree 0. We call DFS
multiple times until all the nodes in the graph are visited.

The graph must be a DAG, otherwise the recursive process will not terminate, even
though this can also be used to check whether a directed graph is a DAG.

The printed order is a reversed topological order of the graph. If we would like a forward
order of a topological sort, we can first apply multiple DFS to traverse the entire graph
and store these sorted nodes in a stack, and then print them all together at the end. The
FILO property of a stack reverses the reversed topological order and therefore produces
a forward topological order. In other words, topological sorting between in-degree 0 and
out-degree 0 is of reversed order.
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Algorithm

In this subsubsection, we will give an algorithm to perform DFS based topological sort.
Sketch of the Algorithm

When we do a DFS based recursive topological sort in a DAG, we mark v as unvisited
or visited by setting v.flag as 0 or 1 respectively. We initialize each node as unvisited.

Now we formally define our recursive algorithm 17 DFS(v). For each recursive call on
node v, we do the following process:

1. for each unvisited successor v’ of v, call DFS(v');
2. mark v as visited;

3. print v to present a reversed topological order;

We call DFS(v) multiple times on unsorted nodes until the entire graph is traversed. The
printed order is a reversed topological order of the graph.

A new node is printed when its out-degree reduces to 0.

Algorithm 17: DFS Based Recursive Topological Sort in a DAG

Input:

1. G=(V,E).

Output:

1. A reversed topological order of the graph.

Initialization: Let V.flag = 0;

The recursive algorithm DF'S(v) is defined as:

DFS(v){

for (; all v’ € Post(v);) do

L if v'.flag == 0 then DFS(v');

v.flag = 1, print v;

7}
Result:
1. We call DFS(v) on unsorted nodes until the entire graph is traversed;
2. If the recursion doesn’t terminate, then the directed graph isn’t a DAG;
3. The topological order of a DAG may not be unique.

[ N
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Remark. o This algorithm can also be used to check whether a directed graph is a
DAG: if the recursion doesn’t terminate, then the remaining graph has at least one
non-trivial SCCs. However, this is not recommended since the algorithm is supposed
to be designed in a DAG and we would like our program to terminate.

e Topological order between in-degree 0 and out-degree 0 is of reversed order.
e Now we see that DFS can also have different variations:

1. pre order: print before searching successors in a graph traversal;

2. post order: print after searching successors in a topological sort.

Complexity Analysis
In this subsubsection, we will show some complexity analysis for the DFS based topological
sort.

For a graph G = (V, E), |V| = n is the number of nodes, |E| = m is the number of
edges.

Since a DFS based recursive topological sort is just a variation of DFS, the time and
space complexity are both linear w.r.t. n and m.

Time Complexity: O(n + m).
Space Complexity: O(n + m).

The size of the implicit stack S is O(n), because each node can be visited at most once.

A.7 Games

In this section, we will discuss graph based problems in the form of games.

Now we consider some of the games on a classic graph. Games are in a more vivid and
interactive way of describing a problem.

Different games have different goals for winning. For different games, the target set
T C V have different meanings. For each of the game, we want to solve for the winning
set W C V and the winning strategy/ controller for the winning set of the game.

All the problems are defined on graphs with in-going edges because of the properties of
the games we consider. The controller of the games we consider are all local, i.e., in order
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to create a strategy to win a game, we just need to record a strategy at each node we are
currently at, without considering the structure of the entire graph.

Since we would like to preserve some optimality w.r.t. the shortest path, the algorithms
we present here are all variations of BF'S instead of DF'S.

A.8 Reachability

In this section, we will discuss the reachability game.

Reachability is among one of the simplest specifications. The time complexity is linear
w.r.t. the number of nodes n and the number of edges m, i.e., O(n + m). However, it
serves as an atomic algorithm for many other more complicated games.

A.8.1 Problem Description

Problem Description: Given a target set 7' C V', we want to find all the nodes that can
reach T, either including or excluding T

Recall from the graph traversal problem starting from a set of nodes S using BFS in
subsection A.3.2, if a node v is on layer ¢, it implies S can reach v in at least i steps.
Similarly, in a reachability game, if a node v is on layer ¢, it implies v can reach T in at
least ¢ steps.

Here the reachability game is just a reverse problem of the graph traversal: graph
traversal is to find all the nodes that S can reach, and reachability game is to find all the
nodes that can reach T'. In implementation, such difference is simply by changing a graph
with out-going edges to a graph with in-going edges.

The two variations of the reachability game correspond to the set of nodes that can
reach T in at least 0 steps and the set of nodes that can reach 7' in at least 1 steps. They
are quite similar in implementation, with different applications.

Here we define the set difference operator / or —.

Definition A.8.1 (set difference operator). For two sets A and B, the set difference of A
and B is defined as A/B=A— B ={z|lx € A and x ¢ B}.

In other words, the elements in the set difference of A and B are the ones in A but not
in B.
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A.8.2 Reach T in at least 0 steps

In this subsection, we will discuss the reachability game in at least 0 steps.

The set of nodes that can reach T, including 7T is the same as the set of nodes that can
reach T in at least 0 steps. Here the nodes in T is considered as in the reachable set of T

Algorithm

In this subsubsection, we will give an algorithm to perform reachability in at least 0 steps.
Sketch of the Algorithm

When we search for the nodes that can reach 7" in at least 0 steps, we set three marks
to each node v: isT, flag and strategy. v.isT marks whether v is in V' or not; v.flag
marks whether v is visited or not, it can also indicate the number of layer that v is on if
required; v.strategy marks the local strategy of v, which is used in the iterative algorithm
19 path(v) to construct a shortest path after implementing the reachability algorithm.

We start our algorithm by initializing our three marks. We mark v.isT as 1 for the
nodes in 7" and 0 for the nodes not in 7', i.e., in V/T. We mark v.flag as -1 to indicate v
hasn’t been visited yet, and it is on layer ”infinity”. We mark v.strategy as -1 to indicate
v hasn’t assigned a strategy yet. To set up the queue Q, we set T'. flag as 0, which implies
nodes in 7' is visited and can reach T in at least 0 steps. Then we add all the nodes in T’
into the queue.

Next we formally proceed our search by repeating the following process until the queue
is empty:

1. pick the currently first node v out of the queue;
2. print v to indicate v is in the set that can reach T in at least 0 steps;
3. for each unvisited predecessor v’ of v:

(a) mark v as visisted, set its layer as one more than that of v;
(b) set v as the local strategy of v';
(c) add v’ to the end of the queue.
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Here we initially mark the nodes in 7" as visited and add them into the queue. The set

that can reach T in at least 0 steps are the nodes labeled with v.flag > 0, where the nodes
labeled with v.flag equal to 0 are the nodes in 7', and the nodes labeled with v.flag > 0
are the nodes not in T', but can reach T through the strategy v.strategy.

Algorithm 18: Reachability in at least 0 steps

ook N

Input:
L. G=(V,E);
2.TCV;
Output:
1. Winning set W of V;
2. Winning strategy of each state in W;
Initialization: Let O be a queue,
T.isT =1,(V/T).isT =0, V.flag = —1, V.strategy = —1,

for (T.flag = 0, Q.enqueue(T); Q is not empty;) do
for (v = Q.dequeue( ),print v; all v’ € Pre(v);) do
if v'.flag == —1 then
L Q.enqueue(v'), v'.flag =v.flag + 1,V .strategy = v;
Result:

1. W = {v|v.flag > 0};

2. lfv.flag==0,veT;ifvisT ==1,veT,

3. If v.flag > 0, then a path from v can be constructed to reach a node in T’
through v.strategy in at least 0 steps;

4. If v.flag == —1, then v is not in T and can’t reach T

Path Construction

We can construct a shortest path from a node ¢ in the reachable set to a node in

T after applying the reachability algorithm by calling the iterative algorithm 19 path(t),
which links ¢ to a node in T" through a chain of the strategy recorded at each node. Since it
is in forward direction, this path construction algorithm can either be recursive or iterative.

In the iterative algorithm starting from node v, we repeat the following process:

1. print the step number v. flag and node v;
2. if v is in T, then break the loop;

3. assign v.strategy to v.
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This path construction is in pre order, i.e., we print v before its strategy is printed. To

construct a path from ¢ to a node in T', we simply call the iterative function path(t), which
is a shortest path.

Algorithm 19: Path Construction of Reachability in at Least 0 Steps

(=B B U L

Input:
1. Reachability searched graph G = (V| F).
2. Target set T'C V.
3. Node t in reachable set that we would like to search for a path to reach T in at
least 0 steps.
Output:
1. The path from t to a node in T'.
The iterative algorithm path(v) is defined as:
path(v){
for (;;) do
print step # v.flag : v;
if v.isT == 1 then break;
v = v.strategy;

}

Result:

1. This function path(v) is based on the reachability search in at least 0 steps.
2. To construct a path from ¢ to T, we simply call the iterative function path(t),
which is a shortest path.

3. v.flag indicates which intermediate step v is at in the path.

A.

8.3 Reach T in at least 1 steps

In this subsection, we will discuss the reachability game in at least 1 steps.

The set of nodes that can reach T', excluding 7" is the same as the set of nodes that can

reach T in at least 1 steps. Here the nodes in 7" is not considered as in the reachable set
of T'. This design is used when we would like to visit 7" multiple times, or infinitely many
times (Biichi game).

Algorithm

In this subsubsection, we will give an algorithm to perform reachability in at least 1 steps.
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Sketch of the Algorithm

When we search for the nodes that can reach T in at least 1 steps, the set up is similar
to that of reaching 7" in at least 0 steps. We set three marks to each node v: isT', flag and
strategy. v.isT marks whether v is in V' or not; v. flag marks whether that node is visited
or not, it can also indicate the number of layer that v is on if required; v.strategy marks
the local strategy of v, which is used in the iterative algorithm 21 path(v) to construct a
shortest path after implementing the reachability algorithm.

Here we add another two indicators marker and cnt to determine the layer number
of each node. marker is a position indicator of the queue. Recall that BFS is searching
layer by layer, and marker partitions the nodes in each layer. cnt is a layer indicator that
indicates which layer the to be enqueued nodes are on. This two indicators are essential
because otherwise the layer number for the nodes in T' may be wrong as a result of repetitive
counting.

We start our algorithm by initializing our three marks. We mark v.isT as 1 for the
nodes in 7" and 0 for the nodes not in 7', i.e., in V/T. We mark v.flag as -1 to indicate v
hasn’t been visited yet, and it is on layer ”infinity”. We mark v.strategy as -1 to indicate
v hasn’t assigned a strategy yet.

To set up the queue Q, we set T flag as 0 and then we add all the nodes in 7" into the
queue. We set marker to the position of the tail of the queue, which is a partition between
the nodes in the layer 0 and the layer 1. We set cnt to be 1 which indicates the already
enqueued nodes in 71" are on layer 0, and the nodes to be enqueued are on layer 1.

Now, v.flag equals to -1 implies v is not in 7" and hasn’t been visited yet. v.flag equals
to 0 implies v is in T" and hasn’t been visited yet. Note that nodes that can reach 7T in at
least 1 steps should have v. flag > 1.

Next we formally proceed our search by repeating the following process until the queue
is empty:

1. if the position indicator marker is at the position of the head of the queue:

(a) set marker to the position of the tail of the queue;

(b) accumulate the layer indicator cnt by 1;
2. pick the currently first node v out of the queue;
3. for each unvisited predecessor v’ of v:

(a) print ¢' to indicate v’ is in the set that can reach T in at least 1 steps;
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(b) mark v’ as visisted, set its layer to be cnt;
(c) set v as the local strategy of v';

(d) if v" is not in T', then add v’ to the end of the queue.

Here we initially mark the nodes in 7" as unvisited and add them into the queue. After
that, we only enqueue unvisited nodes that are not in 7', which guarantees that each node
in V is enqueued at most once.

e The nodes labeled with v.flag equal to -1 are the ones not in 7', and can’t reach T
in at least 1 steps;

e the nodes labeled with v.flag equal to 0 are the ones in T', but can’t reach 7" in at
least 1 steps;

e the nodes labeled with v.flag > 1 are the ones that can reach 7T in at least 1 steps
through the strategy v.strategy.
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Algorithm 20: Reachability in at least 1 steps

Input:
L. G=(V,E);
2. TCV;
Output:
1. Winning set W of V;
2. Winning strategy of each state in W,
1 Initialization: Let Q be a queue, marker be a position indicator, cnt =1 be a
layer indicator, T.isT = 1,(V/T).isT = 0, V.flag = —1, V.strategy = —1;
2 for (T'.flag = 0, Q.enqueue(T), marker = Q.tail( ); Q is not empty;) do
3 if Q.head( ) == marker then marker = Q.tail( ), cnt + +;
4 | for (v = Q.dequeue( );all v' € Pre(v);) do
5 if v'.flag < 1 then
6 print v’,v'. flag = cnt, v’ .strategy = v;
7 if v".isT == 0 then Q.enqueue(v');

Result:

L. W = {v|v.flag > 1};

2. fvasT ==1,v e T,

3. lf v.flag==0, v € T, but v can’t reach T" in at least 1 steps;

4. If v.flag > 1, then a path from v can be constructed to reach a node in T’
through v.strategy in at least 1 steps;

5. If v.flag == —1, then v is not in T and can’t reach 7'

Path Construction

We can construct a shortest path from a node t in the reachable set to a node in
T after applying the reachability algorithm by calling the iterative algorithm 21 path(t),
which links ¢ to a node in T" through a chain of the strategy recorded at each node. Since it
is in forward direction, this path construction algorithm can either be recursive or iterative.

In the iterative algorithm starting from node v, first we print the step number v. flag

and node v, then we repeat the following process:

1. assign v.strategy to v
2. print the step number v. flag and node v;

3. if v is in T, then break the loop.
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We end the loop when we reach a node in T'. Since we have one step at the beginning
before the loop, the path is at least of length 1.

The node v in T may not have v.flag equals to 0. It can be v.flag > 0 if v can reach
T in at least 1 steps. In that case, T can be visited multiple times until v.flag equals to
0. If v.flag is always greater than 0, then 7' can be visited infinitely many times, which is
a Biichi objective.

This path construction is in pre order, i.e., we print v before its strategy is printed. To
construct a path from ¢ to a node in T', we simply call the iterative function path(t), which
is a shortest path.

Algorithm 21: Path Construction of Reachability in at Least 1 Steps
Input:
1. Reachability searched graph G = (V| F).
2. Target set T'C V.
3. Node t in the reachable set that we would like to search for a path to reach T in
at least 1 steps.
Output:
1. The path from t to a node in T'.
The iterative algorithm path(v) is defined as:
path(v){
for (print step # v.flag : v;;) do
v = v.strategy;
print step # v.flag : v;
if v.2sT == 1 then Break;

S ok W N =

7}
Result:
1. This function path(v) is based on the reachability search in at least 1 steps.
2. To construct a path from ¢ to T, we simply call the iterative function path(t),
which is a shortest path.

A.8.4 Complexity Analysis

In this subsection, we will show some complexity analysis for the reachability game.

For a graph G = (V, E), |V| = n is the number of nodes, |F| = m is the number of
edges.
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Since the two versions of the reachability problem are both variations of BFS, the time
and space complexity are both linear w.r.t. n and m.

Time Complexity: O(n + m).

Space Complexity: O(n + m).

The size of the queue Q is O(n), because in both cases, each node can be enqueued at
most once.

Remark (Differences and similarities between the two reachability games). o Differences:

— When initially enqueueing T':
x 1n the first case, we mark T as visited;
x in the second case, we mark T as unuvisited.
— Reachable set:
% in the first case, W = {v|v.flag > 0};
% in the second case, W = {v|v.flag > 1};
— application:
x in the first case, it is the solution of a standard reachability game;

x in the second case, it is used in reaching a target set T multiple times, or
even infinitely many often times (Bichi objective).

o Similarities:

— the layer number in both cases indicates the smallest number of steps to reach a
node in T';

— the time and space complexity in both cases are both O(n + m).

A.9 Safety

In this section, we will discuss the safety game.

Safety is another simple specification. The time complexity is linear w.r.t. the number
of nodes n and the number of edges m, i.e., O(n + m). Safety is an application of the
reachability algorithm.
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A.9.1 Problem Description

Problem Description: Given the target set T', we want to find all the nodes in T" that
can always stay in 7.

Here T is considered as the safe region, and V/T is considered as the unsafe region. T
and V/T forms a partition of the node set V, ie., T @& (V/T) = V. We want to find all
the nodes in T" that can always stay in T', so our working space is T'. Nodes in T that are
forced to leave T and enter V/T' in one step are the ones whose successors are all in V/T,
therefore they have no choice but to enter V/T.

This reminds us of the topological sort using BFS, where we enqueue a node when its
in-degree reduces to 0. Similar to the reachability game, we also compute backwards in
a graph with in-going edges in the safety game. The enqueued unsafe nodes are the ones
with out-degree to T" equal to 0. The nodes in the safety set that can always stay in T are
the ones in T excluding the unsafe nodes.

We borrow the partition operator @ from linear algebra to give a more detailed de-
scription of the graph.

Definition A.9.1 (partition operator). A partition operator @ is a binary operator that
describes the partition of a set, i.e., {V =Vi @& Vo} ={ViuVa =V and ViNV, = 0}. We

can also align more than one partition operator, i.e., V.=V, & Vo & V3.

In other words, the union of the partitioned sets is the universal set, and the partitioned
sets are mutually disjoint.

A.9.2 Algorithm

In this subsection, we will give an algorithm to perform safety.
Sketch of the Algorithm

When we search for the nodes in 7" that can always stay in T', we set three marks to
each node v: outdegT', flag and strategy. v.outdegT is the number of out-going edges to
T of v, i.e., out-degree to T" of v; v. flag marks whether v is safe or not; v.strategy marks
the local strategies of v, which guarantees v to stay in T if v is in the safety set.

We start our algorithm by initializing our three marks. We set the number of out-going
edges to T for nodes in T'. We mark v.flag as 1 for the nodes in T to indicate safe nodes
and 0 for the nodes in V/T to indicate unsafe nodes respectively. We mark v.strategy as
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-1 to indicate v hasn’t assigned a strategy yet. To set up the queue Q, we set v.flag as 0
for all the nodes in T" with out-degree to T' 0, which implies these nodes are unsafe because
they will be forced to enter the unsafe V/T" in the next step. Then we add all these unsafe
nodes in 7" into the queue.

Next, we formally proceed our search of unsafe nodes in T by repeating the following
process until the queue is empty:

1. pick the currently first node v out of the queue;
2. for each predecessor v’ of v in T

(a) reduce the out-degree to T" of v' by 1;

(b) if the out-degree to T" of v’ reduces to 0, then enqueue v’ and mark v" as unsafe.

Nodes in T that can always stay in 1" are the ones with v.flag equal to 1. For a node
v in the safety set, the strategies of v are its safe successors. Such safe successors always
exist because safe nodes have out-degree to T' greater than 0.

Now we can conclude that the process of finding the safety set of T is to delete the
unsafe nodes in T'. The process of finding the unsafe nodes in T" forms a reachability game
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to the unsafe region V/T, therefore it is an application of the reachabililty algorithm.

Algorithm 22: Safety
Input:
1. G=(V,E);
2.TCV;
Output:
1. Winning set W of V;
2. Winning strategy of each state in W;
1 Initialization: Let Q be a queue, set T.outdegT,
T.flag =1,(V/T).flag = 0, V.strategy = —1;
2 for (; allveT;)do

3 if v.outdegl’ == 0 then

4 L Q.enqueue(v),v. flag = 0;

5 for (; Q is not empty; ) do

6 for (v = Q.dequeue( ); all v' € Pre(v);) do

7 if v'.flag == 1 then

8 v .outdegT — —;

9 if v.outdegT == 0 then

10 L Q.enqueue(v'),v'. flag = 0;
Result:

1. W= {v|v.flag == 1};
2. For v e W, v.strategy = {u|(v,u) € F,u.flag == 1}.

A.9.3 Complexity Analysis

In this subsection, we will show some complexity analysis for the safety game.

For a graph G = (V, E), |V| = n is the number of nodes, |F| = m is the number of
edges.

Since the safety problem is an variation of the topological sort using BF'S, the time and
space complexity are both linear w.r.t. n and m.

Time Complexity: O(n + m).
Space Complexity: O(n + m).
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The size of the queue Q is O(|T'|) = O(n), because each node in T" can be enqueued at
most once.

A.10 Summary

In this section, we will sum up this chapter.

We give a background introduction in graph theory and algorithms, where the linear
searching algorithm Breadth First Search (BFS) is the most fundamental one. Topological
sort and some problems defined as games such as reachability and safety can be solved
based on the variations of BF'S.
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Appendix B

Model

B.1 JiushaoQin’s Algorithm or Horner’s Algorithm

In this section, we will introduce JiushaoQin Algorithm and its applications.

B.1.1 Algorithm and Analysis

JiushaoQin’s Algorithm is the known fastest approach to evaluate a polynomial of degree
n.

Consider an n'* degree polynomial

f(2) = apx™ 4 ap_12"" + - + a1 + ag. (B.1)

Generally, if we evaluate an n'" degree polynomial directly, we need at most n additions

1
and @ multiplications. The complexity is therefore polynomial O(n?).

However, if we rewrite it as
~1
flz) = apz" 4+ ap_12" " 4+ +a1x + ap

(anx™ + Gp_1 2™ -+ a))r + ag

= ((@n2™ + @p_r2™ -+ a3z + az)r + ay)x + ag

= (...((apr + ap_1)x 4+ ap_2)x + -+ + ay)x + ao,
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then we only need at most n additions and n multiplications.

Therefore, this algorithm improves a polynomial complexity O(n?) to a linear complex-
ity O(n). Better still, multiplication is actually more expensive than addition. Therefore,
this algorithm saves even more.

B.1.2 Number System

In this subsection, we will introduce the first application of JiushaoQin’s algorithm which
is the number system.

A number system is the system that we use to represent numbers. Decimal number
system with base 10 is the number system that we use in our daily life. Binary number
system with base 2 is the most popular number system that we use in computer. Other
commonly used number systems in computer are octal number system with base 8 and
hexadecimal number system with base 16.

Generally, a number system with base d > 2, d € N, has d digits from 0 to d — 1. We
consider the left most digit as the most important digit, whereas the right most digit as
the least important digit. Therefore, a number in the number system with base d can be
represented as @, a,_1 - - - aiag, where 0 < a; < d for 0 <¢ < n, and 0 < a, < d.

For easy understanding, we may consider our commonly used decimal number system
as a bridge between different number systems.

Converting a number a,a, 1 - - - a1ag in the number system with base d to the decimal
number system can be done by plugging x = d into equation B.1, where 0 < a; < d for
0<i<n,and 0 < a, <d.

The inverse process of converting the same number y = f(d) from the decimal number
system to a number a,a,_1 - - - aiag in the number system with base d is as follows:

e we mod y with d to get the right most digit ag, i.e., y = ap (mod d);
e we substitute y by its floor function after dividing d, i.e., y = |y/d|;
e we repeat this process for ¢ from 0 to n, i.e., y = a; (mod d) and y = |y/d|;

e this process terminates when y becomes 0 after the iteration for i = n.
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B.1.3 Multi-Dimension Array

In this subsection, we will introduce the second application of JiushaoQin’s algorithm which
is the multi-dimension array.

The multi-dimension array can be considered as an application of the generalized num-
ber system.

In a number system with base d, we fix the base to be d on each position. We can
also assign different d; as base for different positions 0 < i < n. Therefore, a number in
the number system with base d; on position ¢ can be represented as a,a,_1 - - - a1ag, where
0<a;<d;for0<i<mn,and 0 < a, <d,.

Converting a number a,a, 1 ---a1ag in the number system with base d; on position
¢ to the decimal number system can be done by applying the JiushaoQin’s algorithm
y=(..((an dp-1+an-1) dpo+ans) dys+---+a)-do+ao.

The inverse process of converting the same number y from the decimal number system
to a number a,a,_1 - - - ajap in the number system with base d; on position ¢ is as follows:

e we mod y with dy to get the right most digit ag, i.e., y = ap (mod dp);
e we substitute y by its floor function after dividing dy, i.e., vy = |y/do];
e we repeat this process for ¢ from 0 to n, i.e., y = a; (mod d;) and y = |y/d;];

e this process terminates when y becomes 0 after the iteration for ¢ = n.

Such generalization of the number system can be applied directly in the setting of the
multi-dimension array.

For a multi-dimension array array|d,|[d,_1] - - - [di1][do], there are d; units for dimension

i, 0 <i < n. On dimension i, the index a; is within 0 < a; < d;. This (n + 1)-dimension
n

array array|d,][d,_1] - - - [d1][do] is equivalent as the one-dimension array array[H d;]. This
i=0

equivalence relation can be shown by showing the 1-1 correspondence of the address of

an element arrayla,|[a,_1]---[a1]lap] in the multi-dimension array and the address of an

element array[y| in the one-dimension array.

The mapping is given by y = (... (an-dn1 +an1)-dn_s+0y_2)-dy_3+---+a1)-do+ag
as in the generalized number system.

The mapping between the generalized number system and the multi-dimension array
is thus straightforward:
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a generalized number system with base d; on position ¢ for 0 < ¢ < n corresponds to
a multi-dimension array array[d,][d,_1] - [d1][do];

e a number a,a,_1---a;ay in the above number system corresponds to an element
array|a,|[an_1] - - - [a1][ao] in the above multi-dimension array;

e the conversion of a number a,a,_1 - - - a1ag in the above number system to a number
y in the decimal number system corresponds to the conversion of the address of an
element array|a,|[a,_1] - - [a1]]ao] in the above multi-dimension array to the address

n

of an element array[y] in the one-dimension array array[H d;);
i=0

e the inverse conversion of a number y in the decimal number system to a number
an0,_1---a1ag in the above number system corresponds to the inverse conversion

of the address of an element array[y] in the one-dimension array array[H d;] to the
i=0
address of an element array|a,|[a,_1] - - - [a1][ao] in the above multi-dimension array;

B.1.4 Encode and Decode

In this subsection, we will introduce the third application of JiushaoQin’s algorithm which
is the procedure to encode and decode.

We can generalize the equivalence relation of a multi-dimension array
n
array|d,][dn—1] - - - [d1][do] and a one-dimension array array[H d;] to the equivalence relation
i=0
of a multi-dimension system and a one-dimension system.

We consider the procedure of converting a,a,,_1 - - - a1ag to y as encode, whereas consider
the procedure of converting y to @,a,_1---ajay as decode. Either way has linear time
complexity O(n).

We encode when we don’t need the detailed information of the element but only its
index. An encoded index saves us space and time for later computations. An encoded
index takes 1 unit.

We decode when we need the detailed information of the element to do computations.
A decoded index enables us to have access of the information of the element directly, which
also saves us time. A decoded index takes n units.

Here we list all the places that we used the technique of encoding and decoding.
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System state

Control action

Label

States in the product N'TS
States in the multi-product NTS

States in the multi-product automaton
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