
TimeFabric: Trusted Time for
Hyperledger Fabric

by

Aritra Mitra

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Management Sciences

Waterloo, Ontario, Canada, 2021

c© Aritra Mitra 2021



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Since the advent of Bitcoin in 2008, the interest in blockchain technology has surged
tremendously. Numerous applications have been proposed in the field of finance, health-
care, and supply chain over the last decade. And, as the popularity of blockchains continue
to rise, blockchain platforms must be enhanced to support new application needs.

We propose one such enhancement that is essential for financial applications and online
marketplaces – support for time-based logic. Online marketplaces may need to validate
transaction time-stamps against a perishable product’s expiry date to prevent sale of ex-
pired products. Similarly, financial applications in banking may also need a history of
recent transactions for extending credit (like an overdraft) to a customer. As nodes in a
blockchain operate in a distributed and trustless setting, it is imperative that they can
access a global and trusted clock for verifying deadlines or examining a window of recent
activity.

In this thesis, we present a lightweight solution that assigns time-stamps to blocks at
transaction validation time, which can be referenced as a global clock by all nodes in the
network. Moreover, our solution also maintains a cache reflecting the effects of recent trans-
actions. We implement our solution, called TimeFabric, in Hyperledger Fabric, a popular
permissioned blockchain platform, and experimentally demonstrate high throughput and
minimal overhead (approximately 3%) of maintaining trusted time. We also demonstrate a
2x performance improvement due to the cache, compared to retrieving transaction histories
directly from the ledger.
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Chapter 1

Introduction

Blockchain systems have received substantial interest due to their ability to maintain a
trusted transaction log in a decentralized environment without a trusted third party. The
earliest platform, Bitcoin [1], allowed the exchange of digital currency among peers in a
distributed network. Ethereum [2] then introduced smart contracts, which are Turing-
complete stored procedures that expanded the applicability of blockchains beyond cryp-
tocurrencies into finance [3] [4], supply chain management [5] and healthcare [6]. Recently,
permissioned systems such as Hyperledger Fabric [7] have been proposed for enterprise
settings in which only authenticated entities participate in the network.

As permissioned blockchains gain traction in enterprise settings, blockchain systems
must be enhanced to support new application needs. In this thesis, we target applications
involving time, such as financial transactions and online auctions and marketplaces. For
example, assume a decentralized retail setting with a blockchain platform operated by man-
ufacturers, sellers and regulators. The platform must not allow the participating entities to
manipulate timestamps in an attempt to sell expired products. Furthermore, in a financial
setting, a bank may allow an overdraft (i.e., allow a withdrawal despite insufficient funds)
if an account is in good standing based on recent transactions. Thus, access to a sliding
window of recent account activity is required when executing these transactions

However, these applications cannot currently be implemented in Hyperledger Fabric for
three reasons. First, clients set transaction timestamps, which are not further verified, and
are therefore open to manipulation. Second, different nodes in a Fabric network may have
different notions of current time, either by using local clocks or consulting external sources
(oracles). This makes it potentially impossible to agree on the execution outcome of smart
contracts with time-based logic. For example, when processing an overdraft transaction,
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Figure 1.1: Different sliding windows seen by nodes with different clocks.

a node with a late clock will consider a different window of recent activity than nodes
with up-to-date clocks. We show an example in Fig. 1.1, with two nodes and five recent
transactions. Node 1 has an up-to-date clock and its window contains transactions tx1
through tx4. Node 2’s clock is late, and, as a result, it considers a different window, with
transactions tx2 through tx5. Another permissioned system - Corda [6] suffers from the
same drawback where transactions are time-stamped by a consortium of notaries, who do
not have synchronized clocks. Thus transactions end up with a time-range rather than a
precise time value.

Finally, Fabric uses an account-based data model, in which nodes maintain a state
database with the current state (e.g., balance) of each account. This makes it easy to
verify if an account has sufficient balance to make a purchase. However, if a transaction
needs to examine the history of an account, it must extract individual transactions from
the ledger, which is expensive. Quorum (another permissioned platform - based on the
Ethereum protocol) also maintains an account-based data model due to which access to
historical states is expensive.

1.1 Contributions

To mitigate these issues and facilitate smart contracts with time-based logic, we make the
following contributions in the context of Hyperledger Fabric:

1. Trusted time for time-based transactions: We propose a lightweight solution that
enables the Fabric network to validate client-assigned transaction timestamps, and
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assigns a tamper-resistant timestamp to each block. Block timestamps can then be
used by the network to deterministically execute time-based smart contracts. More
importantly, our solution leverages the trust within Fabric network and does not rely
on external oracles for block time-stamping.

2. Data layer support for time-based transactions: We extend the Fabric state database
to store a sliding window of recent states, effectively maintaining a cache reflecting
the effects of recent transactions. This modification enables sliding window queries
without extracting transactions from the ledger.

3. Implementation and experimental evaluation: We implement our solution, called
TimeFabric, in Fabric 1.4, and experimentally verify that the overhead of maintaining
trusted time is low (under 3%)1 and that our cache reduces the time to retrieve a
sliding window of recent history by a factor of two.

Notably, we make minimal changes to Fabric’s transaction processing methodology
and we preserve Fabric’s modular design, which allows different consensus algorithms to
be plugged in without affecting transaction execution.

The remainder of the thesis is organized as follows. Chapter 2 provides background in-
formation on blockchains, including an overview of Hyperledger Fabric. Chapter 3 provides
a detailed discussion of our solution. In Chapter 4 we present the experiments and provide
an overview of existing work. Finally Chapter 5 concludes the thesis with directions for
future work.

1For a system exhibiting a throughput of 3000 tps (transactions per second), implementing of our
solution will result in processing 100 fewer transactions per second.
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Chapter 2

Background

In this chapter, we first describe some fundamental properties of blockhains (Sec. 2.1). We
then discuss two important categories of blockchain systems: permissioned and permis-
sionless blockchains (Sec 2.2). Finally, we provide an overview of Hyperledger Fabric (a
permissioned blockchain system), which is specific to our contributions (Sec 2.3).

2.1 Properties of Blockchain

A blockchain network consists of a set of decentralized nodes that can execute transactions
independently. As there is no hierarchy among nodes, they may behave arbitrarily, and
hence it is important for them to abide by a set of protocols set within the network. The
protocols imposed within the network ensure that only valid transactions are persisted in
the blockchain. Furthermore, once validated, all transactions are stored in batches (known
as blocks) where each block is linked to the previous block using a cryptographic hash - thus,
the term blockchain is coined. The utilization of distributed protocols and cryptographic
techniques in blockchains ensure two fundamental properties: Trust and Immutability :

• Trust : A key feature of blockchains is that nodes need not trust one another
for executing transactions. As nodes operate independently, they may suffer from
byzantine faults or fail-stop faults. In byzantine faults, a node behaves arbitrarily
by equivocation i.e., sending different responses to different replicas or performing
an incorrect computation. Such failures can tolerate f faulty nodes in the presence
of at least 3f+1 nodes [14]. In fail-stop faults, a node may be honest but may stop
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Figure 2.1: Merkle Tree structure of a block (adapted from [12]) . Here ’H’ denotes a hash
function.

working due to a network breakage or a crash. To mitigate such faults, 2f+1 nodes
need to communicate in order to overcome f faulty nodes [22]. Hence, nodes cannot
be trusted and specific distributed protocols are necessary to maintain a faultless
network. Such protocols, commonly known as consensus protocols, mainly determine
the exact order of transactions in a blockchain. Various consensus protocols are used
in blockchain systems, with some of the notable ones being - Proof of Work, Proof of
Stake, and Proof Of Authority. Bitcoin -the earliest blockchain system - uses a Proof
Of Work consensus protocol where nodes compete to solve a cryptographic puzzle
for building the next batch of transactions (or block). This activity (also known as
mining) ensures that nodes can operate in a trustless setting.

• Immutability: Another essential property of blockchains is immutability which pre-
vents tampering of historical records. As transactions are stored in blocks, each block
computes a root hash from the hash of individual transactions (in that block) using
a Merkle tree structure. The root hash is then combined with the hash of the pre-
vious block to produce a new block hash, as shown in Fig 2.1. This mechanism of
utilizing cryptographic hashes to store records ensures that a node cannot tamper
with existing transactions in the blockchain.

Many blockchain platforms maintain a world state (which is the most updated state
of the ledger) for executing transactions. For a financial application exchanging
money, the world state may reflect the most recent individual account balances.
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The advantage of maintaining a world state is that nodes do not have to recompute
balances from historical transactions every time a transaction is requested, resulting
in faster execution. It is important to note, that the world state can be derived by
replaying historical transactions (from blocks) any time and any change to the world
state can be easily recognized and corrected.

2.2 Permissioned and Permissionless blockchains

The earliest blockchain platform - Bitcoin - allows any node to join or leave the network.
Network membership is not restricted and all nodes have read and write access to the
blockchain, thus guaranteeing data transparency. Such platforms are categorized as public
or permissionless blockchains. As the network is open to public and all nodes have equal
rights, expensive consensus protocols are employed to prevent byzantine behaviour by
nodes which impacts the performance of these platforms.

To mitigate this problem, some blockchains restrict network participation by allowing
only authenticated entities to join the network. Membership is managed by a central au-
thority known as the membership service provider (MSP). Such platforms are categorized
as private or permissioned blockchains. Although these platforms are not fully decen-
tralized, they bring accountability to the actions of participating nodes and thus reduce
the probability of byzantine behaviour. Some examples of permissioned blockchains are
Hyperledger Fabric and Corda. Permissioned platforms are commonly used in enterprise
collaborations, however, the authenticated entities do not have to fully trust each other.

Public blockchains such as Bitcoin and Ethereum follow an Order-Execute (OE) trans-
action model. Transactions are first ordered using a protocol such as Proof of Work, and
then are executed sequentially by each node. In contrast, Fabric follows an Execute-Order-
Validate (EOV) model, alternatively referred to a Simulate-Order-Validate-Commit model
[23], in which transactions are executed in parallel in a sandboxed environment, ordered,
and validated before being committed to the ledger. We explain the details below, and we
summarize the transaction processing workflow in Fig. 2.2.

2.3 Hyperledger Fabric Overview

Entities participating in a Fabric network are called nodes and can be categorized as
peers and orderers. Peers execute smart contracts, called chaincode in Fabric. Orderers,
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Figure 2.2: Transaction flow in Hyperledger Fabric

collectively referred to as the ordering service, are responsible for transaction ordering and
creation of blocks. Each peer maintains a local copy of the ledger as well as a state database
(LevelDB by default), which is a key-value representation of the current state of the ledger.
A record in the state database contains three pieces of information: a key (e.g., account
ID), a value (e.g., the current account balance), and a version number. The state database
is used during transaction processing; for example, it can be used to determine whether
a given account has a sufficient balance to make a purchase without having to retrieve
all the transactions for this account from the ledger. Whenever a transaction (i.e., the
execution of a smart contract) is committed to the ledger, the effects of the transaction are
persisted in the state database. That is, the new values are written to the database and
the corresponding version numbers are incremented. Old versions are eventually discarded
from the state database by a background garbage-collection process.

Fabric’s architecture is detailed in [2] and its Execute-Order-Validate transaction pro-
cessing protocol proceeds as follows.

2.3.1 The Execute Step

Client applications submit transaction proposals to the Fabric network (step 1 in Fig. 2.2).
A subsets of peers, called endorsers, concurrently simulate the execution of the correspond-

7



ing smart contracts in a sandboxed environment, i.e., without persisting the effects in the
state database. Three such endorsers are shown in Fig. 2.2. Each endorser then sends
a response to the client application if the corresponding smart contract was successfully
simulated. The response contains the endorser’s signature as well as a read set and write
set, which consist of the keys and their version numbers that were read from the state
database, and keys (plus their new values) that were updated, respectively, during the
simulated execution of the transaction proposal. The write sets thus capture the effects of
transactions that must eventually be reflected in the state database.

2.3.2 The Order Step

An endorsement policy, set by the network, specifies the number of endorsements a trans-
action needs. After a client application receives the required number of endorser responses
(step 3 in Fig. 2.2), it sends the transaction proposal, with endorsements attached, to
the orderers (step 4 in Fig. 3.1). The orderer nodes run a consensus protocol to deter-
mine the order of transactions received from various client applications. Fabric allows
various consensus protocols to be plugged into the ordering stage (e.g., Kafka or Raft),
with crash-fault (rather than Byzantine fault) tolerant protocols used in practice since the
participants in a permissioned blockchain system are known and incentivized to behave
honestly. Transactions, with endorsements attached, are segmented into blocks; a block is
created if the maximum number of transactions per block (set by the application) arrive or
if a block timeout period is exceeded (the default block timeout in Fabric is two seconds).
Blocks are then disseminated to the peers (step 5 in Fig. 2.2). Note that orderers are
only responsible for ordering the transactions and batching them into blocks; they do not
examine transaction contents for correctness or validity.

2.3.3 The Validate Step

Finally, peers serially validate (endorser signatures and read-write sets of) transactions in
a block, and, upon successful validation, persist the effects of transactions in the local state
database and append the block to the local copy of the ledger (step 6 in Fig. 2.2; committer
peers are the non-endorsing peers). Transaction validation succeeds if the version numbers
of the keys in the transaction read sets are the same as the current version numbers in the
state database.

Validation is required because transaction proposals are executed in parallel during the
initial Execute stage, and thus transaction conflicts may arise. For example, suppose two
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client transactions wish to withdraw money from the same account, with key 123, whose
current version number in the world state is 100. Suppose no other transactions in this
block touch this key. The read sets of both of these transactions include key 123 with
version number 100. During validation, the first of these transactions will be committed
because key 123 still has version number 100 in the state database (it has not been modified
by any other transaction from this block). After the first transaction is committed, the
new version of key 123 will be 101. Now, the second transaction fails because the version
number of key 123 in its read set is 100, but it is 101 in the state database. Failed (or
aborted) transactions are marked as such and remain in the block.

Transaction validation prevents read-write and write-write conflicts. In a given block,
at most one transaction can write to a key, and if another transaction only reads this key
without writing to it, this transaction must be ordered before the one that writes to this key
(otherwise, the version numbers will not match). This prevents double-spending, but may
also prevent legitimate transactions from being committed. In the above example, even if
there is sufficient balance in account 123 for both withdrawals, only the first transaction
will succeed. The second transaction will need to be re-submitted by the client application
for re-endorsement, and will be put in a new block for validation.

Note that once the transactions in a block have been ordered, they are sequentially
validated by each peer in the same order without re-executing the smart contract. As a
result, each peer makes the same commit (or not) decisions, and thus each peer stores
the same version of the ledger and the state database. On successful validation, effects of
transactions are persisted in the state database.

2.3.4 Time and Account Histories in Hyperledger Fabric

We now outline existing Fabric functionality related to transaction timestamps and transac-
tion histories. Clients can set transaction timestamps when creating transaction proposals,
which are recorded in the transaction header and ultimately appear in the blockchain. Fab-
ric exposes a method GetTxTimestamp(transaction id) for chaincode to access transaction
timestamps. However, transaction timestamps are not endorsed during the execute step
or verified during the validate step.

Furthermore, chaincode can call GetHistoryForKey(key) to obtain a history of all val-
ues for a given key, along with the transaction timestamps corresponding to each update
(querying a specific time window is not supported). This is done by consulting an index
that points to (the blocks containing) transactions that have modified a given key. These
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transactions are then retrieved from the blockchain to compute the history, which is ex-
pensive. This index is stored in the state database, in addition to the keys and their latest
values.
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Chapter 3

Our Solution: TimeFabric

As we noted earlier, transaction timestamps are not endorsed in Fabric. Furthermore,
different peers may have different notions of current time, either by using local clocks or
consulting external sources. As a result, if a smart contract requires access to a time window
of recent transactions for a given key, then different endorsers may access different time
windows. In this section, we describe how our solution, TimeFabric, addresses these issues,
starting with the notion of time (Sec. 3.1), followed by API implementation details and
data layer support for transactions involving time (Sec. 3.2), a discussion of TimeFabric’s
failure model compared to the underlying Fabric (Sec. 3.3), and concluding with a summary
of the required modifications to Fabric (Sec. 3.4). Our design goals are:

1. To provide a trusted and consistent time reference for Fabric peers

2. To process transactions that reference this trusted time efficiently, with minimal
overhead

3. To preserve Fabric’s modular design that separates endorsement and validation from
ordering

3.1 Trusted Time

We begin with design goal #1 to provide a trusted and consistent time reference for all
peers. Maintaining a trusted time reference in Fabric may be the responsibility of peers
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Figure 3.1: Transaction flow in Hyperledger Fabric. In TimeFabric, we make changes in
steps 2 and 6, shown in red.

or orderers. However, Fabric’s modular design suggests that orderers should only be re-
sponsible for ordering transactions. To maintain compatibility with various plug-and-play
consensus algorithms for the ordering step (design goal #3), we turn to the other trans-
action processing steps. Our solution consists of the following modifications to Fabric,
shown in red in Fig. 3.1, plus a modification of the data layer to maintain a cache of recent
histories that will be discussed in Sec. 3.2.

1. Validation of transaction timestamps during endorsement. We modify the
execute step such that endorsing peers endorse a transaction during chaincode exe-
cution only if the transaction timestamp is within δ time units of the current trusted
time (this will be defined shortly). Thus, transactions with timestamps too far into
the past or the future will not be endorsed. The value of δ can be set in the corre-
sponding chaincode, and we will discuss setting the value of δ shortly.

2. Assigning trusted block timestamps. We modify the validate step such that
validating peers assign block timestamps. In particular, they set the block timestamp
to be the most recent transaction timestamp within the block (among transactions
that have been validated and have not been aborted), unless this timestamp is older
than the timestamp of the previous block, in which case the timestamp of the new
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block equals the timestamp of the previous block plus a small constant ε (in our
implementation, ε = 1 millisecond). To do this, when validating transactions within
a block, each peer must keep track of the latest transaction timestamp seen, and
finally append it to the block. We extend the block metadata structure to include a
timestamp field, which becomes part of the blockchain.

3. A heartbeat mechanism1. Fabric orderers disseminate a new block when it is
full (contains the maximum number of transactions) or if it contains at least one
transaction and no other transaction has arrived for two seconds (the default time-
out period). However, if no transactions at all arrive for at least two seconds, then
no block will be created, and therefore block time will not advance. Suppose no
transactions arrive for 60 seconds. Then, when a transaction arrives, its timestamp
would be 60 seconds into the future relative to the timestamp of the latest commit-
ted block. To ensure that our trusted time moves forward even during periods of
inactivity, we set up a “dummy” client that sends one mock transaction every two
seconds. This transaction updates a reserved “dummy” key with a random value,
and its transaction timestamp equals the local time of the client.

Time thus advances one block at a time, based on validated transaction timestamps,
giving every peer a common time reference. At any point, the current trusted time, or
block time, as required during endorsement, is the time of the latest block that has been
committed to the ledger. The block time is used for any reference to time in a smart
contract.

When setting an appropriate value for δ, note that block time may be over two seconds
in the past in the worst case, if no new transactions have arrived and a heartbeat transaction
was just generated. To account for this delay and network delays between clients and the
Fabric/TimeFabric network, we set δ to four seconds, or twice the timeout period.

TimeFabric uses one timestamp per block rather than one timestamp per transaction
for several reasons. The first is efficiency: in general, obtaining consensus on a value in
a decentralized setting is expensive. The second is to ensure a monotonically increasing
time reference. Recall that we do not modify the ordering step and that orderers do
not inspect transaction details when deciding on the transaction order within a block.
As a result, transactions within a block may not necessarily be ordered by transaction
timestamp. Finally, we observe that block timetamps alone already produce totally ordered
key histories because Fabric’s validation step ensures that a key can be updated at most
once per block.

1Implementing the heartbeat mechanism does not need any platform changes.
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Given our notion of trusted time, we add three methods to the Fabric API that are
accessible to smart contracts (implementation details will follow in Sec. 3.2).

1. GetTimenow() returns the current block time.

2. GetHistoryRangeForKey(key, start, end) returns a history of values for a given key
with block timestamps in the interval [start, end].

3. GetStateWindow(key,window length) is a wrapper over GetTimenow() and GetHisto-
ryRangeForKey(). It obtains a history of values for a given key with block timestamps
in the interval [current time− window length, current time].

GetTimenow() is meant to be used when endorsing transaction timestamps, which
can then be used during smart contract execution, e.g., to verify if deadlines are met.
GetWindowForKey() is meant to be used during smart contract execution to retrieve recent
histories.

3.2 API Implementation and Data Layer Support

We now discuss changes in the data layer to speed up the new methods discussed above
(design goal #2).

We start with GetTimenow(). The implementation is simple: we extract the timestamp
from the latest block in the ledger. We considered caching the block time at the endorsers,
but the performance gains were minimal2 since the latest block is already cached in memory
by Fabric.

Next, we discuss GetHistoryRangeForKey(). A naive implementation, using existing
Fabric functionality, is to call GetHistoryForKey() to obtain a complete history of values
for a given key. We then look up the blocks of the transactions that modified this key,
and we retain only those transactions that are in blocks whose timestamps are within the
desired time range. This is expensive, due to the need to access the blockchain to retrieve
the complete history.

Our solution in TimeFabric is to maintain a cache storing updates from recent trans-
actions. To do this, we add a cache database to each peer. Each record in the cache

2We compare our cache implementation i.e. storing and retrieving the time-stamp from memory against
retrieving the time-stamp from the latest block and observe a performance gain of less than .01%.
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database is a key-value pair. The key is a concatenation of the corresponding key in the
state database and the block timestamp of the transaction that updated the key. The value
is the corresponding updated value. For example, suppose that key 123 is updated to have
value 50 by a transaction belonging to a block with Unix timestamp 1607994614. The
corresponding key-value pair in the state database is (123, 50), plus the version number.
The key-value pair in the cache database is (123 : 1607994614, 50).

To populate the cache database, we make another modification in the validate step. In
addition to writing key-value pairs to the state database, we require the validating peers
to write key-value pairs (with timestamps concatenated to the key) to the cache database.
GetHistoryRangeForKey() can then be answered via a range query on the key against the
cache database. For example, a query for the history of key 123 between Unix timestamps
1600000000 and 1607994614 becomes a range query against the cache database for keys in
the range from 123 : 1600000000 to 123 : 1607994614.

We note a subtle but important issue related to read set validation. Assume a trans-
action that fetches a window of recent account history, including the current balance, for
account 123, and updates the account balance if the account history satisfies some condi-
tion. This transaction can use GetHistoryRangeForKey(), which fetches a window of recent
history of key 123 from the cache database. However, we wish to re-use Fabric’s trans-
action conflict logic during transaction validation. For example, this transaction should
not be committed if another transaction from the same block had updated account 123.
To identify these types of conflicts, we modify GetHistoryRangeForKey() to also fetch the
latest key-value pair from the state database (in addition to fetching the history of this key
from the cache database). Next, only the keys read from the state database are validated;
records in the cache database are never updated (only new keys are added), so their version
numbers are always ‘1’ and do not need to be validated. However, the transaction’s read
set contains all keys read from the state database and the cache database for auditability
(recall that the read and write sets becomes part of the blockchain).

As mentioned above, there is one important distinction between the state database
and the cache database. In the former, values of existing keys are updated (and version
numbers are incremented) since only the most recent value needs to be stored. In contrast,
the cache database is append only: an update of the state database results in a new key
added to the cache database since keys in the cache database include block timestamps.
Thus, if not maintained, the cache database will grow indefinitely.

To avoid this problem, we borrow a common solution, similar to the calendar queue,
used by data stream management systems to maintain sliding windows [10]. The idea is to
partition, or shard, the cache database by time, and, instead of deleting individual records
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over time, periodically drop the oldest part. For example, suppose that an application
requires a 7-day history. Peers may partition the cache database by day. Every day, a
new part is added to store new records generated that day, and the oldest day is dropped.
The window length and the number of shards are parameters that may be decided by
the Fabric network along with other blockchain configuration parameters. In our imple-
mentation, the partitioned cache database consists of separate instances of hashmaps, and
GetHistoryRangeForKey() is handled by issuing a range query against each instance.

3.3 TimeFabric Failure Model

In this section, we discuss the impact of our modifications on the failure model of the
system. In Fabric, the membership service that authenticates the participating entities
must be fault-tolerant, and this does not change in TimeFabric. Similarly, we do not
change Fabric’s ability to plug in various ordering algorithms, which can be crash-fault or
Byzantine-fault tolerant, as desired by the application.

We also retain Fabric’s endorsement policies, specifying the number of endorser re-
sponses required by a client transaction. Having to collect multiple endorser responses
prevents collusion between client applications and an endorser, and this extends to Time-
Fabric’s endorsement of transaction timestamps.

Furthermore, the ledger is replicated among the peers, each block contains a hash
pointer to the previous block to ensure immutability, and every peer independently vali-
dates transactions and appends new blocks to the chain, as in Fabric. TimeFabric adds
block timestamping to each peer’s responsibilities, resulting in the same failure model: any
inconsistencies at one peer can be easily detected by comparing other peers’ ledgers. In
contrast to Fabric, TimeFabric peers also maintain a cache database. In case of a crash
fault, a peer can rebuild its cache database by unpacking transactions from recent blocks.
(Similarly, a peer (in Fabric and TimeFabric) recovering from a failure can rebuild its state
database from the ledger).

Finally, as for the mock client that implements the heartbeat mechanism, we install
one such client at each endorser for crash-fault tolerance.

3.4 Summary of Modifications

We conclude the description of our solution with a summary of the required modifications
to Fabric version 1.4, on which TimeFabric is based. In addition to the mock client for
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heartbeats, as discussed earlier, the following modifications are required.

In the validation step, peers have two additional tasks:

1. In Fabric, transactions are validated by committer peers once a block is received from
the ordering service. Each transaction in the block is unpacked and validated by the
committer peer in parallel using multiple Go routines. At this stage, we additionally
identify the maximum timestamp across the valid transactions, and we insert this
timestamp into the block metadata. Using the maximum value of time-stamps as
the block time ensures that our global clock is close to the physical world time.

2. We add a cache database that must by maintained by the peers over time (i.e., peri-
odically create new shards and drop old shards). We modify the block commitment
stage to add this new database (which is a hashmap in our implementation). Each
transaction in a block is unpacked to extract the write-sets. We then compute new
keys to be written to the cache database by concatenating the timestamp to the
original key, and we insert this key-value pair to the cache database.

In the execute step, endorsing peers have one additional task: validate transaction
timestamps by comparing them to the current block time (via the new method GetTi-
menow()). We implemented this method in the Fabric RPC server by querying the ledger
to retrieve the latest block, and extract the block timestamp from the block metadata.

Additionally, smart contracts have access to recent histories via GetStateWindow(),
which queries the cache database (and the state database for the latest value).

Finally, there are no modifications to the ordering step.
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Chapter 4

Experiments

In this chapter, we experimentally evaluate TimeFabric, which we implemented in Fabric
version 1.4 (our modifications remain compatible with the recent release of version 2 since
we do not change Fabric’s modular design). We use six local servers connected through a
1Gbit/s switch. Each server is equipped with two Intel Xeon CPU E5-2620 v2 processors
at 2.10 GHz, and 64 GB of RAM. Our experiments are conducted using Fabric binaries
and we only use docker containers for the chaincode runtime environment. All tests are
conducted with non-conflicting and valid transactions to ensure that all transactions go
through the entire life-cycle (endorsement, ordering, validation and commit) without being
aborted. This helps us to evaluate the worst-case performance of the system in terms of
transaction throughput.

Our experiments have two goals: 1) evaluating our implementation of trusted block
time and 2) evaluating the performance of the new APIs to obtain the current block
time and a recent history for a given key. To evaluate the implementation of block time,
we measure the overhead introduced by our changes to the Fabric transaction processing
lifecycle, specifically, the overhead incurred by committer peers. To isolate this overhead,
we send pre-endorsed transactions to the orderer and measure the transaction throughput
at committer peers. We also measure the latency of the block time, i.e., how far back it
is compared to the wall clock, for various block sizes. To evaluate the performance of the
new API, we measure the runtime overhead of our new method GetTimenow(), and we
compare our method GetStateWindow() to Fabric’s GetHistoryForKey().
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Table 4.1: End to End transaction throughput (in transaction per second) for Fabric 1.4
and TimeFabric. TimeFabric shows approx. 3% overhead against Fabric 1.4

Fabric 1.4 TimeFabric

2927 ± 136 2831 ± 196

4.1 Block Time Implementation

4.1.1 Committer Overhead

In this experiment, we compare the transaction throughput at the committer peer for
Fabric 1.4 and TimeFabric. We use a single endorser and a single committer peer, a solo
orderer, and four client machines that generate transaction proposals1. We first send 25000
transaction proposals from each client to the endorser and obtain the proposal responses.
We then set up 25 threads in each client (totaling 100 threads) to send a total of 100000
transactions to the orderer. Subsequently, we measure the total time by the committer
peer to commit all the blocks to the ledger and then derive the throughput. Following prior
work on improving the throughput of Fabric [11], we set the block size to 100. We conduct
30 runs and report the mean throughput and the standard deviation in Table 4.1. This
experiment shows that our changes only add about 3% overhead to the block validation
and commit process.

4.1.2 Block Time Latency

In this experiment, we record the time difference between an endorser’s local clock and the
block time, i.e., the time assigned to the latest committed block. We expect lower latencies
for smaller block sizes, with size corresponding to the number of transactions per block.
Since we want to measure the latency from the point of view of a single endorsing peer, we
use a single peer with a solo orderer and one client node. We execute a smart contract that
calls our method, GetTimenow(), to obtain the current block time. The smart contract
then calculates the difference between its local clock and the block time, and writes this
difference to a new key in the state database. That is, the sole purpose of this smart
contract is to record block time latencies. We execute 25000 such transactions for varying

1The experimental setup consists of nodes from a local cluster. We do not measure network lag in a
geo-distributed cluster as our changes do not introduce any new network communication among nodes.
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Table 4.2: Block time latency for various block sizes
Block Time Latency

Block
Size

50 75 100 125 150

Mean
(ms)

97 186 192 244 480

Median
(ms)

90 131 175 223 285

Range
(ms)

51-
2343

85-
2445

103-
2591

104-
2603

164-
2670

block sizes, and we compute the mean and median latencies as well as the latency range,
as seen by these transactions.

We show the results in Table 4.2. We observe that mean latency increases with the
block size. However, as we noted earlier, prior work observed the highest throughput
at a block size of 100. Given this block size, the mean block time latency is under 200
milliseconds. Note that these results correspond to a scenario in which transactions arrive
continuously and blocks fill up naturally, without the need for heartbeat transactions to
create new blocks. As we discussed earlier, if transactions stop arriving, then the block
time latency increases to just over two seconds, which is the timeout period plus the time
to commit the block with the heartbeat transaction.

4.2 Time Query Performance

4.2.1 Endorser Overhead of GetTimenow()

In this experiment, we measure the performance of GetTimenow() by monitoring the en-
dorsement time for transactions on a single peer. For this, we implement a smart contract
(similar to the one shown in Figure 4.1) that corresponds to a retail purchase transaction
for a perishable product. The transaction is endorsed if its timestamp is earlier than prod-
uct expiry date; if so, the chaincode additionally decrements the available quantity of the
product, which involves one key read and one key write. In TimeFabric, the chaincode calls
GetTimenow() to obtain the time. In Fabric, the chaincode simply obtains the local time
at the endorser. We send a series of transactions to the endorsing peer from a single client
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Figure 4.1: Smart Contract for executing time based logic

and calculate the total time for obtaining all the responses. We repeat this experiment by
varying the number of transactions and recording the endorsement time.

We show the results in Figure 4.2, which reveals that the performance overhead of
GetTimenow() is statistically insignificant.

4.2.2 Endorser Overhead of GetStateWindow()

We compare the performance of GetStateWindow() in our implementation against GetH-
istoryForKey() in Fabric 1.4. Since Fabric fetches key histories directly from blocks, we
expect a performance improvement in our implementation that uses the cache database for
recent history. We start by loading the state database with 500 keys, and then each key
is updated between 10 and 200 times, depending on the experiment. The chaincode for
this experiment corresponds to a financial overdraft transaction: it reads the full history
of the key (between 10 and 200 values, depending on the experiment, to simulate different
window lengths) and writes a new value for this key if the history shows that this account
has maintained some minimum balance. We use a single client to execute the transactions
for all 500 keys and we record the total time for collecting all proposal responses from a
single endorser.

We show the results in Figure 4.3. The performance of Fabric’s GetHistoryForKey()
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Figure 4.2: Endorsement time comparison with standard deviation represented in error
bars

degrades as the window length increases since there is more history to retrieve. On the
other hand, the running time of our implementation of GetStateWindow() increases only
slightly as the window length increases. For a window of 200 historical values, TimeFabric
is nearly twice as fast as Fabric 1.4.

4.3 Related Work

Hyperledger Fabric is actively being developed and various performance optimizations
have recently been proposed, including adding parallelism and caching to the transaction
processing pipeline[11, 23]. Our solution is compatible with these optimizations since our
modifications leave Fabric’s modular structure intact.

Perhaps the closest work to ours is that of Zan and Xu [31], which proposes to add a
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Figure 4.3: Endorsement time for window queries

separate global clock node to Fabric, whose purpose is to periodically synchronize the local
clocks of endorsers, orderers and committers during the transaction lifecycle. Although
this approach can improve the accuracy of local clocks, it cannot fully synchronize them,
as we do using block time. Additionally, our solution goes one step further to ensure that
time-related operations such as sliding windows can be done efficiently.

FabricSharp [21] is a proposal to add timestamp-based optimistic concurrency control to
Fabric. However, instead of using physical time, FabricSharp uses block sequence numbers
and it does not solve our problem of maintaining trusted time for use by smart contracts.
This precludes, for example, applications that depend on a time window.

LineageChain [20] extends Fabric by exposing provenance information, i.e., key histo-
ries, to smart contracts. For efficiency, LineageChain maintains an index over the prove-
nance tree2. This is conceptually similar to our use of the cache database to speed up

2LineageChain uses a closed-source storage layer - ForkBase [28] where historical values are stored in
disk as compared to our solution where the history is maintained in memory.
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sliding window queries. However, LineageChain does not offer a notion of time and its
provenance queries do not support sliding windows.

Next, we review time-related concepts in permissionless blockchains such as Bitcoin
and Ethereum. In systems that use Proof of Work for consensus, block timestamps are
usually set by the miners when forming new blocks. Ethereum enforces a protocol to not
accept a new block if the timestamp provided by the miner is earlier than timestamp of the
previous block. Additionally, if a block timestamp is set in future, other mining nodes may
not want to build on that block, resulting in forks. Bitcoin’s protocol is to not propagate
a block whose miner-assigned timestamp is earlier than the median of the previous 11
blocks or more than two hours into the future. We incorporate similar constraints in
our solution: block timestamps must be monotonically increasing, and they are based on
verified transaction timestamps that cannot be too far in the past or the future.

While protocols exist in permissionless systems to reject blocks with suspicious time-
stamps, there has also been work describing attacks related to time manipulation [26],[4],[30],[3].
These works highlight vulnerabilities but do not propose solutions, except [25] – in that
work, focusing on Bitcoin, a verifier node requests a timestamping authority (TSA) to
validate block timestamps. The verifier node unpacks the block header, has the TSA
timestamp the block, and includes the hash of the data in a subsequent transaction that
is included in the next block. The next block header is again unpacked, timestamped by
TSA and returned to the verifier. As a result, any discrepancy in block time can be found
by comparing the block time (set by the miner) against the two timestamps obtained from
the TSA. Our solution avoids a timestamping authority and instead leverages the addi-
tional trust inherent in permissioned blockchains by using client transaction timestamps
(properly verified) as a basis of trusted block timestamping.

Finally, other studies such as [18] and [13] argue that block sequence numbers are intrin-
sic to blockchains and best represent the temporal progression of a blockchain. Reference
[18] specifically states that any reference to an external time oracle violates the decentral-
ized property of a blockchain network. Our solution avoids the use of external time oracles,
and, again, leverages the additional trust inherent in permissioned systems to assign block
timestamps.
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Chapter 5

Conclusion

In this thesis, we presented TimeFabric: a solution to enable smart contracts that refer-
ence time in the Hyperledger Fabric permissioned blochain system. We addressed two main
issues: implementing a trusted and consistent notion of time that may be referenced by
Fabric nodes when executing smart contracts, and data layer support to ensure that opera-
tions involving time, such as querying a sliding window of recent history, are efficient. Our
light-weight solution assigns block timestamps at transaction validation time and main-
tains a cache with a sliding window of recent transactions. A probable limitation of our
solution is the need of periodic hear-beats by using dummy clients to advance the time for
low throughput networks. Secondly, our solution is also contingent upon availability of the
latest block to all peers for successful endorsements (as in regular Fabric 1.4), though it
remains to be seen if widely distributed nodes may result in failed endorsements. Regard-
less of these foreseeable limitations, experimental results show that our modifications add
little overhead to the transaction processing pipeline in Fabric and that time-based smart
contracts can be executed efficiently by fetching account histories from the cache.

As outlined in Chapter 1 our work is useful for any application that needs recent histor-
ical states for processing a real-time transaction. Some examples have been described from
retail and finance domains. Other applications can be in areas like agriculture where fair
allocation of resources among competing individuals is critical. For example, a scarce re-
source like water can be allocated to various participants in a blockchain based community
irrigation system [5] based on their historical usage. As competing parties may manipulate
time-stamps to consume more resources, a trusted time-stamp is necessary for ensuring
a fair allocation. Another probable use case can be for fraud detection in credit cards
where historical transaction patterns are analysed in real-time to approve or reject a new
transaction [9]. In future work, we plan to investigate new applications that can leverage

25



trusted time and access to sliding windows of account histories enabled by TimeFabric, in
areas such as finance, retail, supply chains and online auctions.

26



References

[1] Rishav Raj Agarwal, Dhruv Kumar, Lukasz Golab, and Srinivasan Keshav. Con-
sentio: Managing consent to data access using permissioned blockchains. In IEEE
International Conference on Blockchain and Cryptocurrency, ICBC, pages 1–9, 2020.

[2] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Chris-
tidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov
Manevich, et al. Hyperledger fabric: a distributed operating system for permissioned
blockchains. In Proceedings of the thirteenth EuroSys conference, pages 1–15, 2018.

[3] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on ethereum
smart contracts. IACR Cryptology ePrint archive, 2016:1007, 2016.

[4] Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov. Findel: Secure deriva-
tive contracts for ethereum. In International Conference on Financial Cryptography
and Data Security, pages 453–467. Springer, 2017.

[5] Borja Bordel, Diego Martin, Ramon Alcarria, and Tomás Robles. A blockchain-based
water control system for the automatic management of irrigation communities. In
2019 IEEE International Conference on Consumer Electronics (ICCE), pages 1–2.
IEEE, 2019.

[6] Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. Corda: an intro-
duction. R3 CEV, August, 1:15, 2016.

[7] Consumer Financial Protection Bureau. Cfpb study of overdraft programs. A white
paper of initial findings, 2013.

[8] Luisanna Cocco, Andrea Pinna, and Michele Marchesi. Banking on blockchain: Costs
savings thanks to the blockchain technology. Future internet, 9(3):25, 2017.

27



[9] Ivo Correia, Fabiana Fournier, and Inna Skarbovsky. The uncertain case of credit
card fraud detection. In Proceedings of the 9th ACM International Conference on
Distributed Event-Based Systems, pages 181–192, 2015.
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