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Fig. 1. Our Monolith solver enables efficient and robust two-way simultaneous rigid-rigid and rigid-fluid coupling. (Left) Two hollow glass spheres containing
inviscid liquid roll around within a basin as the liquid slides and splashes. (Middle) A boat carrying multiple loads is perturbed by ocean waves. (Right) When
the glass spheres instead contain viscous liquid, the no-slip boundary condition, viscosity, and friction together bring the spheres more quickly to rest.

We propose Monolith, a monolithic pressure-viscosity-contact solver for
more accurately, robustly, and efficiently simulating non-trivial two-way
interactions of rigid bodies with inviscid, viscous, or non-Newtonian liquids.
Our solver simultaneously handles incompressibility and (optionally) im-
plicit viscosity integration for liquids, contact resolution for rigid bodies,
and mutual interactions between liquids and rigid bodies by carefully for-
mulating these as a single unified minimization problem. This monolithic
approach reduces or eliminates an array of problematic artifacts, including
liquid volume loss, solid interpenetrations, simulation instabilities, artificial
"melting" of viscous liquid, and incorrect slip at liquid-solid interfaces. In
the absence of solid-solid friction, our minimization problem is a Quadratic
Program (QP) with a symmetric positive definite (SPD) matrix and can be
treated with a single Linear Complementarity Problem (LCP) solve. When
friction is present, we decouple the unified minimization problem into two
subproblems so that it can be effectively handled via staggered projections
with alternating LCP solves. We also propose a complementary approach for
non-Newtonian fluids which can be seamlessly integrated and addressed dur-
ing the staggered projections. We demonstrate the critical importance of a
contact-aware, unified treatment of fluid-solid coupling and the effectiveness
of our proposed Monolith solver in a wide range of practical scenarios.
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1 INTRODUCTION
From water pouring into a cup, to honey being stirred with a spoon,
to ships cruising in the ocean, diverse interactions between liquids
and solid objects are pervasive in everyday life. At the same time, if
we consider the cup being placed on a table, the spoon colliding with
the sides of the honey jar, or the cargo load being carried by the ship,
it is clear that the solid objects in these scenarios also interact with
each other through surface contacts, which are similarly ubiquitous
in our world. For various applications, including computer anima-
tion, virtual reality, mechanical engineering, and medical training,
simulating these fundamental phenomena is essential.
In the fluid animation literature, various grid-based two-way

coupling methods have been proposed to simulate the interactions
between fluids and rigid objects, e.g., [Batty et al. 2007; Guendelman
et al. 2005; Klingner et al. 2006; Robinson-Mosher et al. 2011, 2008].
While these approaches form a unified system to determine the
correct exchange of forces between fluids and individual dynamic
solids, they typically ignore the interactions between solid objects
(i.e., these are treated in a separate calculation). As such, for example,
when simulating a ship carrying a load of cargo, the ship is not
aware of its cargo when resolving the two-way ocean-ship coupling.
Thus, the ocean pushes up on the ship without considering the
cargo’s presence or weight, which can lead to spurious penetrations
between the ship and its cargo, and hence severe stability issues.
Similarly, when one addresses the contact between solid objects, the
existence of fluids is seldom considered, i.e., the cargo is unaware
of the ocean, and so weighs down on the ship without considering
the water that supports both. Consequently, the computed contact
impulses will push the ship downwards into the ocean with no
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Fig. 2. Bunny-shaped inviscid liquid dropped into a bowl on the ground, with various options for pressure (P) and contact (C) coupling (see §6.1). (Left) P-C
solve (decoupled). (Middle left) C-P solve (decoupled). (Middle right) PC-iterative solve (iterated weak coupling). (Right) Our proposed PC-unified solve (strong
coupling). P-C solve violates fluid incompressibility, causing volume loss. C-P solve violates solid non-penetration, causing spurious oscillatory motion of the
bowl. While both PC-iterative and PC-unified solves correctly preserve volume and handle bowl-ground contacts, PC-unified is approximately 10× faster.

resistance whatsoever, leading to potentially significant loss of fluid
volume. Our core motivating observation is that to achieve correct
dynamics for fluids, rigid bodies, and their interactions, even in
such deceptively simple scenarios, it is vital to employ a monolithic
approach that unifies the dynamics.
With these facts in mind, we propose a monolithic pressure-

viscosity-contact solver that simultaneously handles incompressibil-
ity and (optionally) implicit viscosity integration for liquids, contact
handling among rigid bodies, and mutual interactions between liq-
uids and rigid bodies mediated by pressure and viscous forces. We
take a variational approach, building each component as a mini-
mization subproblem and unifying these subproblems to establish a
single, monolithically coupled minimization problem. This mono-
lithic scheme makes each subcomponent aware of the others, and
thereby achieves more accurate, robust, and efficient simulations. In
the absence of friction, our approach leads to a Quadratic Program
(QP) with a sparse symmetric positive definite (SPD) matrix that can
be efficiently handled by solving a single Linear Complementarity
Problem (LCP) per step. With frictional contact added, our unified
minimization problem can be decomposed into two subproblems,
and efficiently solved using a staggered projections approach [Kauf-
man et al. 2008]; this requires iteratively solving a sequence of LCPs,
yet preserves the attractive properties of the monolithic treatment.
We also propose a compatible approach to simulating a broad

class of non-Newtonian fluids within our framework. We express
implicit viscosity integration with nonlinear viscosity coefficients
as a minimization problem, which helps to ensure the robustness of
the simulation. To efficiently solve the minimization problem and
seamlessly integrate it into our framework with staggered projec-
tions, we similarly decompose the problem into two subproblems
that we solve in an alternating fashion.
In summary, our key contributions are:

• Strong two-way rigid-fluid coupling within a unified
pressure-viscosity (Stokes) solver to realistically handle
interactions between viscous fluids and individual rigid bod-
ies via a single pressure-viscosity solve. We demonstrate that
such a tightly-coupled Stokes approach to rigid-fluid interac-
tion alleviates potentially severe artifacts for viscous liquids
touching isolated dynamic rigid bodies.
• A monolithic contact-aware treatment of fluid-solid
interaction that addresses both fluid internal forces (pres-
sure, viscosity, or both) and the fluid-solid interactions noted

above at the same time as contact handling among multiple
rigid bodies. This monolithic solver significantly improves
accuracy, robustness, and efficiency for scenes involving two-
way rigid-rigid and rigid-fluid interactions, as compared to
previous state-of-the-art techniques.
• Staggered projections for non-Newtonian fluids. This
approach allows for treating non-Newtonian fluids within
our framework along the lines of staggered projections for
frictional contacts, while prioritizing the enforcement of in-
compressibility for liquids and non-penetration constraints
for rigid bodies.

To the best of our knowledge, our proposedMonolith solver is the
first method that handles constraints due to pressure, viscosity, and
contacts, in a monolithic way for general two-way interactions of
liquids and rigid bodies. Figure 1 demonstrates Monolith in action
in a few complex scenarios.

2 RELATED WORK
Fluid and rigid body dynamics form the foundations of our method.
The literature on each of these topics is extensive; we therefore
review prior techniques for viscous fluid simulation and rigid body
simulation in the supplementary material. In this section, we focus
on prior two-way fluid-solid coupling methods which are relevant
to our monolithic solver (§2.1), and discuss general monolithic and
multiphysics coupling in physical simulation (§2.2).

2.1 Two-Way Fluid-Solid Coupling
To achieve two-way coupling between Eulerian fluids and Lagrangian
solids, early approaches, like that of Guendelman et al. [2005], used
weak two-way coupling schemes that alternately solve one-way
fluid-to-solid and solid-to-fluid coupling. This can work well when
either fluid or solid dominates the other in terms of density, but
in scenarios with comparable densities, it is often necessary to use
tiny time steps and/or many alternating one-way solves per step to
achieve stable and plausible simulation. To improve robustness and
stability, Klingner et al. [2006] presented a strong two-way coupling
method that simultaneously considers both the rigid body and fluid
dynamics within the pressure projection. This yields an SPD linear
system, but their method relied on tetrahedral meshes to support
irregular objects, leading to higher complexity and cost. Chentanez
et al. [2006] presented a related strong two-way coupling method
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Fig. 3. A rigid bunny dropped onto a rigid bowl floating on inviscid liquid, with various options for pressure (P) and contact (C) coupling (see §6.1). (Left) P-C
solve. (Middle left) C-P solve. (Middle right) PC-iterative solve. (Right) Our PC-unified solve. P-C solve violates incompressibility, generating smaller splashes
and causing simulation failure. C-P solve experiences instabilities due to neglected contacts between the bunny and bowl, which causes sudden, intense
impulses and topples the bowl. PC-iterative solve converges slowly and terminates before reaching a valid solution. The results exhibit instabilities due to
violated incompressibility and non-penetration constraints. Our PC-unified solve generates plausible behaviors for the liquid, bowl, and bunny, with the bowl
supporting the heavy bunny. The computational cost of PC-unified solve is comparable to P-C and C-P solves and at least 8× faster than PC-iterative.

for fluids and deformable objects. Their approach improves stability,
but yields more costly non-symmetric linear systems.
Batty et al. [2007] proposed a strong two-way coupling method

on Cartesian grids using a variational formulation leading to an SPD
system. This method was extended for frictional forces in granular
flow [Narain et al. 2010] and viscosity forces in Newtonian fluids
[Takahashi and Lin 2019]. Robinson-Mosher et al. [2008] presented
a two-way coupling approach for fluids interacting with both rigid
and deformable solids by lumping the fluid and solid masses at their
shared interface. They also argued for solving the unified system in
symmetric indefinite form by treating solid velocities as unknown
variables, because it increases sparsity compared to the method
of Batty et al. [2007]. Later, this method was augmented to offer
free-slip boundary conditions [Robinson-Mosher et al. 2009], to
generate an SPD system including tightly coupled viscous forces (in
Laplacian form) [Robinson-Mosher et al. 2011], and to incorporate
a drag model for sub-grid solids [Hyde and Fedkiw 2019].

Due to the ubiquity of fluid-solid interactions, variations of both
weak and strong two-way coupling have been extensively deployed
in the graphics literature. A sampling of recent examples includes
coupling with height field fluids [Jeschke et al. 2018], coupling
with a stream function solver [Ando et al. 2015], coupling with
compressible flow [Patkar et al. 2016], and coupling of articulated
bodies to fluid [Lentine et al. 2011; Tan et al. 2011], among many
others. However, these approaches do not consider simultaneous
strong coupling alongside mutual rigid body contact.

While typical strong two-way coupling handles fluids and solids
by solving a single unified problem, strong coupling can also be
achieved by iteratively and alternatingly addressing the fluids and
solids using weak coupling within one time step (which can be
interpreted as solving the unified problem in block Gauss-Seidel
fashion), although this may converge slowly. To accelerate con-
vergence, Akbay et al. [2018] proposed an iterative (partitioned)
two-way coupling method using a reduced-order model to interface
between the materials.
Another popular approach is the immersed boundary method

of Peskin [2002] which essentially treats fluids and solids as a sin-
gle incompressible medium to simulate the two-way interaction.

Philosophically similar approaches within the graphics community
include the Rigid Fluid method of Carlson et al. [2004] and the
purely Eulerian solid-fluid coupling scheme of Teng et al. [2016].
More recently, the immersed boundary method was augmented
with a reduced elasticity solver to simulate fluid-solid interactions
in real time [Brandt et al. 2019].
Under Material Point Method (MPM) schemes, collisions with

different materials can be naturally handled by assigning different
material properties to the particles. Because of this simplicity, two-
way coupling has been achieved in various settings [Daviet and
Bertails-Descoubes 2016; Ding and Schroeder 2020; Guo et al. 2018;
Han et al. 2019; Hu et al. 2018; Klár et al. 2016; Yue et al. 2018]. Since
the Lagrangian view is quite natural for solid objects, smoothed
particle hydrodynamics (SPH) methods offer another consistent
framework for formulating coupling problems. Significant effort
has been applied to improving stability, robustness, and smoothness
of boundary behavior, including two-way rigid-fluid interactions
[Akinci et al. 2012; Band et al. 2018a,b; Becker et al. 2009; Koschier
and Bender 2017]; Koschier et al. [2019] provide a broader review
of the state of the art in SPH. Although SPH schemes are largely
outside the scope of our paper, the method of Gissler et al. [2019] is
pertinent, as discussed below.

The preceding discussion shows that many strong coupling meth-
ods have been proposed, but nearly all decouple collision-handling
between solids from the fluid-solid coupling treatment. An impor-
tant exception is the SPH method of Gissler et al. [2019] who consid-
ered strong two-way fluid-solid and solid-solid coupling to improve
robustness. Since they also treat solid-solid interactions with SPH,
this approach can be considered a penalty method. Penalty methods
can be simple and efficient, but it can be difficult to tune parameters
to obtain desirable simulation results. In a computational physics
setting, Lu et al. [2017] considered contact-aware fluid-coupling, but
their focus is a specialized problem of one-phase particulate Stokes
suspensions in a voxelized domain under a boundary integral formu-
lation. In contrast to these approaches, we focus on general viscous
and inviscid grid-based liquid simulations with irregular surfaces
and boundaries, based on a monolithic treatment of strong two-way
fluid-solid coupling and LCP-based rigid body collision-handling.
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Fig. 4. A viscous liquid sphere on a wall dragged down by a colliding
rigid-body bunny falling towards the ground, simulated with different pres-
sure/viscosity coupling options (see §6.2). (Left) PC-VC-PC-unified solve
(fluid-coupled contact, pressure decoupled from viscosity). (Right) Our pro-
posed PVC-unified solve (strong coupling). The concluding pressure solve
of the more typical PC-VC-PC-unified approach neglects viscosity and no-
slip boundary conditions, leading to artificial melting and separation of
the bunny from the liquid. Our PVC-unified approach accurately enforces
boundaries and successfully captures and slows the descent of the bunny.

2.2 Monolithic and Multiphysics Coupling
Conceptually, we follow in a long tradition in physics-based ani-
mation that investigates the visual importance of careful and tight
coupling of different forces and physical systems for stability, cor-
rectness, and realism. For example, in Eulerian fluids, Mullen et al.
[2009] showed that coupling advection and pressure yields improved
energy preservation, while Larionov et al. [2017] showed that tight
pressure-viscosity coupling enables viscous rope coiling. In rigid
body dynamics, Kaufman et al. [2008] emphasized the balance of
normal and friction forces in delicate solid contact. In solid dynamics,
Shinar et al. [2008] developed a unified treatment of two-way cou-
pled rigid and deformable bodies, and Otaduy et al. [2009] proposed
an efficient formulation for tight coupling of cloth and deformable
dynamics with frictional contact. In a fabrication context, Chen et al.
[2017] showed that correct finite element collision response hinges
critically on awareness of an object’s internal material model. As
with these and many other prior studies, our contribution includes
both identifying when and why strong coupling is necessary and
proposing a method to support it.

3 BACKGROUND
In this section, we summarize the fundamental formulations and no-
tation that we adopt for the dynamics of viscous fluids, rigid bodies,
and their interactions. We build upon a particle-in-cell, pressure-
viscosity-coupled liquid simulator [Larionov et al. 2017] (§3.1), a
velocity-level implicit contact-handling mechanism for rigid bod-
ies [Kaufman et al. 2008; Stewart 2000] (§3.2), and prior decoupled
variational formulations for strong two-way coupling between fluid
forces and isolated (i.e., not in mutual contact) rigid bodies (§3.3).

3.1 Viscous Fluid Dynamics Formulation
The incompressible Navier-Stokes equations for viscous fluids are

𝐷u
𝐷𝑡

= − 1
𝜌
∇p + 1

𝜌
∇ · 𝝉 + 1

𝜌
f𝑣, (1)

𝝉 = 2𝜼

(
∇u + (∇u)𝑇

2

)
, (2)

∇ · u = 0, (3)

where 𝑡 denotes time, 𝐷
𝐷𝑡

material derivative, u (𝑢, 𝑣,𝑤) veloc-
ity, 𝜌 density (which is constant in our simulation), p pressure,
𝝉 (𝜏𝑥𝑥 , 𝜏𝑥𝑦, 𝜏𝑥𝑧 , 𝜏𝑦𝑦, 𝜏𝑦𝑧 , 𝜏𝑧𝑧) symmetric viscous stress tensor, f𝑣 ex-
ternal force per volume, and 𝜼 dynamic viscosity. The dynamic
viscosity can vary in space and time, though we consider only
Newtonian fluids for now (i.e., the effective viscosity coefficient
is independent of viscous stress), and extend this to support certain
non-Newtonian fluids in §5. To advance the simulation step, we
perform advection with the affine particle-in-cell (APIC) approach
[Jiang et al. 2015], apply external forces, and then simultaneously
handle the pressure and viscosity terms with a unified unsteady
Stokes solver [Larionov et al. 2017]. Finally, we update the parti-
cles and perform position corrections on them to counteract minor
volume drift due to numerical error [Takahashi and Lin 2019].

3.1.1 Unified Pressure-Viscosity Formulation. We address the pres-
sure and viscosity terms in a unified and implicit way using

u𝑡+Δ𝑡 − u∗
Δ𝑡

= − 1
𝜌
∇p𝑡+Δ𝑡 + 1

𝜌
∇ · 𝝉𝑡+Δ𝑡 , (4)

𝝉𝑡+Δ𝑡 = 2𝜼
©­­«
∇u𝑡+Δ𝑡 +

(
∇u𝑡+Δ𝑡

)𝑇
2

ª®®¬ , (5)

∇ · u𝑡+Δ𝑡 = 0, (6)

where u∗ denotes the intermediate velocity after advection and
external force steps, and Δ𝑡 denotes the time step size. We can
cast the implicitly integrated unsteady Stokes problem above into
a minimization over the simulation domain Ω, similar to Larionov
et al. [2017]. For natural solid boundary conditions, this is

p,𝝉 = argmin
p,𝝉

1
2

∫
Ω

(
𝜌

��������u∗ − Δ𝑡

𝜌
∇p + Δ𝑡

𝜌
∇ · 𝝉

��������2 + Δ𝑡

2𝜼
∥𝝉 ∥2𝐹

)
𝑑Ω,

(7)

where ∥ · ∥𝐹 denotes the Frobenius norm. Intuitively, the first term
minimizes the fluid’s new kinetic energy, which on its own would
rigidify the velocity; the second term penalizes large stresses, using
𝜼 to balance between rigid and perfectly inviscid motion. The free
surface case is similar, and they can be merged upon discretization.

3.1.2 Spatial Discretization. We adopt a variational finite differ-
ence approach [Batty et al. 2007; Batty and Bridson 2008; Larionov
et al. 2017] , which approximates the integral by summing up the
contributions of cell-sized control volumes weighted by their partial
volumes. Given a signed distance function to represent fluid/solid
domains, we can compute the fluid and solid volume fractions as
diagonal matrices W𝑢

𝐹
and W𝑢

𝑆
(whose range is [0, 1]), respectively.
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Fig. 5. A rigid bunny dropped onto a viscous sphere, simulated with different
coupling options (see §6.2). (Left) PC-VC-PC-unified solve. (Right) Our PVC-
unified solve. Due to the decoupled pressure and viscosity treatment, the
viscous sphere simulated with PC-VC-PC-unified solve experiences artificial
melting and inaccurate boundary behavior, causing tangential slip and faster
sinking of the rigid bunny. With PVC-unified solve, the viscous sphere better
supports the bunny and more realistically deforms under the load.

Here, the superscript and subscript indicate weight matrices for ve-
locity variables𝑢, and fluid domain 𝐹 or solid domain 𝑆 , respectively.
Similarly, we compute weight matrices for viscous stress asW𝑠

𝐹
and

W𝑠
𝑆
. We can likewise decompose the simulation domain into the liq-

uid and air domains, and compute corresponding volume fractions
for pressure W𝑝

𝐿
and W𝑝

𝐴
, velocity W𝑢

𝐿
and W𝑢

𝐴
, and viscous stress

W𝑠
𝐿
and W𝑠

𝐴
(for details, see the supplementary material, as well as

the work of Larionov et al. [2017] and Takahashi and Lin [2019]).
With these weight matrices, we can spatially discretize (7) for

solid boundaries and free surfaces separately and combine the re-
sulting discrete formulations (per [Larionov et al. 2017]). We obtain
the following unified minimization problem:

𝝉 , p = argmin
𝝉 ,p

𝐸𝑓 (𝝉 , p),

𝐸𝑓 (𝝉 , p) =
1
2

(


u∗ − Δ𝑡P−1 (W𝑢
𝐿)
−1

(
GW𝑝

𝐿
p + D𝑇W𝑠

𝐿𝝉
)


2

M𝑓

+ Δ𝑡

2
∥𝝉 ∥2N−1W𝑠

)
, (8)

where P denotes a diagonal fluid density matrix, G a discrete gradi-
ent operator (for pressure), D a discrete deformation rate operator
(for velocity, i.e., Du ≈ ∇u+(∇u)

𝑇

2 ), and N a dynamic viscosity coeffi-
cient matrix (which is SPD). We also useM𝑓 = PW𝑢 ,W𝑢 = W𝑢

𝐹
W𝑢

𝐿
,

W𝑠 = W𝑠
𝐹
W𝑠

𝐿
, andmatrix-weighted vector norm ∥y∥W =

√
y𝑇Wy =


W 1

2 y




2
. This minimization problem for pressure and stress is con-

vex and quadratic, so the optimality conditions yield a sparse SPD
linear system that can be efficiently solved with e.g., preconditioned
conjugate gradients (PCG). Importantly, this contrasts with a tra-
ditional Stokes problem, written in terms of pressure and velocity
unknowns, which yields an indefinite system.

3.2 Rigid Body Dynamics Formulation
We consider a system of 𝑛 rigid bodies with positional coordinates
(position and quaternion) x, velocity coordinates (linear and an-
gular velocities) v, and mass matrix M𝑟 . Collisions between rigid
bodies must be addressed by satisfying several constraints, e.g.,

non-penetration. While some previous work has formulated such
constraints at the position-level using DAEs [Ascher and Petzold
1998], the non-smooth nature of collision constraints requires spe-
cialized techniques that make efficiency challenging [Anitescu and
Hart 2004]. It is also preferable to hold positions and orientations of
bodies fixed during collision resolution, since re-evaluation of the
fluid volume fraction weights would otherwise be required at each
iteration of our coupled solver. Therefore, we address rigid body
collisions at the velocity-level.
To model collisions between rigid bodies, we consider impulses

along the normal and tangential directions in an implicit manner fol-
lowing Stewart [2000]. However, unlike the traditional approach, we
model impulses as forces so that they can be consistently integrated
with pressure and viscosity for fluids, as detailed in §4.

3.2.1 Normal Contact Force. Given a collision constraint vector
𝝓 (x) ≥ 0, its Jacobian J𝜆 , normal contact forces 𝝀, and a diagonal
matrix of coefficients of restitution R (0 ≤ R𝑖 ≤ 1 with solid index
𝑖), we model elastic impact as an LCP according to the Signorini
condition; this dictates nonnegative contact forces and separating
relative velocities between contacting rigid bodies,

0 ≤ 𝝀𝑡+Δ𝑡 ⊥ J𝜆v
𝑡+Δ𝑡 ≥ −J𝜆Rv∗, (9)

where v∗ denotes the intermediate solid velocity after external forces
are applied. The contact forces can be applied to update the velocity
of the rigid bodies to be non-penetrating using

v𝑡+Δ𝑡 = v∗ + Δ𝑡M−1𝑟 J𝑇
𝜆
𝝀𝑡+Δ𝑡 . (10)

To compute the unknown contact forces 𝝀, we can combine these
formulations, and arrive at the system

J𝜆M
−1
𝑟 J𝑇

𝜆
𝝀𝑡+Δ𝑡 = −J𝜆Cv∗ s.t. 0 ≤ 𝝀𝑡+Δ𝑡 , (11)

where C = (I + R). Using kinetic energy minimization, this can be
reformulated as a QP by rearranging using C while taking the box
constraints into account:

𝝀 = argmin
0≤𝝀

1
2




Cv∗ + Δ𝑡M−1𝑟 J𝑇
𝜆
𝝀



2
M𝑟

. (12)

While minimizing the kinetic energy with normal contact forces
leads to perfectly inelastic collisions, scaling the intermediate solid
velocity v∗ with C decreases the relative weight of the contact force
in the minimization, accounting for inelastic and elastic collisions
(with spatially varying coefficients of restitution e.g., [Wang et al.
2017]). The system matrix in (11) is SPD (but not an M-matrix nor
diagonally dominant in general) with box constraints, so general
convex QP solvers can be applied.

3.2.2 Tangential friction Force. Given the friction force z and the
Jacobian of the friction constraint J𝑧 , we can rewrite the velocity
update for rigid bodies as

v𝑡+Δ𝑡 = v∗ + Δ𝑡M−1𝑟 (J𝑇𝜆𝝀
𝑡+Δ𝑡 + J𝑇𝑧 z𝑡+Δ𝑡 ) . (13)

Using the commonly used symmetric pyramid approximation of the
Coulomb friction cone, the friction force can be computed according
to the maximal dissipation theorem as

z = argmin
−diag(𝝁)𝝀≤z≤diag(𝝁)𝝀

z𝑇 J𝑧
(
Cv∗ + Δ𝑡M−1𝑟 (J𝑇𝜆𝝀 + J

𝑇
𝑧 z)

)
, (14)
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where 𝝁 denotes friction coefficients. Similar to the minimization
problem (12) for 𝝀, this minimization is also quadratic with respect
to the friction force z being under the box constraints. The system
can likewise be made SPD by separating the box constraints and
can be solved with a general convex QP solver.

3.2.3 Unified Handling. Unless there is no friction at all (i.e., 𝝁 = 0),
these contact and friction forcesmust be coupled since they naturally
depend on each other [Kaufman et al. 2008], i.e., if contact forces are
changed, it is necessary to update friction forces, and vice versa. As
such, a unified treatment is typically necessary for robust coupling
and can be formulated as

𝝀, z = argmin
0≤𝝀,

−diag(𝝁)𝝀≤z≤diag(𝝁)𝝀

1
2




Cv∗ + Δ𝑡M−1𝑟 (J𝑇𝜆𝝀 + J𝑇𝑧 z)


2M𝑟

.

(15)

In the rigid body literature, this unified formulation has been ad-
dressed as a single non-symmetric LCP. A classical approach is
Lemke’s method (based on a direct solver) [Lloyd 2005; Tan et al.
2012] although it is undesirable for larger problems by the nature of
direct solvers. To avoid forming the non-symmetric LCP, it is neces-
sary to separate out the friction constraint; one typically decomposes
the unified problem to iteratively and alternatingly address contact
and friction. For example, Kaufman et al. [2008] alternated solving
separate symmetric LCPs for normal and friction forces, known as
staggered projections, while Tonge et al. [2012] solved contact and
friction problems in each iteration of stationary iterative solvers,
such as projected Gauss-Seidel (PGS) or projected Jacobi.

3.2.4 Stabilization. While in theory collision constraints enforce
non-penetration between rigid bodies, in practice penetrations can
occur due to numerical error and discrete collision handling. To
address this issue, stabilization techniques are commonly employed,
e.g., Baumgarte stabilization [Baumgarte 1972] and post-stabilization
[Anitescu and Hart 2004; Cline and Pai 2003]. Inspired by DAE
formulations, they incorporate the degree of constraint violation,
expressed by 𝝓 (x), to increase the contact force and thereby correct
overlaps. We modify the contact force computation, (11), to become

J𝜆M
−1
𝑟 J𝑇

𝜆
𝝀𝑡+Δ𝑡 = −

(
J𝜆Cv

∗ + 𝛽min (𝝓 (x), 0)
Δ𝑡

)
s.t. 0 ≤ 𝝀𝑡+Δ𝑡 ,

(16)

where 𝛽 denotes a tunable parameter to control the influence of the
constraint violation. To prevent frequent switching on and off of
contacts due to the imprecision of floating point arithmetic, we also
use a small penetration margin 𝜖 (= 0.1Δ𝑥 in our examples, where
Δ𝑥 denotes grid cell width) setting 𝝓 (x) ← 𝝓 (x) + 𝜖 .

3.3 Fluid-Solid Two-Way Coupling
Strong two-way coupling of fluids was previously achieved by sep-
arately coupling fluid pressure [Batty et al. 2007] and viscosity
[Takahashi and Lin 2019] to rigid bodies in distinct stages. We rely
on the same mechanisms for the exchange of forces, but will later
show that it is often critical to integrate these simultaneously.

3.3.1 Pressure. Considering pressure forces from fluids to rigid bod-
ies, the velocity update for the rigid bodies, taking volume fractions

into account, can be computed by

v𝑡+Δ𝑡 = v∗ + Δ𝑡M−1𝑟 J𝑝W
𝑝

𝐿
p𝑡+Δ𝑡 , (17)

where J𝑝 denotes a linear function which integrates the pressures
over the surface of the rigid body to determine the net pressure
forces applied to it [Bridson 2015]. (We discuss the construction of
J𝑝 , which depends on the solid weightsW𝑢

𝑆
, in §4.4.1.) Consistent

physical dimensions for fluids and rigid bodies can be implicitly
achieved by internally scaling the rigid body mass [Batty et al. 2007;
Bridson 2015], and one can then formulate a minimization problem
for the pressure needed to update both the fluid velocity and the
rigid body velocity to enforce fluid incompressibility:

p = argmin
p

1
2

(


u∗ − Δ𝑡P−1 (W𝑢
𝐿)
−1GW𝑝

𝐿
p



2
M𝑓

+



v∗ + Δ𝑡M𝑟

−1J𝑝W
𝑝

𝐿
p



2
M𝑟

)
. (18)

This approach naturally enforces free-slip boundary conditions at
the fluid-solid interface. This energy is quadratic with respect to
pressure, leading to a single SPD linear solve that is mostly sparse,
except for dense submatrices due to the added solid components
[Batty et al. 2007; Bridson 2015; Robinson-Mosher et al. 2008].

3.3.2 Viscosity. Similar to pressure forces, given viscous forces
from fluids to rigid bodies, the rigid body velocity update is

v𝑡+Δ𝑡 = v∗ + Δ𝑡M−1𝑟 J𝑠W𝑠
𝐿𝝉

𝑡+Δ𝑡 , (19)

where J𝑠 denotes a linear function, dependent onW𝑢
𝑆
, which inte-

grates viscous stress over the surface of the rigid body to determine
the net viscous forces on it (details in §4.4.1). Combining this velocity
update with implicit integration for the fluid’s viscosity yields

𝝉 = argmin
𝝉

1
2

(


u∗ − Δ𝑡P−1 (W𝑢
𝐿)
−1D𝑇W𝑠

𝐿𝝉



2
M𝑓

+ Δ𝑡

2
∥𝝉 ∥2N−1W𝑠 +



v𝑡 + Δ𝑡M𝑟
−1J𝑠W𝑠

𝐿𝝉


2
M𝑟

)
. (20)

This minimization enforces no-slip boundary conditions at the fluid-
solid interface. It is also quadratic with respect to viscous stresses
and, like pressure, requires solving one SPD linear system. Notably,
we differ from Takahashi and Lin [2019] in preferring stress un-
knowns over velocity unknowns, for compatibility with (8) and to
ensure our eventual unified variational form is a minimization.

4 MONOLITH SOLVER
The two-way coupling formulations above effectively reproduce
many interactions between fluids and rigid bodies while handling
the collisions between rigid bodies in a separate process [Batty et al.
2007; Takahashi and Lin 2019]. This decoupled approach works well
if few or no collisions between rigid bodies are detected, but artifacts
quickly arise in the presence of potential contacts. Because the
preceding formulations are entirely oblivious to contacts between
rigid bodies themselves, the applied fluid forces will necessarily
be incorrect. Conversely, the minimization problem(s) for inter-
object contact handling are unaware of the existence of fluids, and
thus the collision solver applies contact and friction forces to rigid
bodies without feeling any resistance from fluids. The lack of mutual
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Fig. 6. A viscous liquid dragon dropped onto a bowl on the ground, with different coupling options (see §6.3). (Left) PV-C solve. (Middle left) C-PV solve.
(Middle right) PVC-iterative solve. (Right) Our PVC-unified solve. While PV-C solve rapidly loses liquid volume due to violation of the incompressibility
constraint, C-PV solve suffers from stability issues that cause the bowl to jump suddenly, due to neglecting contacts between the bowl and ground. While
both PVC-iterative solve and PVC-unified solve generate plausible results, PVC-unified solve is approximately 7× faster than PVC-iterative solve.

awareness between fluid forces and contact forces causes serious
visual artifacts, such as significant fluid volume loss and neglected
contacts between rigid bodies.

Furthermore, prior strong two-way fluid-solid coupling schemes
also addressed pressure and viscosity independently from one an-
other, as noted in §3.3. This decoupling causes issues of its own, such
as artificial fluid melting and incorrect boundary conditions, since
the optimal balance of pressure and viscous stress is not achieved.
To address all of these issues, it is essential to solve the dynamics in
a fully monolithic way.

4.1 Monolithic Formulation
We aim to merge the individual minimizations for pressure, viscosity
and frictional contact into a single variational problem. Considering
all relevant forces and explicitly enforcing dimensional consistency
between fluids and rigid bodies by scaling the rigid body mass,
normal contact force, and friction force with 𝛼 = 1/(Δ𝑥3), the rigid
body velocity update becomes

v𝑡+Δ𝑡 = v∗+

Δ𝑡 (𝛼M𝑟 )−1
(
J𝜆

𝑇𝛼𝝀𝑡+Δ𝑡 + J𝑧𝑇𝛼z𝑡+Δ𝑡 + J𝑝W𝑝

𝐿
p𝑡+Δ𝑡 + J𝑠W𝑠

𝐿𝝉
𝑡+Δ𝑡

)
.

(21)

This combined rigid body update can be coupled with the Stokes
problem (8) for fluid pressure and viscosity using its variational for-
mulation [Batty et al. 2007; Larionov et al. 2017; Takahashi and Lin
2019]. Our careful choice of individual formulations (and consistent
use of force-based unknowns) enables us to easily combine them to
obtain a single monolithic constrained minimization problem

𝝉 , p,𝝀, z = argmin
𝝉 ,p,0≤𝝀,

−diag(𝝁)𝝀≤z≤diag(𝝁)𝝀

𝐸𝑓 (𝝉 , p) + 𝐸𝑟 (𝝉 , p,𝝀, z), (22)

where the rigid body term 𝐸𝑟 (𝝉 , p,𝝀, z) is defined by

𝐸𝑟 (𝝉 , p,𝝀, z) =
1
2




Cv∗ + Δ𝑡 (𝛼M𝑟 )−1
(
J𝜆

𝑇𝛼𝝀 + J𝑧𝑇𝛼z + J𝑝W𝑝

𝐿
p + J𝑠W𝑠

𝐿𝝉
)


2

𝛼M𝑟

,

(23)

and the fluid term 𝐸𝑓 (𝝉 , p) is still defined as in (8). This minimiza-
tion reduces to the Stokes problem (8) without rigid bodies present,
and to the contact problem (15) without fluids present. Our for-
mulation (22) is monolithic in the sense that it is a single unified
problem; various optimization approaches could be applied to solve
(22) without invalidating this property. In the following, we present
our approach for efficiently addressing this monolithic problem.

4.2 Minimization
The unified objective function is quadratic with respect to 𝝉 , p,𝝀,
and z, and thus the optimality conditions yield the following SPD
system with frictional contact constraints:

A11 A12 A13 A14
A𝑇
12 A22 A23 A24

A𝑇
13 A𝑇

23 A33 A34
A𝑇
14 A𝑇

24 A𝑇
34 A44



𝝉
p
𝝀
z

 =


b1
b2
b3
b4

 ,
s.t. 0 ≤ 𝝀,−diag(𝝁)𝝀 ≤ z ≤ diag(𝝁)𝝀, (24)

where

A11 =
1
2
N−1W𝑠

𝐹W
𝑠
𝐿 + Δ𝑡W

𝑠
𝐿DW

𝑢
𝐹P
−1 (W𝑢

𝐿)
−1D𝑇W𝑠

𝐿

+ Δ𝑡

𝛼
W𝑠

𝐿J
𝑇
𝑠 M
−1
𝑟 J𝑠W𝑠

𝐿,

A12 = Δ𝑡W𝑠
𝐿DW

𝑢
𝐹P
−1 (W𝑢

𝐿)
−1GW𝑝

𝐿
+ Δ𝑡

𝛼
W𝑠

𝐿J
𝑇
𝑠 M
−1
𝑟 J𝑝W

𝑝

𝐿
,

A13 = Δ𝑡W𝑠
𝐿J

𝑇
𝑠 M
−1
𝑟 J𝑇

𝜆
, A14 = Δ𝑡W𝑠

𝐿J
𝑇
𝑠 M
−1
𝑟 J𝑇𝑧 ,

A22 = Δ𝑡W𝑝

𝐿
G𝑇W𝑢

𝐹P
−1 (W𝑢

𝐿)
−1GW𝑝

𝐿
+ Δ𝑡

𝛼
W𝑝

𝐿
J𝑇𝑝M

−1
𝑟 J𝑝W

𝑝

𝐿
,

A23 = Δ𝑡W𝑝

𝐿
J𝑇𝑝M

−1
𝑟 J𝑇

𝜆
, A24 = Δ𝑡W𝑝

𝐿
J𝑇𝑝M

−1
𝑟 J𝑇𝑧 ,

A33 = Δ𝑡𝛼J𝜆M
−1
𝑟 J𝑇

𝜆
, A34 = Δ𝑡𝛼J𝜆M

−1
𝑟 J𝑇𝑧 ,

A44 = Δ𝑡𝛼J𝑧M−1𝑟 J𝑇𝑧 ,

b1 = W𝑠
𝐿DW

𝑢
𝐹u
∗ −W𝑠

𝐿J
𝑇
𝑠 v
∗, b2 = W𝑝

𝐿
G𝑇W𝑢

𝐹u
∗ −W𝑝

𝐿
J𝑇𝑝 v
∗,

b3 = −𝛼
(
J𝜆Cv

∗ + 𝛽min (𝝓 (x), 0)
Δ𝑡

)
, b4 = −𝛼J𝑧v∗ .
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Fig. 7. Multiple rigid bunnies dropped into a bowl floating on viscous liquid, with different coupling options (see §6.3). (Left) PV-C solve at frame 147. (Middle
left) C-PV solve at frame 54. (Middle right) PVC-iterative solve at frame 17. (Right) PVC-unified solve at frame 147. Due to the neglected incompressibility
constraint and implicit viscosity integration, PV-C solve causes slight volume loss for the viscous liquid and unnatural fluid crawling behavior at the surface of
the bowl. C-PV solve causes sudden and intense impulses, due to the neglected contact handling, which drives the orange bunny to jump out of the bowl.
PVC-iterative solve with early termination fails to appropriately handle incompressiblity, implicit viscosity integration, and/or contact handling, leading to an
explosion of the simulation immediately after this frame. PVC-unified solve generates plausible results with a reasonable cost comparable to PV-C and C-PV.

Since C mediates elastic collision response, it appears only in b3, so
as to avoid repulsive pressure, stress, or friction forces. Similar to
(16), we have adopted the stabilization technique by modifying b3.

Our formulation avoids explicitly forming (𝛼M𝑟 )−1 since this can
produce matrix entries that are too small to handle with numerical
solvers, e.g., conjugate gradient (CG). In our experiments, solvers
using double-precision floating-point almost always failed to con-
verge with explicit formation of (𝛼M𝑟 )−1; our formulation avoids
these issues, enabling the solution of numerically difficult systems,
even with large density/mass ratios for fluids and rigid bodies.

As before, rigid body contact and friction forces depend on each
other. We therefore use a staggered projections approach [Kaufman
et al. 2008] to address the friction force z separately from the other
variables (p,𝝉 , and 𝝀). This splitting is preferable for two reasons:
first, it makes the system easier to solve since z, which depends
on 𝝀, is decoupled from the computation of 𝝀, and second, contact
forces are often more tightly coupled to fluid pressure and viscous
stresses than are the friction forces.
We arrive at the following approach: we first solve an LCP for z

with iteration index 𝑘 ,

A44z𝑘+1 = b4 − A𝑇
14𝝉

𝑘 − A𝑇
24p

𝑘 − A𝑇
34𝝀

𝑘

s.t. − diag(𝝁)𝝀𝑘 ≤ z𝑘+1 ≤ diag(𝝁)𝝀𝑘 , (25)

and then a Mixed LCP (MLCP) for 𝝉 , p, and 𝝀:
A11 A12 A13
A𝑇
12 A22 A23

A𝑇
13 A𝑇

23 A33



𝝉𝑘+1

p𝑘+1

𝝀𝑘+1

 =


b1 − A14z𝑘+1

b2 − A24z𝑘+1

b3 − A34z𝑘+1

 ,
s.t. 0 ≤ 𝝀𝑘+1 . (26)

We iteratively and alternately solve these systems, choosing specifi-
cally to solve z first and then𝝉 , p, and𝝀. Since the latter are generally
more important for both fluid and rigid body dynamics, we prefer to
terminate the iteration with optimal 𝝉 , p, and 𝝀. When the effect of
friction is weak, fewer staggered iterations are required and when
𝝁 = 0, solving a single MLCP suffices.

4.3 LCP Solver
In each of the staggered iterations, we need to solve an LCP for
the friction force and an MLCP for pressure, stress, and normal
forces; the latter can be treated as an LCP by simply setting negative
and positive infinity as box constraints for the pressure and stress
variables. Various approaches have been used in the past to solve
LCPs, e.g., PATH solver [Ferris and Munson 2000], QL solver [Schit-
tkowski 2005], and PGS [Catto 2020; Coumans 2020; Smith 2008].
These approaches are known to be slow, although in the context of
rigid body contact problems PGS has been extensively used because
of its simplicity and flexibility [Catto 2020; Coumans 2020; Smith
2008; Tonge et al. 2012]. One key difference from previous rigid
body contact work is that our LCP includes pressure and stress
variables which yield a very large number of degrees of freedom
(DOFs), making it preferable to employ sparse iterative solvers.

Fortunately, these LCPs are SPD, and can be reformulated as
convex QPs [Boyd and Vandenberghe 2004], as suggested by the
minimization problems giving rise to them. In particular, our QPs
are sparse and have only box constraints, which makes it possible to
use efficient specialized solvers, e.g., Modified Proportioning with
Reduced Gradient Projections (MPRGP) [Dostal and Schoberl 2005;
Dostl 2009]. We therefore employ MPRGP to solve both of the LCPs.

MPRGP is a variant of CG with gradient projections for box con-
straints and, like CG, the convergence of MPRGP can be accelerated
with a preconditioner. While previous work in fluid animation used
Modified Incomplete Cholesky (MIC) [Gerszewski and Bargteil 2013;
Narain et al. 2010], we employ a Successive-Over-Relaxation (SOR)
preconditioner, since we found it to be more effective for our system
with viscosity, both in terms of computational cost per iteration
(even with a single thread) and the total number of iterations. Our
observations are consistent with those of Yun and Han [2002], who
reported deterioration of MIC preconditioning, and, more generally,
it is known that MIC is less effective for non-M-matrices, whose
inverse cannot be well-approximated by the MIC decomposition.
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Fig. 8. A viscous sphere and a rigid bunny collide in the air. (Left) With
an inconsistent J𝑠 computation. (Right) With our consistent definition of
J𝑠 . The inconsistent J𝑠 leads to spurious non-zero values in the right hand
side of the system even with uniform velocities over fluids and rigid bodies,
which incorrectly freezes the bunny in mid-air. Our consistent formulation
ensures the values in the right hand side vanish by construction for uniform
velocities of fluids and rigid bodies and generates artifact-free motions.

To perform SOR preconditioning in parallel, we use a coloring
scheme. An obvious approach to coloring DOFs would be to de-
compose the domain with multiple blocks, as done for deformable
objects by Zhu et al. [2010]. However, it is difficult to ensure a con-
sistently even decomposition of the space because the liquids and
rigid bodies are in constant motion from frame to frame. Hence, we
use pointwise red-black coloring for pressure and each component
of the viscous stress, and color the contacts between rigid bodies
based on the Welsh-Powell algorithm [Welsh and Powell 1967].

4.4 Implementation Details
4.4.1 Consistent force exchange. To ensure a precise exchange of
forces between fluids and rigid bodies, it is essential to enforce con-
sistency of the force integration. That is, since J𝑝 and J𝑠 (which
depend onW𝑢

𝑆
) apply pressure and stress on rigid bodies, they must

be defined in a manner consistent with the G and D operators,
respectively, that apply pressure and stress to the fluid itself. We
guarantee this as follows. Given a pressure field, the discrete up-
date it applies to a regular fluid body is −W𝑢

𝐹
GW𝑝

𝐿
p. If we instead

consider a rigid body of the same shape to be updated by the same
pressure field, the net effect should be equivalent to aggregating this
applied pressure force within the body’s volume into a rigid body
force (and torque). We express this with an aggregation matrix Q to
get −QW𝑢

𝐹
GW𝑝

𝐿
p. We observe that, for consistency, this effective

body force on the rigid body must be equal to our desired expression

for the pressure integrated over the surface of the rigid body J𝑝W
𝑝

𝐿
p.

We can therefore define J𝑝 as J𝑝 = −QW𝑢
𝑆
G (where we replaced the

fluid volumesW𝑢
𝐹
with rigid body volumesW𝑢

𝑆
). This is also consis-

tent with the continuous surface-to-volume integral transformation
used by Batty et al. [2007]. Similarly, viscous stress forces applied to
fluids (−W𝑢

𝐹
D𝑇W𝑠

𝐿
𝝉 ) can be aggregated as −QW𝑢

𝐹
D𝑇W𝑠

𝐿
𝝉 . Since

this needs to be equal to J𝑠W𝑠
𝐿
𝝉 , we obtain J𝑠 = −QW𝑢

𝑆
D𝑇 .

While J𝑝 and J𝑠 can be assembled with the definition above, we
can significantly reduce the number of entries in J𝑝 and J𝑠 since
forces inside of rigid bodies cancel each other out, and only non-
zeros over the surface of rigid bodies are meaningful [Batty et al.
2007]. In practice, we directly assemble J𝑝 and J𝑠 , similar to Bridson
[2015] and Takahashi and Lin [2019] without explicitly forming Q.
We note that J𝑝 and J𝑠 defined in this way can completely cancel
b1 and b2 for uniform velocity fields over fluids and rigid bodies,
e.g., in freefall scenes. Figure 8 compares our definition with that of
Takahashi and Lin [2019].

4.4.2 Stress reduction. Similar to Larionov et al. [2017], we re-
duce the number of viscous stress variables using the fact that
the divergence-free constraint renders the stress tensor traceless.
In 2D, we have 𝜏𝑥𝑥 + 𝜏𝑦𝑦 = 0, so we eliminate 𝜏𝑦𝑦 by substituting
𝜏𝑦𝑦 = −𝜏𝑥𝑥 for D and J𝑠 , and treat 𝜏𝑥𝑥 = 𝜂

(
𝜕𝑢
𝜕𝑥 −

𝜕𝑣
𝜕𝑦

)
as the un-

known variable in the system. Similarly, we have 𝜏𝑥𝑥 + 𝜏𝑦𝑦 + 𝜏𝑧𝑧 = 0
in 3D, and eliminate 𝜏𝑧𝑧 by substituting 𝜏𝑧𝑧 = −(𝜏𝑥𝑥 + 𝜏𝑦𝑦). Then,
we treat 𝜏𝑥𝑥 and 𝜏𝑦𝑦 as the unknown variables with the constraints
of 𝜏𝑥𝑥 + 1

2𝜏𝑦𝑦 = 𝜂

(
𝜕𝑢
𝜕𝑥 −

𝜕𝑤
𝜕𝑧

)
and 1

2𝜏𝑥𝑥 +𝜏𝑦𝑦 = 𝜂

(
𝜕𝑣
𝜕𝑦 −

𝜕𝑤
𝜕𝑧

)
, which

can be naturally enforced by introducing an auxiliary matrix H as
1
2H𝝉 = NDu. In practice, we merge H into N for simplicity (i.e.,
N← H−1N), modifying the structure of N from diagonal (without
the stress reduction) to block-diagonal.

4.4.3 Sequential multiplication. For strong two-way coupling of
rigid bodies with fluid pressure and viscous stress, it is known
that dense submatrices can be formed [Batty et al. 2007; Bridson
2015; Robinson-Mosher et al. 2008; Takahashi and Lin 2019] (e.g.,
W𝑠

𝐿
J𝑇𝑠 M−1𝑟 J𝑠W𝑠

𝐿
in A11). The size of the dense submatrices also

scales poorly, making it worse at higher resolutions [Robinson-
Mosher et al. 2008]. While forming these dense submatrices explic-
itly does make it possible to apply preconditioning to the entire
system, leading to fewer total iterations, the computational cost per
solver iteration increases significantly. However, iterative solvers
like CG and MPRGP require only the result of matrix-vector multi-
plication, and not the matrix itself; we exploit this fact, noting that
the contributions of the dense blocks can be more efficiently com-
puted via multiple matrix-vector multiplications [Bridson 2015]. For
example, to compute Ax = y, where A = W𝑠

𝐿
J𝑇𝑠 M−1𝑟 J𝑠W𝑠

𝐿
, we can

compute y = (W𝑠
𝐿
J𝑇𝑠 (M−1𝑟 (J𝑠W𝑠

𝐿
x))) without forming the dense

matrices. We use this technique to handle Δ𝑡
𝛼 W𝑠

𝐿
J𝑇𝑠 M−1𝑟 J𝑠W𝑠

𝐿
in

A11, Δ𝑡𝛼 W𝑠
𝐿
J𝑇𝑠 M−1𝑟 J𝑝W

𝑝

𝐿
in A12, and Δ𝑡

𝛼 W𝑝

𝐿
J𝑇𝑝M

−1
𝑟 J𝑝W

𝑝

𝐿
in A22. We

found that this approach, with SOR preconditioning applied only on
the remaining sparse part of the matrix, is generally faster (ranging
from about 0.95× to 10× compared to using explicit dense submatri-
ces), although the total number of iterations required can be larger.
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Fig. 9. A liquid bunny with shear thinning viscosity dropped onto the ground using our nonlinear viscosity handling, with 1, 2, and 3 solver iterations from left
to right. The flow behaves more Newtonian with fewer iterations, while with more iterations it exhibits shear thinning effects (note the better-preserved
bunny head/ear pattern and slightly slower spreading towards the end of the simulation). The right figure plots the log-scale convergence at frame 10 with
respect to number of staggered projection iterations.

4.4.4 One-way solid-to-fluid coupling. Our formulation can natu-
rally support one-way solid-to-fluid coupling for static or prescribed-
motion rigid objects. Considering one-way coupled rigid bodies (i.e.,
with infinite mass), we can define M−1𝑟 = 0, indicating no contri-
butions from the rigid objects in several submatrices of the system
matrix (e.g., W𝑠

𝐿
J𝑇𝑠 M−1𝑟 J𝑠W𝑠

𝐿
in A11 will vanish), and their contri-

butions appear only in the right hand side of the system. Thus, in
practice, we decompose J𝑠 into J𝑠,1 and J𝑠,2 for one-way and two-
way coupled rigid bodies, respectively. J𝑝 , J𝜆 , and J𝑧 are similarly
decomposed to support both one-way and two-way coupling.

4.4.5 Diagonal rescaling. Due to the structure of Δ𝑡𝛼J𝜆M−1𝑟 J𝑇
𝜆
in

A33 and Δ𝑡𝛼J𝑧M−1𝑟 J𝑇𝑧 in A44, it is mathematically guaranteed that
these matrices are SPD. In practice, however, these can be non-
SPD because of numerical errors [Smith 2008; Tan et al. 2012], and
MPRGP could diverge in some situations. To prevent divergence,
we slightly increase the diagonal elements by rescaling them with
(1 + 𝛾), where we typically use 𝛾 = 1.0 × 10−4.

4.4.6 Level-set shrinkage. The contact constraints theoretically en-
sure no penetration between rigid bodies. In practice, however, it
is preferable to allow some penetrations to avoid frequent con-
tact switches as mentioned in §3.2.4. In addition, because of the
velocity-level collision handling, some penetrations cannot be per-
fectly resolved even though stabilization techniques are employed.
As such, there can be small penetrations between rigid bodies, which
would make the system ill-conditioned or unsolvable since volume
fractions may become inconsistent. To address this issue, we slightly
shift the signed distance of solid objects inward by 𝜁 (= 0.01Δ𝑥 in
our examples) for volume fraction evaluation.

4.4.7 Mass consistency. While the effective mass of objects (deter-
mined by the approximate volume fractions) can be used to achieve
perfect balance in ideal hydrostatic fluid tests [Batty et al. 2007;
Bridson 2015], in our monolithic formulation, we prefer to use the
actual mass computed from the density and volume of rigid bodies’
true geometry for consistency among the pressure, viscosity, and
frictional contact forces.

4.5 Algorithm
Algorithm 1 summarizes our complete monolithic solver.

Algorithm 1 Monolith solver
1: Map velocity from particles to grid
2: Add external force to grid
3: Add external force to rigid bodies
4: Compute fluid/solid and liquid/air domains
5: Evaluate volume fractionsW𝑢

𝐹
,W𝑠

𝐹
,W𝑝

𝐿
,W𝑢

𝐿
,W𝑠

𝐿
6: Detect collisions between rigid bodies
7: Determine valid pressure, velocity, and viscous stress DOFs
8: Assemble G,D, P,N,C, J𝑠 , J𝑝 , J𝜆, J𝑧
9: Assemble the system
10: Solve the system with staggered projections
11: Apply pressure and viscosity forces to fluids
12: Apply pressure, viscosity, contact, and friction forces to solids
13: Update rigid body positions and signed distance
14: Advect particles
15: Correct particle positions for volume preservation

5 NON-NEWTONIAN FLUIDS
While we have assumed Newtonian fluids so far, we now con-
sider augmenting our formulations to handle more general, non-
Newtonian fluids. Among non-Newtonian fluids, we focus on those
with non-Newtonian viscosity, which can be formulated with an
effective or apparent viscosity that is dependent on the shear rate
¤𝜸 (= W𝑠

𝐿
DW𝑢

𝐹
u), but not the history of fluid deformations. That is,

the viscous stress can be defined as 𝝉 = 2(W𝑠
𝐹
)−1 (W𝑠

𝐿
)−1N( ¤𝜸 ) ¤𝜸 ,

using an effective viscosity function, N( ¤𝜸 ). Fluids in this category
include shear thickening (dilatant), shear thinning (pseudoplastic),
and Bingham plastic fluids. Variants of non-Newtonian viscosity
have been previously considered for Lagrangian finite elements and
MPM (see e.g., [Bargteil et al. 2007; Yue et al. 2015; Zhu et al. 2015]).
However, a simple and robust implicit non-Newtonian viscosity of
the form we consider has not been deployed for grid-based viscous
liquids; that is, we treat the effective viscosity coefficient itself in
an implicit fashion so it responds accurately to rapid changes in de-
formation behavior. In this work, we employ the Herschel-Bulkley
model, as described by Sahu et al. [2007], because it offers a unified
representation for a variety of non-Newtonian fluids (Herschel-
Bulkley was also used in an elastoplastic context by Yue et al. [2015]
for MPM-based foam). The effective viscosity at the location of each
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Fig. 10. A liquid dragon dropped onto the ground with different viscosity models. (Left) Newtonian viscosity. (Middle left) Shear thinning viscosity. (Middle
right) Shear thickening viscosity. (Right) Bingham-type viscosity. Due to the large shear rates induced by the collision with the ground, the effective viscosity
of the shear thinning model becomes smaller, causing the liquid to flow more rapidly than its Newtonian counterpart. By contrast, shear thickening increases
the effective viscosity leading to a more viscous effect. Finally, the dragon with Bingham-type viscosity shows a more solid-like behavior at low shear rates.

stress DOF can be computed using

𝜼 =

{
𝜼0 = 𝑘 ¤𝜸𝑟−10 + 𝝉0 ¤𝜸−10 (



 ¤𝜸


𝐹
≤ ¤𝜸0)

𝑘


 ¤𝜸

𝑟−1

𝐹
+ 𝝉0



 ¤𝜸

−1
𝐹

(otherwise) , (27)

where𝜼0 denotes the limiting viscosity, 𝑟 the flow index, 𝝉0 the yield
stress, 𝑘 the consistency index, and ¤𝜸0 the threshold for yielding.
With 0 < 𝝉0, fluids behave as Bingham-type materials, which flow if
¤𝜸 is sufficiently large. With 𝑟 < 1 and 𝑟 > 1, fluids are shear thinning
and shear thickening, respectively, while fluids are Newtonian with
𝑟 = 1 and 𝝉0 = 0. In the actual evaluation of



 ¤𝜸


𝐹
, we interpolate ¤𝜸

from the neighbors because of the staggered arrangement of ¤𝜸 .
One approach to addressing the effective viscosity is to substi-

tute the effective viscosity and shear rate for viscous stress (𝝉 =

2(W𝑠
𝐹
)−1 (W𝑠

𝐿
)−1N( ¤𝜸 ) ¤𝜸 ), obtaining the following formulation:

p, ¤𝜸 = argmin
p, ¤𝜸

1
2

(


u∗ − Δ𝑡P−1 (W𝑢
𝐿)
−1

(
GW𝑝

𝐿
p + 2D𝑇 (W𝑠

𝐹 )
−1N( ¤𝜸 ) ¤𝜸

)


2
M𝑓

+ Δ𝑡

2


2 ¤𝜸

2

N( ¤𝜸 ) (W𝑠 )−1

)
. (28)

Unfortunately, this minimization problem is not quadratic with re-
spect to shear rate ¤𝜸 , and nonlinear solvers such as (quasi-)Newton’s
method or nonlinear CG would be necessary, typically requiring a
significant computational effort.
Given the fact that, in our formulation, the unique source of

nonlinearity (aside from advection) is in the viscosity coefficient
computation, we decouple this computation from the rest. Mathe-
matically, we reformulate the unified minimization problem as

p,𝝉 , ¤𝜸 = argmin
p,𝝉=2(W𝑠

𝐹
)−1 (W𝑠

𝐿
)−1N( ¤𝜸 ) ¤𝜸

1
2

(


u∗ − Δ𝑡P−1 (W𝑢
𝐿)
−1

(
GW𝑝

𝐿
p + D𝑇W𝑠

𝐿𝝉
)


2

M𝑓

+ Δ𝑡

2
∥𝝉 ∥2N−1 ( ¤𝜸)W𝑠

)
.

(29)

To solve this minimization, we can alternate between computing
the effective viscosity and solving the quadratic minimization in the
same fashion as for (8). The computational process is summarized
in Algorithm 2. At the end of the each iteration, pressure and vis-
cous stress are optimal for the current viscosity N𝑘 , satisfying the
divergence-free constraints and implicit viscosity update.

Our formulation for non-Newtonian fluids can be naturally inte-
grated into the monolithic solver by simultaneously solving contact

Algorithm 2 Non-Newtonian fluid solver

1: Initialize shear rate by ¤𝜸1 = W𝑠
𝐿
DW𝑢

𝐹
u∗

2: for k = 1, 2, ... do
3: Compute effective viscosity N𝑘 ( ¤𝜸𝑘 ) based on (27)
4: Assemble the system matrix A𝑘 with N𝑘 ( ¤𝜸𝑘 )
5: Solve A𝑘x𝑘+1 = b, where x = (𝝉𝑇 , p𝑇 )𝑇 and b = (b𝑇1 , b

𝑇
2 )

𝑇

6: Update shear rate by ¤𝜸𝑘+1 = 1
2N
−1 ( ¤𝜸𝑘 )W𝑠

𝐹
W𝑠

𝐿
𝝉𝑘+1

forces alongside pressure and viscous stress. Mathematically, this
coupling of non-Newtonian fluids and frictional contacts can be
formulated by replacing 𝐸𝑓 (𝝉 , p) in (22) with (29). Moreover, our
iterative procedure for the effective viscosity update and system
solve can be considered as a kind of staggered projection, and thus
the viscosity update can be handled alongside the friction solve (fol-
lowed by the pressure-viscosity-contact solve) within the staggered
projections approach.

In addition to this compatibility benefit, as compared to the fully
nonlinear formulation, (28), our staggered projections approach has
several added advantages. First, the structure of the system remains
the same as for Newtonian fluids. As such, we can use the same LCP
solver and preconditioner, significantly aiding in our solver optimiza-
tion and minimizing additional implementation and maintenance
effort. Furthermore, given the importance of pressure, viscous stress,
and contact forces, it is preferable to shift residuals to the less criti-
cal, nonlinear viscosity component. Since the staggered projections
approach can terminate the iteration with optimal pressure, viscous
stress, and contact forces for the currently available variables, all of
the residuals can be shifted onto the nonlinear viscosity and friction
parts. This residual control allows us to use intermediate results
as solutions with early termination if efficiency is more important
than accuracy, while maintaining solver robustness with larger time
steps. With the fully unified nonlinear formulation, (28), it can be
difficult to control the effect of the residual, and early termination
would lead to divergent velocities, unstable viscosity integration,
and penetrations between rigid bodies.
Figure 9 illustrates a liquid bunny with shear thinning viscosity

using different numbers of iterations, along with a convergence plot.
A single iteration would correspond to an explicit treatment of these
nonlinear effects e.g., [Zhu et al. 2015]. With a sufficient number
of iterations, the liquid exhibits more accurate shear thinning be-
haviors: it easily flows on impact with the ground due to high shear
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Fig. 11. A rigid bunny dropped into a block of liquid with different viscosity models. (Left) Newtonian. (Middle left) Shear thinning. (Middle right) Shear
thickening. (Right) Bingham-type. Due to the high shear rates caused by the falling rigid bunny, the effective viscosity of the shear thinning model decreases
compared to the Newtonian model allowing the bunny to sink more quickly. Conversely, the effective viscosity of the shear thickening model increases with
the large shear rates, so the bunny falls more slowly. When the shear rate is insufficiently high, the liquid with Bingham-type viscosity exhibits solid-like
behavior, and thus rapidly slowing the falling bunny.

rates while the flow later slows down due to small shear rates. We
found that the staggered projections can stably and quickly decrease
the residual, and the resulting behaviors do not change dramatically
with many iterations. Thus, in practice, we use two iterations for
nonlinear viscosity.

6 RESULTS AND DISCUSSION
Our method is implemented in C++ and parallelized using OpenMP.
We used a convergence criterion of 10−6 on the infinity norm of the
relative residual and assign maximum iteration counts per scenario.
We used a CFL number of 3.0 with adaptive timestepping, and used
50 frames per second. We executed simulations for Figures 2, 3,
4, 5, and 6 on an Intel Xeon E5-2680 v2 (using only 8 threads)
with 16GB RAM, for Figures 7, 10, and 11 on an Intel Xeon X5560
(using 16 threads) with 16GB RAM, and for Figures 15, 17, and 18
on an Intel Core i7-9700 (using 8 threads) with 16GB RAM. All
reported statistics are averaged over the effective simulation length,
excluding results from simulation failures. Except where specifically
mentioned, we do not include frictional contacts nor non-Newtonian
fluids, and thus perform a single LCP solve for each time step. When
there are no box constraints, we use SOR-CG, because SOR-CG is
about 2-3× faster than SOR-MPRGP in practice.

6.1 Contact-Aware Coupling with Inviscid Liquids
To demonstrate the benefits of our monolithic coupling even in the
absence of viscosity, we first experiment with purely inviscid liquids
and rigid bodies. In these experiments, we use a specialized solver
that uses cut-cell-based area weighting for W𝑢

𝐹
and W𝑢

𝑆
[Ng et al.

2009] and the ghost-fluid method forW𝑝

𝐿
andW𝑢

𝐿
[Gibou et al. 2002]

(instead of volume weights) for better accuracy. We evaluate four
possible pressure-contact coupling schemes:

(1) P-C solve: pressure solve first followed by contact solve;
(2) C-P solve: contact solve first followed by pressure solve;
(3) PC-iterative solve: iterative partitioned pressure and contact

solves, (i.e., staggered projections on the unified formulation);

(4) PC-unified solve: our proposed method that solves pressure
and contact monolithically.

P-C solve, C-P solve, and too few (staggered projection) iterations of
PC-iterative solve are instances of weak coupling, while PC-iterative
solve with sufficiently many iterations and PC-unified solve are
instances of strong coupling. Simulation settings and performance
numbers for these experiments are summarized in Table 1. Profiles
of total time for the entire pressure and contact handling phase (i.e.,
excluding other simulator components) are compared in Figure 12.

6.1.1 Inviscid liquid bunny drop. In Figure 2, we drop a bunny-
shaped volume of inviscid liquid (density 1,000 kg/m3) into a bowl
(density 200 kg/m3) resting on the ground. The liquid and bowl are
two-way coupled; one-way coupling is applied to the liquid-ground
and bowl-ground pairs. Although the bowl-ground coupling is one-
way, it is essential to make the system aware of their collisions to
prevent the liquid from pushing the bowl into the ground.

For P-C solve, while bowl-ground contacts are properly addressed
by the concluding contact solve, incompressibility is not enforced
because the contact solve disturbs the divergence-free velocity fields
initially computed by the pressure solve. Consequently, we observe
significant volume loss as the liquid in the bowl disappears (note
the reduced pdof count in Table 1 due to the smaller liquid volume).
Conversely, for C-P solve, the volume of liquid is preserved due to
the concluding pressure solve, but the pressure solve also destroys
the non-penetration enforcement of the initial contact solve. This
leads to solid penetrations which cause objectionable oscillatory
behaviors in the bowl’s motion.

For PC-iterative solve and PC-unified solve, the resulting behav-
iors are comparable due to consistent solutions upon convergence
(see supplementary material). However, despite relatively few con-
tacts, the number of staggered projection iterations needed by PC-
iterative solve can be large, resulting in a higher total cost regardless
of the efficiency of SOR-CG over SOR-MPRGP. Here, our proposed
PC-unified solve is approximately 10× faster than PC-iterative solve,
and comparable to the P-C and C-P solves. While iterative conver-
gence of the partitioned solves towards the strong coupling result
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Table 1. Simulation settings and performance results. P, C, and PC denote the total time per frame for pressure, contact, and pressure-contact solve, respectively.
T denotes the total time per frame for the entire pressure and contact handling phase. Here, P + C are not necessarily equal to T because of the solver overhead,
e.g., updates of the right hand side in the staggered projections for PC-iterative. stiterdenotes the number of iterations for the staggered projections per
simulation step. piter, citer, and pciter denote the number of iterations for each of pressure, contact, and pressure-contact solves, respectively. pdof and cdof
denote the number of pressure and contact DOFs (i.e., the number of unknown pressure variables and the number of contacts) in each solve, respectively.
Empty cells indicate N/A. Gray rows indicate early-terminated simulations because of failures.

Scene Grid resolution Particles Scheme P (s) C (s) PC (s) T (s) stiter piter citer pciter pdof cdof
Figure 2 (left) 256 × 128 × 256 418.5k P-C 4.86 0.56 5.43 38.1 3.3 73.0k 2.4
Figure 2 (middle left) 256 × 128 × 256 418.5k C-P 10.29 0.47 10.77 68.8 1.7 143.6k 4.0
Figure 2 (middle right) 256 × 128 × 256 418.5k PC-iterative 108.89 4.12 115.87 10.5 71.6 3.2 142.5k 2.5
Figure 2 (right) 256 × 128 × 256 418.5k PC-unified 11.59 11.59 51.3 142.5k 2.6
Figure 3 (left) 128 × 128 × 128 2,697.9k P-C 22.53 0.66 24.41 161.6 2.6 357.0k 2.1
Figure 3 (middle left) 128 × 128 × 128 2,697.9k C-P 36.86 0.76 37.82 187.2 4.7 448.5k 4.2
Figure 3 (middle right) 128 × 128 × 128 2,697.9k PC-iterative 249.68 0.07 257.43 21.5 181.2 2.6 417.8k 3.3
Figure 3 (right) 128 × 128 × 128 2,697.9k PC-unified 32.14 32.14 108.1 389.3k 2.3
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Fig. 12. Profiles of the total times for the entire pressure and contact handling phase per frame for Figure 2 (left) and Figure 3 (right). PC-unified is as efficient
as P-C and C-P and is approximately 10× faster than PC-iterative.

could potentially be accelerated, (e.g., by extending the technique
of Akbay et al. [2018] to our LCP problem), we believe that our
tightly unified approach will be faster, considering that the cost of
PC-unified solve is already comparable to P-C and C-P solves.

6.1.2 Rigid bunny drop. In Figure 3, we drop a rigid bunny (density
3,000 kg/m3) into a rigid bowl (density 500 kg/m3) floating on liquid
(density 1,000 kg/m3). We use a maximum of 200 for both solver
iterations and staggered projection iterations.

Since P-C solve allows contact handling to override incompress-
ibility, splashes caused by the bowl are smaller than they should be.
Furthermore, the pressure solve frequently failed to converge due
to stuck particles inside rigid bodies caused by collision handling,
leading to simulation failure. For C-P solve, the neglected contact
handling failed to properly address bunny-bowl collisions, resulting
in simulation blow-up and causing the bowl and bunny to topple,
despite few detected contacts (see Table 1). Although PC-iterative
solve theoretically converges to the same result as PC-unified solve,
it was halted before convergence due to the large number of re-
quired iterations; it thus fails to satisfy the necessary constraints,
and generates implausible results. Our PC-unified solve successfully
generated plausible behaviors for the liquid, bunny, and bowl with
a reasonable cost, comparable to that of P-C and C-P solves, and is
approximately 8× faster than (non-converged) PC-iterative solve.

6.2 Two-Way Rigid-Fluid Coupling with Stokes
While the benefits of the unified (Stokes) treatment for pressure
and viscosity have previously been demonstrated for fluid-only
problems (i.e., elimination of artificial melting and improved coiling
[Larionov et al. 2017]), we explore below the advantages offered by
our combining it with strong two-way fluid-solid coupling.
We compare two possible schemes: 1) PC-VC-PC-unified solve,

which separates viscosity and pressure, and 2) PVC-unified solve,
which is our proposed monolithically coupled pressure-viscosity-
contact solver. PC-VC-PC-unified solve is based on a traditional
decoupled viscous flow solver [Batty and Bridson 2008] that per-
forms, in order, a pressure solve, a viscosity solve, and a second
pressure solve. We augment it with the decoupled two-way fluid-
solid coupling formulations (§3.3) and two-way rigid-rigid coupling
formulations (§4). PC-VC-PC-unified solve does not generate the
same results as PVC-unified solve because it performs the predeter-
mined solver sequence only once, and neglects interactions between
pressure and viscosity forces. We use viscous stresses as unknowns
for the viscosity solve (unlike Batty and Bridson [2008] and Taka-
hashi and Lin [2019] who use velocity unknowns) since rigid-rigid
coupling combined with a viscosity solve in velocity unknowns
leads to less desirable symmetric indefinite systems.
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Table 2. Simulation settings and performance results. PC, VC, and PVC denote the total time per frame for pressure-contact, viscosity-contact, and pressure-
viscosity-contact solves, respectively. T denotes the total time for the entire pressure, viscosity, and contact handling phase. pciter, vciter, and pvciterdenote the
number of iterations for each of pressure-contact, viscosity-contact, and pressure-viscosity-contact solve, respectively. pdof , sdof , and cdofdenote the number of
pressure, stress, and contact DOFs in each solve, respectively. Empty cells indicate N/A.

Scene Grid resolution Particles Scheme PC (s) VC (s) PVC (s) T (s) pciter vciter pvciter pdof sdof cdof
Figure 4 (left) 128 × 128 × 128 562.1k PC-VC-PC-unified 15.36 179.47 194.84 45.5 395.1 95.6k 474.3k 1.8
Figure 4 (right) 128 × 128 × 128 562.1k PVC-unified 344.57 344.57 942.0 90.7k 451.8k 3.1
Figure 5 (left) 128 × 128 × 128 709.1k PC-VC-PC-unified 1.88 302.96 304.84 78.1 1,983.0 109.5k 530.9k 0.0
Figure 5 (right) 128 × 128 × 128 709.1k PVC-unified 474.95 474.95 1,990.4 107.0k 522.7k 0.0
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Fig. 13. Profiles of the total time of the entire pressure, viscosity, and contact handling phase per frame for Figure 4 (left) and Figure 5 (right). In our examples,
PVC-unified is approximately 1.66 × slower than PC-VC-PC-unified, which suffers from artificial melting of viscous liquids.

Simulation settings and performance numbers for our experi-
ments are summarized in Table 2, with profiles of total time for the
pressure, viscosity, and contact handling phase given in Figure 13.
We set the maximum number of solver iterations to 2,000.

6.2.1 Viscous sphere dragged by bunny. In Figure 4, we throw a vis-
cous sphere (density 1,000 kg/m3; dynamic viscosity 1,000 kg/(s ·m))
and a rigid bunny (density 2,000 kg/m3) toward a wall.

Although the viscosity solve applies the expected no-slip bound-
ary condition, the second pressure projection of the PC-VC-PC-
unified solve disturbs the results of the viscosity solve and destroys
the no-slip boundary condition. Consequently, the viscous sphere
unnaturally peels off from the wall while failing to support the
bunny, both of which we identify as new and disturbing artificial
melting artifacts. In addition, because of the decoupled pressure
and viscosity treatment, the velocity field of the viscous fluid is less
smooth than expected, causing particles to scatter.
With our PVC-unified solve, the no-slip boundary condition is

always strictly enforced, so the viscous sphere remains stuck to the
wall, captures the thrown rigid bunny on contact, and slows the
bunny’s descent towards the ground. Furthermore, our approach
produces appropriately smooth velocity fields, and visually rea-
sonable dynamics throughout. Although the computational cost
for the unified treatment is higher (approximately 1.77×) than the
artifact-prone decoupled approach, we believe the more natural
solid interactions justify the extra expense.

6.2.2 Bunny on viscous hemisphere. In Figure 5, we drop a rigid
bunny (density 3,000 kg/m3) onto a viscous hemisphere (density
1,000 kg/m3; viscosity 10,000 kg/(s ·m)). Due to the decoupled

pressure and viscosity handling of PC-VC-PC-unified solve, artificial
melting occurs, resulting in faster sinking of the bunny and (no-
slip-violating) crawling of fluid up the bunny’s sides, despite a high
viscosity coefficient. By contrast, with PVC-unified solve, the viscous
fluid more tightly supports the bunny, slowing down its sinking
without spurious crawling artifacts. This improved accuracy again
comes at a modest cost: PVC-unified solve is about 1.56× slower
than PC-VC-PC-unified solve.

6.3 Contact-Aware Coupling with Viscous Liquids
Having separately shown the importance of tight pressure-contact
and pressure-viscosity coupling, we next demonstrate our full mono-
lithic formulation for simultaneous coupling of viscous liquids and
rigid bodies with contact. We compare four possible schemes:

(1) PV-C solve: Stokes solve, followed by contact solve;
(2) C-PV solve: contact solve, followed by Stokes solve;
(3) PVC-iterative solve: iterative partitioned Stokes and contact

solves (i.e., staggered projections on the unified problem);
(4) PVC-unified solve: our proposed method that solves pressure,

viscosity, and contact monolithically.

We summarize simulation settings and performance numbers
in Table 3 and show profiles of total time for handling pressure,
viscosity, and contact in Figure 14.

6.3.1 Viscous dragon into a bowl. In Figure 6, we drop a dragon-
shaped viscous liquid volume (density 1,000 kg/m3; viscosity 100
kg/(s ·m)) into a bowl (density 100 kg/m3) on the ground. For PV-
C solve, although bowl-ground contacts are properly resolved by

ACM Trans. Graph., Vol. 39, No. 6, Article 182. Publication date: December 2020.



Monolith: A Monolithic Pressure-Viscosity-Contact Solver for Strong Two-Way Rigid-Rigid Rigid-Fluid Coupling • 182:15

Table 3. Simulation settings and performance results. PV, C, and PVC denote total time per frame for pressure-viscosity, contact, and pressure-viscosity-contact
solves, respectively. T denotes the total time per frame for the entire pressure, viscosity, and contact handling phase. Here, the sum PV + C is not necessarily
equal to T because of solver overhead. stiterdenotes the number of iterations for the staggered projections per simulation step. pviter, citer, and pvciterdenote
the number of iterations for each of pressure-viscosity, contact, and pressure-viscosity-contact solves, respectively. pdof , sdof , and cdofdenote the number of
pressure, stress, and contact DOFs in each solve, respectively. Empty cells indicate N/A. Gray rows indicate early terminated simulations because of failures.

Scene Grid resolution Particles Scheme PV (s) C (s) PVC (s) T (s) stiter pviter citer pvciter pdof sdof cdof
Figure 6 (left) 128 × 128 × 128 462.7k PV-C 95.02 0.64 95.66 696.7 5.8 21.0k 97.6k 4.0
Figure 6 (middle left) 128 × 128 × 128 462.7k C-PV 382.81 0.01 382.83 746.4 0.8 118.2k 568.6k 1.9
Figure 6 (middle right) 128 × 128 × 128 462.7k PVC-iterative 687.15 0.03 719.49 7.0 951.6 3.6 84.1k 413.1k 4.0
Figure 6 (right) 128 × 128 × 128 462.7k PVC-unified 103.30 103.30 183.7 84.0k 413.4k 4.0
Figure 7 (left) 64 × 64 × 64 348.2k PV-C 338.02 0.07 338.09 4,773.7 354.5 50.7k 237.4k 72.8
Figure 7 (middle left) 64 × 64 × 64 348.2k C-PV 735.52 0.05 735.57 7,310.1 72.4 55.8k 262.8k 68.8
Figure 7 (middle right) 64 × 64 × 64 348.2k PVC-iterative 3,816.06 0.14 3,838.82 9.0 888.0 7.5 53.5k 252.0k 22.3
Figure 7 (right) 64 × 64 × 64 348.2k PVC-unified 1,177.49 1,177.49 4,336.7 55.5k 261.6k 72.4
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Fig. 14. Profiles of the total time for the entire pressure, viscosity, and contact handling phase per frame for Figure 6 (left) and Figure 7 (right). PVC-unified is
as fast as PV-C and C-PV and is around 7× faster than PVC-iterative.

the prioritized contact handling, fluid incompressibility and viscos-
ity integration are spoiled, causing significant volume loss. Con-
versely, for C-PV solve, the prioritized Stokes solve yields plausible
liquid behavior, but the decoupled contact handling leaves severe
bowl-ground penetrations that drive the bowl to jump unnaturally.
PVC-iterative solve and PVC-unified solve generated plausible and
visually comparable results since they converge to the same solution.
However, PVC-iterative solve requires many alternating iterations
to converge, and thus PVC-unified solve is ∼ 7× faster.

6.3.2 Multiple rigid bunnies dropped into a bowl floating on viscous
fluid. In Figure 7, we drop nine bunnies (density 2,000 kg/m3) into
a rigid bowl (density 500 kg/m3) floating on viscous liquid (density
1,000 kg/m3; viscosity 100 kg/(s ·m)). We use a maximum of 20,000
solver iterations and 200 staggered projection iterations.

While PV-C solve properly handles contacts between the bunnies
and the bowl, the neglected pressure-viscosity handling makes the
viscous fluids behave unnaturally, e.g., exhibiting loss of fluid volume
and crawling of fluid on the bowl. For C-PV solve, although the
viscous fluid behaves naturally, contact-handling is neglected, which
causes severe penetrations, driving the orange rigid bunny to jump
to the outside of the bowl. PVC-iterative solve failed to converge for
this example, causing the simulation to explode and leave nothing in
the domain, since neither constraints for incompressibility, implicit
viscosity integration, nor non-penetration are satisfied.

Our PVC-unified solve successfully generated plausible behav-
iors for the viscous liquid, bunny, and bowl, at a reasonable cost
comparable to PV-C and C-PV solves. Although it is not entirely fair
to compare PVC-unified and PVC-iterative solves due to the failure
of the iterative approach, the latter took 56,587.2s for one frame
(before exploding) whereas PVC-unified solve took 1,177.5s on av-
erage. This suggests that our PVC-unified solve offers a significant
performance improvement compared to PVC-iterative solve. We
also note that the larger number of required iterations in this scene
is not specifically due to incorporating contacts, since the PV-C and
C-PV solves also require similar iteration counts.

6.4 Non-Newtonian Fluids
Next, we demonstrate the effectiveness of our nonlinear viscosity
handling. We used different sets of parameters for the Herschel-
Bulkley model of (27), i.e., (𝑟, ¤𝜸0,𝝉0, 𝑘), to model and compare New-
tonian, shear thinning, shear thickening, and Bingham-type viscos-
ity, and used two staggered projection iterations.

6.4.1 Dragon drop. In Figure 10, we drop a liquid dragon with pa-
rameters (1.0, 1.0, 0.0, 1.1 × 101) for Newtonian, (0.5, 1.0, 1.0, 1.0 ×
101) for shear thinning, (2.0, 1.0, 1.0, 1.0 × 101) for shear thickening,
and (1.0, 1.0, 1.0×103, 1.0×101) for Bingham-type viscosity. The sim-
ulation used a grid resolution of 128×128×128with 194.6k particles,
and the total time for the pressure-viscosity handling per frame was
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Fig. 15. A boat carrying multiple boxes being perturbed by waves created by an oscillating board.

Fig. 16. 45 bunnies dropped onto an inviscid liquid pool.

13.09 s, 16.27 s, 18.65 s, and 74.84 s for Newtonian, shear thinning,
shear thickening, and Bingham-type viscosity, respectively.
For the shear thinning model, the effective viscosity decreases

under the high shear rates from the collision with the ground, and
the liquid flows more vividly than in the Newtonian case. Then,
as the shear rate decreases again, the effective viscosity increases,
leading to a stiffer effect than the Newtonian model. For the shear
thickening model, by contrast, when the dragon hits the ground,
the effective viscosity instead rises, yielding a more damped effect.
When the shear rates later decrease, the effective viscosity decreases
and the liquid begins to flow more like the Newtonian model. With
Bingham-type viscosity, due to the large yield stress 𝝉0, the liq-
uid shows a more solid-like effect (except where large shearing is
applied), so the original shape of the dragon is better preserved.

6.4.2 Bunny drop into a viscous block. To confirm that our non-
Newtonian model is also compatible with our rigid-body coupling
approach, we drop a rigid bunny into a tank of viscous liquid with
parameters (1.0, 1.0, 0.0, 1.0× 101) for Newtonian, (0.5, 1.0, 1.0, 1.0×
101) for shear thinning, (2.0, 1.0, 1.0, 1.0 × 101) for shear thickening,
and (1.0, 1.0, 1.0 × 103, 1.0 × 102) for Bingham-type viscosity, as
shown in Figure 11. Natural bunny-ground contact at the bottom
of the tank is achieved through the combination of our nonlinear
viscosity handling with monolithic pressure-viscosity-contact han-
dling. The simulation used a grid resolution of 64×64×64with 261.9k
particles, and the total time for the pressure, viscosity, and contact
handling per frame was 186.23 s, 209.87 s, 339.32 s, and 486.62 s for
Newtonian, shear thinning, shear thickening, and Bingham-type
viscosity, respectively.

For the shear thinning model, the strong shearing induced by
the bunny falling into the liquid causes the effective viscosity to
decrease and the bunny to sink more quickly than for the Newtonian
model. For the shear thickeningmodel, the effective viscosity instead
increases, so the liquid behaves more viscous, and the bunny sinks
more slowly. With Bingham-type viscosity, regions where the yield

stress is not exceeded exhibit solid-like behavior, so the descent of
the bunny is more strongly impeded.

6.5 Complex Examples
The following more complex examples further demonstrate the
capabilities of Monolith. In these examples, we include friction
(𝜇 = 0.1) and use two staggered projection iterations.

Figure 15 shows that our solver can efficiently and robustly handle
complex interactions among inviscid ocean liquid, a kinematically
scripted wave-inducing board, a wooden boat, and multiple wooden
boxes. This simulation used a grid resolution of 240 × 96 × 96 with
2.8M particles. The total simulation time per frame is 242.04 s, and
the average contact count is 23.2 per simulation step.

In Figure 16, we simulate 45 rigid bunnies dropped onto a liquid
pool, demonstrating that our solver can handle complex interactions
involving many contacts. This simulation used a grid resolution
of 225 × 150 × 150 with 8.2M particles. The total simulation time
per frame is 788.91 s, and the average contact count is 105.9 per
simulation step.
Figures 17 and 18 demonstrate two hollow glass spheres con-

taining inviscid and viscous liquid, respectively, rolling around in a
basin. In this example, we used a CFL number of 0.5 for adaptive
timestepping. The simulations of Figures 17 and 18 used, respec-
tively, grid resolutions of 256 × 256 × 256 and 128 × 128 × 128 with
385.8k and 48.2k particles taking 81.44s and 260.93s per frame, for
the most challenging period from frame 15 to 50. Naturally, the vis-
cous simulation is significantly more costly due to the larger system
to be solved. These scenarios highlight that our monolithic solver
enables physically-consistent energy exchanges, i.e., the energy of
the hollow glass spheres can change significantly by transferring
energy to and from the liquids contained in them. This effect, along
with the free-slip liquid boundary condition and the absence of vis-
cosity, accounts for the longer term rolling in the basin with inviscid
liquid. By contrast, in the viscous case, this coupling, combined
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Fig. 17. Two hollow glass spheres containing inviscid liquid balls are thrown into a basin, shown at frames 1, 28, 55, 170 from left to right.

Fig. 18. Two spherical glass hulls containing viscous liquid balls are thrown into a basin, shown at frames 1, 16, 48, 75 from left to right.

with liquid viscosity, no-slip liquid boundary conditions, and fric-
tional contacts between the spheres and basin, causes rapid energy
dissipation.

6.6 Discussion
6.6.1 Solver choice. Our fully monolithic treatment significantly
improves accuracy, robustness, and efficiency for general scenarios.
In restricted scenarios, however, decoupling might be preferred.
For example, if the benefits of unifying pressure and viscosity are
not needed (e.g., accurate boundary/coupling behavior, lack of ar-
tificial melting, etc.) PC-VC-PC-unified solve offers slightly better
performance. If, in addition, there is no contact between rigid bodies,
two-way coupling with a velocity-based viscosity solver should be
preferred [Takahashi and Lin 2019].

6.6.2 Position-level errors. While we used velocity-level contact
formulations for rigid bodies to avoid repeated volume weight evalu-
ations per simulation step, updated rigid bodies may have small pen-
etrations due to linearization and numerical error, despite position-
level stabilization [Anitescu and Hart 2004; Baumgarte 1972; Cline
and Pai 2003]. To address this, it might be necessary to allow an extra
margin for collision handling, or to further apply post-stabilization.
The position-level error is also related to the volume loss of fluids.
While we use local position-corrections for particles to preserve a
uniform distribution [Macklin and Müller 2013], a global approach
would be more effective [Kugelstadt et al. 2019].

6.6.3 Non-Newtonian fluids. Our extension to non-Newtonian flu-
ids is quite effective in practice. However, depending on the pa-
rameters used, the number of required iterations could increase
and drive up the total cost, given the expense of each unified solve.
In addition, since nonlinearity can lead to multiple solutions, an
implausible viscosity distribution could be obtained, although the
behaviors remain stable due to our staggered projections approach.

6.6.4 Convergence. In some of our experiments with viscous fluids,
the number of required iterations fluctuates, occasionally leading to

the solver failing to fully converge within the specified maximum
iteration count. This is due to ill-conditioning, and the relatively
large number of DOFs in the system. Although we employed an SOR
preconditioner due to its practical effectiveness and parallel nature,
it would be beneficial to develop a more advanced preconditioner for
our problem, e.g., multigrid [Aanjaneya 2018; Aanjaneya et al. 2019;
Lai et al. 2020]. Likewise, it may beworth exploringwhether efficient
sparse direct QP solvers, such as the recently proposed NASOQ
scheme [Cheshmi et al. 2020], could be helpful in circumventing
conditioning issues with iterative solvers.

7 CONCLUSIONS AND FUTURE WORK
Wehave proposedMonolith, amonolithic pressure-viscosity-contact
solver that simultaneously handles divergence-free fluid constraints,
implicit viscosity integration, frictional contacts between rigid bod-
ies, and mutual interactions of liquids and rigid bodies governed by
pressure and viscosity. Our method is variational in nature, naturally
enforcing the appropriate boundary conditions and leading to a sin-
gle unified optimization problem. We addressed the unified problem
via a single LCP solve in the absence of friction, and via staggered
projections in the presence of friction. We also proposed a new
iterative approach to handle non-Newtonian fluids, which can be
seamlessly integrated with our treatment of frictional contacts. We
demonstrated the efficacy of our monolithic solver in a wide range
of scenarios, eliminating artifacts of prior schemes and achieving at
least one order of magnitude faster performance than comparable
quality alternatives for both inviscid and viscous liquids.

As technical artists and other end-users continue to demand ever
greater flexibility and physical realism from their tools, the chal-
lenges of integrated multiphysics simulation, such as those we have
studied, will become increasingly salient. We believe that our mono-
lithic, contact-aware coupling strategy can be extended to many
different types of fluid and solid materials, e.g., deformable solids,
cloth, liquid with surface tension, and viscoelastic materials. Like-
wise, scalability in the face of diverse interacting systems remains a
hurdle; in addition to improved numerical methods, we would like
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to explore spatial adaptivity and GPU acceleration techniques to
further improve the performance of our framework.
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