
 

 

 

Enrichment and activity of comammox Nitrospira from 

the rotating biological contactors of a municipal 

wastewater treatment system 

 

 

 

by 

 

Sarah Salim Al-Ajeel 

 

 

 

A thesis  

presented to the University of Waterloo 

 in fulfillment of the 

 thesis requirement for the degree of  

Master of Science 

 in  

Biology 

 

 

 

Waterloo, Ontario, Canada, 2021 

 

 

© Sarah Salim Al-Ajeel 2021 



 

ii 

 

 

Author’s declaration 
 

 

This thesis consists of material all of which I authored or co-authored: see Statement of 

Contributions included in the thesis. This is a true copy of the thesis, including any required final 

revisions, as accepted by my examiners.  

I understand that my thesis may be made electronically available to the public. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

iii 

 

 

Statement of contributions 

 

 

Chapter 2 Rachel Beaver prepared samples for high-throughput sequencing. Jackson Tsuji 

designed the primer set used to target the cynS gene of comammox Nitrospira MAG069.  

 

Chapter 3 Michelle McKnight assisted with sampling from the RBCs. Taylor Virgin and Ana 

Fernandez helped with genomic DNA extraction from start- and end-point sampling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 



 

iv 

 

 

Abstract 
 

Nitrification, the biological conversion of ammonia to nitrate, via nitrite, is an important 

process in both natural and engineered systems. Nitrification within wastewater treatment plants 

(WWTPs) is necessary because elevated ammonia concentrations are toxic to fish and can lead to 

eutrophication of receiving waters. Although the end product of nitrification (i.e., nitrate) also 

contributes to eutrophication, it is preferred over ammonia because nitrate has no direct oxygen 

demand and it is often converted to inert dinitrogen by denitrification. Nitrification is mediated 

by the combined activities of chemolithoautotrophic ammonia and nitrite oxidizers. The recent 

discovery of Nitrospira representatives capable of complete ammonia oxidation (comammox) to 

nitrate via nitrite has required that previously characterized systems be re-examined for potential 

contributions of comammox Nitrospira to nitrification. Although the abundance and diversity of 

comammox Nitrospira in the rotating biological contactors (RBCs) of a municipal WWTP in 

Guelph Ontario were recently examined using several cultivation-independent approaches, little 

is known about the activity of comammox Nitrospira in these biofilm-based systems. 

Additionally, lack of a suitable comammox Nitrospira enrichment culture impedes future efforts 

to explore the biochemical and physiological characteristics of these WWTP nitrifiers. 

The aim of this thesis research was to enrich comammox Nitrospira from Guelph RBCs and 

assess their contributions to nitrification within the WWTP biofilm. The enrichment cultures 

were prepared using a combination of differential size filtration and antimicrobial 

supplementation. The growth and activity of resulting enrichment cultures were examined using 

ammonia depletion and nitrate production, as well as end-point PCR targeting the amoA genes 

coding for subunit A of the ammonia monooxygenase of comammox Nitrospira, ammonia-
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oxidizing bacteria (AOB), and ammonia-oxidizing archaea (AOA). The amoA-based phylogeny 

reveals that the two comammox bacteria grown in enrichment cultures are phylogenetically 

distinct and represent novel ecotypes, both belonging to clade A sublineage II Nitrospira. 

Culture G4 is an enrichment that contains novel AOA and comammox Nitrospira species. In 

addition to possessing the genetic machinery for complete ammonia oxidation, the comammox 

Nitrospira enriched in G4 also possesses a gene that codes for a cyanase (cynS gene). The 

presence of a cyanase may allow these comammox bacteria to breakdown cyanate to ammonium 

in ammonia-limited environments. Preliminary results showed that G4 grew with ammonium 

(from cyanate breakdown), but it remains unclear whether these comammox Nitrospira were 

able to breakdown cyanate biotically using cyanase. The enrichment culture G8 contains a 

comammox Nitrospira representative that is phylogenetically distinct from known comammox 

Nitrospira representatives. Activity assays demonstrated that both enrichment cultures (G4 and 

G8) grew under ammonia-fed conditions, with complete conversion of ammonia to nitrate. 

Enrichment cultures will help to further explore physiological characteristics, such as ammonia 

and nitrite affinities, as well as alternative metabolisms of comammox Nitrospira in the RBCs. 

In addition to cultivation efforts, my research explored the potential contributions of nitrifiers 

to RBC biofilm nitrification. Microcosm incubations were established to test the effects of five 

nitrification inhibitors (i.e., c-PTIO, ATU, DCD, chlorite, and chlorate) on biofilm samples. 

Additionally, the effects of c-PTIO, ATU, DCD, and simvastatin were investigated on 

comammox Nitrospira enrichment cultures. Results from enrichment culture incubations 

indicated that comammox Nitrospira are inhibited by 10 µM ATU and 10 mM DCD and are 

insensitive to 100 µM c-PTIO and 8 µM simvastatin. In RBC biofilm suspensions, preliminary 

evidence suggests that comammox Nitrospira were inhibited by ATU, DCD, chlorite, and 
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possibly chlorate, suggesting that they are likely active members of the nitrifying community in 

the RBCs. The results of this thesis underline the complexity of the nitrifying community in the 

RBC biofilm and highlight the need for including comammox Nitrospira when evaluating 

contributions of different nitrifiers to ammonia oxidation. Multiple “omic” approaches, in 

conjunction with activity assays, will likely be valuable for examining the metabolic versatility 

and activity of comammox Nitrospira, as well as other nitrifiers, in the RBCs. Finally, work 

presented in this thesis opens new research avenues to explore with enrichment cultures to better 

characterize the potential metabolic roles for comammox Nitrospira in the RBCs, as well as 

other engineered and natural aquatic environments. 
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Chapter 1 Introduction and literature review 
 

1.1 Nitrification: Process and key “players” 

Nitrification is the biologically mediated conversion of ammonia to nitrate via nitrite. 

Historically, nitrification was considered a two-step process mediated by two phylogenetically 

distinct guilds (Figure 1.1), the ammonia- and nitrite-oxidizing bacteria (AOB and NOB, 

respectively). Ammonia oxidation is generally regarded as the rate-limiting step of nitrification. 

Aerobic ammonia oxidation was traditionally assumed to be solely performed by AOB belonging  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. The process of nitrification and key “players” (Reproduced from Santoro, 

2016). Nitrification is classically considered a two-step process, mediated by two 

phylogenetically distinct guilds (i.e., ammonia oxidizers and nitrite oxidizers). 

Comammox refers to the process of complete ammonia oxidation to nitrate by a single 

microorganism. 
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to the phylum Proteobacteria. However, this understanding was challenged in 2005 with the 

discovery and cultivation of the ammonia-oxidizing archaeon (AOA) Nitrosopumilus maritimus, 

belonging to the phylum Thermoproteota (formerly phylum Thaumarchaeaota; Venter et al., 

2004; Treusch et al., 2005; Könneke et al., 2005). More recently, two research groups reported 

the discovery and cultivation of bacteria from the genus Nitrospira that are capable of converting 

ammonium to nitrate aerobically, which is a process called complete ammonia oxidation 

(comammox; Daims et al., 2015; van Kessel et al., 2015). Another process, where ammonium 

and nitrite are converted to dinitrogen gas (N2) can be carried out under anoxic conditions by 

anaerobic ammonia-oxidizing bacteria (anammox) from multiple genera within the 

Planctomycetes phylum (reviews by Kartal et al., 2013; Stein and Klotz, 2016). 

The second step of nitrification, where nitrite is converted to nitrate (Figure 1.1), is carried 

out by NOB that belong to several phyla, including Proteobacteria, Chloroflexi, Nitrospinae, and 

Nitrospirae (Daims et al., 2001, 2016). Nitrite-oxidizing bacteria transform nitrite to nitrate, 

which can then be used as a nitrogen source by many microorganisms and eukaryotes (e.g., 

plants). Therefore, NOB play an important role in regulating nitrification, and the nitrogen cycle 

by extension (Daims et al., 2016).  

Collectively, nitrifiers release electrons and gain energy by the oxidation of inorganic 

nitrogen compounds (i.e., ammonia or ammonium) to nitrate. Total ammonium (expressed as 

NH3 + NH4
+) refers to the two forms of ammonia present in the system: the protonated 

ammonium ion (NH4
+) and unprotonated ammonia (NH3). The two forms are concomitantly 

present and their relative abundance is pH-dependent (pKa = 9.3). Thus, the availability of 

ammonia as an energy substrate for AOB, and potentially comammox bacteria and AOA, is 

largely pH-dependent (Suzuki et al., 1974; Yin et al., 2018; Kits et al., 2019).  
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1.2 Nitrification in wastewater treatment plants 

Untreated municipal wastewater contains relatively high concentrations of nitrogenous 

compounds, such as ammonia and urea. As a result, wastewater treatment plants (WWTPs) are 

engineered to promote conversion of nitrogenous compounds, such as ammonia and occasionally 

nitrate to a less bioavailable form (i.e. N2 gas), before discharge of treated effluent into receiving 

waters. Consequences of increased nitrogen availability in aquatic ecosystems include 

eutrophication and associated hypoxia, which increases harmful algal blooms and leads to fish 

kills. Biological removal of total ammonium in wastewater treatment facilities relies on 

nitrifying guilds to convert ammonia to nitrate (Figure 1.1). Nitrate is then converted to N2 gas 

by denitrification, which is a process that involves sequential reduction of NO3
- to N2, or by 

anammox bacteria, under hypoxic or anoxic conditions. Because nitrous oxide (N2O; a potent 

greenhouse gas) is emitted by nitrifiers during the process of ammonia oxidation, nitrification 

can have both positive and negative impacts on the environment (Qiao et al., 2015).  

Because of the importance of nitrifying guilds to wastewater treatment, several studies have 

examined the phylogeny, abundance, diversity, and potential roles of AOA and AOB in 

engineered water treatment systems. In contrast, relatively few studies have examined the 

abundance, biogeography, and activity of comammox bacteria in water treatment systems. Initial 

studies demonstrated the presence of comammox Nitrospira in wastewater treatment systems, 

often in high abundance and sometimes outnumbering other nitrifier groups (Pjevac et al., 2017; 

Annavajhala et al., 2018; Xia et al., 2018; Spasov et al., 2020). Given their potential relevance to 

engineered water treatment systems (i.e., wastewater treatment plants, aquarium biofilters, 

drinking water systems), comammox bacteria and their potential interactions with other nitrifiers 
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have been recognized as an important focus for current nitrogen cycle research (Lawson and 

Lücker, 2018; Mehrani et al., 2020).  

 

1.3 The genus Nitrospira  

The genus Nitrospira forms a monophyletic clade within the Nitrospirae, which is a phylum 

that includes two sister genera, Nitrospira and Leptospirillum, and the distantly related genus 

Thermodesulfovibrio. Watson et al. (1986) isolated and characterized the first Nitrospira 

representative in culture, which was derived from a water sample collected from the Gulf of 

Maine. Despite their ubiquity, most Nitrospira lineages remain recalcitrant to cultivation by 

traditional methods. Because of this, many members of the genus Nitrospira are primarily 

studied using cultivation-independent methods such as “functional gene” PCR, amplicon 

sequencing, and metagenomics (Gonzalez-Martinez et al., 2016; Pjevac et al., 2017; Beach and 

Noguera, 2019; Fujitani et al., 2020; Poghosyan et al., 2020; Spasov et al., 2020; Yang et al., 

2020). Metagenomics-based studies have reported the presence of comammox Nitrospira in 

natural and engineered environments, including wastewater and drinking water treatment 

systems, freshwater systems, aquaculture, lake sediments, and soils (Palomo et al., 2016; Camejo 

et al., 2017; Pjevac et al., 2017; Wang et al., 2017; Roots et al., 2018; Xia et al., 2018; 

Poghosyan et al., 2020; Spasov et al., 2020). Nitrospira representatives typically associate with 

other ammonia and nitrite oxidizers in these environments, suggesting that specific physiological 

adaptations exist for each of the nitrifying guilds (Bartelme et al., 2017; Pjevac et al., 2017; 

Fowler et al., 2018; Spasov et al., 2020). 
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The Nitrospira genus is divided into six monophyletic sublineages, with clear demarcations 

at the 16S rRNA gene level (i.e., sequence identities <90%; Figure 1.2). Several members of 

these sublineages affiliate with specific habitats, with most WWTP-associated Nitrospira 

assigned to sublineages I or II (Daims et al., 2001; Maixner et al., 2006; Mehrani et al., 2020). 

Nitrospira sublineage I is represented by sequences that originate from engineered systems like 

WWTPs, with Nitrospira defluvii being the only cultured representative from this group (Spieck 

et al., 2006; Nowka et al., 2015). Identified members of Nitrospira sublineage I appear to be 

closely associated to WWTP systems, whereas those linked to Nitrospira sublineage II exist in 

diverse environments and can co-exist with Nitrospira from other sublineages (Palomo et al., 

2019). Nitrospira sublineage II representatives originate from terrestrial, freshwater, and 

artificial systems (Daims et al., 2001; Altmann et al., 2003; Ushiki et al., 2013). This sublineage 

contains three NOB isolates: Nitrospira moscoviensis, which originated from a heating water 

system, and both Nitrospira japonica and Nitrospira lenta BS10, which were detected in 

activated sludge (Ehrich et al., 1995; Ushiki et al., 2013; Sakoula et al., 2018). Additionally, all 

known comammox Nitrospira species belong to sublineage II (Lawson and Lücker, 2018). 

Nitrospira sublineage III lacks cultivated representatives and currently contains only a small 

number of sequences, including two from cave systems in the Nullarbor region (Australia; 

Holmes et al., 2001). Members of Nitrospira sublineage IV consist of marine-associated 

Nitrospira that appear adapted to saline conditions and high pH (Watson et al., 1986; Off et al., 

2010; Daebeler et al., 2020). Sublineages V and VI are the most recently described Nitrospira 

sublineages. Sublineage V contains several representative sequences and only one cultured 

representative, Ca. Nitrospira bockiana, which originated from a heating system (Lebedeva et 

al., 2008). Nitrospira sublineage VI contains sequences from geothermal water streams and has 
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one cultured representative, Nitrospira calida, which was recovered from a geothermal spring 

(Lebedeva et al., 2010). Because very few representative species exist as enrichment or pure 

cultures, the biochemistry and ecophysiology of Nitrospira populations remain poorly 

investigated. 

 

 

  

Figure 1.2. 16S rRNA gene-based phylogenetic analysis of selected representatives from 

the genus Nitrospira. The six sublineages of Nitrospira are shown with Roman numerals 

on the right. Bolded Nitrospira species are cultured representatives (Reproduced from 

Sakoula et al., 2018). 
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1.4 Complete ammonia-oxidizing bacteria (comammox bacteria)  

The presence of a microorganism capable of complete ammonia oxidation (comammox) was 

predicted on the basis of kinetic theory of optimal pathway length (Costa et al., 2006). According 

to the optimal pathway theory, an organism capable of complete ammonia oxidation would have 

a higher growth yield and a lower growth rate compared to its competitors. Costa and colleagues 

argued that comammox bacteria might be found within surface-attached biofilms and in 

environments that favor microaggregates, where substrate (i.e., ammonia) concentrations are 

limiting, and conditions favor slow-growing microorganisms. Two studies later reported the 

discovery and cultivation of three novel Nitrospira species capable of complete ammonia 

oxidation (Daims et al., 2015; van Kessel et al., 2015). Both studies detected comammox 

bacteria by examining the metagenomes of enrichment cultures obtained from biofilms in 

oligotrophic environments. The two studies examined Nitrospira metagenomic bins encoding 

gene loci located on the same metagenome-assembled genome (MAG) involved in ammonia and 

nitrite oxidation (ammonia monooxygenase; AMO and nitrite dehydrogenase; NXR, 

respectively). Along with chemical analyses, their findings suggested that Nitrospira present in 

their enrichment cultures possessed the genetic repertoire to perform complete ammonia 

oxidation. This was a surprising finding because members of the genus Nitrospira were 

commonly assumed to be strict NOB (Daims et al., 2001).  

Comammox bacteria were overlooked in previous surveys that relied on 16S rRNA gene 

amplicon sequencing. The genus Nitrospira is diverse and widespread in many natural and 

engineered environments (Pjevac et al., 2017) and, like the 16S rRNA gene, the nxrA and nxrB 

genes (genes that encode for subunits A and B of the nitrite oxidoreductase enzyme involved in 

nitrite oxidation) cannot be used to distinguish between comammox Nitrospira and canonical 



 

8 

 

Nitrospira that are interspersed within Nitrospira sublineage II (Daims et al., 2015; van Kessel et 

al., 2015; Lawson and Lücker, 2018). To distinguish comammox Nitrospira from canonical 

Nitrospira, additional evidence from functional gene analyses is required. Ammonia 

monooxygenase (AMO) is an enzyme responsible for catalyzing the first step of ammonia 

oxidation (ammonia to hydroxylamine) and is made up of three subunits; AmoA, AmoB, and 

AmoC, and their respective genes (i.e., amoA, amoB, and amoC) can be found in all aerobic 

ammonia oxidizers. Compared to AOB and AOA, comammox Nitrospira encode a 

phylogenetically unique amoA gene (Daims et al., 2015; van Kessel et al., 2015; Camejo et al., 

2017). Because of this, earlier PCR primer sets designed to target the amoA genes of AOA and 

AOB did not amplify the amoA genes of comammox Nitrospira (Rotthauwe et al., 1997; Treusch 

et al., 2005; Junier et al., 2008; Meinhardt et al., 2015). The amoA genes of comammox 

Nitrospira form two monophyletic clades called clade A and clade B (Daims et al., 2015; van 

Kessel et al., 2015; Pjevac et al., 2017). 

Since the discovery of comammox Nitrospira, there have been several primer sets designed 

to target the amoA and amoB genes of comammox bacteria (Bartelme et al., 2017; Keene et al., 

2017; Pjevac et al., 2017; Fowler et al., 2018; Xia et al., 2018; Beach and Noguera, 2019; Cotto 

et al., 2020). The widely used primer set developed by Pjevac et al. (2017) targets the amoA 

gene of clade A and clade B Nitrospira separately, making this primer set suitable for general 

surveys and quantification of comammox Nitrospira in the environment. Other research groups 

designed specific primer pairs that target clade A comammox Nitrospira (Keene et al., 2017; Xia 

et al., 2018). However, primer sets by Keene et al. (2017) and Xia et al. (2018) detect and 

quantify a small proportion of overall comammox Nitrospira amoA genes and, more importantly, 

neither primer set can be used to amplify the amoA genes of clade B comammox. 
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1.5 Comammox Nitrospira in wastewater treatment plants  

Although many studies have focused on canonical (NOB) Nitrospira within WWTP 

environments (Daims et al., 2001; Mota et al., 2005; Ushiki et al., 2013; Pester et al., 2014; 

Gruber-Dorninger et al., 2015; Yao and Peng, 2017), primers targeting comammox Nitrospira 

allow for assessments of the diversity and distributions of these nitrifiers as well. Comammox 

Nitrospira were initially found in WWTPs by searching metagenomic databases for MAGs that 

encode gene clusters involved in the complete ammonia oxidation pathway (i.e., AMO and NXR 

genes) assigned to the genus Nitrospira (Daims et al., 2015; van Kessel et al., 2015; Pjevac et 

al., 2017). Pjevac et al. (2017) reported that comammox Nitrospira amoA genes in activated 

sludge account for approximately 14 – 34% of the total amoA gene copy number. Given their 

relatively high abundance, this finding implies that comammox Nitrospira can potentially 

contribute to nitrification in this wastewater treatment system. Similarly, a study by Roots et al. 

(2019) used qPCR to show that comammox Nitrospira were dominant ammonia oxidizers in a 

nitrification reactor fed with municipal wastewater. Likewise, Spasov et al. (2020) used a 

combination of metagenomics and qPCR to survey the abundance and diversity of ammonia 

oxidizers in the rotating biological contactors (RBCs; a type of biological treatment system) of a 

municipal WWTP, showing that these systems are dominated by several comammox Nitrospira 

populations. Earlier work by Sauder et al. (2017) employed CARD-MAR-FISH technique to 

show that Nitrospira from the RBCs assimilate labelled bicarbonate. As suggested by Spasov et 

al. (2020), if many of these Nitrospira were comammox bacteria, then this implicates 

comammox Nitrospira activity. However, exploration of the relative contribution of the various 

ammonia-oxidizing microbes (AOMs) to ammonia oxidation activity requires additional 

methods, such as the use of differential nitrification inhibitors. 
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Despite the significance of nitrifying guilds in wastewater treatment, few studies have 

investigated the activity and diversity of comammox Nitrospira in WWTPs compared to AOA 

and AOB. Some evidence suggests that comammox Nitrospira contribute directly to WWTP 

nitrification. To study the functional relevance of comammox Nitrospira in a full-scale 

wastewater treatment plant, Zheng et al., (2019) used reverse transcriptional quantitative PCR 

(RT-qPCR) to target the amoA genes of all nitrifiers present in the activated sludge of a full-scale 

WWTPs. Their results showed that amoA transcript abundance of comammox bacteria was 

significantly higher than those from AOA and AOB, indicating that comammox Nitrospira were 

the most active members of the nitrifying guilds present in this activated sludge. Similarly, others 

have used a combination of DNA and RNA stable-isotope probing (DNA-SIP and RNA-SIP, 

respectively) and 16S rRNA gene amplicon sequencing to identify active nitrifiers in a sand filter 

community, revealing that Nitrospira of sublineage II dominated carbon assimilation in the 

biofilter (Gülay et al., 2020). Overall, the role of comammox Nitrospira in wastewater systems 

remains largely unexplored. Understanding the contributions of comammox Nitrospira to 

nitrification is particularly relevant from the perspective of biological removal of ammonia from 

the wastewater.  

 

1.6 Cultivated representatives of comammox Nitrospira  

Currently, there are four described comammox Nitrospira species (Table 1.1), all of which 

belong to clade A comammox. Nitrospira members are considered difficult to cultivate in batch 

cultures because of their slow growth rates, competitive growth by other nitrifiers, contamination 

issues, and low biomass yields (Daims and Lücker et al., 2016; Koch et al., 2018). 
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Table 1.1. Comparison of selected characteristics of cultivated comammox Nitrospira representatives 

Organism Source of 
inoculum 

Cultivation 
status 

Ammonium 
in media 

(mM) 

Inhibitory 
ammonium 

concentration 
(mM) 

Apparent 
ammonia affinity 

(Km app; nM) 

Possible 
alternate 
substrate 

Cultivation 
temperature 

(°C) 

Reference 

Nitrospira 
inopinata 

Deep oil well Pure culture 0.5 ND 49–83 Urea 46 Daims et al., 
2015 

Ca. 
Nitrospira 
nitrosa 

Recirculation 
aquaculture 
system 

Enrichment 
culture 

0–0.075 ND ND Urea 23 van Kessel 
et al., 2015 

Ca. 
Nitrospira 
nitrificans 

Recirculation 
aquaculture 
system 

Enrichment 
culture 

0–0.075 ND ND Urea 23 van Kessel 
et al., 2015 

Ca. 
Nitrospira 
kreftii 

Recirculation 
aquaculture 
system biofilter 

Enrichment 
culture 

0.01 0.025 ~36 Urea 20–22 Sakoula et 
al., 2020 

OTU2-JP-
2017 and 
OTU3-JP-
2017 

Nitrifying 
granules 

Enrichment 
culture 

0.29–1.77 ND ND ND 23 Fujitani et al., 
2020 

Nitrospira 
OTU 1,2, 3, 
and 4 

Acidic soil of a 
tea field 

Enrichment 
culture 

<0.40 300  ND ND 23 Takahashi et 
al., 2020 

ND = not determined. 
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As a result of this cultivation bottleneck, many physiological and genetic characteristics of 

comammox Nitrospira are inferred from cultivation-independent approaches, such as 

metagenomics (Camejo et al., 2017; Palomo et al., 2018, 2019; Ushiki et al., 2018; Poghosyan et 

al., 2019; Spasov et al., 2020; Yang et al., 2020). However, a highly enriched or pure culture is 

typically required to experimentally validate genomic predictions and acquire detailed 

information on biochemistry and metabolism. Due to cultivation challenges, knowledge about 

the required growth parameters, inhibitory compounds, substrate affinity, and the impact of 

environmental factors on the growth and activity of Nitrospira are limited (Koch et al., 2018; 

Lawson and Lücker, 2018). All currently cultivated comammox Nitrospira belong to clade A 

comammox, with no clade B members isolated yet. Existing comammox Nitrospira cultures 

originate from oligotrophic environments (Table 1.1; Daims et al., 2015; van Kessel et al., 

2015). For example, Nitrospira inopinata, the only pure comammox Nitrospira culture thus far, 

was derived from biofilm samples from the walls of an oil pipe maintained in hot water (Daims 

et al., 2015). Similarly, Candidatus Nitrospira nitrosa and Ca. Nitrospira nitrificans, both 

currently maintained as enrichment cultures, originate from a trickling filter of a recirculating 

aquaculture system, where substrate concentrations are also limiting (van Kessel et al., 2015). 

Although Nitrospira coexist with other ammonia and nitrite oxidizers in the same WWTP 

(Daims et al., 2006; Koch et al., 2014; Roots et al., 2019; Spasov et al., 2020), their growth 

requirements remain unknown.  

Because cultivation protocols differ widely, Nowka et al. (2015) proposed a general 

methodological approach that can be used to isolate and purify Nitrospira bacteria. The proposed 

approach involves a combination of mechanical disruption, density gradient centrifugation, 

optical tweezers, and cell sorting techniques for cell separation, followed by antibiotic treatment 
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for inhibition of contaminating heterotrophs (Nowka et al., 2015; Sakoula et al., 2020). 

However, a major challenge remains to grow sufficient biomass for follow-up experiments. 

Recently, Sakoula et al. (2020) enriched a novel comammox Nitrospira species from an 

aquaculture biofilter, termed Ca. Nitrospira kreftii (Table 1.1). The genome of Ca. N. kreftii 

shows a high similarity to Ca. N. nitrificans, in terms of metabolic features. Like N. inopinata, 

Ca. N. kreftii shows high apparent ammonia affinity (Km(app)NH3 ≈ 0.036 µM), but unlike N. 

inopinata, Ca. N. kreftii seems to have a higher apparent nitrite affinity (Km(app)NO2 ≈ 14 µM 

for Ca. N. kreftii compared to Km(app)NO2 ≈ 450 µM for N. inopinata). Taken together, these 

results suggest that Ca. N. kreftii, like other characterized comammox Nitrospira, are adapted to 

substrate-limited environments. Interestingly, Ca. N. kreftii is the first reported comammox 

Nitrospira that is inhibited by ammonium concentrations higher than 25 µM (a relatively low 

ammonium concentration). Inhibition by ammonium at such concentrations further implies that 

Ca. N. kreftii is adapted to oligotrophic environments (Sakoula et al., 2020). Variations in 

physiological features among comammox Nitrospira populations highlights the importance of 

studying multiple representatives to understand the potential ecological importance and factors 

involved in the niche differentiation of this ubiquitous group. 

Several size-based enrichment strategies have been used to isolate and enrich ammonia-

oxidizing microorganisms. For example, Ushiki et al. (2013) used a cell-sorting system to 

remove larger cell aggregates and isolate Nitrospira. Cell-sorting uses the shape of micro-

aggregates to sort and therefore the size of the micro-aggregates can be used to select for 

Nitrospira micro-colonies. Similarly, size-based selection has been used to isolate and enrich 

several AOA species, including Ca. N. aquarius (Sauder et al., 2018), Ca. Nitrosoarchaeum 

koreensis (Park et al., 2014), and Nitrosopumilus maritimus (Könneke et al., 2005). Most 
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characterized AOB species are larger than 1 µm (in width), therefore size fractionation using 

various pore size filters can represent a good approach for isolating smaller microorganisms. 

Like several AOA species, Nitrospira cells tend to be small, ranging from 0.2 – 0.5 µm in width 

(Table1.2). For example, N. inopinata has spiral-shaped cells between 0.18 – 0.30 µm in width, 

making them substantially smaller than AOB and some AOA (Table 1.2). Hence it may be 

suitable to apply size-based filtration for physical enrichment of comammox Nitrospira, 

especially if other AOA and AOB species present have a larger cell size. As demonstrated in this 

thesis, size-based selection is a useful technique to use in combination with other traditional 

enrichment methods or cell sorting.  
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Table 1.2. Cell morphology and size range of selected nitrifier species 

Microorganism Cell morphology Cell width 
(µm) 

Reference 

Comammox Nitrospira 
   

Nitrospira inopinata spiral, S-shaped cells 0.18–0.30 Daims et al., 
2015 

AOA 
   

Ca. Nitrosotenuis aquarius slender rod morphology, 
with thin appendages 

~0.30–0.40 Sauder et al., 
2018 

Ca. Nitrosoarchaeum limnia rod morphology, with thin 
appendages 

0.19–0.27 Blainey et al., 
2011 

Ca. Nitrosotenuis uzonensis rod morphology, with thin 
appendages 

0.20–0.30 Lebedeva et al., 
2013 

Ca. Nitrosotenuis cloacae cocci and no appendages 1.0–1.2 Li et al., 2016 

Ca. Nitrosocomicus hydrocola small cocci ~1.3 Sauder et al., 
2017 

Nitrosocosmicus franklandus irregular cocci in chains or 
clusters 

~1.1 Lehtovirta-
Morley et al., 
2016 

Nitrosopumilus maritimus rod morphology ~0.20 Könneke et al., 
2005 

Nitrososphaera gargensis small irregular-shaped 
cocci 

~0.90 Hatzenpichler et 
al., 2008 

AOB 
   

Nitrosomonas eutropha rod shaped cells 
(sometimes in chains) 

1.0–1.3 Koops et al., 
1991 

Nitrosomonas nitrosa spherical-shaped, short, 
rods 

1.3–1.5 Koops et al., 
1991 

Nitrosomonas sp. JPCCT2 short rods 0.5–0.7 Itoh et al., 2013 

Nitrosomonas europaea oval, rod, shaped cells 1.0–1.2 Meiklejohn, 
2009 

NOB Nitrospira 
   

Nitrospira lenta helical shaped cells 0.2–0.3 Nowka et al., 
2015 

Nitrospira japonica curved rods 0.3–0.5 Ushiki et al., 
2013 

Nitrospira moscoviensis curved rods 0.2–0.4 Ehrich et al., 
1995 
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1.7 Comammox Nitrospira metabolic versatility  

All characterized comammox Nitrospira assimilate inorganic carbon and gain energy by 

oxidizing either ammonia or nitrite, making them obligate chemolithoautotrophs (Daims et al., 

2015; van Kessel et al., 2015; Daims et al., 2016). Nonetheless, several canonical Nitrospira 

were previously shown to use alternate energy substrates, such as formate (CH2O2), hydrogen 

(H2), and cyanate (CNO-) (Koch et al., 2014, 2015; Palatinszky et al., 2015). Such metabolic 

flexibility suggests that members of this genus may occupy distinct niches and their ecological 

functions may extend beyond nitrogen cycling (Daims et al., 2016). Similarly, genomics-based 

studies have demonstrated that comammox representatives N. inopinata, Ca. N. nitrificans, Ca. 

N. nitrosa, and Ca. N. kreftii have the genetic machinery needed for ammonia and nitrite 

oxidation, as well as urea utilization (Daims et al., 2015; van Kessel et al., 2015; Camejo et al., 

2017; Palomo et al., 2018; Sakoula et al., 2020). Although ureolytic enzymes and transporters 

may seem counterintuitive for canonical Nitrospira, because they do not use ammonia directly as 

an energy substrate (although they may assimilate ammonia as a nitrogen source to make amino 

acids), these NOB convert urea into free ammonia that can be used by ammonia oxidizers, who 

in turn provide nitrite needed for energy conservation (Koch et al., 2015). The ability to degrade 

urea may be particularly important in acidic soils, where ammonia is often limiting and urea is 

the more abundant nitrogen substrate (Burton and Prosser, 2001). Recently, Zhao et al. (2021) 

demonstrated that comammox Nitrospira can be enriched using urea or nitrite as the nitrogen 

source. The authors suggest that although comammox Nitrospira lack known nitrite transporters 

(i.e., comammox Nitrospira are incapable of growing solely on nitrite as an energy source), it is 

possible that other microbial community members may convert nitrite to nitrate, then to 

ammonia via dissimilatory nitrate reduction to ammonium (DNRA). The authors were also able 
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to show that urea can specifically enrich for comammox Nitrospira and increase nitrification 

potential of reactor cultures.  

In addition to the ability to transport and use nitrite and urea as energy sources, several 

canonical Nitrospira are capable of producing ammonium intracellularly by degrading cyanate. 

Cyanate forms naturally through urea or cyanide decomposition (Widner et al., 2013; 

Mooshammer et al., 2020) and can also be produced intracellularly from the dissociation of 

carbamoyl phosphate, which is a precursor of arginine and pyrimidine (Marina et al., 1999; 

Purcarea et al., 2003). Canonical Nitrospira, like N. moscoviensis, can convert cyanate into 

ammonium and carbon dioxide using cyanate hydratase (“cyanase”) (Palatinszky et al., 2015), 

but this ability is not restricted to canonical Nitrospira. For example, the AOA Nitrososphaera 

gargensis is also capable of converting cyanate to ammonium (Palatinszky et al., 2015). More 

recently, Spasov et al. (2020) and Yang et al. (2020) reported the presence of cyanase in several 

comammox MAGs derived from WWTPs. Yang and colleagues (2020) used a combination of 

metagenomics and metatranscriptomics to show that, despite the detection of cyanase genes in 

the MAG, no in situ transcription of the cynS gene was observed. However, the authors did 

indicate that it is possible that cyanate may be degraded by a yet unknown pathway. The ability 

to break down cyanate to ammonium could be useful for comammox Nitrospira because it would 

allow them to compete in environments where ammonia may be limiting, and it would also help 

rid cells of the cytotoxic cyanate (Stark, 1972; Kamennaya et al., 2008).  

Lastly, several studies have reported the presence of the genes encoding enzymes needed for 

hydrogen oxidation in comammox Nitrospira genomes (Poghosyan et al., 2019; Spasov et al., 

2020; Yang et al., 2020). This was not a surprising finding, given that N. moscoviensis, a 

canonical Nitrospira, was shown to oxidize hydrogen instead of nitrite under oxic conditions 
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(Koch et al., 2014). Overall, these findings reveal the potential metabolic versatility of 

comammox Nitrospira. It appears that some comammox Nitrospira may be able to use 

alternative substrates other than ammonia for energy conservation. Additional studies are still 

required to validate whether comammox Nitrospira can use urea, formate, hydrogen, and cyanate 

as alternative electron sources for energy conservation. 

 

1.8 Nitrification inhibitors 

There are many ways to study the relative contributions of AOA, AOB, and comammox 

bacteria to nitrification. Generally, researchers have used DNA or RNA stable-isotope probing 

(SIP) to assess substrate incorporation into biomass associated with ammonia oxidation 

(Pornkulwat et al., 2018; Wang et al., 2019; Gülay et al., 2020; He et al., 2020). Other groups 

have employed techniques like microautoradiography-fluorescence in situ hybridization (MAR-

FISH) for monitoring the uptake of 14C-labelled bicarbonate associated with ammonia oxidation 

(Hatzenpichler et al., 2008; Sauder et al., 2017). An alternative approach for assessing the 

relative contributions to nitrification is by measuring rate changes for ammonia depletion and 

nitrite/nitrate accumulation during the incubation of microcosms with differential inhibitors. 

Differential inhibitors are often used alone but can also be combined with other methods, like 

DNA- or RNA-SIP, to indirectly examine nitrifiers actively assimilating bicarbonate in the 

presence of ammonia from environmental samples (Gülay et al., 2020). It is important to note 

that AOB, AOA, and comammox bacteria all use ammonia as their energy-generating substrate, 

yet they use distinct enzyme combinations for oxidizing ammonia (e.g., archaeal genomes lack 

HAO homologues; Caranto and Lancaster, 2017; Lancaster et al., 2018). Differences in 

enzymology can allow for differential inhibition of these nitrifying groups.  
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Ammonia oxidation inhibitors, such as dicyandiamide (DCD), acetylene, and 3,4-

dimethylpyrazole phosphate (DMPP) are commonly used for laboratory experiments that assess 

the activity and relative contributions of ammonia oxidizers to nitrification (Offre et al., 2009; 

Lehtovirta-Morley et al., 2013; Fu et al., 2019; Obed et al., 2019; Li et al., 2020). General 

nitrification inhibitors, like DCD and DMPP, are thought to work by inactivation of the ammonia 

monooxygenase enzyme in AOA, AOB, and comammox Nitrospira (Subbarao et al., 2009; Shen 

et al., 2013; Li et al., 2020). Acetylene is considered a “suicide substrate” that inhibits ammonia 

oxidation in both AOB and AOA irreversibly (Hynes and Knowles, 1978; Taylor et al., 2010). 

Other inhibitors, like allythiourea (ATU), octyne, allylsulfide, and organohydrazines, were 

traditionally used to inhibit ammonia oxidation by AOB, which are inhibited at lower 

concentrations compared to AOA (Bedard and Knowles, 1989; Neufeld and Knowles, 1999; Wu 

et al., 2012; Taylor et al., 2015; Sauder et al., 2016). For example, ATU can inactivate the AMO 

activity of Nitrosomonas europaea in pure culture (Hooper and Terry, 1973); inhibition occurs at 

concentrations between 8 and 80 µM (Ginestet et al., 1998), and reversible chelation of copper in 

the active site of the ammonia oxygenase enzyme is likely the mechanism (Hyman et al., 1990). 

Others showed that AOA are less sensitive to inhibition by ATU at concentrations known to 

inhibit AOB (Hatzenpichler et al., 2008; Taylor et al., 2010; Santoro et al., 2011); higher 

concentrations (e.g., >100 µM) can inhibit AOA activity (Taylor et al., 2010; Santoro et al., 

2011). The reason why AOB and AOA respond differently to inhibition by ATU may be related 

to differences in sensitivity thresholds of copper-containing proteins like ammonia 

monooxygenase and nitrite reductase (Gwak et al., 2020). More recently, ATU was also shown 

to inhibit comammox bacteria at concentrations similar to levels inhibitory to AOB (van Kessel 

et al., 2015); this is not surprising given that comammox Nitrospira share similar ammonia 
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oxidation machinery as AOB (Palomo et al., 2018). Likewise, preliminary data suggest that 

comammox Nitrospira are also sensitive to octyne at low concentrations (Taylor et al., 2017), 

which highlights that caution is needed when selecting inhibitors for sample incubations.  

To study ammonia oxidation resulting from AOA activity, several groups have previously 

used nitric oxide scavengers like PTIO to elucidate the relative contributions of AOB and AOA 

to nitrification in the environment (Shen et al., 2013; Sauder et al., 2016; Fu et al., 2018). Nitric 

oxide scavengers interfere with the nitric oxide-based electron shuttling used in the 

hydroxylamine pathway (Jung et al., 2014). Although both AOA and AOB generate nitric oxide 

as an intermediate in the ammonia oxidation pathway, nitric oxide scavengers, like PTIO, inhibit 

AOA at low concentration because they exert strict control over the production and uptake of 

nitric oxide (Shen et al., 2013; Martens-Habbena et al., 2015). As such, AOA are inhibited at 

lower PTIO concentrations (~18– 30 µM) compared to AOB (>300 µM). Even though 

comammox Nitrospira and AOB share similar ammonia oxidation machinery, the nitric oxide 

kinetics of Nitrospira inopinata are more similar to AOA; both exert strict control over the 

liberation and consumption of nitric oxide (Kits et al., 2019). As such, it is unsurprising that 

PTIO inhibits comammox bacteria. Recently, Kits et al. (2019) showed that N. inopinata cells 

exert tight control over nitric oxide production and consumption and thus have a lower inhibition 

threshold by PTIO compared to AOB (e.g., N. inopinata was completely inhibited at 33 µM – 

100 µM). As a result, PTIO alone can no longer be used as a reliable selective inhibitor of AOA 

activity.    

Other than PTIO, several other AOA-specific inhibitors have been reported. For example, 

Vajrala et al. (2014) showed that the eukaryotic protein synthesis inhibitor cycloheximide can be 

used to elucidate the relative contributions of AOA and AOB to ammonia oxidation. The authors 
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cautioned that the effectiveness of cycloheximide as a selective AOA inhibitor may not apply to 

all AOA lineages and that more research is needed to confirm their findings with other AOA 

representatives. Others have demonstrated that simvastatin, a compound previously shown to 

inhibit archaeal cell membrane synthesis, can be used as a selective inhibitor of AOA (Gottlieb et 

al., 2016; Zhao et al., 2020). They suggest that statins are effective at targeting archaea because 

they inhibit the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, a crucial enzyme in 

the cholesterol synthesis pathway used for cell membrane synthesis by archaea. One drawback of 

using simvastatin for environmental samples is that simvastatin is DMSO soluble. Often, when 

dealing with environmental samples, higher concentrations of inhibitors are needed to achieve 

similar effects to those observed in pure cultures. Because of DMSO toxicity, the use of high 

concentrations of simvastatin may not be a realistic option for environmental samples (Zhao et 

al., 2020).  

To date, there are a few published efforts to explore the effects of nitrification inhibitors on 

comammox Nitrospira. Most studies have focused on the response of comammox Nitrospira to 

commercially available nitrification inhibitors like DCD, DMPP, and ATU within the context of 

soil nitrification (Obed et al., 2019; Li et al., 2020; Wang et al., 2020). These studies indicate 

that the abundance and activity of comammox Nitrospira was decreased by the addition of 

nitrification inhibitors. There are no known comammox-specific inhibitors, but Tatari et al. 

(2017) proposed that chlorate may be a useful indicator of activity by comammox bacteria. 

Chlorate was shown to inhibit nitrite oxidation but not ammonia oxidation activity. Still, its 

selectivity for inhibition of comammox activity has been questioned (Tatari et al., 2017; Yang et 

al., 2020). The mechanism of inhibition by chlorate is thought to be due to the conversion of 

chlorate to chlorite by NXR activity and that chlorite is the actual inhibitor of nitrite oxidation 
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(Hynes and Knowles, 1983). Thus, the use of chlorate as a differential inhibitor of comammox 

activity in mixed cultures would require that the process of ammonia oxidation not be affected 

by the addition of chlorate (Hynes and Knowles, 1983; Tatari et al., 2017). Given tremendous 

phylogenetic diversity of Nitrospira and ammonia-oxidizing archaea, there may be lineage-

specific sensitivities to various inhibitors. Preliminary testing of chemical inhibitors against 

different AOA, AOB, and comammox Nitrospira representatives is essential before their use in 

new environments.  

 

1.9 Research overview 

Many WWTPs employ a tertiary wastewater treatment step where nitrogenous compounds 

(e.g., ammonia and nitrate), as well as other dissolved nutrients, can be removed biologically. 

One form of tertiary wastewater treatment, as used by the Guelph WWTP, employs rotating 

biological contactors (RBCs; Figure 1.3) to improve water quality before discharge into 

receiving waters. The RBCs involve fixed discs that are coated with a nitrifying biofilm. 

Wastewater enters the RBC system from the secondary clarifier, where ammonia concentrations 

are relatively low. The wastewater is then fed to one of four treatment trains of the RBCs 

(northwest, southwest, northeast, and southeast), and the trains are further divided into eight 

stages.  
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Recent findings demonstrate that comammox Nitrospira dominate among the assessed 

nitrifiers in the RBCs of the Guelph WWTP (Spasov et al., 2020). Despite their high abundance 

and diversity, the contribution of comammox Nitrospira to RBC nitrification remains unknown. 

The overall goals of my research were to establish an enrichment of comammox Nitrospira from 

the RBCs, using filtration as a size selection method (Chapter 2), and to examine the activity of 

comammox Nitrospira when in mixed communities using differential inhibitors (Chapter 3). The 

research in this thesis established a protocol for the enrichment of comammox Nitrospira that 

can be tested on samples from other environments (objective 1; Chapter 2) and assessed the 

effects of various nitrification inhibitors on the relative activity of nitrifiers in the RBCs and in 

enrichment cultures (objective 2; Chapter 3). Chapter 2 reports on two novel comammox 

Nitrospira enrichments were generated from Guelph’s RBCs and the data in Chapter 3 show how 

nitrification inhibitors can offer a perspective on the possible contributions of comammox 

Nitrospira to the apparently complex nitrification processes in the Guelph RBCs.  

  

Figure 1.3. The layout of rotating biological contactors (RBCs) at the Guelph WWTP, 

Ontario, Canada (reproduced from Sauder et al., 2012). 
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Chapter 2 Establishment of novel comammox Nitrospira cultures from the 

RBC biofilm 
 

2.1 Introduction 

Ammonia and nitrate can be toxic for fish and cause harmful algal blooms when left 

untreated in sewage. Nitrification, coupled with denitrification, are key processes for wastewater 

treatment because the conversion of ammonia and nitrite to nitrate (followed by conversion of 

nitrate to N2 gas) helps protect receiving waters and ensure adherence to municipal wastewater 

guidelines. Ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were 

traditionally thought to mediate aerobic ammonia oxidation pathways, whereas nitrite-oxidizing 

bacteria (NOB) were understood to be solely responsible for the aerobic process of nitrite 

oxidation. More recently, this model of nitrification was challenged with the identification and 

cultivation of the first complete ammonia-oxidizing bacteria (comammox) from the genus 

Nitrospira (Daims et al., 2015; van Kessel et al., 2015). Comammox Nitrospira can complete 

both ammonia and nitrite oxidation steps within the same microorganism. Although the 

distribution and diversity of comammox Nitrospira in both engineered and natural systems have 

been studied through cultivation-independent approaches, enrichment of comammox Nitrospira 

remains a challenge. To fully explore the physiology and metabolism of comammox Nitrospira, 

and to be able to test hypotheses generated by cultivation-independent methods, an enrichment 

culture or pure cultures are needed. 

To date, only one comammox Nitrospira enrichment culture exists from a wastewater 

treatment system (obtained from nitrifying granules; Fujitani et al., 2020). Therefore, this work 

aimed to enrich comammox Nitrospira from biofilm acquired from the rotating biological 
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contactors (RBCs) of the Guelph municipal WWTP. This was accomplished using filtration and 

addition of acriflavine (an antimicrobial) to batch cultures. This chapter describes the enrichment 

of two novel clade A comammox Nitrospira species. 

 

2.2 Materials and methods 

2.2.1 Sample collection 

Biofilm samples were collected with a sterile swab from the northwest train stage 1 (NW1) of 

RBCs from the WWTP in Guelph, Ontario (Table 2.1). The biofilm material was collected by 

swabbing multiple surfaces on the contactor several times to make a turbid cell suspension. The 

area sampled was roughly 15 x15 cm2. RBC water was also collected from NW1 using wide-

mouth polypropylene sampling bottles. The NW1 RBC was chosen for sampling because it was 

shown previously to have a relatively high comammox Nitrospira abundance (Spasov et al., 

2020). The collected biofilm was suspended in approximately 500 mL of RBC water and stored 

on ice until returned to the lab.  

Table 2.1. Description of sampling location and associated experiment 

Sampling date Sampling 
location 

Experiment pH Ammonia 
(µM) 

Nitrite 
(µM) 

Nitrate 
(µM) 

June 11, 2018 RBC 
NW1 

Preliminary 
testing for 
enrichment 
cultures set up 
(Chapter 2)  

7.54 10.0 22.2 562 

December 17, 
2018 

RBC 
NW1 

Enrichment 
cultures set up 
(Chapter 2) 

7.20 60.6 BDL 524 

November 18, 
2019 

RBC 
NW1 

Short term activity 
with inhibitors 
(Chapter 3) 

7.20 23.1 BDL 245 

BDL = Below detection limit. Water chemistry measurements were determined based on 

established protocols (Miranda et al., 2001; Meseguer-Lloret et al., 2002).  
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2.2.2 Enrichment culture set up 

Preliminary cultivation efforts (June 2018) used 5 mL of biofilm material (referred to in 

section 2.2.1) suspended in either 5 mL RBC water (as medium) or artificial basal salts medium 

(AOM; the total volume was 10 mL) that was then filtered through a 0.2-µm or 0.45-µm filter 

(see Table 2.2 and Figure 2.1 for details). The resulting “preliminary” enrichments were 

incubated at room temperature or 37°C for one month. End-point PCR targeting comammox and 

AOB amoA genes and AOA 16S rRNA genes was used to assess filtration as a selection method 

for comammox bacteria.  

RBC NW1 was sampled again (December 2018) and new “G-series” enrichment cultures 

were established (Table 2.3) by incubating filtered RBC biofilm with 0.1-µm filtered RBC water 

or AOM medium. 

A 25 mL aliquot of the December 2018 biofilm suspension was gently vortexed to disrupt 

clumps and then filtered through a 0.45-µm filter into 25 mL of 0.1-µm filtered RBC water. This 

process was repeated to establish duplicate cultures. Concurrently, another 25 mL of biofilm 

suspension was gently vortexed prior to filtration through a 0.2-µm filter and into 25 mL of 0.1-

µm filtered RBC water, or into 25 mL of AOM medium. Lastly, 25 mL was transferred directly 

into 25 mL of 0.1-µm filtered RBC water (“unfiltered cell suspensions”; see Figure 2.1 for 

enrichment culture set up). All G-series cultures were grown in 100 mL borosilicate glass bottles 

(VWR, Mississauga, Canada) with polypropylene plastic caps (VWR, Mississauga, Canada). 

Enrichment cultures were supplemented with 0.5 mM ammonium chloride (NH4Cl) and 

maintained at room temperature (~22°C) or 37°C in the dark and without shaking.  
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Table 2.2. Description of the “preliminary” enrichment cultures set up (June 2018) 

Culture Description Incubation temperature Growth media 

Pr1 0.2-µm filtered suspension Room temperature (~22°C) RBC water 

Pr2 0.45-µm filtered suspension  Room temperature (~22°C) RBC water 

Pr3 0.2-µm filtered suspension  Room temperature (~22°C) AOM medium 

Pr4 0.45-µm filtered suspension Room temperature (~22°C) AOM medium 

Pr5 0.2-µm filtered suspension  37°C RBC water 

Pr6 0.45-µm filtered suspension  37°C RBC water 

Pr7 0.2-µm filtered suspension  37°C AOM medium 

Pr8 0.45-µm filtered suspension 37°C AOM medium 

Initial enrichment cultures were 10 mL in volume. See Figure 2.1 for a flowchart of the 

enrichment cultures set up. 
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Table 2.3. Description of the “G-series” enrichment cultures set up (December 2018) 

Culture Description Incubation temperature Growth media 

G1 0.2-µm filtered suspension Room temperature (~22°C) RBC water 

G2 0.45-µm filtered suspension  Room temperature (~22°C) RBC water 

G3 0.2-µm filtered suspension  37°C AOM medium 

G4 10% (v/v) transfer from G2 Room temperature (~22°C) AOM medium 

G5 0.2-µm filtered suspension  37°C RBC water 

G6 0.45-µm filtered suspension  37°C RBC water 

Gu7 Unfiltered cell suspension Room temperature (~22°C) RBC water 

Gu8 Unfiltered cell suspension 37°C RBC water 

G8 10% (v/v) transfer from G4 filtered 
through a 0.8-µm filter 

Room temperature (~22°C) AOM medium 

G9 10% (v/v) transfer from G2 37°C AOM medium 

G10 10% (v/v) transfer from G4 30°C AOM medium 

Note that the culture G4 was set up five months after the set up of G2 enrichment culture. G8 

was created 7 months after the set up of G4, and G10 was created four months after the set up of 

G4. See Figure 2.1 for a flowchart of the enrichment cultures set up. 
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The cultures were followed for activity using colorimetric assays to monitor the depletion of 

total ammonium and the production of nitrite and nitrate over time. The presence and absence of 

amoA genes from AOA, AOB, and comammox Nitrospira were also monitored using end-point 

PCR. With respect to G-series cultures, once a comammox Nitrospira amoA signal was detected 

using end-point PCR and the culture was active (i.e., ammonia depletion with nitrate 

Figure 2.1. Schematic showing “preliminary” and “G-series” enrichment cultures set up. Bottles 

shown with white precipitate represent incubations in AOM medium. Bottles shown with brown 

suspension represent incubations in filtered RBC water. Unfiltered suspensions were set up directly 

from the original suspension. All cultures were set up in duplicate. Bolded cultures (G4 and G8) 

are the only enrichments that were pursued further. Figure was created with BioRender.com 

 

 

Figure 2.1. End-point PCR targeting the three nitrifying guilds present in the preliminary 

enrichments. Genomic DNA used for PCR was extracted one month following initial inoculation 

into AOM medium (i.e., Pr3 and Pr4). Unfiltered RBC biofilm was used as positive control for 

PCR targeting AOA 16S rRNA genes, AOB amoA gene, and comammox bacteria amoA 

gene.Figure 2.1. Schematic showing “preliminary” and “G-series” enrichment cultures set up. 

Bottles shown with white precipitate represent incubations in AOM medium. Bottles shown with 

brown suspension represent incubations in filtered RBC water. Unfiltered suspensions were set up 

directly from the original suspension. All cultures were set up in duplicate. Bolded cultures (G4 

and G8) are the only cultures that were further pursued. Figure was created with BioRender.com 
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production), a 1% (v/v) inoculum was transferred into AOM medium, previously used by Daims 

et al. (2015) to grow Nitrospira inopinata, and incubated at room temperature in the dark 

without shaking. The enrichment culture G4 (parent culture for subsequent comammox 

Nitrospira enrichments) was established by transferring 10% (v/v) inoculum from G2 into AOM 

medium and incubated at room temperature. Briefly, AOM medium is composed of 0.05 g 

KH2PO4, 0.075 g KCl, 0.05 g MgSO4·7H2O, 0.58 g NaCl, and 4 g CaCO3 per 1 liter. 

Additionally, the medium was supplemented with 1 mL trace elements solution and 1 mL 

selenite-tungstate solution per liter (see Daims et al., 2015 for details). The medium pH was 

approximately 8.2 after the addition of supplements and was buffered by the excess calcium 

carbonate present. As noted above, the medium was amended with 0.5 mM NH4Cl as substrate. 

Established cultures were maintained in duplicate. Subcultures were named as follows: 

“G4_sub1” is a 1% subculture derived directly from G4 (parent culture). Similarly, culture 

“G4_sub2_ammonia” is a sequential subculture two derived from G4 that was supplemented 

with ammonia. All subcultures apart from the original establishment of G4, G8, G9, and G10 

(see Table 2.3) used a 1% (v/v) inoculum. 

2.2.3 Enrichment culture purification efforts 

To help select against heterotrophic bacteria and AOB, selected G-series enrichment cultures 

were supplemented with the antimicrobial acriflavine chloride (0.20 µg/mL; Sigma-Aldrich, 

Oakville, ON, Canada) or the antibiotic tetracycline (30 µg/mL; Sigma-Aldrich, Oakville, ON, 

Canada) to inhibit the growth of bacteria. Actively growing enrichment cultures that had a 

detectable comammox Nitrospira amoA signal were subcultured (1% inoculum) into fresh AOM 

medium containing 0.5 mM NH4Cl and supplemented with 0.20 µg/mL acriflavine or 30 µg/mL 

tetracycline. 
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To remove persisting AOA contamination, several experiments were conducted on 

subcultures of G4 (from G-series). These experiments were conducted in triplicate using 1% 

(v/v) inocula from G4. For one set of triplicates, cycloheximide, a eukaryotic inhibitor, was 

added to cultures at 200 µg/mL (Vajrala et al., 2014; Sigma-Aldrich, Oakville, ON, Canada). In 

another set of triplicates, the cultures were supplemented with a high ammonium concentration 

(i.e., 30 mM); this concentration was previously shown to be inhibitory to Ca. N. hydrocola 

(formerly called Ca. Nitrosocosmicus exaquare) and other AOA representatives (Sauder et al., 

2017). In another set of triplicates, a 10% inoculum (v/v) from G4 was first filtered through a 

0.8-µm pore size filter to remove relatively large cells.  

2.2.4 Total ammonium, nitrite, nitrate concentration measurements  

Enrichment culture activities were monitored using colorimetric assays for total ammonium 

(NH3 + NH4
+), nitrite (NO2

-), and nitrate (NO3
-). All water chemistry measurements were made 

in duplicate. Concentrations of ammonia, nitrite, and nitrate were calculated by comparing 

unknown concentration to a standard curve using the SoftMax Pro 6.4 software (Molecular 

Devices). Ammonia was measured using a previously published protocol (Meseguer-Lloret et 

al., 2002). Samples were thawed in the fridge, briefly centrifuged to separate any precipitate, and 

then 100 µL of supernatant was added to a clear bottom 96-well plate, then 100 µL of Nessler’s 

reagent was added to each well. Standards of ammonium chloride were prepared as a dilution 

series (5 µM to 1000 µM). Plates were incubated in the dark at room temperature for 10 minutes 

before measuring absorbance at 450 nm using the FilterMax F5 Multi-Mode Microplate Reader 

(Molecular Devices, San Jose, CA, USA).  

Nitrite concentrations were measured using a colorimetric protocol (Miranda et al., 2001). A 

100 µL volume of sample (or standard) was added to clear-bottom 96-well plate, followed by 
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addition of 100 µL of Griess reagent (i.e., 1:1 mixture of sulphanilamide and 

naphthylethylenediamine dihydrochloride). Plates were incubated at 37°C for 30 minutes before 

measuring absorbance at 550 nm using the plate reader.  

Nitrate accumulation was determined colorimetrically using an established Griess and 

vanadium chloride (VCl3) assay to measure NOx in a sample (Miranda et al., 2001; Schnetger 

and Lehners, 2014); NOx represents the concentration of nitrite plus reduced nitrate in a sample. 

Total NOx is measured after reduction using VCl3 and the nitrate concentration in a sample is 

calculated as the difference between nitrite and NOx measurements. A 100 µL of sample (or 

standard) was added to a clear-bottom 96-well plate followed by the addition of 100 µL of the 

Griess reagent and 100 µL of VCl3 solution. Plates were incubated at 37°C for 30 minutes before 

measuring the absorbance at 550 nm using the plate reader. Total nitrogen concentration was 

calculated as NH3/NH4 + NO2 + NO3.  

2.2.5 Genomic DNA extractions, end-point PCR, and Sanger sequencing 

Five months following G-series enrichment set up, culture genomic DNA extractions were 

performed using the DNeasy UltraClean Microbial Kit (Qiagen, Hilden, Germany). Extractions 

from biofilm samples were done with the PowerSoil DNA Isolation Kit (Qiagen). The protocols 

were followed as per the manufacturer’s instructions, except that bead-beating with a FastPrep-

24 (MP Biomedicals, Santa Ana, CA, USA) was used instead of vortexing, and biofilm samples 

were extracted from instead of soil. Genomic DNA was quantified on a Qubit fluorometer 

(Invitrogen, Waltham, MA) using the Qubit 1X dsDNA HS Assay Kit (Invitrogen, Waltham, 

MA) with 1 µL of sample (total volume 200 µL). Final DNA concentration was adjusted to 1 – 

10 ng/µL using Tris + Tween-20 buffer.  
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Clade A comammox Nitrospira amoA genes were detected using equimolar primer mixes of 

ComaA-244f (A-F) and ComaA-659r (A-R; Pjevac et al., 2017), AOB amoA genes were 

amplified using the primer set amoA-1F and amoA-2R (Rotthauwe et al., 1997), and AOA amoA 

genes were detected using the primer set CrenamoA 23F/CrenamoA 616R (Tourna et al., 2008). 

All primers, annealing temperatures, and expected product sizes were based on the associated 

literature protocols (Table 2.4). The PCR products were visualized on a 1% agarose gel and 

quantified using the Qubit fluorometer and the dsDNA HS Assay Kit (Invitrogen, Waltham, 

MA), then purified using the ExoSAP-IT (Biolabs MA, USA). ExoSAP-IT eliminates excess 

primers and nucleotides enzymatically. Briefly, 2.5 µL of ExoSAP-IT Master Mix was mixed 

with 25 µL of PCR mixture, incubated at 37°C for 40 minutes, 80°C for 15 minutes to inactivate 

enzymes, then stored at 4°C. Final purified PCR products of comammox Nitrospira and AOA 

were then quantified using Qubit and adjusted to the appropriate concentration before Sanger 

sequencing at The Center for Applied Genomics (TCAG, Toronto, Canada). The resulting 

sequences were trimmed for primers and chromatograms visualized using the software Chromas 

version 2.6.6 (Technelysium Pty Ltd, Brisbane, Australia). The amoA gene sequences of 

comammox Nitrospira and AOA species were compared to sequences in Genbank using the 

Basic Local Alignment Search Tool (BLAST; Altschul et al., 1990).  
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Table 2.4. The primer sequences, product size, and annealing temperatures for the primer sets 

used to quantify AOA, AOB, and comammox Nitrospira 

Primer set Sequence (5’ – 3’) 
Product 

size 
(bp) 

Annealing 
temperature 

(°C) 
Reference 

ComaAF  
ComaAR 

TAYAAYTGGGTSAAYTA 
ARATCATSGTGCTRTG 

415 52 Pjevac et al., 
2017 

amoA-1F 
amoA-2R 

GGGGTTTCTACTGGTGGT 
CCCCTCKGSAAAGCCTTCTTC 

491 60 Rotthauwe et 
al., 1997 

CrenamoA23F 
CrenamoA616R 

ATGGTCTGGCTWAGACG 
GCCATCCATCTGTATGTCCA 

628 55 Tourna et al., 
2008 

 

 

2.2.6 Detection of the comammox Nitrospira MAG069 cynS gene and possible growth on 

cyanate 

In addition to encoding genes for complete ammonia oxidation, Spasov et al. (2020) have 

also reported that the comammox Nitrospira bin MAG069 encodes a gene for a cyanase (cynS 

gene). To test enrichment cultures for the presence of cynS gene, MAG069 cynS gene was used 

as a template for the new primer set. This new primer set was designed using Primer-BLAST. 

The resulting primer set was validated against bacterial Refseq representative genomes available 

on the NCBI database. These primers targeted the cynS gene encoded by MAG069 with an 

expected product size of 184 bp. The primer set did, however, have an unintended template in 

the Paenibacillus chitinolyticus genome, but the false positive product was much shorter than the 

intended product (i.e., 40 bp). The PCR conditions were selected based on the New England 

BioLabs’ protocol for PCR optimization with Taq DNA polymerase (document number: 

M0273). The calculated melting temperature for the forward primer was 59.8°C, and 60°C for 

the reverse primer. The optimal annealing temperature for this primer set was determined using 
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gradient PCR with the following temperature gradient: 53°C, 53.8°C, 55.3°C, 57.6°C, 60.3°C, 

62.6°C, 65°C. The optimal annealing temperature for this primer set, which was 60°C, was the 

lowest tested temperature that did not result in non-specific amplification. Genomic DNA 

extracted from the RBCs was used a positive control because it contained the cynS-encoding 

MAG069-related comammox Nitrospira. The DNA of Ca. N. aquarius was used as a negative 

control. The resulting product was assessed by Sanger sequencing to confirm that the correct 

product was amplified. 

To test its ability to grow on cyanate, duplicate subcultures of G4 were supplemented with 

either 0.5 mM potassium cyanate, or 0.5 mM ammonium chloride and incubated in the dark. 

Because cyanate can be converted to ammonium (and carbon dioxide) chemically, abiotic 

controls with cyanate were also set up. In this instance, aqueous ammonia, nitrite, and nitrate 

were not quantified colorimetrically; instead, total ammonium was followed via ammonia spot 

tests (color change when mixed with Nessler’s reagent). Estimates of nitrite and nitrate 

concentrations were determined via color change using nitrite-nitrate strips (MilliporeSigma, 

MA, USA).  

2.2.7 Temperature and ammonia tolerance incubations 

To find a suitable growth temperature for G4 enrichments, three incubation temperatures 

were tested. For temperature experiments, an actively growing G4 enrichment was subcultured 

(1% transfer) in triplicate into fresh AOM medium supplemented with 0.5 mM NH4Cl (total 

volume was 50 mL). The resulting enrichment cultures were incubated at room temperature 

(~22°C), 30°C, or 37°C. To assess ammonia tolerance on G4 enrichments, an actively growing 

G4 enrichment was subcultured in triplicate into fresh AOM medium. The resulting enrichments 

were supplemented with 0.5 mM NH4Cl (control), 1 mM NH4Cl, 3 mM NH4Cl, 10 mM NH4Cl, 
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or 30 mM NH4Cl. All resulting cultures were incubated at room temperature in the dark and 

without shaking. Ammonia depletion and nitrite/nitrate accumulation were measured over time 

to assess the activity of nitrifiers in resulting enrichments.  

2.2.8 16S rRNA gene amplicon sequencing 

The community composition of enrichment cultures was investigated using amplicon 

sequencing of the V4-V5 region of the 16S rRNA gene. The 16S rRNA gene was amplified 

using the 515F-Y and 926R primer set (Parada et al., 2016), modified to include six base-pair 

barcodes used for multiplexing, as well as adapters for binding the flow cell (Bartram et al., 

2011). The PCR was performed in triplicate in a UV-treated PCR hood with ISO 5 HEPA 

filtered air (AirClean Systems, ON, Canada). PCR tubes, tips, bovine serum albumin (BSA), and 

PCR water were all UV-treated for 15 minutes. The PCR master mix for a 25 μL reaction was 

composed of: 1X ThermoPol Buffer (New England Biolabs, MA, USA), 0.20 μM forward 

primer, 0.20 μM reverse primer, 200 μM deoxynucleoside triphosphates (dNTPs), 15 μg BSA, 

0.625 U hot start Taq DNA polymerase (New England Biolabs), and 1 μL of (1-10 ng/μL) 

template DNA. The PCR was conducted with a T100 thermal cycler (Bio-Rad) and the following 

thermocycle conditions: 95°C for 3 minutes (initial denaturation), followed by 40 cycles of 95°C 

for 30 seconds (denaturation), 50°C for 30 seconds (annealing), 68°C for 1 minute (extension), 

and a final extension of 68°C for 7 minutes. Several no-template negative controls were included 

in the 96-well plates to test for potential cross contamination.  

Uniquely indexed triplicate PCR amplicons were pooled and then quantified on a 1% agarose 

gel that was stained with GelRed (Biotium, CA, USA). Based on the relative concentrations of 

PCR amplicons, product from each 96-well plate was pooled using an equal quantity of PCR 

amplicon into a single tube. Negative DNA extraction controls and PCR controls were included 
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in the pool. The pooled PCR amplicons were run on a 1.5% ethidium bromide-stained agarose 

gel and bands were cut from the agarose gel and purified using the Wizard SV Gel and PCR 

Clean-Up System (Promega, WI, USA). The library was denatured and diluted following 

manufacturer guidelines (Illumina document number: 15039740 v01). The purified pools were 

quantified using a Qubit fluorometer with the Invitrogen Qubit dsDNA HS Assay Kit, then 

diluted to 8 pM. The pooled library, which included 15% PhiX control v3 (Illumina Canada, NB, 

Canada) was sequenced on a MiSeq (Illumina, CA, USA) using a 2×250 cycle MiSeq Reagent 

Kit v2 as recommended by the manufacturer. 

The resulting sequence reads were demultiplexed using the MiSeq Reporter software version 

2.5.0.5 (Illumina) and analyzed using QIIME 2 version 2019-10, a pipeline managed by 

Automation, eXtension, and Integration Of Microbial Ecology 3 (AXIOME3; Min et al. 2021). 

Primer sequences were removed and low-quality sequences were trimmed (after 250 bp for 

forward and reverse reads) using DADA2 pipeline version 2019.10 (Callahan et al., 2016). 

Following the removal of low-quality sequences and primers, DADA2 was used to merge the 

forward and reverse reads (denoise sequences) and dereplicate paired-end reads to generate an 

amplicon sequence variant (ASV) table. The ASV taxonomy was assigned using a naive Bayes 

classifier (feature-classifier classify-sklearn) pre-trained with SILVA database release 132 

(Quast et al., 2013).  

2.2.9 Phylogeny analysis and tree construction 

Comammox Nitrospira amoA nucleotide sequences from G4 and G8 were compared to clade 

A and clade B comammox Nitrospira cultured representatives and environmental clones. 

Similarly, the cynS gene sequence from G4 was compared to reference sequences from cultured 
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representatives and environmental samples. Reference sequences used for alignments were 

acquired from Genbank, and nucleotide sequences were aligned with MUSCLE (Edgar, 2004). 

For the amoA-based tree, evolutionary history was inferred using the Maximum Likelihood 

method based on the Tamura-3 parameter model; a model that considers the differences in 

transition and transversion rates and the G+C content bias (Tamura, 1992). For the cynS-based 

tree, the evolutionary history was inferred using the General Time Reversal model; a model that 

accounts for the different rates of nucleotide substitutions (Tavaré, 1986). In both cases, Gamma 

distribution was used to model evolutionary rate differences across sites and the most fitting 

substitution model was selected using the Find Best Nucleotide Model option in MEGAX with 

the lowest Bayesian information criterion (BIC). The trees were drawn to scale, with branch 

lengths measured in the number of amino acid substitutions per site. Bootstrap values were 

calculated based on 500 replicates and are shown above tree branches as circles. All 

phylogenetic analyses were conducted in MEGAX (Kumar et al., 2018). 

Sequences for AOA and Nitrospira 16S rRNA genes were compared to reference sequences 

(acquired from Genbank) of cultured Nitrospira and AOA representatives as well as 

environmental representatives. Nucleotide sequences were aligned using MUSCLE (Edgar, 

2004), and the resulting alignments were trimmed so that all sequences had the same length; 409 

bp and 411 bp for Nitrospira and AOA 16S rRNA genes, respectively. The Nitrospira 16S rRNA 

gene evolutionary history was inferred using the Maximum Likelihood method based on the 

Tamura-3 parameter model (Tamura, 1992), and the AOA 16S rRNA evolutionary history was 

inferred using the Kimura 2-parameter model (Kimura, 1980). The Kimura-2 parameter model 

accounts for the differences in rates of transitions and transversions and that base frequency is 

constant. In both cases, Gamma distribution was used to model evolutionary rate differences 
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across sites and the most fitting substitution model was selected using the Find Best Nucleotide 

Model option in MEGAX with the lowest Bayesian information criterion (BIC). Bootstrap 

analysis was performed with 500 replicates. All alignments and phylogenetic analyses were 

conducted in MEGAX (Kumar et al., 2018). 

 

2.3 Results and discussion 

2.3.1 Enrichment of comammox Nitrospira in batch culture using filtration 

Previous information indicates that comammox Nitrospira are likely small in size, whereas 

most AOB and AOA species are greater than 1 µm in width (Table 1.2). Based on end-point 

PCR, initial tests with filtered RBC biofilm suspensions called “preliminary enrichments” 

(initiated in June 2018) showed that comammox Nitrospira passed through a 0.45-µm filter, 

whereas AOA did not (Figure 2.2 and Table 2.5). Consequently, filtration with a 0.45-µm filter 

was selected as a method for comammox Nitrospira selection. Initially, it was assumed that the 

AOA present in the preliminary enrichment cultures were Ca. N. hydrocola, a species that 

dominated Guelph RBCs (Sauder et al., 2017). Preliminary enrichment cultures were generally 

free of AOB (Figure 2.2). Once filtration was validated as a selection procedure using the 

preliminary batch cultures, RBC NW1 was sampled again in December 2018 and new “G-series” 

enrichment cultures were set up.  

Five months following the set up of G-series enrichment cultures, genomic DNA extractions 

were performed followed by end-point PCR targeting comammox Nitrospira, AOB, and AOA 

amoA genes. The results showed a comammox amoA signal in the enrichment culture G2 (Table 

2.6). Culture G2 also had a detectable AOA 16S rRNA gene signal but no detectable AOB amoA 
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signal (Table 2.6). Once comammox Nitrospira amoA gene was detected, a 10% (v/v) of 

inoculum from G2 was transferred from culture grown in RBC water to AOM medium to create 

G4. The carbonate-based AOM medium provides buffering capacity to ensure that the pH 

remains stable, in addition to providing a surface for growth given that carbonate concentration 

exceeds solubility. Most subsequent research was conducted with subcultures from G4. 

After transfer into AOM medium, both G4 replicate cultures had detectable comammox 

Nitrospira and AOA amoA genes (Table 2.6). G4 oxidized ammonia and generated nitrate 

without a lag phase (panel A Figure 2.3). After four months of the establishment of G4, a 10% 

(v/v) of inoculum from G4 was transferred into fresh AOM medium to create culture G10 (see 

Table 2.6) which was incubated at 30°C. G10 was used to test whether 30°C was a suitable 

temperature for the growth of G4. Similarly, after seven months of the establishment of G4, a 

10% (v/v) of inoculum from G4 was filtered through a 0.8-µm filter and into fresh AOM 

medium (see Table 2.6). Later subcultures of G8 were supplemented with tetracycline or 

acriflavine (cultures are called G8_tetracycline or G8_acriflavine, respectively; Table 2.13). 

Filtration though a 0.8-µm pore size filter was used as a way to eliminate AOA presence in 

enrichment cultures. Similar to G4, G8 oxidized ammonia and generated nitrate without a lag 

phase (panel B Figure 2.3). Overall, it can be concluded that comammox Nitrospira were present 

in the G4 and G8 enrichments which grew under oxic conditions in artificial medium provided 

with ammonia as the only nitrogen and energy source and bicarbonate as the carbon source 

(Figure 2.3 and Table 2.6). 
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Table 2.5. Summary of presence or absence of comammox and AOB amoA genes, and 16S 

rRNA gene of AOA one month after initiating preliminary enrichments  

Culture Description 

Presence/ Absence 

AOA 
16S 

rRNA 

AOB 
amoA 

Comammox 
Nitrospira 

amoA 

Pr1 0.2-µm filtered suspension in RBC water at RT – – + 

Pr2 0.45-µm filtered suspension in RBC water at RT – – + 

Pr3 0.2-µm filtered suspension in AOM medium at RT – – – 

Pr4 0.45-µm filtered suspension in AOM medium at RT – + 
(weak) 

+ 

Pr5 0.2-µm filtered suspension in RBC water at 37°C – – – 

Pr6 0.45-µm filtered suspension in RBC water at 37°C + + – 

Pr7 0.2-µm filtered suspension in AOM medium at 
37°C 

– – + 

Pr8 0.45-µm filtered suspension in AOM medium at 
37°C 

+ – + 

End-point PCR was used to target the amoA genes of comammox Nitrospira and AOB and the 

16S rRNA genes of AOA. (+) represents the presence of amoA product, and (–) represents the 

absence of amoA product. RT means room temperature.  

Figure 2.2. End-point PCR targeting the three nitrifying guilds present in preliminary 

enrichment cultures. Genomic DNA used for PCR was extracted one month following initial 

inoculation into AOM medium (i.e., Pr3 and Pr4). Unfiltered RBC biofilm was used as positive 

control for PCR. 
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Table 2.6. Summary of presence or absence of comammox and AOB amoA genes, and 16S 

rRNA gene of AOA five months after initiating G-series enrichments  

Culture Description 

Duplicate 1/Duplicate 2 

AOA 16S 
rRNA 

AOB 
amoA 

Comammox 
Nitrospira 

amoA 

G1 0.2-µm filtered suspension in RBC water (RT)  –/+ –/– –/– 

G2 0.45-µm filtered suspension in RBC water (RT)  +/+ –/– +/– 

G4 10% (v/v) transfer of G2 in AOM medium (RT) +/+ –/– +/+ 

G3 0.2-µm filtered suspension in AOM medium 
(37°C) 

+/– –/– –/– 

G5 0.2-µm filtered suspension in RBC water (37°C) –/+ –/– –/– 

G6 0.45-µm filtered suspension in RBC water (37°C) +/+ –/– –/– 

Gu7 Unfiltered cell suspension in RBC water (RT) +/+ +/+ –/– 

Gu8 Unfiltered cell suspension in RBC water (37°C) +/+ +/- –/– 

G8 10% transfer of G4 filtered through 0.8-µm filter 
and grown in AOM medium (RT) 

+/+ –/– +/+ 

G9 10% (v/v) transfer of G2 in AOM media (37°C) –/+ –/– –/– 

G10 10% (v/v) transfer of G2 in AOM media (30°C) +/+ –/– +/+ 

Genomic DNA used for PCR was extracted 5 months following initial inoculation into RBC 

water. (/) distinguishes results from duplicate cultures. (+) represents the presence of 16S rRNA 

or amoA product, and (–) represents the absence of 16S rRNA or amoA product. Numbers in 

brackets represent incubation temperature. RT means room temperature.  

 

The enrichment culture G4 and its subcultures were assessed for ammonia depletion and 

concomitant nitrite and nitrate accumulation. Cultures typically took between 5 – 14 days to fully 

oxidize 0.5 mM ammonium to nitrate, with no nitrite accumulation observed (Figure 2.3). Nitrate 

concentrations in the enrichment cultures were monitored to ensure they remained below 1.5 mM 

because elevated nitrate concentrations are toxic and can hinder the growth of ammonia 

oxidizers (Bollmann et al., 2010). 
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To find a suitable growth temperature for comammox Nitrospira enrichments, several 

incubation temperatures were tested, including ambient room temperature, which was used for 

the initial incubation of enrichment cultures (Preliminary incubations and G-series), 37°C 

(Preliminary incubations and G-series), and 30°C (G-series only). Ambient room temperature 

was chosen to reflect the mesophilic temperature range used to operate the RBCs. RBC 

temperature ranges from 12–21°C (Sauder et al., 2012). A higher incubation temperature (37°C) 

was chosen based on prior research suggesting that Nitrospira may be adapted to higher 

temperatures (Ehrich et al., 1995; Ushiki et al., 2013; Daims et al., 2015; Courtens et al., 2016). 

The 37°C incubations resulted in a loss of comammox amoA signal from G-series enrichment 

cultures, implying that comammox Nitrospira from the RBCs do not grow at 37°C (Tables 2.6 

and 2.7). Based on 16S rRNA gene profiles, the AOA Ca. N. aquarius and Ca. N. cloacae were 

enriched at 37°C and no Nitrospira were detected (G4 at 37°C; Figure 2.4). This finding is 

Figure 2.3. Typical water chemistry profile for the cultures G4 (panel A) and G8 (panel 

B) under ammonia-fed conditions. Both G4 and G8 were incubated at room temperature in 

the dark, without shaking. Error bars represent the standard deviation of duplicates. For a 

description of these cultures, see Table 2.3. 
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comparable to reported temperature tolerance reported for these two AOA species (Li et al., 

2016 and Sauder et al., 2018). Because comammox Nitrospira amoA was not detected in cultures 

incubated at 37°C, G-series cultures maintained at this incubation condition (i.e., G3, G5, G6, 

and G9 culture) were not pursued thereafter. Given that 37°C resulted in the inhibition of 

comammox Nitrospira growth, a slightly lower incubation temperature was tested. The 30°C 

incubation temperature was tested on G4-related enrichment cultures because several NOB 

Nitrospira, like N. defulvii and N. lenta, have a reported optimal growth temperature close to 

30°C (Nowka et al., 2015; Sakoula et al., 2018) and because of the genetic similarity between 

comammox Nitrospira and NOB Nitrospira. Based on ribosomal gene profiles, subcultures of 

G4 that were incubated at 30°C had a higher relative abundance of AOA than Nitrospira, 

suggesting that 30°C favored the growth of AOA over Nitrospira (G4_sub1 and G4_sub2 at 

30°C in Figure 2.4 and G10 in Table 2.7). Overall, ambient room temperature appeared the best 

incubation temperature to favor the growth of comammox Nitrospira and was, therefore, selected 

for all further subcultures. This experiment demonstrated that comammox Nitrospira derived 

from RBCs are likely mesophilic and prefer temperatures ranging from 22 – 30°C (although 

incubation temperatures lower than 22°C were not tested). A lower growth temperature range for 

this comammox Nitrospira, compared to N. inopinata, is in agreement with its presence and 

growth in the RBCs, which are typically maintained at temperatures compatible with mesophilic 

microbial growth (Sauder et al., 2012).  
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Table 2.7. Summary of presence or absence of comammox and AOA amoA genes in three tested 

incubation temperatures using end-point PCR 

Culture 
ID 

Incubation 
temperature 
(°C) 

Description 

Duplicate 1/Duplicate 2 

Comammox 
Nitrospira 

amoA 

AOA    
amoA 

AOB 
amoA 

G4 Room 
temperature 
(~22°C) 

0.45-µm filtered suspension in 
AOM medium 

++/++ +++/+++ –/– 

G10 30°C 0.45-µm filtered suspension in 
AOM medium 

++/++ +++/+++ –/– 

G9 37°C 0.45-µm filtered suspension in 
AOM medium 

–/– +++/+++ –/– 

End-point PCR was used to target the amoA genes of comammox Nitrospira, AOA, and AOB. 

(/) distinguishes results from duplicate cultures. (+) represents the presence of amoA product, and 

(–) represents the absence of amoA product. Numbers in brackets represent incubation 

temperature. RT means room temperature. Strength of signal is denoted by + (weak), ++ 

(strong), or +++ (stronger). 
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Figure 2.4. Relative abundances of enrichment culture amplicon sequence variants (ASVs) based 

on 16S rRNA gene amplicon sequencing. Only ASVs assigned to nitrifier genera ≥1% relative 

abundance are displayed. Numbers shown after the underscore are the ASV number. The numbers 

in brackets represent Nitrospira ASVs previously reported in the RBCs by Spasov et al. (2020). 

The number inside the bubbles represent the relative abundance (%). All cultures shown originate 

from the same initial culture (i.e., G2) and reflect varying subcultures and/or manipulations of 

environmental conditions thereafter. 
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The 16S rRNA gene profile for G4 and its subsequent subcultures (i.e., G4_sub1 to G4_sub5; 

Figure 2.4) reveals that AOA were present in varying abundances, ranging from 4 – 77% in those 

enrichment cultures. As predicted originally, AOB were generally absent from G4 and its related 

subcultures. Several Nitrospira ASVs were detected in G4 and its subcultures, and their relative 

abundances ranged from 1 – 20% (Figure 2.4). The Nitrospira ASV 2241 appeared to be 

enriched from the earlier parent culture (G4), initially present at 6% relative abundance and later 

at 20% relative abundance. No single Nitrospira ASV dominated all cultures. As mentioned 

earlier, the 16S rRNA gene cannot be used to distinguish between comammox and canonical 

Nitrospira. Additionally, Spasov et al. (2020) indicated that most comammox Nitrospira genome 

bins from the RBCs did not have assembled 16S rRNA genes when binned with ATLAS2. As 

such, ribosomal gene profiles obtained here could not be mapped against previously reported 

Nitrospira MAGs from the RBCs. Nonetheless, it was clear that several Nitrospira ASVs co-

existed within the cultures at ≥1% relative abundance (Figure 2.4).  

A single AOA representative (uncultured Nitrosopumilus species; ASV 464) dominated G4 

and its subcultures (Figure 2.4). Based on the 16S rRNA gene profiles and end-point PCR, the 

data suggest that AOA dominated most G4-related cultures and that filtration through a 0.45-µm 

filter alone was unable to eliminate AOA that originated from the RBC biofilm. This finding is 

perhaps expected given that the cultured Nitrosotenuis representatives like Ca. N. aquarius, Ca. 

N. uzonensis, and Ca. N. chungbukensis are generally small in size, ranging from 0.2–0.4 µm in 

width (Lebedeva et al., 2013; Park et al., 2014; Sauder et al., 2018).  

2.3.2 Phylogenetic affiliation of Nitrospira and AOA species 

Phylogenetic analysis of 16S rRNA genes demonstrated that the nine Nitrospira ASVs 

(Figure 2.5) were distinct from one another (87.9 – 99.7% sequence identity). Comparative 
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analysis (using BLAST) of the 16S rRNA gene revealed that Nitrospira ASV 2241 (the 

Nitrospira ASV with the highest abundance) is closely related to other NOB Nitrospira: N. 

moscoviensis, Ca. N. lenta, and N. japonica and is closest to Nitrospira RBC_6 (an ASV 

previously detected in the RBCs; Spasov et al. 2020). Nitrospira ASV 2075 is closely related to 

the comammox representatives, N. inopinata and Ca. N. nitrosa. Nitrospira ASV 5006 clustered 

with Nitrospira marina and Nitrospira sp. Ecomares 2.1, both reported to be strict marine 

Nitrospira (belonging to sublineage IV). Spasov et al. (2020) reported that Nitrospira sp. 

Ecomares 2.1 was found in the RBCs and appeared at 1 – 1.5% of the overall relative abundance. 

The salinity of Guelph’s RBCs is unknown, and the growth media used contains less than 584 

mg sodium chloride per liter, therefore it was unclear how these presumed marine associated 

Nitrospira were enriched in cultures. It could be of interest in the future to examine this 

microorganism more closely because this might be the first clade IV Nitrospira from a non-

saline environment.  

Ten of the ASVs present in the various enrichments at ≥1% relative abundance were 

classified as AOA (Figure 2.6). Most AOA ASVs were assigned to the genus Nitrosotenuis 

(sequence identity between AOA ASVs is 92.5 – 99.7%). The dominant AOA ASV 464 was 

assigned as a novel (uncultured) species belonging to the genus Nitrosopumilus (Figure 2.4); this 

ASV was previously detected in the RBC biofilm at a low relative abundance (<0.1%; Spasov et 

al., 2020). Phylogenetically, ASV 464 is associated with Group I.1a Thaumarchaeota and is 

closely related to cultured Nitrosopumilus species isolated from freshwater and saltwater 

aquariums, WWTPs, Northern Adriatic Sea, and marine sediments (Figure 2.6; Park et al., 2012; 

Lebedeva et al., 2013; Park, et al., 2014; Li et al., 2016; Sauder et al., 2018; Bayer et al., 2019). 

The presence of ASVs associated with Ca. N. aquarius and Nitrosopumilus-like AOA in 
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WWTPs and aquaculture systems have been reported previously (Mussmann et al., 2011; 

Bollmann et al., 2014; Sauder et al., 2018). It is important to note that Ca. Nitrosocosmicus 

hydrocola, which was previously reported as the single persistent AOA ASV in the RBC 

biofilms, was not detected in any of the G4-related enrichment cultures (Figure 2.4). This 

suggests that filtration of the initial inoculum through a 0.45-µm filter succeeded in removing 

Ca. N. hydrocola, as predicted originally. 

Like Guelph’s RBCs, the presence of several related Nitrospira and AOA in WWTPs was 

previously reported by numerous groups (Park et al., 2006; Gruber-Dorninger et al., 2015; Roots 

et al., 2019; Spasov et al., 2020; Zheng et al., 2021). The co-existence of several AOA and 

Nitrospira species suggests that these groups are adapted to different niches. The diversity of 

both AOA and Nitrospira taxa in the enrichment cultures implies that the RBC biofilm offers a 

valuable habitat to explore the ecology of nitrifiers.  
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Figure 2.5. Phylogenetic tree showing the relationship of 16S rRNA gene sequences of 

Nitrospira ASVs to reference sequences from the Genbank database. Accession numbers for 

reference sequences are shown in brackets. Only Nitrospira ASVs present in the enrichment 

cultures at ≥1% are shown. The tree was constructed using maximum-likelihood method 

based on the Tamura-3 parameter model (Tamura, 1992) with Gamma distribution across 

sites. Bolded labels are Nitrospira sequences from enrichment cultures. A total of 500 

bootstrap replicates were used, and values over 60% are shown. Nodes indicated with circles 

(●) have a bootstrap value >90% and nodes indicated with gray circles (●) have a bootstrap 

value between 60 – 90%. The scale bar represents 5% nucleotide divergence. The tree was 

rooted using the 16S rRNA gene of Leptospirillum ferrooxidans. Phylogenetic analysis was 

performed using MEGAX (Kumar et al., 2018).  
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Figure 2.6. Phylogenetic tree showing the relationship of 16S rRNA gene sequences of AOA 

ASVs to reference sequences from the Genbank database. The tree was constructed using the 

maximum likelihood method based on the Kimura 2-parameter model with Gamma 

distribution across sites (Kimura, 1980). Bolded labels are archaea sequences from enrichment 

cultures. Accession numbers for reference sequences are shown in brackets. Only AOA ASVs 

present in the enrichment cultures at ≥1% are shown. The tree was constructed using 

maximum-likelihood method. A total of 500 bootstrap replicates were used, and values over 

60% are shown. Nodes indicated with circles (●) have a bootstrap value >90% and nodes 

indicated with gray circles (●) have a bootstrap value between 60 – 90%. The scale bar 

represents 2% nucleotide divergence. The tree was rooted using Nitrosospira tenuis. 

Phylogenetic analysis was performed using MEGAX (Kumar et al., 2018). 
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2.3.3 Phylogeny of comammox Nitrospira amoA and cynS genes and possible growth on 

cyanate 

Sanger sequencing of amoA and amoB genes that were PCR amplified from cultures G4 and 

G8 confirmed that the Nitrospira observed were comammox Nitrospira. The amoA and amoB 

gene sequences obtained were very similar to amoA and amoB sequences of comammox 

Nitrospira MAGs from the RBCs (Spasov et al., 2020). The amoA sequence derived from G4 

was nearly identical to MAG069 amoA (99% identical; E-value 6e-123), whereas the amoB gene 

was almost identical to MAG069 amoB (97% identical; E-value 8e-122). The amoA gene 

sequence derived from G8 was nearly identical to MAG044 amoA gene (99% identical; E-value 

4e-140), whereas the amoB gene had no significant hits to any of the amoB genes encoded by 

comammox Nitrospira MAGs derived from the RBCs by Spasov et al. (2020). The amoA 

nucleotide sequences detected in G4 and G8 cultures were assigned to clade A comammox 

Nitrospira. According to the amoA phylogeny (Figure 2.7), the G4 amoA sequence was closely 

related to Nitrospira bin Group I (MAG069), which is derived from the Guelph RBC 

metagenomes (Spasov et al., 2020). Similarly, the G8 amoA sequence was closely related to 

Nitrospira bin Group D (MAG044) (Figure 2.7), which is also derived from the RBC biofilm 

metagenomes (Spasov et al., 2020). 

According to Spasov et al. (2020), MAG069 and MAG044 encode the genetic repertoire 

needed for ammonia (the amo operon) and nitrite oxidation (nxrA gene), but lack the gene that 

encodes for subunit B of nitrite oxidoreductase enzyme (i.e., nxrB is absent). As they indicated, 

the missing genes are likely due to incomplete genome binning. Despite the missing nxrB gene 

annotations, the metagenomic results imply that MAG069 and MAG044 represent comammox 

Nitrospira. Even though the amoA and amoB gene sequences were not exact matches to 

sequences encoded by MAG044, findings from this work support that the Nitrospira closely 
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related to MAG044 is comammox. This finding was generally supported by growing G8 (an 

enrichment that contains comammox Nitrospira as the sole nitrifier) on ammonia, producing 

nitrate without detectable nitrite accumulation (Figure 2.3). According to metagenomic recruited 

reads data, MAG044 was present in several RBC trains at abundances ranging from 0.1 – 4.1%, 

whereas MAG069 was present consistently across RBC trains 1 and 8 at abundances ranging 

from 0.3 – 11.2% (Spasov et al., 2020). Both MAGs represented ideal targets for cultivation 

because they are phylogenetically unique and have the genetic potential to utilize alternative 

energy substrates like urea (Spasov et al., 2020). Further research should test the use of urea as 

an alternative way to enrich and select for different comammox Nitrospira. 

 



 

54 

 

 



 

55 

 

 

In addition to the potential for growth on urea as an energy substrate, MAG069 also encodes 

a cyanase gene (cynS; Spasov et al., 2020). Cyanate can be converted to ammonium by some 

nitrite oxidizers which can then supply ammonia oxidizers via cross-feeding (Palatinszky et al., 

2015). The ability to grow on cyanate was previously demonstrated in one AOA, Ca. N. 

gargensis, and that culture remains the only ammonia oxidizer shown to grow on cyanate 

(Palatinszky et al., 2015). Other than MAG069 and MAG093 (another cynS-encoding Nitrospira 

MAG recovered from the RBCs by Spasov et al., 2020) and its closely related sister taxa, 

Nitrospira MAG LK70 has also been identified as a cynS-encoding MAG (Yang et al., 2020). 

However, the authors indicate that in situ transcription was not observed for the microorganism 

related to MAG LK70 (Yang et al., 2020). Findings by Spasov et al. (2020) and Yang et al. 

(2020) imply that the potential ability to use cyanate for energy might provide comammox 

Nitrospira the advantage to compete with other nitrifiers in environments with low ammonia 

levels, in addition to detoxifying cyanate produced, for example, during growth on urea or from 

the intracellular dissociation of carbamoyl phosphate. Figure 2.8 shows that the G4-derived cynS 

gene PCR product is closely related to MAG069-associated comammox Nitrospira; this was 

expected because the used primer set targets the cynS gene of MAG069.  

Figure 2.7. Phylogenetic tree showing the relationship of amoA gene sequences of comammox 

Nitrospira in enrichment cultures to reference sequences from Genbank. Accession numbers 

for reference sequences are shown in brackets. Bolded labels are G4 and G8 comammox 

Nitrospira amoA nucleotide sequences. The tree was constructed using maximum-likelihood 

method based on the Tamura-3 parameter model (Tamura, 1992) with Gamma distribution 

across sites. The tree is drawn to scale, with branch lengths measured in the number of 

substitutions per site. A total of 500 bootstrap replicates were used. Nodes indicated with 

circles (●) have a bootstrap value >90% and nodes indicated with gray circles (●) have a 

bootstrap value between 60 – 90%. Phylogenetic analysis was done using MEGAX (Kumar et 

al., 2018). The tree was rooted with the pmoA gene sequence of Methylocystis sp. 

 

Figure 2.8. Phylogenetic tree showing the relationship of cynS nucleotide sequence detected in 

G4 (bolded) to reference sequences from the GenBank database. Accession numbers for 

reference sequences are shown in brackets. The tree was constructed using the maximum 

likelihood method based on the General Time Reversible model (Tavaré, 1986) with Gamma 

distribution across sites. The tree is drawn to scale, with branch lengths measured in the 

number of substitutions per site. A total of 500 bootstrap replicates were used. Nodes indicated 

with circles (●) have a bootstrap value >90% and nodes indicated with gray circles (●) have a 

bootstrap value between 60 – 90%. Phylogenetic analysis was done using MEGAX (Kumar et 

al., 2018). The tree was rooted with the cynS sequence of Sulfurisphaera tokodaii.Figure 2.9. 

Phylogenetic tree showing the relationship of amoA gene sequences of comammox Nitrospira 

in enrichment cultures to reference sequences from GenBank. Accession numbers for reference 

sequences are shown in brackets. Bolded labels are G4 and G8 comammox Nitrospira amoA 

nucleotide sequences. The tree was constructed using maximum-likelihood method based on 

the Tamura-3 parameter model (Tamura, 1992) with Gamma distribution across sites. The tree 

is drawn to scale, with branch lengths measured in the number of substitutions per site. A total 

of 500 bootstrap replicates were used. Nodes indicated with circles (●) have a bootstrap value 

>90% and nodes indicated with gray circles (●) have a bootstrap value between 60 – 90%. 

Phylogenetic analysis was done using MEGAX (Kumar et al., 2018). The tree was rooted with 

the pmoA gene sequence of Methylocystis sp. 
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For quick screening of the enrichment cultures G4 and G8 for cynS gene, the newly designed 

primer set was used to detect the presence or absence of comammox Nitrospira MAG069 cynS 

gene in enrichment cultures. Indeed, as expected, the MAG069 cynS gene was detected in 

cyanate-fed cultures (as well as ammonium-fed G4 cultures) and was undetectable in G8, which 

corresponded to a MAG without a cynS gene (Table 2.10).  

To test the ability of G4 to grow on cyanate, duplicate subcultures of G4 were supplemented 

with 0.5 mM potassium cyanate. If active, comammox Nitrospira associated with MAG069 or 

other canonical Nitrospira present in the culture should convert cyanate to ammonium and then 

to nitrate. Thus, cultures were monitored for total ammonium, nitrite, and nitrate production. 

Cyanate was initially converted to ammonium in ~1 – 1.5 weeks and then to nitrate (see Table 

2.8). Because cyanate can be converted to ammonium and carbon dioxide chemically, abiotic 

controls were included but abiotic conversion of cyanate to ammonium was slower than the 

biotic incubation counterpart (Table 2.9). Nitrite and nitrate were generated in the cultures but 

not in the abiotic controls (Tables 2.8 and 2.9), indicating that most activity observed in cyanate-

fed cultures was biological and possibly caused by the activity of Nitrospira. Note that culture 

G8 and its related subcultures, which contain MAG044-related comammox Nitrospira, were not 

tested for growth on cyanate (MAG044 does not encode the cynS gene).  

During growth on cyanate, ammonia was detected in the G4 culture incubation, presumably 

available for all nitrifiers to use. Consequently, using cyanate alone as an energy source may be 

an ineffective way to isolate comammox Nitrospira in environments like the RBC biofilm, where 

several nitrifying guilds co-exist. Nonetheless, these findings provide a glimpse into the potential 

metabolic versatility of comammox Nitrospira in the RBCs.  
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Table 2.8. Sample cyanate degradation profile for a 0.5 mM cyanate fed enrichment culture 

Culture ID Time (day)  Total ammonium  Nitrite  Nitrate (µM) 

G4_sub5B cyanate  

1 – – – 

3 – – – 

5 ++ + <50 

7 +++ + 100 

10 + – 250 

21 – – >500 

(+) represents detectable nitrogenous compound, whereas (–) represents the absence of 

detectable nitrogenous compound. Strength of signal is denoted by + (weak), ++ (strong), or +++ 

(stronger). Total ammonium concentration was estimated using a spot test via addition of 

Nessler’s reagent. Nitrite and nitrate concentration estimates were determined using 

nitrite/nitrate test strips. Results in this table are representative of general trends observed with 

biotic cyanate incubations. 

 

 

Table 2.9. Sample profile for the abiotic degradation of 0.5 mM potassium cyanate in AOM 

medium 

Culture ID Time (day)  Total ammonium Nitrite  Nitrate (µM) 

Cyanate in medium 
(abiotic control)  

1 – – – 

3 – – – 

5 – – – 

7 + – – 

10 ++ – – 

21 ++ – – 

 30 +++ – – 

(+) represents detectable nitrogenous compound, whereas (–) represents the absence of 

detectable nitrogenous compound. Strength of signal is denoted by + (weak), ++ (strong), or +++ 

(stronger). Total ammonium concentration was estimated using a spot test via addition of 

Nessler’s reagent. Nitrite and nitrate concentration estimates were determined using 

nitrite/nitrate test strips.  Results in this table are representative of general trends observed with 

abiotic cyanate incubations. 
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Table 2.10. Summary of presence or absence of comammox Nitrospira cynS gene in enrichment 

cultures 

Culture ID 
Date of 

establishment 
Description of culture 

MAG069 

cynS 

gene 

Possible 

growth on 

cyanate? 

G4 Dec, 2018 0.45-µm filtered suspension in 
AOM  

++ Yes 

G4_sub5B_cyanate Dec, 2019 Subculture of G4_sub4 fed 
0.5 mM potassium cyanate  

+++ Yes 

G4_sub6B_cyanate March, 2020 Subculture of G4_sub5 fed 
0.5 mM potassium cyanate 

+++ Yes 

G4_sub7B_ ammonia June, 2020 Subculture of G4_sub6 fed 
0.5 mM ammonia chloride 

++ ND 

G8 June, 2019 Inoculum (G4) passed 
through 0.8-µm filter and 
incubated at room 
temperature 

– ND 

G8_sub2B_ acriflavine March, 2020 Subculture of G8 with 0.2 µm/ 
mL acriflavine 

+ (weak) ND 

G8_sub1B_tetracycline April, 2020 Subculture of G8 with 30 µg/ 
mL tetracycline ++ ND 

(+) represents the presence of cynS product, and (–) represents the absence of cynS product. 

Strength of signal is denoted by + (weak), ++ (strong), or +++ (stronger). ND = not determined.  

 

 

Figure 2.8. Phylogenetic tree showing the relationship of cynS nucleotide sequence detected in 

G4 (bolded) to reference sequences from the Genbank database. Accession numbers for 

reference sequences are shown in brackets. The tree was constructed using the maximum 

likelihood method based on the General Time Reversible model (Tavaré, 1986) with Gamma 

distribution across sites. The tree is drawn to scale, with branch lengths measured in the number 

of substitutions per site. A total of 500 bootstrap replicates were used. Nodes indicated with 

circles (●) have a bootstrap value >90% and nodes indicated with gray circles (●) have a 

bootstrap value between 60 – 90%. Phylogenetic analysis was done using MEGAX (Kumar et 

al., 2018). The tree was rooted with the cynS sequence of Sulfurisphaera tokodaii. 

 

Figure 2.10. Relative abundances of amplicon sequence variants (ASVs) in enrichment 

cultures based on 16S rRNA gene amplicon sequencing. Only ASVs ≥1% relative abundance 

are displayed. Numbers shown after the underscore are the ASV number. Letters shown before 

the ASV label represent the highest taxonomic rank assigned. S= species, g= genus; f= family. 

The number inside the bubbles represent the relative abundance.Figure 2.11. Phylogenetic tree 

showing the relationship of cynS nucleotide sequence detected in G4 (bolded) to reference 

sequences from the GenBank database. Accession numbers for reference sequences are shown 

in brackets. The tree was constructed using the maximum likelihood method based on the 

General Time Reversible model (Tavaré, 1986) with Gamma distribution across sites. The tree 

is drawn to scale, with branch lengths measured in the number of substitutions per site. A total 

of 500 bootstrap replicates were used. Nodes indicated with circles (●) have a bootstrap value 

>90% and nodes indicated with gray circles (●) have a bootstrap value between 60 – 90%. 

Phylogenetic analysis was done using MEGAX (Kumar et al., 2018). The tree was rooted with 

the cynS sequence of Sulfurisphaera tokodaii. 
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2.3.4 Culture purification 

Several approaches were tested to eliminate AOA from comammox Nitrospira enrichment 

cultures. One approach was to use the eukaryotic inhibitor cycloheximide. Because archaea share 

similar protein synthesis machinery to eukaryotes, cycloheximide was previously shown by 

Vajrala et al. (2014) to inhibit the ammonia-oxidizing activity of the AOA N. maritimus in pure 

culture. Cycloheximide was added at the 200 µg/mL, a concentration recommended by Vajrala et 

al. (2014), to triplicate subcultures from the actively growing G4 enrichment (G4_sub1). 

Cultures were monitored for ammonia, nitrite, and nitrate. Once cultures depleted ammonia and 

generated nitrate, genomic DNA was harvested and end-point PCR targeting the 16S rRNA and 

amoA genes of AOA was carried out. Based on end-point PCR results, the addition of 

cycloheximide to enrichment cultures did not reduce the AOA 16S rRNA and amoA gene signals 

detected over the course of the two-month incubation with cycloheximide (Table 2.11). It is 

important to note that those enrichment cultures were not followed through a second round of 

subculturing (i.e., G4_sub3_cycloheximide); therefore, it remains unclear whether the addition of 

cycloheximide was useful at eliminating the AOA in enrichment cultures.  
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Table 2.11. Summary of presence or absence of AOA 16S rRNA and amoA genes in enrichment 

cultures treated with cycloheximide 

Culture ID 
Date of 
establishment 

Description of culture 

Presence/ Absence  

AOA 
amoA 
genes 

AOA 16S 
rRNA genes 

G4_sub2A_cyc July, 2019 Subculture of G4_sub1 
supplemented with 
cycloheximide 

++ ++ 

G4_sub2B_cyc July, 2019 Subculture of G4_sub1 
supplemented with 
cycloheximide 

+ + 

G4_sub2C_cyc July, 2020 Subculture of G4_sub1 
supplemented with 
cycloheximide 

+ ++ 

G4_sub2B July, 2020 Subculture of G4_sub1 (control) + + 

(+) represents the presence of 16S rRNA or amoA product. Strength of signal is denoted by + 

(weak), ++ (strong), or +++ (stronger). 

 

Another strategy used to eliminate AOA was incubation of enrichment cultures with elevated 

ammonium concentrations. Based on prior research by Sauder et al. (2017), Ca. N. hydrocola 

was shown to be completely inhibited at 30 mM ammonium chloride; a relatively high inhibitory 

ammonium concentration (Hatzenpichler et al., 2008; Sauder et al., 2017). Despite several 

reports showing high affinity of comammox Nitrospira to ammonia, it is unclear whether all 

comammox Nitrospira are adapted to low ammonia environments. Moreover, previous work has 

shown the presence of comammox Nitrospira in the aeration basins of the Guelph WWTP, 

where ammonia concentrations range from 0.6 – 3 mM (data not shown). As such, several 

ammonia concentrations were tested on fresh transfers from G4, including 1 mM, 3 mM, 10 mM, 

and 30 mM. Cultures were monitored for ammonia depletion, and nitrite/nitrate production. 

Once ammonia depleted (~ 2 months to deplete 30 mM NH4Cl), genomic DNA was extracted 

and end-point PCR targeting 16S rRNA and amoA genes of AOA (along with comammox 
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Nitrospira amoA) was carried out (Table 2.12). Comammox Nitrospira amoA gene from 

enrichment cultures (G4_sub2) were detected even after incubation with 30 mM ammonia 

(although effects of elevated ammonia concentrations on cell growth was untested). A similar 

high ammonia tolerance by Nitrospira was previously observed in high ammonia wastewater by 

Mota et al. (2005). Although comammox Nitrospira were not discovered in 2005, the primer set 

used targets the 16S rRNA genes of Nitrospira and therefore it is possible that the researchers 

were detecting comammox Nitrospira (Mota et al., 2005). Regardless, based on end-point PCR 

results (Table 2.12, Figure 2.4), incubations with high ammonia concentrations did not reduce 

the AOA 16S rRNA and amoA gene signals detected over the course of the two-month 

incubation. Similar to cycloheximide-treated cultures, incubations with high ammonia 

concentrations were not followed through a second round of subculturing (i.e., G4_sub3_30 

mM); therefore, it remains unclear whether varying elevated ammonia concentrations was useful 

at eliminating the AOA in enrichment cultures. 
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Table 2.12. Summary of presence or absence of AOA 16S rRNA and amoA genes, and 

comammox Nitrospira amoA gene in enrichment cultures supplemented with high ammonium 

concentrations 

Culture ID Description of culture 

Presence/ Absence  

AOA 
amoA 

AOA 16S 
rRNA 

Comammox 
Nitrospira 

amoA 

G4_sub2A_1mM Subculture of G4_sub1 
supplemented with 1 mM NH4Cl 

+ 
(weak) 

+ ++ 

G4_sub2B_1mM Subculture of G4_sub1 
supplemented with 1 mM NH4Cl 

+ 
(weak) 

+ ++ 

G4_sub2C_1mM Subculture of G4_sub1 
supplemented with 1 mM NH4Cl 

+ 
(weak) 

+ ++ 

G4_sub2A_3mM Subculture of G4_sub1 
supplemented with 3 mM NH4Cl 

++ + – 

G4_sub2B_3mM Subculture of G4_sub1 
supplemented with 3 mM NH4Cl 

+ + ++ 

G4_sub2C_3mM Subculture of G4_sub1 
supplemented with 3 mM NH4Cl 

++ + ++ 

G4_sub2A_10mM Subculture of G4_sub1 
supplemented with 10 mM NH4Cl 

++ + – 

G4_sub2B_10mM Subculture of G4_sub1 
supplemented with 10 mM NH4Cl 

++ + ++ 

G4_sub2C_10mM Subculture of G4_sub1 
supplemented with 10 mM NH4Cl 

++ + ++ 

G4_sub2A_30mM Subculture of G4_sub1 
supplemented with 30 mM NH4Cl 

++ ++ – 

G4_sub2B_30mM Subculture of G4_sub1 
supplemented with 30 mM NH4Cl 

++ + ++ 

G4_sub2C_30mM Subculture of G4_sub1 
supplemented with 30 mM NH4Cl 

++ ++ ++ 

(+) represents the presence of 16S rRNA or amoA product, and (–) represents the absence of 16S 

rRNA or amoA product. Strength of signal is denoted by + (weak), ++ (strong), or +++ 

(stronger). 

 

An additional purification strategy tested was a second filtration process using a relatively 

large pore size to accommodate possible changes in cell size during growth. Most AOA species 
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range from 0.4 – 2 µm in width (Lebedeva et al., 2013; Li et al., 2016; Sauder et al., 2017, 

2018), whereas characterized Nitrospira species are relatively small, ranging between 0.2 – 0.5 

in width (Ehrich et al., 1995; Ushiki et al., 2013; Daims et al., 2015). Therefore, a filter with a 

pore size of 0.8-µm might preferentially remove AOA while still allowing the Nitrospira present 

in enrichment cultures to pass through. To test this hypothesis, an inoculum taken from G4, 

which was gently vortexed to disrupt clumps and then filtered through a 0.8-µm filter and into 

fresh AOM medium. The resulting filtrate was incubated at room temperature and supplemented 

with 0.5 mM ammonia (resulting culture is called G8). Cultures were monitored for ammonia 

depletion and nitrite/nitrate production as a marker for the activity of nitrifier communities. Once 

ammonia was fully depleted, genomic DNA was extracted and end-point PCR targeting 16S 

rRNA and amoA genes of AOA, as well as the amoA gene of comammox Nitrospira was 

performed (Table 2.13). Based on end-point PCR, a relatively weak AOA amoA (and 16S rRNA) 

signal was detected, compared to the comammox amoA gene signal, which suggests that 

filtration through a 0.8-µm filter helped decrease AOA abundance in cultures (Table 2.13 and 

Figure 2.9). The 16S rRNA gene profiles revealed that cultures that were filtered through a 0.8-

µm filter (G8) and its subsequent transfers (G8_sub1 and G8_sub2) had a lower relative 

abundance of AOA (8.0 – 13%) and increased comammox Nitrospira (27 – 29%; Figure 2.9), 

compared to G4 (inoculum did not undergo a second round of filtration). Additionally, filtration 

through a 0.8-µm filter was effective at reducing the number of AOA taxa from 10 to 1 (Figure 

2.9). To date, the only cultures that remain “AOA-free” are the duplicate cultures filtered 

through the 0.8-µm filter and supplemented with the antimicrobial acriflavine (i.e., 

G8_sub2_acriflavine; Table 2.13 and Figure 2.9).  
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Table 2.13. Summary of presence or absence of AOA 16S rRNA and amoA genes, and 

comammox Nitrospira amoA gene in enrichment cultures filtered through a 0.8-µm filter 

Culture ID 
Date of 
establishment 

Description of culture 

Presence/ Absence  

AOA 
amoA 

AOA 
16S 

rRNA 

Comammox 
Nitrospira 

amoA 

G8_A August, 2019 Subculture of G4 
filtered through 0.8-
µm filter 

+ 
(weak) 

+ 
(weak)  

++ 

G8_B August, 2019 Subculture of G4 
filtered through 0.8-
µm filter 

+ 
(weak)  

+ 
(weak) 

++ 

G8_sub2A_acriflavine March, 2020 Subculture of 
G8_sub1 
supplemented with 
acriflavine 

– – ++ 

G8_sub2B_acriflavine March, 2020 Subculture of 
G8_sub1 
supplemented with 
acriflavine 

– + ++ 

G8_sub2A_tetracycline May, 2020 Subculture of 
G8_sub1 
supplemented with 
tetracycline 

+  + ++ 

G8_sub2B_tetracycline May, 2020 Subculture of 
G8_sub1 
supplemented with 
tetracycline 

+ 

 

+ ++ 

(+) represents the presence of 16S rRNA or amoA product, and (–) represents the absence of 16S 

rRNA or amoA product. Strength of signal is denoted by + (weak), ++ (strong), or +++ 

(stronger).  

 

Addition of antimicrobials was used to help remove heterotrophs present in G8 and its 

subcultures. Acriflavine hydrochloride, an antimicrobial and a DNA intercalator that inhibits 

protein biosynthesis was previously used for the purification of N. defluvii (Nowka et al., 2015). 

In addition, based on genomic data, MAG069 genome encodes a resistance gene against 
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acriflavine (AcrA/B acriflavine resistance protein) and tetracycline (Spasov et al., 2020). Taking 

advantage of this, enrichment cultures were supplemented with acriflavine or tetracycline. 

Because acriflavine is effective at eliminating Gram-negative bacteria, it was expected that 

heterotrophs like Hyphomicrobium sp. (ASV 2123), Sphingobium sp. (ASV 168), and uncultured 

Brevundimonas sp. (ASV 4571) were eliminated in further subcultures supplemented with 

acriflavine (G8_sub2_acriflavine and G8_sub1_tetracycline; Figure 2.9). Nonetheless, other 

putative heterotrophs persisted in enrichment cultures despite filtration and antibiotics, including 

Terrimonas sp. (ASVs 4 and 24; Figure 2.9) and Sphingorhabdus sp. (ASV 26; Figure 2.9). In 

addition, the AOA (ASV 464) present in previous G8 cultures was also removed from 

acriflavine-treated enrichments, suggesting that acriflavine may be directly removing the AOA 

or inhibiting the growth of symbiotic heterotrophic bacteria that are associated with AOA in the 

cultures. 

The addition of tetracycline, a broad-spectrum antibiotic, to enrichment cultures was intended 

to eliminate heterotrophs. Tetracycline use for nitrifier cultures has precedent given that Liu et 

al. (2018) and Yim et al. (2006) showed Nitrospira relative abundances increase upon addition 

of 20 – 50 µg/L tetracycline to enrichment cultures. The authors speculated that tetracycline may 

function as an auto-inducer in the quorum sensing pathway (Yim et al., 2006; Liu et al., 2018). 

The addition of tetracycline may, therefore, provide a way to help increase the abundance (and 

biomass) of comammox Nitrospira in enrichment cultures. Tetracycline, like acriflavine, was not 

useful in removing Dongia sp. nor Terrimonas sp. (ASVs 4, 24, 50, and 78; Figure 2.9) and, 

given that the tetracycline cultures were established after the acriflavine-supplemented cultures, 

it appears that tetracycline may have a positive effect on the growth of Nitrospira (ASV 1; 

G8_sub1_tetracycline; Figure 2.9). Additional methods, like the use of optical tweezers (Nowka 
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et al., 2015) and serial dilutions (Daims et al., 2015; Nowka et al., 2015), will likely be required 

in conjunction with filtration to eliminate AOA and isolate comammox Nitrospira. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. Relative abundances of amplicon sequence variants (ASVs) in enrichment cultures 

based on 16S rRNA gene amplicon sequencing. Only ASVs ≥1% relative abundance are 

displayed. Numbers shown after the underscore are the ASV number. Letters shown before the 

ASV label represent the highest taxonomic rank assigned. S= species, g= genus; f= family. The 

number inside the bubbles represents the percent relative abundance. 
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2.4 Conclusion  

Two enrichment cultures of comammox Nitrospira were established by using a combination 

of filtration (G4 and G8) and antimicrobials (G8 only). The two cultures actively oxidized 

ammonia to nitrate, with no detectable nitrite (Figure 2.3). Enriched comammox Nitrospira 

(MAG069-related Nitrospira and MAG044-related Nitrospira) are novel clade A comammox 

Nitrospira ecotypes that cluster with other wastewater comammox Nitrospira (Figures 2.4 and 

2.6). The comammox Nitrospira present in the enrichment culture G8 (MAG044-related 

comammox Nitrospira) grew under tested ammonia-fed conditions at room temperature 

supplemented with antimicrobials (Figure 2.3 panel B). The growth of the enrichment culture G4 

on cyanate provides a glimpse into the potential metabolic versatility of Nitrospira in the RBCs, 

requiring examination. In G4, comammox Nitrospira remain in a co-culture status despite the 

application of several strategies to eliminate the AOA (Figure 2.9). In G8 supplemented with 

acriflavine (i.e., G8_sub2_acriflavine), detectable comammox Nitrospira are ~34% enriched and 

are the sole ammonia oxidizer present in the culture (Figure 2.9). The AOA present in G4 

enrichments is also a novel species, previously detected in the RBCs at less than 0.1% relative 

abundance (Spasov et al., 2020). It would be interesting in the future to purify and isolate this 

AOA species and study its physiology, metabolism, and interaction with comammox Nitrospira 

in the enrichment cultures.  
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Chapter 3 The activity of nitrifiers in enrichment cultures and RBC biofilm 

suspensions 
 

3.1 Introduction 

Comammox bacteria have so far been detected using metagenomics and PCR-based 

approaches in artificial and natural systems (Palomo et al., 2016; Pinto et al., 2016; Pjevac et al., 

2017; Wang et al., 2017, 2020; Spasov et al., 2020), yet the extent of their contribution to 

nitrification in many of those environments, including wastewater, remains largely unexamined. 

Efforts to study the activity of comammox Nitrospira in wastewater treatment systems have been 

made by several groups. For example, Zheng et al. (2019) used RT-qPCR along with sequencing 

to show that comammox Nitrospira dominated nitrification in eight full-scale WWTPs. 

Likewise, a combination of metagenomic and metatranscriptomic approaches demonstrated that 

comammox Nitrospira were active in one of the two examined full-scale WWTPs (Yang et al., 

2020). Together, these findings provide insight into the activity and contribution of comammox 

Nitrospira to nitrogen cycling. Although methods like RT-qPCR, coupled with sequencing and 

metatranscriptomics, are valuable and can provide a holistic view of possible activities of 

nitrifying guilds in engineered environments, they do not assess nitrification activity directly. 

Differential inhibitors, in combination with qPCR and NH4
+/NO2

-/NO3
- monitoring, can provide 

an effective means to study the relative activity and contribution of nitrifying guilds in an 

environment.  

Recent findings by Spasov et al. (2020) have implicated comammox Nitrospira as dominant 

ammonia oxidizers in Guelph RBCs. Despite the high abundance of comammox Nitrospira in 

these biofilms, their contributions to nitrification remain uninvestigated. To fill this gap, I 
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examined the effects of known nitrification inhibitors on the activity and abundance of 

comammox Nitrospira. The effects of simvastatin, c-PTIO, ATU, DCD, chlorite, and chlorate 

were tested on comammox Nitrospira enrichment cultures (G4 and G8) and RBC biofilm 

microcosms, two AOA representatives (Ca. Nitrosotenuis aquarius and Nitrosopumilus 

maritimus), and the AOB Nitrosomonas europaea.  

 

3.2 Materials and methods 

3.2.1 Sample collection 

Biofilm samples were collected from RBC NW1 using a sterile swab as in chapter 2 (see 

section 2.2.1). RBC water used for the biofilm suspension was also collected from the NW1 

stage. Several biofilm swabs fully coated with biofilm material were swirled in ~3000 mL RBC 

water to create three visually turbid cell suspensions. The biofilm suspensions were transported 

back to the lab on ice until further processing. 

3.2.2 Reagents used 

The effects of four nitrification inhibitors, including carboxy-PTIO, ATU, DCD, and 

simvastatin were assessed on reference cultures and the G4 and G8 enrichment cultures. 

Additionally, five nitrification inhibitors, including c-PTIO, ATU, DCD, chlorite, and chlorate, 

were tested in RBC cell suspension microcosms. All reagents were obtained from Sigma-Aldrich 

(Oakville, ON, Canada). Stock solutions were prepared in water (ATU, c-PTIO, chlorite, 

chlorate, and DCD) or in 100% dimethyl sulfoxide (DMSO; simvastatin) and sterilized by 

passage through a 0.1-μm pore size PVDF filter (Millipore, Billerica, USA).    
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3.2.3 Short-term incubation of comammox enrichments and reference cultures with nitrification 

inhibitors  

The effects of the nitrification inhibitors c-PTIO, ATU, DCD, and simvastatin were evaluated 

on the activity of two aquatic AOA representatives, N. maritimus and Ca. N. aquarius, the AOB 

representative N. europaea (obtained from the German Collection of Microorganisms and Cell 

Cultures; DSMZ 28437) and two comammox Nitrospira containing enrichment cultures (G4 and 

G8). The effects of chlorite and chlorate on nitrification by enrichment and reference cultures 

were not assessed because earlier incubation trials with chlorite and chlorate in the RBC biofilm 

were inconclusive, and a potential interference of chlorate in nitrite/nitrate quantification was 

observed in those trials. Incubations were performed in AOM media for G4, G8, N. europaea, 

and Ca. N. aquarius, and synthetic crenarchaeota medium (SCM) for N. maritimus (Könneke et 

al., 2005; Daims et al., 2015; Sauder et al., 2018). Ammonia depletion, nitrite and nitrate 

accumulation were measured over time to assess the activity of nitrifiers.  

Due to logistical constraints, only a single effective inhibitor concentration was tested per 

inhibitor in the experiment (see Figure 3.1 for experimental design). Concentrations used were 

based on prior research in enrichment cultures or environmental samples (Hooper and Terry, 

1973; O’Callaghan et al., 2010; Lehtovirta-Morley et al., 2013; Sauder et al., 2016; Kits et al., 

2017; Tatari et al., 2017; Cui et al., 2020; Li et al., 2020). Four nitrification inhibitors were 

tested in this experiment, including c-PTIO at 100 µM, ATU at 10 µM, DCD at 10 mM, and 

simvastatin at 8 µM. Simvastatin stock solution (100 µM) was prepared by dissolving 

simvastatin in 100% DMSO. An aliquot of the simvastatin stock solution was diluted directly in 

culture flasks to reach the desired simvastatin concentration (8 µM) and a DMSO concentration 

of 0.1% (v/v) in AOM media. Potential toxicity of DMSO on ammonia-oxidizing activity was 

assessed by monitoring ammonia depletion and nitrite/nitrate generation in G4 enrichment 
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cultures supplemented with DMSO at 0.1%. All cultures were incubated in duplicates in the dark 

without shaking. One mL of culture was sampled (12-hour sampling for the first two days, 

followed by 24-hour sampling for 16 days) for estimation of activity through changes in the 

concentration of ammonia, nitrite, and nitrate. 

 

 

 

 

 

 

 

 

 

  

3.2.4 Short-term incubation of RBC biofilm suspensions with nitrification inhibitors  

The effects of the nitrification inhibitors c-PTIO, ATU, DCD, chlorite, and chlorate were 

evaluated on the activity of ammonia-oxidizing guilds present in the biofilm of Guelph’s RBCs 

(see Figure 3.2 for experimental design). Nitrification inhibitors were used in conjunction with 

filtration, a method shown to eliminate the presence of AOB in the cultures. Sample bottles 

containing RBC cell suspension were gently vortexed (pre-mixed) to homogenize the cell 

Figure 3.1. Experimental set up of enrichment and reference cultures with differential 

inhibitors. The letters A and B denote duplicates. 
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suspension before membrane filtration. The entire cell suspension volume (~3000 mL) was 

filtered through Whatman paper to remove larger aggregates; this suspension was then divided 

into two volumes of ~1400 mL. One 1400 mL volume was further subdivided into seven 

volumes of 200 mL, and each 200 mL of cell suspension was passed through a separate 0.45-µm 

filter. The resulting filtrate was then filtered through a 0.1-µm filter to recover community 

members smaller than 0.45-µm on the 0.1 µm filter surface (“size-fractionated cell suspension”). 

The other 1400 mL was split into seven volumes of 200 mL, and each 200 mL of cell suspension 

was directly filtered through a 0.1-µm filter (“unfractionated cell suspension”). Following fluid 

passage, the 0.1-µm membrane filters were cut into four sections, with one section immediately 

frozen for subsequent DNA analysis. The other three sections were used as starting inocula for 

three cultures. For killed biomass controls, size-fractionated or unfractionated cell suspension 

was used as starting inoculum and the resulting suspension was then autoclaved twice (at 121 °C 

for 20 minutes). Incubations with inhibitor were carried out in 30 mL of the AOM medium in 

100 mL serum bottles (Hatzenpichler et al., 2008; Daims et al., 2015; Sauder et al., 2017). The 

medium was supplemented with 0.5 mM ammonium chloride. All bottles were sealed with 

silicone stoppers for incubation in the dark at room temperature without shaking. All bottles 

were incubated for eight days with 12-hour sampling intervals for the first four days, followed by 

a 24-hour sampling interval thereafter. When sampled, 2 mL of each culture was collected and 

frozen in the -20°C freezer until processed. 
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3.2.5 Water chemistry measurements 

Ammonia, nitrite, and nitrate measurements were measured for all sampling time points 

using the methods described in section 2.2.4. Note that background nitrate from the RBC water, 

which was ~ 200 µM, was not removed from nitrate measurements for microcosms. Both total 

ammonium and nitrite in the starting RBC biofilm suspension were negligible (< 10 µM). 

3.2.6 DNA extractions and quantitative PCR (qPCR) 

DNA extractions from filters were done using the Qiagen DNeasy UltraClean Microbial Kit 

(Qiagen, Hilden, Germany). DNA concentration was quantified using a Qubit (Invitrogen, 

Waltham, MA). DNA extractions were performed as described in section 2.2.4. DNA 

concentration of extracted filter samples was normalized to 1 – 5 ng/µL. 

Quantification of clade A comammox Nitrospira amoA gene was done using the degenerate 

primer set ComaA-244f (A-F) and ComaA-659r (A-R) (Pjevac et al., 2017). Quantification of 

Figure 3.2. Experimental set up of RBC biofilm suspension with differential inhibitors. The 

letters A, B, and C denote triplicates. 

 

Figure 3.4. The effects of PTIO, ATU, DCD, and simvastatin on the activity of G4, G8, N. 

europaea, Ca. N. aquarius, and N. maritimus. All incubations were set up using 1% 

inoculum into fresh AOM media supplemented with 0.5 mM ammonium chloride. Error bars 

represent the standard deviation of duplicates. Error bars not shown are contained within 

symbols. Total nitrogen line shown represents total inorganic nitrogen and was calculated as 

the sum of total ammonium, nitrite, and nitrate concentrations at that sampling time 

point.Figure 3.5. Experimental set up of RBC biofilm suspension with differential inhibitors. 

The letters A, B, and C denote triplicates. 



 

75 

 

AOA amoA gene was done using CrenamoA 23F/CrenamoA 616R primer set (Tourna et al., 

2008), and AOB amoA gene was quantified using the primer set amoA-1F/amoA-2R  

(Rotthauwe et al., 1997) on a CFX96 thermal cycler system (Bio-Rad, Laboratories, Hercules, 

CA). All primers, annealing temperatures, and expected product sizes were based on the 

associated literature protocols (see Table 2.4). 

The 10-μl reaction mixture contained 5 µL of the 2X SsoAdvanced Universal SYBR Green 

Supermix (Bio-Rad, Hercules, CA), 0.05 L of forward and reverse primer at 100 M, 0.5 l of 

BSA at 10 mg/mL, and 4 l of the template (at a concentration of 1 – 5 ng/µL). For clade A 

comammox Nitrospira, qPCR cycling conditions were: 98C for 3 minutes, 35 cycles of 98 C 

for 30 seconds (denaturation), 52C for 45 seconds (annealing), 72C for 60 seconds (extension) 

followed by a fluorescence read following the extension step. Melt curve analysis was carried 

out at 65–95°C, in 0.5°C increments. For AOA, qPCR cycling conditions were: 98 C for 3 

minutes, 35 cycles of 98 C for 30 seconds, 55 C for 30 seconds, 72 C for 60 seconds. For 

AOB, qPCR cycling conditions were: 98 C for 3 minutes, 35 cycles of 98 C for 30 seconds, 60 

C for 30 seconds, 72 C for 60 seconds. All quantitative PCR amplifications were performed in 

duplicate. Amplification efficiencies for qPCR runs ranged between 80 – 97% with R2 > 0.99. 

Statistical analyses using the Student’s t-test was performed using the software GraphPad Prism 

version 9 (GraphPad Prism Software, La Jolla, CA). 
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3.3 Results and discussion 

3.3.1 Effects of nitrification inhibitors on enrichment cultures  

Overall, the relative contributions of nitrifiers in the RBCs and enrichment cultures was 

explored using differential nitrification inhibitors. Major influences of nitrification inhibitors 

were assessed on bulk nitrification activity. The two enrichment cultures G4 (contained 

MAG069-associated comammox Nitrospira) and G8 (contained MAG044-associated 

comammox Nitrospira) were chosen to assess whether different strains of comammox Nitrospira 

might have varying sensitivities to the same inhibitor.  

Carboxy PTIO (c-PTIO) is a nitric oxide scavenger that is widely applied as a selective 

inhibitor for archaeal ammonia oxidation in pure cultures as well as environmental samples. The 

addition of 100 µM c-PTIO, a concentration previously shown to inhibit comammox Nitrospira 

(Kits et al., 2019), as well as cultured AOA representatives (Shen et al., 2013; Martens-Habbena 

et al., 2015; Sauder et al., 2016), did not inhibit ammonia oxidation by N. europaea (Figure 3.3). 

However, c-PTIO inhibited ammonia depletion and nitrite production in the two tested AOA 

cultures Ca. N. aquarius and N. maritimus (Figure 3.3). These results are in agreement with 

previous research that demonstrated the effectiveness of c-PTIO as a selective inhibitor against 

those two AOA strains (Sauder et al., 2016). Compared to the no inhibitor control, 100 µM c-

PTIO resulted in some inhibition (~50% reduction) of ammonia oxidation in G4. This outcome 

was expected because G4 contained both AOA and comammox Nitrospira; therefore, it is likely 

that the AOA were inhibited by 100 µM c-PTIO. In G8, the addition of 100 µM c-PTIO did not 

result in the inhibition of ammonia oxidation. Together, these findings suggest that the two 

comammox Nitrospira ecotypes present in G4 and G8 enrichments were insensitive to 100 µM 

c-PTIO (Figure 3.3). It is important to note that AOB were absent in both enrichment cultures 
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(Figure 2.9), and therefore, observed activity was attributed to comammox Nitrospira. Previous 

research by Kits et al. (2019) demonstrated that the ammonia oxidation activity by N. inopinata 

was completely inhibited at a lower PTIO concentration than the one used here (~63 µM). The 

authors suggest that the comparable nitric oxide kinetics between N. inopinata and AOA make 

comammox Nitrospira more sensitive to inhibition by low concentrations of PTIO (Kits et al., 

2019). Here, inhibition of comammox Nitrospira by PTIO at 100 µM was not observed, 

implying that comammox Nitrospira present in G4 and G8 may exert less control over the 

production of nitric oxide compared to N. inopinata. This highlights the need to test those 

inhibitors against several comammox Nitrospira representatives before generalizing conclusions.  

Allylthiourea (ATU), a copper chelator and an inhibitor of AOB and comammox Nitrospira 

activity, was used at 10 µM, a concentration shown effective against several AOB species 

(Lehtovirta-Morley et al., 2013; Martens-Habbena et al., 2015). Predictably, ammonia oxidation 

was completely inhibited in N. europaea by ATU and it did not generally affect the activity of N. 

maritimus or Ca. N. aquarius (Figure 3.3). Again, these results agree with previous findings by 

Sauder et al. (2016) who showed that in liquid cultures, AOB were sensitive to 10 µM ATU and 

these two AOA species were not. The effect of 10 µM ATU was differential on G4 and G8 

enrichments (Figure 3.3). Complete nitrification inhibition was observed in G8 (similar to N. 

europaea), suggesting that comammox Nitrospira were inhibited by 10 µM ATU, as previously 

demonstrated by van Kessel et al. (2015). In G4, the addition of 10 µM ATU resulted in partial 

nitrification inhibition (~50% reduction) of ammonia oxidation. The most probable explanation 

is that the comammox Nitrospira in G4, like AOB and N. inopinata, is inhibited by 10 µM ATU 

as evidenced by G8, an enrichment culture that lacks AOA and AOB presence. 
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Figure 3.3. The effects of PTIO, ATU, DCD, and simvastatin on the activity of G4, G8, N. 

europaea, Ca. N. aquarius, and N. maritimus. All incubations were set up using 1% inoculum 

into fresh AOM media supplemented with 0.5 mM ammonium chloride. Error bars represent 

the standard deviation of duplicates. Error bars not shown are contained within symbols. Total 

nitrogen line shown represents total inorganic nitrogen and was calculated as the sum of total 

ammonium, nitrite, and nitrate concentrations at that sampling time point. 
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In G4, AOA, as well as several Nitrospira ASVs, are present; therefore, the observed activity is 

likely of the co-existing AOA and NOB Nitrospira. ATU is, therefore, only useful as a selective 

inhibitor for comammox Nitrospira in the absence of AOB.    

Dicyanamide (DCD), a complete nitrification inhibitor widely used in the agricultural 

context, was previously shown to inhibit AOA, AOB, and comammox Nitrospira (Lehtovirta-

Morley et al., 2013; Fu et al., 2018; Li et al., 2020). As expected, 10 mM DCD inhibited 

nitrification completely in tested reference cultures as well as the two enrichment cultures 

(Figure 3.3). Thus, DCD is effective in inhibiting chemolithotrophic activity in liquid cultures. 

Similar conclusions were made by Jung et al. (2011), who reported that the activity of the AOA 

Ca. Nitrosoarchaeum koreensis and the AOB N. europaea are affected by the addition of 0.5 mM 

DCD, thereby providing additional evidence for the effectiveness of DCD as a nitrification 

inhibitor. 

Simvastatin was recently shown to be a good selective inhibitor for the activity of AOA in 

pure cultures and in soil (Zhao et al., 2020). Simvastatin was dissolved in 0.1% DMSO and used 

at 8 µM, a concentration shown effective for some terrestrial AOA (Zhao et al., 2020). As 

expected, the ammonia-oxidizing activity of N. maritimus and Ca. N. aquarius was generally 

inhibited at 8 µM, whereas N. europaea activity was not (Figure 3.3). Although the ammonium 

depletion and nitrate accumulation rates were not calculated for this experiment, it appears that 

the addition of simvastatin at 8 µM resulted in ~50% nitrification inhibition in G4 (Figure 3.3). 

This result indicates that nitrifying activity by AOA was eliminated, and the observed ammonia-

oxidizing activity can likely be attributed to comammox Nitrospira. Culture G8 showed little to 

no ammonia oxidation inhibition at 8 µM simvastatin (Figure 3.3). Transient nitrite accumulation 

along with nitrate production was briefly observed. Nonetheless, it appears that comammox 



 

80 

 

Nitrospira were generally not inhibited by 8 µM simvastatin. Taken together, these results 

suggest that the activity observed is likely caused by comammox Nitrospira in the enrichment 

cultures (again, AOB were absent from both enrichment cultures). Even though Zhao et al. 

(2020) did not examine the effects of simvastatin on comammox Nitrospira, findings from this 

study are valuable for the study of comammox Nitrospira (and AOB) activity in other 

environments (e.g., aquaria and drinking water systems). Although effective on AOA species 

tested here, future studies should test simvastatin against other AOA species to determine 

whether AOA sensitivity to simvastatin can be generalized. Note that the addition of 0.1% 

DMSO resulted in some inhibition of activity in G4 compared to the no inhibitor control (Figure 

3.4). Overall, the inhibitors used here provide clear evidence for the effectiveness of nitrification 

inhibitors in determining the relative contributions of nitrifiers in enrichment cultures.  
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Figure 3.4. The effect of 0.1% DMSO on nitrification activity of G4 (panel B). Panel A shows 

G4 activity with no inhibitor. Incubation was set up using 1% inoculum into fresh AOM 

medium supplemented with 0.5 mM ammonium chloride. Error bars represent the standard 

error of duplicates. Error bars not shown are contained within symbols. Total nitrogen line 

shown represents total inorganic nitrogen and was calculated as the sum of total ammonium, 

nitrite, and nitrate concentrations at that sampling time point. 
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3.3.2 Effects of nitrification inhibitors on RBC biofilm suspensions  

To establish whether the inhibition of AOB, AOA, and comammox Nitrospira in cultures 

reflected inhibition in the environment, effects of nitrification inhibitors on growth and activity 

were examined in microcosms containing size-fractionated or unfractionated cell suspensions. 

The purpose of the size fractionation was to eliminate AOB and study the relative activity of 

AOA and comammox Nitrospira in the RBC biofilm. It is, however, evident from the qPCR data 

(Figures 3.6 and 3.7) that filtration through a 0.45-µM filter did not eliminate AOB. 

Compared to the no inhibitor control, the addition of 100 µM c-PTIO resulted in partial 

nitrification inhibition in unfractionated cell suspensions (Figure 3.5). Partial ammonia oxidation 

may be attributed to AOB or comammox Nitrospira, whose activity is not hindered by 100 µM 

c-PTIO. In addition, the relative proportions of AOB and comammox Nitrospira amoA genes 

remained unchanged throughout the course of the experiment (insignificant change, p >0.05, for 

raw qPCR amoA proportions see Figure 3.7); therefore, it remains unclear whether the activity 

observed was caused by comammox Nitrospira or AOB. In the future, higher effective c-PTIO 

concentrations (e.g., 300 – 400 µM) need to be tested to ensure complete inhibition of 

nitrification activity by AOA (Sauder et al., 2016) and possibly comammox Nitrospira. The 

reason why the effective concentration of c-PTIO varies between enrichment culture and biofilm 

samples is likely due to differences in community composition and abundance of nitrifiers. In 

size-fractionated cell suspensions (Figure 3.6), ammonia-oxidizing activity was largely inhibited, 

and the relative proportion of the AOA amoA gene, unexpectedly, increased (significant t-test, p 

<0.0001). This finding implies that c-PTIO may affect AOA activity but not their growth, or that 

other microorganisms present in the biofilm suspension are more prone to inhibition by the tested 

c-PTIO concentration, whereas AOA are in biostasis; hence the increase in relative proportions 
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of the AOA amoA gene. The slight increase in nitrate concentration indicates nitrite-oxidizing 

activity by NOB Nitrospira or that some comammox Nitrospira were not affected by the c-PTIO 

concentration used (Figure 3.6). Additionally, the increase in total ammonium concentration 

observed suggests that other processes like DNRA (conversion of nitrate to ammonia) may have 

occurred in the size-fractionated c-PTIO-treated cell suspensions (Figure 3.6). 

 

 

 

 

 

 

 

 

 

 

  Figure 3.5. Effects of c-PTIO, ATU, DCD, chlorate, and chlorite on the growth and activity 

of nitrifiers in unfractionated cell suspensions. Error bars indicate standard deviations of 

triplicates. If not displayed, error bars are contained within symbols. Pie charts shown on top 

show the relative proportion of AOA, AOB, and comammox Nitrospira amoA genes at that 

time point (starting or end point). Percentages shown on top of the pie chart represent the 

proportion of comammox Nitrospira amoA in that sampling time point. CMX= comammox 

Nitrospira. Total nitrogen line shown represents total inorganic nitrogen and was calculated 

as the sum of total ammonium, nitrite, and nitrate concentrations at that sampling time point. 
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Figure 3.6. Effects of c-PTIO, ATU, DCD, chlorate, and chlorite on the growth and activity of 

nitrifiers in size-fractionated cell suspensions. Error bars indicate standard deviations of 

triplicates. If not displayed, error bars are contained within symbols. Pie charts shown on top 

show the relative proportion of AOA, AOB, and comammox Nitrospira amoA genes at that 

time point (starting or end point). Percentages shown on top of the pie chart represent the 

proportion of comammox Nitrospira amoA in that sampling time point. CMX= comammox 

Nitrospira. Total nitrogen line shown represents total inorganic nitrogen and was calculated as 

the sum of total ammonium, nitrite, and nitrate concentrations at that sampling time point. 
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Compared to the no inhibitor control, the addition of 10 µM ATU resulted in ammonia 

oxidation inhibition in both size-fractionated and unfractionated cell suspensions (Figures 3.5 

and 3.6). Counterintuitively, the relative abundance of comammox Nitrospira amoA gene 

increased significantly in both size-fractionated and unfractionated cell suspensions with the 

addition of 10 µM ATU (t-test, p <0.05). It is unclear why the relative abundance of comammox 

Nitrospira amoA gene increased throughout the experiment, and whether they utilized a different 

source of energy for growth, or if other microorganisms present in the biofilm suspension are 

more prone to inhibition by ATU, hence the increase in relative proportions of the comammox 

Nitrospira amoA gene. As an AOB and comammox Nitrospira inhibitor, the addition of ATU at 

10 µM should not impact ammonia oxidation activity by AOA, yet nitrification was not observed 

in either size-fractionated or unfractionated cell suspensions. Additionally, in the unfractionated 

ATU-treated biofilm microcosms (Figure 3.5), the absence of nitrite and nitrate accumulation 

despite the decline of total ammonium implies that other processes that involve ammonia 

utilization in the RBC biofilm may have occurred. Taken together, activity and qPCR data imply 

that AOA in the RBC biofilm may not be participating in ammonia oxidation in the RBCs. This 

finding is in alignment with previous findings by Mussmann et al. (2011), who observed high 

relative abundance of AOA in WWTPs but demonstrated that the AOA were not participating in 

ammonia oxidation. For that reason, it is important to not make assumptions about the 

microorganism’s activity based solely on presence and abundance data. Overall, it remains 

unclear whether the AOA play any role in nitrification and whether they use ammonia for energy 

conservation in the RBCs.  

The chemolithotrophic nitrification inhibitor DCD inhibited nitrification in both the size-

fractionated and unfractionated cell suspensions (Figures 3.5 and 3.6). Predictably, the relative 
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abundance of comammox Nitrospira, AOB, and AOA amoA gene proportions remained mostly 

unchanged throughout the course of the experiment. Overall, however, halted activity coupled 

with no changes in relative abundances of nitrifying guilds, indicates that DCD is a suitable 

inhibitor for complete inhibition of nitrification by chemolithoautotrophic microorganisms. This 

general trend is in agreement with prior findings, where DCD was observed to impede the 

activity of AOA, AOB, and comammox Nitrospira in various soil types (O’Callaghan et al., 

2010; Zhang et al., 2012; Li et al., 2020).  

Chlorate, which is a nitrite oxidation inhibitor, was previously shown to inhibit the activity of 

nitrite-oxidizing bacteria and possibly comammox bacteria (Hynes and Knowles, 1983; Tatari et 

al., 2017). Compared to the no inhibitor control, the addition of 10 mM chlorate resulted in the 

inhibition of ammonia and nitrite oxidation in size-fractionated cell suspensions (Figure 3.6), 

whereas in unfractionated cell suspensions, the addition of 10 mM chlorate resulted in partial 

inhibition of ammonia and nitrite oxidation. The slight increase in nitrite concentration observed 

in the unfractionated cell suspensions suggests ammonia-oxidizing activity by AOB or AOA, 

whose activity is not expected to be affected by the addition of chlorate. It is also possible that 

residual (partial) activity by comammox Nitrospira occurred and that comammox Nitrospira 

cells were not completely inhibited by 10 mM chlorate. Based on relative gene abundance data, 

it is unclear which of these scenarios occurred, as the relative proportions of comammox 

Nitrospira, AOA, and AOB amoA genes remained unchanged throughout the experiment. In 

size-fractionated cell suspensions, where ammonia and nitrite oxidation ceased, the increase in 

the relative AOA amoA gene abundance (significant t-test, p < 0.05) without activity suggests 

that the AOA may not be participating in ammonia oxidation or that other microorganisms 

growing in the biofilm suspension are more sensitive to inhibition by chlorate, thus the increase 
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in the relative proportion of the AOA amoA gene. It is important to note that at higher nitrate 

concentrations (e.g., > 300 µM), chlorate reacted with nitrite/nitrate products to form an orange 

colored product, instead of the bright magenta normally observed. Therefore, it is possible that 

the measured product did not absorb at the same wavelength (i.e., 550 nm) as the non-chlorate, 

nitrate-containing, samples resulting in interference with nitrite and nitrate measurements. This 

might explain the slight increase in nitrate observed around day five in size-fractionated and 

unfractionated samples. Regardless, it appears that chlorate affects ammonia and nitrite 

oxidation, therefore its selectivity as an inhibitor of nitrite oxidation and comammox Nitrospira 

activity in the RBC biofilm remains questionable. 

The proposed mechanism of action for chlorate inhibition is via conversion of chlorate to 

chlorite by the activity of nitrite oxidoreductase (NXR). As such, chlorite is presumed to be the 

true nitrite oxidation inhibitor. In addition to testing chlorate against cell suspensions, chlorite 

was tested against size-fractionated and unfractionated cell suspensions. Like DCD, chlorite 

inhibited all nitrification in both size-fractionated and unfractionated cell suspensions (Figures 

3.5 and 3.6). This was not surprising to observe as chlorite is a strong oxidizing agent with 

bactericidal activity.  

Finally, it is evident that non-nitrification activities were also observed in the size-

fractionated and unfractionated cell suspensions. For example, depletion of nitrate in c-PTIO-

treated microcosms suggests active denitrification (or anammox) in some flasks (Figures 3.5 and 

3.6). Because incubation flasks were not shaken and were generally left undisturbed, anoxic 

pockets were likely present and could have allowed anammox bacteria to convert ammonia and 

nitrite to dinitrogen gas. These observations were expected, given the heterogeneity of 
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community members present in the RBC biofilm, highlighting the complexity of this active 

system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. qPCR data showing relative proportions of AOB, AOA, and comammox 

Nitrospira amoA genes at time points zero (starting time point) and eight (last time point). 

Error bars represent the standard error for triplicates. Error bars not seen are contained within 

the bars. CMX= comammox. amoA gene copies were calculated based on the amount of DNA 

(ng) in the original DNA extract. 
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3.4 Conclusions  

Based on this work, the comammox Nitrospira in my enrichments were sensitive to ATU, 

DCD, and insensitive to the tested c-PTIO concentration (in contrast to earlier findings for N. 

inopinata). Simvastatin inhibited both Ca. N. aquarius and N. maritimus and was therefore 

considered a good selective inhibitor for AOA (Figure 3.3). However, as with all other 

nitrification inhibitors, more testing against many phylotypes and cultured representatives will be 

necessary to corroborate those findings. Differences in the regulation of nitric oxide production 

and consumption, as well as reliance on copper (as a co-factor in several enzymes), may have 

resulted in the observed differences of sensitivity to the same nitrification inhibitor.  

In RBC cell suspensions, the tested nitrification inhibitors did not perform comparably in the 

biofilm samples as in enrichment cultures. Instead, tested nitrification inhibitors highlighted the 

complexity of the nitrifying community in the RBC biofilm. In this instance, filtration through a 

0.45-µm filter was not useful for eliminating AOB. Additionally, inhibitors like c-PTIO, 

chlorate, and ATU showed partial inhibition in unfractionated cell suspensions (Figure 3.5), 

likely suggesting the need for using a higher testing concentration in the future (e.g., 300 µM for 

PTIO and 100 µM for ATU). Because of analytical interference concerns, caution needs to be 

taken when using chlorate as an indicator of the contribution of comammox Nitrospira to 

nitrification. Nevertheless, based on preliminary evidence shown here, it appears that 

comammox Nitrospira activity was inhibited by several nitrification inhibitors, suggesting that 

they likely play an active role in the RBCs (Figure 3.6). This work highlights the significance of 

including comammox bacteria when assessing nitrification in wastewater treatment plants. 
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Chapter 4 Summary of contributions and future directions  
 

 

4.1 Summary of thesis contributions 

The microbially mediated process of nitrification is an important component of the global 

nitrogen cycle. As such, ammonia and nitrite oxidizers play a key role in the transformation of 

nitrogen in natural and engineered environments. Ammonia and nitrite oxidizers ensure that 

nitrogen compounds (e.g., ammonia and nitrite) do not accumulate in the environment. 

Wastewater treatment systems, for example, rely on the activity of nitrifiers (and denitrifiers or 

anammox bacteria) to remove toxic nitrogenous compounds from wastewater prior to discharge 

in receiving water. Ammonia, which can be found in wastewater, is converted to nitrate via the 

sequential activity of AOB or AOA, that convert ammonia to nitrite, followed by the activity of 

NOB, with an important role converting nitrite to nitrate. Alternatively, ammonia can be 

converted to nitrate by comammox Nitrospira. Owing to their recent discovery, comammox 

bacteria remain largely understudied in engineered environments. Recent work by Spasov et al. 

(2020) showed that comammox Nitrospira are the dominant nitrifying guild in the RBCs of the 

Guelph WWTP (a municipal WWTP). Currently, several cultured representatives of comammox 

Nitrospira exist and information on their nutritional requirements and growth conditions remain 

limited. Additionally, the activity and possible role of comammox Nitrospira in Guelph’s 

WWTP remain uninvestigated. Therefore, the goal of this research was to establish an 

enrichment of comammox Nitrospira and to determine the general growth conditions required to 

cultivate comammox Nitrospira from the RBCs. Additionally, this research examined the 

possible activity of comammox Nitrospira in biofilm (mixed community) and in enrichment 
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cultures using differential nitrification inhibitors. This work represents a major step toward 

understanding the growth requirements of comammox Nitrospira in laboratory cultures, as well 

as the broad understanding of their contribution to nitrification in Guelph’s RBCs.  

In chapter 2, enrichment cultures containing two novel comammox Nitrospira ecotypes were 

obtained from the biofilm of Guelph’s RBCs (Figures 2.7 and 2.9). Under ammonia-fed 

conditions, comammox Nitrospira oxidize ammonia to nitrate as in other comammox bacteria 

(see G8; Figure 2.3). In chapter 3, preliminary findings, based on enrichment cultures and 

biofilm incubations, suggest that comammox Nitrospira are likely active ammonia oxidizers and 

contribute to nitrification in the RBC biofilm (Figure 3.6). Work presented here can guide future 

research in exploring the ecology, physiology, and biochemistry of comammox Nitrospira in 

Guelph WWTP, as well as other engineered environments. Research presented in this thesis is 

built upon on existing body of research that examined nitrification and nitrifiers present in 

Guelph’s RBCs (Sauder et al., 2012, 2016; 2017; Spasov et al., 2020). Along with previous 

findings, this thesis highlights the significance of the RBCs as a 440,000 m2 bioreactor that 

houses multiple ammonia- and nitrite-oxidizing guilds. Given their fixed biofilm design and the 

ammonia gradient, the RBCs continue to be an important site for studying the ecology and 

diversity of nitrifiers in engineered systems.   

 

4.1.1 The enrichment of comammox Nitrospira from the RBC biofilm  

Although several studies have described the presence and distribution of comammox 

Nitrospira in WWTPs (Gonzalez-Martinez et al., 2016; Pjevac et al., 2017; Roots et al., 2019; 

Zhao et al., 2019; Spasov et al., 2020), cultivation of these bacteria from WWTPs has not been 

attempted. To date, cultivation remains the main bottleneck in the biochemical and physiological 
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characterization of comammox Nitrospira. Pure and enrichment cultures are valuable because 

they allow testing of predictions from genomics-based studies, in addition to allowing us to 

understand the potential roles that microorganisms play in the environment.  

The abundance and diversity of comammox Nitrospira in the RBCs have raised several 

questions regarding their ecophysiology and activity. To answer these questions, a 

comprehensive examination of comammox Nitrospira physiology and biochemistry is necessary. 

Currently there are only a small number of comammox Nitrospira strains in enrichment cultures 

(Table 1.1), and a single comammox Nitrospira species available in pure culture (Daims et al., 

2015; van Kessel et al., 2015; Kits et al., 2019; Fujitani et al., 2020; Sakoula et al., 2020). The 

physiological data obtained thus far, including ammonia and nitrite affinity, is solely derived 

from Nitrospira inopinata. In addition to permitting collection of physiological and biochemical 

data, cultures are useful for studying the effects of chemical inhibitors on the growth and activity 

of nitrifiers. As suggested by others previously, physiological and activity-related findings from 

N. inopinata may not apply to other comammox Nitrospira species; therefore, characterization of 

several cultured representatives is required before generalization. Given that comammox 

Nitrospira from the RBCs are phylogenetically dissimilar to cultivated comammox Nitrospira 

representatives (Spasov et al., 2020), I set out to enrich comammox Nitrospira from the RBCs. 

Additionally, preparing enrichment cultures was important to address my second objective, 

which assessed the major effects of known nitrification inhibitors on activity of comammox-

containing enrichment cultures (cultures used a surrogate to study the activity of comammox 

Nitrospira). To obtain an enrichment culture of comammox Nitrospira, I used filtration (through 

a 0.45-µm filter) as a size selection method for comammox Nitrospira. The result was the 

enrichment of two novel, phylogenetically distinct, comammox Nitrospira belonging to clade A 
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sublineage II Nitrospira from the biofilm of the RBCs (Figures 2.7). The first enrichment (G4) is 

a co-culture of ammonia oxidizers with both AOA and comammox Nitrospira co-existing 

(Figure 2.9). The Nitrospira amoA present in G4 is nearly identical to the amoA gene encoded by 

MAG069 (Figure 2.7), which is a MAG previously detected in Guelph RBCs (Spasov et al., 

2020). MAG069 has the genetic repertoire for complete ammonia oxidation, as well as cyanate 

degradation. Preliminary evidence from my work suggests that G4 (which contains MAG069-

related comammox Nitrospira) may be able to sequentially convert cyanate to ammonium and 

then to nitrate (Tables 2.8). The second enrichment (G8 with acriflavine supplementation) 

consists of ~34% enriched comammox Nitrospira, with no AOA or AOB present (Figure 2.9). 

Results from this work demonstrated that under the studied ammonia-fed conditions, comammox 

Nitrospira are likely capable of oxidizing ammonia to nitrate. Overall, this work advances our 

understanding of the metabolic versatility of comammox Nitrospira and their temperature 

requirement. The new cultures will help to explore further physiological characteristics, such as 

ammonia and nitrite affinities.  

4.1.2 The activity of comammox Nitrospira from the RBC biofilm 

Most studies to date employ a combination of 16S rRNA gene amplicon sequencing and 

functional gene targeted qPCR or metagenomics to study the diversity and distributions of 

comammox Nitrospira. More work is needed to focus on the potential activity and role that 

comammox Nitrospira play in the environment. Recent work by Spasov et al. (2020) reported 

the presence of comammox Nitrospira in the RBCs of the Guelph WWTP, but their 

contributions to nitrification remains unknown. To address this gap, qPCR and differential 

inhibitors were used to assess the nitrification activity of comammox Nitrospira in the RBC 

biofilm (environmental sample) and in two comammox Nitrospira enrichment cultures. As such, 
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I explored the effects of several nitrification inhibitors, like c-PTIO, ATU, DCD, and simvastatin 

on two comammox Nitrospira enrichment cultures (G4 and G8) and on RBC biofilm 

suspensions. Findings from these experiments suggest that comammox Nitrospira are insensitive 

to 100 µM c-PTIO and are inhibited by 10 µM ATU and 10 mM DCD (Figure 3.3). 

Additionally, simvastatin was verified as a useful AOA-specific inhibitor, confirming earlier 

findings by Zhao et al. (2020) that demonstrated that simvastatin is a suitable AOA inhibitor 

(Figure 3.3).  

The differential inhibitors c-PTIO, ATU, DCD, chlorite, and chlorate were also tested on 

biofilm samples. Complete inhibition of activity was observed with the use of DCD and chlorite 

suggesting that both are effective nitrification inhibitors (Figures 3.5 and 3.6). Other inhibitors 

like ATU and c-PTIO resulted in partial inhibition of ammonia oxidation in unfractionated RBC 

cell suspensions (Figures 3.5 and 3.6). Still, based on the inhibitor profiles and qPCR data in 

size-fractionated and unfractionated cell suspensions, it appears that comammox Nitrospira 

activity was likely inhibited by ATU, DCD, and partially by c-PTIO, suggesting that they are 

active members in the RBC biofilm (Figures 3.5 and 3.6).   

4.2 Future directions 

4.2.1 Purification and characterization of comammox Nitrospira in G4 and G8 

Pure cultures of comammox Nitrospira are essential for physiological and biochemical 

characterization of other Nitrospira representatives. Therefore, further work is needed to purify 

and characterize MAG069-related comammox Nitrospira (present in G4) and MAG044-related 

comammox Nitrospira (present in G8). For example, it would be useful to repeat the 

cycloheximide incubation described in Chapter 2 followed by several serial transfers to fresh 

media. If cycloheximide indeed inhibits AOA, then the addition of cycloheximide followed by 
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serial transfers should dilute the AOA over time (dilution to extinction) and aid in the enrichment 

of comammox Nitrospira. Additionally, the use of optical tweezers in conjunction with 

continuous-feeding bioreactors have previously been successful in the growth of several 

Nitrospira representatives including Ca. N. kreftii, N. defluvii, N. lenta, and N. japonica (Ushiki 

et al., 2013; Nowka et al., 2015; Sakoula et al., 2018, 2020). Nowka et al. (2015) highlighted a 

general protocol for enhancement of Nitrospira isolation from the environment, which includes 

the use of density gradient centrifugation to remove heterotrophs, followed by antibiotic 

treatment and cell sorting to select for Nitrospira cells. A similar approach to the one used by 

Nowka et al. (2015) can be applied to the RBC biofilm to isolate several comammox Nitrospira.  

Once a pure culture is obtained, the metabolism of comammox Nitrospira can be examined 

more closely. Several genetic studies have indicated that comammox Nitrospira may be capable 

of mixotrophic growth (Daims et al., 2001; Spieck et al., 2006). Based on research by Spasov et 

al. (2020), many comammox Nitrospira MAGs have the genes required for urea hydrolysis and 

transport. Similarly, several MAGs (like MAG069 and MAG093) contain the genetic repertoire 

for cyanate degradation and hydrogen oxidation. This suggests that comammox Nitrospira 

related to MAG069 and MAG093 may have the genetic capacity to use alternate substrates, 

especially when ammonia is unavailable. Taken together, the study of alternative metabolisms is 

of relevance to gain a holistic perspective on the role of comammox Nitrospira in the RBCs, and 

by extension in other engineered environments.  

Future work should also focus on elucidating whether comammox Nitrospira related to 

MAG069 can actively transcribe the cynS gene under cyanate supplementation. Methods like 

RT-qPCR, using the newly designed cynS primers, can be used to investigate and compare the 

transcriptional activities of comammox Nitrospira in response to cyanate and ammonia 
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supplementation. This method might be suitable for profiling the potential activity of MAG069 

related comammox Nitrospira via quantification of amoA and cynS gene transcripts. For 

example, a short-term cyanase experiment can concentrate inoculum from an actively growing 

culture containing MAG069 related comammox Nitrospira that is fed either 0.5 mM ammonium 

chloride or 0.5 mM potassium cyanate (Michael Wagner, personal communication). Strong 

evidence for cyanase activity being responsible for cyanate use (rather than abiotic conversion of 

cyanate) is via the concentration of biomass from a culture and showing corresponding higher 

nitrate production activity in response to cyanate over a short period of time compared to 

unconcentrated controls. Alternatively, Flow-SIP can be used to study cyanate degradation by 

comammox Nitrospira without side effects caused by cross-feeding (Mooshammer et al., 2020). 

Comammox Nitrospira (related to MAG069) enriched in G4 cultures can be exposed to 13C-

labelled bicarbonate in the presence of cyanate. Intermediate metabolites like nitrite and nitrate 

are continuously removed to ensure no cross-feeding with NOB is occurring, thus demonstrating 

cyanase activity by comammox Nitrospira (Mooshammer et al., 2020).  

It may also be of interest to examine the novel AOA species (belonging to the genus 

Nitrosopumilus) present in the G4 enrichment culture. Because there are no known reports of 

presumably marine-associated Nitrosopumilus species detected in non-saline municipal WWTPs, 

the isolation and characterization of this AOA species could be important in the study of the 

ecology of ammonia oxidizers generally. Additionally, the possible role of salinity in niche 

differentiation, which was previously unexplored in the RBCs, requires further investigation.   

4.2.2 Further examination of activity by comammox Nitrospira in the RBC biofilm 

It would be useful to repeat the activity incubation described in Chapter 3 with several 

modifications. One modification would be to shake the microcosm flasks gently (e.g., 80-100 
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rpm) to ensure adequate aeration to help minimize the potential for anaerobic processes (e.g., 

denitrification and anammox), as presumably observed in environmental sample incubations. 

Additionally, higher inhibitor concentrations may be required for complete nitrification 

inhibition in environmental samples, as previously recommended by Sauder et al. (2015) and 

Martens-Habbena et al. (2015). Simvastatin shows promising results in enrichment cultures and 

may be useful to use as an inhibitor of AOA activity in situ, although its solubility in DMSO 

might make it problematic for use at higher concentration (e.g., higher than 100 µM). Future 

research might combine the use of labelled bicarbonate (e.g., DNA- or RNA-SIP) and measure 

assimilation in the presence of nitrification inhibitors, as previously done by Gülay et al. (2019). 

Alternatively, functional gene transcriptional levels (RT-qPCR targeting amoA genes), along 

with amoA gene amplicon sequencing, can be used to assess the activity of nitrifiers in the 

community, as demonstrated earlier by Zheng et al. (2019). Multiple “omic” approaches (i.e., 

proteomics, transcriptomics, and genomics), combined with activity assays, will likely represent 

a powerful approach to understanding the metabolic versatility and in situ activity of comammox 

Nitrospira, as well as other nitrifiers, in the RBCs. Ultimately, findings from this work advance 

our understanding of nitrification in the RBCs and the key players involved in this process. 

Moreover, findings from this work may be generalized to other aquatic systems, like aquaculture 

systems, where several nitrifying guilds exist (Bartelme et al., 2017). The research presented 

opens new directions possible to explore with enrichment cultures to better characterize the 

potential metabolic roles for comammox Nitrospira in the RBCs, other engineered and naturally 

occurring freshwater environments.  
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