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Abstract

Motivated by the recent experimental measurements of the dielectric property of con-
fined quantum dipolar molecules, the orientational dipolar ordering transition is investi-
gated in the quantum generalization of the quantum dipole rotor model. As a result of the
competition between dipole-dipole interaction and rotational kinetic energy, the confined
quantum dipolar molecule is predicted to have a quantum phase transition from a dis-
ordered phase (paraelectric) to an ordered phase, which depends on the lattice structure
if the dipole-dipole interaction is sufficiently strong. The quantum phase transitions of
dipoles confined to the vertices of face-centered cubic (FCC) lattices and triangular lattice
is studied using mean-field theory. We first study the ground state configuration using the
iterative minimization method and Luttinger-Tisza method. Then, the phase diagram, as
a function of the dipolar interaction’s strength, is constructed. The study shows the orien-
tational phases of quantum dipolar rotors whose properties are determined by the strength
of the dipole-dipole interaction, the rotational constant, and the dipolar molecule’s shape.
An interesting phenomenon called reentrance is found for some symmetric and asymmetric
molecules.
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Chapter 1

Introduction

Confined polar molecules have drawn great attention because they provide a fascinating
platform to explore collective phenomena that emerge from the complicated interactions
between the microscopic degrees of freedom associated with the constituents of a sys-
tem and quantum phase transition that appears due to quantum fluctuations. It has
recently become possible to embed polar molecules, e.g., HF and H2O in the interior of
C60 molecules [2, 3, 4], which was predicted as ferroelectric materials [5]. Moreover, Dres-
sel’s group recently found that confined water molecules in beryl and cordierite exhibit a
tendency towards a macroscopic alignment of their [2, 3, 4] dipoles [6, 7]. In this work, the
quantum phase transition and collective behavior for the above systems are studied. To
address the collective behavior of polar molecules and investigate quantum phase transi-
tions with confined quantum dipolar molecules, a review of the endofullerene and confined
water molecule in beryl and cordierite is first provided. Finally, the fundamental research
motivation and objective of this work and the outline of this thesis are given.

1.1 Confined quantum molecules

1.1.1 Buckminsterfullerene and endohedral fullerenes

A fullerene is a family allotrope of carbon that consists of carbon atoms connected by
single and double bonds that form a closed or partially closed mesh. The molecule may be
a hollow sphere, ellipsoid, tube, or many other shapes and sizes. One of the most famous
fullerene members is Buckminsterfullerene, also known as buckyball or soccer ball, and
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was discovered in 1985 [8]. With a chemical formula of C60, Buckminsterfullerene has a
cage-like fused-ring structure made of twenty hexagons, and twelve pentagons of the carbon
atoms share 90 covalent bonds between them [9]. The pentagon is made of 5 electron-poor
single bonds, and the hexagon is made of 3 single bonds and 3 double bonds, and there are
30 electron-rich double bonds and 60 electron-poor single bonds in total in the C60. In the

Figure 1.1: Molecular structure of the C60. Buckminsterfullerene has a hollow sphere
shape, and the cavity is large enough for encapsulating small molecules.

solid state, C60 molecules crystallizes into face centred cubic (FCC) lattice structure with
the lattice constant a0 = 14.17 Å and the nearest-neighbour distance is 10.02 Å at room
temperature and ambient pressure [10]. The C60 molecules are located at the lattice points
of an FCC lattice. The FCC phase of C60 undergoes a phase transition to a simple cubic
(SC) phase with the space group Pa3̄ at characteristic temperature Tc = 257(1) K [10]
due to rotational freezing of the individual C60 cages and the lattice constant a0 decreases
slightly.

The structure and cavity inside C60 make it possible to encapsulate a single molecule
inside and provides a unique environment to study the isolated atoms and molecules. A
guest atom or molecule is trapped in the interior of a host molecule is called endohedral
compounds. Fullerenes with additional atoms, ions or clusters enclosed within their inner
spheres are so-called endohedral fullerenes or endofullerenes. Lanthanum atom was the
first atom to be trapped inside a carbon cage, and the endohedral compound is denoted
as La@C60 [11]. The notation of the molecule encapsulated within a buckyball is usually
written as X@C60. X is the guest atom or molecule, and all atoms listed on the right of
the @ symbol are assumed to be part of the cage [11]. The endofullerene was synthesized
by a procedure called molecular surgery [2, 3, 4]. Molecular surgery is a technique, which
involves a series of chemical reactions to open a hole on the cage of a size suitable to

2



allow encapsulation of the single guest molecule, then insert the guest molecule into the
hole, and close the hole. The detailed procedures to synthesize H2@C60 and H2O@C60 was
pioneered by Komatsu [2] and Murata [2, 12]. Procedures for the synthesis of HF@C60 [13]
and CH4@C60 [4] then reported by Whitby’s group. The reasons that motivated people to
synthesize endofullerene are the need to storage molecules and drug delivery [14, 15].

(a) HF@C60 (b) H2O@C60

Figure 1.2: The demonstration of the endofullerene. The approximately spherical 3.7 Å
diameter cavity provides a unique environment in which to isolate a single molecule.

The fascinating endofullerene system is rich in quantum phenomena and provides
one of the most promising platforms for exploring quantum phase transition driven by
dipole-dipole interaction. The electric dipole lattices of C60 with an encapsulated polar
molecule were theoretically predicted to have ferroelectricity due to the dipolar interaction
by Cioslowski and Nanayakkara [5]. They estimated the transition temperature of the
dipolar lattice T0 using T0 = αT ∗ from the dimensional analysis, where α is a constant and
T ∗ = µ2(kba

3
0)
−1. T ∗ is called characteristic temperature, µ is the screened dipole moment

at each lattice site (a counter dipole moment on the C60 cage induced by encapsulation
of the polar water molecule can reduce the total dipole moment), and kb is Boltzmann’s
constant. H2O@C60 crystal was predicted to have a ferroelectric phase transition below 64
K by using T0 = αT ∗ [3].

In order to reveal the fundamental properties and the interesting quantum phenomena
of water molecules in the non-hydrogen bonding environments, the endofullerene H2O@C60
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has been extensively studied [13, 16], e.g., ortho-para spin conversion, rotational level-
splitting, and long-range dipole correlations. Aoyagi’s group measured dielectric permit-
tivities of both H2O@C60 and C60 against temperature [3]. The dielectric permittivity of
the empty fullerene remains relatively constant as temperature decreases. However, the
dielectric permittivity of H2O@C60 endohedral fullerene increases with decreasing temper-
ature. In Fig. 3a of Aoyagi’s paper [3], it can be seen the dielectric permittivity diverge
at about 8 K. This shows that the dielectric permittivity or electrical susceptibility of the
H2O@C60 single-crystal follows the Curie–Weiss law, and the Curie temperature TC is equal
to 8 K. The permittivity measurement suggests that the crystal may exhibit a ferroelectric
phase transition below 8 K and under high pressure.

1.1.2 Water in beryl and cordierite

Beryl is a mineral found mainly in pegmatitic rocks, composed of beryllium aluminium
cyclosilicate with the chemical formula Be3Al2Si6O18 (Fig. 1.3, panel (d)). The crystal
structure contains channels of 5.1 Å in diameter which consists of six-membered rings of
SiO4 tetrahedra linked by AlO6 octahedra and BeO4 tetrahedra along c-axis (Fig. 1.3,
panel (a)). The channel has a cavity in the middle which is large enough for trapping a
single water molecule. There are also impurity alkali ions that exist in beryl, e.g., Cs, Rb,
K, Na, which lies in the bottleneck (Fig. 1.3, panel (b)). The presence of impurity ions is
due to a charge imbalance in the framework because of the isomorphic substitution of Al
and Be(which form cages) by lower valency cations (Al3+ to Mg2+, Fe2+/3+, Mn2+, Cr3+,
Vr3+, and Be2+ to Li+) [18, 19]. In this work, we do not consider the effect of impurity
ions.

A single-crystal neutron diffraction study of an alkali/water-rich beryl and an alkali/water-
poor beryl performed by Artioli et al. [18] shows that there are two types of water on the
basis of the presence of impurity ions. In beryl with a high content of alkali ion, the
H2O’s dipole moment and H···H vectors point along c-axis (Water II). In alkali-poor beryl,
the strong H2O electric dipole is oriented within the ab-plane (Water I)(Fig. 1.3, panel
(b)) [17, 19]. Some experimental and theoretical studies, based on spectroscopic, tera-
hertz–infrared (3–7000 cm−1) spectra [17], neutron scattering experiments investigations,
and ab initio charge density analysis [6, 20, 21, 22, 23], provided some new insights into
the alkali-poor beryl, such as quantum tunneling of H2O protons and collective behavior
of H2O. For H2O molecules in beryl, a ferroelectric soft mode, whose frequency is going
down as the temperature is approaching the TC (the phonon "softens") becoming zero at
TC (TC is Curie temperature), was observed. In the Ref. [6], the temperature evolution
of dielectric permittivity of a beryl crystal was measured (see Figure 3 in Ref. [6]), and
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Figure 1.3: Schematic view of water molecules in nano-sized cages of the beryl crystal
lattice. (a) H2O molecules confined in the channels within the beryl crystal lattice. Three-
dimensional and top views with the crystal plotted dark gray and the water molecules
colored (oxygen green and hydrogen blue). The one-dimensional channels are arranged
in a hexagonal fashion with 9.2 Å distance and contain cages in a distance of 4.6 Å.
(b) Water molecules located within structural voids formed by lattice ions. The cages
(diameter 5.1 Å) are separated by narrower bottlenecks (2.8 Å). Molecules of type I have
their dipole moments (red arrows) perpendicular to the crystallographic c-axis with the
plane of H2O molecules parallel to c; they can perform hindered rotations around the c-
axis experiencing a six-well potential (depth A) due to the hexagonal crystal symmetry.
Type-II water molecules are turned by 90◦ relative to those of type I due to Coulomb
interactions with alkali ions (Li and Na, shown in yellow) blocking the bottleneck; their
dipole moments are directed along the c-axis. (c) Dipole moments of type-I molecules.
The moments can rotate within the planes perpendicular to the c-axis. The dipole–dipole
interactions (magenta wavy lines) act between the molecular dipoles within the channels
where molecular doublets, triplets, and so on are formed; the interactions between dipoles in
adjacent channels are much weaker owing to their greater mutual distances. (d) Photograph
of the typical studied beryl crystal. Reprinted (adapted) with permission from (J Infrared
Milli Terahz Waves (2018) 39:799–815). Copyright (2018) American Chemical Society [17].
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the dielectric permittivity followed the Curie–Weiss law. The frequency of the soft mode
is shown in Figure 5 in Ref. [6] which follows the Cochran law. These results suggest that
H2O molecules in beryl exhibit the tendency towards a ferroelectric order.

Similar to beryl (see Fig. 1.4), cordierite is also an interesting example to study the
collective behavior of confined water molecules. Cordierite is a mineral composed of mag-
nesium iron aluminum cyclosilicate with the chemical formula (Mg,Fe)2Al4Si5O18. Similar
to beryl, which contains Si6O18 rings, two of six silicon atoms in cordierite are replaced by
aluminum, leading to (Si, Al)6O18 rings that are stacked along the c-axis and form channels
with a cavity. The lattice exhibits orthorhombic symmetry space group Cccm53. Recently,
the collective behavior of water molecules is studied experimentally and theoretically [7].
The dielectric permittivity measurement, ab initio molecular dynamics and classical Monte
Carlo simulations presented in Ref. [7] suggest a ferroelectric phase in the ab-plane and
antiferroelectrically order along the channel direction.

Figure 1.4: Cordierite crystal structure with water molecules within ionic nanopores.
a Unit cell of cordierite crystal from X-ray analysis with thermal ellipsoids at 85 K. b
The water molecules within cordierite nanopores form two-dimensional triangular lattice
within the ab-plane. c One-dimensional chain of confined water molecules along the c-axis.
Reprinted (adapted) with permission from Creative Commons Attribution 4.0 International
License (https://creativecommons.org/licenses/by/4.0/). The source is from Ref. [7]. No
changes were made.
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1.2 Background information for quantum rotor

To help the reader understand the model we will discuss later, we briefly introduce the
background information for the quantum rotor.

In general, the rotational motion of a rigid rotor is characterized by three principal
moments of inertia Ia, Ib and Ic, and Ia < Ib < Ic [24]. The Hamiltonian for the rotational
motion of a rigid body can be written as

HRotation =
J2
a

2Ia
+

J2
b

2Ib
+

J2
c

2Ic
= AJ2

a +BJ2
b + CJ2

c , (1.1)

where A ≥ B ≥ C are rotational constants of three principle axis, Ja, Jb and Jc are an-
gular momentum components in body-fixed frame (principle axis system). Molecules as
rigid rotor are grouped into four classes based on their three principal moments shown in
Table. 1.1. For example, HF is a linear molecule, NH3 is an oblate symmetric top molecule,
CCl4 is a spherical top molecule and CH2Cl2 is an asymmetric top molecule.

linear Ia = 0, Ib = Ic
symmetric top Ia < Ib = Ic
spherical top Ia = Ib = Ic

asymmetric top Ia < Ib < Ic

Table 1.1: Classification of rigid rotors

Figure 1.5: The demonstration of the rigid rotor class. HF is a linear molecule, NH3 is a
symmetric molecule, and H2O is an asymmetric molecule.
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1.3 The collective behavior and quantum phase transi-
tion driven by dipole interaction

Having shown the background information of the endofullerene and confined water molecule
in beryl and cordierite, we next introduce and discuss the collective behavior and quantum
phase transition driven by dipole interaction. Quantum phase transitions are driven by
quantum fluctuations between different ground states at the absolute zero temperature.
The quantum phase transition we are interested in is the order-disorder transition, where a
quantum critical point separates the ordered phase and disordered phase. In this section,
the quantum phase transition for the dipolar rotor system is introduced.

Polar molecules possessing a permanent electric dipole moment interact at long range
via the anisotropic dipole-dipole interaction potential

Vij =
1

4πε0

di · dj − 3(di · r̂ij)(dj · r̂ij)
|r3ij|

, (1.2)

where di is the electric dipole moment of the ith molecule and the relative position rij =
ri− rj between the two polar molecules at sites i and j. Then the simplest model, quntum
rotor model with dipole-dipole interaction, to describe the confined dipolar rotors can be
written as

H =
N∑ J2

2I
+
∑
j>i

Vij, (1.3)

where I is the moment of inertia and J is the angular momentum operator.
The first part of the Eq. (1.3) is formed by the rotational eigenstates, e.g., |JM〉 for the

linear rotor, and |JKM〉 for symmetric rotor and asymmetric rotor cases (see Appendix B
for details). The kinetic energy is minimized when the orientation of the rotor is maximally
uncertain according to the uncertainty principle. Hence, the first term in Eq. (1.3) prefers
a disordered state (paraelectric) in which the rotors do not exhibit a specific orientation,
i.e., 〈p〉 = 0, where p denotes the polarization. This can be shown by parity argument or
performed in position space using integrals over the spherical harmonics [25], i.e.,

〈pz〉 = d

∫
|Y M ′

J ′ (θ, φ)|2 cos θ dΩ = 0,

〈px〉 = d

∫
|Y M ′

J ′ (θ, φ)|2 sin θ cosφ dΩ = 0,

〈py〉 = d

∫
|Y M ′

J ′ (θ, φ)|2 sin θ sinφ dΩ = 0. (1.4)
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The second part of the Eq. (1.3) is anisotropic long-range interaction energy, which is
minimized by some ordered configuration with non-zero polarization, i.e., 〈p〉 6= 0. Lat-
tinger and Tisza found that the ground state of freely rotating dipoles of face centered
cubic (FCC) or body centered cubic (BCC) lattice is ordered ferroelectrically [26], while
the simple cubic lattice of dipoles has an anti-ferroelectric ground state [27].

In summary, the dipole-dipole potential makes the system favor an ordered state, while
the rotational part of the Hamiltonian of the system makes the system favor a disordered
state. As a result of the competition between the potential and kinetic energies, there is
a quantum critical point at zero temperature. Therefore, as the strength of the dipole-
dipole interaction increases, the rotational symmetry may be broken, and a quantum phase
transition from a paraelectric phase to a ferroelectric phase occurs. The goal of this project
is to understand the collective behavior and the order-disorder phase transition driven by
dipole interaction. We aim to search for potential ferroelectric materials theoretically to
suggest chemists a direction to synthesize the potential ferroelectric materials we found.

1.4 Outline of the thesis

In this thesis, the goal is to study the quantum dipolar rotors’ collective behavior and
construct the order-disorder phase diagrams (which will be introduced later) for the linear
rotor, symmetric top rotor, and asymmetric top rotor. In the introduction of this thesis,
the background information of several confined quantum molecules, quantum phase tran-
sition of the quantum dipole rotor model, is given, aiming to give the reader a general
understanding of the order-disorder phase transition for the confined dipolar molecules.
The remaining part of this work consists of four chapters. Chapter 2 introduces the quan-
tum dipole rotor model and the mean-field approximation to accomplish our objective. To
simplify the mean-field Hamiltonian, one needs to know the ground state configuration
of the classical dipoles. Hence, the iterative minimization method and Luttinger-Tisza
method are introduced to find the ground state configuration. Chapter 3 and Chapter 4
report the results for FCC lattice and triangular lattice. Chapter 5 shows the application
of our results. In Chapter 6, we conclude this work with a summary and an outlook of our
work.
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Chapter 2

Methods

2.1 Mean-field approximation for confined quantum dipo-
lar rotor

Only few of the many-body system models can be solved exactly. Even the simplest case,
the Ising model, is not solved exactly in dimensionality higher than two. The renormal-
ization group technique is powerful but difficult in practical calculations for each prob-
lem of quantum many-body systems. Hence, the mean-field approximation is often the
first method chosen to study critical phenomena and the mean-field study allows a semi-
quantitative exploration of the phase transition. Another method that can be used is
the Monte Carlo method, a recent study of the dipoles confined to the vertices of two-
dimensional lattices obtained by the quantum mo the order-disorder phase diagram by the
Monte Carlo method [28]. In Ref. [28], they only consider the linear type rotor.

In this work, we use mean-field theory to study the orientational order-disorder phase
transition for the linear, symmetric, and asymmetric rotor. In this Chapter, a detailed
construction of the mean-field approximation is given.

2.1.1 Mean-field approximation for quantum dipole rotor model

In general, the energy for the confined quantum dipolar rotor can be written as

H = HRotor +HDipole +HCrystal, (2.1)
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where HRotor is the rotational kinetic energy of the confined molecules, HDipole is the dipole-
dipole interaction, HCrystal is the crystal field due to the cage’s effect from confinement.
In this work, we mainly focus on the competition between HRotor and HDipole to reveal
a general understanding of the order-disorder phase transition. To study the collective
behavior of confined quantum dipolar rotor and investigate how the anisotropic dipole-
dipole interaction breaks the symmetry of the rotational Hamiltonian, we first start by
describing the mean-field approximation of the dipole-dipole interaction.

To describe the interaction between the dipolar molecules whose dipole moments d are
along the z-axis of their body-fixed frame, we sum over all pairs of site i and j in Eq. (1.2)

HDipole =
∑
i>j

1

4πε0
(
di · dj − 3(di · r̂ij)(dj · r̂ij)

|r3ij|
),

= D
∑
i>j

n̂i · n̂j − 3(n̂i · r̂ij)(n̂j · r̂ij)
|r3ij|

,

= D
∑
i>j

Λαβ
ij n

α
i n

β
j , (2.2)

where D ≡ d2

4πε0
, Λαβ

ij ≡
δαβr2−3rαijr

β
ij

|r5ij |
, and α, β = X, Y, Z in the lab frame. The many-body

Hamiltonian for confined quantum dipolar rotors system can be written as

H = HRotor +D
∑
i>j

Λαβ
ij n

α
i n

β
j . (2.3)

The rotational kinetic energy is characterized by the rotational constants and competes
with the dipole-dipole interaction. However, the dipole-dipole interaction favors the break-
ing of symmetry, and the strength of the interaction depends on the interaction matrix Λαβ

ij ,
which is characteristic of the lattice structure, and the dipole moment, i.e., the magnitude
of D. Next, we write nαi in Eq. (2.3) as

nαi = nαi + 〈nαi 〉 − 〈nαi 〉, (2.4)

where 〈nαi 〉 = 1
Z
Tr [nαi exp{−βHMF}]. β = 1

kBT
, kB is the Boltzmann constant, and Z =

Tr exp{−βHMF} is the partition function. Therefore,

nαi n
β
j = (nαi + 〈nαi 〉 − 〈nαi 〉) · (n

β
j + 〈nβj 〉 − 〈n

β
j 〉),

= (nαi − 〈nαi 〉) · (n
β
j − 〈n

β
j 〉) + nαi · 〈n

β
j 〉+ nβj · 〈nαi 〉 − 〈n

β
j 〉 · 〈n

β
j 〉. (2.5)
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The mean-field approximation assumes the fluctuations of the polarization from their ex-
pectation value are small, i.e., (nαi − 〈nαi 〉) · (n

β
j − 〈n

β
j 〉) = 0 in Eq. (2.5). Ignoring the

fluctuations, the mean-field Hamiltonian Eq. (2.3) can be written as

HMF = HRotor +D
∑
i>j

Λαβ
ij (〈nαi 〉n

β
j + nαi 〈n

β
j 〉 − 〈nαi 〉〈n

β
j 〉). (2.6)

Equation (2.6) is the general expression for the site-dependent mean-field Hamiltonian
for a dipolar rotor system. Applying the mean-field approximation, the many interacting
dipolar rotors problem is converted into a single dipolar rotor in an effective electric field
problem. In the following sections, we show how to solve the mean-field self-consistent
equation numerically, derive the free energy using perturbation theory, and calculate the
susceptibility to fully understand the confined quantum dipolar rotor’s collective behavior
and construct the orientational order-disorder phase diagram.

2.1.2 Free energy and self-consistent equation

Having the mean-field Hamiltonian Eq. (2.6), we define the on-site polarization as the order
parameter, i.e., p = 〈n̂〉 and the partition function as

Z = Tr exp{−βHMF}, (2.7)

Then we can derive free energy of the system as

F = −kBT lnZ. (2.8)

Minimizing the free energy, one obtains the exact expression of self-consistent equation p =
〈n̂〉. Combining the appropriate matrix elements and numerically exact diagonalizations,
p can be solved in a self-consistent manner. We use an iteration method to solve p = 〈n̂〉.
Start with an arbitrary small p, plug it into the right hand side of p = 〈n̂〉 and obtain a
new p′. After obtaining a converged value for p, we then stop the iteration procedure.

2.2 Configuration of classical dipolar rotor

The general mean-field construction for the confined dipolar rotor system is given in the
previous section. Equation (2.6) is the most general expression for the site-dependent
mean-field Hamiltonian for a dipolar rotor system. As mentioned earlier, the dipoles favor
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some specifically ordered orientations, at which the free energy is minimized. After knowing
the ordered orientations favored by the dipole-dipole interaction, one can simplify Eq. (2.6)
and solve the whole problem.

In this section, two methods to find and interpret the ground state configuration of
dipoles are described. The first method for finding the ground state configuration is the
iterative minimization method. It is an iterative computational method that can find the
ground states of a finite set of spins on a lattice with some given boundary conditions.
The second method is Luttinger-Tisza method [26, 29] which is a theoretical method to
determine the ordering wavevectors or momentums. The ordering wavevectors are the
wavevectors at which the dipolar system minimizes its energy. Once we find the ordering
wavevectors, comparing the ordering wavevectors to the iterative minimization simulation
helps determine whether the simulation has found the true ground state configuration.

2.2.1 Iterative minimization method

The iterative minimization method is a method that searches the ground state configura-
tion by lowering the energy of a system of dipoles initially pointing in random directions
iteratively. From Eq. (2.2), the local or on-site electric field of site i can be written as

Ei = −D
∑
j

Λijnj. (2.9)

The idea is that the interaction energy of a set of dipoles initially pointing in random
directions can be minimized by reorienting the dipoles so that they point along their local
electric field’s direction. The iterative procedure works in the following way. We start with
the N dipoles on the lattice pointing in random directions. Next, we run a large loop for
an unspecified number of iterations. On each iteration of the loop, N dipoles are reoriented
to point along their electric field’s direction. The loop stops when the difference between
the energy of new set((i + 1)th loop) of dipole vectors and the old set(ith loop) is smaller
than some specified value ε (ε = 10−5 in our calculations), i.e.

|Ei+1 − Ei| < ε, (2.10)

and the final configuration is the ground state configuration favored by dipole-dipole in-
teraction.

This procedure does not always find the true ground state configuration, because the
dipoles sometimes can be trapped in some local minima with pretty close energy to the
true ground state configuration.
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2.2.2 Luttinger-Tisza method

Luttinger-Tisza (LT) method [26, 29] is a technic that minimizes the energy of the system
of spins by Fourier transform the dipole-dipole interaction and find the specific wavevector
q in the Brillouin zone at which a system of dipoles has the lowest energy. In general, the
Hamiltonian of interacting spins on a Bravais lattice can be written as

H =
1

2

∑
i 6=j

Jijsi · sj, (2.11)

where all the dipoles are normalized |si|2 = 1, and it is called the ‘strong constraint’. We
want to find a set of si which minimizes Eq. (2.11) for a given Jij. This problem is hard to
solve by using the ‘strong constraint’. The ‘strong constraint’ implies

∑N
i |si|

2 = N , and
it is called the ‘week constraint’. The idea is that we can solve the problem with the ‘week
constraint’ and check if the solution satisfies the ‘strong constraint’. By using the week
constraint, we have the Lagrange multiplier

H =
1

2

∑
i 6=j

Jijsi · sj − λ(
∑
i

|si|2 −N). (2.12)

The problem becomes to minimize [29]∑
j

Jijsj = λsi. (2.13)

First, we write si as a sum of Fourier modes

si =
1√
N

∑
q

s̃(q)eiq·ri . (2.14)

Then, Eq. (2.11) can be written as

H =
1

2

∑
i 6=j

Jij(
1√
N

∑
q

s̃(q)eiq·ri) · 1√
N

∑
q′

s̃
′
(q
′
)eiq

′·rj ,

=
1

2N

∑
i 6=j

∑
q,q′

Jijs(q) · s̃(q′)ei(q+q′)·ri · e−iq′·rij , (2.15)

where rij = ri − rj. Using the orthogonality relations for discrete Fourier transforms

1

N

∑
i

ei(q+q′)·ri = δ−q,q′ , (2.16)
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Eq. (2.15) can be written as

H =
1

2

∑
j

∑
q

Jij s(q) · s̃(−q)eiq·rij . (2.17)

Next, we define the quantity J̃(q), the Fourier transform of the coupling Jij between site
i and j, to be

J̃(q) =
1

2

∑
j

Jije
iq·rij . (2.18)

So we can write Hamiltonian as

H =
∑
q

J̃(q)s(q) · s̃(−q),

=
∑
q

J̃(q)|s(q)|2. (2.19)

In order to minimize Hamiltonian, we need to choose the wavevector q∗ which minimizes
the lowest eigenvalue of J̃(q). Once we find the wavevector q∗, the total energy of the
system can be written as

H = NJ̃(q∗), (2.20)

since
∑

q |s(q)|2 = N , if the spins are normalized. We may write out the final form of the
ground state as a coplanar spiral involving only the wavevector q∗ [29]

si = cos(q∗ · ri + φ)Â + sin(q∗ · ri + φ)B̂, (2.21)

where φ is a phase factor, and Â and B̂ are the unit vectors in the real space, i.e. X,Y,Z. In
general, Eq. (2.20) is true only if the solution does not conflict with the ’strong constraint’.
The LT method yields an (often rather useful) guess at possible ground states and a lower
bound NJ̃(q∗) on the energy.

2.3 Summary

In this chapter, the mean-field approximation and two methods to search the ordered
configuration of dipoles for different lattice structure were discussed. The mean-field ap-
proximation is used in Chapter 3 and 4, and obtains a general mean-field Hamiltonian. We
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then used the iterative minimization method and Luttinger-Tisza method [26, 29] to search
the ordered configuration of dipoles and simplified the mean-field Hamiltonian according
to the ordered configuration of dipoles. In the following two chapters, the orientational
order-disorder phase transition of quantum dipolar rotors for FCC and triangular lattice
is studied by the mean-field method.
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Chapter 3

Mean-field study of confined dipolar
molecule in Buckminsterfullerene

As introduced in Sec. 1.1, fullerenes have been intensively studied. The diameter of C60 is
0.7 nm, so the interior of the fullerenes can be viewed as a container [15]. It provides a
platform to study the confined quantum molecules and their collective behavior. Especially,
some of the guest molecules that can be trapped in C60 are dipolar molecules, e.g., HF
and H2O [3, 30]. The trapped molecules can rotate and translate almost freely within
C60 cages [31], but some of the degenerated energy levels are split due to the C60 cage’s
effect [32, 33]. C60 forms an FCC lattice at room temperature and ambient pressure, and
has a structural phase transitions to SC lattice as temperature decreases to 257 K [10]. In
this work, we simply treat the C60 as an FCC lattice, and the confined dipoles are on the
FCC lattice sites. We also ignore the translational motion of the trapped molecules and
C60 cage’s potential acting on the trapped molecules. Then, the endofullerenes lattice can
be described by

H = HRotor +HDipole. (3.1)

Because of the different energy level structures of different types of rotors, i.e., linear, sym-
metric, and asymmetric rotor, the phase diagrams have distinct features. In the above
equation, the Hamiltonian is characterized by the molecules’ dipole moment, lattice struc-
ture, and rotational constants. Once we know this information, we can solve the orienta-
tional ordering problem.

17



3.1 Mean-field Hamiltonian of the FCC lattice

Following the procedure introduced in Sec. 2.1.1, we write

H =
∑
i

(
AJ2

a +BJ2
b + CJ2

c

)
+D

∑
i>j

Λαβ
ij n

α
i n

β
j , (3.2)

where D ≡ d2

4πε0
, Λαβ

ij ≡
δαβr2−3rαijr

β
ij

|r5ij |
, and α, β = X, Y, Z in the lab frame. Then we apply

mean-field approximation

HMF =
∑
i

(AJ2
a +BJ2

b + CJ2
c) +D

∑
i>j

Λαβ
ij (〈nαi 〉n

β
j + nαi 〈n

β
j 〉 − 〈nαi 〉〈n

β
j 〉), (3.3)

where 〈nαi 〉 = 1
Z
Tr [nαi exp{−βHMF}]. As the dipoles for the FCC lattice have a ferroelectric

ground state [26], we first assume the average polarization as order parameter along Z-
direction in lab frame, i.e. pi ≡ 〈nZi 〉 = 〈cos θi〉 when the dipole-dipole interaction is
significantly strong. This way,

HMF =
N∑
i

[
AJ2

a +BJ2
b + CJ2

c +
1

2
D
∑
j

ΛZZ
ij (pi cos θj + pj cos θi − pipj)

]
, (3.4)

where ΛZZ
ij is the ZZ component of the Λαβ

ij matrix. If the system has uniform ferroelectric
order, we can drop the index lable of the pi = 〈cos θi〉 and Eq. (3.4) simplifies to

HMF =
N∑
i

[
AJ2

a +BJ2
b + CJ2

c − λi(p cos θ − 1

2
p2)
]
, (3.5)

where we have defined the dipolar lattice sum λi ≡ −D
∑

jΛ
ZZ
ij (the index label of λi

can also be dropped and we drop it henceforth). Actually, −λp cos θ is the energy of the
single dipole in an electric field generated from all other dipoles. Thus, we convert a many
interacting dipolar rotors problem to a single dipolar rotor in an effective electric field
problem, and Eq. (3.5) is in fact a Stark effect Hamiltonian with a constant energy shift.
The single rotor Hamiltonian is

Hi = [AJ2
a +BJ2

b + CJ2
c − λi(p cos θ − 1

2
p2)
]
. (3.6)
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3.1.1 Local mean-field equations and iterative solutions

The partition function of the Eq. (3.5) is

Z = Tr exp{−βHMF},

= C
N∏
i

Tr[exp
{
−β(AJ2

a +BJ2
b + CJ2

c − λp cos θ
}

], (3.7)

where C = exp
{
−1

2
βλp2

}
. Then, we have the expression of the free energy. Because

of the difficulty to obtain the analytical expression of the trace in Eq. (3.7), we derive
the expression of the self-consistent equation by the definition of the polarization rather
than from minimizing the free energy. By the definition p = 〈cos θ〉, and combining the
appropriate matrix elements and numerically exact diagonalizations of Eq. (3.6), we have

p = 〈cos θ〉 ,

=

∑
n 〈φn|cos θ|φn〉 e−βEn∑

n e
−βEn

, (3.8)

where En and |φn〉, as functions of p, are the energy and wave function of the n-th state of
a single rotor. We use an iteration method to solve Eq. (3.8). We start with an arbitrary
small p , plug it into the right hand side of Eq. (3.8) and obtain a new p′. We then have
so obtained the right hand side of Eq. (3.8) again and again, until one obtains a converged
value for p.

Working out the single-site solution, we can also iterate the self-consistent equation
site-dependently for every dipolar rotor

pi =
Ei

|Ei|
〈cos θi〉 ,

=
Ei

|Ei|

∑
n 〈φin|cos θi|φin〉 e−βEin

Zi
, (3.9)

for the magnitude of the polarization vector and calculate the on-site electric field to
capture the direction. The idea is to first initialize the system by giving each lattice site
a small random polarization vector pi. Then, one uses Ewald method [34] (Appendix A)
to calculate the dipolar lattice sum λi for a site i and so obtained local on-site electric
field Ei and use Eq. (3.9) to calculate the magnitude of the polarization vector. The local
polarization is updated “in place”, which means that once a new polarization vector for a
single site is calculated, it replaces the old polarization vector and is instantaneously used
in the subsequent calculation for the other sites in a cubic simulation box of length L with
periodic boundary conditions [35, 36].
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3.1.2 Free energy calculation

Assuming a uniform ferroelectric phase (pi = pẑ for all sites), the partition function of
Eq. (3.8) can be written in the form

Z =
N∏
i

Tr
[

exp{−β(HRotation +HDipole)}
]
,

=
N∏
i

∑
n

exp

{
−β(

1

2
λp2 + E(0)

n + E(1)
n + E(2)

n + E(3)
n + E(4)

n )

}
, (3.10)

where E(0)
n are the energies of the unperturbed rotational states [24], E(1)

n , E
(2)
n , E

(3)
n and

E
(4)
n are the corresponding first, second, third and fourth order corrections [37] due to the

perturbation HDipole treated in the mean-field approximation. Hence, we can derive the
free energy

F = −kBT lnZ, (3.11)

where exp
{
−β(E

(1)
n + E

(2)
n + E

(3)
n + E

(4)
n )
}

can be expanded using ex = 1 + x+ x2

2
+ ....

F

N
∼=

1

2
λp2 − kBT ln

∑
n

exp
{
−βE(0)

n

}
1− βE(1)

n +
1

2
β2(E(1)

n )2 − βE(2)
n + β2E(1)

n E(2)
n

− βE(3)
n +

1

2
β2(E(2)

n )2 − βE(4)
n + β2E(1)

n E(3)
n . (3.12)

We define the Zn functions as

Z0 =
∑
n

z0n, Z1 =
∑
n

z0nβ
E

(1)
n

λp
, Z2 =

∑
n

1

2
z0nβ

2 (E
(1)
n )2

(λp)2
, Z3 =

∑
n

z0nβ
E

(2)
n

(λp)2
,

Z4 =
∑
n

z0nβ
2E

(1)
n E

(2)
n

(λp)3
, Z5 =

∑
n

z0nβ
E

(3)
n

(λp)3
, Z6 =

∑
n

1

2
z0nβ

2 (E
(2)
n )2

(λp)4
,

Z7 =
∑
n

z0nβ
E

(4)
n

(λp)4
, Z8 =

∑
n

z0nβ
2E

(1)
n E

(3)
n

(λp)4
,

(3.13)

with z0n ≡ exp
{
−βE(0)

n

}
. Even though rigid rotor eigenstates with the same quantum

number J are degenerate, the non-degenerate perturbation theory can still be used to cal-
culate E(1)

n , E
(2)
n , E

(3)
n and E(4)

n . The reason is that the dipole interaction as a perturbation
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does not connect states of the same energy. The expression of the perturbation energy is
given [37] as

E(1)
n = Vnn,

E(2)
n = −

∑
j 6=n

VnjVjn
Djn

,

E(3)
n =

∑
jk 6=n

VnjVjkVkn
DjnDkn

− Vnn
∑
j 6=n

VnjVjn
D2
jn

,

E(4)
n = [

∑
i 6=n

VniVin
Djn

][
∑
j 6=n

VnjVjn
D2
jn

]− V 2
nn

∑
j 6=n

VnjVjn
D3
jn

+ Vnn
∑
ij 6=n

[
1

D2
inDjn

+
1

DinD2
jn

]VniVijVjn

−
∑
ijk 6=n

1

DinDjnDkn

VniVijVjkVkn, (3.14)

where Vij = 〈i|HDipole|j〉 in our case and Dij = Ei − Ej is the difference of the energy
between rotational state i and state j. Equation (3.12) then becomes

F

N
= λp2 − kBT ln [Z0 − Z1λp+ (Z2 − Z3)(λp)

2 + (Z4 − Z5)(λp)
3 + (Z6 − Z7 + Z8)(λp)

4],

= −kBT lnZ0 + [
1

2
λ− kBTλ2

Z2 − Z3

Z0

]p2 + kBTλ
4[

1

2
(
Z2 − Z3

Z0

)2 − Z6 − Z7 + Z8

Z0

]p4.

(3.15)

We expanded the logarithm and collected all terms in the same order in p. All odd power
terms in p vanish for all types of rotors, which implies the ferroelectric state has no prefer-
ence of any specific direction. The p4 term in Eq. (3.15) is always positive by calculating
the Zn functions and the p2 term changes sign at a critical temperature Tc which shows the
phase transition is of second order. According to the Ginzburg-Landau theory of second-
order phase transition, the critical temperature Tc can be solved at a given λ by finding
where the coefficient of the quadratic term in Eq. (3.15) changes sign, i.e., solving

1

2
λ− kBTλ2(

Z2 − Z3

Z0

) = 0. (3.16)

The critical temperature and the corresponding λ gives the phase boundary between the
paraelectric and ferroelectric phases.
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3.1.3 Electric susceptibility calculation

The electric susceptibility measures how much a material will become polarized in an
applied electric field. A tiny external field could induce a net polarization of the system
at the paraelectric to ferroelectric phase boundary, so the electric susceptibility diverges
at the phase boundary. Assume an external electric field h = hẑ, which helps the dipolar
system to select a particular direction in which to align, is added. Eq. (3.5) becomes

HMF =
N∑
i

[
AJ2

a +BJ2
b + CJ2

c − λ(p cos θ − 1

2
p2)− h cos θ

]
, (3.17)

Following the similar steps as those leading to Eq. (3.15), we calculate the free energy in
presence an external electric field

F

N
= −kBT lnZ0 +

1

2
λp2 − kBT (

Z2 − Z3

Z0

)(λp+ h)2, (3.18)

where we dropped the higher order terms in p, because p a phase boundary is small and
higher order terms are not important. Minimizing F with respect to h, we obtain

p =
2kBT (Z2−Z3

Z0
)h

1− 2kBT (Z2−Z3

Z0
)λ
,

≡ χ0h

1− λχ0
, (3.19)

where we have defined the quantity χ0 as

χ0 = 2kBT (
Z2 − Z3

Z0

). (3.20)

We thus obtain the electric susceptibility as

χ =
∂p

∂h
|h=0 =

χ0

1− λχ0
, (3.21)

which has a Curie-Weiss form [38]. At a second order phase boundary, the electric suscep-
tibility diverges, giving

1− λχ0 = 0. (3.22)
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Following the Ref. [38], it can be shown that χ0 is the non-interacting electric susceptibility
of a single rotor, and we can derive the electric susceptibility Eq. (3.21) in another way.
If the effective external electric field is changed by a small amount δh along the z-axis,
then the energy for the n-th state becomes E(1)

n =E(0)
n − 〈φn| cos θ |φn〉 δh using first order

perturbation theory, and the corresponding eigenstate is∣∣φ(1)
n

〉
= |φn〉 − δh

∑
n′

|φn′〉 〈φn′| cos θ |φn〉
(E

(0)
n − E(0)

n′ )
. (3.23)

Hence

〈cos θ〉 =
∑
n

〈
φ(1)
n

∣∣ cos θ
∣∣φ(1)
n

〉
exp
{
−βE(1)

n

}
/Z,

=
∑
n

〈φn| cos θ |φn〉 exp
{
−βE(1)

n

}
/Z

− 2 δh
∑
nn′

〈φn| cos θ |φn′〉 〈φn′ | cos θ |φn〉 exp
{
−βE(1)

n

}
/Z, (3.24)

where Z =
∑

n exp
{
−βE(0)

n

}
is the single molecule partition function. We take derivative

of above equation with respect to δh to calculate non-interacting susceptibility

χ0 =
∂ 〈cos θ〉
∂ δh

,

= −2

E
(0)
n 6=E

(0)

n′∑
nn′

〈φn| cos θ |φn′〉 〈φn′ | cos θ |φn〉
E

(0)
n − E(0)

n′

exp
{
−βE(0)

n

}
/Z

+ β

E
(0)
n =E

(0)

n′∑
nn′

〈φn| cos θ |φn′〉 〈φn′ | cos θ |φn〉 exp
{
−βE(0)

n

}
/Z

− β 〈cos θ〉2

=
2

β
(
−Z3

Z0

+
Z2

Z0

)− β 〈cos θ〉2 , (3.25)

where Z2 and Z3 are defined in Eq. (3.13). Because the average polarization p ≡ 〈cos θi〉 =
0 in the paraelectric phase, we drop the last term. Now, we have re-derived χ0 using
perturbation method. By the definition of the susceptibility χ = χ0

1−λχ0 [38], we recover
Eq. (3.21).
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3.2 Exact diagnalization

In this section, the basis set functions for different rotor types and the details of writing
the dipole-dipole interaction under mean-field approximation are introduced. The goal of
the section is to find the eigenvectors and eigenvalues of the mean-filed Hamiltonian.

3.2.1 Linear rotor

For a linear molecule, the moment of inertia about the principal axis a is zero and the two
other moments of inertia along axes b and c are I i.e. Ia = 0 and Ib = Ic. It requires
the angular moment of axis a to be zero to prevent Eq. (1.1) from going to infinity. The
rotational motion of a linear molecule can thus be written as

H linear
Rotation =

Jb
2

2I
+

Jc
2

2I
= BJ2, (3.26)

where we identification of axis a ↔ z, b ↔ x and c ↔ y1. As angular momentum is
perpendicular to the a-axis or z-axis in the body-fixed frame, i.e. K = 0, the symmetric
top wave function |J0M〉 is reduces to the spherical harmonic wave function |JM〉, i.e.,
YJM(θ, φ) = (2J+1

4π
)
1
2DJ∗

M0(θ, φ, χ). |JM〉 is the basis set functions that diagonalize J2 and
JZ 〈

J
′
M
′
∣∣∣J2
∣∣∣JM〉 = J(J + 1)δJ ′JδM ′M〈

J
′
M
′
∣∣∣JZ∣∣∣JM〉 = MδJ ′JδM ′M . (3.27)

So the energy for each energy level only depends on quntum number J and is given by

E(J,M) = J(J + 1)B. (3.28)

Having the matrix elements for the rotational kinetic energy, we then show how to write
the dipole-dipole interaction under mean-field approximation, i.e., cos θ in the |JM〉 basis.
The matrix elements of cos θ can be written in term of integrals over products of spherical

1In this thesis, capital letter X,Y, Z represent the space-fixed frame axis and small letter x, y, z or a, b, c
represent the body-fixed frame.
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harmonics

〈J ′M ′|cos θ|JM〉 =

∫∫
[Y M ′

J ′ (θ, φ)]∗ cos θ Y M
J (θ, φ) dθ dφ

=

√
4π

3

∫∫
[Y M ′

J ′ (θ, φ)]∗Y 0
1 (θ, φ)Y M

J (θ, φ) dθ dφ

=

√
(2J + 1)

(2J ′ + 1)
〈J0; 10|J ′0〉 〈JM ; 10|J ′M ′〉 , (3.29)

where 〈J0; 10|J ′0〉 and 〈JM ; 10|J ′M ′〉 are Clebsch-Gordan coefficients. To calculate Eq. (3.29),
one can use Table 2.4 frequently used Clebsch-Gordan coefficients in Ref. [24] . Finally,
Eq. (3.29) reads

〈J ′M ′|cos θ|JM〉 =


√

(J−M+1)(J+M+1)
(2J+3)(2J+1)

if J ′ = J + 1 and M ′ = M,√
(J−M)(J+M)
(2J−1)(2J+1)

if J ′ = J − 1 and M ′ = M.
(3.30)

The dipole selection rules for the linear rotor which can be seen from Eq. (3.29) areM = M ′

and J ′ = J ± 1. The dipole selection rules imply that the non-degenerate perturbation
theory works in dipole-dipole interaction calculations because the dipole operator only
connects two states with a different energy.

3.2.2 Symmetric top rotor and asymmetric top rotor

There are two classes of the symmetric top rotor, i.e., oblate symmetric top (disk shape)
rotor and prolate symmetric top (cigar shape) rotor.

In the oblate top limit Ia = Ib < Ic and we identification of axis a ↔ x, b ↔ y and
c↔ z. The identification of the axis helps us simplify Eq. (1.1)

Hsymmetric
Rotation =

J2
a

2Ia
+

J2
b

2Ia
+

J2
c

2Ic
,

= AJ2
a +BJ2

b + CJ2
c ,

= AJ2 + (C − A)J2
z. (3.31)

As A = B, we can rewrite the second line to the third line in Eq. (3.31). The energies are

E(J,M) = AJ(J + 1) + (C − A)K2. (3.32)
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In the prolate top limit Ia < Ib = Ic, Eq. (1.1) becomes

Hsymmetric
Rotation =

J2
a

2Ia
+

J2
b

2Ia
+

J2
c

2Ic
,

= AJ2
a +BJ2

b + CJ2
c ,

= CJ2 + (A− C)J2
z, (3.33)

where we redefine the body-fixed coordinates a↔ z, b↔ x and c↔ y. The energies then
becomes

E(J,M) = CJ(J + 1) + (A− C)K2. (3.34)

For an asymmetric top rotor, Ia < Ib < Ic, the Hamiltonian for the rotational motion is
given in Eq. (1.1). The calculation of the eigenvalues for the asymmetric top rotor can be
done in the symmetric top basis and the eigenvectors of the asymmetric top rotor are linear
combinations of symmetric top wave functions. Referring to Eq. (6.66) and Eq. (6.67) in
Zare [24], the diagonal elements for rotational matrix elements are〈

JKM
∣∣J2
x

∣∣JKM〉 =
〈
JKM

∣∣J2
y

∣∣JKM〉 =
1

2
[J(J + 1)−K2],〈

JKM
∣∣J2
z

∣∣JKM〉 = K2. (3.35)

The off-diagonal elements are〈
JKM

∣∣J2
x

∣∣JK ± 2M
〉

=−
〈
JKM

∣∣J2
y

∣∣JK ± 2M
〉

=
1

4

√
J(J + 1)−K(K ± 1)

√
J(J + 1)− (K ± 1)(K ± 2). (3.36)

In this thesis, the only asymmetric top molecule that is detailed studied is water. We
work in the symmetric top basis set and make the axis identification a ↔ y, b ↔ z and
c ↔ x, this identification of axis is representation IIb in Zare [24].2 The matrix elements
of HRotation can be written as [24]

〈JKM |HRotation|JKM〉

=
(A+ C)

2
(J(J + 1)−K2) +BK2, (3.37)

〈J,K + 2,M |HRotation|JKM〉
= 〈JKM |HRotation|J,K + 2,M〉

=
(C − A)

4

√
J(J + 1)−K(K + 1)

√
J(J + 1)− (K + 1)(K + 2). (3.38)

2We worked in the representation IIb, because in this identification the dipole moment of water is along
z-axis in the body-fixed frame.
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Having the matrix elements for the rotational kinetic energy, we then show how to write
the dipole-dipole interaction under mean-field approximation, i.e., cos θ in the |JKM〉
basis. The dipole-dipole interaction under the mean-field approximation for symmetric
top rotor and asymmetric top rotor can be calculated similarly.

〈J ′K ′M ′|cos θ|JKM〉 = 〈J ′K ′M ′|cos θ|JKM〉

=

√
2J + 1

8π2

√
2J ′ + 1

8π2

∫
[DJ ′

M ′K′(R)]∗ cos θDJ
MK(R) dR

=

√
2J + 1

8π2

√
2J ′ + 1

8π2

∫
[DJ ′

M ′K′(R)]∗D1
00D

J
MK(R) dR, (3.39)

where we express the dipole matrix elements in terms of integrals over products of winger-
D matrix and use the fact that cos θ = D1

00. Using the result of Eq. (B.3) and integral over
a triple product of rotation matrices [24]∫

D
J ′3
M ′3M3

(R)∗DJ2
M ′2M2

(R)DJ1
M1′M1

(R) dR

=
8π2

2J3 + 1
〈J1M1, J2M2|J3M3〉

〈
J1M

′

1, J2M
′

2

∣∣∣J3M ′

3

〉
. (3.40)

Eq. (3.39) can be written as

〈J ′K ′M ′|cos θ|JKM〉 =

√
2J + 1

8π2

√
2J ′ + 1

8π2

∫
DJ ′

M ′K′(R)∗D1
00D

J
MK(R) dR

=

√
2J + 1

8π2

√
2J ′ + 1

8π2

8π2

2J ′ + 1
〈10, JK|J ′K ′〉 〈10, JM |J ′M ′〉 (3.41)

Then, apply triangular inequality for the Clebsch-Gordan coefficient to Eq. (1.1)

|1 + J |,≥ J ′ ≥ |1− J |
K = K ′, and M = M ′. (3.42)

The matrix elements of dipole-dipole interaction for symmetric and asymmetric rotors can
be obtained [39].

〈J ′K ′M ′|cos θ|JKM〉

=


√

(J−K+1)(J+K+1)(J−M+1)(J+M+1)
(2J+3)(J+1)2(2J+1)

if J ′ = J + 1, K ′ = K and M ′ = M,√
(J−K)(J+K)(J−M)(J+M)

(2J−1)J2(2J+1)
if J ′ = J − 1, K ′ = K and M ′ = M,

KM
J(J+1)

if J ′ = J, K ′ = K and M ′ = M.

(3.43)
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3.2.3 Angular momentum cutoff

To render the state space finite when performing the self-consistent diagonalization arising
in the mean-field formalism, we introduce an angular momentum cutoff, Jmax, which we
increase until convergence of the phase boundary is reached. Keeping Jmax = 2, 3, 10, 15
for the linear rotor and Jmax = 2, 3, 5, 15 for the symmetric rotor, we found that the phase
boundary has no significant differences for τ less than 1. A larger Jmax is needed to calculate
the phase transition boundary at high temperatures, i.e., τ is much greater than 1, in the
classical region.

At low temperatures, small Jmax is enough to capture the order-disorder phase transi-
tion, because only several states are thermally populated. In this work, we focus on the
order-disorder phase transition in the low-temperature region. Hence, we found it suitable
to pick Jmax = 10 for the linear rotor and Jmax = 5 for the symmetric rotor.

3.3 Exact diagonalization results

This chapter aims to study the competition of kinetic energy and dipole-dipole potential
and then construct the paraelectric-ferroelectric phase boundary. For completeness, all
types of rotors are studied.

3.3.1 Phase diagrams for the different types of rotor

In this section, the phase diagram for the linear rotor, symmetric rotor, and asymmetric
rotor constructed by solving self-consistent equation Eq. (3.9) following the iterative pro-
cedures introduced in Sec. 3.1.1 or by solving Eq. (3.16) from the free energy expression
are shown. The results for these two ways are the same. For the first method, we consider
FCC conventional lattice with periodic boundary condition and the system size, L = 6,
that gives 4×64 = 864 lattice sites (FCC lattice has 4 sites per cell). We stop the iteration
when the polarization difference in the two iteration steps is less than 10−6, which is good
to capture the phase boundary.

Linear Rotor

We start with the linear rotor case. The phase diagram of linear dipolar molecules com-
puted via mean-field theory is shown in Fig. 3.1. The figure’s upper region is a paraelectric
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Figure 3.1: Phase diagram for linear rotor (Jmax = 10).The horizontal axis represents the
strength of the dipole-dipole interaction and the vertical axis is dimensionless temperature
τ ≡ kBT/B. When τ = 0, the quantum critical point is at λc/B = 3. The upper region
of the figure is a paraelectric phase, while below the phase boundary is a homogeneous
ferroelectric phase.
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phase, while below the phase boundary is a homogeneous ferroelectric phase. It shows
that the linear dipolar molecules at the ferroelectric phase have a phase transition, either
increasing temperature or decreasing the strength of dipole-dipole interaction. The mean-
field theory results of the ferroelectric phase do not have any orientational preference,
i.e., dipoles can point in any direction. The quantum critical point can be understood by
calculating the order parameter at zero temperature using perturbation theory.

p =
〈
φ(1)
n

∣∣cos θ
∣∣φ(1)
n

〉
,

=
λp

3B
, (3.44)

where φ(1)
n is wave function of the ground state with the first order correction by pertur-

bation theory and

φ(1)
n = |J = 0,M = 0〉+

λp

2B

1√
3
|J = 1,M = 0〉 . (3.45)

Re-arranging Eq. (3.44), we obtain λc/B = 3 at τ = 0. To understand the slope of the
phase diagram, we could calculate 〈cos θ〉 in the classical limit as

〈cos θ〉 =

∫∫
cos θ exp{βλp cos θ} sin θdθdφ∫∫

exp{βλp cos θ} sin θdθdφ
, (3.46)

Eq. (3.44) gives p = coth(βλp) − 1
(βλp)

, and τ/λ=1
3
. It means that the slope of the phase

boundary is approaching to 1
3
as temperature increases. Having the phase diagram for the

linear rotor, we then introduce the more general types of rotor, i.e., symmetric top and
asymmetric top.

Symmetric rotor and asymmetric rotor

We next consider the symmetric top rotor and the basis we used is the oblate symmetric
top basis as described in Eq. (3.31). A,B and C are rotational constants and C/A ratio
indicates the shape of a rotor, i.e. pancake shape for a small C/A and cigar shape for a
large C/A. As the C/A increases to infinite, we recover the linear rotor case.

The phase diagram for symmetric top rotor is shown in Fig. 3.2 for several different
values of C/A. The quantum critical point is at λc/A = 3 for different C/A ratios. This can
be showed in the same way as linear rotor case (see Eq. (3.44)). However, as temperature
increases, we note qualitatively different boundaries and an interesting phenomenon of
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Figure 3.2: Phase diagram for the symmetric top rotor (Jmax = 5). The horizontal axis
represents the strength of dipole-dipole interaction and the vertical axis is dimensionless
temperature τ ≡ kBT/A. The quantum critical point is at λc/A = 3. However, as temper-
ature increases, the paraelectric and ferroelectric boundary bends towards weak interaction
region and back.
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reentrance [40] which occurs in the low temperature region, i.e., the phase boundary bends
to the left then right and the phase of dipolar rotor system transforms from paraelectric
into ferroelectric phases as temperature decreases and reenters into a paraelectric phase
as temperature decreases further. The critical C/A for reentrance phenomenon occurs is
1.252. For a rotor in the deep prolate limit, i.e. C/A� 1, the phase diagram of the linear
rotor (Fig. 3.1) is recovered, as expected. From Fig. 3.2, the quantum critical point is at
C/A = 3 and independent of C/A. However, the special energy level structure which is
characterized by rotational constants, i.e., C/A ratio of a rotor, results in a bending of the
phase boundary and plays a role that makes the system easily ordered as the first several
excited states become thermally populated and causes the reentrance. We shall return to
the details of reentrance later.

Figure 3.3: Water, in the xy-plane. The rotational constants A, B and C are the rotational
constant for axis z, y and x in the figure.

Finally, we consider the most general case, the asymmetric top rotor whose three prin-
cipal moments of inertia Ia, Ib and Ic, can be any real positive value. In general, the dipole
moment can point along an arbitrary direction relative to the body axis. For concreteness
reason, only water shape molecule is considered in this section. The rotational constants
are: A = 835840.288 MHz, B = 435351.717 MHz and C = 278138.7 MHz [41].

The rotational Hamiltonian in the symmetric top basis is diagonal in quantum number
J and M , thus needs only be solved in K blocks which have size 2J + 1 by 2J + 1 for each
J level (see Appendix B). As no matrix elements couple between odd and even K states,
states correspond to odd and even K blocks can be solved separately. The para states are
from diagonalizing in the even K, while the ortho family is from diagonalizing in the odd
K [24] (see Appendix C for more details).

The quantum critical point is not at the same position as linear and symmetric rotor
cases. However, one can still calculate the position of quantum critical points similarly to
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Figure 3.4: Phase diagrams for water shape rotor(Jmax = 5). Water shape means that the
asymmetric rotor has three rotational constants A, B and C, which is in the same ratio as
water (water shape rotor). (a) ortho water. (b) para water.
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the linear and symmetric cases. As can be seen, the quantum critical point is not the same
for the ortho and para family in Fig. 3.4. The reason is that the ground state for the para
water is a singlet and the ground states for the ortho water are triplet. The location of
the quantum critical points shows that the ground states for ortho water have a stronger
ordering tendency than para water.

3.3.2 Susceptibility and reentrance

In this section, we revisit the reentrance phenomenon in more detail. Reentrance is found
in many systems, e.g., multi-component liquid mixtures [42] and anisotropic-planar-rotor
model with a quadrupole-quadrupole interaction [43]. In our mean-field calculations, we
also observed reentrant phases in symmetric rotors and asymmetric top rotors (see Fig 3.2
and Fig 3.8). We next will show how the thermal population of the rich spectrum structure
leads to the reentrance phenomenon.

Figure 3.5: Non-interacting susceptibility χ0 = 2kBT (Z2−Z3

Z0
) is plotted as function of

dimensionless temperature τ ≡ kBT/A for the symmetric rotor (Jmax = 5).
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Figure 3.6: (a) First contribution (2τ Z2

Z0
) to the non-interacting susceptibility χ0 (Jmax = 5).

(b) Second contribution (−2τ Z3

Z0
) to the non-interacting susceptibility χ0 (Jmax = 5), where

τ ≡ kBT/A is dimensionless temperature.
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We need to revisit the electric susceptibility in Eq. (3.21), as Eq. (3.21) contains the
information of the shape of the phase boundary.

For a given λ, we have three different cases: no ferroelectric phase transition if Eq. (3.22)
has no solution; there is ferroelectric transition if Eq. (3.22) has one solution; reentrance
occurs if Eq. (3.22) has two solutions. To illustrate the three cases above, we plot the non-
interacting susceptibility χ0 = 2kBT (Z2−Z3

Z0
) as a function of dimensionless temperature for

different C/A ratios in Fig. 3.5, where Z0, Z2 and Z3 are defined in Eq. (3.13). Two parts
of χ0 = 2kBT (Z2−Z3

Z0
) are also plotted separately in Fig. 3.6. As can be seen in Fig. 3.5,

the plot of χ0(τ) for the given C/A values has a local maximum, so Eq. (3.22) has two
different critical temperatures for a specific given λ value where the electric susceptibility
diverges, i.e.,

χ0(τ1) = χ0(τ2) =
1

λ
, (3.47)

where τ1 and τ2 are two critical temperatures at which the electric susceptibility diverges.

Then we use energy level structure to understand the reentrance. The energy level
structure for the symmetric top rotor is shown in Fig. 3.7. The energy in the same basis
set as in Eq. (3.31) [24] has the from

E(J,K) = AJ(J + 1) + (C − A)K2. (3.48)

As the rotational constant C increases, all states with the non-zero quantum number K
shift upwards. Revisiting Eq. (3.13), Z2 and Z3 are temperature-dependent sums of first
order correction squared and second order correction. The expression of the first order
correction [39] in Z2 is

E
(1)
J,K,M = 〈JKM |cos θ|JKM〉 =

MK

J(J + 1)
, (3.49)

which implies that only states with K 6= 0 at all temperatures contribute to the Z2 sum.
So in Fig. 3.6 (a), 2kBT

Z2

Z0
is initially zero when τ = 0 and increases to a peak as the

|J = 1, K = 1,M〉 states thermal populated. Dipole operator only connects two states
with the same quantum number K and M , but J differs by one. As the energy gap be-
tween states |JKM〉 and |J + 1, K,M〉 increases as J increases, the ground state always
gives the most significant contribution to the Z3 sum. Hence, −2kBT

Z3

Z0
in Fig. 3.6 (b)

decreases as more and more states become thermally populated. As the rotational con-
stant C increases, the energy of the state |J = 1, K = 1,M〉 also increases (see Fig. 3.7),
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Figure 3.7: (a) Energy level structure for prolate top symmetric rotor (C/A = 1.3). (b)
Energy level structure for oblate top symmetric rotor (C/A = 0.7). All levels with non-zero
K are doubly degenerate.

and a higher temperature is needed to be thermally populated. Hence, the peak 2kBT
Z2

Z0

in Fig. 3.6 (a) appears at higher temperature and decreases in height and −2kBT
Z3

Z0
in

Fig. 3.6 (b) shifts upwards. For some special cases, i.e., C/A . 1.252 for which the χ0

monotone decreases as a function of temperature, the stronger ordering tendency for the
|J = 1, K = 1,M〉 state will win this competition, and the reentrance occurs.

Following the same logic, we can construct a similar argument for the asymmetric top
rotor. Because of the stronger ordering tendency for the ortho ground states (see Fig. 3.8),
i.e., para water has a singlet ground state and ortho water has the degenerate ground states,
the quantum critical point of ortho water is smaller than the para water. For the mixed
case or spinless water case, we construct the phase boundary with all rotational states and
the phase boundary is close to the para water family but has a narrow reentrance region
(see the black line in Fig. 3.8). It means that there are two different critical temperatures
for a specific given λ value where the electric susceptibility diverges and so reentrance
occurs.

In summary, a stronger ordering tendency for the rotational state with higher energy
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Figure 3.8: Phase diagrams for water (Jmax = 5), where τ = kBT/A is dimensionless
temperature. Systems with pure para water, pure ortho water and the spinless water are
shown.
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causes the electric susceptibility to diverge at two different temperatures. Physically, the
dipolar rotor system tends to be disordered as temperature increases. However, the special
energy level structure (rotational constants) i.e., C/A . 1.252 for symmetric rotor and
some of the asymmetric rotors, plays a role that makes the system easily ordered as the
first several excited states become thermally populated and causes the reentrance.

3.4 Summary

In this chapter, we discuss the orientational order-disorder transition of dipolar rotors for
the FCC lattice. The phase diagrams for the linear rotor, symmetric rotor, and asym-
metric rotor were constructed by solving self-consistent equation Eq. (3.9) following the
iterative procedures introduced in Sec. 3.1.1 and by solving Eq. (3.16) from the free energy
expression. Reentrance occurs in the symmetric rotor and asymmetric rotor cases. We
studied the reentrance by the electric susceptibility calculation, and we found the special
energy level structure (rotational constants), i.e., C/A . 1.252 for symmetric rotor and
some of the asymmetric rotors, plays a role that makes the system easily ordered as the
first several excited states become thermally populated.
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Chapter 4

Mean-field study of confined water
molecules in beryl

Recently, water in both beryl and cordierite is reported to have a ferroelectric soft mode and
exhibit the tendency towards a ferroelectric order. The dipolar coupling among the H2O
molecules confined in the beryl lattice has been argued to lead towards a ferroelectric state
at low temperatures as suggested by the low-frequency dielectric measurements [17, 20].
However, the theoretical problem to consider in that case is more difficult than in the
Buckminsterfullerene because of the strong crystal field due to the confinement and the
partial occupation of H2O molecules, i.e., some of the cages in beryl are empty. Further-
more, the existence of the impurity alkali ions (Li and Na) that produce a random electric
field on the water molecules. The theoretical investigation of the electric behavior of water
confined in beryl would be an interesting topic. The confined water molecules in beryl form
a triangular lattice and water molecules are on the triangular lattice sites. In this chap-
ter, we study the collective behavior of the triangular lattice using the mean-field method.
We also ignore the translational motion of the trapped molecules and C60 cage’s potential
acting on the trapped water molecules.

We performed similar calculations as shown in Sec. 3.1. To simplify the general form
of the mean-field Hamiltonian Eq. (3.3), we first need to know the ordered phase for the
triangular lattice. In the following section, the ground state configuration of the dipoles
for triangular lattice is studied using the iterative minimization method and the Luttinger-
Tisza method introduced in Sec. 2.2.
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4.1 Ground state configuration without crystal field

The crystal structure of beryl (Be3Al2Si6O18) contains channels of 5.1 Å in diameter which
consists of six-membered rings of SiO4 tetrahedra linked by AlO6 octahedra and BeO4

tetrahedra along c-axis(Fig. 1.3, panel (a)). The water molecules locate at the middle of
the six-membered rings of SiO4 tetrahedra and form a triangular lattice. At this point, we
treat the water molecules as classical dipoles and ignore the crystal field. The ground state
of the classical dipoles on the triangular lattice is investigated by the iterative minimization
method and Luttinger-Tisza method. The translation and reciprocal lattice basis vectors
for triangular lattice are [44]

a1 = (1, 0, 0) a2 =
1

2
(1,
√

3, 0) a3 = (0, 0, c),

b1 =
2π√

3
(
√

3,−1, 0) b2 =
2π√

3
(0, 2, 0) b3 =

2π

c
(0, 0, 1). (4.1)

For water in the beryl case, c/a is equal to 0.5. The dipoles are given full rotational
freedom, i.e., three-component dipoles of fixed length.

4.1.1 Iterative minimization method

We start with 6×6×6 dipoles with fixed length on the triangular lattice pointing in random
directions with the periodic boundary condition. Then, we perform the iteration procedures
introduced in Sec. 2.2.1. The electric field used in the iteration steps is calculated by Ewald
method[34] (Appendix A). The loop stops when the difference between the energy of the
new set ((i + 1)th loop) of dipole vectors and the old set (ith loop) is smaller than 10−5,
i.e.,

|Ei+1 − Ei| < 10−5. (4.2)

We found the ground state for dipoles in triangular lattice depends on c/a ratios. The
ground state configurations are summarized below:
1. Half of the dipoles are up, and another half of dipoles are down in the XY plane, and the
other layers are copies of the xy plane when c/a < 0.96, and we call this state a staggered
phase.
2. Dipoles have ferroelectric order in XY plane but flip the direction in their neighbor
plane when c/a > 0.96, and we refer to this state as planar ferro/anti-ferro phase.

This procedure does not find the true ground state for some initial conditions. Some-
times the dipoles are trapped in some local minima with close energy to the true ground
state introduced above.
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Figure 4.1: Top view of the ground state configurations for dipoles in triangular lattice
for c/a < 0.96.

Figure 4.2: Top view of the ground state configurations for dipoles in triangular lattice
for c/a > 0.96. (a) and (b) are the two neighbor planes.
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4.1.2 Luttinger-Tisza Method

Figure 4.3: Top view of the first Brillouin zone of the triangular lattice. Some of the special
points are shown. Γ is at the center of the first Brillouin zone, and K point and M point
are at the first Brillouin zone boundary.

In this section, Luttinger-Tisza (TL) method [26, 29] is applied to the triangular lattice.
We wrote the dipole-dipole interaction Hamiltonian Eq. (2.2) as a sum of the Fourier
transform of the interactions over all wavevectors q following the procedures introduced
in Sec. 2.2.2, then diagonalize the interaction Hamiltonian to find eigenvalues in the first
Brillouin zone (see Fig. 4.3). The Fourier transform of the interaction matrix is shown in
Appendix A.

From Fig. 4.4(a), there is a flat band from the Γ point to the M point for c/a = 0.5
(the flat band is plotted in Fig. 4.5). The eigenvalues are very close in this region and the
global minimum is at K point (λK = −19.23523 and λM = −19.23446). The normalized
eigenvector for λK = −19.23523 is (0,0,1) which means that if the ordering wavevector
is q∗ = qK, all dipoles correspond q∗ = qK ground state only have z-component, i.e.,
si = ẑ or si = −ẑ. This means if q∗ = qK is the ordering wavevector, the configuration
can be written as si = cos(qK · ri) ẑ according to Eq. (2.21) and qK · Ri has to equal
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Figure 4.4: Luttinger-Tisza eigenvalues plotted in the Brillouin zone of the triangular
lattice for c/a = 0.5 and c/a = 1.

Figure 4.5: The flat band in Fig. 4.4(a) from Γ point to M point for c/a = 0.5.
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to nπ, where n is an integer. However, qK · Ri 6= nπ and q∗ = qK is not the ordering
wavevector. q∗ = qM with a higher energy has the normalized eigenvector (0,0,1). In this
case, the strong condition is fulfilled, i.e., the dipole is fixed to a unit length, and we find
q∗ = qM is the staggered phase found by the iterative minimization method. The energy
(λM = −19.23446) calculated in both methods are the same.

From Fig. 4.4(b), the global minimum is at A point with energy λA = −2.87114 and a
normalized eigenvector (0,0,1). The strong condition is fulfilled, i.e., the dipole is fixed to
a unit length, for q∗ = qA. So qA is the ordering wavevector that corresponds to a planar
ferro/anti-ferro phase we found by the iterative minimization method.

In summary, we found that the ground state of dipoles for triangular lattice depends
on the c/a ratio. The iterative minimization method and Luttinger-Tisza method showed
that the ground state is a staggered phase for c/a < 0.96 and a planar ferro/anti-ferro
phase for c/a > 0.96. Having this information, we then repeat the same procedure as in
Chapter. 3 in the following sections.

4.2 Mean-field Hamiltonian of the triangular lattice

Due to the complexity of the diagonalization, a linear rotor is considered in this section.
Fellow the same procedure introduced in Sec. 3.1, we have a similar treatment to the
dipole-dipole interaction term. We start with Eq. (3.3). For c/a < 0.96, we may have
a staggered phase when the dipole-dipole interaction is strong. The average polarization
as order parameter is along Z-direction in lab frame, i.e. pi ≡ 〈nZi 〉 = 〈cos θi〉 when the
dipole-dipole interaction is significantly strong. This way, we have

HMF =
N∑
i

[
BJ2 − λi(pi cos θj −

1

2
pipj)

]
, (4.3)

where we have defined the dipolar lattice sum as λi ≡ −D
∑

j(−1)jΛZZ
ij .

For c/a > 0.96, we may have a planar ferro/anti-ferro phase when the dipole-dipole
interaction is strong. We assume the polarization in the XY -plane is along theX-direction,
and the average polarization is pi ≡ 〈nXi 〉 = 〈sin θi cosφi〉. This way, we have

HMF =
N∑
i

[
BJ2 − λi(pi sin θj cosφj −

1

2
pipj)

]
, (4.4)
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where we have defined the dipolar lattice sum as λi ≡ −D
∑

j(−1)nΛZZ
ij (n is the index of

the XY -plane).

Thus, we convert a confined interacting dipolar rotors problem to a single dipolar rotor
in an effective electric field problem, and combining the appropriate matrix elements and
numerically exact diagonalizations derived later, we can solve pi = 〈cos θi〉 for c/a > 0.96
and pi = 〈sin θi cosφi〉 for c/a > 0.96 in a self-consistent manner as shown in Sec. 3.1.1.

4.3 Exact diagonalization

The basis set functions for the linear rotor have been introduced in Sec. 3.2.1. In this
section, the details of writing the dipole-dipole interaction under mean-field approximation
will be introduced i.e., cos θ and sin θ cosφ in the |JM〉 basis.

The matrix elements for cos θ have been derived in Eq. (3.30) and we only need to find
matrix elements for sin θ cosφ. We first write cos θ in a sum of spherical harmonics [24]

sin θ cosφ =

√
2π

3
(−Y 1

1 (θ, φ) + Y −11 (θ, φ)). (4.5)

Then, we write the matrix elements of Y 1
1 (θ, φ) and Y 1

1 (θ, φ) in term of integrals over
products of spherical harmonics [24]

〈J ′M ′|Y 1
1 (θ, φ)|JM〉 =

∫∫
[Y M ′

J ′ (θ, φ)]∗Y 1
1 (θ, φ)Y M

J (θ, φ) dθ dφ

=

√
3(2J + 1)

4π(2J ′ + 1)
〈J0; 10|J ′0〉 〈JM ; 11|J ′M ′〉 , (4.6)

〈J ′M ′|Y −11 (θ, φ)|JM〉 =

∫∫
[Y M ′

J ′ (θ, φ)]∗Y −11 (θ, φ)Y M
J (θ, φ) dθ dφ

=

√
3(2J + 1)

4π(2J ′ + 1)
〈J0; 10|J ′0〉 〈JM ; 1− 1|J ′M ′〉 . (4.7)
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Combining Eq. (4.6) and Eq. (4.7)together

〈J ′M ′|−dE sin(θ) cos(φ)|JM〉

=



−
√

(J+M+1)(J+M+2)
4(2J+3)(2J+1)

if J ′ = J + 1 and M ′ = M + 1,√
(J−M+1)(J−M+2)

4(2J+1)(2J+3)
if J ′ = J + 1 and M ′ = M − 1,√

(J−M−1)(J−M)
4(2J−1)(2J+1)

if J ′ = J − 1 and M ′ = M + 1,

−
√

(J+M)(J+M−1)
4(2J−1)(2J+1)

if J ′ = J − 1 and M ′ = M − 1,

(4.8)

we obtain the matrix elements of sin θ cosφ.

4.4 Exact diagonalization results

The aim of this chapter is to study the competition of the kinetic energy and dipole-dipole
interaction for triangular lattice, and construct the order-disorder phase boundary. The
phase diagram for the linear rotor constructed by solving pi = 〈cos θi〉 for c/a > 0.96 and
pi = 〈sin θi cosφi〉 for c/a > 0.96 following the iterative procedures introduced in Sec. 3.1.1
or by solving Eq. (3.16) from the free energy expression. For the first method, we consider
triangular lattice with the periodic boundary condition and the system size, L = 6, that
gives 216 lattice sites. The results for these two ways are the same.

The phase diagram of the linear rotor computed via mean-field theory is shown in
Fig. 4.6. In Fig. 4.6, the ordered phase is a staggered phase for c/a < 0.96 and a planar
ferro/anti-ferro phase for c/a > 0.96. To see the role of the c/a played in the Fig. 4.6,
we revisit the definition of the dipolar lattice sum in Eq. (4.3) and Eq. (4.4), i.e., λi ≡
−D

∑
j(−1)jΛZZ

ij for c/a < 0.96 and c/a > 0.96 for λi ≡ −D
∑

j(−1)nΛZZ
ij , whereD ≡ d2

4πε0
.

If we fix the D in the dipolar lattice sum and Fig. 4.6 can be re-constructed in a different
manner (see Fig. 4.7). Fig. 4.6 and Fig. 4.7 present the same phase diagram but in the
differnt way. In Fig. 4.7, it can be seen that there is no planar ferro/anti-ferro phase when
D is small, e.g., Fig. 4.7(a), and there is a a staggered phase for c/a < 0.96 and a planar
ferro/anti-ferro phase for c/a > 0.96 when D is large, e.g., Fig. 4.7(b).
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Figure 4.6: Phase diagram for linear rotor (Jmax = 10).The horizontal axis represents the
strength of the dipole-dipole interaction and the vertical axis is dimensionless temperature
τ ≡ kBT/B. When τ = 0, the quantum critical point is at λc/B = 3. The ordered phase
is a staggered phase for c/a > 0.96 and a planar ferro/anti-ferro phase for c/a > 0.96.
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Figure 4.7: Phase diagram for linear rotor (Jmax = 10).The horizontal axis is c/a ratio and
the vertical axis is dimensionless temperature τ ≡ kBT/B. The dimensionless quantity
D/B is 0.5 for (a) and 1 for (b).
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4.5 Summary

In this chapter, we discuss the orientational order-disorder transition of dipolar rotors for
triangular lattice. First, the ground state of the triangular lattice is found to be a staggered
phase for c/a < 0.96 and a planar ferro/anti-ferro phase for c/a > 0.96. Then, the
mean-field approximation for the dipole-dipole interaction and the exact diagonalization
is introduce. Finally, phase diagrams for the linear rotor were constructed by solving
pi = 〈cos θi〉 for c/a < 0.96 and pi = 〈sin θi cosφi〉 for c/a > 0.96 following the iterative
procedures introduced in Sec. 3.1.1.
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Chapter 5

Materials Context

5.1 Application of the present work

In Chapter 3 and Chapter 4, we have discussed the orientational order-disorder transition
of dipolar rotors for FCC lattice and triangular lattice. In this section, we revisit the phase
diagrams and show how to locate some specific molecules in the phase diagram.

5.1.1 Confined dipolar molecule in Buckminsterfullerene

The horizontal axis of Fig. 3.1 and Fig. 3.2 represent the strength of dipole-dipole in-
teraction, which is characterized by the dipole moment, lattice structure, and rotational
constants. Once we know the dipole moment, lattice structure, and rotational constants,
we can locate a lattice into the phase diagram and predict if there is a spontaneous ferro-
electric order. The ratio of λ/B (λi ≡ −D

∑
jΛ

ZZ
ij defined in Eq. (3.5)) of the endofullerenes

for linear molecules can be calculated using

λ

B
= −D

∑
j

ΛZZ
ij ,

=
d2

4πεa3B
(
16π

3
). (5.1)

where d is the screened dipole moment given by the DF-MP2 method[45] (see Table 5.1),
a is the lattice constants for C60 lattice (we use a = 14.17Å for C60 at 300 K [3]) and
−16π

3
is
∑

j ΛZZ
ij for FCC lattice. This number can be checked by the Ewald summation
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Table 5.1: Properties of endofullerenes computed using ab initio methods for the case of
the molecule’s center of mass being at the center of the C60 cage [1]

Property Method HF NaF NaCl LiF LiCl H2O NH3

Dipole moment (Debye) DF-MP2 0.52 2.02 2.61 1.82 1.99 0.54 0.46

Table 5.2: Properties of endofullerenes computed using mean-field theory. The quantum
critical value in the fourth column is the calculated λ/B value for the linear rotor (λ/A for
the symmetric and asymmetric rotor). The MF-Tc in the fifth column is the dimensionless
mean-field critical temprature for the paraelectric-ferroelectric phase transition.

Class Guest molecule Quantum critical value Location MF-Tc

Linear HF 0.38 Paraelectric -
LiF 73.07 Ferroelectric 24.46
LiCl 166.03 Ferroelectric 53.50
NaF 285.47 Ferroelectric 90.37
NaCl 927.22 Ferroelectric 285.60

Symmetric NH3 0.66 Paraelectric -
Asymmetric H2O 0.31 Paraelectric -

D2O 0.56 Paraelectric -

method [34, 46]. One can locate the calculated λ/B on the phase diagram to determine
whether a spontaneous ferroelectric phase transition is expected. For HF@C60, NH3@C60

and H2O@C60, the calculated λ/B are 0.38, 0.66 and 0.31, and locate at the paraelectric
region. LiF@C60, LiCl@C60, NaF@C60 and NaCl@C60, whose λ/B values are 73.07, 166.03,
285.47 and 927.22 located at ferroelectric region, are predicted to have a phase transition
at 24.46, 53.5, 90.37 and 285.6. The results are summarized in Table 5.2.

In the Table 5.2, HF@C60 and H2O@C60 have been synthesized by molecular surgery [2,
12] and have not found a ferroelectric ordered experimentally. The rest molecules have
not been inserted into C60. Our results suggest that LiF@C60, LiCl@C60, NaF@C60 and
NaCl@C60 have a ferroelectric-paraelectric phase transition as temperature increases.

5.1.2 Confined water molecules in beryl

In Chapter 4, we found the ground state for dipoles of the triangular lattice is a staggered
phase for c/a = 0.5 (c/a = 0.5 is the ratio of confined water in beryl). However, the
water molecules in beryl are found pointing in the ab-plane. To understand the collective
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behavior of water molecules in beryl, we also need to consider a six-fold planar potential
well due to the confinement. The six-fold planar potential is discussed in Ref. [6, 20, 21].
This six-fold planar potential forces the dipole moment of water molecules to point in
one of the six equivalent positions in the ab-plane. So our model, which only considered
the rotational part of kinetic energy and the dipole-dipole interaction, is not sufficient to
understand the confined water molecules in beryl.

5.2 Summary

In this chapter, we discussed the application of our results. We can locate some spe-
cific molecules in our phase diagram to make a prediction if there is a ferroelectric phase
transition. For confined dipolar molecules in C60, our results suggest that LiF@C60,
LiCl@C60, NaF@C60 and NaCl@C60 are potential ferroelectric materials. For confined
water molecules in beryl, we need to add a term for the six-fold planar potential in our
current model [6, 20, 21].
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Chapter 6

Conclusion

6.1 Conclusion of present work

In this work, we have discussed the orientational phase transition of confined quantum
molecules in the quantum dipolar rotor model. We focus on confined dipolar molecules
in C60 and confined water molecules in beryl. We used the simplest possible Hamiltonian
composed of the rotational term and dipole-dipole interaction term to encapsulate the
main features of the confined dipolar molecules. The rotational term and dipole-dipole
interaction term do not commute with each other, and the competition of these two terms
leads to an orientational order-disorder phase transition. The method we used is the mean-
field method. We applied mean-field approximation to the dipole-dipole interaction and
obtained the mean-field Hamiltonian of our model. We simplified the mean-field Hamilto-
nian according to the ground state configuration favored by the dipole-dipole interaction.
We used two methods, i.e., the iterative minimization method and the Luttinger-Tisza
method, to search the ground state configuration. After having the appropriate matrix
elements and numerically exact diagonalizations, we constructed the phase diagrams by
solving self-consistent equations and solving Eq. (3.16) from the free energy expression.

For confined dipolar molecules in C60, we constructed the phase diagram for the linear
rotor, symmetric rotor, and asymmetric rotor. The ordered phase was found to be the
ferroelectric phase. We found that reentrance happens for the symmetric rotor and asym-
metric rotor cases, and we calculated electric susceptibility to understand the reentrance.
The reason for the reentrance has been identified because of the special energy level struc-
ture that results in the bending of the phase boundary. It plays a role that makes the
system easily ordered as the first several excited states become thermally populated.
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We found the ordered phase for confined water molecules in beryl is a staggered phase
when c/a = 0.5 in our model. However, the dipole moment of water molecules was found
in the ab-plane experimentally due to a six-fold potential [6, 19, 20, 21]. This suggests that
our model is not enough to describe the confined water molecules’ behavior in beryl, and
one more term for the six-fold potential has to be added in our model.

We discussed the application of our results in Chapter 5. We locate some specific
molecules in our phase diagram to predict if there is a ferroelectric phase transition (see Ta-
ble 5.2). For confined dipolar molecules in C60, our results predict that LiF@C60, LiCl@C60,
NaF@C60 and NaCl@C60 are potential ferroelectric materials.

6.2 Future Directions

In this work, we used the simplest dipolar rotor model to study confined dipolar molecules’
collective behavior. We ignore the cage’s crystal field of the confined dipolar molecules.
In fact, the rotational motion of the confined molecule would be affected by the potential
energy that the confined molecule experiences due to the confinement, i.e., the rotational
degeneracy of the energy spectrum of the confined molecule is lifted for C60 case [47],
and the dipoles are forced in the ab-plane for water in beryl, which does not agree with
our current results. To accurately capture the dielectric property of the confined dipolar
molecules, the potential term needs to be added. The potential can be written as a series
of spherical harmonics physically based on the symmetry of the system and fitting into IR
spectra to obtain the coefficients of the spherical harmonics. Especially for the water in
beryl, a phase diagram can be constructed as a function of the strength of the potential
follow the steps we discussed in Chapter 3 and Chapter 4 and we then can locate the beryl
with water in this phase diagram.
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Appendix A

Ewald summation

We want to calculate dipole-dipole interaction

HDipole =
∑
i>j

1

4πε0

di · dj − 3(di · r̂ij)(dj · r̂ij)
|r3ij|

,

= D
∑
i>j

Λαβ
ij n

α
i n

β
j , (A.1)

where

Λαβ
ij = −∂α∂β

1

r
, (A.2)

is the coupling matrix for dipoles separated by a distance r. To calculate an infinite lattice
sum(the coupling matrix), we set periodic boundary conditions on a finite-sized system to
unlimited range and write

Λαβ
ij = −∂α∂β

∑
n

′ 1

|rij + n|
, (A.3)

where L is the linear size of the center box containing N dipoles in the direction of lattice
translation vectors and n is a translation vector of the simulation box which contains the
lattice. The prime on the summation sign means that sum does not include the n term for
i = j.The Coulomb or dipolar potential is slowly decaying at large distances, so the direct
summation converges slowly. Ewald replace the above sum summation into two rapidly
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convergent sums: one performed in the direct (real) space and the other sum performed in
the reciprocal space. We use the identity

1

r
=

2√
π

∫ ∞
0

exp
{
−t2r2

}
dt, (A.4)

and split it into two parts

1

r
=

2√
π

∫ κ

0

exp
{
−t2r2

}
dt+

erfc(κr)

r
, (A.5)

where erfc is the complimentary error function and κ is called the splitting parameter. The
final expression of Λαβ

ij then can be written as

Λαβ
ij =

∑
n

′
δαβB(rij + n)− C(rij + n)(rij + n)α(rij + n)β

+
4π

L3

∑
K6=0

KαKβ

K2
exp
{
−K2/4κ2

}
exp{iK · rij} −

2κ√
π
δij, (A.6)

where K is the reciprocal lattice translation vector and

B(r) = erfc(κ/r3) + (2κ/π
1
2 ) exp

{
−κ2/r2

}
/r2,

B(r) = 3erfc(κ/r5) + (2κ/π
1
2 )(2κ2 + 3/r2) exp

{
−κ2/r2

}
/r2. (A.7)

The rigorous mathematical proofs and detailed discussions can be found in Ref. [48]. The
Fourier transform of the coupling strength, Λ̃(q), for Bravais lattices is then

Λ̃(q) =
1

2

∑
n

Λ(na) exp{iq · na}, (A.8)

where a is the lattice translation vector. The final expression can be written as

Λ̃(q) =
∑
n

δαβB(r)− C(r)rαrβ

+
4π

L3

∑
K6=0

(q−K)α(q−K)β

(q−K)2
exp
{
−(q−K)2/4κ2

}
− 2κ√

π
δij, (A.9)

where r = na. The more general expression for non-Bravais lattices can be found in
Ref. [49].
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Appendix B

Background information for quantum
rotor basis

We briefly introduced the |JKM〉 basis set function in this section. The Hamiltonian for
the rotational motion of a rigid body is given in Eq. (1.1). The energy levels of a rigid
rotor are calculated by the Schrödinger equation

HRotationΨ(φ, θ, χ) = EΨ(φ, θ, χ). (B.1)

Ψ is the wave function of molecule orientation and Euler angles (φ, θ and χ) define the
orientation of the molecule in the body fixed frame relative to some non-rotating space-fixed
frame. We first consider the symmetric rotor.

The Hamiltonian of a rigid symmetric top molecule (Ia = Ib < Ic) is given by Eq. (3.31),

Hsymmetric
Rotation = AJ2 + (C − A)J2

z, (B.2)

where J is the total angular momentum operator and Jz is the angular momentum op-
erator about the symmetry axis of the molecule. In order to study the property of rigid
rotor, the coordinate representation of |JKM〉 basis for symmetric top rotor needs to be
introduced [24]

〈JKM |θ, φ, χ〉 =

√
2J + 1

8π2
DJ
MK(θ, φ, χ). (B.3)

where DJ
MK(θ, φ, χ) (the orientation angles θ, φ and χ are defined in Fig. B.1) is the

Wigner-D matrix (the MK element of the rotation matrix, which represents the angular
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momentum J [24, 39]), defined as

DJ
MK(θ, φ, χ) = e−iMφdJMK(θ)e−iKχ (B.4)

where dJMK(θ) is Wigner small d matrix. The dJMK(θ) is defined as [24]

dJMK(θ) =
√

(J +M)!(J −M)!(J +M ′)!(J −M ′)!

×
∑
ν

(−1)ν

(J −M ′ − ν)!(J +M − ν)!(ν +M ′ −M)!

× [cos
θ

2
]2J+M−M

′−2ν [− sin
θ

2
]M
′−M+2ν , (B.5)

where ν is all positive integers.

|JKM〉 is the basis set functions for symmetric top rotor that satisfy [24]

J2 |JKM〉 = J(J + 1) |JKM〉 ,
JZ |JKM〉 = M,

Jz |JKM〉 = K. (B.6)

The quantum number K is for rotation about a symmetric axis in the principal axis system
frame with K~ as the projection of angular momentum onto the symmetric axis of the
principal axis system frame. The quantum number M is for rotation about the Z-axis in
the space-fixed frame with M~ as the projection of angular momentum onto the Z-axis
(see Fig. B.1). The energies for the symmetric rotor are

E(J,M) = AJ(J + 1) + (C − A)K2. (B.7)

The linear rotor is the special case of the symmetric rotor, the moment of inertia for
the symmetric axis is 0, and the rest two moment of inertia are equal. The symmetric
top wave function |J0M〉 reduces to the spherical harmonic wave function |JM〉. For the
asymmetric rotor case, the rotational energy can be written in the symmetric top basis, and
the eigenvectors of the asymmetric top rotor are linear combinations of symmetric top wave
functions. The rotational energy levels are labelled with JKa,Kc , Ka, Kc = J, J − 1, ..., 0.
The Ka is associated with a rotation about the a-axis and Kc, the c-axis. The symmetry
about the b-axis can be obtained from the parity of the sum Ka +Kc [24].
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Figure B.1: Schematic view of the symmetric top rotor. The angles θ, φ (the spherical
polar angles of the rotor axis) and χ (the angle of spin about the symmetric axis, i.e., OP )
specify the ornentation of a symmetric top molecule.
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Appendix C

Ortho and para water

Water molecules have two spin isomers, which are para water and ortho water. In order
to reveal the fundamental properties and the interesting quantum phenomena of water
molecules in the non-hydrogen bonding environments, the ortho-para spin conversion of
the endofullerene H2O@C60 has been extensively studied [13, 16] (the ortho-para spin
conversion of the water molecules have not been found in the INS spectra of beryl [13]).
In this section, the background information for ortho and para water is given.

The rotational part Hamiltonian of water molecules (Ia < Ib < Ic) is given by

HRotation = AJ2
a +BJ2

b + CJ2
c . (C.1)

The symmetry of the Hamiltonian Eq. (C.1) belongs to the D2 group, and the rotational
energy levels belong to one of the symmetry species (A, Ba, Bb and Bc) of the D2 group.
After rotation by π along the b-axis (dipole moment of the water is along this axis) in
the body frame (Cπ(b)), the wave functions of the symmetry species A and Bb do not
change their signs, while the Ba and Bc change their signs. In the Born-Oppenheimer
approximation and ignoring the rotation-vibration coupling, the total wave function of the
water can be written as

|Φ〉 = |φn〉 · |φel〉 · |φvib〉 · |φrot〉 , (C.2)

where |φn〉, |φel〉, |φvib〉 and |φrot〉 are the nuclei spin, electronic, vibrational and rotational
wave functions. The vibrational and electronic wave functions are symmetric with respect
to the permutation of the two hydrogen atoms. This permutation is equivalent to the Cπ(b)
rotation. For the case of the parallel proton spins (I = 1), the exchange of the protons
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does not reverse the sign of |Φ〉. In this case, only |φrot〉 is responsible for the sign inversion
of the |Φ〉 and |φrot〉 of the ortho molecule has either Ba or Bc symmetries. For the case
of the anti-parallel proton spins (I = 0), the exchange of the protons reverses the sign of
|Φ〉. In this case, |φrot〉 of the para molecule has either A or Bb symmetries. In the JKa,Kc
expression of the rotational wave function, the states with odd Ka + Kc corresponds to
Ba and Bc symmetries and are the wave functions for the ortho water; and even Ka +Kc

correspond to A and Bb symmetries and are para water [16, 50].

The rotational Hamiltonian in the symmetric top basis is diagonal in quantum number
J and M , thus needs only be solved in K blocks which have size 2J + 1 by 2J + 1 for each
J level (see Appendix B). As no matrix elements couple between odd and even K states,
states correspond to odd, and even K blocks can be solved separately. The para states are
from diagonalizing in the even K, while the ortho family is from diagonalizing in the odd
K [24] (see Table 6.4 in Ref. [24]).
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