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Abstract

In this thesis, we design a quantum optimal control protocol to mitigate the noise
in Rydberg atom systems. First, we address the problem of simulating the dynamics of a
single rubidium-87 atom excited to a Rydberg state in the presence of imperfections. Then,
we design an optimal control protocol to mitigate the effect of physical imperfections and
fluctuations in control parameters. This work will be useful for applications in quantum
information processing and quantum simulation.
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Chapter 1

Simulating the dissipative dynamics
of an effective two–level system

This thesis addresses the problem of improving the performance of quantum simulators
using quantum optimal control. In particular, this thesis addresses the problem of exciting
a neutral atom to a Rydberg state using optimal control pulses to mitigate the effect of
dissipative physical processes and fluctuations in control parameters.

1.1 Thesis outline and summary of contributions

In Chapter 1, we address the problem of simulating the dynamics of a single rubidium-87
atom excited to a Rydberg state via a two-photon transition in the presence of fluctuating
control parameters. First, we introduce the control problem and describe experimental
imperfections. Then, we show that the dynamics of a three-level system can be approxi-
mated by the dynamics of an effective two-level system. Finally, we simulate the dynamics
of the effective two-level system in the presence of amplitude and phase noise in the control
lasers. These results establish the protocol to design optimal control pulses to mitigate
these imperfections.

In Chapter 2, we address the problem of using optimal control pulses to counteract
dissipation and fluctuations in control parameters. First, we introduce two control pro-
tocols to increase the fidelity of excitation of a single rubidium atom to a Rydberg state:
stimulated Raman adiabatic passage (STIRAP) and superadiabatic transitionless driving
(SATD). Then, we show that these control protocols increase the fidelity of a rubidium
atom excited to a Rydberg state. Finally, we design a robust control pulse using quantum
optimal control and compare its result to the STIRAP and the SATD protocols.

1.2 Description of the control problem

Quantum simulators enable exploring the dynamics of quantum many-body systems [1–
10]. A promising platform for quantum simulation is neutral atoms trapped in arrays of
optical tweezers interacting via Rydberg-mediated interactions [1–3, 8, 10–16]. Here, we
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consider rubidium–87 (Rb–87) atoms trapped in arrays of optical tweezers. The atoms
are coherently controlled using laser beams and microwave fields. A tunable interaction
is introduced by exciting atoms to a Rydberg state, which then acquire unique physical
properties (Table 1.1).

Properties symbols
Rydberg atoms’s properties
as function of their quantum
number n

typical value
for 70S1/2 of Rb–87

Binding energy En n−2 -500 GHz

Level spacing En+1 − En n−3 [10− 100] GHz

Size of wave function 〈r〉 n2 500 nm

Lifetime τ n3 100 µs

Polarizability α n7 -1.5 GHz/(V/cm)2

van der Waals coefficient C6 n11 10 THz. µm6

Table 1.1: Physical properties of Rydberg atoms. Properties of Rb–87 atoms
excited to a Rydberg state as a function of their primary quantum number n with their
experimental values reported for 70S1/2.

1.2.1 Rubidium–87 atoms

Our controllable quantum system is formed by a Rb-87 addressed optically using laser
beams. The relevant energy levels of Rb–87 form a three-level system (Fig. 1.1). The
ground state is chosen as the hyperfine state, |g〉 = |5S1/2, F = 2,mF = −2〉 and the
excited state is chosen as the Rydberg state, |r〉 = |70S1/2,mJ = −1/2〉. Because the
direct optical excitation from |g〉 to |r〉 is forbidden by selection rules, we excite the atoms
from the ground state |g〉 to the excited state |r〉 via the intermediate state |i〉 = |6P3/2, F =
3,mF = −3〉.
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Figure 1.1: Relevant energy levels of a Rb-87 atom with optical transitions. The
optical transition (blue double arrows) from the ground state |g〉 = |5S1/2, F = 2,mF =
−2〉 to the intermediate state |i〉 = |6P3/2, F = 3,mF = −3〉 is driven with a laser beam at
λ1 = 420 nm with circular polarization σ−. The Rabi frequency is Ω1 and the frequency
detuning is ∆1. The optical transition (red double arrows) from the intermediate state
|i〉 = |6P3/2, F = 3,mF = −3〉 to the Rydberg state |r〉 = |70S1/2,mJ = −1/2〉 is driven
with a laser beam at λ2 = 1013 nm with circular polarization σ+. The Rabi frequency is
Ω2 and the frequency detuning is ∆2. The two-photon detuning is δ = ∆1 +∆2. The decay
rate (green long wiggly arrow) of the intermediate state is Γi = 2π × 0.282 MHz [17]. The
decay rate (green small wiggly arrow) to the Rydberg state is Γr = 2π × 2.67 kHz.

1.2.2 Master equation

The master equation describes the dissipative evolution of a quantum system. It is de-
scribed by its Hamiltonian H and its dissipator L. The Hamiltonian describes the inter-
action of the atom with the laser field, whereas the Lindbladian describes the noise acting
on the system under the Markovian approximation.

The interaction of the three-level system and the laser field is described by the Marko-
vian master equation (1.1) for the unknown density matrix ρ,

dρ

dt
=

1

i~
[H, ρ] + L[ρ], (1.1)

where the Hamiltonian H is

H = −∆1(|i〉〈i|)− δ(|r〉〈r|) +
Ω1

2
(|g〉〈i|+ |i〉〈g|) +

Ω2

2
(|i〉〈r|+ |r〉〈i|), (1.2)

and the dissipator L is

L[ρ] =
Γi
2

(2|g〉〈i|ρ|i〉〈g| − |i〉〈i|ρ− ρ|i〉〈i|) +
Γr
2

(2|i〉〈r|ρ|r〉〈i| − |r〉〈r|ρ− ρ|r〉〈r|), (1.3)
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where Γi = 2π × 0.282 MHz [17] and Γr = 2π × 2.67 kHz are the decay rates of the
intermediate and the Rydberg states respectively. Here, we have made the assumption
that the first laser field does not drive the second optical transition and the second laser
field does not drive the first optical transition.

Our time–dependent observable is the population of the Rydberg state Pr(t). Our
measurement operator Πr is the projector on the Rydberg state |r〉, Πr = |r〉〈r|. The
time–dependent population Pr(t) of the Rydberg state is thus

Pr(t) = Tr{ρ(t)Πr}. (1.4)

1.2.3 Dynamics of a three–level system

Given the initial state ρ(0) = |g〉〈g|, we compute the time–evolved state ρ(t) by solving
the master equation (1.1) using the Qutip library (version 4.6.0) in Python (version 3.7).
The intermediate state has a short lifetime, leading to a reduced excitation probability to
the Rydberg state. To increase the excitation probability, the first driven field is detuned
away from the intermediate state |i〉 (Fig. 1.2a). To reduce scattering off the intermediate
state, we choose the detuning of the first laser to be ∆1 = 2π× 740 MHz and the detuning
of the second laser to be ∆2 = −∆1, so that the two–photon detuning is δ = 0 kHz to
avoid spontaneous decay on the Rydberg state. The excitation probability to the Ryd-
berg state increases with the detuning until decay from the Rydberg state dominates the
dynamics (Fig. 1.2b).
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Figure 1.2: Probability of exciting a single–atom to a Rydberg state. (a) Exci-
tation probability of the ground state (orange solid line) to the Rydberg state (blue dash
line) via the intermediate state (red solid line) for ∆1 = 2π × 740 MHz. (b) Excitation
probability of the Rydberg state at t = (2π/Ω) µs, where Ω = Ω1Ω2/2∆1. The excitation
probability to the Rydberg state increases with the detuning away from the intermediate
state until the decay from the Rydberg state limits the excitation probability.
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1.2.4 Dynamics of an effective two–level system

In the limit of large detunings ∆1 from the intermediate state, the dynamics of the
three–level system can be approximated by the effective Hamiltonian

Heff = −∆eff |r〉〈r|+
Ωeff

2
(|g〉〈r|+ |r〉〈g|), (1.5)

where Ωeff = Ω1Ω2/2∆1 is the effective two–level system drive field, ∆eff = −δ − ∆AC is
the effective detuning, and ∆AC = −(Ω2

1 − Ω2
2)/4∆1 is the AC stark shift arising from the

interaction of the intermediate state with a far–detuned driving field.

The dissipator for a Markovian noise takes the form

L[ρ] =
Γeff

2
(2|g〉〈r|ρ|r〉〈g| − |r〉〈r|ρ− ρ|r〉〈r|), (1.6)

where

Γeff = Γr + Γi
Ω2

1 + Ω2
2

4∆2
1

(1.7)

is the effective two–level decay rate. We confirm that the effective two–level dynamics
matches the three–level dynamics in the far–detuned regime (Fig. 1.3).
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Figure 1.3: Rabi oscillations for the effective two–level system. Comparison of the
simulated dynamics for the three–level system (black dash line) and the effective two–level
system (pink solid line). We confirm that the effective two–level dynamics matches the
three–level dynamics in the far–detuned regime. The simulation parameters are ∆1 =
2π × 740 MHz, δ = 2π × 0 kHz, Ω1 = 2π × 60 MHz, and Ω2 = 2π × 60 MHz.
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1.2.5 Dynamics of an effective two–level system with dissipation

We now simulate the dissipative evolution caused by two sources of imperfections: dis-
sipative physical parameters and fluctuating control parameters. Because the quantum
dynamics resulting from those fluctuating control parameters is a non–Markovian process,
we simulate the quantum dynamics using the Monte Carlo sampling method, i.e., by av-
eraging the solution of the master equation over multiple realizations of the noise rather
than using a Lindbladian.

1.2.5.1 Dissipative physical processes

Imperfections in the physical system include radiative decay, black–body radiation, and
Doppler effect.

• Radiative decay

Given an atom in an excited state, there is a probability for the atom to return to
a lower energy state by releasing a photon. This phenomenon is called spontaneous
emission. In our system, the rate of decay of the intermediate state and the Rydberg
state is Γi and Γr respectively. The effect of spontaneous emission in the Rydberg
state is seen in Figure 1.3, where Γi = 2π× 0.282 MHz [17] and Γr = 2π× 2.67 kHz.

• Black–body radiation (BBR)

According to Planck, the energy Bν released from a black–body at temperature T is

Bν(ν, T ) =
2hν3

c2

1

e
hν
kBT − 1

, (1.8)

where ν the frequency of the electromagnetic radiation, c the speed of light in the
vacuum, kB the Boltzmann constant, and h the Planck constant. In our system, at
large quantum number n ≈ 70, the depopulation rate of the Rydberg state due to
the BBR decreases at large quantum number n (Fig 1.4).
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Figure 1.4: Depopulation rate induced by black–body radiation. At large quan-
tum number, the effect of the BBR on the depopulation of the Rydberg state is small
compared to the radiative decay, Γr = 2π × 2.67 kHz.

• Doppler effect

The Doppler effect is associated with the change of the frequency effectively seen
in the reference frame of the atom due to its velocity. In our system, we use two
counter–propagating beams with wavevectors ~k1013 and ~k420. The effective frequency
seen in the reference frame of the atom is keff = k420 − k1013, where k = 2π/λ. At

temperature T , the spread in velocity of the atoms is ∆v =
√

kBT
m

and its standard

deviation is keff∆v. In the reference frame of the atom, the Doppler effect leads to
a fluctuation of the two–photon detuning δ (Fig. 1.5).
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Figure 1.5: Doppler effect. Probability to reach the Rydberg state for keff∆ν =
2π× 120 kHz (pink solid line) and keff∆ν = 2π× 10 kHz (black dash line). An increase of
the mean temperature leads to a decrease in the population of the Rydberg state. These
results were obtained for ∆1 = 2π × 740 MHz, δ = 2π × 0 kHz, Ω1 = 2π × 30 MHz,
Ω2 = 2π × 30 MHz, keff = 8.76× 106 m−1, and T = 30 µK.

1.2.5.2 Fluctuations in control parameters

We now consider the effect of amplitude noise and phase noise on the dynamics of the
effective two–level system.

The phase noise of the laser can be measured by beating the laser against a more stable
laser reference. If such a reference is not available, the phase noise of the laser can be
inferred from the fluctuations in the error signal of the servo controller stabilizing the laser
to the reference cavity. For our calculations, we use the phase noise data extracted from
Ref. [13], which provided phase noise data for a two–photon transition driven at 795 nm
and 475 nm. Because the laser light at 475 nm is obtained from frequency doubling of a
laser source at 950 nm, the phase noise is specified for the fundamental laser at 950 nm.
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Figure 1.6: Effect of the phase noise on a three–level system. (a) Spectral density
of phase noise at 795 nm laser (red), 950 nm laser (blue), and extra noise added in the
950 nm laser (data from Ref. [13]). (b) Example of temporal realizations of phase noise
for the two lasers at 950 nm (blue) and 795 nm (red). (c) Average probability of the
Rydberg state using Monte Carlo simulation over 100 realizations of the noise (red). The
black line represents each realization of the Monte Carlo simulation. (d) Rabi oscillations
for the ground state (black dotted) and the Rydberg state (red) of the effective two–level
system in the presence of the phase noise. The presence of the phase noise decreases the
probability of excitation to the Rydberg state.

For the amplitude noise, the spectral density is obtained from a measurement of the
relative intensity noise of the laser. The measured noise spectral density is converted to
fluctuations in the driven amplitude field. Figure 1.7 shows the effect of the amplitude
noise of the 420 nm laser in our system.
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Figure 1.7: Effect of the amplitude noise on a three–level system dynamics.
(a) Power spectral density of the amplitude noise at 420 nm. (b) Example of a temporal
realization of amplitude noise for the laser at 420 nm (blue). (c) Average probability of
the Rydberg state using Monte Carlo simulation over 100 realizations of the noise (red).
The presence of the intensity noise in the laser decreases the probability of excitation to
the Rydberg state.

These imperfections can be reduced by properly designing the experimental system. For
example, the radiative decay from the intermediate state can be reduced by operating at
large detunings from the intermediate state or using a direct single–photon transition. The
black–body radiation can be suppressed by working in a cryogenic environment. For the
Doppler effect, using counter–propagating beams can decrease keff [14]. Raman sideband
cooling of atoms in tweezers can also decrease the magnitude of Doppler shifts [18,19]. To
reduce the decrease in excitation probability caused by the phase and amplitude noise, we
can use low–noise laser sources (Titanium–Sapphire) or stabilize the lasers to a high-finesse
reference cavity.

In this chapter, we simulated the dynamics of a single rubidium–87 atom excited to
a Rydberg state using the Monte Carlo sampling method and the power spectral density
of amplitude noise measured on our laser system. After describing our experimental im-
perfections, we showed that the dynamics of a three–level system can be approximated by
the dynamics of an effective two–level system. We simulated the dynamics of the effective
two–level system in the presence of amplitude and phase noise on the control lasers. In
the next chapter, we will build optimal control pulses to mitigate those imperfections and
thus, increase the excitation probability to the Rydberg state.
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Chapter 2

Designing an optimal control pulse

The problem is to find a control protocol that maximizes the population Pr(t) of the
Rydberg state at some time t given a specific initial state ρ(0) = |g〉〈g|. The simplest
approach is to drive Rabi oscillations between the ground and Rydberg state using square
optical pulses. Because of the large decay rate of the intermediate state, the challenge
is to excite an atom from the ground state to the Rydberg state while minimizing the
population in the intermediate state.

In this chapter, we use optimal control pulses to counteract dissipation and fluctuations
in control parameters. First, we introduce two control protocols to increase the fidelity of
excitation of a single Rb–87 atom to a Rydberg state: stimulated Raman adiabatic passage
(STIRAP) and superadibatic transitionless driving (SATD). Then, using these protocols,
we show that the population of the Rydberg state is maximized. Finally, we design an
optimal control pulse to counteract dissipation and fluctuations in control parameters and
compare its result to the STIRAP and the SATD protocols.

2.1 Stimulated Raman adiabatic passage (STIRAP)

As mentioned in Chapter 1, transferring the population from the ground state |g〉 to the
Rydberg state |r〉 is not ideal because of the radiative decay in the intermediate state |i〉.
The goal is to establish a procedure that will allow us to move from the ground state to
the Rydberg state without populating the intermediate state such as stimulated Raman
adiabatic passage (STIRAP).

Using the STIRAP technique, we first couple the unpopulated states |i〉 and |r〉 using
the drive field Ω2(t). We then couple the intermediate state to the state |g〉 using the drive
field Ω1(t). This protocol transfers population of the state |g〉 into the state |r〉 without
populating the state |i〉, which is called a dark state [20].

To better understand this protocol, let’s consider the time-dependent drive field Ω1(t)
and Ω2(t) acting on the three-level system (Fig. 1.1).

During the STIRAP process, the states |i〉, |r〉, |g〉 are mixed by the two laser fields
to form the eigenstates |b+〉, |b−〉, and |d〉.
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|b−〉 = sin θ cosφ|g〉 − sinφ|i〉+ cos θ sinφ|r〉
|d〉 = cos θ|g〉 − sin θ|r〉
|b+〉 = sin θ sinφ|g〉 − cosφ|i〉+ cos θ cosφ|r〉,

(2.1)

with respective eigenenergies (Fig. 2.1b)

λ− =
1

2
(−δ1 −

√
∆2

1 + Ω2
1 + Ω2

2 )

λ0 = 0

λ+ =
1

2
(−δ1 +

√
∆2

1 + Ω2
1 + Ω2

2 ),

(2.2)

where the mixing angles θ and φ are

tan θ =
Ω2(t)

Ω1(t)

tan 2φ = −
√

Ω2
1(t) + Ω2

2(t)

∆1

.

(2.3)

In the absence of dissipation, we can then perfectly transfer the population from the ground
state to the Rydberg state by respecting the adiabaticity condition

θ̇ �
√

Ω2
1(t) + Ω2

2(t). (2.4)

This condition is verified for Gaussian pulses, e.g., by choosing

Ω1(t) = Ω0 exp(−(t−∆t/2)2

2σ2
)

Ω2(t) = Ω0 exp(−(t+ ∆t/2)2

2σ2
),

(2.5)

where σ is the Gaussian pulse width, Ω0 the maximum Rabi coupling, and ∆t the delay
between the two lasers (Fig. 2.1a). Figure 2.1c shows the population of the Rydberg state
using the STIRAP protocol.
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Figure 2.1: Simulation of the three–level system dynamics using STIRAP.
(a) Rabi coupling pulse shapes. (b) Energies corresponding to the the STIRAP process.
(c) Probability of the Rydberg state (Pr), the intermediate state (Pi), and the ground
state (Pg) using STIRAP protocol. Using the STIRAP protocol, there is a small probability
to populate the intermediate state. (d) Effect of the pulse widths on the population of the
Rydberg state where ∆t is the time delay between the two pulses. For ∆t < 0, the pulse
acting on the |i〉 ↔ |r〉 transition comes before the pulse acting on the |g〉 ↔ |i〉 transition.
The parameters for these plots are ∆1 = 2π × 740 MHz, δ = 0 kHz, Ω0 = 2π × 25 MHz,
σ = 500 ns, and ∆t = −800 ns.

Taking into account that there is a small probability to populate the intermediate
state due to its decay, the STIRAP protocol could lead to nonadiabatic transitions. Better
performance to increase the population of the Rydberg state can be achieved by minimizing
nonadiabatic transitions.

2.2 Superadiabatic transitionless driving (SATD)

Dykhne–Davis–Pechukas have shown a technique for deriving the transition probability in
the near adiabatic regime [21]. The probability for nonadiabatic transition is

P ≈ e−2ImD(t0), (2.6)
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where

D(t0) =

∫ t0

0

ε(t)dt (2.7)

is an integral over the splitting ε(t) =
√

Ωeff (t)2 + ∆AC(t)2 between eigenenergies of
Eq. (2.2) and t0 is the transition point. To optimize the adiabatic passage between two
states, we choose Ωeff (t) and ∆AC [22] such that

ε(t) =
√

Ωeff (t)2 + ∆AC(t)2 = constant. (2.8)

The condition for our effective two-level system is

Ωeff (t)
2 + ∆AC(t)2 = [

Ω1(t)2 + Ω2(t)2

4∆1

]2 = constant. (2.9)

We choose the following parameterization

Ω1(t) = Ω sin[
π

2
f(t)]

Ω2(t) = Ω cos[
π

2
f(t)],

(2.10)

where f(t) is an arbitrary increasing function 0 = f(−∞) ≤ f(t) ≤ f(∞) = 1. Eq. (2.8)
requires that Ω must be constant, which is not physically feasible. To overcome this un-
physical condition, Vasilev introduced a mask function F (t) [23] in Eq. (2.10) and obtained

Ω1(t) = Ω0F (t) sin[
π

2
f(t)]

Ω2(t) = Ω0F (t) cos[
π

2
f(t)],

(2.11)

where F (t) is chosen as the hypergaussian function defined as

F (t) = e(t/T0)2n . (2.12)

Taking into account the adiabaticity condition

|θ̇(t)| � |ε(t)|, (2.13)

we can choose f(t) as

f(t) =
1

1 + e−(λt/T )
. (2.14)

For n = 1, we have a Gaussian pulse with the following pulse shapes

Ω1(t) = Ω0e
−(t−τ/2)/T 2

Ω2(t) = Ω0e
−(t+τ/2)/T 2

,
(2.15)

where τ is the pulse delay. Figure 2.2 shows the dynamics of the effective two–level system
using the SATD protocol.
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Figure 2.2: Simulation of the three–level system dynamics using SATD. (a)
Pulse shapes for different time–dependent Rabi coupling. Ideally optimized pulse shapes
(red solid line), which obey the optimization condition given by the Eq. 2.13 for all times
t. Pulse shapes with hypergaussian mask (black dashdot line) (Eq. 2.12), with n = 3,
λ = 4, T = 100 ns and T0 = 2T . Gaussian pulses (blue dash line) with pulse delay
τ = 1.2T . (b) Comparison of the population of the Rydberg state using different pulse
shapes described in SATD protocol. Although the Gaussian pulses are faster, the optimal
and the hypergaussian pulses show high probability of reaching the Rydberg state. The
parameters for these plots are, ∆1 = 2π × 740 MHz, δ = 0 kHz, Ω0 = 2π × 25 MHz,
σ = 500 ns, ∆t = 800 ns.

We showed how certain control protocols with shaped pulses could increase the proba-
bility to reach the Rydberg state. In the next part, we will build an optimal control using
TensorFlow to minimize the infidelity of the Rydberg excitation process.

2.3 Quantum Optimal Control (QOC)

Optimizing the fidelity of the Rydberg state requires finding the control parameters that
will maximize the population of the Rydberg state. We use ∆1, Ω1, and the pulse duration
as our control parameters. Our optimization is done at time T = 2π/Ωeff . The number
of Rabi flops Q driven at rate Ωeff during the effective Rydberg lifetime τ = 1/Γeff is

Q = τ/T

≈ 1

Γeff

Ωeff

2π

≈
1

2π
Ω1Ω2

2∆1

Γr + Γi
Ω2

1

4∆2
1

.

(2.16)

We numerically maximize Q (Eq. 2.16) over ∆1 (Figure 2.3a) to obtain

Qmax =
1

4π

Ω2√
ΓrΓi

, (2.17)
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at

∆∗
1 =

√
Γi
Γr

Ω2
1

4
. (2.18)

We find the detuning ∆1 at which the excitation probability to the Rydberg state is
maximum by maximizing numerically the number of Rabi flops (Figure 2.3).
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Figure 2.3: Optimized π pulses parameters. (a) Rabi flops as a function of ∆1.
(b) Probability of the Rydberg state as a function of ∆1. The highest probability of the
Rydberg state is obtained for ∆1 = ∆∗

1 = 1520.3 MHz.

Given the initial state (ground state) and the target state (Rydberg state) of our system,
we use TensorFlow to build an optimal pulse that will maximize the fidelity of the Rydberg
state and be robust against fluctuating control parameters. The algorithm consists of first,
defining a set of control parameters (pulse duration, the drive–field Ω1, the detuning ∆1),
the sources of noise (amplitude noise on the drive–field), a target state (Rydberg state),
and the pulse segments that define the number of steps of the optimizer. Then, we create
a pulse (Fig. 2.4a) that maximizes the fidelity of the Rydberg state using the Adams
optimizer. This optimizer allows us to create a pulse that is robust against fluctuations in
control parameters (Fig. 2.4b, Fig. 2.4c). Figure 2.4 shows the comparision of the excitation
probability to the Rydberg state using the STIRAP, SATD, and QOC protocols.
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Figure 2.4: Excitation probability for different control protocols: π pulses (pink
dashdot line), STIRAP (red dash line), SATD (black solid line), and QOC (yel-
low dotted line). (a) The maximum population of the Rydberg state is obtained using
quantum optimal control (QOC) (yellow cross). (b-c) The control pulses for STIRAP (red
dash line), SATD (black solid line), and QOC (yellow dotted line) are robust against ampli-
tude and frequency fluctuations. At t = 175 ns, the second derivative of the infidelity using
STIRAP, SATD and QOC protocols with respect to the amplitude’s fluctuations tends to
zero. The simulation parameters are δ = 0, Ω1 = 2π × 174 MHz, Ω2 = 2π × 115 MHz,
tf = 0.175 µs, σ = tf/6, τ = σ × 1.2, λ = 2.

In this chapter, we built upon the Gaussian-like pulses of the STIRAP and SATD pro-
tocols to synthesize novel quantum optimal control pulses that achieve a greater excitation
probability to the Rydberg state in less time, while being robust against fluctuations in
control parameters. First, we used the STIRAP and SATD protocols to increase the fi-
delity of excitation of a single Rb–87 atom to a Rydberg state. Then, we extended those
protocols using quantum optimal control. Finally, we compared their robustness against
the detuning ∆1 from the intermediate state. We concluded that quantum optimal con-
trol provides control protocols with superior performance that are fast and robust against
fluctuations in control parameters.
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Chapter 3

Conclusion

In this thesis, we designed an optimal control pulse to excite a rubidium–87 atom to the
Rydberg state in the presence of dissipative physical processes and fluctuating control
parameters.

First, we simulated the dynamics of a single Rb–87 atom excited to the Rydberg state in
the presence of imperfections and showed that a three–level system could be approximated
by an effective two–level system in the case of a large detuning from the intermediate
state. Then, we used the STIRAP and SATD protocols to minimize the population of
the intermediate state and the nonadiabatic transitions respectively. Finally, we built
a quantum optimal control protocol to mitigate the effect of physical imperfections and
fluctuations in control parameters. We found the parameters that maximize the Rabi
flops and the population of the Rydberg state using π pulses. Then, we designed an
optimal control pulse that minimized the infidelity of the Rydberg state and compared
its performance against the STIRAP and SATD protocols. We saw that QOC gives the
highest excitation probability to the Rydberg state, while being faster (t � 400 ns) and
robust against fluctuations in control parameters.

These results will be useful to experimentally model a three-level system and measure
the population of the Rydberg state in the presence of dissipative physical parameters and
fluctuating control parameters. Increasing the population of the Rydberg state will help
improving the performance of quantum simulators based on arrays of Rydberg atoms for
applications in quantum information processing.

For the Future work, we plan to demonstrate these results experimentally, exploit quan-
tum optimal control to design efficient spectroscopy techniques to sample and reconstruct
non–markovian noise acting on two–photon transitions, and extend these results from a
state–to–state transfer problem defined for a single quantum system to a quantum gate
synthesis problem defined for a many–body quantum system.
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A. Browaeys, “Tunable two-dimensional arrays of single rydberg atoms for realizing
quantum ising models,” Nature, vol. 534, no. 7609, p. 667, 2016.
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