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Abstract

Electric power systems are experiencing a movement toward increasing the share of

renewable energy sources (RESs), while having to cope with the retirement of

conventional generating units to facilitate an eco-friendly system. However, the

uncertainty and variability associated with RESs and the demand, call for additional

sources of flexibility. Residential, commercial, and industrial loads are a potential source

of flexibility in power systems. In addition, recent deployments of energy storage

systems (ESSs) can contribute significantly to power system flexibility. Therefore, the

effective management of flexible sources can lead to an improved power system operation.

This thesis investigates options for capturing the flexibility of residential loads and

ESSs in a power distribution system. A two-stage optimization framework is developed

wherein multiple home energy management systems (HEMSs) simultaneously optimize

their respective energy consumption patterns, and determines their flexibility provisions,

which are communicated to the local distribution company (LDC). A flexibility evaluation

approach is developed to estimate the residential energy hub (REH) flexibilities at each

bus in the distribution system. Intra-hour flexibility indices are calculated to represent the

REHs’ willingness to alter their consumptions. Different clusters of residential customers

are considered, classified by their ownership of photovoltaic (PV) panels and ESSs, and

their preferred objectives. The LDC aggregates the controllable demand profiles and the

flexibilities of each HEMS to optimize its operational performance and hence determines

peak reduction signals that are sent to the HEMSs. Studies are carried out considering

a 33-bus distribution system coordinating with 1,295 houses connected at different buses,

with varying customer preferences and objectives, to demonstrate the applicability of the

proposed scheme.

ESSs can improve the energy management in distribution systems, especially with the

increasing penetration of HEMSs that schedule household appliances and render them as

smart loads. A large number of uncoordinated HEMSs can result in significant changes to

the aggregated load profile of the distribution system. Therefore, a new framework and

mathematical model for integrating ESSs in the distribution grid is proposed to minimize

the operation cost of the LDC and to alleviate the impact of uncoordinated HEMS
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operation on the distribution grid. A novel neural network (NN) based

state-of-health (SoH) estimator for a lithium-ion (Li-ion) battery based ESS is proposed,

which is incorporated within the LDC’s planning problem. The results show that the

proposed estimation model is an accurate estimation of the SoH of the ESS. Also, the

LDC’s ESS investment plan decisions are compared considering the proposed SoH of the

ESS vis-á-vis a linear degradation model, and when degradation of ESS is not considered

in planning.

The third research problem addressed in the thesis investigates the ESS’s role in

providing the LDC with flexibility services. A novel flexibility service framework is

developed based on the battery energy storage system (BESS)s’ capability in providing

different levels of charge rate (C-Rate). This work proposes a cooperative game theory

based approach to determine the allocation of monetary benefits among flexible BESSs.

The proposed model ensures a fair distribution of monetary gains among the coalition

members and proposes a novel flexibility pricing scheme.
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Chapter 1

Introduction

1.1 Motivation

With continuously increasing demand for energy, globally, and which is expected to grow

by 12% from its 2019 levels by the year 2030 [1], there has been serious concerns on

the long-term adequacy, availability and supply of energy. Traditional fossil fuel-based

energy sources are detrimental to the environment and are not the favoured options by

governments for new capacity. Thus, it is necessary to investigate other eco-friendly energy

resources and solutions to meet the demand in the long-run.

To address this issue, governments have introduced new strategies, policies and dynamic

pricing tools in order to reduce the peak demand and hence defer capacity investment costs.

The Peaksaver Plus [2] and the Global Adjustment Program in Ontario, Canada [3] are

examples of policies to reduce the peak demand of the local distribution companies (LDC);

while the time-of-use (TOU) tariff applicable in Ontario is a pricing instrument seeking

the same objective of lowering the peak demand. The development of demand response

(DR) programs and the smart use of customers’ flexibility can help the LDC enhance grid

reliability and operational efficiency.

According to the US Federal Energy Regulatory Commission (FERC), DR is defined

as [4], “Changes in electric usage by end-use customers from their normal consumption
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patterns in response to changes in the price of electricity over time, or to incentive payments

designed to induce lower electricity use at times of high wholesale market prices or when

system reliability is jeopardized”. On the other hand, flexibility is the ability of the power

system to respond to fast changes in supply and demand, and in the balance of the two [5].

Increased flexibility needs refer to increased fast response requirements from generators

and loads, though not increasing the overall capacity.

In 2018, the peak demand in Ontario was 23,240 MW; this lower than expected level

was partially attributed to the deployment of various DR programs in the province. The

estimates reveal that around 7% of the demand reduction was from DR programs such as

Industrial Conservation Initiative, capacity-based DR, and the Peaksaver Plus residential

DR program [2].

Effective implementation of DR programs relies on the availability of smart grid

infrastructure, where deployment of two-way communication technologies between the

LDC and end-users is crucial. Smart meters pass information to the LDC on customers’

consumption levels and their readiness to participate in DR programs, by altering their

consumption patterns based on price signals received from the LDC. The LDC can hence

achieve a considerable degree of flexible operation by coordinating the controllable loads

of retail customers, individually.

The effective participation of residential customers in DR programs can be achieved

using a home energy management system (HEMS) which is a residential controller that

determines the optimal ON/OFF decisions of the household appliances/devices based on

the customer’s objectives and preferences. According to a study by Hydro One [6], the

display of electricity rates in real time, such as TOU rates, can increase load shifting on

typical days from 3.7% to 5.5%, while on hot days, up to 8.5%, and bring about 13%

reduction in energy consumption. The concept of energy hubs has been proposed in the

last decade [7] where various energy system activities are performed within a hub, namely,

energy production, conversion, storage, and consumption of different energy carriers [8].

The integration of renewable energy sources (RESs), energy storage systems (ESSs), and

smart loads at the residential customer’s end have transformed these loads to a residential

energy hub (REH).
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The increasing transformation of residential loads to REHs can provide powerful

capabilities to benefit both customers and the LDC. Therefore, there is a need to assess

the flexibility of REHs to provide DR services and evaluate their impact on consumption

and distribution grid operation.

Besides home energy management, ESS can also provide flexibility, energy and capacity

resource, and other benefits to the LDC such as loss reduction, peak shaving, increased

RES integration, islanded operation support. In recent years, several ESS projects with

varying sizes and locations have been commissioned by the Independent Electricity System

Operator (IESO) in Ontario, Canada, to provide services such as load leveling, emergency

reserve, and frequency regulation. For example, IESO York Region Non-Wires Alternatives

Demonstration Project investigates the potential of high penetration of distributed energy

resources (DERs) as an alternative for traditional infrastructure to meet local demand

and electricity market needs without introducing any negative impact on system reliability

[9]. In USA, the FERC Order 2222 [10] has been recently put in place that creates an

opportunity for ESSs and REHs to indirectly participate in electricity markets through

local aggregators and hence promote competition.

The diversity of ESS technologies can provide different capabilities which add value

to their contributions in power system applications. There are many ESS projects under

development or in the operational stage. In 2014, the IESO of Ontario, Canada, initiated

a competitive procurement framework for 50 MW energy storage to provide capacity and

ancillary services to the grid. Two consecutive phases were considered for the energy

storage deployed; the first phase started in mid of 2014 by selecting five companies to

provide ancillary services to the power grid with 34 MW capacity; the second phase offered

10-year contracts to five companies with 16.75 MW capacity in six separate energy storage

projects.

By Spring 2018, seven energy storage facility projects have been commissioned and

became operational. Two out of the seven are assigned to provide reactive power support

and voltage control service, while the others are responsible for regulation services. As of

December 2020, three out of the six energy storage projects from the second phase have

started commercial operation, while the rest are underway. Table 1.1 shows examples

of energy storage projects in Ontario, Canada, at the distribution and transmission grid

3



level [11].

Table 1.1: Some Energy Storage Projects in Ontario, Canada [11]

Proponent Location Technology Capacity Objective

Baseload Power Corp.
Milton, Ontario

Flow Battery 4 hours, 2 MW Grid support and arbitrageat distribution grid

Ameresco Canada Inc.

Newmarket, Ontario

Solid Battery

4 hours, 2 MW Peak shaving and on-going grid
at distribution Two relability and stability

grid facilities with increase in RES

SunEdison Canada
IESO grid

Flow Battery 3 projects with total
N/AOrigination LP. (VRB) 4 hours, 20 MW

NextEra Canada Development
Distribution grid

Solid Battery
4 hours, 2 MW Peak shavingand Acquisitions, Inc. (Li-ion)

NRStor Inc. IESO grid
Compressed Air

7 MWh N/AEnergy Storage

One of the fastest growing ESSs is lithium-ion (Li-ion) batteries, which are a

commercial and mature technology used for small-scale and large-scale grid applications.

Li-ion batteries represent around 10% of the total installed ESS capacity in Canada [12],

and their penetration is expected to increase with the decline in its capital cost [13].

Consequently, there is a need to properly size and site ESSs in an operational-planning

framework in order to minimize the total cost of investment for their owner and increase

the benefit from their flexible operation. However, it should be noted that the lifetime of

Li-ion batteries are highly impacted by their cyclic operation and calendar aging.

Although the short-term charging / discharging decisions would accrue financial benefits

to the ESS owner, these would negatively impact the asset lifetime [14]. Neglecting the

degradation of Li-ion batteries can lead to over-estimation of its available capacity and

the expected financial benefit from the asset. In order to capture the inter-temporal

changes in the state-of-health (SoH) of battery energy storage system (BESS), there is a

need to model the degradation of Li-ion batteries as a function of its charging /

discharging actions and its calendar aging, which can be incorporated within power

system operation and planning problems.

The ownership of BESS can highly impact its operation, limiting the owners’ financial

benefit. BESSs are well-known for their prominent role in power systems such as energy

arbitrage, peak demand reduction, and ancillary services. To unlock the ultimate benefits

of BESS, the investors can transfer the right of BESS control to another entity, such as
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an aggregator or the LDC, which requires access to more flexible resources. The LDC, for

example, may need high flexibility in operation due to its exposure to volatility in demand,

electricity prices, or intermittent generation. Also, the LDC does not have to own the BESS

facilities in order to increase its flexible resources. The development of financial benefit

allocation frameworks would encourage investors to participate in flexibility provisions

and maximize the overall payoff. Therefore, there is a need to evaluate the contribution

of individual BESSs each seeking to maximize the overall system benefit, which can hence

be modeled as a cooperative game.

1.2 Literature Review

This section reviews the relevant literature pertaining to the topics and issues discussed in

this thesis including operation, planning, and incentive design for ESSs and flexibility of

residential loads for DR provisions in smart grid.

1.2.1 Flexibility of Residential Loads for Demand Response

Provisions

In recent years, several researchers have reported their works on the mathematical modeling

of an HEMS that optimizes the operation of household appliances [15–22].

In particular, a mixed integer linear programming (MILP) model was proposed in [22],

optimizing the household appliance schedule, for incorporating into automated residential

energy controllers. The mathematical model included most of the household appliances in

addition to ESS and photovoltaic (PV) panels. The model parameters were determined

from practical tests, and the model was implemented on households in Ontario, Canada;

the results showed a significant reduction in both energy cost and peak demand while

maintaining the customer preferences. The paper [22] forms the basis for the research on

flexibility of residential loads presented in this thesis.

Some studies have dwelled upon coordinating the residential loads to provide an

aggregated DR service to the utility while maximizing the aggregator’s benefit.
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In [23], an incentive-based energy consumption scheduling problem was formulated,

while considering the interaction amongst households and the LDC, to minimize the total

energy cost and the peak-to-average ratio of residential loads. Since the work considered

only shiftable loads (i.e. dishwasher, washer, and dryer), minimization of energy

consumption of the household appliances was not considered.

In [24], a decentralized HEMS was formulated as a multi-stage stochastic optimization

problem to minimize the aggregator’s cost by balancing the residential demand with

available generation in real-time; four deferrable loads with fixed load profiles were

considered. However, neither [23] or [24] considered the modeling of controllable loads

with flexible thermal or electrical capacity such as heating, ventilation and

air-conditioning (HVAC) and ESS, where energy consumption minimization can be

achieved by operating the device within the customer’s comfort zone.

In [25], a cooperative energy management system (EMS) was proposed to coordinate

the operation of DERs of a neighborhood comprising residential prosumers operating in

isolated mode. RESs and ESSs were considered, where the aim of the EMS was to reduce

the mismatch between supply and demand. However, the paper considered the residential

loads as fixed, without taking into account the inherent flexible operation capabilities of

the household appliances.

In [26], a centralized coordination approach was proposed to achieve a pre-defined load

profile by applying a day-ahead load shifting technique on residential, commercial, and

industrial loads. The results indicated that the proposed load shifting approach reduced

the system peak load and operation cost. Nevertheless, the paper did not investigate the

impact of demand management on grid operations, such as bus voltage levels and system

losses.

Distributed heat pumps, which represented a number of households’ controllable loads,

and BESS were coordinated in [27] to provide power smoothing services to mitigate the

impact of power fluctuations of the integrated RESs on the connection line between a

microgrid and main grid.

In [28], a decentralized stochastic optimization model was proposed for controlling the

energy consumption of several houses including flexible and non-flexible loads, ESS, and

6



RES to minimize the total energy cost of the neighborhood using a real-time scheduling

algorithm. The paper considered a case study, where a neighborhood with a few houses

was coordinated to minimize the total cost. The paper assumed that the RES generation

surplus would be curtailed without considering a more economic option of selling the

surplus to the LDC. In addition, the work did not address the impact of the decentralized

approach on distribution grid operation with multiple neighborhoods.

In [29], a decentralized coordination of multiple prosumers was proposed which aimed

to maximize the aggregator’s benefit while minimizing the reverse flow of energy at the

service point, using a DR program. Other works [30,31] proposed heuristic approaches to

coordinate the DR of residential loads to minimize the cost of each customer, flatten the

system load profile, and address the issue of possible peak rebound that might result

from uncoordinated DR. The DR of residential loads was achieved by controlling a small

set of household appliances- dishwasher, washer, dryer, and plug-in electric

vehicles (PEVs). Furthermore, the paper investigated the impact of coordinated DR on

distribution operation, and an improvement in the voltage profiles and reduction in

system losses was noted. However, the work did not consider some of the basic flexible

household appliances such as HVAC and stove.

Coordination of a small number of residential HEMSs, which comprised controllable

appliances in addition to PEVs, ESSs, and distributed generation, to minimize the total

neighborhood energy procurement cost while mitigating any unfair use of the distribution

transformer, was proposed in [32]. In [33], a two-stage nodal pricing scheme was proposed to

motivate the residential customers to participate in DR programs considering distribution

system operational aspects; however, power system losses were not considered, and several

household appliances were not taken into account in the HEMS as possible flexible loads.

In recent times, flexibility provisions have become a very important topic in power

systems as a result of the increasing penetration of RESs into the power system, which calls

for increased number of flexible resources such as controllable loads and ESSs. Therefore,

these flexible resources need to be managed wisely to achieve customer-level and grid-level

benefits. For example, flexible loads can provide DR services to the LDC. According to [34],

uncoordinated DR might affect the distribution grid operation negatively, whereas proper

control of DR can eliminate the adverse impact of such modifications in the demand-side
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behavior. Another study stated that strategic operation of ESSs in electricity markets

can limit the potential flexibility benefits of such a system [35]. The work [36] proposed

a decomposition approach to estimate the controllable and non-controllable residential

loads within a total forecasted load of a distribution system, which can be used in DR

applications.

In [37], A multi-objective mixed integer non-linear programming (MINLP) based HEMS

was proposed considering the customer’s energy savings and comfort level, wherein each

residential customer was equipped with controllable appliances and ESSs in a residential

microgrid.

Table 1.2: Summary of Literature Review on Flexibility of Residential Loads

Paper

REH Model Grid Operation

Water
Fridge Stove HVAC Lighting Dishwasher Washer Dryer Pool ESS RES PEV

and
Heater Constraints

[21] C F F C NC C C C NC C NC NC NC

[23] F F F F F C C C NC NC NC C Linear feeder model

[24] NC NC NC NC NC C C C NC NC NC C NC

[25] F F F F F F F F NC C C NC NC

[26] NC NC C NC NC C C C NC NC NC NC C

[27] NC NC NC C NC NC NC NC NC C C NC

Tie-line between
microgrid and

main grid

[28] Residential loads represented as shiftable and non-shiftable loads C C NC NC

[29] Interruptible, uninterruptible, and thremostat-controlled load C C NC

[30,31] NC NC NC NC NC C C C NC NC NC C C

[32] F F F F F C C C NC C C C NC

[33] C F F C F C C C NC C NC C Linear feeder model

[34] C C C C C C C C NC NC NC NC C

[38] C NC NC C NC NC NC NC NC NC NC NC NC

Proposed work C C C C C C C C C C C C 30-bus system

Considered as an optimization variable (C), Fixed Load (F), Not considered (NC)

In [38], an electric storage space heater of a residential customer was modeled to

optimize its operation considering the flexibility of heating loads while minimizing the

total operation cost; on the other hand, the retailer maximized its profit by optimally

determining the electricity prices while minimizing the supply-demand imbalance in the
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system. This was achieved by encouraging the flexible residential customers to alter their

consumption behavior in response to the announced prices by the retailer. The study

investigated the impact of different pricing schemes on both customers and retailer costs.

It was noted that the TOU scheme was the best option for the residential loads.

However, the retailer model did not consider the distribution grid constraints or the

associated power losses, which affects the total cost of the retailer.

Table 1.2 presents an overview of the literature review pertaining to flexibility of

residential loads and their ability to provide DR services. Many researchers have simply

considered dishwasher, washer and dryer as flexible loads, while the other households

appliances were considered fixed loads [23, 24, 30]. Other works have mainly investigated

the DR provisions from residential thermal loads [33, 38]. Moreover, to the best of the

author’s knowledge, very few commercial HEMS solutions exist in the market today that

integrate home automation, local generation, and energy storage with the external power

system.

The integration of PEVs, ESSs, and/or RESs were considered by a few researchers,

which noted the significant changes in the residential load profiles and customers’ monthly

bills. Very little research has been carried out to explore the impact of residential loads’

flexibility and DR provisions on distribution system operations [26,34]. Hence, the inherent

benefits of managing flexible resources to facilitate the integration of RESs and ESSs calls

for in-depth research on this subject.

1.2.2 Planning for Energy Storage Systems in a Distribution

Grid

There is a growing body of literature addressing the issue of integrating ESSs into the

distribution grid to assist the LDC in managing grid operations.

The technical and economic advantages include, increasing the operating margins to

facilitate RESs and electric vehicles (EVs) penetration [39] and deferring upgrades to the

distribution grid. The authors in [40] proposed a multi-objective optimization approach

to optimally site distributed generators (DGs), ESSs and RESs. An optimal planning
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approach was proposed in [41] and [42] to determine the location, rated energy and power

capacity of BESSs to mitigate the impact of uncertainties associated with renewables-based

DGs. In [43], a genetic algorithm based planning framework was proposed to optimally size

and site ESSs in a distribution system grid in order to minimize system losses, defer system

upgrades, and maximize the profit from energy arbitrage. Another work [44] proposed a

stochastic approach to coordinate the planning of ESSs and RESs while considering DR.

In [45], a chance-constrained approach was proposed for ESSs planning in a distribution

grid. However, none of the above works have considered the lifetime of the ESSs nor the

impact of degradation on the asset’s operation.

Several researchers have considered degradation of ESSs [46–51], but for different

studies. In [46], an operational planning scheme was proposed to coordinate wind farms

with ESSs to mitigate the impact of wind forecast errors and extend the lifetime of

BESSs by reducing frequent charge / discharge operations.

A multi-stage approach was proposed in [47] to optimally plan for transmission

expansion and ESS deployments considering a linear degradation rate of BESSs. In [49],

a decomposition approach was proposed to optimally determine the size and year of

installation of ESSs in a microgrid while assuming an annual degradation factor of the

batteries.

A BESS sizing model was proposed in [49] to optimally determine the size and the

number of units required to minimize the microgrid operation cost and unserved energy

cost. In [50], a planning model for isolated microgrids was proposed considering re-purposed

EV batteries, assuming a linear change in the ESS’s SoH due to calendar and cycle aging.

In [51], the participation of ESSs in frequency regulation in the PJM market was assessed

considering the impact of different depth of discharge (DoD) levels on the SoH of various

types of Li-ion batteries.

It is noted that researchers have examined several simple approaches to consider the

SoH of BESSs in their optimization problems. However, none of the above works have

captured the change in BESSs’ SoH due to calendar and cycle aging, and the issue of

under- or over-estimating BESS capacity resulting in over- or under-capacity planning in

the distribution system, being left un-addressed [47,48,50].
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Some of the works in the literature have reported the development of approaches to

estimate the lifetime of Li-ion based BESS. The proposed methods can be classified as:

model-based, data-driven, and fusion-based methods [52]. In [53], an SoH estimation

approach based on the equivalent internal resistance of Li-ion BESS was proposed to

observe the change in the battery SoH in real-time. Another work [54] proposed to

estimate the SoH of Li-ion batteries using the data obtained from the battery EMS such

as current, voltage and temperature. In [51], a semi-empirical Li-ion battery degradation

model was proposed to overcome the issue of limited observation data availability, from

operating the ESS for specific applications.

Researchers have proposed a battery life assessment approach that can be integrated

in different stationary BESS applications in power system problems. In [51], an off-line

battery lifetime assessment was proposed, based on the Rainflow Counting

Algorithm (RCA), which requires the history of BESS operations. Such an approach

requires the history of operating BESS as an input. However, since distribution system

planning problems with BESSs must simultaneously compute the battery State of

Charge (SOC) profiles based on BESS operational decisions and the optimal BESS plan,

RCA-based degradation models [51] cannot be implemented directly within these models

because they require historical data of BESS operations. Therefore, there is a need to

develop an estimation approach of BESS’s SoH in order to tackle the issue of under- or

over-estimating their degraded capacity.

1.2.3 Service Provisions from Energy Storage Systems and

Sharing of the Benefits

This subsection discusses different incentive schemes for DR and flexibility provisions

procured from ESSs in the smart grid.

Dynamic pricing approach is proposed in [55] to indirectly alter the consumption of

residential customers and the operation of their ESS units. In [56], a non-cooperative

game is proposed to capture the competitive behavior between residential loads and ESSs

to minimizing their electricity cost individually. After that, a non-cooperative
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Stackelberg game is proposed to model the interactions between the LDC, who

determines the electricity prices, and the residential customers, who respond to the signal

by changing demand, to minimize the peak-to-average power ratio.

A Stackelberg game approach is proposed in [57], which possesses individual

rationality and incentive compatibility, to model an auction market environment for joint

ESS ownership sharing between several facility managers and residential communities.

The work aims to exploit the full potential benefits of ESSs owned jointly by different

entities and provide various services to a third party. In [58], a Stackelberg game is

introduced to maximize the revenue of the shared ESS owner while the electricity retailer

aims to minimize the total cost of residential customers. A bargaining based incentive

approach is proposed in [59] to encourage joint energy trading between microgrids, each

equipped with ESS, and hence to maximize the total obtained benefit.

Another work in [60] proposes a cooperative game theory-based approach to manage

the operation of several ESSs and hence minimize the coalition energy cost. The

proposed method shows an improvement in the LDC operation by flattening the load

profile and reducing the reverse power flow. A coalition game theory-based energy

management problem is proposed in [61] to maximize the benefit of a coalition of local

energy communities equipped with flexible loads, ESSs, and RESs. The grand coalition

effectively increases the total payoffs and improves the overall load profile.

It is noted from the above discussions that most of the works proposed monetary

benefits to encourage ESSs to participate in system operations and efficient use of available

resources. However, none of the works examined the participation of ESSs based on their

marginal contribution to a coalition considering their physical characteristics such as the

rate of change in SOC, which significantly impacts the ESS lifetime.

1.3 Research Objectives

The main objectives of the research presented in this thesis include evaluating the flexibility

provisions from residential customers through REHs and ESSs and provide a flexibility

service to the grid operator. The research objectives are listed below:
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• Augment the mathematical model of the residential customer’s HEMS reported in

[22] to represent it as an REH considering detailed characteristics of ESSs and PV

units. The developed model will take into account the detailed interactions, data and

information exchanges between different entities within the REH as well as between

the REH and the LDC.

• Propose a novel concept of REH flexibility index to quantify the flexibility resource

available from a household. Thereafter, develop a coordination scheme that can take

into account distinctly individual objectives of each REH as well as that of the LDC,

seeking to enhance grid operational efficiency, and hence create an aggregated DR

service for the system. This will involve a novel LDC operations model, which will

determine the optimal peak reduction requests from the individual REHs.

• Propose a novel neural network (NN) based degradation model to estimate the SoH

of Li-ion batteries of an ESS in a distribution system. The data to be used for NN

training shall comprise SOC profiles of ESS obtained considering different LDC load

mix including a set of simulated REH operations extended over the plan period.

• The developed NN-based SoH model of the ESS will be incorporated into a planning

model to determine the optimal energy capacity, power rating, location and year of

installation or replacement of ESSs in the distribution system while internalizing the

ESS battery capacity degradation due to cycling and aging effects.

• Propose a novel BESS flexibility provision framework based on their capability of

providing different charge rate (C-Rate) levels. This framework will allow individual

investors to participate in flexibility provisions as a service to the LDC. A cooperative

game theory-based approach will be applied to maximize the total system payoff and

hence distribute it fairly among all the BESS participants based on their marginal

contributions to the total system saving using the Shapley value criterion.
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1.4 Outline of the Thesis

The rest of the thesis is organized as follows: Chapter-2 presents background on HEMS

and its mathematical model, and the concept of energy hubs, followed by a discussion on

ESS and their applications in smart grids. In Chapter-3, the proposed residential loads’

flexibility evaluation and a novel coordination framework for DR provisions is presented,

along with results of different case studies. In Chapter-4, a novel NN based SoH estimator

for a Li-ion battery-based ESS is proposed, which is then incorporated within the LDC’s

planning model to determine optimal ESS plans. Chapter-5 proposes a cooperative game

theory-based approach to distribute the total savings, accrued by the LDC, among BESS

owners for their participation in flexibility provisions in a distribution grid. Finally, in

Chapter-6 the conclusions and contributions of this thesis are presented, and the scope for

future research are outlined.
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Chapter 2

Background Review

This chapter presents a brief review of the topics and tools relevant to the research

presented in this thesis. A detailed discussion of the HEMS and the REH, and the

associated mathematical models are presented. Thereafter, BESS characteristics and

their applications in smart grids are briefly discussed, followed by a brief review of the

RCA, and the basic features of a NN model.

2.1 Nomenclature

Indices and Sets

hj Index for household, hj ∈ H

i Index for household appliances, i ∈ A

i = {fridge (fr), water heater (WH), stove (STV), dishwasher (DW), washer

(W ), dryer (Dry), lighting (LI), pool (Pool), energy storage system (ESS),

PV panel battery (BPV )}

j,k Index for bus, {j, k} ∈ N

t Index for time, t ∈ T
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Parameters

ALt Activity level inside a house

MW,DRY Maximum allowed time gap between operation of washer and dryer

Emin
i , Emax

i Minimum and maximum energy level of i ∈ {ESS, BPV}, kWh

EOTi,LOTi Early / late operation time of appliance i ∈ {DW,W,DRY,PMP,STV}

Gj,k Conductance of feeder between bus j and k

gi Heat rate of device i ∈ {HT,WH}

HWUt Hot water usage at time t

Kt Price elasticity associated with the illumination inside a house

Loutt , Lmint Natural / minimum illumination at time t

MUTi,MDTi Minimum uptime / downtime of appliance,

i ∈ {AC,HT,DW,W,DRY,PMP,STV}

MSTi Maximum successive operation time of appliance,

i ∈ {DW,W,DRY,PMP,STV}

Pmax
Ci

, Pmax
Di

Maximum charging/discharging power of i ∈ {B,ESS}, kW

PD0 Connected load at time t, kW

Pmax
hj ,t

House hj maximum demand at time t, kW

P̂max
hj ,t

Updated house hj maximum demand at time t, kW

Pi Rated power of appliance i, kW

PLI Rated power of the lighting system LI, kW

PPV,hj ,t PV generation at time t, kW

ROTi Required operation time of appliance i ∈ {DW,W,DRY,PMP,STV}, min

Yj,k Magnitude of admittance matrix element, p.u
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αi, βi Cooling/Warming effect associated with ON / OFF state of device,

i ∈ {AC,HT,FR,WH}, C◦
/min

η1, η2 Charging/discharging efficiency of ESS, %

ρGAS Gas price, $/m3

ρTOU
t Time of use price, $/kWh

ρSEL Residential customers electricity selling price to the LDC, $/kWh

ρi Effect of the difference between inside and outside temperature on the inside

temperature of device i ∈ {AC,HT,FR,WH}

γi Cooling/Warming effect associated with OFF state of device i ∈ {FR,WH}

τ Length of the time interval, minutes

Θmin
in ,Θmax

in Minimum and maximum allowable temperature inside a house, C
◦

Θset
i Preferred temperature setting of i ∈ {AC,HT,FR,WH}, C◦

Θout,t Ambient temperature, C
◦

Variables

Ei,t Energy level of i ∈ {ESS, BPV} at time t, kWh

Lt Illumination level at time t, kW

PCBPV,t, PDBPV,t Total charging / discharging power from BPV at time t

PH
i,t , P

LDC
i,t Discharging power from device i ∈ {ESS, BPV} to house / LDC at time t,

kW

P i
LDC,t Charging power drawn by device i ∈ {ESS, BPV} from LDC at time t, kW

PH
LDC,t Delivered power by LDC to meet the house demand at time t, kW

PBPV
LDC,t Total charging power drawn by BPV at time t, kW

PBPV
PV,t Generated power by PV solar panel used to charge the PV battery (BPV)

at time, kW
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PH
PV,t Generated power by PV solar panel consumed by household appliances at

time t, kW

P LDC
PV,t Generated power by PV solar panel sold to LDC at time t, kW

SCi,t Binary charging status of i ∈ {ESS, BPV} at time t, ON/OFF

SDi,t Binary discharging status of i ∈ {ESS, BPV} at time t, ON/OFF

Si,t Binary status of device i at time t, ON/OFF

Ui,t Binary status denoting start up of device i at time t, ON/OFF

Di,t Binary status denoting shut down of device i at time t, ON/OFF

Vj,t Voltage at bus j at time t, p.u

δj,t Voltage angle at bus j at time t, radians

Θin,t Temperature inside a house
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2.2 REH and Mathematical Model of HEMSs

The REH is a residential building with different energy activities that take place in order

to produce, consume, and / or store electricity. To optimize various activities of an REH,

HEMSs are in place; these are residential controllers that carry out scheduling of the REH

including all house appliances, the ESS, PV panel battery, and the power interchanges with

the external grid, considering the customer’s preferences and objectives. The objective of

the HEMS is to minimize the energy consumption, energy cost, or maximize the comfort

level of the REH customer. In doing so, the HEMS helps the household to better evaluate,

visualize, and manage its energy consumption by providing updated information on its

energy use and the current energy price. According to [62], a study by Hydro One shows

that “Providing real-time displays to customers on Regulated Price Plan (RPP) and Time-

of-Use (TOU) rates increased the load shifting impacts on typical days from 3.7% to 5.5%

and on hot days (over 30°C) to 8.5%. In addition, real-time feedback to the HEMS can

decrease the overall energy consumption up to 13% ”.

The HEMS requires the REH customer to update its preferences, such as the minimum

and maximum allowable temperature setting inside the house, in order to autonomously

control the appliances. Two-way communication infrastructure is required to facilitate

such autonomous control of the appliances / devices by the HEMS; HomePlug, ZigBee,

and Wi-Fi are the three common open communication protocols [63].

Several mathematical models have been proposed to optimize the household appliances’

and devices’ operations; the HEMS mathematical model formulated in [64,65] extends the

work reported in [22]. A brief description of the HEMS model is presented next.

2.2.1 HEMS Objective Functions

The objective functions of the HEMS, for a given REH, that have been considered, are:
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Minimize Cost:

J1 =
∑
t∈T

[
ρTOU
t

{ ∑
i∈A

i 6∈{LI,ESS,BPV }

PiSi,t + PLILt +
∑

i∈{BPV,ESS}

P i
LDCt

+ PD0

}

+
∑

i∈{HT,WH}

ρGASgiSi,t − ρSEL
{ ∑
i∈{BPV,ESS}

P LDC
Di,t

+ P LDC
PV,t

}]
(2.1)

In (2.1), the terms within the first curly brackets denotes the total power drawn from the

grid to supply the following: household appliances, lighting system, the charging power

drawn by the ESS and the PV panel battery, and the uncontrollable load. The total gas

consumption is represented by the term associated with ρGAS, where the price of gas is

assumed to be a fixed rate, equivalent to 2.9 cents/kWh [22]. The terms associated with

ρSEL represents the total income from selling power to the LDC.

Minimize Energy Consumption:

J2 =
∑
t∈T

[ ∑
i∈A

i 6∈{LI,ESS,BPV}

PiSi,t + PLILt +
∑

i∈{BPV,ESS}

P i
LDCt

+
∑

i∈{HT,WH}

giSi,t

]
(2.2)

In (2.2), the customer seeks to minimize the energy consumption from household

appliances, lighting system, charging power of ESS and PV panel battery, and gas

consumption.

Maximize Comfort Level:

J3 =
∑
t∈T

[ ∑
i∈{AC,HT,WH,FR}

∣∣∣∣∣Θin
i,t −Θset

i

∣∣∣∣∣
]

(2.3)

The temperature deviations of certain appliances from their preferred set points represents

the customer comfort level. Therefore, maximizing the customer’s comfort level can be

attained by minimizing the temperature deviations from the pre-defined set points.
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2.2.2 Operational Constraints of the Household Appliances

In this section, the constraints of the HEMS mathematical model are presented. The typical

household appliances / devices comprises: HVAC, dishwasher, fridge, lighting system, pool

pump, stove, washer and dryer, and water heater, in addition to an ESS and a PV panel.

Home Power Balance and Peak Load Constraints:∑
i∈A

PiSi,t = PH
LDC,t +

∑
i∈{B,ESS}

PH
Di,t

+ PH
PV,t, ∀t ∈ T (2.4)

∑
i∈A

PiSi,t +
∑

i∈{B,ESS}

P LDC
i,t −

∑
i∈{B,ESS}

PH
Di,t
− PH

PV,t ≤ P̂max
t (2.5)

Constraint (2.4) ensures that the total power demand of the REH appliances is met by the

power drawn from the grid, discharged to the house from the ESS and PV panel battery,

and that generated by the PV system. It should be noted that while the PV panel batteries

represent stationary storage, the ESSs denote the mobile storage devices in the house, such

as PEVs. In (2.5), the peak load constraint ensures that the total load of the REH is within

a limit specified by LDC, P̂max
t .

Heating, Ventilation, and Air Conditioning System operation

The following constraints are used to represent the HVAC operation, considering the

household preferences such as minimum and maximum temperature inside the house.

Θmin
in,t ≤ Θin,t ≤ Θmax

in,t , ∀t ∈ T (2.6)

Si,t =

0 or 1 if t∈ T , i ∈ {AC,HT}

0 if t/∈ T , i ∈ {AC,HT}
(2.7)

Si

∣∣∣
t=1

=

1 if Θin

∣∣∣
t=0

Θmax
in,t , i = AC

0 if Θin

∣∣∣
t=0

Θmin
in,t , i = AC

(2.8)
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Si

∣∣∣
t=1

=

1 if Θin

∣∣∣
t=0

Θmin
in,t , i = HT

0 if Θin

∣∣∣
t=0

Θmax
in,t , i = HT

(2.9)

SAC,t + SHT,t ≤ 1, ∀t ∈ T (2.10)

In (2.6), the AC and HT operations are based on a pre-set minimum (Θmin
in ) and maximum

(Θmax
in ) temperature inside the REH. Constraint (2.7) is used to allow the operation of

the HVAC at certain set of time intervals only. As a result, the AC system operates when

the inside temperature is above Θmax
in ; while, the HT system operates when the inside

temperature is less than Θmin
in , as shown in (2.8) and (2.9), respectively. Constraint (2.10)

prevents simultaneous operation of the AC and HT.

The indoor temperature depends on many factors such as the activity level of the

customer and the ambient temperature, as given below:

Θin,t = Θin,t−1 + τ
[
βACALt − αACSi,t + ρAC(Θout,t −Θin,t)

]
, ∀i = AC, t ∈ T (2.11)

Θin,t = Θin,t−1 + τ
[
βHTALt + αHTSi,t − ρHT (Θout,t −Θin,t)

]
, ∀i = HT, t ∈ T (2.12)

Ui,t −Di,t = Si,t − Si,t−1, ∀i ∈ {AC,HT}, t ∈ T (2.13)

Ui,t +Di,t ≤ 1, ∀i ∈ {AC,HT}, t ∈ T (2.14)

t+MUTi∑
k=t

Si,k ≥ MUTi −M(1− Ui,t), ∀i ∈ {AC,HT}, t ∈ T (2.15)

t+MDTi−1∑
k=t

Si,k ≤M(1−Di,t), ∀i ∈ {AC,HT}, t ∈ T (2.16)

Equations (2.11) and (2.12) models the change in the indoor temperature of the REH as a

result of HVAC operation, the changes in the activity level of the customer, or the changes

in the ambient temperature. Equations (2.13) and (2.14) are the coordinating constraints

for the start-up and shut-down decisions of the AC and HT. In addition, minimum up-time

(MUTi) and minimum down-time (MDTi) of the AC and HT are considered in (2.15) and

(2.16).
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Dishwasher

The dishwasher mathematical model is presented below:

Si,t =

0 or 1 if t∈ T , i ∈ {DW}

0 if t/∈ T , i ∈ {DW}
(2.17)

Ui,t −Di,t = Si,t − Si,t−1, ∀i = DW, t ∈ T (2.18)

Ui,t +Di,t ≤ 1, ∀i = DW, t ∈ T (2.19)∑
t∈T

Si,t = ROTi, ∀i = DW, t ∈ T (2.20)

t+MSTi∑
k=t

Si,k ≤ MSTi +M(1− Ui,t), ∀i = DW, t ∈ T (2.21)

t∑
k=t−MUTi+1

Ui,k ≤ Si,t, ∀i = DW, t ∈ {EOTi + MUTi + 1,LOTi} (2.22)

t∑
k=t−MDTi+1

Di,k ≤ 1− Si,t, ∀i = DW, t ∈ {EOTi + MDTi + 1,LOTi} (2.23)

The dishwasher operates within the pre-determined time intervals preferred by the

customer as modeled in (2.17). Minimum up-time, minimum down-time, and required

operation time in addition to the maximum successive operation time constraints are

expressed mathematically in (2.20) to (2.23).

Fridge

The following mathematical model pertaining to fridge operation is formulated considering

the technical aspects of the fridge as well as the customer preferences.

Si=FR,t =

0 or 1 if t∈ T

0 if t/∈ T
(2.24)
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Si=FR

∣∣∣
t=1

=

1 if Θi

∣∣∣
t=0

= Θmax
i,t

0 if Θi

∣∣∣
t=0

= Θmin
i,t

(2.25)

Θmin
i ≤ Θi,t ≤ Θmax

i , ∀i=FR, t ∈ T (2.26)

Θi,t = Θi,t−1 + τ
[
βiALi,t − αiSi,t + γi

]
, ∀i=FR, t ∈ T (2.27)

The time intervals where the fridge can be in operation are modeled in (2.24). The

constraint (2.25) ensures that if the initial temperature of the fridge is above the pre-

determined maximum temperature, then it should be in operation; or else it should be in a

standby mode. The REH’s preferred minimum (Θmin
FR ) and maximum (Θmax

FR ) temperature

inside the fridge is specified in (2.26). The effect of the activity level, ON and OFF states,

on the fridge operation are represented by βFR, αFR, and γFR respectively and presented

in (2.27).

Lighting System

The model of the lighting system is affected by two factors: daylighting (Loutt ) and the

minimum illumination required at time t (Lmin
t ).

Lt + Loutt ≥ (1 +Kt)L
min
t , ∀t ∈ T (2.28)

The constraint (2.28) ensures that the illumination level at time t is greater than the

minimum required illumination. In addition, the lighting system load of the REH is price

elastic, which is modeled using Kt, which is equal to zero during the peak prices and unity

during the off-peak prices.

Pool Pump

The installation of pool pump along with the swimming pool is required to allow the REH

to keep the water quality relatively high by treating the swimming pool water for a certain
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period of time during the day. The mathematical model of its operational constraints are

as follows:

Si=PMP,t =

0 or 1 if t∈ T ,

0 if t/∈ T
(2.29)

∑
t∈T

Si,t = ROTi, ∀i = PMP, t ∈ T (2.30)

Ui,t ≥ Si,t − Si,t−1, ∀i = PMP, t ∈ T (2.31)

t∑
k=t−MUTi+1

Ui,t ≤ Si,t, ∀i = PMP, t ∈ {EOTi + MUTi + 1,LOTi} (2.32)

t∑
k=t−MDTi+1

Ui,t ≤ 1 − Si,t−MDTi
, ∀i = PMP, t ∈ {EOTi + MDTi + 1,LOTi} (2.33)

t+MSTi∑
k=t

Si,k ≤ MSTi +M(1− Ui,t), ∀i = PMP, t ∈ T (2.34)

The above set of constraints ensure that the operation of pool pump is within the customer’s

preferred pool operation time.

Stove

The mathematical model of the stove is presented to help determine the optimal operation

time, based on the REH customer’s objective, within their preferred operation time period.

The mathematical optimization model of the stove is shown below.

Si,t =

0 or 1 if t∈ T , i = STV

0 if t/∈ T , i = STV
(2.35)

Ui,t ≥ Si,t − Si,t−1, ∀i = STV, t ∈ T (2.36)
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∑
t∈T

Si,t = ROTi, ∀i = STV, t ∈ T (2.37)

t∑
k=t−MUTi+1

Ui,k ≤ Si,t, ∀i = STV, t ∈ {EOTi + MUTi + 1,LOTi} (2.38)

t+MSTi∑
k=t

Si,k ≤ MSTi +M(1− Ui,t), ∀i = STV, t ∈ T (2.39)

Washer and Dryer

The mathematical model of the washer and dryer is presented below:

Si,t =

0 or 1 if t∈ T , i = {W,Dry}

0 if t/∈ T , i = {W,Dry}
(2.40)

Ui,t −Di,t = Si,t − Si,t−1, ∀i = {W,Dry}, t ∈ T (2.41)

Ui,t +Di,t ≤ 1, ∀i = {W,Dry}, t ∈ T (2.42)∑
t∈T

Si,t = ROTi, ∀i = {W,Dry}, t ∈ T (2.43)

t+MSTi∑
k=t

Si,k ≤ MSTi +M(1− Ui,t), ∀i = {W,Dry}, t ∈ T (2.44)

t∑
k=t−MUTi+1

Ui,t ≤ Si,t, ∀i = {W,Dry}, t ∈ {EOTi + MUTi + 1,LOTi} (2.45)

t∑
k=t−MDTi+1

Di,k ≤ 1− Si,t, ∀i = {W,Dry}, t ∈ {EOTi + MDTi + 1,LOTi} (2.46)

The constraints (2.40) to (2.46) are modeled to provide the REH customer with the optimal

operation schedule for both the washer and dryer based on the customer preferences. The

washer and dryer are required to operate in a chronological sequence, where the operation

of the dryer should follow the operation of the washer. The following constraints are
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included to coordinate the sequential operation of the washer and dryer.

UDRY,t ≤
t−MUTW∑

k=t−MW,DRY

UW,t−k

∀i = {W,Dry}, t ∈ {EOTi+ MW,DRY ,LOTi −MUTW} (2.47)

SDRY,t + SW,t ≤ 1, ∀t ∈ T (2.48)∑
t∈TDRY

UDRY,t =
∑
t∈TW

UW,t (2.49)

Water Heater

Similar to the mathematical model of the fridge, the water heater model is presented below:

Si,t =

0 or 1 if t∈ T , i = WH

0 if t/∈ T , i = WH
(2.50)

Si,t=1 =

1 if Θi,t=0 = Θmin
i,t , i = WH

0 if Θi,t=0 = Θmax
i,t , i = WH

(2.51)

Θmin
i,t ≤ Θi,t ≤ Θmax

i,t , ∀i = WH, t ∈ T (2.52)

Θi,t = Θi,t−1 + τ
[
αiSi,t − βiHWUt − γi

]
, ∀i = WH, t ∈ T (2.53)

Constraints (2.50) to (2.53) represent the mathematical model of the water heater.

The allowable operating time is restricted by (2.50), while the initial operational decision

is determined based on constraint (2.51). The allowable water temperature within the

appliances is constrained by (2.52), and dynamically modeled as in (2.53).
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Photovoltaic Panel with a Battery

REHs with PV panels are assumed to be equipped with a 3.6 kW PV panel; the modified

model with more detailed and realistic architecture is discussed below:

Solar Panel :

PPV,t = PLDC
PV,t + PBPV

PV,t + PH
PV,t, ∀t ∈ T (2.54)

As shown in (2.54), the PV panel generates power, and the HEMS optimizes its usage by

distributing it to the battery, household, and grid,

Battery :

EBPV,t = EBPV,t−1 + τ
[{
PBPV
LDC,t + PBPV

PV,t

}
η1 −

{
PLDC
BPV,t + PH

BPV,t

}
/η2], ∀t ∈ T (2.55)

Emin
BPV ≤ EBPV,t ≤ Emax

BPV , ∀t ∈ T (2.56)

Equation (2.55) presents the inter-temporal changes of energy level of the battery and

(2.56) defines the limits on its energy level. The charging and discharging relationships are

formulated as follows:

PCBPV,t = PBPV
LDC,t + PBPV

PV,t , ∀t ∈ T (2.57)

PDBPV,t = P LDC
BPV,t + PH

BPV,t, ∀t ∈ T (2.58)

In (2.57), the battery can be charged from the PV panel power, or grid power; (2.58)

denotes that the battery can discharge power to the house, or sell to the grid.

PCBPV,t ≤ SCBPV,tP
max
CBPV

, ∀t ∈ T (2.59)

PDBPV,t ≤ SDBPV,tP
max
DBPV

, ∀t ∈ T (2.60)

Constraints (2.59) and (2.60) represent the maximum charging and discharging power of

the battery; the charging and discharging processes do not occur simultaneously, as ensured

by the following:

SCBPV,t + SDBPV,t ≤ 1, ∀t ∈ T (2.61)
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Energy Storage System

EESS,t = EESS,t−1 + τ [PESS
LDC,tη1 − (PLDC

ESS,t + PH
ESS,t)/η2], ∀t ∈ T (2.62)

Emin
ESS ≤ EESS,t ≤ Emax

ESS, ∀t ∈ T (2.63)

PESS
LDC,t ≤ SCESS ,tP

max
CESS

, ∀t ∈ T (2.64)

PLDC
ESS,t + PH

ESS,t ≤ SDESS ,tP
max
DESS

, ∀t ∈ T (2.65)

SCESS ,t + SDESS ,t ≤ 1, ∀t ∈ T (2.66)

Equation (2.62) relates the change in energy level of the ESS as affected by the power

drawn, and discharged by the ESSs to the grid, and to the house. Note that the self-

discharge phenomenon of BESS is neglected in this thesis and hence not included in the

mathematical models of the ESS. Constraint (2.63) ensures that the ESS energy level is

within the minimum and maximum limits; and limits on charging and discharging power

of the ESS are given by (2.64) and (2.65), respectively. Constraint (2.66) ensures that the

charging and discharging process does not occur simultaneously.

Table 2.1 shows the typical parameters and preferences for the REH.

2.3 Energy Storage Systems

2.3.1 Energy Storage System Characteristics

The main characteristics and terms associated with ESSs are discussed here pertain to

their integration with the power grid [67].

1. Storage capacity: it quantifies the available energy in the ESS after a full charging

process, and is defined by the total energy stored (kWh). The amount of available

energy that can be used, is governed by the Depth of Discharge (DoD). Furthermore,

fast charging and discharging processes cause the ESS’s efficiency to deteriorate,

which decreases the obtained energy from the storage capacity.
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Table 2.1: Parameters of the HEMS Model of a Typical REH [66]

Device Parameter Setting Value Parameter Setting Value Parameter Setting Value

Fridge (FR)

Θfr0 3 αfr 2.75 Pfr 0.6

Θmin
fr 0 βfr 0.605

Θmax
fr 10 γfr 0.14

Water Heater (WH)

Θwh0 50 αwh 4.4 Pwh 0.6

Θmin
wh 48 βwh 0.068 HRwh 0.297

Θmax
wh 58 γwh 0.05 CG 0.029

Stove (STV)
EOT 65 ROT 12 Pstv 1.5

LOT 88 MUT 4 MSOT 12

Dishwasher (DW)
EOT 65 MUT 8 PDW 0.7

LOT 92 MDT 4 MSOT 8

Washer (W)
EOT 64 MUT 8 Pw 0.45

LOT 92 MDT 4 MSOT 8

Dryer (DRY)
EOT 64 MUT 8 Pdry 1.1

LOT 92 MDT 4 GapW,Dry 8

Lighting EOT 1 LOT 96 Pli 0.15

Pool (PMP)
EOT 29 MUT 1 Ppmp 0.75

LOT 96 MDT 1 ROT 40

Energy Storage System (ESS)
Emin 1 Pmax

CESS
0.45 EOT 1

Emax 3.6 Pmax
ESS 0.45 LOT 96

PV Panel Battery (BPV)
Emin 1 Pmax

CB
0.45 EOT 1

Emax 3.6 Pmax
DB

0.45 LOT 96

2. SOC: it indicates the charging level of an ESS with respect to the maximum amount

of energy that can be stored (considering its degraded state), typically expressed in

percent.

3. Ramp rate: the rate of change of the ESS output power. It is usually expressed in

terms of kW/s.

4. Round-trip efficiency: the ESS efficiency can be evaluated based on the energy loss

during charging and discharging processes. The round-trip efficiency represents the

relationship between the fraction of energy stored in the ESS to that can be retrieved.

5. Cycle and cycle life: a cycle of ESS can be defined as a discharging process followed

by a complete recharging process. The number of charge-discharge cycles that can
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be performed by an ESS until it reaches the stage when it is no longer suitable for a

given application is called Cycle Life.

6. C-Rate: under ideal conditions, C-Rate = 1 means the total energy of the ESS is

depleted in one hour, C-Rate = 2 means the energy depletion rate is doubled, i.e.,

depletes in 30 minutes, and so on.

7. Derating factor: it is a multiplier applied to the ESS energy capacity or rated power

in order to take into account the SoH and degradation of the ESS.

The above characteristics vary in their values from one ESS technology to another.

Different ESS technologies are available to provide specified services to the power grid.

This thesis assumes BESS as the sole form of ESS which is present in a distribution system.

BESS can be classified as solid-state and flow batteries. The first includes Li-ion, lead-acid

(PbO2), nickel-cadmium, and sodium sulphur technologies (NaS), while the latter includes

vanadium redox (VRB), polysulphide bromide, and zinc-bromine. BESS operational life

and cycle life depends upon the number of charge-discharge cycles. In addition, two factors

play an essential role in determining the amount of energy that can be delivered and the

degradation of the BESS, namely, the SOC and the DoD.

BESSs are one of the most mature energy storage technologies. These are able to deliver

electrical energy using the chemical energy generated by electrochemical reactions [68].

The capacity of BESS varies from less than 10 kWh to several MWh with efficiency range

between 60− 90% depending in two factors: operational cycle and electrochemistry type.

Li-ion batteries have found several applications in power systems, their main advantages

include high efficiency, fast response time, and significantly high life cycle [69].

2.4 Cycle Counting Using RCA

The RCA is a well-known methodology applied in material fatigue analysis, which can be

used for fatigue life prediction [70]. it captures and extracts the irregular cycles from a

loading history of an object.
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The RCA has recently been used [71] to count the number of operational cycles of a

BESS which is subject to degradation in its life due to charging and discharging stress.

The stress on the BESS is represented in the form of DoD. In other words, a high DoD

reduces the lifetime of the BESS, as shown in Figure 2.1 [72]. In addition, the operation

of the BESS usually has irregular cycles, which can be counted using the RCA and used

to study their impact on the asset life.
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Figure 2.1: Typical cycles to failure vs. DoD curve of Li-ion batteries [72].

The RCA counting method includes four main steps: hysteresis filtering, peak-valley

filtering, discretization, and a counting method (e.g. Four Point Method or Pagoda roof

method). Hysteresis filtering aims to eliminate the short cycles which do not significantly

contribute to the total damage of BESS. Peak-valley filtering comes after to identify the

peaks and the valleys reversal in the operation profile of ESS. A peak is formed in the

SOC profile when the change in SOC is negative, while a valley is formed when a change

in the SOC is positive. Figure 2.2 and 2.3 presents an example SOC profile, where the

alphabetical enumeration shows peak and valley points over time. Also, the green and red

lines demonstrate the charging and discharging reversals, respectively, where each reversal

represents a half cycle with a particular amplitude. In Pagoda roof method, the green

and red lines represent flow of water from a number of Pagoda roofs. A half cycle can be

counted at the end of a green or red line, which shows the termination of a water flow.
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Figure 2.2: Peak filtering of an ESS operation profile.

The following cases show the possible termination scenarios of the water flow:

• The end of the flow can happen when a higher peak is reached, in peak filtering, or

lower valley, in valley filtering. In Figure 2.3, water flow 1 encounters a lower valley

C as compared to its starting valley A, and this counted as a half-cycle.

• A water flow merges with another water flow which started at an earlier peak or

valley. As in Figure 2.2, the flow-2 merges with flow-1.

• A water flow arrives at the end of the time horizon, as shown in Figure 2.3, flow-3.

33



1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

80

90

100

1

2 4

5

3

A

B

C

D

E

F

G

H

I

J

K

Time Interval (hr)

S
oC

(%
)

Figure 2.3: Valley filtering of an ESS operation profile.

Table 2.2 shows the range of each reversal and the cycle count. The obtain table from

RCA then reduces by combining the cycles with the same range. Finally, the counted cycle

can be used to estimate the cumulative damage on an asset such as BESSs.

2.5 Artificial Neural Network

The NN can be defined as [73], “A neural network is an interconnected assembly of

simple processing elements, units or nodes, whose functionality is loosely based on the
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Table 2.2: Rainflow Counting Algorithm Result

From To Absolute Range Cycle Count

A B 50 0.5
B C 60 0.5

C D 40 0.5

D E 60 0.5

E F 70 0.5

F G 40 0.5

G H 30 0.5

H I 50 0.5

I J 70 0.5

J K 50 0.5

N1

...

Ni

N1

...

Nh

xN1

xNi

Input Layer Neurons Hidden Layer Neurons

∑

∑

w11

w1h

wi1

wih

β1

βh

nouth
Wh

nout1
W1

Output Layer

XN

x1

xi

X

Γ

nin1

ninh

N1

∑

Figure 2.4: NN structure with a single hidden layer and output.
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animal neuron. The processing ability of the network is stored in the inter-unit

connection strengths, or weights, obtained by a process of adaptation to, or learning from,

a set of training patterns”. An NN consists of different layers, namely, input layer, hidden

layers, and output layer, as in Figure 2.4. Each layer consists of a number of basic units

called neurons. The input of the NN goes through different mathematical

transformations, as follows:

Pre-processing input and post-processing output

Before training a NN, data preparation is required to normalize and standardize the input

and output variables to re-scale the data into an acceptable range for the NN, hence

improve its performance [74]. Different scaling techniques can be applied in pre-processing

the inputs such as Min-Max normalization, mean normalization, and Z-score normalization.

Min-Max normalization, for example, maps the range of features as follows:

xNi =
2 (xi − x)

(x− x)
− 1 (2.67)

Where, xNi is the normalized vector of xi. The equation maps the feature xi, given that

its minimum and maximum values x and x, respectively, falls between [-1,1].

Training

The input neurons pass the pre-processed data to the neurons of the subsequent layers. A

neuron i ∈ I of the input layer is linked with all neurons of the hidden layer h ∈ H by

weights w as shown below:

[w] =


w11 w12 · · · w1h

w21 w22 · · · w2h

...
...

. . .
...

wi1 wi2 ... wih

 (2.68)
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The input to a hidden layer neuron can be represented as follows:

nin
h =

I∑
i=1

wih x
N
i + βh, ∀h (2.69)

The first component of (2.69) represents the weighted sum of the NN inputs, while the

second component is the bias (βh) of the hidden layer neuron h. The input to a hidden

layer neuron, then, is processed using an activation function to calculate the hidden layer

neuron’s output. There are several types of activation functions such as Sigmoid function,

Hyperbolic Tangent Function, and Softmax Function. Using the commonly used Sigmoid

activation function, the hidden layer neuron output is:

nout
h =

2

1 + exp (−2 nin
h )
− 1 (2.70)

The calculated output nout
h of the hidden layer neuron using (2.70) is passed through

the activation function of the output layer neuron, which can be a linear transfer function,

as follows:

XN =

NH∑
h

nout
h Wh + Γ (2.71)

Finally, the normalized output (XN) of the output layer neuron represents the

normalized predicted output value, which can be post-processed to obtain the required

output value, as presented below:

X =
(XN −XN)(X −X)

2
+X (2.72)

2.6 Cooperative Game Theory

Game theory can be defined as the field of mathematical modeling of the interaction

between a number of rational players [75], where each player’s decision making process is

impacted by other players. Such competitive behavior is classified into two categories: non-
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cooperative and cooperative games. The first presents the strategic behavior of individual

players without an external entity that forces rules, so as to maximize their own benefits.

On the other hand, the second is governed by a set of rules to maximize the benefit of

a coalition of players. In this thesis, a coalitional game is considered, where a group of

BESSs acts together to maximize their payoffs and provides different services to the LDC.

The redistribution of the total system saving between BESS’s owners are achieved using

the Shapley value criterion.

The Shapley value criterion associates a unique payoff for every individual within a

coalition. The payoffs should satisfy the following axioms [76]:

• Additivity: A sum of the cost saving, which a player receives as a member of every

coalition formed with other players, represents the cost saving allocated to that player.

• Dummy player: If the total value of different possible coalitions remains the same

when a player joins the coalition, it is called a dummy player.

• Efficiency: The sum of the players’ payoffs represents the value of the grand coalition.

In other words, the payments given to the players in a coalition represents the total

payoffs that can be achieved from their cooperation.

• Symmetry: If two players are identical to each other with no change in the coalition’s

value, those players are symmetrical.

Therefore, the Shapley value criterion represents the marginal contribution of a player to

a coalition, which is mathematically given as follows [77]:

v(h) = v(S)− v(S − h) (2.73)

The marginal contribution of a player h to a coalition S is given by the change in the

utility value of the coalition after h’s joining the coalition. The sum of a player h’s marginal

contributions is divided by c(q), the number of all formed coalitions of size q that contains

the player h, and n is the total number of players. The Shapley value can be calculated as
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follows:

φh =
1

n

n∑
q=1

1

c(S)

∑
h∈S

[
v(S)− v(S − h)

]
(2.74)

where,

c(q) =
(n− 1)!

(n− q)!(q − 1)!
(2.75)

2.7 Summary

In this chapter, some essential background topics required for this research were introduced.

The concepts of REH and HEMS with their mathematical model were discussed. A brief

discussion of the RCA and NN were presented. Finally, cooperative game theory definition

and the Shapley value were discussed.
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Chapter 3

Flexibility of Residential Loads for

Demand Response Provisions in

Smart Grid
1

This chapter proposes a two-stage optimization framework wherein multiple HEMSs

simultaneously optimize their respective energy consumption patterns and determine

their flexibility provisions, which is communicated to the LDC. The LDC aggregates the

controllable demand profile and the flexibilities of each HEMS to optimize its operational

performance and hence the peak reduction signals which are sent to the HEMSs. Studies

are carried out considering a 33-bus distribution system coordinating with 1,295 houses,

each with varying customer preferences and objectives, to demonstrate the applicability

of the proposed scheme.

The mathematical model of the HEMS was discussed in Chapter 2; the LDC’s

operational model and the proposed coordination between the REHs and the LDC is

discussed here.

1This chapter has been published as:
O. Alrumayh and K. Bhattacharya, “Flexibility of Residential Loads for Demand Response Provisions in
Smart Grid,” in IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 6284-6297, Nov. 2019.
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3.1 Nomenclature

Indices and Sets

hj Index for household located at bus j

i Index for household appliances, i ∈ A

j,k Index for bus (j = s, substation), (j, k) ∈ N

q Index for Energy Storage Device (ESS) and Battery (B)

t Index for time, t ∈ T

H Set of households

Parameters

γFLEX Objective function weight assigned by LDC on scheduled flexibility

Eminq,hj ,t
, Emaxq,hj ,t

Minimum and maximum energy level, kWh

EInitial
B , EFinal

B Initial and final energy level of battery, kWh

EAR
q,hj ,t

Energy level at arrival, kWh

Gj,k Conductance of feeder between buses, p.u

gi,hj Gas consumption rate, m3/hr

PmaxCq,hj
, PmaxDq,hj

Maximum charging/discharging power, kW

PD0hj
Connected load in house, kW

Pmingj , Pmaxgj Minimum and maximum generation level, p.u

PLIhj Rated power of the lighting system, kW

Pi,hj Rated power of appliance, kW

P dj,t Active power drawn by residential loads, p.u

P Imp
j,t Total power purchased by LDC from residential loads, p.u

PCAP
j,t Peak load of the feeder, p.u
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PFLEX
hj ,t

Customer flexibility available, kW

PFLEX
j,t Aggregated bus-wise flexibility, kW

PPVhj,t PV panel generation in house, kW

Qdj,t Reactive power drawn by residential loads, p.u

tAR
hj

, tDEP
hj

Electric vehicle arrival/departure from/to house hj , min

V min
j , V max

j Minimum and maximum voltage level, p.u

Yj,k Magnitude of admittance matrix element

β Peak load factor

η1, η2 Charging/discharging efficiency, %

ωhj Charging level factor at departure of household hj

ρTOU
t ,ρSEL, ρGAS Time of use price $/kWh, selling price to the LDC $/kWh, and Gas price $/m3

τ Length of the time interval

θj,k Angle of complex Y-bus matrix element, p.u

Θset
i,hj

Preferred temperature setting of appliance, ◦C

Variables

Eq,hj ,t Energy level, kWh

Lhj ,t Illumination level

PCB,hj,t
Total charging power drawn by Battery, kW

PPVCB,hj,t
Generated power by PV solar panel used to charge the battery, kW

PLDC
Cq,hj ,t

Charging power drawn by device, kW

PDB,hj,t
Total discharged power from Battery, kW

PHDq,hj ,t
Discharging power from device to house, kW

PLDC
Dq,hj ,t

Discharging power from device to LDC, kW
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P gj,t Active power drawn from substation at bus, p.u

PFLEX
j,t Active power flexibility scheduled, p.u

PHLDChj,t
Delivered power by LDC to meet house demand, kW

P iLDChj,t
Delivered power by LDC to meet appliance i demand, kW

PHPV,hj ,t PV generated power consumed by household appliances, kW

PLDC
PV,hj ,t

Generated power by PV solar panel sold to LDC in house, kW

Pmaxhj ,t
House hj maximum demand, kW

P̂maxhj ,t
Updated house maximum demand, kW

Qgj,t Reactive power drawn from substation at bus, p.u

QFLEX
j,t Reactive power flexibility, p.u

SCq,hj ,t
Binary charging status of device, ON/OFF

SDq,hj ,t
Binary discharging status of device, ON/OFF

Si,hj ,t Binary status of device, ON/OFF

Vj,t Voltage at bus, p.u

δj,t Voltage angle at bus, p.u

Θin
i,hj ,t

Temperature level of appliance,◦C

αhj ,t flexibility index of customer
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3.2 Proposed Coordination Framework and

Mathematical Models

In [22] and [65], a comprehensive representation of a generic REH was presented, and which

was equipped with an HEMS. The REH was equipped with the following appliances: fridge,

water heater, lighting system, air-conditioning, dishwasher, washer, dryer, stove, and pool,

an ESS and a rooftop PV panel (see Fig.3.1). The charging and discharging operations of

the ESS are controlled by the HEMS; the ESS is charged by the power drawn from the

grid, while at peak demand hours, it can discharge power to the grid and earn revenue.

The PV panel battery can be charged either by the power drawn from the grid or from

the PV panel directly. The stored energy in the PV panel battery can be used to supply

the REH or sold to the grid. The HEMS controls the PV panel operation also, i.e., how

much is allocated to meet the house load, to charge the PV panel battery, or sell to the

grid. Indeed, the ESS and the PV panel battery creates an additional power demand of the

REH when in charging mode. The PV generation depends on the weather conditions and

PV panel features. Note that while the PV panel batteries represent stationary storage,

the ESSs essentially account for the mobile storage devices present in the house, such as

PEV.

In this work, a two-stage framework is proposed to aggregate and coordinate the

contributions of a large number of HEMS within REHs to provide a flexibility service to

the LDC. The HEMS mathematical model is formulated by significantly improving upon

the model in [22], which optimizes the operations of typical home appliances and ESSs to

determine the optimal interactions with the LDC such as the power to be sold to or

purchased from the LDC, while considering different objectives of the REH. Thereafter, a

residential feeder is considered, where, at each bus, several such REHs, equipped with

HEMS are assumed being served by the LDC; each home receives a control signal from

the LDC pertaining to a cap on its hourly load, based on which each HEMS re-optimizes

their loads to meet the prescribed cap. This creates an aggregated flexibility capacity at

each bus, through load shifting, HEMS optimization, and LDC imposed load cap at the

feeder bus. This proposed decentralized approach maintains privacy of the individual

customers, not requiring them to provide their electricity usage profiles to the LDC; each
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Figure 3.1: Schematic of a Residential Energy Hub.

HEMS achieves its own objective, while the overall framework converges to an

equilibrium, to the satisfaction of all parties. Such coordination between the HEMS and

the LDC can improve grid operations by flattening the system load profile, improving bus

voltages, reducing losses, and LDC’s operating costs. Indeed, the work considers a

realistic scenario where multiple REHs with different behaviors, preferences, and

locations, are coordinated to provide flexibility to the LDC taking advantage of their

inherent elasticity.

Figure 3.2 shows a detailed layout of the proposed coordination scheme. This layout

has three levels, namely, REH level, LDC level, and coordination level.

3.2.1 Residential Energy Hub and HEMS (Stage: Ia, Ib, Ic)

The following three stages are required to present different REH customer consumption

behaviors, to formulate the HEMS mathematical model, and to evaluate the REH
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STAGE Ib: Development of HEMS mathematical model of large set of REHs

 Household appliances: Fridge, Dishwasher, Washer, Dryer, Water Heater, Pool Pump, PV Panel, ESS, and 

Lighting System.

 HEMS objective can be: Minimize Cost, minimize energy, or maximize comfort level. 

 Output: the operation of each appliance and the total load profile of the house.

STAGE Ia: Development of large data set for unique representation of each HEMS parameters

 Example of  HEMS model parameters: early/late operation time of washer and dryer, minimum/maximum 

preferred inside house temperature, required operation time of dishwasher.

STAGE Ic: Flexibility evaluation

 The available flexibility at each REH can be obtained by comparing  the customer load profile while 

minimizing cost or maximizing comfort with that obtained from minimizing energy. The difference represents 

the REH flexibility.  

 Each REH flexibility is represented by a flexibility index. The total flexibility at a location in the system is 

hence obtained.     

STAGE II: Development of OPF to represent LDC

 Objective: minimizing the cost of power drawn by LDC to meet the residential demand.

 Subject to: power balance equations, angle and voltage limits, locational demand response availability, power 

drawn limit, and hourly peak demand.

 Output: Total energy cost, total system losses, and required demand response.    
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STAGE III: Development of a coordination scheme to provide flexibility services by utilizing individual 

REH flexibility

  Customers with flexibility at a particular location in the distribution system can participate.

 If flexibility services required at a bus, the REH participates to meet the requirement based on their evaluated 

flexibility index. 

Figure 3.2: Required levels and stages of the proposed coordination scheme.

flexibility.

Stage-Ia: In order to represent each HEMS individually, unique objective functions,

activity levels, and customer preferences (e.g. the required operation time and minimum

up/down time of washer, dryer, stove) are generated randomly.

Stage-Ib: The HEMS mathematical model is formulated and solved considering the

mathematical model (2.4)-(2.66) discussed in Chapter-2 with some modifications to present

the two-way communication between residential loads and the LDC, discussed later.
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Objective Functions

Three different objectives are used for the multiple HEMSs considered in this work, as

given below:

Minimize Cost: the objective of REH hj located at bus j is to minimize its total cost

of energy, net of revenue earned.

J1hj =
∑
t∈T

[
ρTOU
t

{ ∑
i∈A

i 6∈{LI,ESS,BPV }

Pi,hjSi,hj ,t +
∑
z∈LI

PLIhjLhj ,t

+
∑

i∈{BPV,ESS}

P i
LDChj,t

+ PD0hj

}
+

∑
i∈{HT,WH}

ρGASgi,hjSi,hj ,t

− ρSEL
{ ∑
i∈{BPV,ESS}

P LDC
Di,hj ,t

+ P LDC
PV,hj ,t

}]
, ∀ hj ∈ H (3.1)

In (3.1), the terms within the first curly brackets represents the power drawn by

household appliances, the lighting system, the charging power drawn by the ESS and PV

panel battery, and the uncontrolled load; which all together, denote the total power

drawn from the grid. The term associated with ρGAS presents the total cost of gas

consumption. The discharged power from ESS and PV panel battery accounts for the

power sold to the grid.

Minimize Energy Consumption: the REH minimizes its total energy consumption

over the day.

J2hj =
∑
t∈T

[ ∑
i∈A

i 6∈{LI,ESS,BPV}

Pi,hjSi,hj ,t +
∑
z∈LI

PLIhjLhj ,t+

∑
i∈{BPV,ESS}

P i
LDChj,t

+ PD0hj
+

∑
i∈{HT,WH}

gi,hjSi,hj ,t

]
, ∀hj ∈ H (3.2)

Maximize Comfort Level: the REH maximizes its comfort level by minimizing the
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temperature deviations of certain appliances from their preferred set points.

J3hj =
∑
t∈T

[ ∑
i∈{AC,HT,WH,FR}

(
Θin
i,hj ,t

−Θset
i,hj

)2]
, ∀hj ∈ H (3.3)

Note that (3.3) is linearized using the method reported in [78] to arrive at an MILP

model.

Appliance Constraints: the REH hj appliances operational model was discussed in

detail in Chapter-2 and it included the equations (2.4) to (2.66). In the present work, the

REH model is further improved by incorporating the following constraints:

Peak Load Constraint: Ensures that the total load of REH hj is within a limit

specified by the LDC, P̂max
hj ,t

.∑
i∈A

Pi,hjSi,hj ,t +
∑

i∈{BPV,ESS}

P LDC
i,hj ,t
−

∑
i∈{BPV,ESS}

PH
Di,hj ,t

− PH
PV,hj ,t

≤ P̂max
hj ,t

, ∀hj ∈ H (3.4)

In (3.4), the REH load includes the appliances’ consumption; charging power of ESS

and PV panel battery, net of the power discharged from the ESS; the PV panel battery;

and that generated by the PV panel to supply some of the REH loads.

P̂max
hj ,t

= Pmax
hj ,t
− αhj ,tPFLEX

j,t , ∀t ∈ T ;∀hj ∈ H ;∀j ∈ N (3.5)

Constraint (3.5) represents the two-way communication between the LDC and the

HEMS- the updated maximum demand of REH hj, P̂max
hj ,t

, is based on the previous

maximum allowable demand, Pmax
hj ,t

, and a portion of the flexibility requested by the LDC

at bus j; αhj ,t represents the REH’s flexibility index, which is explained in Stage-III.

REH Power Balance: Ensures that the total power demand of the household

appliances is met by the power drawn from the grid and power discharged to the REH

from the ESS and PV panel battery, and that generated by the PV system, as given

below:∑
i∈A

Pi,hjSi,hj ,t = PH
LDC,hj ,t

+
∑

i∈{B,ESS}

PH
Di,hj ,t

+ PH
PV,hj ,t

, ∀t ∈ T ; ∀hj ∈ H (3.6)
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The optimal decisions of the HEMS includes the operating decisions of appliances, the

energy sold or purchased to/from the utility grid, the charging/discharging decisions of the

ESS and the PV panel battery, and the resulting aggregated load profile of the REH.

Stage-Ic: In this last stage of the house level, flexibility provisions of the REH is

determined as follows:

4 Phj ,t =

[∑
i∈A

Pi,hjSi,hj ,t

]
J1hj or J3hj

−

[∑
i∈A

Pi,hjSi,hj ,t

]
J2hj

,∀t ∈ T ; ∀hj ∈ H (3.7)

αhj ,t =
4Phj ,t∑

h∈H
4Phj ,t

, ∀t ∈ T ; ∀hj ∈ H (3.8)

The flexibility of the REH, given by (3.7), is obtained from the difference between its

scheduled load at an hour using the energy cost minimizing model with that obtained from

the energy consumption minimizing model. For some REHs seeking to maximize comfort,

the flexibility is the difference between its scheduled load at an hour using the maximizing

comfort level model with that obtained from the energy consumption minimizing model.

The total flexibility at a bus is the sum of the flexibility from all REHs connected at

the bus, given by,
∑
h∈H
4Phj ,t. The REH flexibility index αhj ,t in (3.8), is obtained by

normalizing an REH’s flexibility by the total flexibility at that bus. The optimal flexibility

is proportionally allocated to each REH based on the value of αhj ,t.

3.2.2 LDC Operations Model (Stage-II)

The objective of the LDC is to minimize total system losses and a weighted component of

the total flexibility, as given below:

J =
∑
t∈T

[1

2

N∑
j=1

N∑
k=1

Gj,k

(
V 2
j,t + V 2

k,t − 2Vj,tVk,t cos(δj,t − δk,t)
)

+
N∑
j=1

γFLEXPFLEX
j,t

]
(3.9)
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Figure 3.3: Schematic of coordination between HEMS and LDC.

and subjected to the following power flow equations,

P g
j,t + P Imp

j,t + PFLEX
j,t − P d

j,t =
N∑
k=1

Vj,tVk,tYj,k

cos
(
θj,k,t + δk,t − δj,t

)
, ∀t ∈ T ; ∀(j, k) ∈ N (3.10)

Qg
j,t +QFLEX

j,t −Qd
j,t = −

N∑
k=1

Vj,tVk,tYj,k

sin
(
θj,k,t + δk,t − δj,t

)
, ∀t ∈ T ; ∀(j, k) ∈ N (3.11)

Where,

P Imp
j,t =

H∑
h

( ∑
i∈{B,ESS}

P LDC
Di,hj ,t

+ P LDC
PV,hj ,t

)
, ∀t ∈ T ;∀j ∈ N (3.12)
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In (3.11), Qd
j,t and QFLEX

j,t are obtained from P d
j,t and PFLEX

j,t a using constant load power

factor of 0.9, P Imp
j,t is the aggregate power import by the LDC from all REHs located at

bus j, as given in (3.12). And, given that,

P d
j,t =

H∑
h

( ∑
i∈A

i 6∈{LI,ESS,BPV }

Pi,hjSi,hj ,t +
∑
z∈LI

PLIhjLhj ,t

+
∑

i∈{BPV,ESS}

P i
LDChj,t

+ PD0hj

)
, ∀t ∈ T ; ∀j ∈ N (3.13)

In (3.13), P d
j,t represents the aggregated load at bus j and time t from multiple REHs. The

LDC operations model also includes constraints on bus voltages and power drawn from the

substation, as given below:

V min
j ≤ Vj,t ≤ V max

j , ∀t ∈ T ; ∀j ∈ N (3.14)

Pmin
gj
≤ P g

j,t ≤ Pmax
gj

, ∀t ∈ T ; ∀j = s (3.15)

3.2.3 Coordination of Multiple HEMS and LDC (Stage-III)

A novel coordination scheme between the multipleREHs and the LDC is presented herein.

• It is assumed that all REH are equipped with HEMS which receive input updates

such as customer preferences and weather forecast, as shown in Fig.3.4 under “Data

collection and analysis”.

• The REHs are clustered in three groups based on their objective function and their

possession of ESS and PV panel. The HEMSs then optimizes the operations, using

the optimization models OPT.1, OPT.3, and OPT.5, of their respective household

appliances considering one of: cost minimization or comfort maximization objective,

and appliance operational constraints, see Fig.3.4. Furthermore, the last process at

the house level is to evaluate the available household flexibility.
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• The resulting optimal load profile and other optimal decisions, such as how much

power the house can sell to the distribution grid, and the available flexibility are

communicated to the LDC, one day ahead, P Imp
j,t , P d

j,t, and PFLEX
j,t (see Fig.3.3 and

3.4).

• The LDC develops a bus-wise load profile by aggregating the customers’ optimized

load profiles, executes the LDC operations model, and hence evaluates its system

operating conditions considering its objective and constraints (3.9)-(3.15). In

addition to the mentioned constraints, the LDC can take advantage of the inherent

flexibility of the customers by imposing a peak demand cap. Such decision is

limited by the customers’ evaluated flexibility, see constraint (3.16). This cap

changes the operation schedules of the participating customers and benefits the

LDC. The peak load of the feeder at bus j, hour t, is P cap
j,t ; when the LDC has to

request for flexibility from customers, it sends a request signal PFLEX
j,t , as shown in

Fig.3.3; with an appropriate choice of β, where PFLEX
j,t is limited by the aggregated

customers’ flexibility, at bus j, as given below:

βP cap
j,t ≤ PFLEX

j,t ≤ PFLEX
j,t if PFLEX

j,t ≥ 0, ∀ j ∈ N

− βP cap
j,t ≥ PFLEX

j,t ≥ PFLEX
j,t if PFLEX

j,t ≤ 0, ∀ j ∈ N (3.16)

In (3.16), PFLEX
j,t positive denotes that the customers are willing to reduce their

consumption at bus j and time t, from their optimal schedule to the minimum energy

consumption operation. While, PFLEX
j,t negative indicates the customer is willing to

increase its consumption.

• From this analysis, the hour-wise optimal flexibility use required by the LDC is

determined considering the bus-wise flexibility obtained from (3.7)-(3.8).

• This bus-wise, hourly, optimal flexibility is then proportionally allocated to each

house based on the flexibility index αhj ,t of the customer, and communicated to

individual HEMS. The respective HEMS in turn incorporates these signals as a ‘peak

demand cap’ (3.5), and re-optimizes their respective appliance schedules.
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• Note that, a household will only submit to the LDC its aggregate load profile, how

much it would sell/buy to/from the grid, and how much flexibility provision is

available next day. There will be no exchange of private information of the

customer or its activity schedules.

• The HEMS and the LDC optimization models are interlinked by external signals, as

shown in Fig.3.3, wherein the LDC receives the P Imp
j,t , P d

j,t, and PFLEX
j,t signals from

HEMS while the HEMS receives PFLEX
j,t signal from the LDC, based on which the

optimal decisions of each, are determined. This is a two-stage sequential process

involving information exchange and effective communication between the houses and

the LDC.

The proposed coordination scheme enables each REH to carry out its desired operation

based on its own objective while preserving information privacy and security while at

the same time providing a flexibility service to the LDC to improve grid operations and

reliability.

3.3 Results and Discussions

3.3.1 Case Study

In this work, the LDC is responsible for managing a 33-bus distribution system and meeting

the demand of 1,295 houses connected at its various buses. The number of houses at

each bus is shown in Fig.3.3 (within the circles), which is obtained assuming that the

connected load at a house is 7 kW. In order to represent each HEMS individually, unique

objective functions, activity levels, and customer preferences (i.e, the required operation

time and minimum up/down time of washer, dryer, stove, etc.) are randomly generated.

Furthermore, the TOU rates applicable in Ontario, Canada, are used in this study [79].

The list of parameters and their values, associated with a single typical HEMS model is

provided in the Appendix.

Three customer clusters are considered to evaluate the flexibility of residential

customers in providing DR services to the LDC: Cluster-1: 80% of the customers own

53



RE
H O

pt
im

iza
tio

n M
od

els

Da
ta 

Co
lle

cti
on

 an
d A

na
lys

is

Da
ta 

Co
lle

cti
on

 
Tim

e o
f U

se 
(TO

U)
 

W
ea

the
r D

ata
 

Ph
oto

vo
lta

ic 
(PV

) P
ow

er 
for

ec
ast Da

ta 
An

aly
sis

 
Ea

rly
/La

te/
Re

qu
ire

d O
pe

rat
ion

 
tim

e o
f:

Pre
fer

en
ce

s:

Sim
ula

te 
ho

us
eh

old
s a

pp
lia

nc
es

 
op

era
tio

na
l p

re
fer

en
ce

s a
nd

 
set

tin
gs

Di
sh

wa
sh

er

W
ash

er

Dr
ye

r

Sto
ve

 
Pre

fer
red

/M
ax

/M
in 

Te
mp

era
tur

e f
or

:

Se
tti

ng
s:

HV
AC

Wa
ter

 He
ate

r
Fri

dg
e

 
Po

ol 
pu

mp
 op

era
tio

n s
ett

ing
s 

su
ch

 as
 m

in/
ma

x u
p a

nd
 do

wn
 

tim
e.

 
ES

D c
urr

en
t s

tat
e o

f c
ha

rge
 an

d 
mi

n/
ma

x c
ha

rge
 di

sch
arg

e l
im

its
. 

Ot
he

rs:

No
te:

 Sa
mp

le 
of 

HE
MS

 pa
ram

ete
rs 

pr
es

en
ted

 in
 Ch

ap
ter

-2

OP
T.3

: M
in 

En
erg

y C
os

t (3
.1)

S.t
. (2

.4)
-(2

.66
)

Ho
us

eh
old

 ow
ns

 PV
 an

d B
PV

Clu
ste

r-2

OP
T.5

: M
ax 

Co
mf

ort
 (3

.3)
S.t

. (2
.4)

-(2
.66

)
Ho

us
eh

old
 ow

ns
 PV

 an
d B

PV

Clu
ste

r-3

OP
T.1

: M
in 

En
erg

y C
os

t (3
.1)

S.t
. (2

.4)
-(2

.53
)

Clu
ste

r-1

h j be
lon

gs 
to 

clu
ste

r?

Clu
ste

r-1

Clu
ste

r-2

LD
C D

ata
 Co

lle
cti

on
 an

d 
Op

tim
iza

tio
n M

od
el

OP
T.2

: M
in 

En
erg

y C
on

su
mp

tio
n 

(3.
2)

S.t
. (2

.4)
-(2

.53
)

Clu
ste

r-1

OP
T.4

: M
in 

En
erg

y C
on

su
mp

tio
n 

(3.
2)

S.t
. (2

.4)
-(2

.66
)

Ho
us

eh
old

 ow
ns

 PV
 an

d B
PV

Clu
ste

r-2

OP
T.6

: M
in 

En
erg

y C
on

su
mp

tio
n 

(3.
2)

S.t
. (2

.4)
-(2

.66
)

Ho
us

eh
old

 ow
ns

 PV
 an

d B
PV

Clu
ste

r-3

Clu
ste

r-3

∆𝑃
ℎ 𝑗
,𝑡 

∆𝑃
ℎ 𝑗
,𝑡 

∆𝑃
ℎ 𝑗
,𝑡 

𝑃 𝑗,
𝑡𝑑
 

Da
ta 

Co
lle

cti
on

 
LD

C r
ec

eiv
es

 th
e f

oll
ow

ing
 

ho
url

y d
ata

 fo
r n

ex
t d

ay
:

Po
we

r S
old

 to
 LD

C

Bu
s-w

ise
 Lo

ad
 Pr

ofi
les

Bu
s-w

ise
 Fl

ex
ibi

lity
 Pr

ofi
les

𝑃 𝑗,𝑡𝐼
𝑚𝑝

 

Op
tim

iza
tio

n M
od

el

OP
T.7

: M
in 

Po
we

r L
os

ses
 (3

.9)
S.t

. (3
.10

)-(
3.1

6)

LD
C

Ou
tco

me

 
LD

C m
od

el 
ou

tco
me

:

Po
we

r L
os

se
s

Vo
lta

ge
 Pr

ofi
les

Op
tim

al 
Fle

xib
ilit

y U
se

Op
era

tio
n C

os
t

Is ? 

Co
nfi

rm
 th

e c
urr

en
t 

RE
H l

oa
d s

ch
ed

ule

Ye
s

No

Co
ord

ina
tio

n B
etw

ee
n L

DC
 an

d 
RE

H L
oa

ds

𝑃 ℎ
𝑗,𝑡𝐹𝐿
𝐸𝑋
=
0 

𝑃 ℎ
𝑗,𝑡𝐹𝐿
𝐸𝑋

 

Da
ta 

Co
lle

cti
on

 
LD

C s
en

ds
 bu

s-w
ise

 ho
ur

ly 
da

ta:

Bu
s-w

ise
 Fl

ex
ibi

lity
 Re

qu
est

Co
ord

ina
tio

n 

 
Dis

trib
ute

    
     

    
ba

sed
 on

 
ea

ch
 in

div
idu

al 
RE

H f
lex

ibi
lity

 
ind

ex
    

     
  , 

see
 eq

.(3
.7)

-
(3.

8)

Bu
s-w

ise
 fle

xib
ilit

y d
ist

rib
uti

on
 

ob
tai

ne
d a

s f
oll

ow
s:

𝑷 𝒉
𝒋,𝒕𝑭𝑳
𝑬𝑿

 

𝜶 𝒉
𝒋,𝒕

 

 
∆𝑃
ℎ 𝑗
,𝑡

ℎ 𝑗

 

Ca
lcu

lat
e F

lex
ibi

lity
 in

de
x o

f e
ac

h R
EH

 in
 Cl

us
ter

-1,
2,3

 , 
see

 Eq
.(3

.8)
𝜶 𝒉
𝒋,𝒕

 

Ho
url

y F
lex

ibi
lity

 In
de

x o
f a

n R
EH

Lo
ad

 Pr
ofi

le 
of 

RE
Hs

Po
we

r S
old

 to
 LD

C 
fro

m 
RE

Hs

Is  
     

  
     

    
     

  =
 0

?

𝛼 ℎ
𝑗,𝑡

 No

Re
vis

ed
 RE

H O
pe

rat
ion

 Sc
he

du
le 

Ye
s

Co
nfi

rm
 th

e 
cu

rre
nt 

RE
H 

sch
ed

ule

Up
da

te 
RE

H M
od

el

 
Up

da
te 

     
     

  in
 Eq

.(2
.5)

 by
 

cal
cu

lat
ing

 ne
w 

     
     

   f
rom

 
Eq

.(3
.5)

. 
 

Ru
n O

PT
.1,

 O
PT

.3,
 an

d O
PT

.5 
to 

ob
tai

n t
he

 fin
al 

sch
ed

ule
 

of 
ea

ch
 in

div
idu

al 
RE

H a
nd

 
the

 lo
ad

 pr
ofi

le 
of 

LD
C. 

     
 

𝑷 𝒉
𝒋,𝒕𝒎
𝒂𝒙
 

 𝑷
𝒉 𝒋
,𝒕
𝒎
𝒂𝒙
 

 

No
te:

 O
pti

mi
zat

ion
 M

od
el 

No
. (O

PT
)

b.1
0%

 of
 RE

H 
be

lon
gs 

to 
Clu

ste
r-2

.

F
ig

u
re

3.
4:

C
o
or

d
in

at
io

n
of

m
u
lt

ip
le

H
E

M
S

an
d

L
D

C
.

54



typical household appliances and seek to minimize their energy cost; Cluster-2: 10%

customers own typical household appliances, ESS, and PV panel, and seek to minimize

their energy cost; and Cluster-3: 10% customers own typical household appliances, ESS,

and PV panel, and seek to maximize their comfort level. Each cluster of customers are

distributed at all buses uniformly. It is important to mention that many households do

not change their initial consumption level either because of their limited flexibility in

consumption patterns or their limited affect on the LDC system operation. The

customers from Cluster-2 and -3 do not impact the system peak load since they own

RESs which reduce their energy consumption during peak hours. Consequently, the

results of Cluster-1 customers are only discussed in this paper. Different peak reduction

requests (PRR) values have been considered to evaluate the customers flexibility, as

follows:

• Case-1: Base case, no PRR requested by LDC, β = 1

• Case-2: PRR request by LDC is 5%, i.e., β = 0.95;

• Case-3: PRR request by LDC is 10%, i.e., β = 0.9;

• Case-4: PRR request by LDC is 20%, i.e., β = 0.8;

3.3.2 HEMS Level Outcomes

At the house level, Table-3.1 presents one typical household’s appliance-wise consumption

on a summer day (house #400 located at bus-14). Figure 3.5 (A) and (B) shows a

residential customer’s load profile while minimizing energy and energy cost, respectively.

In addition, it presents the customer flexibility in Fig.3.5 (C), and this information is

communicated to the LDC.

It can be noted that the energy cost rate of the household increases from Case-I (Base

Case) to the cases with flexibility provisions, as a result of the PRR imposed by the LDC,

which limits the power that can be drawn from the grid at low price hours. Fig.3.6 shows

the ON/OFF operation of the dishwasher in house #400, which depends on the required
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Table 3.1: Energy Consumption and Cost of REH #400 per Day, for Different P FLEX
j,t

Device
CASE 1 (Base) CASE 2 (5% PRR) CASE 3 (10% PRR) CASE 4 (20% PRR)
(kWh) ($) (kWh) ($) (kWh) ($) (kWh) ($)

fridge 1.425 0.501 1.463 0.520 1.425 0.522 1.425 0.517

water heater
Elec. 0.225 0.078 0.225 0.078 0.225 0.078 0.225 0.078

Gas 0.111 0.013 0.111 0.013 0.111 0.013 0.111 0.013
lighting 1.245 0.453 1.245 0.453 1.245 0.453 1.245 0.453

AC 5.225 1.855 5.363 2.038 5.363 2.001 5.225 1.982

Dishwasher 0.350 0.091 0.350 0.131 0.350 0.161 0.350 0.142

Washer 0.225 0.059 0.225 0.074 0.225 0.100 0.225 0.089

Dryer 0.555 0.144 0.555 0.181 0.555 0.262 0.555 0.225

Stove 1.125 0.293 1.125 0.393 1.125 0.483 1.125 0.497

Pool 1.875 0.538 1.875 0.641 1.875 0.627 1.875 0.614

Total 12.361 4.024 12.536 4.522 12.499 4.700 12.361 4.608

Cost of Energy ($/kWh) 0.3255 0.361 0.376 0.373

A Residential customer load 

Aggregated loads and flexibility of residential 
customers 

A Residential customer flexibility 
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Figure 3.5: Load and flexibility profiles at residential and grid levels.
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Figure 3.6: Optimal operation of selected appliance (dishwasher) at house #400.

operation time (i.e., eight time intervals), operation interval (i.e., from 2 PM to midnight),

and the minimum time gap between two consecutive operations (minimum of two time

intervals). In Case-1 (Base Case), the operation of the dishwasher is scheduled at two

periods, each of four time intervals. It can be noted that the optimal schedule changes

with different peak caps signals (β values) imposed by the LDC.

Fig.3.7 shows the temperature deviation inside house #400, refrigerator and the

operation of the water heater for different values of β (different peak caps) imposed by

the LDC. Note that the range specified by the customer for the minimum and maximum

temperature, governs the degree of customer flexibility that would be available.

Fig.3.8 illustrates the variation in the total household consumption between Case-1 and

Case-2; and Case-1 and Case-3, respectively. It is noted that the peak hours of power usage

of the house is shifted as a result of peak signals sent by the LDC.

3.3.3 LDC Level Outcomes

At the LDC side, Fig.3.9 presents the total load profile of the distribution system. It can

be noted from the figure that TOU tariffs, which are applicable in the present work, causes

peak rebound effects at hours 19-21, which means that a peak demand is created when
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Figure 3.7: Temperature profile inside house #400, refrigerator, and water heater.
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Figure 3.9: Total load profile of LDC.

the TOU price reduces to the off-peak price levels at hour 19. In order to circumvent this

situation, the LDC utilizes the available flexibility, inherent in the customers’ consumption

patterns (i.e, as shown in Fig.3.5), to improve the total load shape and reduce the peak

demand at those hours.

Table 3.2: LDC Load Profile Characteristic and Power Losses

Case Minimum Load Peak Load Average Load Power Losses

(kW) (kW) (kW) (Rate of Change%)

Case 1 (0% PRR) 2722.1 10515.78 5175.45 —–

Case 2 (5% PRR) 2735.5 (0.49%) 10150.97 (-3.47%) 5178.01 (0.05%) -1.341%

Case 3 (10% PRR) 2754.7 (1.2%) 9580.18 (-8.9%) 5187.2 (0.23%) -6.124%

Case 4 (20% PRR) 2765.7 (1.6%) 9164.81 (-12.85%) 5198.2 (0.44%) -17.830%

Table 3.2 illustrates the improvements in the total load profile of the LDC and system

losses, for the different cases considered. It is important to note that the proposed

coordination scheme not only shifts the peak load, but it also reduces it, and increases

both the minimum and the average load of the distribution system, thus flattening the

load profile. It is assumed that the LDC requested for a reduction in the peak load

between 6 to 10 PM. As noted from Table 3.2, there is a significant reduction in the peak

load while the shifted controllable loads increase the total average load of the system.
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Figure 3.10: Average voltage at each bus at different PRR requests.

Moreover, the inherent flexibility of the customers reduces the system losses as well.

Fig.3.10 shows an improvement in the average voltage profile at each bus over the day,

when the proposed DR scheme is applied, and justifies the usefulness of the proposed

coordination scheme toward efficient grid operations.

Table 3.3: Model Statistics

House Level Grid Level

OPT.1 OPT.3 OPT.5 OPT.2 OPT.4-6 OPT.7

Model Type MILP NLP

Solver Type CPLEX SNOPT

Single Variables 2,223 3,857 2,223 2,223 3,857 19,203

Single Equations 2,403 3,638 2,400 2,442 3,553 9,527

Discrete Variables 962 1,328 952 992 1,344

Resource Usage, s 0.2 0.254 0.134 0.188 0.232 8.6

Absolute Gap 7 3 7.5 6 9

Relative Gap 0.09 0.05 0.09 0.07 0.09

*Optimization Model (OPT)
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3.3.4 Computational Aspects

The proposed REH model is an MILP problem which is solved using CPLEX solver; the

LDC operations model is a nonlinear programming (NLP) problem, solved using SNOPT

solver, in both cases on the GAMS platform [80]. The optimization models are executed

on a Dell PowerEdge R810 server, Windows 10 Education 64-bit operating system, with 4

Intel(R) core(TM) i7 processors and 16 GB of RAM. The individual HEMS optimization

programs are executed in parallel by individual customers, and each require less than 30

seconds to solve. Different optimization models are assigned for each individual HEMS,

see Fig.3.4. Table 3.3 presents an overview of the model statistics of the HEMS and LDC

model.

The proposed coordination scheme can be implemented in real-time or day ahead,

without any difficulty. It is important to note that the maximum amount of PRR that can

be requested by the LDC, can vary based on the customers’ willingness to change their

consumption patterns. In fact, some customers do not influence the grid operation, so the

LDC does not impose such a peak cap to limit the flexibility of their energy consumption.

3.4 Summary

This chapter proposed a novel, two-stage coordination scheme between multiple HEMS

and the LDC in order to enhance the grid operational efficiency, reduce peak demand,

minimize power losses; and reduce customers’ energy cost. At the residential customer level,

each individual HEMS optimizes the household appliances schedule based on pre-defined

requirements and goals by the household. In addition, each customer’s inherent flexibility

is evaluated using the proposed approach, which is aggregated with other neighborhood

households to provide flexibility services to the LDC. Bus-wise aggregated loads, power

sold to the LDC, and total available flexibility from households, are communicated to the

LDC system operator, who evaluates its system operation and determines the bus-wise

PRR. Each customer is sent a peak cap signal by the LDC.

The proposed two-stage coordination scheme captures the procurement of flexibility

provisions by the LDC in real-time. An advantage of this two-stage coordination scheme
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is the disaggregation and distribution of the computational burden amongst each entity,

as compared to that in a centralized optimization model which would need to optimize

thousands of REHs as well as the LDC’s operations simultaneously.
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Chapter 4

Inclusion of Battery SoH Estimation

in Smart Distribution Planning with

Energy Storage Systems
1

Chapter 3 proposed the coordination of a large number of HEMSs to evaluate their inherent

flexibility, and hence provide a DR service to the LDC. This chapter, on the other hand,

examines the impact of multiple self-optimized HEMSs operating in an uncoordinated

manner, on the distribution grid. Thereafter, a novel NN based SoH estimator for a

Li-ion battery based BESS is proposed, which is incorporated within a framework and

mathematical model for planning and integrating BESS in the distribution grid.

1This chapter has been accepted for publication in:
O. Alrumayh, S. Wong, and K. Bhattacharya, “Inclusion of Battery SoH Estimation in Smart Distribution
Planning with Energy Storage Systems,” IEEE Transactions on Power Systems, (available in IEEE Xplore
Early Access).
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4.1 Nomenclature

LDC Operations and Planning Model with ESS

Indices and Sets

hj Index of houses, hj ∈ H

j, k Index of buses in distribution system, (j, k) ∈ N

n, y Index of year, (n, y) ∈ Y

t Index of time, t ∈ T

Parameters

CF
P Fixed installation cost of ESS, $

CV
P , C

V
E Variable installation cost of ESS associated with power ($/kW) and energy

($/kWh), respectively

COMF Fixed operation and maintenance cost of ESS, $/kW-year

COMV Variable operation and maintenance cost of ESS, $/kWh

CREP Replacement cost of ESS, $/kW

DODj Depth of discharge limit of ESS j, p.u

DY Number of seasonal representative days

EPR,EPR Limits of energy to power ratio

HY Number of hours per year, h

P dj,y,t Residential load demand, p.u

Pmin, Pmax Power limits of distribution substation, p.u

P STD, ESTD Standard power/energy capacity of ESS available in market

R Discount rate, %

V min, V max Voltage limits, p.u
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αDOD Maximum allowable change in SOC

ηCH/ηDCH Charging and discharging efficiency of ESS, %

Υy,t Electricity price, $/kWh

Variables

Ej,y,t Actual energy capacity of ESS, p.u

J1, J2, J3 ESS installation, operation, and replacement cost, respectively, $.

NUP ,NUE Integer multiplier of standard size of ESS

OTj,y,t,OYj,y Number of hours/years ESS in service, respectively

P SS
j,y,t, Q

SS
j,y,t Active/reactive power drawn from substation, p.u

P dj,y,t, Q
d
j,y,t Active/reactive power demand from residential loads, p.u

P INST
j,y , EINST

j,y Installed power/energy capacity of ESS, p.u

PRate
j,y , ERate

j,y Rated power/energy capacity of ESS, p.u

PCH
j,y,t, P

DCH
j,y,t Active power to be charged/discharged to/from ESS, p.u

SoCj,y,t State of charge of ESS, p.u

ŜoHj,y,t Estimated SoH of ESS, %

Vj,y,t Voltage at bus, p.u

ZINST
j,y , ZREP

j,y Binary installation and replacement decisions of ESS, respectively.

ZPI
j,y, Z

PR
j,y Binary presence indicator of ESS after installation / replacement.

∆SoCj,y,t Maximum allowable change in SoCj,y,t, p.u

δj,y,t Voltage angle at bus, p.u

Degradation Model

Indices and Sets

K Index of cycle, K ∈ K
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Parameters

δK Depth of discharge of Kth cycle

σK State of charge of Kth cycle

TK Ambient temperature during Kth cycle

βsei, αsei Parameters of the early degradation model

Variables

ft, fc Calendar and cycle aging, respectively

fsei Degradation function of ESS during early cycles

fd Degradation function of ESS

SoHj,y,t Reference SoH of ESS, %

aK Cycle indicator, [0.5, 1]

Neural Network Model

Indices and Sets

i Index of input, i ∈ I

o Index of hidden layer neuron, o ∈ O

Parameters

βo,Γ Hidden/output layer neuron bias

nino,j,y,t, n
out
o,j,y,t Input and output of a hidden layer neuron

wi,o,Wo Input weight and layer weight, respectively

xij,y,t, x
i,N
j,y,t Actual and normalized input i

Xj,y,t, X
N
j,y,t Actual and normalized output of NN
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4.2 Proposed Planning Framework and Mathematical

Models

The proposed ESS planning framework considering the inclusion of a Li-ion battery SoH

estimation model is presented in Fig. 4.1. The framework comprises the following steps:

• The REH Operations Model (discussed in Section II.A) and based on [81] is executed

to develop bus-wise load profiles. These load profiles are used to simulate an LDC

Operations Model (discussed in Section II.B) to obtain a set of SOC profiles of the

ESS.

• Using the RCA (discussed in Section II.C) on these SOC profiles, the Li-ion based

ESS cycle parameters are determined, which are input to a degradation model [51]

to obtain the reference SoH (discussed in Section II.D).

• The SOC and SoH profiles, so obtained, are used to train a NN, and the function

relationship of the SoH is extracted (discussed in Section II.E).

• This functional relationship is included in the LDC planning model to determine the

optimal plan decisions. The estimated SoH profiles obtained from the planning model

are send back to the NN-based estimator to re-train and improve the SoH estimation

function for revising the plan decisions. The framework arrives at the optimal plan

when the mismatch in the estimation of SoH with the reference, is minimal.

4.2.1 REH Operations Model

The HEMS are residential controllers that carry out scheduling of the REH including all

house appliances and power interchanges with the external grid, considering the customer’s

preferences and objectives, such as minimizing its daily energy cost. In this work, the REH

operations model is taken from [81], and simulated for daily load profiles over a 10 year

horizon (i.e. 365 x 10 days).
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Start

Execute REH
Operations

Model for hj
minimizing

cost [81]
(Section 4.2.1)

Create bus-wise
LDC load profiles

Execute LDC
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Figure 4.1: Proposed ESS planning framework considering smart REHs and battery SoH.

4.2.2 LDC Operations Model

After completing the simulation of all REHs, bus-wise load profiles are created over a period

of ten years. The LDC operations model including ESS is then simulated to analyze the

operational decisions of the ESS.

Objective Function

minimize LDC’s daily operation cost, comprising the cost of importing power from external

grid at electricity price Υy,t to meet the residential load demand.

J =
Y∑
y=1

T∑
t=1

Υy,tP
SS
j=1,y,t (4.1)

subject to the following constraints:
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Load Flow Equations

Linearized power flow equations, as in [82] are used:

P SS
j,y,t − P d

j,y,t + (PDCH
j,y,t − PCH

j,y,t) =
J∑

k=1,k 6=j

(
Kj,k,1(δj,y,t − δk,y,t) +Kj,k,2(Vj,y,t − Vk,y,t)

)
(4.2)

QSS
y,t −Qd

j,y,t =
N∑

k=1,k 6=j

Kj,k,2(δj,y,t − δk,y,t) +Kj,k,1(Vj,y,t − Vk,y,t) (4.3)

where,

Kj,k,1 =

x2j,k
r2j,k+x

2
j,k

xj,k
, Kj,k,2 =

rj,kxj,k
r2j,k+x

2
j,k

xj,k
, ∀(j, k) ∈ J (4.4)

These are subject to bus voltage constraints and limits on power drawn from the

substation, as given below:

V min
j ≤ Vj,y,t ≤ V max

j (4.5)

Pmin ≤ P SS
j=1,y,t ≤ Pmax (4.6)

The following equations present the operational constraints of the ESS:

SoCj,y,t+1 = SoCj,y,t + ηCHPCH
j,y,t −

PDCH
j,y,t

ηDCH
(4.7)

−∆SoCj,y,t ≤ SoCj,y,t − SoCj,y,t−1 ≤ ∆SoCj,y,t (4.8)

where,

∆SoCj,y,t = αDOD Ej,y,t (4.9)

The inter-temporal change in the SOC level is defined by (4.7), and the same is limited

by minimum and maximum allowable changes, given by (4.8). Equation (4.9) states that

the value of the maximum allowable change in SOC is a fraction, αDOD, of Ej,y,t.

(1− DoD) Ej,y,t ≤ SoCj,y,t ≤ Ej,y,t (4.10)
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SoCj,y,t=1 = SoCj,y,t=24 = 0.5 Ej,y,t (4.11)

PCH
j,y,t ≤ PRate

j,y (4.12)

PDCH
j,y,t ≤ PRate

j,y (4.13)

In (4.10), the physical capacity of the ESS limits its SOC considering the maximum

allowable DoD. It is assumed that the SOC of the ESS at the beginning and end of

the daily operation are equal, equation (4.11), to prevent the optimization model from

choosing the maximum SOC at the beginning of the day and fully discharge at the end of

the day. Moreover, the rated power of the ESS constraints the power charging/discharging

capability from/to the ESS in (4.12) and (4.13).

4.2.3 RainFlow Counting Algorithm

The RCA is a well known approach in the analysis of fatigue data [70]. It has been used

in some recent works [83] and [84] for analysis of ESS operation, wherein the RCA counts

the number of irregular cycles within a given operation period. The algorithm requires the

SOC profile of the ESS as an input, as shown in Fig. 4.1, in order to obtain the following:

• Cycle amplitude (CA).

• Cycle mean value (CM).

• Cycle number (CN ).

• Cycle begin and end times (CB,CE).

The results obtained from applying the RCA are used to calculate the variables of the

degradation model, discussed next.

4.2.4 Degradation Model of ESS

In [51], a mathematical model was proposed to evaluate lithium-ion battery cell life

considering calendar and cycle aging. Calendar aging represents the battery’s inherent

71



degradation over time, as a function of the average temperature (T ) and the average SOC

of the battery (σ). Cycle aging represents the loss of life due to the charging and

discharging of the battery, represented as a function of the DoD, SOC, and temperature.

This is given as follows [51]:

fd(t, δ, σ, T ) = ft(t, σ, T ) +
K∑
K

akfc(δK, σK, TK) (4.14)

The first term in (4.14) represents the effect of calendar aging (ft) while the second term

represents the degradation as a result of cycle aging (fc). In addition, ESS degradation

during its operation in the early cycles is given by [51],

fsei = βseifd (4.15)

The SoHj,y,t of ESS can be represented as follows:

SoHj,y,t = 1− αsei · e−fsei − (1− αsei) · e−fd (4.16)

where αsei denotes the portion of the ESS capacity lost during the early operation.

The third term in (4.16) represents the degradation due to calendar and cycle aging. In

order to apply the degradation model (4.14)-(4.16) to irregular cycle operation of ESS, the

outcomes of the RCA are used as inputs to the degradation model, as follows [51]:

• δK = 2 CAK.

• σK = CMK.

• σ = Average value of CM.

• TK = Mean temperature between start and end time of Kth cycle.

• T = Mean value of the temperature profile.

The following subsection presents a novel SoH estimation approach (i.e. ŜoH) for an

ESS in a distribution system that does not require RCA.
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4.2.5 Proposed NN Based ESS SoH Estimator

This paper adopts the degradation model in [51] to propose a novel approach for estimating

the SoH of the ESS. For this purpose, an NN-based mathematical model of the SoH is

developed to be embedded within the planning model in order to take into account the

impact of calendar and cycle aging in determining the optimal ESS size, location, and

operation decisions.

In order to estimate the SoH of ESS (ŜoH), a supervised learning technique is applied

to train the NN with outcomes of the LDC operation of model, i.e., SOC profiles of 365

days for 10 years operation, as shown Fig. 4.1. The required output vector of the NN is

the target SoH (SoHj,y,t), which is determined as follows: (a) Use RCA to find CA, CB,

CE, CN, and CM. (b) Calculate the input of the degradation model δK, σK, σ, TK, and

T , as discussed in Section 4.2.4 and shown in Fig. 4.1. (c) Evaluate the ESS SoH using

the degradation model adopted in Section 4.2.4, the output of which represents the target

vector of the NN. As a result, a [87, 600 × 2] order matrix training set and a [87, 600 × 1]

target vector are used for the NN training. Accordingly, the ŜoH of an ESS located at bus

(j) at year (y) and time (t) can be expressed as a function of SOC and operation time, as

given below:

ŜoHj,y,t = f(SoCj,y,t,OTj,y,t) (4.17)

The NN has one hidden layer with two hidden layer neurons, which is obtained by trial-

and-error; the NN is trained using Marquardt learning technique in MATLAB [85]. The

resulting structure of the NN-based SoH Estimator is shown in Fig. 4.2. The mathematical

representation of the NN function is developed as follows:

• Pre-processing input: The inputs of the NN xij,y,t = {SoCj,y,t,OTj,y,t} are normalized

to lie in the interval [−1, 1] using mapminmax function in MATLAB, as shown below:

xi,Nj,y,t =
2(xij,y,t − xij,y,t)

xij,y,t − xij,y,t
+ xi,Nj,y,t, (4.18)

The underline and overline notations denote the respective minimum and maximum

values of the inputs.
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Figure 4.2: Structure of the proposed NN-based SoH estimator.

• Hidden layer activation function: The pre-processed inputs with appropriate weights,

wi,o [∀i ∈ 1, ..., H, o ∈ 1, ..., O], are summed up at every hidden layer neuron. In

addition, each hidden layer neuron has its own bias (βo). The summed signals present

the input to a hidden layer neuron (nin
o ), as given below:

nin
o,j,y,t =

I∑
i=1

wi,o x
i,N
j,y,t + βo (4.19)

This input value is passed through an activation function (i.e. tansig), which

transforms nino,j,y,t into an output signal (nout
o,j,y,t), as follows:

nout
o,j,y,t =

2

1 + exp (−2 nin
o,j,y,t)

− 1 (4.20)

• Output layer function: The calculated nouto,j,y,t represents the input of the output

layer, which is also multiplied by a layer weight (Wo). Ultimately, a linear function

is applied in the output layer, which results in the output of the NN, XN
j,y,t, as shown

below:
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XN
j,y,t =

O∑
o

nout
o,j,y,t Wo + Γ (4.21)

The obtained output from the NN (XN
j,y,t) represents the normalized SoH of the ESS

(SoHN
j,y,t).

• Post-process output: The obtained output (2.71) is post-processed to obtain the

estimated output (i.e. SoH), as follows (refer Fig. 4.2):

Xj,y,t =
(XN

j,y,t −XN
j,y,t)(Xj,y,t −Xj,y,t)

2
+Xj,y,t (4.22)

The mathematical model (4.22) of the SoH of the ESS at bus j at year y and time t is

incorporated in planning model, discussed in the following subsection.

4.2.6 LDC Planning Model

The LDC planning model seeks to optimally allocate, size, and replace a number of ESS

at different buses in the distribution grid, considering the following objective function.

Objective Function

J = J1 + J2 + J3 (4.23)

Equation (4.23) comprises the ESS installation cost (J1), operation cost (J2), and ESS

replacement cost (J3), as follows:

ESS Installation Cost: comprises power capacity cost ($/kW), energy capacity cost

($/kWh), and a fixed installation cost ($), as given below:

J1 =
Y∑
y=1

N∑
j

[
1

(1 +R)y
(CV

P P
INST
j,y + CV

EE
INST
j,y + CFZINST

j,y )

]
(4.24)
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Operation Cost: comprises fixed and variable operation and maintenance cost (O&M),

the cost associated with ESS charging and discharging, and the cost of buying power from

the external grid, as given below:

J2 =
Y∑
y=1

N∑
j

[
COMF

(1 +R)y
PRate
j,y +

365

DY

T∑
t

1

(1 +R)y(
COMV(PCH

j,y,t + PDCH
j,y,t ) + Υy,tP

SS
j=1,y,t)

)]
(4.25)

Replacement Cost: included when the ESS reaches its end of life and has to be replaced,

as given below:

J3 =
Y∑
y=1

N∑
j

CREP

(1 +R)y
EINST
j,y ZREP

j,y (4.26)

The objective function is subject to the following constraints:

Selection Decisions of ESS

The selection of the ESS size should be based on standard unit of power and energy capacity

ratings available in the market, modeled as follows:

EINST
j,y = NUE ESTD (4.27)

P INST
j,y = NUP P STD (4.28)

NUE and NUP are integer variables that determine the rated energy and power capacities

respectively, based on the available standard sizes in the market, ESTD (e.g. 50 kWh)

and P STD (e.g. 50 kW). Furthermore, the energy capacity of the ESS for a certain power

rating, is determined based on its energy to power ratio, as follows:
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EPR P INST
j,y ≤ EINST

j,y ≤ P INST
j,y EPR (4.29)

The installation year decision (ZINST
j,n ) is activated only once during the planning

horizon, as indicated below:

y∑
n=1

ZINST
j,n ≤ 1 (4.30)

The variable ZPI
j,y indicates the presence of ESS after an installation decision. The

following constraint coordinates the installation year decision (ZINST
j,n ) in the presence of

ESS:

ZPI
j,y =

y∑
n=1

ZINST
j,n (4.31)

The binary decision variable ZPR
j,y indicates the presence of ESS after replacement (ZREP

j,y,t )

and is modeled as follows:

ZPR
j,y =

y∑
n=1

ZREP
j,n (4.32)

The two binary indicators ZPI
j,y and ZPR

j,y are used in counting the number of operation years

after installation of a new ESS.

The installed energy/power capacity determines the rated capacity of ESS after the

year of installation, as follows:

ERate
j,y =

y∑
n=1

EINST
j,n ; PRate

j,y =

y∑
n=1

P INST
j,n (4.33)

It is important to account for ESS energy capacity degradation in order to achieve

an optimal plan involving sizing, year, and location of the ESS. Therefore, the de-rated

ESS energy capacity can be modeled considering its estimated SoH and rated capacity, as

follows:

Ej,y,t = ŜoHj,y,tE
Rate
j,y (4.34)
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The following constraint models the estimated SoH of the ESS at installation or

replacement, as follows:

ŜoHj,y,t=1 ≥ ZINST
j,y + ZREP

j,y (4.35)

It is assumed that ESS installation or replacement is done at the beginning of the year, at

which time the battery SoH is 100%; else, ŜoH is calculated as per Section 4.2.5.

Inclusion of SoH Estimator

The first step to estimate the SoH of the ESS is the pre-processing of the required inputs (i.e.

SoCj,y,t and OTj,y,t). The inputs to the extracted NN mathematical model are normalized

and scaled to the range of [−1, 1], as below:

SoCN
j,y,t =

2(SoCj,y,t − SoCjZ
PI
j,y)

SoC− SoCj

− 1 (4.36)

In (4.36), SoCj is assumed to be 20% of the ESS installed capacity. SoCN
j,y,t = 1 when

SoCj,y,t = SoC, and SoCN
j,y,t = −1 when ZPI

j,y = 0. Similarly, the following equation

normalizes the operation time of the ESS.

OTN
j,y,t =

2 OTj,y,t
T

− 1 (4.37)

where,

OTj,y,t = HY(OYj,y − ZPI
j,y) + (t− 1)ZPI

j,y (4.38)

In (4.38), the first term on the RHS denotes the total number of ESS operational hours

from installation/replacement until the previous year, while the second term denotes the

number of hours of operation in the current year. Furthermore, note that OYj,y is a

function of installation and replacement decisions, which represents the total number of

years of operation after ESS is installed/replaced, as follows:

OYj,y ≤
y∑

n=1

ZPI
j,n +M

y∑
n=1

ZREP
j,n (4.39)
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OYj,y ≥
y∑

n=1

ZPI
j,n −M

y∑
n=1

ZREP
j,n (4.40)

OYj,y ≤
y∑

n=1

ZPR
j,n +M(1−

y∑
n=1

ZREP
j,n ) (4.41)

OYj,y ≥
y∑

n=1

ZPR
j,n −M(1−

y∑
n=1

ZREP
j,n ) (4.42)

Equations (4.39) and (4.40) coordinate the counting of OYj,y,t for an ESS in service after

installation, while (4.41) and (4.42) counts the number of years an ESS is in service after

a replacement.

The normalized inputs (i.e. SoCN
j,y,t and OTN

j,y,t) are passed to the hidden layer of the

NN, as follows:

nout
o,j,y,t =

2

1 + e−2 (w1,o SoCN
j,y,t+w2,o OTN

j,y,t+βo)
− 1 (4.43)

Finally, ŜoH
N

j,y,t, which is the normalized output of the NN, can be expressed as follows:

ŜoH
N

j,y,t =
∑
o∈O

nout
o,j,y,t Wo + Γ (4.44)

Budget Constraint

The net present value (NPV) of the installation cost should not exceed the NPV of the

allocated budget:

J1 ≤ Budget (4.45)

The constraints of the LDC operations model, discussed in Section 4.2.2 (i.e. (4.2) to

(4.13)), are further included in the planning model in addition to the above constraints.
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Figure 4.3: Residential load profile.

Table 4.1: Tuned Weights and Biases of the NN

Parameter Hidden Layer Output Layer

Weight
w11 −0.164E − 4 w12 0.2218 W1 −0.4328

w21 0.447E − 6 w22 −0.0661 W2 −16.5719

Bias β1 −0.5117E − 2 β1 0.3317E − 3 Γ 0.3260E − 2

4.3 Results and Discussions

In this work, a 33-bus test system is used to determine the optimal ESS size, location and

year of installation / replacement considering the impact of its calendar and cycle aging on

its SoH. The residential load demand is assumed to increase 3% annually. The planning

period is 10 years; each year is represented by one day, and each day’s operational aspects,

such as load and generation profiles and charge / discharge decisions, are modeled hourly.

The representative day is the one which has the highest peak demand of that year. This is

a conservative approach, using the worst-case scenario and planning accordingly, so that
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Table 4.2: ESS Optimal Plan (Considering Scenario-1 Load Profile).

Case Study
Operation Cost

(NPV-OC)
Installation Cost

(NPV-OC)Optimal Plan Decisions*

Case-1
(Proposed Approach)

(2, 9, 400, 1500) (4, 5, 450, 1800)

$64,000 $5,988,000
(8, 4, 150, 600) (17, 7, 400, 1600)
(19, 5, 500, 2000) (23, 10, 500, 2000)
(30, 6, 250, 1000)

Total Rated Power/Energy: 2.65 MW/10.5 MWh Total: $6,052,000

Case-2
(2, 7, 300, 1200) (4, 5, 500, 2000)

$68,000 $5,815,000
(8, 5, 500, 2000) (15, 9, 250, 1000)

(Without Degradation) (17, 4, 200, 800) (19, 10, 300, 1150)
(23, 5, 150, 600) (30, 6, 250, 1000)

Total Rated Power/Energy: 2.5 MW/9.75 MWh Total: $5,881,000

Case-3
(2, 5, 500, 2000) (4, 10, 400, 1600)

$77,000 $6,844,000
(8, 7, 250, 1000) (15, 9, 400, 1600)

(Fixed Degradation Rate) (17, 6, 250, 1000) (19, 8, 250, 1000)
(23, 4, 400, 1600) (30, 5, 500, 2000)

Total Rated Power/Energy: 2.95 MW/11.8 MWh Total: $6,921,000

*(Bus number, Year of Installation, Rated Power (kW), Rated Energy (kWh))

the system has sufficient redundancy and margin. The choice of one representative day

per year reduces the computational burden of the planning model.

To implement the planning framework proposed in Fig. 4.1, 2, 600 individual REH

operations models [81] are executed to obtain their daily optimal load profiles, and hence

the LDC’s load profiles at each bus are created. Figure 4.3 shows the distribution of the

REH loads at each hour, indicating the minimum and maximum, 25th and 75th

percentiles, and the median consumption of the customers. Note that during the on-peak

TOU prices, the variation in customer load is small, which depicts harmonized operation

of REHs. The HEMS helps the household in shifting its demand from on-peak TOU price

to off-peak price hours.

The LDC operations model is executed for (365 x 10 days) considering the respective

REH load profiles to obtain the corresponding optimal SOC profiles of the ESS. This

data set is divided into a training set (60%), validation set (20%), and testing set (20%).

The Dividerand function of the MATLAB NN-Toolbox [85] is applied to divide the data

set using random indices. The training stage takes place to build the NN-based SoH

estimator. Fig. 4.4 presents the error distribution between SoHj,y,t and ŜoH with the

number of incidences. The main outcomes of the NN, as stated in Fig. 4.1, are the input

weights, layer weights, and biases at hidden and output layer neurons. Table 4.1 shows
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Table 4.3: ESS Optimal Plan Using the Proposed Approach (case-1) for Different Load
Profile Scenarios

Optimal Plan Decisions*

Scenario-1
IEEE RTS Load

(2, 9, 400, 1500) (4, 5, 450, 1800)
(8, 4, 150, 600) (17, 7, 400, 1600)
(19, 5, 500, 2000) (23, 10, 500, 2000)
(30, 6, 250, 1000)

Total: 2.65 MW/10.5 MWh

Scenario-2
50% IEEE RTS load

50% REH penetration

(2, 5, 600, 2000) (4, 3, 950, 1550)
(8, 10, 350, 1400) (19, 7, 150, 600)
(23, 9, 250, 1000)

Total: 2.3 MW/6.55 MWh

Scenario-3
IEEE RTS Load

20% PV penetration (-ve load)

(4, 5, 500, 2000) (8, 4, 150, 600)
(15, 5, 450, 1800) (17, 8, 500, 2000)
(19, 10, 350, 1400) (23, 6, 350, 1400)

Total: 2.3 MW/9.2 MWh

Scenario-4
50% IEEE RTS load

50% REH penetration
20% PV penetration (-ve load)

(2, 4, 550, 1900) (17, 10, 350, 1400)
(19, 5, 700, 2000) (23, 3, 250, 300)
(30, 7, 300, 1200)

Total: 2.15 MW/6.8 MWh

*(Bus number, Year of Installation, Rated Power (kW), Rated Energy (kWh))

the resulting parameters of the NN, which are used to construct the SoH functional

relation given in (4.44).

Next, the proposed LDC planning model is executed to obtain the optimal ESS plan

decisions over the 10 year horizon including ESS energy and power capacity, location, and

installation years, considering the following case studies:

• Case-1: Estimated SoH-integrated LDC planning model.

• Case-2: Without degradation of ESS.

• Case-3: Fixed annual degradation rate of 5%.

Furthermore, each case has been studied considering four load profile scenarios:
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Table 4.4: NPV of Operation and Installation Costs for Various Cases and Scenarios
($1000)

Case
Scenario-1 Scenario-2 Scenario-3 Scenario-4

NPV-OC NPV-IC NPV-OC NPV-IC NPV-OC NPV-IC NPV-OC NPV-IC

1 64 5,988 65 4,800 62 5,364 69 4,630
2 68 5,815 66 4,106 53 5,264 68 4,038
3 77 6,844 76 4,980 68 6,142 69 4,772
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Figure 4.4: Training, validation, testing histogram of NN-based SoH estimator.

• Scenario-1: System demand profile is modeled using the IEEE RTS load.

• Scenario-2: System demand profile is a mix of 50% penetration of REHs and rest

modeled using the IEEE RTS load.

• Scenario-3: System demand profile is a mix of 20% penetration of PVs and rest

modeled using the IEEE RTS load.

• Scenario-4: System demand profile is a mix of 50% penetration of REHs, 20%

penetration of PVs, and rest modeled using the IEEE RTS load.
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Two load profiles are used: IEEE RTS load and REHs. Assuming that the connected

load of an REH is 3 kW, the number of REHs connected at a bus is determined by dividing

the IEEE RTS peak load at a bus by 3 kW. Each REH model is then executed to build a

bus-wise load profile [81]. The total demands of Scenario-1 and Scenario-2 are shown in

Fig. 4.5. In Scenario-3 and Scenario-4, it is assumed that PV facilities are commissioned

at buses 3, 17, and 30 in years 3, 6, and 8, respectively, with their power capacity being

20% of the load at that bus. Note that, in the system load profile, the PVs appear as a

negative load.

The case studies, Table 4.2, examine the impact the proposed approach vs less accurate

SoH models in LDC planning framework while the (load profile) scenarios, Table 4.3,

examine the impact of load mix and PV penetration on ESS sizing, siting, and year of

installation / replacement. These tables also show the optimal ESS planning combinations

for each scenario and case; and Table 4.4 shows the associated operation and installation

cost NPVs.

It is seen from Table 4.2 that in Case-1, the LDC needs to invest in a total ESS capacity

of 2.65 MW/10.5 MWh across seven ESS units. The NPV of the ESS installation cost is

M$5.99. In Case-2, eight ESS units are invested in by the LDC although the total ESS

capacity is 2.5 MW, 9.75 MWh for a total cost that is 2.8% lower than Case-1. This is

because the SoH of the ESS units are considered to remain unchanged in Case-2. On the

other hand, Case-3 requires 2.95 MW, 11.8 MWh of ESS capacity when using a fixed-rate

degradation.

Table 4.3 shows the LDC optimal plan for the four scenarios. In the first scenario, the

total capacity of ESS units is higher in than Scenario-2 as a consequence of the former’s

longer duration of peak demand (Fig. 4.5). In Scenario-3, the integration of PV results

in an approx. 10% reduction in installed ESS capacity compared to Scenario-1. However,

the integration of PV units does not significantly influence the decisions of ESS in the

presence of REHs, as seen comparing Scenario-2 with Scenario-4, because the maximum

PV power output occurs during the mid-day and does not coincide with the peak demand

of the uncoordinated REHs which appear at the onset of off-peak TOU prices.

Scenario-1 has total LDC NPV costs around M$6.05, M$5.88, and M$6.92 for Case-1,
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Figure 4.5: Total distribution system demand and power drawn from substation for Case-1
(Proposed Approach) over the planning period.
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Case-2, and Case-3, respectively (Table 4.4). On average, LDC cost in Case-2 is around

8% lower than in Case-1 since, for the former, ESS SoH is fixed at 100%, which results in

over-estimation of the available energy capacity of the Li-ion batteries. On the other hand,

in Case-3 the average LDC cost is around 10% higher than Case-1 because of the under-

estimation of ESS SoH when using the fixed-rate degradation, leading to higher operation

and installation costs.

Figure 4.6 shows the SoH and ŜoH profiles of the ESS located at bus-8 over a 24-

hour operation considering the proposed degradation model of Case-1. It is noted that

the proposed NN-based mathematical model captures the hourly SoH profile (ŜoH) due to

calendar and cycle aging with a relatively small error, as compared to SoH.

Figure 4.7 shows the reference SoH, SoHj,y,t, the estimated SoH from Case-1, ŜoH, and

the SoH profile considering a fixed deterioration of 5%, as in Case-3, over the plan period.

SoHj,y,t is obtained using the off-line degradation model proposed in [51] and discussed in

Section 4.2.4. In contrast, the ŜoH profile is calculated using the proposed NN-based SoH

estimator model, which is shown precise compared to SoHj,y,t.

SoHj,y,t obtained from the different load mix scenarios are shown in Fig. 4.8; Scenario-1

has consistently the lowest SoH. It is noted that the load mix has some influence on the

battery degradation: the penetration of PV units and the presence of REHs improve the

overall SoH of Li-ion batteries by around 1% every year, as a consequence of the adoption

of RES or REH, which results in a reduction in the peak duration of the system load and

requires steep discharge from ESS.

Figure 4.5 shows the LDC’s aggregated system demand and the power it imports over

the substation in Scenarios-1 and -2 for the representative day in each planning year. The

ESS units supply the net difference between demand and imports. Figure 4.9 shows the

total demand and power imported from external grid over a day in the last year of the

planning period for Scenario-1 and -2. The SOC of ESS located at bus 23 is also included,

which shows high / low SOC during low / high RTS and REH demand, respectively.

Figure 4.10 shows the bus voltage profiles during peak demand hours: hour-18 in

Scenario-1 and hour-20 in Scenario-2 of the terminal year. Note that the voltages are

always within pre-specified limits (i.e. 0.9 to 1.0 p.u.). Scenario-2 shows a higher deviation
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Figure 4.7: Comparison of SoH profiles of ESS located at Bus-8 over the plan period.
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Figure 4.8: Estimated SoH profiles of optimal ESS at Bus-23 for various scenarios.

in voltage from the nominal value of 1.0 p.u. as compared to Scenario-1 as a consequence

of the higher demand from mixed loads in the former. The voltage profile in Case-1 is also

lower in Scenarios-1 and -2 than the voltage profiles in Case-2 and -3.

4.4 Summary

A novel NN-based SoH estimator was developed using a large cluster of smart loads,

simulated to represent the total load of the distribution grid; and a large data set of

ESS operations, simulated to mimic the LDC’s behavior in controlling the ESSs. The

hence extracted functional relationship of SoH was integrated within a planning model,

which included a large penetration of smart REHs. The NN model was re-trained using

the updated outcomes of the planning model to improve the plan decisions. The results

showed a relatively small error between the estimated and the reference SoH of ESS. The

case studies demonstrated the impact of neglecting calendar and cycle aging and under- /

over-estimation of the ESS capacity on the plan decisions of the LDC.
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Figure 4.9: Total demand, power imported from external grid, and ESS operation over
one-day of year-10.
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Figure 4.10: System voltage profiles for different case studies, for Scenario-1 and -2, during
peak demand in the terminal year.
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Chapter 5

Cooperative Operation of Battery

Energy Storage Systems

Participating in Flexibility Services

Provisions
1

In the previous chapter, LDC-owned BESSs are optimally sized and sited in the distribution

grid to help meet distribution grid constraints and minimize total system costs. On the

other hand, this chapter investigates the investor-owned BESSs capability in providing

the LDC with flexibility services. It proposes a cooperative game theory-based approach

to optimally distribute the total system saving between several BESSs participating in

flexibility service provision in the distribution grid. This work assumes that the participants

in flexibility service provision are all Li-ion battery-based ESSs and, furthermore, that the

specific flexibility service attained from these batteries are based on the C-Rate under

1An earlier version of this work has been published in:
O. Alrumayh, S. Wong, H. Alharbi and K. Bhattacharya, “Incentives for Demand Response and Flexibility
Services Procured from Energy Storage Systems,” Proc. IEEE Power & Energy Society General Meeting
2020.

1The present work to be submitted for publication in:
O. Alrumayh, S. Wong and K. Bhattacharya, “Cooperative Operation of Battery Energy Storage Systems
Participating in Flexibility Services Provisions,” in IEEE Transactions on Power System.
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which it must operate to offer such service. The proposed approach ensures the maximum

benefit of LDC from the cooperative behavior and the flexibility of BESSs; furthermore,

it ensures fairness in distributing savings between the ESSs by taking into account the

marginal contribution of the participant to the coalition.

5.1 Nomenclature

Indices and Sets

j, k Index of buses in distribution system, (j, k) ∈ J .

j, h Index of a participant location in distribution grid, (j, h) ∈ J .

s Index of services provided by BESS, s ∈ S.

t Index of time, t ∈ T .

Parameters

as, bs, cs Linearized BESS degradation cost function.

CB Total cost of BESS, $.

CRs Maximum change rate in SOC.

C-Rates Change rate in SOC.

Ej , Ej Minimum and maximum of ESS, p.u.

n Total number of BESS investors.

q Size of a BESS coalition.

SoC, SoC Minimum and maximum of SOC, %.

σHEP
t , σPeak Hourly electricity price and peak price, $/kWh.

σTOU
t Time-of-use price, $/kWh.

P dj,t Hourly distribution grid demand, p.u.
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ηCH, ηDCH Charging and discharging efficiency of ESS, %.

γs, ωs Coefficients of fitting degradation function.

τ Time interval, 15 min.

LDC Operation Model:

Variables

P SS
j,t Active power drawn from substation, p.u.

PPeak Peak power drawn from substation, p.u.

QSS
j,t Reactive power drawn from substation, p.u.

Vj,t Voltage level, p.u.

δj,t Voltage angle, p.u.

BESS Operation Model:

Variables

DoD Depth of discharge of BESS, p.u.

DGCt,s Degradation cost, $.

Ej,t Energy stored in BESS, p.u.

Ls Number of cycles of BESS, p.u.

PCH
j,t , P

DCH
j,t Active Power to be charged/discharged to/from ESS at time of use price, p.u.

SoCj,t SOC of BESS, p.u.

SoCLj,t Linearization of the product term of SOC and binary variable, p.u.

∆SoCj,t,s Change in SOC of BESS, p.u.

∆SoC
+

j,t,s Positive change in SOC of BESS, p.u.

∆SoC
−
j,t,s Negative change in SOC of BESS, p.u.

Zj,t,s, Z
−/+
j,t,s Binary variable.
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5.2 Proposed Flexibility Services Framework

5.2.1 Flexibility Services: Definitions

The lifetime of Li-ion batteries is impacted by many factors such as DoD, C-Rate and

ambient temperature as well as operational decisions. Various operational states of a

Li-ion battery are modeled in this work based on its ability to provide different ranges of

flexibility services which are defined in terms of the SOC limits of the BESS. These are

low flexibility (LF) denoted by s
−/+
1 , moderate flexibility (MF) denoted by s

−/+
2 and high

flexibility (HF) denoted by s
−/+
3 ; their respective ranges of operation are given in Table

5.1. The change in SOC of a service s is dependent on one of the main characteristics of

BESSs, which is C-Rate. As shown in Table 5.1, LF, MF, and HF have C-Rate values of

1, 2 and 4 respectively. The maximum rate of change (CRs) of a service, limits the change

in SOC, which can be calculated as follows:

CRs =
C-Rates

τ
(SoC − SoC), ∀s ∈ S (5.1)

In (5.1), SoC and SoC denote the minimum (i.e. 20%) and maximum SOC (i.e. 100%)

of BESS, τ is the number of time intervals per hour; τ = 4 is selected, denoting time

intervals of 15 minutes. Therefore, it can be easily seen from (5.1) that CRLF = 20%,

providing low flexibility, while CRHF = 80%, which provides high flexibility.

Table 5.1: Flexibility Service Definition

Service Notation |∆SoC| (%) C-Rate

Low Flexible (LF) s
−/+
1 0 - 20 1

Moderate Flexible (MF) s
−/+
2 20 - 40 2

High Flexible (HF) s
−/+
3 40 - 80 4

Referring to Figure 5.1, say at time t− 2, the BESS SoCt−2 is at minimum level of 20%

(point-A). The battery can be charged over the ranges of s+1 , s+2 , or s+3 which corresponds

to changes in SOC from 0% - 20%, 20% - 40%, or 40% - 80%, respectively. The selected
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Figure 5.1: The proposed flexibility services classifications based on change in SoC.

service at time t− 1 is shown to be s+3 for ∆SoCt−1 = 60%, which takes the SOC to 80%

(point-B) and meets the following constraint:

CRMF < |∆SoCt−1| ≤ CRHF, ∀t ∈ T (5.2)

Equation (5.2) shows that the absolute change in SOC is limited by CRMF and CRHF,

which are 40% and 80%, respectively. From point B, the BESS can opt for services s+1 ,

s−1 , s−2 and s−3 based on their corresponding ranges. As an example, s−1 is selected for

∆SoCt = 10% and the SOC profile at time t reaches point-C, where the change in SOC

belongs to LF service as shown below:
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0 ≤ |∆SoCt| ≤ CRLF, ∀t ∈ T (5.3)

Equation (5.3) defines the limits of LF service, where CRLF equals 20%. Finally, from

point-C, the services s+2 , s+1 , s−1 , s−2 and s−3 are available based on their corresponding ranges

of SOC. The service s+2 is selected for ∆SoCt+1 = 30% and the SOC profile reaching point

D at time t + 1. The mathematical representation of the range of MF service is shown

below:

CRLF < |∆SoCt+1| ≤ CRMF, ∀t ∈ T (5.4)

It should be noted that the selection of a service will impact the number of cycles of the

BESS. Also note that out of the six services defined in this proposed framework, namely,

s+1 , s−1 , s+2 , s−2 , s+3 and s−3 , each time interval will have a subset of available services which

will depend on the SOC of the preceding interval.

5.2.2 BESS Degradation Cost Function

Figure 5.2 demonstrates the relationship between the number of cycles of BESS and the

DoD at different C-Rates. It shows an exponential drop in number of cycles with the

increase of DoD. For C-Rate = 1, the experimental data is represented by its curve fit

equation, given as follows [86]:

Ls = γsDoD
ωs , ∀s ∈ S (5.5)

Ls represents number of cycles of a BESS at DoD for a particular service s, γs and ωs

are the fitting function coefficients, where each of the flexibility services- LF, MF, and HF

have their own set of parameters, which will be presented in a latter section.

After obtaining γs and ωs from (5.5), the degradation cost model of the battery at time

t and service s can be represented as follows [87]:
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Figure 5.2: Number of cycles of BESS versus DoD at different C-Rates.

DGCt,s =
CB

γs
| ((1− SoCt)

ωs − (1− SoCt−1)
ωs) |, ∀ t ∈ T , s ∈ S (5.6)

In order to take into account the impact of the change in SOC over a time interval,

different values SoCt and SoCt−1 are used in (5.6) to calculate DGCt,s for different services.

Using these data, the degradation cost of the BESS for different SoCt and SoCt−1 scenarios

and C-Rates are plotted as shown in Figure 5.3. It is noted that higher C-Rate values (e.g.

C-Rate = 4) results in a relatively high degradation cost as compared to lower C-Rate (e.g.

C-Rate = 1). For instance, the discharge of BESS from an SoCt−1 value of 100% to SoCt

of 20% will have a degradation cost of about 2 $/kWh. On the other hand, the maximum

change in SOC within the limits of LF service will result in maximum degradation cost of

1 $/kWh.

In order to incorporate (5.6) into an MILP problem, it can be linearized using multi-
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Figure 5.3: Degradation cost of BESS for different flexibility services.

linear regression as follows [87]:

DGCt,s = asSoCt,s + bsSoCt−1,s + cs∆SoCt,s ∀ t ∈ T , s ∈ S (5.7)

In (5.7), the linearized degradation cost DGCt,s is presented. Service LF, MF, and

HF have their individual degradation cost coefficients as, bs, and cs, which gives different

weights for their associated variables.

5.2.3 LDC Operations Considering BESS Flexibility Services

The distribution system accommodates several distributed BESSs which are contracted to

provide any of the three previously defined flexibility services – LF, MF, and HF. It is also

assumed that the LDC purchases energy from the wholesale energy market at the Hourly
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Electricity Price (HEP), while its energy arbitrage with the distributed BESSs is carried

out at TOU prices. The LDC is responsible for meeting the system demand while seeking

to minimize its total operation cost, as given below:

J = σPeakP Peak +
T∑
t

σHEP
t P SS

j,t −
J∑
j

T∑
t

(
PCH
j,t − PDCH

j,t

)
σTOU
t

+
J∑
j

T∑
t

S∑
s

(
asSoCj,tZj,t,s + bsSoCj,t−1Zj,t,s + cs∆SoCj,t,s

)
(5.8)

The objective function (5.8) comprises four components: the first component represents

the demand charge paid by the LDC depending on its measured peak load during a given

operating period; the second, the total cost of buying energy from the electricity market at

HEP; the third, the net cost of selling / buying energy to / from the distributed BESSs at

TOU prices; and the final, the degradation cost of BESS operation at different flexibility

services, as discussed in Section 5.2.1 and 5.2.2. The objective function (5.8) is subject

to the nodal demand-supply balance constraints for active and reactive power, as given

below:

P SS
j,t − P d

j,t + PDCH
j,t − PCH

j,t =
J∑

k=1,k 6=j

(
Kj,k,1(δj,t − δk,t) +Kj,k,2(Vj,t − Vk,t)

)
,

∀t ∈ T ; ∀(j, k) ∈ J (5.9)

QSS
t −Qd

j,t =
N∑

k=1,k 6=j

Kj,k,2(δj,t − δk,t) +Kj,k,1(Vj,t − Vk,t), ∀t ∈ T ; ∀(j, k) ∈ J (5.10)

where,

Kj,k,1 =

x2j,k
r2j,k+x

2
j,k

xj,k
, Kj,k,2 =

rj,kxj,k
r2j,k+x

2
j,k

xj,k
, ∀(j, k) ∈ J (5.11)

The linearized power flow equations (5.9) and (5.10) are given in [45] and adopted here to
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represent the power balance equations. Additionally, the following constraints are imposed:

0 ≤ P SS
j,t ≤ P SS

t , ∀t ∈ T ; j = 1 (5.12)

P d
j,t + PCH

j,t − PDCH
j,t ≤ PPeak, ∀t ∈ T ; j ∈ J (5.13)

0.9 ≤ Vj,t ≤ 1.05, ∀t ∈ T ; ∀(j, k) ∈ J (5.14)

Equation (5.12) denotes the limits on power imported by the LDC from the external

grid, which is limited by the capacity of the distribution transformer. Constraint (5.13)

calculates the system peak over the day. Constraint (5.14) ensures that the voltages at

each bus are within predefined ranges.

The BESSs operational constraints are given below:

Ej,t = Ej,t−1 + τ ηch P ch
j,t − τ

P dch
j,t

ηdch
, ∀t ∈ T , j ∈ J (5.15)

Ej ≤ Ej,t ≤ Ej, ∀t ∈ T , j ∈ J (5.16)

0 ≤ P ch
j,t ≤ PjZj,t,ch, ∀t ∈ T , j ∈ J (5.17)

0 ≤ P dch
j,t ≤ PjZj,t,dch, ∀t ∈ T , j ∈ J (5.18)

Zj,t,ch + Zj,t,dch ≤ 1, ∀t ∈ T , j ∈ J (5.19)

Equation (5.15) represents the inter-temporal changes of energy level of the BESS taking

into account its charging and discharging efficiencies. Constraints (5.16) ensures that the

energy levels of the BESSs are within their rated capacities. In addition, the charge and

discharge decisions are limited by the rated power of the BESS, as given in (5.17) and

(5.18).

The SOC of the BESS is the level of charge of the facility relative to its rated capacity,

as given below:

SoCj,t =
Ej,t

Ej
, ∀t ∈ T , j ∈ J (5.20)
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SoCj,t =


SoCj,t−1 +

∑
s∈{s1,s,2,s3}

∆SoCj,t,s, if t 6= {0, T}

0.5, otherwise

, ∀j ∈ J (5.21)

SoC ≤ SoCj,t ≤ SoC, ∀t ∈ T , j ∈ J (5.22)

The inter-temporal changes in SOC of the BESSs are functions of their change in SOC

as given in (5.21). Constraint (5.22) limits the SOC levels within their lower and upper

limits, which are assumed to be 20% and 100%, respectively, in the present work. The

change in SOC of BESSs are modeled as follows:

0 ≤ |∆SoCj,t,LF | ≤ CRLFZj,t,LF , ∀t ∈ T , j ∈ J (5.23)

CRLFZj,t,MF < |∆SoCj,t,MF | ≤ CRMFZj,t,MF , ∀t ∈ T , j ∈ J (5.24)

CRMFZj,t,HF < |∆SoCj,t,HF | ≤ CRHFZj,t,HF , ∀t ∈ T , j ∈ J (5.25)

Zj,t,LF + Zj,t,MF + Zj,t,HF ≤ 1, ∀t ∈ T , j ∈ J (5.26)

The constraints (5.23) to (5.25) denotes the limits of the changes in SOC of BESSs for

service LF, MF, and HF, respectively. The ∆SoCj,t,s is limited by the maximum rate of

change CRs, as discussed earlier in (5.1). Constraint (5.26) ensures that only a single

service, LF, MF, or HF, can be selected at a time.

The above formulation contains some nonlinear terms, as in the objective function (5.8)

and the constraints (5.23) to (5.25), which can be easily reformulated as follows [88]:

SoCL
j,t,s ≥ 0, ∀t ∈ T , j ∈ J (5.27)

SoCL
j,t,s ≤ SoCj,t, ∀t ∈ T , j ∈ J (5.28)

SoCL
j,t,s ≤ Zj,t,sM, ∀t ∈ T , j ∈ J (5.29)

SoCL
j,t,s ≥ SoCj,t −M (1− Zj,t,s), ∀t ∈ T , j ∈ J (5.30)
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Constraints (5.27) to (5.30) represent the linearization of the product of the two

variables appearing in (5.8): the binary variable (Zj,t,s) and the continuous variable

(SoCj,t). The linearized term is introduced as a positive variable SoCL
j,t,s. The constraint

(5.28) ensures that SoCL
j,t,s is less than or equal to SoCj,t. In (5.29) and (5.30), SoCL

j,t,s is

forced to be equal to SoCj,t if Zj,t,s = 1; otherwise, SoCL
j,t,s equals to zero.

The term |∆SoCj,t,s| in (5.23) to (5.25) can be linearly formulated as below [88]:

∆SoC
+

j,t,s ≥ 0,∆SoC
−

j,t,s ≤ 0, ∀t ∈ T , j ∈ J (5.31)

|∆SoCj,t,s| = ∆SoC
+

j,t,s −∆SoC
−

j,t,s, ∀t ∈ T , j ∈ J (5.32)

CRs−1 SoC Z
+

j,t,s < ∆SoC
+

j,t,s ≤ CRs SoC Z
+

j,t,s, ∀t ∈ T , j ∈ J (5.33)

− CRs SoC Z
−

j,t,s ≤ ∆SoC
−

j,t,s < −CRs−1 SoC Z
−

j,t,s, ∀t ∈ T , j ∈ J (5.34)

Z
+

j,t,s + Z
−

j,t,s ≤ Zj,t,s, ∀t ∈ T , j ∈ J (5.35)

Two auxiliary variables are introduced to reformulate the absolute change in SOC;

∆SoC
+

j,t,s and ∆SoC
−

j,t,s converts the range of the change in SOC to two components. The

boundaries of the positive and negative changes in SOC are modeled as in (5.33) and

(5.34), respectively. The binary variables Z
+

j,t,s and Z
−
j,t,s are used to ensure that either

∆SoC
+

j,t,s or ∆SoC
−

j,t,s should be zero. Constraint (5.35) coordinates the binary variables of

the linearized change in SOC and the binary variable associated with the selected service

to be provided.

5.2.4 Allocation of Cost Savings

First, an LDC operations model without any BESS units is executed and the total

system cost is determined. Next, the LDC operations model including distributed BESSs,

presented in Section 5.2.3, is executed to find the operations cost with the flexibility

service provisions from the BESS. The difference between the two system operation costs

is the total contribution of the distributed BESSs to system savings.

In this work, the Shapley value criterion [89], which is well known in the literature of

102



cooperative game theory, is used to allocate the total system savings among the BESSs

for their flexibility service provisions, on the basis of their marginal contributions to the

savings. This concept provides a unique allocation strategy among the participants in a

coalition game [89]. It is assumed that the LDC schedules and dispatches the distributed

BESS units. In return, the LDC distributes the savings accrued among the BESSs units.

The Shapley value of a cooperative game is given as follows:

φh =
1

n

n∑
q=1

1

c(q)

∑
h∈H

v(h) (5.36)

where,

v(h) = v(H)− v(H − h) (5.37)

c(q) =
(n− 1)!

(n− q)!(q − 1)!
(5.38)

The second summation in (5.36) represents the sum of all marginal contributions of a

BESS h to all possible subsets of BESS units H, which is obtained from (5.37). The first

summation calculates the number of all formed coalitions of size q that contains the BESS

h, and n is the total number of BESSs, as in (5.38).

From the above discussions, the notion of contribution of the BESSs to system savings

can be utilized to develop a financial compensation scheme for their flexibility service

provisions. The payment for flexibility services by a BESS unit can be represented as

follows:

ρh = fh + φh (5.39)

Equation (5.39) includes two components: a fixed payment component fh, and a

variable payment component φh. The fixed payment can be payable to the BESS for

participating, collaborating and providing control access to their flexible asset to the

LDC. The BESSs would receive this component of payment even if the LDC keeps a

BESS unit in idle mode. The variable component of payment in (5.39) would be a
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function of the contribution of BESS h to the system savings, as obtained using the

Shapley value criterion.

5.3 Results and Discussions

In this example, the LDC is responsible for managing a 33-bus distribution system, the

same as that used in the previous chapters [90], and meeting the demand of its customers.

It is assumed that three investor-owned BESS units are located at buses j = 2, 23, and 30,

which is in line with the findings of optimal BESS placement from the previous chapter;

they are sized 800 kW/200 kWh, 2400 kW/600 kWh, and 3200 kW/800 kWh, respectively.

The LDC aims to minimize its total operation cost, given in (5.8) which includes the cost

of flexible operation of the BESSs. The following scenarios have been analyzed:

• SC-1: Normal operation with a typical given HEP profile.

• SC-2: Sudden 100% increase in HEP in the interval 1-2 PM.

• SC-3: Sudden 30% increase in system demand during the interval 8-9 PM, which is

close to the peak-load hour of the system.

The total system load profile and the HEP profile over an operation day of August 1,

2018, are shown in Figure 5.4 and 5.5, respectively. The system peak demand is 0.4 p.u.,

which is equivalent to 4 MW. Shown in Figure 5.5, the HEP varies over the day between

1.2 and 2.2 $/kWh.

5.3.1 Calculation of Shapley Value of BESS Investors

LF Service

In this subsection only the LF service from BESSs is considered in the SC-1 (normal

operation) scenario, in order to demonstrate in detail the calculation of the Shapley values

from the system savings and the marginal contributions of the BESSs. First, the LDC
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Figure 5.4: Load profile of the LDC over a day.
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Figure 5.5: HEP profile over a day.
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operations model (i.e. (5.8) to (5.35)) is executed considering all possible BESS coalitions

to calculate their contribution to the total system savings. As stated earlier, three BESS

units (B-2, B-23 and B-30) are participating in LF service provisions, and hence they can

form one of the seven different coalitions, as presented below:

H = {B-2} V {B-23} V {B-30} V
{B-2,B-23} V {B-23,B-30} V {B-30,B-2} V

{B-2,B-23,B-30} (5.40)

After executing the LDC operations model, the total system savings for each coalition

is reported in Table 5.2. The savings accrued from single-facility coalitions namely, B-2,

B-23, and B-30 operating independently, are $30, $117, and $153, respectively. The BESS

units can also form paired coalitions such as B-2, B-23, B-23, B-30, and B-30, B-2, which

accrues total system savings of $139, $244, and $176, respectively. Also, in the grand

coalition when all BESS units are operating simultaneously, the total system savings is

$266. It should be noted that the total system savings are calculated with reference to the

LDC system operation cost when there are no BESSs.

Table 5.2: Total Savings in a BESS Coalition for LF Service

Coalition (H) Total System Savings ($)

B-2 30
B-23 117
B-30 153
B-2, B-23 139
B-23, B-30 244
B-30, B-2 176
B-30, B2, B-23 266

From the knowledge of total system savings in each coalition, the marginal contribution

of a BESS unit can be determined. Table 5.3 presents the marginal contributions of B-2 to

each coalition in which it can be part of; these are obtained by subtracting the savings of
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the coalition without B-2 from the savings obtained from a coalition in which B-2 is part

of. The corresponding Shapley value of B-2 for the LF service is obtained as $25. Similar

to the calculations shown in Table 5.3, Shapley values can be calculated for other BESS

units B-23 and B-30 as well, as shown in Table 5.4 and 5.5. It should be noted that the

sum of the Shapley values of all BESS units for a given service, should be equal to the

total system savings achieved in the grand coalition. For instance, the sum of the Shapley

values for the three BESS units in the present example, for the LF service provisions, is

$25 + $102 + $139 = $266, which is the savings accrued in the grand coalition, as noted

from 5.2.

Table 5.3: Marginal Contributions and Shapley Value Calculation for BESS B-2

Coalition (H)
Marginal Contribution of B-2 in coalition H

v(h) = v(H)− v(H − h)

Weight on H
1
n

1
c(H)

B-2 $30 - $0 = $30 1/3
B-2, B-23 $139 - $117 = $22 1/6
B-2, B-30 $176 - $153 = $23 1/6
B-2, B23, B-30 $266 - $244 = $22 1/3

Shapley Value ($) 30/3 + 22/6 + 23/6 + 22/3 ≈ $25

Table 5.4: Marginal Contributions and Shapley Value Calculation for BESS B-23

Coalition (H)
Marginal Contribution of B-23 in coalition H

v(h) = v(H)− v(H − h)

Weight on H
1
n

1
c(H)

B-23 $117 - $0 = $117 1/3
B-23, B-2 $139 - $30 = $109 1/6
B-23, B-30 $244- $153 = $91 1/6
B23, B-2, B-30 $266 - $176 = $90 1/3

Shapley Value ($) 117/3 + 109/6 + 91/6 + 90/3 ≈ $102
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Table 5.5: Marginal Contributions and Shapley Value Calculation for BESS B-30

Coalition (H)
Marginal Contribution of B-30 in coalition H

v(h) = v(H)− v(H − h)

Weight on H
1
n

1
c(H)

B-30 $153 - $0 = $153 1/3
B-30, B-2 $176 - $30 = $145 1/6
B-30, B-23 $244 - $117 = $127 1/6
B-30, B-2, B-23 $266 - $139 = $126 1/3

Shapley Value ($) 153/3 + 145/6 + 127/6 + 126/3 ≈ $139

MF and HF Services

This subsection discusses the provision of LF, MF, and HF services being available

individually, for scenario SC-1. Table 5.6 presents the savings accrued in the grand

coalition of the BESSs for each of these services, and a fourth case when all the flexibility

services are available simultaneously – but only one of them is selected. It is noted that

the grand coalition savings for service LF are very close to that when all services are

provided simultaneously. This implies that the LF service is the most selected service

while MF or HF only leads to a reduction in the total savings. Also note that when all

services are available simultaneously, the grand coalition savings are the highest. Similar

to the discussion presented in Section 5.3.1, Tables 5.7, 5.8, and 5.9 present the marginal

contributions and allocations of savings among B-2, B-23, and B-30, respectively.

Table 5.6: Grand Coalition Savings for a given Flexibility Service

Service Provided Grand Coalition Savings ($)

LF Only 266
MF Only 247
HF Only 184

LF & MF & HF Available Simultaneously 267

As seen from the tables, the size of the BESS plays a crucial role in its marginal

contribution. The BESS B-2, for example, represents 12.5% of the total installed BESS

capacity, and receives the lowest share of savings, and correspondingly the Shapley value
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Table 5.7: Allocation of Saving of BESS B-2 (800 kW/200 kWh)

Coalition (H)

Marginal Contribution of B-2
v(h) = v(H)− v(H − h) Weight on H

1
n

1
c(H)LF ($) MF ($) HF ($) ALL ($)

B-2 30 22 18 30 1/3
B-2, B-23 23 21 23 23 1/6
B-2, B-30 23 28 27 23 1/6
B-2, B-23, B-30 22 22 18 22 1/3

Shapley Value ($) 25 23 20 25

Table 5.8: Allocation of Saving of BESS B-23 (2400 kW/600 kWh)

Coalition (H)

Marginal Contribution of B-23
v(h) = v(H)− v(H − h) Weight on H

1
n

1
c(H)LF ($) MF ($) HF ($) ALL ($)

B-23 117 103 64 120 1/3
B-23, B-2 109 102 69 112 1/6
B-23, B-30 91 98 82 92 1/6
B-23, B-2, B-30 90 92 73 91 1/3

Shapley Value ($) 102 98 71 104

Table 5.9: Allocation of Saving of BESS B-30 (3200 kW/800 kWh)

Coalition (H)

Marginal Contribution of B-30
v(h) = v(H)− v(H − h) Weight on H

1
n

1
c(H)LF ($) MF ($) HF ($) ALL ($)

B-30 153 128 85 160 1/3
B-30, B-2 145 134 93 152 1/6
B-30, B-23 127 122 102 131 1/6
B-30, B-2, B-23 126 123 97 131 1/3

Shapley Value ($) 139 126 93 144
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Table 5.10: Share of Savings Among BESSs

BESS

Shapley Value
($)

Share in Total
Savings (%)

Average of the Share in
Total Savings

(%)
LF MF HF LF MF HF

B-2 25 23 20 9.4 9.3 10.9 9.8
B-23 102 98 71 38.4 39.7 38.6 38.9
B-30 139 126 93 52.2 51 50.5 51.2

* Capacity share of B-2: 12.5%, B-23: 37.5%, B-30: 50%

of BESS B-2 approximately equals its percentage share of installed capacity within the

distribution system.

Table 5.10 presents the distribution of savings among the BESS units using the

Shapley value criterion for individual flexibility services. Each of the BESS unit’s share in

total savings for LF service is obtained by dividing the corresponding Shapley values by

the savings in the grand coalition (i.e. $266), as reported in Table 5.6. Similarly, the

BESS unit’s share in total savings for MF and HF services are obtained by dividing the

corresponding Shapley values by the savings in the grand coalition (i.e. $247 and $184,

respectively), obtained from Table 5.6. The averages of the share in total savings

considering all the services, for B-2 is 9.8%, for B-23 is 38.9% and for B-30 is 51.2%. It is

noted that these average shares in savings are in line with their capacity shares of 12.5%,

37.5%, and 50% with reference to the total BESS capacity in the system. It may be

inferred that B-30 has the highest impact on total system flexibility since it has the

largest share in system savings.

5.3.2 Operational Performance of BESS Flexibility Services in

Different Scenarios

Figure 5.6 shows the operation of the BESSs for different flexibility services; the changes

in the SOC are presented for every 15 min operating interval. It is noted from Figure

5.6(a) that the increments/decrements in SOC with the LF service are smaller than other
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Figure 5.6: SOC of BESSs providing different flexibility services in Scenario SC-1.
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Figure 5.7: SOC of BESSs for different flexibility services in Scenario SC-2.

112



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (t)

0

0.2

0.4

0.6

0.8

1

1.2

S
O

C
 (

p.
u.

)

High Demand Period B-2 B-23 B-30

(a) LF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (t)

0

0.2

0.4

0.6

0.8

1

1.2

S
O

C
 (

p.
u.

)

High Demand Period B-2 B-23 B-30

(b) MF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (t)

0

0.2

0.4

0.6

0.8

1

1.2

S
O

C
 (

p.
u.

)

High Demand Period B-2 B-23 B-30

(c) HF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (t)

0

0.2

0.4

0.6

0.8

1

1.2

S
O

C
 (

p.
u.

)

High Demand Period B-2 B-23 B-30

(d) All Services

Figure 5.8: SOC of BESSs for different services in Scenario SC-3.
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services. For example, all the batteries require an hour to fully discharge between 9 to

10 AM when providing LF service, while B-23 and B-30 requires only 30 minutes to fully

discharge, when providing MF service. The fastest response is noted in HF service, when

B-23 and B-30 discharges from high to low SOC in 15 minutes (Fig. 5.6(c)). Each service

impacts the total operation cost of the BESS. The need for larger changes in the SOC in

a short time results in a high degradation cost of the BESS, as given in (5.8).

Figure 5.7 shows the operation of BESS B-30 in scenario SC-2 which assumes a 100%

increase in the HEP between 1-2 PM, from its price reported in Fig. 5.5. The operation

of the BESS units are exactly identical to scenario SC-1 until the price spike has occurred

at 1 PM, after which the flexibility services come into play. It is noted that all the BESS

units are discharged fully during the period of price spike in the LF service or when all

services are provided simultaneously. In the case of MF service B-23 and B-30 are fully

discharged, while B-2 is discharged to 30% SOC within 30 min, as noted in Fig. 5.7(b).

In the case of HF service all the BESS units are discharged to 30% SOC within 15 min, as

noted in Fig. 5.7(c). Finally, Figure 5.7(d) shows that when all the services are available

simultaneously, 80% of the BESS stored energy is depleted during the price spike interval,

and the LF service is primarily selected over the other services.

In should be noted that since the overall objective of the LDC is to minimize its system

operation cost, the BESS units discharge when the price spike occurs in order to reduce

the amount of power purchased from the external grid at the high price while supplying

the LDC demand internally, thereby maximizing the savings.

In scenario SC-3 the LDC system demand during hour 20-21 increases by 30%. It is

again assumed that the BESS operations until that point of time were identically following

the base-case operation of the day-ahead, as was determined from scenario SC-1 (Figure

5.6) and that all the BESS units were at low SOC levels at hour-20. When the demand

spike occurs, if the BESS units would start charging in order to discharge and meet the

demand spike, it would create an instantaneous further increase in demand which would

be detrimental for the system. Hence, the BESS units continue to stay idle at their low

SOC levels, and do not provide any flexibility services, as shown in Fig. 5.8.
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5.4 Summary

In this chapter, a novel flexibility services framework was developed based on the

capabilities of BESSs in providing different C-Rate levels, namely, low flexibility (LF),

moderate flexibility (MF), and high flexibility (HF). A novel mathematical model was

proposed, from the perspective of the LDC, to optimally procure the LF, MF and HF

services in the operations horizon. This model included a degradation cost formulation of

the BESS units based on the new flexibility services definitions proposed. Thereafter, a

cooperative game-theory based approach was applied wherein the Shapley value criterion

was used to allocate the total system savings among the flexible BESS asset owners, and

hence a pricing scheme for flexibility services was developed. The proposed approach

ensured that the flexible resources were financially compensated based on their marginal

contribution to the system savings.
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Chapter 6

Conclusions

6.1 Summary

This thesis focused on the flexibility provisions from REHs and BESSs in operation and

planning frameworks of distribution systems. Chapter-1 presented the motivation and

related literature review relevant to the work presented in the subsequent chapters. In

addition, Chapter-1 outlined the main research objectives and finally the overall layout of

the thesis.

In Chapter-2, brief overviews of the background topics related to the research objectives

were presented. The concept of REH and the mathematical model for the optimal operation

of the HEMSs were discussed. The characteristics and various technologies of ESS were

discussed along with their applications in smart grids. The RCA was introduced, and

followed by a brief introduction on NNs. Also, a brief discussion on cooperative game

theory was presented with particular focus on the concept of Shapley value criterion.

In Chapter-3, a novel two-stage scheme was proposed to coordinate the interaction

between the large number of REHs and the LDC. A flexibility evaluation approach was

developed to quantify the available flexibility from individual REHs. The evaluated

flexibility, along with the REHs load profiles were communicated to the LDC in order to

study their impact on the distribution grid operation. A new mathematical model was
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proposed for the LDC system operator to determine the bus-wise PRRs, which were

communicated back to the REHs based on their individual flexibility indices.

The main advantage of the proposed two-stage coordination scheme was the

avoidance of a centralized optimization model which would need to optimize thousands of

REHs as well as the LDC’s operations, simultaneously. Therefore, the proposed scheme

disaggregated and distributed the computational burden amongst each entity in the

distribution grid.

In Chapter-4, a novel NN-based SoH estimator was developed considering the

presence of a large cluster of REHs, as introduced in Chapter-3, and a large data set of

BESS operations, simulated to mimic the LDC’s behavior in controlling these units.

Subsequently, the obtained structure of the NN was converted to a functional

relationship, which was incorporated within a BESS planning problem. The weights and

biases of the mathematical representation of the NN were updated iteratively to improve

the plan decisions. The proposed approach showed high accuracy in estimating the SoH

of the BESS. Different case studies were carried out to investigate the impact of

neglecting calendar and cycle aging and under / over-estimation of the BESS capacity on

the LDC’s plan decisions. In addition, several scenarios were simulated to study the

influence of the load mix and PV penetration on battery degradation.

In Chapter-5, new definitions for flexibility services from BESS units were developed,

namely, low flexibility (LF), moderate flexibility (MF), and high flexibility (HF) services.

The impact of each of these services on the BESS degradation cost were captured and

modeled. A novel LDC operation model was proposed to optimally procure the LF, MF and

HF services while taking into account the degradation cost model. Thereafter, the Shapley

value criterion was applied to allocate the total system savings among the BESS units for

their respective services. The proposed approach ensured that the flexible resources were

financially rewarded based on their marginal contribution to the system savings.

The following conclusions can be drawn from the thesis:

• The presence of a large number of uncoordinated REHs can reshape the total load

of the distribution system and might result in a high peak-to-average power ratio.

Studies revealed that the procurement of flexibility from REHs significantly
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enhanced the grid operational efficiency, reduced peak demand, and minimized the

power system losses.

• The integration of BESSs in the distribution grid can significantly contribute to the

LDC’s operational flexibility. However, it is important to consider their SoH while

making operational and planning decisions. The proposed novel BESS degradation

model integrated within the BESS planning problem presented a very accurate

estimate of the batteries’ SoH. This helped the LDC in avoiding under /

over-estimation of the BESSs available capacity during the operation phase, and

the required rated power and energy capacity in the planning phase.

• Scenario studies were carried out to analyze the impact of load mix on the plan

decisions and the degradation of BESSs. Load profiles with extended duration peaks

resulted in a larger installed capacity of BESSs. The studies also revealed that the

level of PV penetration significantly reduced the required rated capacity of batteries.

Although the considered system load profile had a peak during the daytime, because

of the presence of REHs, the system peak demand was shifted and did not coincide

with the peak power generation from the PV panels, hence requiring lesser installation

capacity of BESS.

• Studies revealed that BESSs can provide flexibility services to the LDC particularly

during demand and price spikes. The contribution of a BESS unit to flexibility was

noted to be proportional to its capacity share in total installed capacity.

6.2 Contributions

The main contributions of the research presented in this thesis can be summarized as

follows:

• The mathematical model of the REH, previously reported, was extensively improved

by taking into account a comprehensive set of individual appliance operation models

and their optimal operation, considering the customer’s preferences, behavior, and

objectives.
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• A new REH model was presented considering different levels of interactions in

terms of power interchanges between several devices internally within the REH and

externally with the LDC.

• A novel concept of residential load flexibility was proposed and hence a flexibility

index was defined to quantify the available flexibility from an REH, aggregated from

that provided by various appliances, ESS, and PV panel.

• A novel two-stage coordination scheme and associated novel models of the REH and

LDC were proposed that took into account distinctly individual objectives of each

HEMS as well as that of the LDC, seeking to enhance the grid operational efficiency,

and create an aggregated flexibility provision for the system.

• A novel NN based degradation model was proposed to estimate the SoH of Li-ion

batteries of an BESS by considering a large data set of BESS operations for NN

training. This data set was obtained by simulating the LDC operations in controlling

the BESS in the presence of a large cluster of uncoordinated REH loads.

• The proposed SoH model of the BESS was incorporated into the planning model to

determine the optimal energy capacity, power rating, location and year of

installation / replacement of BESSs while internalizing battery capacity

degradation due to cycling and aging effects.

• A novel flexibility services framework was developed based on the capabilities of

BESSs in providing different C-Rate levels, namely, low flexibility (LF), moderate

flexibility (MF), and high flexibility (HF). A novel mathematical model was

proposed, from the perspective of the LDC, to optimally procure the LF, MF and

HF services in the operations horizon.

• A cooperative game theory based approach was applied to allocate the accrued

financial benefits among the BESS units for their flexibility services. The Shapley

value was applied to fairly distribute the total savings from the BESS flexibility

provision based on their individual marginal contributions, and hence a new pricing

scheme for flexibility services was proposed.
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6.3 Future Work

Based on the work presented in this thesis, the following issues can be examined in the

future:

• With the increase in PEV penetration, there is a need to consider their smart

charging and how they impact the system operation. This involves optimizing the

PEV charging load in the REHs to minimize the customer’s cost. It is also worth

investigating the effect of smart charging PEVs on the flexibility provided by an

REH.

• The study of flexibility of smart loads and BESSs need be extended further to examine

their impact on the reliability of the distribution system.

• The proposed SoH estimation approach can be incorporated within the bids / offers

of BESS units and included within electricity market settlement models.

• The BESS flexibility service provision framework can be improved to take into

account the impact of uncertainty in demand and electricity prices on the BESS

operation by incorporating model predictive control approach.

• The proposed flexibility services framework can be extended to be included as

products for trading within a wholesale electricity market auction model.
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