
Resource Management in Softwarized
Networks

by

Shihabur Rahman Chowdhury

A thesis
presented to the University of Waterloo

in ful�llment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2021

© Shihabur Rahman Chowdhury 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Exam-
ining Committee is by majority vote.

External Examiner: Mostafa Ammar
Regents’ Professor
School of Computer Science
Georgia Institute of Technology

Supervisor: Raouf Boutaba
Professor
David R. Cheriton School of Computer Science
University of Waterloo

Internal Member: Martin Karsten
Associate Professor
David R. Cheriton School of Computer Science
University of Waterloo

Internal Member: Bernard Wong
Associate Professor
David R. Cheriton School of Computer Science
University of Waterloo

Internal-External Member: Ravi Mazumdar
Professor
Department of Electrical and Computer Engineering
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of Con-
tributions included in the thesis. This is a true copy of the thesis, including any required �nal
revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

This dissertation includes �rst authored peer-reviewed materials that have appeared in journals
and conference proceedings published by the Institute of Electrical and Electronics Engineers
(IEEE). The IEEE’s policy on reuse of published materials in a dissertation is as follows: “The
IEEE does not require individuals working on a thesis to obtain a formal reuse license”.

The following list serves as a declaration of the Versions of Record for works included in
this dissertation:
Portions of Chapter 2:
S. R. Chowdhury, M. A. Salahuddin, N. Limam, and R. Boutaba. “Re-architecting NFV Ecosys-
tem with Microservices: State-of-the-art and Research Challenges”, in IEEE Network, vol. 33,
no. 3, pp. 168-176, May/June 2019, doi: 10.1109/MNET.2019.1800082.
S. R. Chowdhury, Anthony, H. Bian, T. Bai, and R. Boutaba. “µNF: A Disaggregated Packet
Processing Architecture”. in IEEE Conference on Network Softwarization (NetSoft), 2019, pp. 342-
350, doi: 10.1109/NETSOFT.2019.8806657.
S. R. Chowdhury, Anthony, H. Bian, T. Bai, and R. Boutaba. “A Disaggregated Packet Pro-
cessing Architecture for Network Function Virtualization”. in IEEE Journal on Selected Areas in
Communications, vol. 38, no. 6, pp. 1075-1088, June 2020, doi: 10.1109/JSAC.2020.2986611.
Portions of Chapter 3:
S. R. Chowdhury, S. Ayoubi, R. Ahmed, N. Shahriar, R. Boutaba, J. Mitra, and L. Liu. “MULE:
Multi-Layer Virtual Network Embedding”, in IEEE/ACM/IFIP International Conference on Net-
work and Service Management (CNSM), 2017, pp. 1-9, doi: 10.23919/CNSM.2017.8256005.
S. R. Chowdhury, S. Ayoubi, R. Ahmed, N. Shahriar, R. Boutaba, J. Mitra, and L. Liu. “Multi-
Layer Virtual Network Embedding”, in IEEE Transactions on Network and Service Management,
vol. 15, no. 3, pp. 1132-1145, September 2018, doi: 10.1109/TNSM.2018.2834315.
Portions of Chapter 4:
S. R. Chowdhury, R. Ahmed, M. M. A. Khan, N. Shahriar, R. Boutaba, J. Mitra, and F. Zeng.
“Protecting virtual networks with DRONE”, in IEEE/IFIP Network Operations and Management
Symposium (NOMS), 2016, pp. 78-86, doi: 10.1109/NOMS.2016.7502799.
S. R. Chowdhury, R. Ahmed, M. M. A. Khan, N. Shahriar, R. Boutaba, J. Mitra, and F. Zeng.
“Dedicated Protection for Survivable Virtual Network Embedding”, in IEEE Transactions on Net-
work and Service Management, vol. 13, no. 4, pp. 913-926, December 2016,
doi: 10.1109/TNSM.2016.2574239.

iv

https://doi.org/10.1109/MNET.2019.1800082
https://doi.org/10.1109/NETSOFT.2019.8806657
https://doi.org/10.1109/JSAC.2020.2986611
https://doi.org/10.23919/CNSM.2017.8256005
https://doi.org/10.1109/TNSM.2018.2834315
https://doi.org/10.1109/NOMS.2016.7502799
https://doi.org/10.1109/TNSM.2016.2574239

Portions of Chapter 5:
S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “PayLess: A low cost network mon-
itoring framework for Software De�ned Networks”, in IEEE/IFIP Network Operations and Man-
agement Symposium (NOMS), 2014, pp. 1-9, doi: 10.1109/NOMS.2014.6838227.
S. R. Chowdhury, R. Boutaba, and J. François, “LINT: Accuracy-adaptive and Lightweight
In-band Network Telemetry”, in IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM), 2021 (to appear).

v

https://doi.org/10.1109/NOMS.2014.6838227

Abstract

Communication networks are undergoing a major transformation through softwarization, which
is changing the way networks are designed, operated, and managed. Network Softwarization is
an emerging paradigm where software controls the treatment of network �ows, adds value to
these �ows by software processing, and orchestrates the on-demand creation of customized net-
works to meet the needs of customer applications. Software-De�ned Networking (SDN), Network
Function Virtualization (NFV), and Network Virtualization are three cornerstones of the overall
transformation trend toward network softwarization. Together, they are empowering network
operators to accelerate time-to-market for new services, diversify the supply chain for network-
ing hardware and software, bringing the bene�ts of agility, economies of scale, and �exibility
of cloud computing to networks. The enhanced programmability enabled by softwarization
creates unique opportunities for adapting network resources in support of applications and
users with diverse requirements. To e�ectively leverage the �exibility provided by softwariza-
tion and realize its full potential, it is of paramount importance to devise proper mechanisms
for allocating resources to di�erent applications and users and for monitoring their usage over
time.

The overarching goal of this dissertation is to advance state-of-the-art in how resources are
allocated and monitored and build the foundation for e�ective resource management in soft-
warized networks. Speci�cally, we address four resource management challenges in three key
enablers of network softwarization, namely SDN, NFV, and network virtualization. First, we
challenge the current practice of realizing network services with monolithic software network
functions and propose a microservice-based disaggregated architecture enabling �ner-grained
resource allocation and scaling. Then, we devise optimal solutions and scalable heuristics for
establishing virtual networks with guaranteed bandwidth and guaranteed survivability against
failure on multi-layer IP-over-Optical and single-layer IP substrate network, respectively. Fi-
nally, we propose adaptive sampling mechanisms for balancing the overhead of softwarized
network monitoring and the accuracy of the network view constructed from monitoring data.

vi

Acknowledgement

First of all, I thank God (Allah) for bringing me to existence, giving me the privilege of a comfort-
able life and the opportunity to pursue higher education at the best institutions, and enabling
me to complete my work.

I wholeheartedly thank my supervisor Prof. Raouf Boutaba for his guidance, support, and
encouragement over the years. He has taught me invaluable lessons in terms of not compro-
mising the quality of work, and maintaining strong work ethics and professionalism. I hope to
keep holding these high standards in the future. I am also thankful to him for always giving
me the freedom and support for pursuing my own ideas. He was always available whether
for brainstorming and technical discussion, constructively criticizing my work, helping me to
improve my writing, and even one time for teaching me how to “drive a stick”. He has not only
been a mentor to me in academic research but also in ways of life. I hope to be able to turn to
him for his mentorship in the years to come. I am also indebted to Prof. Raouf and Noura for
their hospitality over the years, very often making it feel like home during special occasions.

I am grateful to Reaz and Faiz for their mentorship during the early days of graduate stud-
ies. Their guidance during the early days was utterly helpful in getting a grasp of the research
process. Towards the end of my graduate studies, I gained signi�cant exposure to optical net-
working through the collaboration with Prof. Massimo. My scholarly work is a culmination of
many successful collaborations over the years. I was very fortunate to mentor and to work with
Anthony, Haibo, and Tim while working on a disaggregated virtual network function architec-
ture (Chapter 2). Most of my contributions in network virtualization was in collaboration with
Huawei Technologies Canada Research Center, Ottawa. The industry partner’s input to these
works have greatly improved the motivation, practicality, and applicability of the research. I
closely collaborated with Sara and Nashid for the multi-layer virtual network embedding (Chap-
ter 3) and for the survivable virtual network embedding (Chapter 4) research, respectively. I am
thankful to these excellent collaborators who made the work enjoyable. My decade long profes-
sional relationship with Nashid has resulted in many successful collaborations, also providing
me the opportunity to take inspiration from his discipline and determination. Finally, my works
on softwarized network monitoring (Chapter 5) were in close collaboration with Reaz and Faiz,
and with Jérôme from INRIA. For the work on in-band network telemetry, the discussion with
Prof. Samer was helpful in devising the proper implementation. Apart from the technical con-
tributions, my colleagues at the networking lab and beyond, Faiz, Arup, Rabbani, Reaz, Nashid,
Faten, Milad, Ben, Mashrur, Anthony, Haibo, Tim, Elahe, Eric, Sara, Felipe, and Amine were a
great source of many interesting discussions related and unrelated to systems and networking.

I would like to thank my internship mentors Constantin, Valas, and Jérôme from IBM Re-
search, Google, and INRIA, respectively, for their guidance during the respective internships.

vii

Each of my internship experience was unique and rewarding. I had the opportunity to expe-
rience both doing cutting-edge research and translating ideas into production ready systems
through these experiences.

I am thankful to my dissertation committee members: Professor Martin Karsten, Bernard
Wong, Ravi Mazumdar and Mostafa Ammar, for their time in reviewing and providing valuable
comments on this dissertation. I thoroughly enjoyed the conversation with them during the
oral defense.

I am forever indebted to my parents Akhlaqur and Sarwat, and my grandparents, who were
a constant source of inspiration for pursuing higher studies. I am dedicating this dissertation to
them. From early childhood, they not only instilled the importance of higher education within
me but also facilitated every opportunity for higher education within their capability. Espe-
cially, my parents have made countless sacri�ces to prioritize my (and my siblings’) education
over anything else. None of my success would be possible without their support.

I am also grateful to many people outside of the university who enriched my life in Canada.
Reaz, Shapla, Abrar and Shahriar have been constantly extending their geniality over the years
and provided me with a home away from home. Nahian, Arup, Ishtiaque, Nashid, Kashpia,
and Sharfan, my housemates and neighbors at di�erent times, made my stay in Waterloo �lled
with joy. Even after leaving Waterloo, Nashid and Kashipa’s little one Sharfan kept holding
“bi-weekly meetings”, which was a breath of fresh air during the pandemic. The hangouts,
adventures, trips, and restaurant hopping around Canada and the world with Swastie, Zulfa,
Shahed, Noah, Bushra, Ameer, Sakib, and Hyame are some of the fondest memories that I will
be taking from my time during PhD.

My research was supported by several funding sources, including, the Ontario Graduate
Scholarship, President’s Graduate Scholarship and Go-Bell Scholarship at University of Water-
loo, the Graduate Excellence Scholarship at the David R. Chriton School of Computer Science,
MITACS Globalink Research Award, Graduate Research Scholarships supported by a number
of NSERC funded research programs, and the associate team between INRIA RESIST and the
University of Waterloo. These �nancial aids made it possible to complete my degree in a happy
and healthy manner. Many of my conference travels were supported in part by the IEEE Com-
munications Society student travel grant and in part by the research travel support provided
through the school, faculty and the university, which enabled me to present my research to the
community and enrich my professional network.

viii

Dedication

To my parents Akhlaqur Rahman Chowdhury and Sarwat Parveen,
and my grandfather Mohammad Azizul Haque

ix

Table of Contents

List of Tables xv

List of Figures xvi

List of Algorithms xix

1 Introduction 1

1.1 Network Transformation through “Softwarization” 1
1.2 Resource Management Challenges . 5

1.2.1 Fine-grained Resource Allocation and Scaling in NFV 5
1.2.2 Virtual Network Embedding over Transport SDN 6
1.2.3 Accuracy – Overhead Trade-o� in Network Monitoring 9

1.3 Thesis Contributions . 11
1.3.1 A dissaggregated packet processing architecture for NFV 11
1.3.2 Multi-layer Virtual Network Embedding 13
1.3.3 Dedicated Protection for Survivable Virtual Network Embedding 14
1.3.4 Adaptive Monitoring of Softwarized Networks 14
1.3.5 Summary of Results . 15

1.4 Thesis Organization . 17

x

2 A Disaggregated Virtual Network Function Architecture 18

2.1 Introduction . 18
2.2 The Microservices Software Architecture . 19
2.3 Motivation . 20

2.3.1 Commonality in Packet Processing Tasks 20
2.3.2 Performance Implications of Monolithic VNFs 22

2.4 Design Goals and Choices . 25
2.5 System Description . 26

2.5.1 Assumptions . 26
2.5.2 System Architecture: Birds Eye View . 27
2.5.3 System Components . 28
2.5.4 SFC Deployment . 29
2.5.5 Auto-scaling . 31

2.6 Optimizations . 31
2.6.1 Pipelined Cache Pre-fetching . 31
2.6.2 Parallel execution of µNFs . 32

2.7 Implementation . 32
2.7.1 Agent . 34
2.7.2 µNF . 34
2.7.3 Rx and Tx Services . 34
2.7.4 Port . 35
2.7.5 µNF Scheduling . 37

2.8 Performance Evaluation . 39
2.8.1 Experiment Setup . 40
2.8.2 Microbenchmarks . 41
2.8.3 Service Level Performance . 45

2.9 Related Works . 49
2.10 Chapter Summary . 50

xi

3 Multi-Layer Virtual Network Embedding 52

3.1 Introduction . 52
3.2 Multi-Layer Virtual Network Embedding Problem 53

3.2.1 Substrate Optical Transport Network (OTN) 53
3.2.2 Substrate IP Network . 54
3.2.3 Virtual Network (VN) . 54
3.2.4 Problem De�nition . 55
3.2.5 Illustrative Example . 56

3.3 ILP Formulation: OPT-MULE . 57
3.3.1 Decision Variables . 57
3.3.2 Constraints . 58
3.3.3 Objective Function . 61
3.3.4 Hardness of OPT-MULE . 61

3.4 FAST-MULE: A Heuristic Approach . 62
3.4.1 Challenges . 62
3.4.2 Heuristic Algorithm . 63
3.4.3 Running Time Analysis . 66
3.4.4 Illustrative Example . 66
3.4.5 Optimality of FAST-MULE for Star VN Topology 68
3.4.6 Parallel Implementation of FAST-MULE 70

3.5 Evaluation Results . 70
3.5.1 Simulation Setup . 71
3.5.2 Evaluation Metrics . 72
3.5.3 Micro-benchmarking Results . 72
3.5.4 Steady State Analysis . 75

3.6 Related Works . 80
3.7 Chapter Summary . 82

xii

4 Dedicated Protection for Survivable Virtual Network Embedding 83

4.1 Introduction . 83
4.2 1 + 1 - Protected Virtual Network Embedding Problem 84

4.2.1 Substrate Network . 84
4.2.2 Virtual Network . 85
4.2.3 1 + 1 – ProViNE Problem Statement . 85

4.3 ILP Formulation: OPT-DRONE . 86
4.3.1 Virtual Network Transformation . 87
4.3.2 ILP Formulation . 88
4.3.3 Hardness of 1 + 1 – ProViNE . 90

4.4 Heuristic Solution: FAST-DRONE . 90
4.4.1 Problem Restructuring . 91
4.4.2 Heuristic Algorithm . 91
4.4.3 Node Mapping Phase . 92
4.4.4 Partitioning Phase . 95
4.4.5 Link Mapping Phase . 96
4.4.6 Running Time Analysis . 97
4.4.7 Parallel Implementation of FAST-DRONE 98

4.5 Performance Evaluation . 98
4.5.1 Simulation Setup . 99
4.5.2 Performance Metrics . 100
4.5.3 Micro-benchmarking Results . 101
4.5.4 Steady State Analysis . 107

4.6 Related Works . 111
4.7 Chapter Summary . 114

xiii

5 Adaptive Monitoring of Softwarized Networks 115

5.1 Introduction . 115
5.2 Background . 116

5.2.1 OpenFlow Network Monitoring . 116
5.2.2 In-band Network Telemetry (INT) . 117

5.3 PayLess: Adaptive Monitoring from the Control Plane 119
5.3.1 The Monitoring Algorithm . 120
5.3.2 Implementation: Link Utilization Monitoring 121
5.3.3 Evaluation . 122

5.4 LINT: Accuracy-adaptive INT from the Data Plane 127
5.4.1 Motivation . 127
5.4.2 The LINT Algorithm . 130
5.4.3 Evaluation . 135

5.5 Related Works . 142
5.6 Chapter Summary . 145

6 Conclusion and Future Work 147

6.1 Conclusion . 147
6.2 Future Research Direction . 150

6.2.1 VNF Disaggregation . 150
6.2.2 Transport SDN Virtualization . 151
6.2.3 Softwarized Network Monitoring . 152

References 153

xiv

List of Tables

2 A Disaggregated Virtual Network Function Architecture

2.1 Results from motivational experiment . 24
2.2 CPU cycles saved per packet on average . 48

3 Multi-Layer Virtual Network Embedding

3.1 Summary of key notations . 59

4 Dedicated Protection for Survivable Virtual Network Embedding

4.1 Summary of key notations . 87

5 Adaptive Monitoring of Softwarized Networks

5.1 Example of telemetry data . 117

xv

List of Figures

1 Introduction

1.1 A generalized view of softwarized networks . 4
1.2 Graphical summary of thesis contributions . 12
1.3 Highlights of thesis contributions: (a) e�ectiveness of µNF in enabling �ner-

grained resource allocation compared to NetBricks [1]; (b) VN acceptance and
embedding cost comparison between FAST-MULE and D-VNE [2]; (c) VN ac-
ceptance and embedding cost comparison between FAST-DRONE and PAR [3];
and (d) e�ectiveness of PayLess and LINT in reducing control and data plane
overhead, respectively. 16

2 A Disaggregated Virtual Network Function Architecture

2.1 Monolithic vs. microservice-based application 20
2.2 Common packet processing tasks across NFs . 21
2.3 Motivational experiment scenarios . 23
2.4 Microservice-based realization of the SFC from Figure 2.2(a) 25
2.5 System components . 27
2.6 µNF architecture . 28
2.7 Point-to-Point Port . 36
2.8 Branched Egress Port . 36
2.9 Maximum length of a µNF chain able to sustain line rate (64B) while sharing a

core . 38

xvi

2.10 Impact of scheduler and scheduling policy on µNF chains (sharing same CPU
core) . 39

2.11 Baseline performance . 42
2.12 Impact of pipelined cache pre-fetching . 43
2.13 Impact of parallelism in µNF processing graph 44
2.14 Impact of µNF processing path length . 45
2.15 µNF vs. NetBricks [1]: throughput . 46
2.16 µNF vs. NetBricks [1]: number of CPU cores used 47
2.17 µNF realization of the SFC from Figure 2.3(a) . 48

3 Multi-Layer Virtual Network Embedding

3.1 Multi-layer IP-over-OTN substrate network . 54
3.2 Virtual network . 55
3.3 Multi-layer VN embedding example . 56
3.4 Transformation from multi-layer to single-layer substrate network 67
3.5 FAST-MULE: an illustrative example . 68
3.6 FAST-MULE to OPT-MULE cost ratio . 73
3.7 Comparison of execution time . 73
3.8 Impact of virtual node shu�e on FAST-MULE’s performance 74
3.9 Comparison between D-VNE, OPT-MULE, and FAST-MULE 76
3.10 VN acceptance ratio . 77
3.11 Mean IP link utilization with varying load . 78
3.12 Load distribution at the IP layer . 78
3.13 Ratio of newly created IP links (FAST-MULE : D-VNE) with varying load 79
3.14 Mean embedding path length . 80

xvii

4 Dedicated Protection for Survivable Virtual Network Embedding

4.1 Example VN embedding with DRONE . 86
4.2 Comparison between OPT-DRONE and FAST-DRONE 101
4.3 Impact of VN request type . 103
4.4 Impact of SN connectivity . 104
4.5 Comparison of execution time . 105
4.6 Comparison between FAST-DRONE and PAR [3] 106
4.7 VN acceptance ratio . 108
4.8 Mean substrate link utilization with varying load 108
4.9 Load distribution on substrate network . 109
4.10 Topological properties of solutions . 110

5 Adaptive Monitoring of Softwarized Networks

5.1 INT in action . 118
5.2 Tra�c mix for PayLess evaluation . 122
5.3 Network topology for PayLess evaluation . 123
5.4 Link utilization measurement . 124
5.5 Control plane messaging overhead . 125
5.6 E�ect of Tmin on measured link utilization . 125
5.7 Overhead and measurement error . 126
5.8 Packet size increase due to INT . 128
5.9 Mean normalized goodput of a link by varying the INT hops (i.e., the per-packet

overhead) and link utilization (considering median packet sizes from di�erent
network traces) . 129

5.10 Overhead comparison between LINT and INT 138
5.11 QTail and QCongestion Recall . 139
5.12 QLatency and QQueue NRMSE . 140
5.13 Impact of number of track �ows per-stage on QTail and QCongestion 141
5.14 Overhead reduction by LINT-�ow . 142

xviii

List of Algorithms

3 Multi-Layer Virtual Network Embedding

1 Multi-Layer VNE algorithm . 64

4 Dedicated Protection for Survivable Virtual Network Embedding

2 FAST-DRONE: Node mapping phase . 93
3 FAST-DRONE: Check for better node assignment 94
4 FAST-DRONE: Partitioning phase . 95
5 FAST-DRONE algorithm . 97

5 Adaptive Monitoring of Softwarized Networks

6 PayLess algorithm . 121
7 LINT algorithm . 132
8 LINT-�ow algorithm . 134

xix

Chapter 1

Introduction

1.1 Network Transformation through “Softwarization”

Telecommunications and data center network operators are faced with increasing network
management challenges because of: (i) unprecedented growth of network tra�c, applications,
and users; and (ii) stringent requirements of emerging applications (e.g., VR/AR streaming, tac-
tile Internet, Industry 4.0) in terms of high capacity, ultra-high reliability and low latency [4].
These challenges are often attributed to the fast-paced technological innovation in applications
and services signi�cantly impacting the way networking infrastructures are being used. For
instance, AT&T, one of the largest telecommunications network operators in the North Amer-
ica, experienced 100,000% increase in network tra�c between 2008 and 2016 [5]. Furthermore,
major global events such as the COVID-19 pandemic can reshape the way we live, work and
interact, resulting in a long-lasting impact on the nature of network tra�c [6, 7].

For the years to come, both volume of network tra�c and number of connected devices
are expected to increase manyfold. For instance, the number of devices connected to IP net-
works are forecasted to grow from 18.4 billion in 2018 to 29.3 billion in 2023 [8]. Also, with
the advent of the �fth-generation (5G) mobile networks, telecommunication operators are ex-
pected to support applications with diverse Quality-of-Service (QoS) requirements in terms of
bandwidth, latency, reliability, and connection density on the same network [9, 10, 11]. While
coping with these growing demands, telecommunications operators have to constantly keep up
with the �erce competition from cloud-based over-the-top service providers. To do so, many
telecommunication operators and Internet Service Providers (ISPs) are now considering cloud
computing as an integral part of their infrastructure. They are transforming their legacy Cen-
tral O�ces (COs), Internet eXchange Points (IXPs) and Points-of-Presences (PoPs) into data

1

centers [5], in this way realizing the long awaited convergence of Information Technology (IT)
and telecommunications [12]. These data centers are leveraged to provide value-added ser-
vices such as content caching [13] and edge analytics [14], among others. Over-the-top service
providers are also forced to redesign both the applications and the infrastructure for keep-
ing up with the new genre of application requirements at scale. Emerging microservices and
serverless application architectures, the growing trend for deploying infrastructure closer to
the users [15, 16], and large-scale dedicated private networks [17, 18, 19, 20] are mandating
new network design and tra�c engineering.

Networks are at the center of telecommunications and cloud infrastructures. For the past
few decades, the slow innovation in the networking industry has been a major obstacle in scal-
ing and adapting the network infrastructure with evolving user and application needs. This
slow pace of innovation is attributed to the closed and physical nature of the networking in-
dustry, i.e., network control functions are vertically integrated with packet forwarding hard-
ware with little to no programmability and made available by a handful of vendors. The lack
of programmability and open interfaces forced network operators to adapt error-prone man-
ual con�guration methods to provision and manage network resources, leading to increased
operational complexity and prolonged time to market for new services.

More recently, a major paradigm shift known as Network Softwarization, is transforming
networks into open, virtualized, programmable, and automated infrastructures. Network soft-
warization is de�ned as “a paradigm where software controls the treatment of �ows in the net-
work, adds value to these �ows by software processing, and orchestrates the dynamic allocation
of resources to meet the needs of customer applications while also promoting energy e�ciency
through the right-sizing and optimal placement of packet processing in a converged network and
cloud infrastructure” [21]. Networking industry transformation through softwarization can be
illustrated by the widespread adoption of the following technological developments.

Software-De�nedNetworking (SDN) proposes to decouple a network’s control plane from
the packet forwarding plane (i.e., the data plane), and implements the control plane as a logically
centralized software controller running on one or more commodity servers [22]. In contrast to
traditional networks, where network control is distributed and vertically integrated with the
routers and switches, the SDN control plane is separate from the forwarding devices, has a
global view of the network, and centrally makes tra�c management decisions according to
operational policies. The way packet forwarding devices treat network �ows is programmed
by SDN controllers through well-de�ned interfaces such as OpenFlow [23]. The capability to
program the network enables faster innovation, leading to greater responsiveness to changes,
e�ciency, and cost e�ectiveness. Since its inception, SDN’s programming capabilities have

2

grown beyond �ow-table programming to protocol independent programmable packet parsing
and processing on commodity switches [24].

Network Function Virtualization (NFV) proposes to decouple Network Functions (NFs)
(e.g., Network Address Translators (NATs), Firewalls, WAN Optimizers) from hardware middle-
boxes [25], and deploy the NFs as Virtual Network Functions (VNFs) on commodity servers [26].
The NFV movement was initiated in response to the high capital and operational expenditure in-
curred by network operators as a result of the closed and in�exible ecosystem of hardware mid-
dleboxes. Despite being an integral part of enterprise and telecommunication networks [27],
middleboxes have been vendor speci�c, proprietary with little to no programmability and ver-
tically integrate packet processing software with the hardware. In addition, they require spe-
cially trained personnel for deployment and maintenance. Through the separation of NFs from
proprietary hardware middleboxes, NFV promises to reduce capital investment by consolidat-
ing multiple NFs on the same commodity hardware, and reduce operational cost by leveraging
advances in application orchestration for on-demand service provisioning.

Network Virtualization (NV) is a networking environment that allows coexistence of mul-
tiple Virtual Networks (VNs), each tailored to support speci�c application or service, on a shared
physical infrastructure [28]. Since its inception in the mid 2000s to fend o� Internet ossi�ca-
tion [29], NV has evolved as an enabler of new service o�erings for both network and cloud
service providers. Recently, NV is gaining more traction because of its importance in 5G net-
work slicing for facilitating the coexistence of applications with diverse requirements such as
ultra-high bandwidth, ultra-high reliability and low latency, and massive connectivity [30, 31].

Network softwarization is achieved by the amalgamation of SDN, NFV and NV, enabling on-
demand service provisioning and better control over the network resources. Furthermore, soft-
warization is replacing purpose-built hardware with commodity o�-the-shelf hardware with
open architecture [5, 32, 33], in this way simplifying network infrastructure and diversifying the
supply chain. As a consequence, today network softwarization is experiencing increasing adop-
tion from both large-scale online service providers [17, 18, 19, 20] and telecommunications and
Internet service providers [34, 35, 36], and is considered a key enabler for 5G networks [37, 38].
Furthermore, it is creating new revenue streams by enabling service o�erings [39, 40, 41] which
would have been otherwise very expensive to deploy and hard to manage with traditional net-
working technologies.

In Figure 1.1, we attempt to present a generalized and simpli�ed view of softwarized net-
works. The data plane can consists of one or more data centers used for deploying applications

3

WAN

Optimizer

SFC: Chains of VNFs

Logically Centralized Control Plane

Routing
Network

Virtualization
...

M
o
n
it
o
r

C
o
n
tr

o
l

Fault

Mgmt.

Central Office/Data centers

Core/Metro transport network elements

Network slices (virtual nodes, links and

network functions) offered as a service.

Southbound API:

Interface to the data plane

D
at

a
p
la

n
e

M
an

ag
e
m

en
t

&

O
rc

h
e
st

ra
ti
o
n

A
p
p
s.

Northbound API:

Read/modify network state

C
o
n
tr

o
l
P
la

n
e

Firewall IDS

Data center network element

(SDN capable)

Can be physically distributed, e.g., local

controllers at each data center, and a

global controller maintaining global view

across all network segments

Servers

Data centers host applications & SFCs

Figure 1.1: A generalized view of softwarized networks

4

and VNFs providing value added services. Connectivity between these data centers are pro-
vided by privately owned or leased core/metro transport networks. Each network segment
in the data plane can be composed of o�-the-shelf hardware with open interfaces. A logi-
cally centralized control plane is responsible for controlling and monitoring the infrastructure
through open southbound Application Programming Interfaces (APIs) such as OpenFlow and
P4Runtime. The control plane can be physically distributed including a combination of local
and global controllers as proposed in the literature [42]. The control plane also provides north-
bound APIs for developing management and orchestration applications that read and/or modify
the network state. NV is one such key application that leverages the logically centralized con-
trol plane and its global network view for establishing VNs or network slices and o�ers them
as a service to service providers. Note that such an architecture represents a wide-range of
telecommunication and cloud infrastructures. The data centers represent the COs, IXPs, and
PoPs owned by the telecommunication operators and ISPs, or the hyper-scale and edge data
centers owned by cloud service providers, among others. Depending on the type of network,
these data centers can host a wide-range of VNFs such as those from telecommunications and
enterprise networks [27].

1.2 Resource Management Challenges

Network softwarization is without doubts reshaping the landscape of and creating new rev-
enue streams for telecommunications and data center networks alike. Softwarization enables
network operators to dynamically allocate right-sized resources at the optimal locations for
satisfying application and user QoS requirements. However, to e�ectively leverage the �exibil-
ity provided by softwarization, it is of paramount importance to devise the proper mechanisms
for allocating resources to di�erent applications and users and for monitoring their usage over
time. Sub-optimal resource allocation can result in resource fragmentation and under-utilized
infrastructure, which in turn can cause loss of revenue. In the remainder of this section, we dis-
cuss some key resource management challenges in SDN, NFV, and NV that need to be addressed
in order to realize the full potential of network softwarization.

1.2.1 Fine-grained Resource Allocation and Scaling in NFV

A key advantage of network softwarization is that multiple network functions such as Firewalls,
NATs and WAN Optimizers can be consolidated on the same commodity hardware as opposed
to relying on purpose-built and closed networking equipment for doing the same. This is es-
pecially true for NFV, which promises to reduce the capital and operational expenditure for

5

network operators by moving packet processing from purpose-built middleboxes to software
running on commodity servers (also known as VNFs). However, state-of-the-art NFV platforms
(e.g., OPNFV [43], OpenMANO [44], E2 [45]) are merely replacing monolithic hardware middle-
boxes with monolithic VNFs. Clearly, this is a �rst logical step towards network softwarization.
However, common functionality is repeatedly implemented in monolithic VNFs. Repeated ex-
ecution of such redundant functionality is particularly common when VNFs are chained to
realize Service Function Chains (SFCs) [46] and results in wasted infrastructure resources.

A fundamental problem with monolithic VNF implementations is that many packet process-
ing tasks such as packet I/O, parsing and classi�cation, and payload inspection are repeated
across a wide range of NFs [47, 48, 49]. This has several negative consequences. First, re-
dundant development and optimization e�ort on these common tasks across di�erent VNFs.
Second, monolithic VNFs restrict how many packet processing tasks can be consolidated on
the same hardware. For instance, a Firewall and an Intrusion Detection System (IDS), both per-
form packet classi�cation [48]. Since the VNFs are monolithic, we cannot consolidate packet
classi�cation as a single function, allocate just enough resources for processing the cumulative
tra�c of the Firewall and the IDS, and deploy the classi�er as a single entity. Third, monolithic
VNFs impose coarse-grained resource allocation and scaling. Finally, when VNFs are chained to
form SFCs, executing these redundant functionalities results in unnecessary processing over-
head (shown to exceed 25% for some SFCs [47]). This non-exhaustive list of issues stresses the
need to rethink how VNFs can be developed and orchestrated for agile service creation and
scaling [50]. In this thesis, we pose and address the following research question:

(Q1) What is an appropriate software architecture for VNFs that will enable better function
consolidation on the same hardware, and �ner-grained resource allocation and scaling while

maintaining the same level of performance as state-of-the-art approaches?

1.2.2 Virtual Network Embedding over Transport SDN

Infrastructure providers such as data center network operators, and telecommunications and
Internet service providers are rolling out network virtualization technologies to o�er slices of
their networking infrastructure to service providers [51, 52]. Even the long-haul connectivity
providers, i.e., the transport network operators are leveraging SDN to o�er full-�edged VNs
to their customers [53, 54]. This next generation of transport network, also known as Trans-
port SDN (T-SDN), leverages SDN technology to separate the control plane from the data plane

6

(typically realized through a combination of packet and optical communications) for �exible
management and better automation. T-SDN enables the coexistence of multiple customers with
full-�edged VNs in lieu of providing traditional point-to-point connectivity services. The cus-
tomers can then deploy their own routing and tra�c engineering solutions, this way achieving
customized control over their own network slice(s).

The bene�ts from T-SDN virtualization come at the cost of additional resource management
challenges for the infrastructure provider. A fundamental and well studied problem in NV is
to e�ciently embed the virtual nodes and links of a VN request from a service provider on the
nodes and paths of the Substrate Network (SN), also known as the Virtual Network Embedding
(VNE) problem [28]. Typical objectives for VNE include maximizing the number of embedded
VNs [55] and minimizing the resource provisioning cost on the SN [56, 57, 58]. Since T-SDN
virtualization is an emerging area, several novel and practically important resource allocation
problems exist. However, there is a lack of systematic approach to optimally solve these prob-
lems in the literature. In the following, we discuss two such challenges for T-SDN virtualization.

The �rst challenge concerns the choice of SN technology for deploying T-SDN. Several T-
SDN deployment choices exist, among which multi-layer IP-over-Optical networks are becom-
ing a popular deployment choice. The VNE research literature has paid signi�cantly lesser
attention to multi-layer substrates networks [2] compared to single-layer networks [59], which
will be our focus in this thesis. The second challenge concerns guaranteeing VN survivability
against failures in T-SDN. Customer VNs typically carry high volumes of tra�c at high speed,
and usually have Service Level Agreements (SLAs) with the infrastructure provider for recovery
from substrate failures within tens of milliseconds [60, 61]. We will discuss the gap in available
resource allocation algorithms for satisfying such tight SLAs.

Multi-layer IP-over-Optical Substrate Network

Multi-layer IP-over-Optical networks are becoming a popular choice for deploying transport
networks [62]. Such multi-layer networks typically consist of an optical substrate for the phys-
ical communication with an IP overlay on top [63]. This network model is being increasingly
adopted for transport networks as it o�ers the best of both worlds, i.e., the �exibility in ad-
dressing, resource allocation, and tra�c engineering of IP networks along with the high capac-
ity provided by optical networks. Despite their increasing popularity, research on addressing
resource provisioning challenges for virtualizing such networks is still in early stages. As men-
tioned earlier, a classical resource provisioning problem in NV is the VNE problem. VNE has
been extensively studied for single-layer SNs [59] with signi�cantly lesser attention paid to the
multi-layer network substrates [2].

7

Solving the VNE problem for multi-layer networks raises many unique challenges due to the
topological �exibility o�ered by such networks [64]. Speci�cally, the IP network is dynamic,
i.e., new IP links can be established when needed by provisioning necessary capacity from
the optical network. Such �exibility can be exploited if residual resources in the IP layer are
insu�cient to admit a new VN, or to reduce the cost of VN embedding by creating new IP
links that reduce network diameter. Provisioning new IP links in optical networks has been a
tedious and manual task with a long turnaround time. However, with the advances in optical
networking technologies [65] and centralized optical control plane in T-SDN [53, 66, 67, 68],
such provisioning tasks are becoming more and more automated. Even then, one should not
abuse such capability to sporadically establish new IP links since it still remains more expensive
than embedding virtual links on existing IP links. In this context, we pose the following research
question:

(Q2) How can we leverage the topological �exibility of multi-layer IP-over-Optical T-SDN and: (i)
strike a balance between obtaining a low cost VN embedding while minimizing the establishment
of new IP links; (ii) simultaneously decide on the creation of new IP links and their embedding on

the optical network.

Guaranteeing VN Survivability against Transport Network Failures

One particular aspect of VNE is to take the possibility of SN failures into account, known as
the Survivable Virtual Network Embedding (SVNE) problem [69]. Protection and restoration
mechanisms exist in the literature for SVNE. Restoration approaches reactively take action after
a failure has occurred, while protection approaches pro-actively provision backup resources
when a VN is embedded. As mentioned earlier, transport network customer VNs typically
have SLAs with the infrastructure provider for recovery from substrate failures within tens
of milliseconds [60, 61]. One way to satisfy such tight SLA is that the infrastructure provider
provisions dedicated backup resources for the entire VN topology (i.e., for each virtual node and
virtual link in a VN request). Backup of the entire VN topology can be later used for immediate
recovery from a substrate failure [70]. Otherwise, a prolonged recovery time can lead to service
disruption, leading to revenue and reputation loss for the infrastructure provider.

The protection scheme described above is known as the 1 + 1-protection scheme. It has its
roots back to Wavelength Division Multiplexing (WDM) optical networks where each primary
lightpath is established with a dedicated and disjoint backup path for recovering �ber cuts
within tens of milliseconds [60, 61]. In case of T-SDN, multiple customers with full-�edged

8

VNs will coexist instead of traditional end-to-end connectivity as in WDM networks. However,
such fast recovery with dedicated backup comes at the expense of provisioning idle backup
network resources. The research literature lacks a systematic approach to solving the prob-
lem with optimal resource footprint. Furthermore, a scalable heuristic that jointly maps the
virtual nodes and links with dedicated protection is also missing from the literature. Finally,
relevant literature [3] shows that sequentially embedding the primary and backup can lead to
failure in embedding even though a feasible embedding exists, which adds another dimension
for designing a resource e�cient heuristic. In this context, we pose the following question:

(Q3) How can we simultaneously compute the primary and the backup embedding of a VN for
dedicated protection while jointly determining virtual node and virtual link embedding and

incurring the minimum resource footprint in the substrate network?

1.2.3 Accuracy – Overhead Trade-o� in Network Monitoring

Network monitoring is fundamental to network management and is the basis of many network
Operations, Administration and Management (OAM) activities such as fault management [71],
tra�c engineering [72], load balancing [73, 74], threat detection and mitigation [75, 76], and ca-
pacity planning, accounting and billing [77], among others. Traditional IP network monitoring
solutions such as NetFlow, sFlow and SNMP are hard to implement, and often require deploying
proprietary hardware [78, 79, 80]. A fundamental issue in network monitoring is the trade-o�
between network monitoring overhead and the accuracy of the network view constructed from
network monitoring data. Many contemporary network monitoring solutions sacri�ce accu-
racy in exchange of limiting the monitoring overhead. For instance, the aforementioned IP
network monitoring solutions heavily sample the packets (e.g., sFlow recommends sampling
1 in every few thousand packets [81]) for coping with the high memory and computational
overhead stemming from monitoring every packet in the network [82, 83].

The advent of SDN has addressed many shortcomings of traditional IP network monitor-
ing solutions. OpenFlow, the de facto standard for SDN, de�nes per-�ow (a �ow is identi�ed
by a tuple of packet header �elds as de�ned by OpenFlow standard) statistics counters in the
data plane that can be con�gured and read from the logically centralized SDN controller. The
SDN controller can program the �ow tables in the data plane through the OpenFlow pro-
tocol and can specify �ow signatures to monitor. These counters can be later read by the
controller for constructing a global view of the network. Such �exible �ow table program-

9

ming and monitoring capabilities have resulted in many OpenFlow based monitoring appli-
cations such as heavy-hitter detection [84], change detection [84], anomaly detection [85],
tra�c matrix computation [86], distributed systems monitoring [87], among others. How-
ever, the data plane �ow tables are typically implemented using high-speed and power hungry
Ternary Content-Addressable Memory (TCAM) [88], hence, is usually a limited resources. Con-
sequently, the controller trades o� the number of �ows to monitor with the memory usage in
the data plane [84, 89]. Furthermore, constructing a near real-time view of the network �ows
in the control plane requires very frequently reading the statistics counters, which comes at
the cost of increased control plane bandwidth usage and message processing overhead at the
controller.

Network monitoring solutions until the �rst generation of SDN have been pull-based, i.e.,
the centralized control plane or a network management system periodically reads the counters
from the network devices [72, 90]. A drawback of pull-based monitoring is the coarse time gran-
ularity of monitoring the network, typically in the order of seconds or minutes. In contrast, the
recently emerging push-based streaming telemetry is enabling the network devices to directly
stream telemetry information to data collection and analytics engines [91, 92, 93], providing
near real-time and microscopic visibility into the network. Along the same vein of streaming
telemetry, In-bandNetwork Telemetry (INT) [94] has been recently proposed as a means to obtain
per-packet real time view of the network. INT is an e�ort to enable network devices (e.g., soft-
ware and hardware switches, Network Interface Cards (NICs)) to embed device internal state
such as packet processing latency and switch queue occupancy into each passing packet, con-
sequently, facilitating a real-time and microscopic view into network tra�c. Such �ne-grained
telemetry capability is enabling new use-cases such as pin-pointing the root cause of congestion
and packet drops through switch queue pro�ling [95] and per-packet �ne-grained feedback to
support low-latency data center transport [96], which are otherwise di�cult to perform with
traditional network monitoring. As of today, INT is supported by commodity hardware such
as �xed-function and programmable switches [97, 95], and SmartNICs [98, 99], and is being
deployed in production telecommunications and data center networks [100, 96].

The microscopic telemetry capabilities enabled by INT come at the expense of increased
data plane overhead [101, 102]. This overhead is attributed to each INT capable network device
on a packet’s path augmenting the packet with telemetry data, thus increasing the packet’s size
in proportion to the path length. For instance, collecting three telemetry data items on a 5-hop
path in a data center results in more than 40% additional bits added to a packet compared to the
original packet size (details in Section 5.4.1). Packet size increase for carrying telemetry data
can have several negative consequences including, reduction in data plane goodput [102] and
negative impact on application latency due to unnecessary packet fragmentation.

The trade-o� between accuracy and overhead has been a longstanding issue in network

10

monitoring. This issue is further aggravated by the �exibility brought by network softwariza-
tion. Softwarization is enabling the network operators to program a wide-range of network
resources ranging from the software switches, the software network functions, and even the
hardware data plane for collecting �ne-grained and near real-time network monitoring data. A
direct consequence of this advantage is the increased monitoring overhead in both the control
and the data planes. In this context, we pose the following question:

(Q4) How can we construct an accurate and timely view of the network without incurring
signi�cant control plane and data plane overhead for network monitoring?

1.3 Thesis Contributions

This dissertation aims at advancing the state-of-the-art in how resources are allocated and mon-
itored and build the foundation for e�ective resource management in softwarized networks.
We challenge some of the current practices as well as address the shortcomings in how re-
source allocation is performed and how the network infrastructure is monitored. An overview
of the contributions is presented in Figure 1.2. As illustrated in Figure 1.2, this thesis addresses
resource management issues encompassing SDN, NFV, and NV, substantially improving the
e�ectiveness of resource allocation and striking a balance between accuracy and overhead in
infrastructure monitoring. First, we challenge the current practice of realizing SFCs with mono-
lithic VNFs and propose a microservice-based disaggregated VNF architecture for �ner-grained
resource allocation and scaling (Q1). Then, we propose optimal solutions and scalable heuris-
tics for the multi-layer VNE (Q2) and 1+1 VN protection problems (Q3) in the context of T-SDN
virtualization. Finally, we propose adaptive sampling mechanisms to address the accuracy-
overhead trade-o� in softwarized network monitoring, focusing on reducing both control and
data plane overhead (Q4). We elaborate on the thesis contributions in the following.

1.3.1 A dissaggregated packet processing architecture for NFV

In Chapter 2, we take advantage of the commonality of packet processing tasks among VNFs
for addressing the shortcomings of monolithic VNFs. To this end, we propose µNF, a disag-
gregated packet processing architecture that follows the microservices design principle [103].
We propose to decompose VNFs into independently deployable, loosely-coupled, lightweight,

11

Logically Centralized Control Plane

with a Global Network View

Routing
Network

Virtualization
...

(Ch. 5) PayLess + LINT: Address

accuracy-overhead trade-off in monitoring

PayLess: Control plane overhead

LINT: Data plane overhead

(Ch. 3) MULE: Multi-layer Substrate

(Ch. 4) DRONE: 1+1 VN Protection

M
o
n
it
o
r

C
o
n
tr

o
l

Firewall IDS
WAN

Optimizer

SFCs: Chains of VNFs

(Ch. 2) µNF: Microservice-based VNF

architecture for finer-grained resource

allocation & scaling

Fault

Mgmt.

Central Office/Data centers Core/Metro transport network elements

Network slices (virtual nodes, links and

network functions) offered as a service

Southbound API:

Interface to the data plane

D
at

a
p
la

n
e

M
an

ag
e
m

en
t

&

O
rc

h
e
st

ra
ti
o
n

A
p
p
s.

Northbound API:

Read/modify network state

C
o
n
tr

o
l
P
la

n
e

Figure 1.2: Graphical summary of thesis contributions

and reusable packet processors, that we call MicroNFs (µNFs for short). VNFs or SFCs are then
realized by composing a packet processing pipeline from these independently deployable µNFs.
Such decomposition will allow �ner-grained resources allocation, independent scaling of µNFs
thus increased �exibility, and independent development and maintenance of packet processing
components. Speci�cally, we make the following contributions:

• An architecture for composing VNFs and SFCs from independently deployable, loosely-
coupled, lightweight, and reusable components following the microservices design prin-
ciple [103].

• Implementation of architecture components including the µNFs, communication primi-

12

tives between µNF, and CPU sharing between µNFs to improve CPU utilization without
sacri�cing packet processing throughput.

• Optimizations for improving packet processing throughput of µNFs on multi-socket Non-
Uniform Memory Access (NUMA) machines and latency in µNF-based SFCs.

1.3.2 Multi-layer Virtual Network Embedding

In Chapter 3, we study the MUlti-Layer Virtual Network Embedding (MULE) problem consid-
ering IP-over-Optical SNs. Several deployment choices exist for multi-layer IP-over-Optical
networks. Among other options, we focus on multi-layer IP-over-Optical Transport Network
(OTN). An OTN is a digital wrapper over circuit switched Dense Wavelength Division Mul-
tiplexed (DWDM) optical network with advanced transport capabilities (e.g., tra�c grooming
without optical-electrical-optical conversion) [104]. We assume the OTN is statically provi-
sioned, i.e., the interfaces on OTN nodes are pre-con�gured and the corresponding light paths
in the DWDM layer are lit in advance to provision �xed bandwidth between OTN nodes, which
in turn can be used to provision one or more logical IP links. As a �rst step towards addressing
VNE for multi-layer networks, we limit the scope of this contribution to the case of a static
OTN and leave the other possible deployment scenarios for future investigation. Speci�cally,
we make the following contributions in this chapter:

• We formulate the optimal solution to MULE (OPT-MULE) as an Integer Linear Program
(ILP) with the objective of minimizing total resource provisioning cost for embedding
the VN while considering the possibility of establishing new IP links when necessary.
State-of-the-art in multi-layer VNE [2] does not optimally solve the problem. To the best
of our knowledge, this is the �rst optimal solution to the multi-layer VNE problem for
IP-over-OTN networks.

• We propose a heuristic solution to MULE (FAST-MULE) for solving larger problem in-
stances. The heuristic algorithm jointly decides the virtual network embedding, and cre-
ation of new IP links and their embedding on the OTN layer by transforming the problem
to an instance of maximum network �ow problem. We also prove that our heuristic opti-
mally solves the problem for a special class of VNs, namely, star-shaped VNs with uniform
bandwidth demand.

13

1.3.3 Dedicated Protection for Survivable Virtual Network Embedding

In Chapter 4, we study the problem of 1 + 1-Protected Virtual Network Embedding (1 + 1 –
ProViNE) with the objective of minimizing resource provisioning cost in the SN, while protect-
ing each node and link in a VN request with dedicated backup resources in SN. The primary
and backup embeddings need to be disjoint to ensure that a single substrate node failure does
not a�ect both the primary and the backup. If the primary embedding of a VN is a�ected by
a substrate node failure, the service provider operating on the VN should not incur a signif-
icant service disruption typical when migrating the whole or part of the VN to the backup.
Indeed, during a single substrate node failure, the disjoint primary and backup embeddings
enable the infrastructure provider to instantly switch tra�c to the backup embedding with-
out requiring any re-embedding decision. This capability of instantly switching tra�c to the
backup facilitates fast recovery within tens of milliseconds, which is a typical SLA between
transport network providers and customers [60, 61].

To this end, we propose Dedicated Protection for Virtual Network Embedding (DRONE), a
suite of solutions for 1 + 1 – ProViNE. DRONE guarantees a VN to survive under a single
physical node failure. We focus on single node failure scenario since it is the most probable
case [105, 106], and leave the multiple failure scenario for future investigation. Speci�cally, we
make the following contributions:

• We formulate the optimal solution of 1 + 1 – ProViNE (OPT-DRONE) as an ILP, improving
on the quadratic formulation from previous work [3]. We also show that optimally solving
1 + 1 – ProViNE is at least as hard as jointly solving balanced graph partitioning and
minimum unsplittable �ow problems, both of which are NP-Hard [107, 108].

• We propose a heuristic algorithm (FAST-DRONE) for �nding solutions to solve larger
instances of 1 + 1 – ProViNE in a reasonable time. Our heuristic algorithm iteratively
partitions the SN and jointly embeds the nodes and links from the VN request in each
partition, in this way, jointly computes both the primary and backup embedding.

1.3.4 Adaptive Monitoring of Softwarized Networks

In Chapter 5, we study the problem of balancing network monitoring overhead and the accu-
racy of network view constructed from monitoring data in the context of softwarized networks.
We employ the general principle of adapting the sampling frequency of collecting monitoring
data in such a way that we capture the interesting network events as much as possible without
incurring a substantial overhead. Our work in Chapter 5 is divided into two parts. The �rst

14

part is concerned with reducing the control plane overhead for SDN monitoring. In this con-
text, we propose PayLess, a tra�c intensity-aware variable frequency monitoring algorithm for
OpenFlow networks. PayLess adjusts the SDN controller’s polling frequency for collecting �ow
statistics counters from the data plane devices based on how the tra�c intensity of the �ows
change over time. In this way, PayLess is capable of avoiding unnecessarily polling the network
while not missing out on interesting network events. The second part of the work is concerned
with reducing the data plane overhead of INT enabled by programmable PISA devices and the
domain speci�c P4 data plane programming language. In this context, we present LINT, an
accuracy-adaptive and lightweight INT mechanism that runs in the data plane. Speci�cally, we
have the following contributions in Chapter 5:

• We propose PayLess, a tra�c intensity-aware variable frequency algorithm for reducing
the control plane overhead of OpenFlow network monitoring. We implement PayLess in
Floodlight OpenFlow controller and demonstrate its e�ectiveness through a network link
monitoring application on Mininet [109].

• We propose LINT, an accuracy-adaptive and lightweight INT mechanism for programmable
data planes. Network devices employing LINT independently decide on selectively re-
porting telemetry data on passing packets, without any explicit coordination and inter-
vention from a control plane. We evaluate LINT using publicly available network traces
and employing a combination of network emulation (using Mininet [109] and the P4 ref-
erence software switch bmv2 [110]) and simulation.

1.3.5 Summary of Results

We have evaluated our solutions using a variety of methods including, testbed experiments,
network emulation and simulations. We leveraged publicly available real network topologies
and real tra�c traces when possible. In many cases, we also implemented state-of-the-art so-
lutions and compared our contributions against them. In this section and in Figure 1.3, we
summarize and present some key results of our contributions.

We �rst demonstrate the �ner-grained resource allocation capability of µNF compared to
state-of-the-art run-to-completion monolithic SFC deployment system NetBricks [1] in Fig-
ure 1.3(a). We deploy SFCs of varying lengths using both µNF and NetBricks on a testbed
and measure the number of CPU cores they require for sustaining line-rate packet processing
throughput (for the smallest packet size). We found µNF to be always using the same or lesser
number of CPU cores compared to NetBricks. Furthermore, the CPU core consumption gap
between µNF and NetBricks widens as the SFCs become longer.

15

2 4 6 8
SFC Length

0

3

6

9

C
PU

 c
or

es
 n

ee
de

d
fo

r
lin

e-
ra

te
 th

ro
ug

hp
ut NetBricks

NF

(a) µNF vs.
NetBricks [1]

A
cc

ep
te

d
V

N
s C
os

t1.0

1.3

1.5

1.7

2.0

Im
pr

ov
em

en
t (

X
)

(b) FAST-MULE vs.
D-VNE [2]

A
cc

ep
te

d
V

N
s C
os

t1.0

1.2

1.9

3.8

Im
pr

ov
em

en
t (

X
)

(c) FAST-DRONE
vs. PAR [3]

PayLess LINT
0

30

60

90

O
ve

rh
ea

d
R

ed
uc

ti
on

(%
)

Overhead Reduction
Error (NRMSE)

0

5

10

15

20

N
R

M
SE

 (%
)

(d) E�ectiveness of PayLess &
LINT

Figure 1.3: Highlights of thesis contributions: (a) e�ectiveness of µNF in enabling �ner-grained
resource allocation compared to NetBricks [1]; (b) VN acceptance and embedding cost compar-
ison between FAST-MULE and D-VNE [2]; (c) VN acceptance and embedding cost comparison
between FAST-DRONE and PAR [3]; and (d) e�ectiveness of PayLess and LINT in reducing
control and data plane overhead, respectively.

Following the e�ectiveness of �ne-grained resource allocation, we demonstrate the perfor-
mance of the resource allocation heuristics proposed for MULE and 1 + 1 – ProViNE in Fig-
ure 1.3(b) and Figure 1.3(c), respectively. In both cases, we extensively evaluate the solutions
using realistic network topologies under di�erent settings and compare the results against state-
of-the-art heuristics. In case of MULE, our proposed heuristic, FAST-MULE, accepts ≈1.6×
more VNs and incurs ≈1.7× less resource provisioning cost on average compared to state-of-
the-art heuristic [2]. FAST-DRONE also outperforms the corresponding state-of-the-art heuris-
tic [3] by accepting ≈3.8× more VNs and incurring ≈1.17× less resource provisioning cost on
average while providing dedicated protection to VNs.

Finally, Figure 1.3(d) shows the e�ectiveness of PayLess and LINT in reducing control and
data plane overhead for softwarized network monitoring, respectively. We evaluate our con-
tributions using network emulation and simulation using both synthetic and real tra�c traces.

16

Our key results are: (i) PayLess can reduce control plane messaging overhead by more than 80%
and incurs ≈20% normalized root means squared error (NRMSE) of link utilization measure-
ment on average compared to periodically polling the switches in 250 ms intervals; and (ii) on
average, LINT reduces the data plane overhead of INT by ≈30% while incurring ≈5% NRMSE
for switch processing latency measurement.

1.4 Thesis Organization

We �rst present a disaggregated VNF architecture to enable �ne-grained resource allocation
and scaling in Chapter 2. Following the disaggregated VNF architecture, we shift our focus
to addressing two novel resource allocation problems arising from the virtualization of trans-
port networks. The �rst problem, multi-layer virtual network embedding, focusing on e�-
ciently allocating virtual network resources from a softwarized IP-over-OTN transport net-
work is addressed in Chapter 3. Then, in Chapter 4 we present our solutions to the problem
of e�ciently embedding virtual networks on a T-SDN with dedicated topology protection. We
dedicate Chapter 5 for addressing another important aspect of resource management, namely,
monitoring. Speci�cally, we strike a balance between the accuracy and overhead of network
monitoring considering both control and data plane overheads. Finally, we conclude with some
future research directions in Chapter 6.

17

Chapter 2

A Disaggregated Virtual Network
Function Architecture

2.1 Introduction

In this chapter, we aim at building Virtual Network Functions (VNFs) from simple building
blocks by taking advantage of the commonality of packet processing tasks, following the mi-
croservices architecture [111, 112]. We propose µNF that takes the disaggregation of middle-
boxes one step further and decomposes VNFs into independently deployable, loosely-coupled,
lightweight, and reusable packet processors, that we call MicroNFs (µNFs for short). VNFs or
Service Function Chains (SFCs) are then realized by composing a packet processing pipeline
from these independently deployable µNFs. Such decomposition will allow �ner-grained re-
sources allocation, independent scaling of µNFs thus increased �exibility, and independent de-
velopment and maintenance of packet processing components.

µNF is built on the thesis of CoMb [47] that consolidating common packet processing tasks
from multiple NFs may lead to better resource utilization. However, CoMb did not address the
engineering challenges for realizing the data plane of such a system (e.g., software architecture,
performance optimizations), which is our key contribution. Speci�cally, we have the following
contributions in this chapter:

• A quantitative study to demonstrate how repeated application of common packet pro-
cessing tasks in an SFC can a�ect CPU resource utilization.

• An architecture for composing VNFs and SFCs from independently deployable, loosely-
coupled, lightweight, and reusable components that we call µNFs.

18

• Implementation of architecture components including the µNFs, communication primi-
tives between µNF, and CPU sharing between µNFs to improve CPU utilization without
sacri�cing packet processing throughput.

• Optimizations for improving packet processing throughput of µNFs on multi-socket Non-
uniform Memory Access (NUMA) machines, and packet processing latency in µNF-based
network services.

• Evaluation of the system through testbed experiments. Our key �ndings are: (i) compared
to an SFC composed from monolithic VNFs, µNFs can achieve the same throughput using
less CPU cycles per packet on average; (ii) µNFs can sustain the same packet processing
throughput as the state-of-the-art run-to-completion VNF architecture [1], while using
lesser number of CPU cores.

The rest of this chapter is organized as follows. First, we provide a brief overview of mi-
croservices software architecture that inspired the design of µNF in Section 2.2. Then, we
motivate the need for VNF disaggregation through both qualitative and quantitative study in
Section 2.3. Then we describe our design goals and choices in Section 2.4 followed by a detailed
description of the disaggregated VNF architecture in Section 2.5. We present the implementa-
tion detail of di�erent system components in Section 2.7. Then we discuss the optimizations that
we performed for improving packet processing throughput on multi-socket NUMA machines
and packet processing latency in Section 2.6. We present the results from testbed evaluation
in Section 2.8. Finally, we summarize the chapter contributions in Section 2.10.

2.2 The Microservices Software Architecture

The National Institute of Standards and Technology (NIST) de�nes microservices as follows. “A
microservice is a basic element that results from the architectural decomposition of an application’s
components into loosely coupled patterns consisting of self-contained services that communicate
with each other using a standard communications protocol and a set of well-de�ned APIs, indepen-
dent of any vendor, product or technology” [111]. From this de�nition, we draw the following
key features of microservices:

• Self-contained: A microservice typically performs a single task and does not depend on
other microservices for performing its task.

• Loosely coupled: Generally, a microservice does not require tight synchronization with
other microservices to operate.

19

C1 C2

C3

Scaling

C1 C2

C3

C1 C2

C3

(a) A monolithic application with tightly coupled
components, ine�cient scaling and coarse grain

resource allocation

C1’ C2’

C3’

C2’Scaling

C1’

C1’ C1’

C2’ C3’

(b) A microservice-based application with
independently scalable microservices, facilitating

�ne grain resource allocation

Figure 2.1: Monolithic vs. microservice-based application

• Well de�ned communication interfaces: In a microservice architecture, an applica-
tion completes a series of tasks by di�erent microservices. For this purpose, microservices
must exhibit well-de�ned APIs that an orchestrator and other microservices can use for
communication. A popular choice for such interface is the RESTful API. However, mes-
sage queues and protocol bu�ers are competing alternatives.

A major advantage of using microservices is the ability to allocate resources at a �ner gran-
ularity. For example, consider a monolithic application in Figure 2.1(a), composed of tightly
coupled components, C1, C2 and C3. A surge in demand requires increased processing in
components C1 and C2 of the application. In this monolithic application, all components need
to be scaled because of the tight coupling, resulting in idle resources allocated to C3. In con-
trast, consider Figure 2.1(b), where the same application is re-architected using microservices
C1′, C2′ and C3′. Now the scaling of the application is more e�cient in terms of resource al-
location. Additionally, the self-contained and loosely coupled nature of microservices facilitate
independent development and maintenance.

2.3 Motivation

2.3.1 Commonality in Packet Processing Tasks

Our motivation for developing a disaggregated packet processing architecture stems from the
observation that many packet processing tasks, such as packet I/O, parsing and classi�cation,
and payload inspection are repeated when VNFs are chained in an SFC. We demonstrate this
using the SFC in Figure 2.2(a), typically found in enterprise Data Centers (DCs) [113]. This SFC
consists of the following VNFs:

20

WAN
Optimizer

Edge
Firewall

Monitoring
Function

Application
Firewall

Load
Balancer

To servers
hosting

applications

(a) Example SFC use case from [113]

Rx From
NIC

Parse
Headers

L7
Classification

Decompress
HTTP PayLoad

Tx to NIC

HTTP
Traffic

Other Traffic

WAN
Optimizer:

Edge
Firewall:

Rx From
NIC

Parse
Headers

L3/L4
Classification Tx to NIC

Drop
Packet

Allow

Deny

App.
Firewall:

Rx From
NIC

Parse
Headers

L7
Classification

Validate
URL

Drop
Packet

HTTP
Traffic

Other Traffic Tx To
NIC

Unsafe

Safe

Load
Balancer:

Rx From
NIC

Parse
Headers

Distribute Packets on
Hash of 5-tuple

Tx To NIC1
Tx To NIC2

Monitoring
Function:

Rx From
NIC

Parse
Headers

L7
Classification

Tx To
NIC

Count
Packets with

URL X

HTTP
Traffic

Other Traffic

(b) Functional decomposition of NFs

Figure 2.2: Common packet processing tasks across NFs

• WAN Optimizer: Placed at a DC and WAN boundary for optimizing WAN link us-
age, e.g., compresses/decompresses HTTP payload (e.g., text, image) to reduce WAN traf-
�c [114].

• Edge Firewall: Allows or denies packets based on layer 2-4 header signature.

• Monitoring Function: Consists of di�erent counters such as a packet size distribution
counter, a counter for packets containing certain URLs, etc.

• Application Firewall: Filters packets based on layer 7 information, e.g., block incoming
HTTP requests with embedded SQL injection attacks (similar to [115]).

21

• Load Balancer: Distributes packets to back-end servers based on �ow signature.

We can decompose these VNFs into smaller packet processing tasks as shown in Figure 2.2(b).
Each block in Figure 2.2(b) represents an operation performed on a packet while the arrows rep-
resent the �ow of operations. Clearly, tasks such as packet I/O, parsing and classifying HTTP
packets are repeated in these VNFs. The tight coupling between these packet processing tasks
in a monolithic implementation can have the following negative consequences:

• Overlapped Functionality: Many of the functionality are common across VNFs. In
some cases, the functionality is the same but the parameters are di�erent (e.g., writing a
packet but to di�erent Network Interface Cards (NICs)). While in other cases both the
functionality and the con�guration are exactly the same (e.g., HTTP packet classi�cation
performed by both WAN Optimizer and Application Firewall).

• Wasted CPU Cycles: Since a functionality is embedded within a monolithic VNF, its
execution result is not easily reusable across VNFs (e.g., classi�cation of a packet as HTTP
by the WAN Optimizer is not usable by the Application Firewall). Therefore, CPU cycles
are wasted due to the repeated execution of the same functionality when a packet goes
through the VNFs in an SFC. This is also experimentally validated by prior research,
reporting more than 25% CPU cycles are wasted for such redundant processing for certain
SFCs [47].

• In�exible Scaling: It is di�cult to scale resources for individual functionality since they
are embedded into monolithic VNFs. If a functional block in Figure 2.2(b) becomes a bot-
tleneck, the whole VNF needs to be scaled up/out (e.g., there is no easy way to allocate
additional CPU resources for performing URL validation in an Application Firewall in Fig-
ure 2.2(b) without scaling up/out the whole VNF instance). This requires more resources
compared to scaling up/out resources for a single functionality.

2.3.2 Performance Implications of Monolithic VNFs

We perform an experimental study to demonstrate possible performance implications of repeat-
ing common packet processing tasks in an SFC by comparing between the following two de-
ployment con�gurations: (i) Click [116] based monolithic VNFs chained using virtual Ethernet
(veth) pairs (Figure 2.3(a)); and (ii) a single Click con�guration implementing the functionality
of the same SFC from con�guration-i, while removing the repeated common elements (Fig-
ure 2.3(b)). For both cases we play the same tra�c (HTTP packet trace generated from access
log for a moderate size public web-service (≈15K hits/month)) and measure the average CPU

22

cycles/packet required by each type of Click element. Our objective is to measure the wasted
CPU cycles for repeating common tasks across an SFC. Note that this study complements that
of the one presented in [47] by demonstrating the impact on an SFC rather than considering
single middlebox applications.

Click Configuration: Edge Firewall

FromDev
(eth0) CheckIPHeader Classifier

ToDev
(veth00)

Drop

Allow

Deny

Click Configuration: Application Firewall

FromDev
(veth11)

Validate
Url

ToDev
(eth1)

Unsafe

Click Configuration: Monitoring Function

FromDev
(veth01)

HttpClassifier
ToDev

(veth10)CountUrl

HTTP
Traffic

Other Traffic

Filter

CheckIPHeader

CheckIPHeader HttpClassifier

H
T

T
P

T
ra

ff
i

c

Drop

Safe

eth0 -
From

Traffic
Gen.

eth1 -
To

Traffic
Gen.

Physical Machine

Other Traffic

(a) Monolithic VNFs chained with veth pairs (con�guration-(i))

Optimized Click configuration with the same functionality

FromDev
(eth0)

CheckIPHeader Classifier

Drop

Allow

Deny

ValidateUrl

ToDev
(eth1)

U
ns

af
e

HttpClassifer CountUrlHTTP Traffic

Other Traffic

Filter

Safe

eth0 -
From

Traffic
Gen.

eth1 -
To

Traffic
Gen.

Physical Machine

(b) One single optimized click con�guration (con�guration-(ii))

Figure 2.3: Motivational experiment scenarios

We deployed the following simpli�ed form of the SFC from Figure 2.2(a): Edge Firewall→
Monitoring Function→ Application Firewall. We implemented our own Click elements (Http-
Classi�er, CountUrl, and ValidateUrl) when Click’s element library did not have any elements
with similar functionality. We also instrumented the Click elements to measure the number of
CPU cycles spent in processing each packet.

We present the savings in CPU cycles obtained from removing repeated elements in the
optimized con�guration, i.e., con�guration-(ii) in Table 2.1. We observed a per element savings

23

Table 2.1: Results from motivational experiment
Click Element CPU Cycles Saved Element Weight

Type in con�guration-(ii) in con�guration-(i)
FromDevice 71.9% 0.22%

ToDevice 67.1% 0.25%
CheckIPHeader 65.1% 0.44%
HttpClassi�er 48.28% 47.8%

Overall 29.5% –

of up to ≈70%. However, as shown in Table 2.1, not all elements contribute equally to packet
processing, hence, the overall gain at the end is 29.5%, which is still signi�cant.

This result further motivates re-architecting VNFs by exploiting the commonality in packet
processing in a way to achieve better resource utilization. To this end, we argue in favor of
adopting a microservice-like architecture [112] for building VNFs and SFCs. We propose to
disaggregate VNFs into independently deployable packet processors, that we call µNFs. VNFs
or SFCs can then be realized by orchestrating a packet processing pipeline composed from
the µNFs. With this, one can think of applying optimizations such as consolidating multiple
instances of a common packet processing function into a single instance for better CPU utiliza-
tion. We will experimentally demonstrate CPU utilization gains from using a µNF-based SFC
over that composed from monolithic VNFs (i.e., con�guration-(i)) in Section 2.8.3.

µNFs are to some extent analogous to the VNF Components (VNFCs) de�ned in the ETSI
VNF architectural description [117]. According to [117], a VNF can consist of one or more VN-
FCs, where each VNFC has a one-to-one correspondence with a virtualization container (e.g.,
Virtual Machine (VM), OS container). However, a major di�erence between a µNF and a VNFC
is that µNFs are loosely coupled components that can be used across VNF boundaries, whereas
VNFCs are not. This property also makes SFC orchestration di�erent in the case of µNFs since
there are more optimization opportunities for µNFs compared to VNFCs. We illustrate some
of these optimization opportunities through an example in Figure 2.4. This �gure represents a
possible optimized realization of the SFC from Figure 2.2(a) using µNFs. Assuming that mecha-
nisms to propagate output of one µNF to the others exist, we can consolidate packet processing
tasks such as packet I/O, header parsing and HTTP packet classi�cation. Furthermore, some
µNFs can be executed in parallel, such as the tasks performed by the monitoring functions
that do not modify packets. These optimizations are only possible due to the inherent loosely
coupled characteristic of µNFs.

24

Read From
NIC

Parse
Headers

Classify on L7
Type

Decompress HTTP PayLoad

HTTP Traffic

Classify on
L3/L4 Header

Parallel
Processing

Deny

Drop Packet

Other
Traffic

Distribute
Packets on

Hash of
Headers

Send To NIC1

Send To NIC2

Compute
Packet Size
Distribution

Count
Packets To
Subnet X

Is Payload Compressed?

Validate URL

Allow

Safe

Unsafe

YesNo

Figure 2.4: Microservice-based realization of the SFC from Figure 2.2(a)

2.4 Design Goals and Choices

Our objective is to re-architect the VNFs by exploiting their overlapping functionality enabling
�ner-grained resource allocation and achieving better resource utilization. To achieve these
objectives we start with the following design goals:

• Reusability Frequently appearing packet processing functions should be developed once
and shared across VNFs.

• Loose-coupling: Packet processing functions should not be tightly coupled, so that they
can be deployed and scaled independently, allowing �ne-grained resource allocation.

• Transparency: Implementation of a packet processing function should not be a�ected
by their communication pattern (e.g., one-to-one, one-to-many, etc.).

• Lightweight communication primitives: Communication between packet processing
elements should not incur signi�cant overhead hurting the overall performance.

The �rst goal can be achieved by dividing large packet processing software into smaller
packet processing tasks or functionality. Then to achieve the rest of the goals we have the
following two design alternatives [118]:

25

Run-to-completion: Packet processors are implemented as a set of identical threads or
processes, each implementing the entire packet processing logic (i.e., an NF or even an SFC).

Pipelining: Packet processors are implemented by composing a pipeline of heterogeneous
threads or processes, each performing a speci�c packet processing task.

The state-of-the-art modular VNF designs such as ClickOS [119] and NetBricks [1] have
adopted a run to completion model, where packets are passed between di�erent functions in
the same address space and processed in a single thread or process. When more processing
capacity is required, the whole VNF (or SFC) instance is scaled out and tra�c is split between
the instances using NIC features such as Receive Side Scaling (RSS) [120]. One limitation of
this model is that it is hard to right size resource allocation to individual components because
of the tight coupling between them. In contrast, pipelining mode satis�es more of our design
goals. Individual components can be allocated their own resource, independently deployed and
scaled (loose-coupling), and it is easier to decouple how elements process packets from their
underlying communication pattern (transparency).

2.5 System Description

2.5.1 Assumptions

We assume that the network operator owning the infrastructure has control over the VNFs that
are being deployed. These VNFs can be deployed at the operator central o�ces converted into
edge data centers [5]. When SFCs are deployed inside these edge data centers their VNFs are
typically in the same layer 2 domain.

We do not consider Virtual Machines (VMs) as the choice of deployment for individual µNFs
since that would add a signi�cant overhead for µNF to µNF communication [1]. Moreover, we
also do not require separate OSs and kernel features for deploying the µNFs, which is typically
provided by VMs. Rather we choose using either processes or containers for µNF deployment.
At this point we leave the choice of using processes or containers to the network operator since
our evaluation results demonstrated similar performance.

We assume that the µNF descriptions (e.g., what type of operation the µNF performs on
what part of the packet header or payload) and template for composing VNFs from µNFs will
be provided by the VNF providers. The SFC request will come from the network operator.
Currently, we use JSON format for SFC speci�cation. However, we do not restrict ourselves as
to what can be used for specifying SFCs. We plan to support standards such as TOSCA [121]
and YANG [122] in future.

26

μNF - 1

…

μNF Orchestrator

Southbound API
(e.g., DeployμNF)

Northbound API
(e.g., DeployChain)

μNF - 2

μNF - k

O
rc

he
st

ra
ti

on

A
ge

nt

Rx
Service

Tx
Service

NIC(s)Mgmt.
NIC

Physical Server

Figure 2.5: System components

Finally, we assume that the µNF developers will provide con�guration generator for each
µNF. This will generate the necessary con�guration for a µNF (e.g., the types of communication
primitives), when presented with a µNF type and its connectivity with neighboring µNFs.

2.5.2 System Architecture: Birds Eye View

A high level view of our system is presented in Figure 2.5. It comprises the following compo-
nents: a µNF orchestrator, per physical server orchestration agent, µNFs, and Rx and Tx services
for reading packets from and to the NICs, respectively. The northbound API facilitates SFC life-
cycle management and monitoring, and allows network operators to interact with the system.
The µNF orchestrator is responsible for making global decisions such as µNF placement across
physical servers to realize SFCs and make µNF migration decisions, among others.

The orchestration agent acts as the local orchestration endpoint for a given machine. A
southbound API between the global orchestrator and orchestration agents facilitates their com-
munication. For example, the µNF orchestrator can use the southbound API for requesting local
orchestration agents to allocate resources for µNFs, deploying µNFs with proper con�guration
and create the communication primitives for µNF to µNF communication.

The smallest deployable units in the system are the µNFs. µNFs usually perform a speci�c

27

Ctrl/Mgmt API
i_port_0

i_port_1

. . .

i_port_kIn
gr

es
s

Po
rt

s

e_port_0

e_port_1
...

e_port_m

Egress Ports
PacketProcessor

iport to eport
mapping table

Figure 2.6: µNF architecture

packet processing task and are independently deployable loosely-coupled entities. As described
earlier in Section 2.4, one of our design goals is to keep the µNFs simple and keep the commu-
nication pattern between µNFs transparent from how they process the packets.

Finally, we have two special µNFs, namely the Rx and Tx services, responsible for reading
packets from and writing packets to the NIC, respectively. These two services collectively form
a lightweight software data path for the µNFs. By isolating these two services from the µNFs
we have the �exibility to adjust I/O batch sizes according to the consumption/production rate of
the µNFs. Moreover, such separation allows us to make the operations on hardware transparent
to other packet processing µNFs.

2.5.3 System Components

µNFOrchestrator: The µNF orchestrator is responsible for realizing an SFC by orchestrating
a packet processing pipeline consisting of µNFs across multiple machines. Network operators
can interact with the orchestrator through a north-bound API. The orchestrator is also respon-
sible for global management decisions such as handling machine failures and making scaling
decision.

µNF Orchestration Agent: µNF orchestration agent is the local orchestration endpoint on
a physical machine. It has a northbound API for the µNF orchestrator to act on it. The agent
is responsible for performing local actions such as deploying µNFs, creating communication
primitives to enable inter µNF communication on the same machine, etc.

µNFs: A µNF is the unit of packet processing in the system as well as the unit of deployment
and resource allocation. It consists of a number of IngressPorts, a number of EgressPort and a
PacketProcessor (Figure 2.6). The IngressPorts and EgressPorts provide methods to pull packets

28

from and push packets to the previous and the next µNF in the packet processing pipeline,
respectively. When µNFs from di�erent VNFs are consolidated, the IngressPort to EgressPort
mapping table helps in routing packets to di�erent branches of the pipeline.

The aforementioned ports are of abstract type and can have di�erent implementations. One
of our design goals is to keep packet processing logic of µNFs oblivious to µNF to µNF commu-
nication pattern. The port abstraction simpli�es µNFs’ design and implementation, and keep
them loosely coupled with each other. For instance, we implement a LoadBalancedEgressPort
that has the same interfaces as EgressPort. However, the implementation distributes packets
to multiple next-stage IngressPorts in a round-robin fashion. From the µNF’s point-of-view
this distribution of packets to multiple next stage µNFs remains completely transparent. In
Section 2.7 we describe the implementation of di�erent ports in more detail.

Rx Service: Rx service is the interface between host NIC(s) and the µNFs. Rx service keeps
hardware speci�c con�gurations (e.g., number of NICs, number of Rx queues) and operations
(e.g., �ow classi�cation in either hardware or software based on NIC capabilities) transparent to
the µNFs. The Rx service can be thought of as a lightweight data path (similar to [123], except
that complex data path functions are implemented as independent µNFs in our system).

Tx Service: Tx service sits between the µNFs and the host NIC. Common Tx speci�c tasks
such as tagging packets of the same SFC, rewriting destination MAC address with next hop MAC
address and writing packets to di�erent NIC queues, are consolidated inside the Tx service.

2.5.4 SFC Deployment

The µNF orchestrator is the entry point for the network operators to deploy an SFC composed
of µNFs. One of our goals is to ensure that from the network operators point-of-view the
SFC request does not look di�erent from what they are used to seeing, i.e., they should not be
required to specify µNF speci�c con�gurations. It is up to the orchestrator to determine the
optimal composition of µNFs that o�ers the semantics of the user requested SFC.

Inputs: In what follows, we describe the inputs to the orchestrator in a bottom up fashion:

• µNF Descriptor: A µNF descriptor de�nes di�erent attributes of a µNF. Currently, we
support the following attributes: statefulness of the µNF and types of action (e.g., No
Operation (NOP), ReadOnly, or ReadWrite) a µNF performs on the packet headers at dif-
ferent protocol layers. For instance, the following is a descriptor for a layer 3-4 classi�er:

29

PacketProcessorClass: "TCPIPClassifier"
Stateful: "Yes"
L2Header: "NOP"
L3Header: "ReadOnly"

These meta-data about the µNFs assist in performing optimizations (detail discussion
in Section 2.6) when composing SFCs from µNFs.

• VNF templates: A VNF template is a blueprint of realizing a VNF from µNFs and we
represented it by a packet processing graph composed of the constituent µNFs. VNF tem-
plates can be considered analogous to VNF descriptors de�ned in ETSI NFV Management
and Orchestration (MANO) speci�cation [124]. A VNF template consists of the nodes of
the processing graph (i.e., the µNFs) and the links representing the order of packet pro-
cessing between µNFs. The links can be labeled with the output of the source µNF for
that link. Labels act as a �lter, i.e., only packets producing results equal to the label are
forwarded along that link. Examples of VNFs and VNF templates are presented in Fig-
ure 2.2(b). If we take the Application Firewall VNF from Figure 2.2(b) as an example, it is
composed from six independently deployable µNFs. Annotations on the edges represent
classi�cation results at di�erent stages, e.g., if a packet contains HTTP payload or not.

• SFC:An SFC request is a directed graph, where the nodes are the VNFs and a directed link
between two nodes represents the order that tra�c should follow. Links can have labels in
an SFC indicating VNF speci�c output. µNF descriptors provided by VNF providers may
include more or less information than what we have described. The lesser information
they contain, the lesser constraints we may have in placing the constituent µNFs.

Sequence of Operations for SFC Deployment: The µNF orchestrator combines the con-
stituent VNF templates of an SFC, removes redundant µNFs and builds a µNF forwarding graph
with the same semantics as the SFC request. The graph construction phase can takeµNF speci�c
meta-data into account to perform optimizations such as consolidating multiple µNF instances
of the same type into one and performing optimization such as parallelizing the executing of
multiple µNFs on the same packet whenever possible.

After the µNF orchestrator builds an optimized µNF processing graph and determines the
placement of µNFs, it then requests agents on the selected machines to deploy their parts of the
graph. µNF orchestrator also generates con�guration of each µNF in the graph by leveraging
the developer provided con�guration generators and provides the agents with these generated

30

con�gurations. Upon receiving the µNF processing subgraph and the con�gurations, the agent
�rst allocates the necessary resources, creates the communication primitives, and deploys and
connects the µNFs using the instantiated communication primitives.

2.5.5 Auto-scaling

We propose to use a simple packet drop monitoring based mechanism to take auto-scaling de-
cisions. Once µNFs are deployed, the local agents continuously monitor for packet drops on
all EgressPort – IngressPort pairs. A consistent drop indicates that the µNF attached to the
IngressPort is not able to match the processing rate of the µNF attached to the EgressPort. This
triggers an auto-scaling event in the agent. The agent then spawns another instance of the bot-
tleneckµNF and modi�es the corresponding EgressPort in the pair to a LoadBalancedEgressPort
(described in Section 2.7.4), which load balances tra�c across the scaled-out instances.

However, there is a delay between detecting consistent packet drop and actually deploying
another µNF instance to mitigate packet drops. Since the agent is continuously monitoring,
it will keep seeing a packet drop during this period and trigger another scale-out event even
before the �rst one completes. To avoid this, we assign a cool down timer to the µNF that is
being scaled-out and do not trigger another scale-out event until the timer has expired.

2.6 Optimizations

2.6.1 Pipelined Cache Pre-fetching

One potential issue that might arise from our design of µNF is when using multiple processors
in a NUMA con�guration. In such con�guration, each processor socket has its local memory
bank and the access time to local and remote memory banks are not uniform. Processing packets
on a NUMA zone (i.e., socket) other than the one where the NIC is attached to has performance
implications due to remote memory invocation.

To circumvent the aforementioned issue, we perform a pipelined cache pre-fetching inside
every µNF as follows. Before processing a batch of packets, a µNF �rst pre-fetches a cache-line
from the �rst k packets in the batch. Then it proceeds to process the batch. While packet i from
the batch is being processed, a cache-line from packet i + k is pre-fetched into the cache. In
this way, when a packet is being processed, the �rst level cache is very likely to be warm with
a cache-line worth data from that packet (which contains the header �elds). Thus potentially

31

increasing the �rst level cache hit rate and masking the remote memory access latencies to
some extent. We experimentally evaluate the impact of this optimization in Section 2.8.2.

2.6.2 Parallel execution of µNFs

In a pipelined packet processing model, the packet processing elements typically operate on a
batch of packets in a sequential manner. This is often unavoidable since one µNF only processes
the set of packets as determined by the previous stage µNF. For instance, in Figure 2.2(b), the
layer 7 classi�er in the Application Firewall determines the set of packets to be processed by
the URL Validator. However, there are scenarios where sequential processing can be avoided.
For example, in the monitoring function from Figure 2.2(b), the counting function performs a
read-only operation on the packets. Therefore, if another counting function was part of the
Monitoring function, these two could be safely executed in parallel on the same set of packets.

We parallelize the execution of consecutive µNFs from the µNF processing graph that are
placed on the same machine by employing techniques similar to the ones discussed in [125, 126,
127]. Parallelization is performed based on the type of operation they perform on the packet
header (speci�ed in µNF descriptor). When consecutive µNFs perform read-only operations on
the packet header, or operate on disjoint regions of the header, or do not modify the packet
stream (e.g., not dropping packets), only then we parallelize their execution and assign them
distinct CPU cores on the same NUMA zone.

One issue with parallel execution is to ensure synchronization after the parallel processing
stage, i.e., a µNF β that is just after the parallel processing state, should be able to start process-
ing a packet only if the packet has been processed by all the µNFs in the parallel processing
stage. Such synchrony is achieved through special IngressPort and EgressPort implementations
(details in Section 2.7.4). These ports embed a counter as packet meta-data before parallel exe-
cution begins. At the parallel execution stage, each µNF atomically increases the counter after
its processing is complete. At µNF β, the IngressPort ensures that only packets with appropri-
ate counter value are passed on to β’s PacketProcessor. Moving the synchrony mechanism into
ports thus keeps the µNF design simple.

2.7 Implementation

One option for implementing the proposed system is to adapt existing modular packet process-
ing frameworks such as Click [116] to a multi-process model. However, Click comes with a lot

32

of legacy code, some of which is not useful for our case (e.g., scheduling multiple elements in-
side a Click binary). Also, Click was originally designed and optimized for a run-to-completion
packet processing model, which is fundamentally di�erent from the pipeline model adopted
by µNF. Therefore, re-engineering Click and similar systems require signi�cant refactoring of
many of their subsystems such as component scheduling and packet transfer to make them
e�ciently work in a pipeline model. Finally, we wanted to build the system in a way such that
it can process packets at 10 Gbps line-rate at least (current de facto capacity for commodity
NICs) while maximizing CPU usage on the servers. It was becoming cumbersome to optimize
Click’s performance and refactor its subsystems for pipeline model, hence, we decided to build
the system from scratch.

We have implemented a prototype of our system using C++ (agent and µNFs) and Python
(orchestrator). Since our focus is more on developing the µNFs and their communication prim-
itives, therefore, our current orchestrator is limited in functionality and acts more as a conve-
nience mechanism for testing. We use Intel Data Path Development Kit (DPDK) [128] for kernel
bypass packet I/O and hugetlbfs [129] for sharing memory between µNFs. Before describing
the implementation details of our system, we �rst give a brief overview of DPDK.

Intel DPDK Overview

Intel DPDK [128] is a set of libraries for facilitating fast packet processing in the user-space.
DPDK contains libraries for kernel-bypass packet I/O, lockless multi-producer multi-consumer
circular queues (DPDK rte_ring library), and memory management (DPDK rte_mempool li-
brary), among others. The ring library can be used to create shared memory based abstractions
between packet processors for zero-copy packet exchange. DPDK also ships with a set of NIC
speci�c poll-mode drivers (PMDs) for packet I/O to/from the NIC.

Packet processing elements built using DPDK run in the user-space, bypasses the kernel and
continuously poll the NIC for incoming packets. Poll-mode I/O in DPDK is a departure from
the traditional interrupt driven I/O, where I/O operations engage the CPU only when packets
become available at the NIC. Upon receiving an I/O interrupt, the CPU switches context from
that of the currently running process to that of the interrupt handler in the kernel, performs
packet I/O and copies the packets from the kernel-space to the user-space. In contrast, poll-
mode I/O always engages a CPU and performs zero copy I/O from the user-space whenever
packets become available at the NIC. In this way poll-mode I/O eliminates the need for context
switching, executing interrupt handlers, and copying packets from the kernel- to the user-space.
By eliminating these overhead among others introduced by interrupts [130, 131], polling incurs
very low CPU overhead and low latency, signi�cantly increasing packet processing throughput
compared to interrupt driven I/O [132].

33

In the remainder of this section we describe the implementation of the system components.

2.7.1 Agent

Agents are implemented in C++ and run as primary DPDK processes. During initialization,
an agent pre-allocates memory bu�ers for the NIC to store incoming packets, and exposes an
RPC-based control API for the orchestrator. The orchestrator can use this API to deploy part of
a µNF processing graph on a machine. When such a request is received by an agent, it deploys
the µNFs according to the orchestrator speci�ed con�guration and creates the necessary com-
munication primitives (details in Section 2.7.4). Agents also monitor the µNFs and take scaling
out decisions.

2.7.2 µNF

µNFs are implemented by leveraging DPDK APIs. Each µNF runs as a stand-alone secondary
DPDK process. Since DPDK allows only one process to be the primary, i.e., have the privileges
of memory allocation, µNFs run as secondary DPDK processes. When required, µNFs obtain
pre-allocated objects from a memory pool shared with the agent. Memory sharing between
µNFs and between a µNF and the agent is enabled by hugetlbfs. The hugetlbfs is mounted on
a directory accessible to both the µNFs and the agent, and contains virtual to physical memory
mapping of the shared memory regions.

One caveat in this shared memory model is that each process should have exactly the same
virtual address space layout in order to successfully translate the shared virtual memory to their
physical locations. To do so we had to disable Address Space Layout Randomization (ASLR), a
Linux kernel feature for preventing bu�er over�ow attacks [133]. This is a security vulnerability
and is a limitation in our current implementation. However, this is also a limitation of the
technology at hand and solving it can be an interesting future work.

2.7.3 Rx and Tx Services

In our design, packet I/O is handled by Rx and Tx services in order to hide hardware speci�cs
from the other µNFs. In our prototype implementation, the Rx service runs as a separate thread
inside the agent and is pinned to a physical CPU core on the same socket where the NIC’s PCIe
bus is attached. It receives packets from a NIC queue in batches and implements a classi�er that
dispatches the packets to the appropriate µNFs. Currently, the classi�er is based on matching
the following 5-tuple �ow signature: (source-IP, dest-IP, ip-proto, src-port, dst-port).

34

The Tx service abstracts the NIC Tx queues and implements common functions frequently
required by the µNFs. For example, in a multi-node deployment scenario, when a µNF pro-
cessing graph is deployed across multiple machines, the Tx service encapsulates the packets
belonging to a µNF graph destined to another machine in a custom layer 2 tunnel with ap-
propriate tag and destination MAC addresses. The Rx service on the other end of the tunnel
distributes packets to the appropriate µNFs based on the tags. These tags are determined and
con�gured by the orchestrator.

2.7.4 Port

As discussed earlier, a port provides packet I/O abstraction for µNFs and decouples the im-
plementation of a speci�c communication pattern from a µNF’s packet processing logic. This
design choice helps to keep the µNF implementation focused only on the packet processing
part. We have two broad classes of ports, IngressPort for receiving packets from and Egress-
Port for sending packets to µNF(s). If not stated otherwise, ports provide a zero-copy packet
exchange mechanism by exchanging the packet addresses instead of full copies of the packets.
IngressPort and EgressPort present the following interfaces to the µNFs while hiding underly-
ing implementation details: (i) pull based IngressPort::RxBurst, which populates an array with
a burst of packet addresses; (ii) EgressPort::TxBurst pushes a burst of packets to the next µNF.
Currently, we have the following speci�c implementations of IngressPort and EgressPort that
allow di�erent communication patterns between µNFs.

NIC I/O Port: A NIC I/O port abstracts the rx/tx queues in the hardware NIC. It allows µNFs
to directly read from or write to the NIC. We have leveraged the NIC speci�c DPDK poll mode
drivers (PMDs) for implementing ingress and egress versions of NIC I/O Port. The DPDK PMDs
bypass the OS kernel and allow zero copy packet I/O from the NIC.

Point-to-Point Port: A point-to-point port allows a µNF to push packets to or pull packets
from exactly one other µNF. We have implemented this port using a circular queue (Figure 2.7).
The ingress version of the port (PPIngressPort) pulls a batch of packet addresses from a circular
queue and the egress version (PPEgressPort) pushes packet addresses for a batch of packets to the
queue. When a µNF’s PPIngressPort and another µNF’s PPEgressPort share the same circular
queue, they can exchange packets with each other. The circular queue in our implementation
is an instance of rte_ring data structure (a lock-less multi-producer multi-consumer circular
queue) from DPDK librte_ring library.

35

μNFA μNFB

PPPort (Egress)
Shared Ring

PPPort (Ingress)

Main Memory
pkta pktb pktc

Figure 2.7: Point-to-Point Port

μNFA

μNFB

μNFC

M
ain M

em
ory

pkta
pktb

BranchEgressPort PPPort (Ingress)
Parallel μNFs

Figure 2.8: Branched Egress Port

BranchEgressPort: This port connects a µNF to multiple µNFs that are processing packets
in parallel. For instance, in Figure 2.8, µNFB and µNFC are executing in parallel. To realize this
execution model, µNFA can be made aware of this con�guration and pushes packet addresses to
both of the next state µNFs. µNFA will also need to embed the necessary meta-data in packets
to mark the completion of µNFB and µNFC . This violates our design principle of loose coupling
between µNFs, and therefore, we developed BranchEgressPort to transparently handle this type
of branching. A BranchEgressPort contains multiple circular queues, each corresponding to one
µNF in the next stage. Each of the circular queues can be shared with a PPIngressPort to create
a communication channel. For example, one of the circular queues of µNFA’s BranchEgressPort
is essentially the underlying circular queue of µNFB’s PPIngressPort. A BranchEgressPort also
initializes and embeds a counter inside each packet’s meta-data area, which is used to mark the
completion of packet processing by all parallel µNFs.

MarkerEgressPort: A MarkerEgressPort works in conjunction with a BranchEgressPort. It
is the typical EgressPort of a µNF part of a parallel processing group. This port atomically
increases the embedded counter in the packet before putting the packet into a shared queue.

36

SyncIngressPort A SyncIngressPort connects a set of parallel µNFs to a single µNF that is
potentially modifying packets. This port is also an abstraction over a shared circular queue. The
queue is shared with other MarkerEgressPorts in the parallel processing group. SyncIngressPort
ensures that any packet that is pulled out has been processed by all the parallel µNFs. This
synchronization is done by atomically checking the counter embedded inside every packet by a
BranchEgressPort. SyncIngressPort pulls a packet only if the counter value equals the number
of µNFs in the parallel processing stage. In this way, the next stage of a parallel processing
stage proceeds to process a packet only after all the µNFs from the parallel processing stage
have completed their processing. Note that in order to keep the cost of atomically updating
and checking the embedded counters, we leverage the atomic instruction set of modern CPUs.

LoadBalancedEgressPort: This is an EgressPort that load balances packets pushed by a µNF
to a number of next stage µNFs. This port is particularly useful when µNFs are scaled-out.
Consider two µNFs a and b, connected with a pair of ingress and egress point-to-point ports.
If b is scaled out then packets from a need to be load balanced across b instances. This port
transparently performs this load balancing. Our current implementation has a round-robin
load balancing policy. However, more complex policies (e.g., ensuring �ow a�nity) can also be
implemented using this abstraction.

2.7.5 µNF Scheduling

In order to increase µNF density per physical machine, we share a CPU core between multiple
consecutive µNFs from a µNF processing graph. This also enables these consecutive µNFs to
better utilize a CPU’s warm �rst level cache. However, like many other DPDK applications,
µNFs operate in busy polling mode. Therefore, it can occur that one µNF out of several others
sharing the same CPU core, gets scheduled on that core, and there is no packet at that moment
to process. This will waste CPU cycles during the time allocated for the µNF. Therefore, a
major challenge here is to carefully schedule µNFs to minimize the wasted CPU cycles. This
is a problem of its own and merits separate investigation as seen in the literature [134]. For
our prototype implementation, we aim to have a simple yet e�ective solution and �rst explore
which out of the box OS scheduler is the most suitable one.

Completely Fair Scheduler (CFS) is the default scheduler in most Linux distributions [135].
CFS ensures fair sharing of a CPU between competing processes by periodically preempting
them. However, there are other schedulers available in the kernel, e.g., the Real Time (RT)
scheduler [136]. RT scheduler supports the following two scheduling policies: First-in-First-
out (FIFO) and Round Robin (RR). Unlike CFS, RT scheduler does not ensure fairness, rather

37

it ensures that a process only releases a CPU after it has �nished (FIFO) or its allocated time
quantum has expired (RR). To better understand which scheduler and scheduling policy is a
best �t, we performed the following experimental study.

We deployed µNF chains of varying lengths on a single CPU core, where each µNF performs
very minimal packet processing (swaps source and destination MAC addresses). We measured
the throughput of these chains for smallest size (64 byte) packets using di�erent scheduler and
policy combinations, namely CFS and RT with FIFO, and RT with RR. We observed that CFS was
preempting the µNFs too frequently. Consequently, there was a signi�cant context switching
overhead and µNFs from the chain were being scheduled when there was no packet available
in their IngressPorts. RT scheduling was not performing well either (a few thousand packets
per second throughput observed) since µNFs were getting uneven CPU time and were starving.

Therefore, we added the following optimization in the µNFs. A µNF voluntarily yields CPU
in the following events: (i) when there are no packets available in its IngressPort to process, and
(ii) after successfully processing k batches of packets. This optimization (voluntary yielding)
improved the throughput by three orders of magnitude. We present results for di�erent sched-
uler and scheduling policies with voluntary yielding optimization in Figure 2.9 and Figure 2.10.

C
FS

-Y

R
T-

FI
FO

-Y

R
T-

R
R

-Y

Scheduling Policy

0

1

2

3

4

M
ax

 L
en

. o
f

N
F

 C
ha

in
 o

n
1

C
or

e

Figure 2.9: Maximum length of a µNF chain able to sustain line rate (64B) while sharing a core

Figure 2.9 shows the maximum length of a µNF chain that can be deployed on a CPU core
while maintaining 10 Gbps line rate throughput for 64B packets (≈14.88 Million packets per

38

second (Mpps)) We found that voluntary yielding with RT scheduling and FIFO policy can
support the maximum number of chained µNFs while operating at line rate.

2 3 4 5 6 7 8 9 10
Length of NF Chain Sharing a Core

0

2

4

6

8

10

12

14

Th
ro

ug
hp

ut
 (M

pp
s)

CFS-Y RT-FIFO-Y RT-RR-Y

Figure 2.10: Impact of scheduler and scheduling policy on µNF chains (sharing same CPU core)

Then, in Figure 2.10 we demonstrate the throughput for µNF chains of varying lengths
sharing a single core for di�erent combinations of scheduler and policy. From our empirical
evaluation, it is clear that the best combination to use is voluntary yielding with RT scheduler
and FIFO policy, which is able to sustain higher throughput for any chain length compared
to any of the other combinations. The reason being, CFS preempts a process as soon as its
allocated time quantum expires. This means that a µNF can be preempted in the middle of
processing a batch, and therefore, the next scheduled µNF is less likely to get packets from its
IngressPort, thus wasting CPU cycles. RT with FIFO mitigates the impact of preempting. By
combining voluntary yielding, we prevent other µNFs from starving.

2.8 Performance Evaluation

In this section, we present the results from our testbed evaluation. We �rst describe the exper-
iment setup in Section 2.8.1. Then we �rst discuss the microbenchmark results in Section 2.8.2.

39

The microbenchmark results include the impact of introducing the optimizations from Sec-
tion 2.6. Then, we discuss results from service level performance evaluation in Section 2.8.3.
Service level performance evaluation involves evaluating and comparing �ner-grain resource
allocation and scaling capabilities of µNF compared to state-of-the-art system for deploying
run-to-completion SFC [1] and to monolithic VNF based SFCs, respectively.

2.8.1 Experiment Setup

Hardware Con�guration

Our testbed consists of two machines connected back-to-back without any switch. One of them
hosts the tra�c generator and the other hosts the µNFs. Each machine is equipped with 2×6-
core Intel Xeon E5-2620 v2 2.1 Ghz CPU (hyper-threading disabled), 32 GB memory (evenly
divided between two sockets), and a DPDK compatible Intel X710-DA 10 Gbps Ethernet adapter.

Software Environment

We used DPDK v17.05 on Ubuntu 16.04LTS (kernel version 4.10.0-42-generic). We disabled Ad-
dress Space Layout Randomization (ASLR) to ensure a consistent hugepage mapping across the
µNFs. We also allocated a total of 4 GB hugepages (evenly divided between sockets). Addition-
ally, we con�gured the machines with the following performance improvement features:

• We isolated all CPU cores except core 0 on socket 0 from the kernel scheduler. µNF
processes and agent threads were pinned to these isolated CPUs.

• CPU scaling governor was set to performance.

• Flow control in the NIC was disabled.

Prototype µNFs

We developed the following µNFs and used them for di�erent evaluation cenarios:

• MacSwapper: Swaps the source and destination MAC address of each packet.

• IPTtlDecrementer: Parses IP header and decrements time-to-live (TTL) �eld by 1.

• CheckIPHeader: Computes and checks the correctness of IP checksum of each packet.

40

• L3L4Filter: Filters packets based on Layer 3-4 signature.

• HttpClassi�er: Determines if a packet is carrying HTTP tra�c by checking the payload.

• ValidateUrl: Performs a regular expression matching on URL in HTTP header to detect
URLs containing SQL injection attacks.

• CountUrl: Counts the number of packets containing a certain URL in their payload.

• ImitatedWorker: Imitates di�erent packet processing complexities by performing imi-
tated processing on packets with a speci�ed number of CPU cycles.

Tra�c Generation

We used pktgen-dpdk [137], and Moongen [138] for throughput and latency measurements, re-
spectively. We determine the physical limits of our setup by modifying the agent to receive
batches of packets and echo them back (single thread pinned on a CPU core). We observed line
rate throughput from this setup (i.e., 10 Gbps for all packet sizes), hence, there are no bottle-
necks present in the hardware or con�guration. For latency measurements, we set the packet
rate to 90% of maximum sustainable rate for that particular deployment scenario.

2.8.2 Microbenchmarks

Baseline Performance of µNF

We �rst establish the baseline performance that can be achieved by disaggregating larger VNFs
into µNFs. We pinned the agent’s Rx thread to a CPU core and run a very simple µNF (Mac-
Swapper) pinned to a di�erent CPU core in the same NUMA zone. We vary packet size from 64
to 1500 bytes and report the throughput in Figure 2.11. Throughput reaches line rate for small-
est packet size on 10G NIC. We also deployed the same µNF inside a Docker container and
performed the same experiment to observe any potential impact of containerization. Through-
put results for containerized µNF are very similar to those presented in Figure 2.11, and are
hence not presented.

Impact of Pipelined Cache Pre-fetching

We intend to utilize all available CPU cores on a machine for deploying the µNFs. However,
in a NUMA system with multiple CPU sockets, processing packets on a NUMA zone other

41

64 96 128 256 512 768 1024 1500
Packet Size (Bytes)

0

4

8

12

16

20
Th

ro
ug

hp
ut

 (M
pp

s) 14
.8

7

10
.7

7

8.
45

4.
53

2.
35

1.
59

1.
20

0.
82

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

bp
s)

Throughput (Mpps) Throughput (Gbps)

Figure 2.11: Baseline performance

than the one where the packet was received can cause performance degradation due to remote
memory access overhead [139]. In this experiment, we evaluate the impact of cache pre-fetching
optimization from Section 2.6.2 when packets are processed by µNFs on di�erent NUMA nodes.

We receive packets on NUMA zone 0 and process them through a chain of two MacSwapper
µNFs deployed on separate cores at NUMA zone 1. We measure throughput of this chain (for
smallest size packets) while varying the number of pipelined pre-fetched packets up to 50% of
packet batch size (batch size is set to 64). The results are shown in Figure 2.12. With pre-fetching
disabled throughput drops to ≈30% of line rate. However, with as little as ≈20% packets pre-
fetched to cache in a pipeline (8 out of 64 packets in a batch), throughput improves by more
than 3× (Figure 2.12(b)) and goes back to the line rate for smallest packet size (Figure 2.12(a)).

Impact of Parallelism in µNF Processing Graph

Intuitively, parallel execution of µNFs in the processing graph is expected to reduce the pro-
cessing latency for the packets through µNF processing graph. However, overheads are associ-
ated with parallel executions because of atomically increasing a counter on each packet during

42

0.
00

1.
56

3.
12

6.
25

9.
38

12
.5

0
15

.6
2

18
.7

5
25

.0
0

31
.2

5
37

.5
0

50
.0

0

Prefetch Size (% of Batch size)

0

3

6

9

12

15

Th
ro

ug
hp

ut
 (M

pp
s)

 N
o

pr
e-

fe
tc

hi
ng

Line-rate
restored

(a) Throughput vs. Pre-fetch size
1.

56
3.

12
6.

25
9.

38
12

.5
0

15
.6

2
18

.7
5

25
.0

0
31

.2
5

37
.5

0
50

.0
0

Prefetch Size (% of Batch size)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Th
ro

ug
hp

ut
 Im

pr
ov

em
en

t (
x)

(b) Throughput improvement over no cache
pre-fetching

Figure 2.12: Impact of pipelined cache pre-fetching

branching and synchronizing as described in Section 2.6.2. Depending on how fast a µNF is
processing packets, we may observe di�erent impacts of parallelism. To evaluate the e�ect
of parallelism for di�erent packet processing costs, we leveraged the ImitatedWorker µNF. We
create a pipeline from four of these µNFs connected linearly for the sequential case. For the par-
allel case, we create a two-way branching after the �rst µNF (using BranchEgressPort) and join
the branches at the last µNF (using SyncIngressPort). We con�gure the ImitatedWorker µNF
to vary the per packet processing cost (in addition to what is required to swap the source and
destination MAC addresses) from 0 to 700 CPU cycles. We measure packet processing latency
of the sequential and parallel con�gurations using Moongen.

Results of this experiment (mean latency with 5th and 95th percentile error bars) are shown
in Figure 2.13. When a µNF’s processing cost is low (e.g., less than 100 cycles/packet), the gains
from parallelism are rather marginal compared to the sequential case (<10% improvement in
latency). The gains become more evident when µNFs’ packet processing cost increases and we
see a good potential for improving latency there (e.g., more than 20% for µNFs with 700 cycles
per packet processing cost).

43

0 100 200 300 400 500 600 700
Per NF Added Complexity (CPU cycles/packet)

0

25

50

75

100

125

150

175

200
M

ea
n

Pr
oc

es
si

ng
 L

at
en

cy
 (

s)
Parallel Sequential

Figure 2.13: Impact of parallelism in µNF processing graph

Impact of µNF Processing Path Length

We create µNF chains of di�erent lengths and measure packet processing latency along the
pipeline using Moongen. The objective is to observe if packets start queuing up in any stage
of the processing pipeline or not. We have an experiment setup similar to the scenario in Sec-
tion 2.8.2. We �rst measure latency with varying chain lengths and without introducing any
additional packet processing complexity in our MacSwapper µNF. In this case, we observe a
linear increase in mean latency (Figure 2.14(a)). Then we introduce additional busy loops to
emulate CPU cycles spent for packet processing (similar to Section 2.8.2) and measure latency
for di�erent lengths of µNF packet processing path (varied from 4 to 6). As we observe from Fig-
ure 2.14(b), latency increases linearly with µNF complexity as well as with µNF processing path
length. Therefore, no bu�ering issues were encountered along the pipeline.

44

0 1 2 3 4 5 6 7 8
Processing Path Length

0

3

6

9

12

15

18

M
ea

n
La

te
nc

y
(

s)

(a) Latency as a function of chain length
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

Per NF Added Complexity
(CPU cycles/packet)

0

50

100

150

200

250

M
ea

n
La

te
nc

y
(

s)

Len. = 4
Len. = 5
Len. = 6

(b) Latency as a function of packet processing cost

Figure 2.14: Impact of µNF processing path length

2.8.3 Service Level Performance

Resource E�ciency over Run-to-Completion Mode

We compare µNF with NetBricks [1], the state-of-the-art in software packet processing plat-
form operating in run-to-completion model. In particular, we perform the same experiment as
in [1] to reproduce results from Fig. 7 of the original paper [1]. We developed similar packet
processing element using µNF (IPTtlDecrementer) as the one used in [1] and deployed chains
of di�erent length in the following con�gurations:

• NB-MC: NetBricks with multiple threads, each pinned to a dedicated CPU core

• NB-1C: NetBricks with single thread

• µNF-1C: all µNFs packed on a single CPU core

• µNF-MC: the chain is divided into k clusters of consecutive µNFs such that each cluster
packs maximum number of µNFs to sustain line rate while sharing a CPU core.

45

For a fair comparison, for both NetBricks and µNF we read packets from NIC without in-
tervention from a software switching layer. Note that in the original paper [1], the authors
spawned ` threads for a chain of length ` in NB-MC con�guration and were able to reach more
than 10 Gbps throughput. However, we do not have similar hardware in our disposal at this
moment, hence, for each chain length, we deploy the minimum number of threads on distinct
CPUs until NetBricks reaches line rate for smallest packets. We also performed the suggested
performance tuning as in [1, 140].

1 2 3 4 5 6 7 8
Chain Length

0

3

6

9

12

15

Th
ro

ug
hp

ut
 (M

pp
s)

NB-MC NB-1C NF-MC NF-1C

Figure 2.15: µNF vs. NetBricks [1]: throughput

The results from this experiment are shown in Figure 2.15. For the single CPU core scenario
(i.e., NB-1C and µNF-1C), µNF achieves better throughput than that of NetBricks with increas-
ing chain length. Because of operating in a run-to-completion mode, NetBricks starts process-
ing a new batch of packets only after the previous batch has �nished processing through all
the elements in the chain. In contrast, because of its pipeline mode, µNF can schedule a packet
processing element to work on a new batch of packets as soon as that element has �nished pro-
cessing the previous batch and hands it over to the next element in the chain. This e�ectively

46

1 2 3 4 5 6 7 8
Chain Length

0

1

2

3

4

5

6

7

8

9

N
um

be
r

of
 C

PU
 C

or
es

 U
se

d
to

 S
us

ta
in

 L
in

e-
ra

te
NB-MC-Cores NF-MC-Cores

Figure 2.16: µNF vs. NetBricks [1]: number of CPU cores used

increases the number of packets in the pipeline, resulting in a better packet processing through-
put compared to NetBricks as demonstrated in Figure 2.15. Indeed, there is context switching
overhead involved in a pipeline mode. However, by carefully yielding the CPU as discussed in
Section 2.7.5, µNF minimizes the impact of such overhead on packet processing throughput.

Then, we observe in Figure 2.16 that for a given chain length, µNF can reach line rate using
lesser number of CPU cores compared to NetBricks. This is because, in pipeline mode with
appropriate scheduling, it is possible to reduce wastage of CPU cycles and use the CPUs more
e�ectively between packet processing stages, compared to run-to-completion mode. However,
to be fair in the comparison, NetBricks provides packet ownership transfer by using underlying
compiler features, which is not provided by µNF. Another caveat in the result is that, when we
used more than 5 cores for NetBricks, the packets crossed a NUMA zone, which caused some
performance penalty as we can see from the non-linear core scaling for longer chains.

47

RxService CheckIPHeader Drop

Allow

Deny

ValidateUrl

TxService
Unsafe

HttpClassifer CountUrlHTTP Traffic

Other Traffic

L3L4Filter

Safe

Figure 2.17: µNF realization of the SFC from Figure 2.3(a)

Table 2.2: CPU cycles saved per packet on average
Click Element CPU Cycles Element Weight in

Type/µNF Saved in µNF con�guration-(i)
CheckIPHeader 27.8% 0.44%
HttpClassi�er 28.9% 47.8%

Overall 16.8% –

Performance of µNF-based SFC

We have developed a set of µNFs (described in Section 2.8.1) for realizing realistic VNFs and
SFCs. We use these µNFs to deploy the SFC used for the motivational experiment in Section 2.3,
i.e., Firewall→Monitor→ Application Firewall. The resulting µNF processing graph is shown
in Figure 2.17. We implemented each individual µNF as close as possible to their Click coun-
terpart. We played the same tra�c trace used in Section 2.3. Results in Table 2.2 show the
relative savings in mean CPU cycles per packet when using µNF processing graph over mono-
lithic VNFs (i.e., con�guration-(i) from Section 2.3). To be fair, we did not compare packet I/O
from NIC since it is fundamentally di�erent between µNF and Click. We counted the cycles
spent in reading to/from ring-based shared memory since that is an added overhead in this dis-
aggregated architecture. We also benchmarked the deployment from Figure 2.17 using pktgen.
We set the packet size to 200 bytes, the average packet size reported in a recent study on a
production data center [141]. Throughput reached 2.08 Mpps or 3.67 Gbps. We identi�ed the
HttpClassi�er µNF to be a bottleneck through a separate benchmark. To test the scaling out
of individual µNFs and LoadBalancedEgressPort, we deployed the same SFC but with two in-
stances of HttpClassi�er. We observed a near linear increase in throughput, which is 4.1 Mpps
or 7.2 Gbps.

48

2.9 Related Works

Modular Packet Processing

The development of modular packet processing software has a long history that dates back to
the late 90s. Click [116], one of the most in�uential works in this area proposed to build mono-
lithic packet processing software using reusable packet processing components called elements.
Click’s focus was more on the programmability than performance. Over the years, Click in�u-
enced a signi�cant body of subsequent research on building modular yet high performance
packet processing platforms that employed di�erent optimization techniques of their own (e.g.,
NIC o�oading, I/O batching, kernel bypass, FPGA acceleration) to improve packet processing
performance and add �exibility to VNF composition [142, 143, 144, 119, 1, 145, 146]. However,
these proposals are centered around the assumption that a middlebox is a monolithic software.
mOS proposed to abstract abstract layer 4-7 packet processing tasks into modular and high-
performance libraries for the ease of middlebox development [147]. mOS is complimentary to
our work on disaggregating VNFs and can act as a facilitator for µNF development.

More recently, Slick [148] and OpenBox [48] proposed di�erent approaches to achieve a
similar goal of building packet processing from independently deployable components. Slick
focuses more on the programming model for middlebox composition while OpenBox goes one
step further and decouples data and control planes of VNFs. In contrast to µNF, OpenBox does
not focus on addressing the engineering challenges pertaining to realizing a data plane for
modular VNFs and SFCs. Its focus is more on the control aspects such as designing a protocol
between VNF control and data planes, optimizing the forwarding graph, etc. OpenBox can
complement our proposed system by acting as a control and orchestration layer above µNFs.

A chaining mechanism for lightweight VNFs has been proposed in [149], which inserts per-
VM SFCs between a VM and a virtual switch for providing QoS, security, and monitoring ser-
vices. In contrast, our focus is not on per-VM services, rather, on a general software architecture
for realizing VNFs and SFCs from lightweight, independently deployable, and loosely-coupled
packet processing components. An elaborate discussion on the challenges associated with re-
alizing such microservice-based VNFs and SFCs can be found in [49]. An area of research or-
thogonal to modular and lightweight packet processing is runtime systems built around uniker-
nels [150]. Unikernels are minimalistic OSs that are custom made to run only a single appli-
cation, thus losing the bene�t of being general purpose OSs. However, they have only a few
megabytes of memory footprint and high deployment density (hundreds per physical machine)
compared to traditional VMs or containers [119, 151], hence, can be a potential choice for µNF
deployment.

49

Industry E�orts in Microservice-based VNFs

There has been some movement in the industry for re-designing large VNFs using microser-
vice architecture. As part of the CORD project [5], a number of VNFs have been decomposed
into having separate control and data planes that are loosely coupled and can be independently
scaled. Another example is the Clearwater IP Multimedia System [152] re-architected using
microservices design principle and also made available as an open-source software. However,
the independently deployable components themselves are rather complex and can be further
decomposed into more manageable sizes. The availability of Clearwater as an open-source
software has also fostered academic research, including on enhancing its auto-scaling capabil-
ities [153, 154], and service latency and failure recovery time [155].

Middlebox Functionality Consolidation

CoMb [47] is one of the early works to experimentally motivate the consolidation of common
functionality into separate services and share them across VNFs. However, CoMb’s main fo-
cus was not to address the implementation issues related to realizing such a system, rather
demonstrate the advantage of consolidating multiple NFs on commodity hardware as opposed
to using purpose-built hardware middleboxes. In contrast, E2 [45] proposed to consolidate
management tasks such as resource allocation, fault-tolerance, monitoring, auto-scaling, etc.
, into a single framework. More recently, Microboxes proposed to consolidate TCP protocol
processing functions (e.g., TCP bytestream reconstruction, TCP endpoint termination, etc.) of
multiple middleboxes [127]. Consolidation has the advantage of reducing redundant develop-
ment e�orts in implementing and optimizing common tasks. In this work, we focus on the
engineering e�orts related to software architecture, necessary abstractions, and performance
optimizations for realizing such a disaggregated packet processing platform, facilitating better
consolidate of packet processing tasks with ease.

2.10 Chapter Summary

In this chapter, we described µNF, a system for building VNFs and SFCs from reusable, indepen-
dently deployable, and loosely-coupled components enabling �ner-grained resource allocation
and scaling. Our design goal is to keep the µNFs simple and develop the necessary primitives
to transparently enable di�erent communication patterns between them. We demonstrated the
e�ectiveness of our system through a DPDK based prototype implementation and experimen-
tal evaluation. The individual techniques used for implementing and optimizing the system are

50

not entirely new (e.g., batched I/O, zero-copy I/O, pre-fetching). However, the bigger picture
here is to demonstrate that disaggregating complex VNFs using the proposed software archi-
tecture combined with the individual techniques is indeed a viable and competitive solution for
composing VNFs and SFCs. This is further supported by our experimental evaluation show-
ing that the combined engineering e�ort enables �ner-grained resource allocation and scaling
while attaining comparable performance as state-of-the-art monolithic implementations.

51

Chapter 3

Multi-Layer Virtual Network Embedding

3.1 Introduction

In this chapter, we study the problem of MUlti-Layer Virtual Network Embedding (MULE)
focusing on IP-over-OTN substrate networks with the objective of minimizing total resource
provisioning cost for embedding a Virtual Network (VN) while considering the possibility of
establishing new IP links when necessary.

Several deployment choices exist for multi-layer IP-over-Optical networks [156], includ-
ing but not limited to: (i) IP-over-DWDM; (ii) IP-over-OTN-over-DWDM. DWDM networks
have speci�c constraints such as wavelength continuity for optical circuits and typically lack
transparent tra�c grooming capabilities [157, 158]. A more favorable choice (also our choice of
technology) is to deploy an OTN [104] over a DWDM network with advanced transport capabil-
ities (e.g., tra�c grooming without optical-electrical-optical conversion). The OTN in turn can
be static, i.e., necessary interfaces on OTN nodes have been con�gured and the corresponding
light paths in the DWDM layer have been lit to provision �xed capacity between OTN nodes.
Or, the OTN can be dynamic, i.e., more capacity can be provisioned by lighting new light paths
in the DWDM layer. As a �rst step towards addressing VNE for multi-layer networks, we limit
the scope of this chapter to the case of a static OTN and leave the other possible deployment
scenarios for future investigation. Speci�cally, our contributions are as follows:

• OPT-MULE: An Integer Linear Program (ILP) formulation for optimally solving MULE.
The state-of-the-art in multi-layer VNE does not optimally solve the problem [2]. To the
best of our knowledge, this is the �rst optimal solution to the VNE problem for multi-layer
IP-over-OTN networks.

52

• FAST-MULE: A heuristic to tackle the computational complexity of OPT-MULE. We also
prove that our heuristic solves the problem optimally for a speci�c class of VNs, i.e., star-
shaped VNs with uniform bandiwdth demand.

• Evaluation of the proposed solution with with a wide-range of network sizes. Our key
takeaways are: (i) FAST-MULE uses ≈1.47× more resources on average compared to
the optimal solution while executing several orders of magnitude faster; (ii) FAST-MULE
allocates ≈66% less resources on average compared to the state-of-the-art heuristic for
multi-layer VNE [2], while accepting ≈60% more VN requests on average.

The rest of the chapter is organized as follows. We �rst introduce the mathematical nota-
tions representing the inputs to the problem and formally de�ne the problem in Section 3.2. In
Section 3.3, we present OPT-MULE, an ILP formulation for optimally solving MULE, followed
by our proposed heuristic, FAST-MULE in Section 3.4. Our evaluation of the proposed solu-
tions are presented in Section 3.5. We discuss the related works and contrast our solution with
state-of-the-art in Section 3.6. Finally, we summerize the chapter contributions in Section 3.7.

3.2 Multi-Layer Virtual Network Embedding Problem

We �rst present a mathematical representation of the inputs, i.e., the IP topology, the OTN
topology, and the VN request. Then we give a formal de�nition of MULE, followed by an
illustrative example.

3.2.1 Substrate Optical Transport Network (OTN)

We represent the substrate OTN as an undirected graph Ĝ = (V̂ , Ê), where V̂ and Ê are the set
of OTN capable devices (referred as OTN nodes in the remaining) and OTN links, respectively.
Without loss of generality we assume the OTN links to be undirected, since such undirected
OTN links can be either supported by speci�c technologies [159, 160] or by laying out multiple
unidirectional �bers, or by using di�erent wavelengths for sending and receiving within a single
strand of �ber. Neighbors of an OTN node û are represented with N (û). We assume the OTN
to be �xed, i.e., light paths atop a DWDM layer have been already lit to provision OTN links
(û, v̂) with bandwidth capacity bûv̂. This pre-provisioned bandwidth can be used to establish
IP links between IP routers. The cost of allocating one unit of bandwidth from an OTN link
(û, v̂) ∈ Ê is Cûv̂. Figure 3.1 illustrates an example of an OTN network, where the numbers on
each link represent its residual capacity.

53

3.2.2 Substrate IP Network

The substrate IP network is an undirected graph G′ = (V ′, E ′). Each IP node u′ ∈ V ′ has
pu′ number of ports with homogeneous capacity capu′ . Each IP node u′ is connected to an
OTN node τ(u′) through a short-reach wavelength interface. Attachment between an IP and
an OTN node is represented using a binary input variable τu′û, which is set to 1 only when IP
node u′ is attached to OTN node û. An IP link is provisioned by establishing an OTN path that
connects its end points. Note that, it is common in operator networks to establish multiple IP
links between the same pair of IP nodes and bundle their capacities using some form of link
aggregation protocol [161]. We also follow the same practice and use (u′, v′, i) to represent the
i-th IP link between u′ and v′, where 1 ≤ i ≤ pu′ . We use the binary input variable Γu′v′i to
indicate the existence of an IP link (u′, v′, i) in G′. Γu′v′i is set to 1 when IP link (u′, v′, i) is
present in G′, otherwise it is set to 0. Bandwidth of an IP link is represented by bu′v′i. Capacity
of a new IP link (u′, v′, i) is set to min(capu′ , capv′). Figure 3.1 illustrates an example IP network,
where each IP link is mapped on an OTN path and the residual bandwidth capacity of an IP link
is represented by the number on that link. The cost of allocating one unit of bandwidth from
an IP link (u′, v′, i) ∈ E ′ is Cu′,v′,i.

A

B C

D E

Optical Transport
Network

IP Network

15

10
10

10

15

985 990

990990

10
00

Figure 3.1: Multi-layer IP-over-OTN substrate network

3.2.3 Virtual Network (VN)

A VN request is an undirected graph Ḡ = (V̄ , Ē), where V̄ and Ē are the set of virtual nodes
and virtual links, respectively. Each virtual link (ū, v̄) ∈ Ē has a bandwidth requirement būv̄.

54

Each virtual node ū ∈ V̄ has a location constraint set L(ū) ⊂ V ′ that represents the set of IP
nodes where ū can be embedded. L(ū) can be determined by the InP based on geographical
proximity requirement by the SP. Note that L(ū) can contain all the IP nodes to represent an
unconstrained scenario. We represent the location constraints using a binary input variable
`ūu′ , which is set to 1 if IP node u′ ∈ L(ū). Figure 3.2 illustrates a VN, where the number on
each link represents virtual link demand, and the set next to each node denotes that virtual
node’s location constraints.

01 2
15 10

{C}{A,B} {D,E}

Figure 3.2: Virtual network

3.2.4 Problem De�nition

Given a multi-layer Substrate Network (SN) composed of an IP network G′ on top of an OTN
network Ĝ, and a VN request Ḡ with location constraint set L:

• Map each virtual node ū ∈ V̄ to an IP node u′ ∈ V ′ according to the virtual node’s
location constraint.

• Map each virtual link (ū, v̄) ∈ Ē to a path in the IP network. This path can contain a
combination of existing IP links and newly created IP links.

• Map all newly created IP links to a path in the OTN.

• The total cost of provisioning resources for new IP links and cost of provisioning re-
sources for virtual links should be minimized subject to the following constraints:

– IP links cannot be over-committed to accommodate the virtual links, and
– the demand of a single virtual link should be satis�ed by a single IP path.

The embedding is subject to the constraints that both IP links and OTN links cannot be over-
provisioned, and virtual links and IP links cannot be routed along multiple IP paths and multiple
OTN paths, respectively (i.e., no path splitting). Moreover, we do not consider neither virtual

55

node resource requirement nor virtual node embedding cost. We assume that the virtualization
enabled network devices have enough capacity to switch at line rate between any pair of ports
and any complex control mechanism is decoupled and performed in a centralized control plane.
Finally, we consider online version of the problem where VN requests arrive one at a time.

3.2.5 Illustrative Example

0

1 2
A

B C

D E15

10
10

10

15

885 890

990990

10
00

100

Figure 3.3: Multi-layer VN embedding example

To better illustrate the problem and the underlying complexities, consider the case of em-
bedding the VN presented in Figure 3.2 over the multi-layer IP-over-OTN network in Figure 3.1.
Given the residual capacity of the IP links, clearly, there is not su�cient bandwidth in the IP
network to route the virtual link between virtual nodes 0 and 1. Hence, no feasible embedding
of the VN exists. Indeed, if we were to place virtual node 1 on either IP nodes A or B, and vir-
tual node 0 on IP node C (the only possible placement), we cannot route 15 units of bandwidth
between IP nodes A and C, or B and C over an unsplittable path. In the single-layer embedding
problem, such situation would have led to rejecting this VN. However, we can exploit the topo-
logical �exibility of multi-layer IP-over-OTN networks to establish new IP link(s) when there
is insu�cient capacity present in the IP layer.

Figure 3.3 illustrates and example solution of MULE where a new IP link has been provi-
sioned between IP nodes A and C to accommodate the virtual link between virtual nodes 0
and 1. The new IP link is supported by provisioning resources on the OTN path between the

56

pair of OTN nodes connected to IP nodes A and C, respectively. This new IP link consumed an
available port from IP nodes A and C. For illustration purposes, we assume uniform capacity
of 100 units of bandwidth for all ports of an IP node. However, in the remainder of this chapter
we do not make any assumptions on the capacity of the IP ports.

Observe that in this example, there were several possibilities for provisioning the new IP
link(s). For instance, if virtual node 1 was embedded on IP node B instead of C, then the new
IP link would have been between IP nodes B and C. Even when embedding virtual node 1 on
IP node A, two IP links could have been created to establish a path between IP nodes A and C
through B. Hence, performing the node and link embedding separately impacts the cost of the
resultant embedding solution, as well as the choice of new IP link(s) to setup. This stresses the
need to jointly consider both VN embedding and provisioning of new IP links.

3.3 ILP Formulation: OPT-MULE

Optimal solution to MULE needs to jointly optimize VN embedding, creation of new IP links and
embedding of newly created IP links on the OTN layer. We present an Integer Linear Program
(ILP) formulation for optimally solving MULE, namely OPT-MULE. We �rst introduce the de-
cision variables used in our ILP (Section 3.3.1). Then we present our constraints (Section 3.3.2)
followed by the objective function (Section 3.3.3).

3.3.1 Decision Variables

A virtual link must be mapped to a path in the IP network. The following decision variable
indicates the mapping between a virtual link (ū, v̄) ∈ Ē and an IP link, (u′, v′, i) ∈ E ′.

xūv̄u′v′i =

{
1 if (ū, v̄) ∈ Ē is mapped to (u′, v′, i) ∈ E ′,
0 otherwise.

Virtual node mapping on IP node is denoted by:

yūu′ =

{
1 if ū ∈ V̄ is mapped to u′ ∈ V ′,
0 otherwise.

The following decision variable determines the creation of new IP links:

γu′v′i =

{
1 when i-th IP link is created between u′ and v′,
0 otherwise.

57

Finally, a newly created IP link must be mapped to an OTN path. This mapping between
such IP link and an OTN link is indicated by the following variable:

zu
′v′i
ûv̂ =

{
1 if (u′, v′, i) ∈ E ′ is mapped to (û, v̂) ∈ Ê,
0 otherwise.

In what follows, we use the notation V ′2 to denote the set of all pairs of IP nodes (u′, v′)
such that u′ 6= v′. A list of key notations used in the ILP formulation is presented in Table 3.1.

3.3.2 Constraints

Virtual node Mapping Constraint

Constraints (3.1) and (3.2) together ensure that each virtual node is mapped to exactly one IP
node according to the location constraints. Constraint (3.3) restricts multiple virtual nodes to
be mapped on the same IP Node.

∀ū ∈ V̄ ,∀u′ ∈ V ′ : yūu′ ≤ `ūu′ (3.1)

∀ū ∈ V̄ :
∑
u′∈V ′

yūu′ = 1 (3.2)

∀u′ ∈ V ′ :
∑
ū∈V̄

yūu′ ≤ 1 (3.3)

Virtual link Mapping Constraints

Constraint (3.4) ensures that virtual links are mapped only to existing or newly created IP links.
Constraint (3.5) ensures that each virtual link is mapped to a non-empty subset of IP links. We
prevent the formation of loops between parallel IP links by constraint (3.6). Constraint (3.7)
prevents overcommitment of IP link bandwidth. Finally, (3.8), our �ow-conservation constraint,

58

Table 3.1: Summary of key notations
Inputs

Ĝ = (V̂ , Ê) Substrate OTN
bûv̂ Residual Bandwidth capacity of OTN

link (û, v̂) ∈ Ê
Cûv̂ Cost of allocating unit bandwidth on

OTN link (û, v̂) ∈ Ê for provisioning
an IP link

G′ = (V ′, E ′) Substrate IP Network
Γu′v′i ∈ {0,1} Γu′v′i = 1 if (u′, v′, i) ∈ E ′

bu′v′i Residual Bandwidth capacity of IP link
(u′, v′, i) ∈ E ′

Cu′v′i Cost of allocating unit bandwidth on
IP link (u′, v′, i) ∈ E ′ for provisioning
a virtual link

pu′ Number of ports on IP node u′
capu′ Capacity of each port of IP node u′
τu′û ∈ {0, 1} τu′ū = 1 if IP node u’ is attached to

OTN node û
Ḡ = (V̄ , Ē) Virtual Network Request
būv̄ Bandwidth requirement of virtual link

(ū, v̄) ∈ Ē
L(ū) Location constraint set for virtual node ū ∈ V̄
`ūu′ ∈ {0, 1} `ūu′ = 1 if u ∈ L(ū), u′ ∈ V ′, ū ∈ V̄

Outputs
xūv̄u′v′i ∈ {0, 1} xūv̄u′v′i = 1 if (u′, v′, i) ∈ E ′ is on the

embedded IP path for (ū, v̄) ∈ Ē
yūu′ ∈ {0, 1} yūu′ = 1 if ū ∈ V̄ is mapped to u′ ∈ V ′
γu′v′i ∈ {0, 1} γu′v′i = 1 if i-th IP link is created

between u′ and v′

zu
′v′i
ûv̂ ∈ {0, 1} zu

′v′i
ûv̂ = 1 if (û, v̂) ∈ Ê is on the

embedded OTN path for (u′, v′, i) ∈ E ′

59

ensures that virtual links are mapped on a continuous IP path.

∀(ū, v̄) ∈ Ē,∀(u′, v′) ∈ V ′2, 1 ≤ i ≤ min(pu′ , pv′) :

xūv̄u′v′i ≤ γu′v′i + γv′u′i + Γu′v′i (3.4)

∀(ū, v̄) ∈ Ē :
∑

∀(u′,v′)∈V ′2

pu′∑
i=1

xūv̄u′v′i ≥ 1 (3.5)

∀(ū, v̄) ∈ Ē,∀(u′, v′) ∈ V ′2 :

pu′∑
i=1

xūv̄u′v′i ≤ 1 (3.6)

∀(u′, v′) ∈ V ′2, 1 ≤ i ≤ pu′ :
∑

∀(ū,v̄)∈Ē

xūv̄u′v′i × būv̄ ≤ bu′v′i (3.7)

∀(ū, v̄) ∈ Ē,∀u′ ∈ V ′ :
∑
∀v′∈V ′2

min(pu′ ,pv′)∑
i=1

(xūv̄u′v′i − xūv̄v′u′i) =

yūu′ − yv̄u′ (3.8)

IP Link Creation Constraints

Constraint (3.9) limits the number of incident IP links on an IP node to be within its available
number of ports. Then, constraint (3.10) ensures that a speci�c instance of IP link between a
pair of IP nodes is either decided by the ILP or was part of the input, but not both at the same
time.

∀u′ ∈ V ′ :
∑

∀v′∈V ′|v′ 6=u′

min(pu′ ,pv′)∑
i=1

γu′v′i + γv′u′i + Γu′v′i ≤ pu′ (3.9)

∀(u′, v′) ∈ V ′2, 1 ≤ i ≤ pu′ : γu′v′i + Γu′v′i ≤ 1 (3.10)

60

IP-to-OTN Link Mapping Constraints

First, we ensure, using constraint (3.11), that only the newly created IP links are mapped on the
OTN layer. Then, constraint (3.12) is the �ow conservation constraint that ensures continuity
of the mapped OTN paths. Finally, constraint (3.13) is our capacity constraint for OTN links.

∀(u′, v′) ∈ V ′2, 1 ≤ i ≤ pu′ , (û, v̂) ∈ Ê : zu
′v′i
ûv̂ ≤ γu′v′i (3.11)

∀(u′, v′) ∈ V ′2, 1 ≤ i ≤ pu′ , ∀û ∈ V̂ :∑
∀v̂∈N (û)

(zu
′v′i
ûv̂ − zu′v′iv̂û) =

γu′v′i if τu′û = 1,
−γu′v′i if τv′û = 1,

0 otherwise.
(3.12)

∀(û, v̂) ∈ Ê :
∑

∀(u′,v′)∈V ′2

pu′∑
i=1

zu
′v′i
ûv̂ × bu′v′i ≤ bûv̂ (3.13)

3.3.3 Objective Function

Our objective is to minimize the cost incurred by creating new IP links and also the cost of
provisioning bandwidth for the virtual links. Cost for provisioning new IP links is computed as
the cost of allocating bandwidth in the OTN paths for every new IP link. The cost of embedding
a VN is computed as the total cost of provisioning bandwidth on the IP links for the virtual links.
Our objective function is formulated as follows:

minimize
∑

∀(u′,v′)∈V ′2

pu′∑
i=1

∑
∀(û,v̂)∈Ê

zu
′v′i
ûv̂ × bu′v′i × Cûv̂

+
∑

∀(ū,v̄)∈Ē

∑
∀(u′,v′)∈V ′2

pu′∑
i=1

xūv̄u′v′i′ × būv̄ × Cu′v′i (3.14)

3.3.4 Hardness of OPT-MULE

Consider the case where the IP layer has su�cient capacity to accommodate a given VN request.
In this case, MULE becomes a single-layer VNE, which has been proven to be NP-Hard via
a reduction from the multi-way separator problem [55]. Given that single-layer VNE is an
instance of MULE, by restriction we conclude that MULE is also NP-Hard.

61

3.4 FAST-MULE: A Heuristic Approach

Given the NP-Hard nature of the multi-layer VNE problem and its intractability for large net-
work instances, we propose FAST-MULE, a heuristic to solve the Multi-Layer VNE problem.
We begin by explaining the challenges behind the design of FAST-MULE in Section 3.4.1, fol-
lowed by a description of its procedural details and an illustrative example in Section 3.4.2 and
Section 3.4.4, respectively. We analyze the running time of FAST -MULE in Section 3.4.3. Then,
we prove in Section 3.4.5 that FAST -MULE yields the optimal solution for star VN topologies
with uniform bandwidth requirement. Finally, we provide a guideline on how to parallelize
FAST -MULE for leveraging multiple CPU cores (Section 3.4.6).

3.4.1 Challenges

Joint Mapping across IP and OTN Layers

One challenge of MULE is the fact that the embedding can take place in both layers. This occurs
when a VN could not be accommodated by the existing IP links, and requires the creation of
new ones. A plausible approach is to handle the embedding at each layer separately, i.e., start
by mapping the VN on the IP layer followed by mapping the new IP links on the OTN layer.
Clearly, such disjoint embedding is far from optimal as there may not be su�cient bandwidth at
the OTN level to accommodate the new IP links. To overcome this limitation, we equip FAST -
MULE with the ability to consider both layers simultaneously when embedding a VN. This is
achieved by collapsing the IP and OTN into a single layer graph, similar to [2]. Our collapsed
graph contains all the IP and OTN nodes and links, as well as the links connecting IP nodes to
OTN nodes. In contrast, [2] keeps the IP links and replaces the shortest paths in OTN with IP
links that could have been created with those corresponding paths. In our case, a virtual link
embedding that contains OTN links indicates the creation of new IP links.

Joint virtual node and virtual link Embedding

Another challenge is to perform simultaneous embedding of a virtual node and its incident
virtual links. Embedding virtual nodes independently of their incident virtual links increases
the chances of VN embedding failure. However, such joint embedding is hard to solve since it
is equivalent to solving the NP-hard Multi-commodity Unsplittable Flow with Unknown Sources
and Destinations [162]. Our goal is to equip FAST-MULE with the ability to perform joint em-
bedding of virtual nodes along with their incident virtual links. To achieve this, we augment

62

the collapsed graph with meta-nodes and modify its link capacities to convert the virtual node
and virtual link embedding problem into a min-cost max-�ow problem that we solve using
Edmonds-Karp (EK) algorithm [163]. The �ows returned by EK indicate both the virtual nodes
and virtual links mapping. In what follows, we elucidate the details of this transformation along
with how the embedding solution is extracted from the �ows obtained from EK.

3.4.2 Heuristic Algorithm

Algorithm 1 presents a high level view of FAST -MULE. From a very high level, the algorithm
works as follows. First, we collapse the IP and OTN layers into a single-layer graph to perform
joint optimization on both of the layers. Then, we incrementally embed the VN on the collapsed
graph by extracting star subgraphs from the VN and jointly embedding the virtual nodes and
virtual links of the star subgraph. We model the joint embedding problem as an instance of
�nding min-cost max-�ow in the collapsed graph by setting appropriate �ow capacities and
introducing additional meta-nodes and meta-links in the collapsed graph. We describe each of
the phases from Algorithm 1 in detail in the following.

Stage 1: Creation of a Collapsed Graph: We begin by collapsing the OTN and IP net-
works to a single-layer graph to achieve a joint embedding across both the IP and the OTN
layers (i.e., to address the �rst challenge from Section 3.4.1). The set of nodes in the collapsed
graph contains all the IP and OTN nodes. The links in the collapsed graph consist of: (i) all
the OTN links, (ii) added IP-to-OTN links (described later), and 3) all the IP links. We keep the
residual capacities of the IP and OTN links as is. We assume the OTN links have signi�cantly
higher cost than the IP links. Therefore, new IP links are created only when they are really
needed and can signi�cantly reduce embedding cost. Finally, between every IP node u′ and its
corresponding OTN node τ(u′), we create pu′ links with capacity capu′ . This guarantees that
at most pu′ new IP links can be created from u′, and that their capacity cannot exceed node u′’s
port capacity.

Stage 2: Extraction of Star-shaped Sub-graphs from VN: Next, we randomly pick a
virtual node v̄ ∈ V̄ and embed v̄ with its incident virtual links. Embedding v̄’s incident links
entails embedding its neighbors as well. This means that we are embedding a star-shaped
subgraph of the VN at each iteration. Incremental embedding of star subgraphs was performed
to jointly embed nodes and links of the VN as much as possible (i.e., to address the second
challenge from Section 3.4.1). To achieve this, we begin by mapping our current virtual node v̄,
i.e., the center of the star to a random IP node in its location constraint set (denoted as source
in the following). Then we construct a �ow network in such a way that the paths contributing
to a min-cost max-�ow in the �ow network correspond to the embedding of the virtual links
incident to v̄.

63

Algorithm 1: Multi-Layer VNE algorithm
Input: Ĝ = (V̂ ,Ê), G′ = (V ′,E ′), Ḡ = (V̄ ,Ē)
Output: Overlay Mapping SolutionM

1 function FAST-MULE()
2 S = {} // Initialize List of Settled Nodes

// Step 1: Create Collapsed Graph
3 G = CreateCollapsedGraph(G′,Ĝ)
4 forall v̄ ∈ V̄ do
5 if v̄ ∈ S then continue
6 S = S ∪ v̄

// Step 2: Create Meta-Nodes
7 M.nmap =M.nmap ∪ MapNode(v̄,L(v̄))
8 for each (ū ∈ N (v̄)) do
9 if (ū in S) then continue

10 if (M.nmap(ū) == NULL) then V = V ∪ CreateMetaNodes(L(ū))
11 else V = V ∪ CreateMetaNodes(M.nmap(ū))

// Step 3: Create Ref-Nodes
12 V = V ∪ CreateRefNodes(V)

// Step 4: Run Link Embedding Algorithm
13 M.emap =M.emap ∪ EdmondsKarp(G)
14 E = E ∪ GetNewIPLinks(M.emap)
15 S = S ∪ isSettled(N (v̄))
16 ReturnM;

64

Stage 3: Addition of Meta-Nodes: We create a �ow network by replacing every link in
the collapsed graph with directional links in both directions. Then, ∀ū ∈ N (v̄), we add a meta-
node in the �ow network that we connect to every node in L(ū). These meta-nodes are in-turn
connected to a single meta-node, that we denote as the sink. After adding the meta-nodes we
set the link capacities as follows:

• We set the �ow capacity of a link (u, v) from the collapsed graph that is not connected
with any meta-node to buv

max∀ū∈N (v̄)(būv̄)
. Setting such capacity puts an upper limit on

the maximum number of virtual links that can be routed through these links. Although
this can lead to resource fragmentation and in the worst case rejection of a VN, it ensures
that no capacity constraints are violated.

• We set the capacity of the links incident to a meta-node to 1. This guarantees that at most
|N (v̄)| �ows can be pushed from source to sink.

Stage 4: Addition of Referee Nodes: Location constraint sets of di�erent virtual nodes in
a single VN may overlap. We denote such virtual nodes as con�icting nodes and the intersection
of their location constraint sets as the con�ict set. Every node in the con�ict set is denoted as
a con�ict node. When con�icting virtual nodes are incident to the same start node, we end up
with an augmented graph where all the nodes in the con�ict set are connected to more than
one meta-node. This is problematic because EK may end up routing multiple virtual links via
the same con�ict node, thereby violating the one-to-one node placement constraint. To resolve
this issue, we introduce Referee Nodes (Ref-Nodes). Ref-Nodes are meta-nodes that are added
to resolve the case of con�icting virtual nodes. In presence of a con�ict, con�ict nodes will
be connected to more than one meta-node at the same time. Ref-Nodes are thus introduced
to break this concurrency by removing the con�icting connections, and replacing them with a
single connection to a Ref-node. The Ref-node is subsequently connected to all the meta-nodes
of the con�icting nodes. This ensures that at most a single virtual link will be routed through
any con�ict node. Further, when a con�ict node is selected to host a given virtual node, no other
IP nodes for the same virtual node will be selected, thereby ensuring an one-to-one assignment.

Stage 5: Execution of the EK Algorithm: Now we have an instance of the max-�ow
problem that we will solve using the EK Algorithm. We have set the capacity of the links in
the �ow network in such a way that EK can push at most |N (v̄)| �ows, indicating the virtual
link embedding of v̄’s incident links. Note that the only way to push |N (v̄)| �ows is by having
each �ow traverse a unique meta-node to reach the sink. The virtual node embedding of v̄’s
neighbors can be extracted by examining each �ow to �nd the incident IP node of each meta-
node. If any of the obtained �ows is routed via an OTN path, then a new IP link is established

65

and added to the collapsed graph. This allows subsequent iterations to use the newly created IP
link. If at any iteration EK returns less than |N (v̄)| �ows, this indicates an embedding failure,
and the algorithm terminates. Otherwise, the algorithm returns to Stage 2 and repeats until all
the virtual nodes are settled.

3.4.3 Running Time Analysis

We �rst introduce the following notations for running time analysis:

• I = the number of iterations of FAST-MULE

• |V | = the number of nodes in the collapsed graph, where |V | = O(|V̂ |+ |V ′|)

• |E| = the number of links in the collapsed graph, where |E| = O(|Ê|+ |E ′|+ |V ′|). The
last element represents the number of IP-OTN links.

During each iteration (i.e., embedding of a star subgraph from the VN), we execute the EK
algorithm to �nd a min-cost max-�ow in the collapsed graph. We replaced the augmenting path
�nding procedure of EK with Dijkstra’s shortest path algorithm. Therefore, the running time
of EK becomes O(|V ||E|2 log |V |). This renders the time complexity of our proposed approach
to O(I|V ||E|2 log |V |). If we consider the worst-case scenario where the VN is in the form of a
chain, and the nodes are traversed sequentially, then I = |V̄ | − 1, which results in a worst-case
time complexity of O(|V̄ ||V ||E|2 log |V |).

3.4.4 Illustrative Example

We use an illustrative example to describe how the heuristic �nds a solution to MULE. Fig-
ure 3.4(b) shows how the IP-over-OTN graph in Figure 3.4(a) has been converted into a col-
lapsed IP-OTN graph. The collapsed graph is composed of the OTN nodes, OTN links, IP Nodes,
IP-OTN links (represented by the single straight gray lines), and IP links (represented by the
dashed black lines). Here, we assume that each IP node has a single residual port of capacity
20. The numbers on each link represent the capacity of the link followed by the cost of using
this link. Observe that we set the cost of the IP links to 1, whereas the cost of the OTN links is
set to a really high number to discourage the routing from passing through OTN links.

Next, we showcase how FAST -MULE embeds the VN in Figure 3.2 atop the collapsed graph,
as illustrated in Figure 3.5. We consider that virtual node 0 is the start node. Hence, the source

66

A

B C

D E15

10
10

10

15

985 990

990990

10
00

(a) IP-over-OTN Graph

985, 990,

990, 990,

10
00

, 1
0

10,1

10,1

15,1 10,1

A

B

D E

C20,1

20,1

20,1

20,120,1

15,1

(b) Collapsed IP-OTN Graph

Figure 3.4: Transformation from multi-layer to single-layer substrate network

67

S

1,1 1,1

65, 66,

66, 66,

66
, 1
0

0,1

0,1

1,1 0,1

A

B

D E

C1,1

1,1

1,1

1,11,1
1,1

1,1

1,1

1,1

1,1

Figure 3.5: FAST-MULE: an illustrative example

node at this iteration of EK is IP node C . The sink node is meta-node s attached to the meta-
nodes α and β of virtual nodes 1 and 2, respectively. Given that the maximum demand of
virtual node 0’s incident links is 15, the capacity of each link in the collapsed graph (except
links incident to meta-nodes whose capacity is �xed to 1) is replaced by the number of virtual
links of capacity 15 it can accommodate. Running EK on the augmented graph (Stage 5) returns
two �ows between the source node C and the sink node s, indicated by the black and grey
dotted lines in Figure 3.5. Here, we observe that EK can only route virtual link (0,2) via existing
IP links (grey �ow); whereas virtual link (0,1) is routed through OTN links (black �ow), thereby
creating a new IP link (B,C) with capacity 20. Further, by examining the terminating IP nodes
in every �ow, we identify the virtual node embedding of nodes 1 and 2 as IP nodes B and E,
respectively.

3.4.5 Optimality of FAST-MULE for Star VN Topology

Recall that in Algorithm 1, the joint node and link embeddings are executed iteratively on a
subgraph of the VN until all the virtual nodes are settled. This iterative scheme renders a sub-
optimal solution. However, if we could perform a joint node and link embedding on the entirety
of the VN in a single iteration, that would guarantee that the obtained solution is indeed optimal.
Such embedding is possible when all the nodes in the VN are only connected to a single node,

68

and if the latter is selected as the start node, i.e., the VN topology is a star. A star VN topology
S(N) contains a center node ū andN links connecting ū toN leaf nodes {v̄1, v̄2, . . . v̄N}. In the
sequel, we prove that Algorithm 1 can �nd the optimal solution in polynomial time when the
VN request is a star topology (typically used to support multi-cast services [58]) with identical
bandwidth demand on all virtual links.

Theorem 1. Given a star VN topology Ḡ = S(N) with uniform bandwidth demand β for all
virtual links, Algorithm 1 obtains the optimal solution in polynomial time.

Proof. The optimal embedding of Ḡ, M∗, is the one where the virtual nodes are placed on
the IP nodes that provide the lowest cost link embedding. The cost includes both the cost of
provisioning new IP links and the cost of allocating bandwidth for virtual links. We denote the

cost ofM∗ as θ∗ = β
N∑
i=1

∑
u′v′∈Pūv̄i

Cu′v′ , where Pūv̄i is the embedding path for virtual link (ū, v̄i).

Without loss of generality, we abstract a newly created IP link (u′, v′)’s cost as Cu′v′ . LetM be
the solution obtained by Algorithm 1. For simplicity, we assume the central node ū has exactly
one IP node in its location constraint set.M consists of placing ū on the IP node in its location
constraint set, v′, followed by running EK from v′ to the sink node s. EK will return the min-cost
max-�ow from v′ to the sink node s. Given that the capacity of all the incident links to s are 1,
the number of �ow augmenting paths will be at most the number of leaf nodes in Ḡ and exactly 1
unit of �ow will be pushed through each of these augmenting paths. Therefore, upon successful
embedding, EK will returnN �ow augmenting paths with minimum cost θ. Now recall that the
only way to push N �ows towards the sink is to traverse every meta-node once; which entails
the traversal of one node from each location constraint set. The traversed nodes represent the
virtual node embedding of all the leaf nodes in S(N). Therefore, the �ow augmenting paths

represent a valid embedding ofS(N). We can characterize θ as, θ =
N∑
i=1

∑
(u,v)∈Fi

Cuv×fuv, where

Fi is the i-th �ow augmenting path and fuv is the �ow pushed along link (u, v) in the �ow
network constructed from the collapsed graph. Note that, fuv = 1, therefore, the cost becomes,

θ =
N∑
i=1

∑
(u,v)∈Fi

Cuv. If we can prove that
N∑
i=1

∑
(u,v)∈Fi

Cuv =
N∑
i=1

∑
u′v′∈Pūv̄i

Cu′v′ then our proof is

complete. Since θ∗ is the optimal objective value, let,
N∑
i=1

∑
(u,v)∈Fi

Cuv >
N∑
i=1

∑
u′v′∈Pūv̄i

Cu′v′ . Then

it implies that if we pushed the �ows along the paths
N⋃
i=1

Pūv̄i (the newly created IP links can

69

be expanded to a set of OTN links to match the paths in the collapsed graph), we would have
obtained a lower cost solution to min-cost max-�ow problem, which contradicts that θ is the
minimum cost of our min-cost max-�ow problem for the converted �ow network. Therefore,
N∑
i=1

∑
(u,v)∈Fi

Cuv =
N∑
i=1

∑
u′v′∈Pūv̄i

Cu′v′ , completing our proof.

If the central node, ū, has more than one candidate node in its location constraint set, then
running Algorithm 1 |L(ū)| times is su�cient to obtain the lowest cost mapping solution, and
the running time of Algorithm 1 still remains polynomial.

3.4.6 Parallel Implementation of FAST-MULE

Note that during the execution of stage 2 in FAST-MULE, i.e., during the extraction of star-
subgraphs from the VN, we randomly chose a virtual node as the center node of the extracted
star graph. Indeed, the order in which the virtual nodes are chosen for star subgraph extrac-
tion has an impact on the performance of the heuristic. Therefore, we propose to execute the
heuristic for a set of virtual node orderings and choose the least cost one from the resulting
solutions. Clearly, this means increasing the order of complexity for FAST-MULE.

One way to consider di�erent virtual node ordering in FAST-MULE is to consider the di�er-
ent virtual node orders in parallel, i.e., implement FAST-MULE as a multi-threaded program to
utilize the multiple CPU cores on modern machines. Each thread of execution computes a solu-
tion to MULE by taking a virtual node ordering as an input. Since, one execution of FAST-MULE
for one virtual node ordering is independent of another execution with a di�erent virtual node
ordering, therefore, they can be run in parallel without requiring any synchronization between
the threads. After the parallel executions �nish, we can choose the best embedding, i.e., the
least cost embedding among all the parallel executions.

3.5 Evaluation Results

We evaluate our proposed solutions for MULE through simulations. Due to the lack of publicly
available real world multi-layer network topologies, we resort to generating synthetic topolo-
gies with varying sizes for our performance evaluation. We �rst describe our simulation setup
in Section 3.5.1 and the evaluation metrics in Section 3.5.2. Then we present our evaluation
results based on the following two scenarios: (i) micro-benchmarking of FAST-MULE by com-
paring with the optimal solution and to D-VNE [2], the state-of-the-art heuristic for solving

70

multi-layer VNE problem (Section 3.5.3), and (ii) steady-state analysis of the performance of
FAST-MULE and comparison with that of D-VNE [2] (Section 3.5.4).

For the micro-benchmarking scenario, we consider the VN requests in isolation, assuming
each VN request can be successfully embedded on the SN. Micro-benchmarking allows us to
measure how resource e�cient is FAST-MULE compared to the optimal solution and to D-
VNE [2]. In contrast, for the steady-state scenario, we consider VN arrival and departure over
a period of time and consider the possibility of failing to embed VN requests on the SN. The
steady-state analysis gives insights on substrate resource utilization over a longer period of
time.

3.5.1 Simulation Setup

Testbed

We have implemented OPT-MULE and FAST-MULE using IBM ILOG CPLEX 12.5 C++ libraries
and Java, respectively. OPT-MULE was run on a machine with 4×8 core 2.4 Ghz Intel Xeon E5-
4640 CPU and 512 GB of memory, whereas, we used a machine with 2×8 core 2 Ghz Intel Xeon
E5-2650 CPU and 256 GB memory to evaluate FAST-MULE. We used a home-grown discrete
event simulator to simulate the arrival and departure of VNs for the steady state scenario.

Multi-Layer IP-over-OTN Topology

As mentioned earlier, due to the lack of publicly available real multi-layer network topolo-
gies, we resorted to synthetically generating the multi-layer SN topologies. For the micro-
benchmarking scenario, we generated OTNs by varying the size between 15–100 nodes. For
each OTN, we generated an IP topology with a node count of 60% of that of the OTN. Each
node in the IP topology was attached to exactly one node in the OTN topology. For both the
OTN and the IP topologies, we set a link generation probability to match their average node
degree to known ISP topologies [164]. For the steady state scenario, we generated a larger SN
topology with a 150 node OTN and 90 node IP network. Choice of such a size is based on the av-
erage size of known ISP networks found in the literature [164]. The link generation probability
was again chosen to ensure node degrees are similar to known ISP topologies. For both scenar-
ios, OTN links were assigned a capacity of 100 Gbps, while IP links were assigned a capacity
randomly chosen between 10–20 Gbps. Finally, we used a constrained shortest-path algorithm
to map the input IP links over OTN paths.

71

VN Topology

For the micro-benchmarking scenario, we generated 20 VNs for each combination of IP and
OTN, each VN with 4–8 virtual nodes. For the steady state case, we varied the size of the
VN between 4–15 virtual nodes. For both scenarios, we set a 50% probability of having a link
between every pair of virtual nodes. virtual link capacities were randomly set between 50%–
100% of that of the IP links. For each virtual node, we generated a location constraint set by
randomly selecting an IP node and including all the IP nodes withing its 3-hop reach. For
random graph generation (both the VN and the SN) we used Erdos – Renyi method [165].

We evaluated the arrival and departure of VNs in the steady state scenario by simulating a
Poisson process. We varied the VN arrival rate between 4 to 10 VNs per 100 time units, with
a VN lifetime exponentially distributed with a mean of 1000 time units. These chosen set of
parameters conforms with the ones used in the research literature [55, 166, 167].

3.5.2 Evaluation Metrics

• Cost Ratio This is the ratio of costs obtained by two di�erent approaches for solving
the same problem instance, where cost is computed using (3.14). Cost ratio measures the
relative performance of two approaches.

• Execution Time The time required for an algorithm to solve one instance of MULE.

• Acceptance Ratio The fraction of VN requests that have been successfully embedded
on the SN over all the VN requests.

• Utilization The Utilization of an IP link is computed as the ratio of total bandwidth
allocated to the embedded virtual links to that IP link’s capacity

• Embedding Path Length The length of IP (or OTN) path corresponding to a virtual
link’s (or new IP link’s) embedding.

3.5.3 Micro-benchmarking Results

We focus our micro-benchmarking on the following aspects: (i) cost comparison between FAST-
MULE and OPT-MULE to evaluate how well FAST-MULE compares to the optimal, (ii) impact of
virtual node ordering on FAST-MULE’s performance, and (iii) comparison of FAST-MULE with
the state-of-the-art heuristic [2] for solving multi-layer VNE problem.

72

Optimality Gap of FAST-MULE

1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7
Cost Ratio (FAST-MULE : OPT-MULE)

0.00

0.25

0.50

0.75

1.00

C
D

F

Figure 3.6: FAST-MULE to OPT-MULE cost ratio

15 20 25 30 35
OTN Node Count

0

10

20

30

M
ea

n
FA

ST
-M

U
LE

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

FAST-MULE OPT-MULE

100

101

102

103

104

M
ea

n
O

PT
-M

U
LE

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Figure 3.7: Comparison of execution time

First, we empirically measure the extent of additional resources allocated by FAST-MULE com-
pared to OPT-MULE. Our cost function is proportional to the total bandwidth allocated for a
VN and the new IP links. Therefore, cost ratio of FAST-MULE to OPT-MULE gives the extent

73

of additional resources allocated by FAST-MULE. Figure 3.6 shows the Cumulative Distribution
Function (CDF) of cost ratio between FAST-MULE and OPT-MULE. Note that, OPT-MULE scaled
up to only 35-node OTN. To mitigate the impact of virtual node ordering during embedding,
we run FAST-MULE 75 times, each time with a di�erent virtual node embedding order and
take the best solution at the end. We observe from the results that 50% of the VNs admitted
by FAST-MULE have an embedding cost within 10% of the optimal solution. On average, the
admitted VNs have a cost within 1.47× of that of the optimal solution. These results are indeed
promising given that FAST-MULE achieves this while executing 440× faster than OPT-MULE
on average (10s for FAST-MULE vs. >1hr per VN for OPT-MULE).

25 50 75 100
Number of Virtual Node Shuffles

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

M
ea

n
C

os
t R

at
io

Cost Ratio Execuction Time

0

5

10

15

20

25

M
ea

n
FA

ST
-M

U
LE

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)
Figure 3.8: Impact of virtual node shu�e on FAST-MULE’s performance

To further showcase the advantage of FAST-MULE compared to OPT-MULE we plot their
execution times against varying SN size in Figure 3.7. For similar problem instances in our
evaluation, FAST-MULE executed 200 – 900 times faster than OPT-MULE. Even after increasing
the SN size, the execution time of FAST-MULE remained in the order of tens of seconds.

Trade-o� between Cost Ratio and Execution Time

We also evaluated the impact of the number of virtual node orderings considered for the em-
bedding. We present the results in Figure 3.8, which shows how increasing the number of con-
sidered virtual node orderings impacts the cost ratio and the execution time of FAST-MULE.
Clearly, as we increase the number of considered virtual node orderings, FAST-MULE to OPT-
MULE cost ratio decreases. This comes at the expense of increased execution time, which still

74

remains in the order of tens of seconds. However, the gain becomes marginal as we go beyond
75 iterations. Hence, in our evaluation we opt for feeding FAST-MULE with 75 virtual node
orderings and select the best solution.

Comparison of FAST-MULE with D-VNE [2]

Now, we evaluate how well FAST-MULE performs compared to the state-of-the art heuristic for
multi-layer VNE [2]. We refer to [2] by D-VNE in the remaining. D-VNE constructs an auxiliary
graph from the IP and Optical layers. The auxiliary graph contains precomputed optical paths
that can be potentially chosen for creating new IP links. In contrast, we do not precompute
paths in the OTN layer and let the embedding decide the best set of paths for jointly embedding
virtual links and possible new IP links. D-VNE �rst embeds the virtual nodes using a greedy
matching approach and then uses shortest path algorithm to route the virtual links between
embedded virtual nodes. We modi�ed D-VNE to �t to our context where we do not perform
wavelength allocation and omit node resource requirements.

We begin by evaluating the cost ratio of D-VNE to OPT-MULE (Figure 3.9(a)). The perfor-
mance gap between D-VNE and FAST-MULE is evident from Figure 3.9(a). D-VNE could embed
VNs within 1.5× the cost of the optimal for ≈40% of the cases, whereas, FAST-MULE remains
within the same bound for more than 70% of the cases. A head-to-head comparison between
D-VNE and FAST-MULE is presented in Figure 3.9(b). We observe that on average D-VNE allo-
cates ≈70% more resources compared to FAST-MULE. These results re�ect the advantage of a
joint embedding scheme compared to a disjoint approach adopted by D-VNE.

3.5.4 Steady State Analysis

We perform a steady state analysis using the VN arrival rate and duration parameters described
in Section 3.5.1 for a total of 10000 time units. The total number of VNs across the simulations
were varied between 400 - 950. The steady state performance analysis is focused on the fol-
lowing aspects: (i) comparing the acceptance ratio obtained by FAST-MULE to that of D-VNE
under di�erent loads, (ii) analyze and compare the load distribution on the SN, and (iii) analyze
topological properties of the solution.

Acceptance Ratio

In this section, we present results on the acceptance ratio obtained by FAST-MULE and compare
that with the acceptance ratio obtained by using D-VNE [2]. We consider the �rst 1000 time

75

1.00 1.75 2.50 3.25 4.00 4.75 5.50 6.25 7.00 7.75 8.50
Cost Ratio

0.00

0.25

0.50

0.75

1.00
C

D
F

FAST-MULE : OPT-MULE D-VNE : OPT-MULE

(a) Comparison between D-VNE and OPT-MULE

1 2 3 4 5 6 7 8 9 10 11 12
Cost Ratio (D-VNE : FAST-MULE)

0.00

0.25

0.50

0.75

1.00

C
D

F

(b) D-VNE to FAST-MULE Cost Ratio

Figure 3.9: Comparison between D-VNE, OPT-MULE, and FAST-MULE

units of the simulation as the warm up period and discard the values from this duration. We
compute the mean of the acceptance ratio obtained during the rest of the simulation period
and report it along with the 5th and 95th percentile values against di�erent VN arrival rates
in Figure 3.10. The results show that FAST-MULE outperforms D-VNE in all cases and accepts
at least≈37.5% more VNs over all cases. When the system load is increased, i.e., for higher VN
arrival rate, this gap is even bigger. For instance, when VN arrival rate is 10 VNs per 100 time

76

04 05 06 07 08 09 10
VN Arrival Rate

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io
FAST-MULE D-VNE

Figure 3.10: VN acceptance ratio

unit, FAST-MULE accepts ≈78% more VNs compared to D-VNE.
There can be several contributing factors to such behavior. For instance, one possibility

is that the SN is becoming saturated (due to sub-optimal embedding with longer embedding
paths), hence, VN requests are being rejected more often. Another possibility is that su�cient
capacity in the SN is available, however, an algorithm is unable to exploit the available capacity
or exploit the topological �exibility o�ered by the multi-layer network. In the following, we
analyze how these algorithms distribute load over the substrate and how much they are able to
exploit the topological �exibility to gain further insight into the di�erence in acceptance ratio.

Load Distribution

We measure the utilization of IP links at each VN arrival and departure event. We present the
mean IP link utilization for varying load (i.e., VN arrival rate) in Figure 3.11. One interesting
observation is that, although D-VNE yields a lower acceptance ratio, it exhibited a higher mean
link utilization compared to FAST-MULE (≈10% more). However, this plot does not capture the
variance in link utilization and how the load is distributed over the IP links.

We present a further break down of IP link utilization in Figure 3.12. Speci�cally, we present
the Cumulative Distribution Function (CDF) of the mean, the 5th percentile, and the 95th per-
centile link utilization in Figure 3.12(b), Figure 3.12(a), and Figure 3.12(c), respectively. The re-
sults for load distribution is also consistent with that from Figure 3.11, i.e., D-VNE consistently
exhibits higher link utilization while yielding accepting less VNs compared to FAST-MULE.

77

04 05 06 07 08 09 10
VN Arrival Rate

0.0

0.2

0.4

0.6

0.8

IP
 L

in
k

U
ti

liz
at

io
n

FAST-MULE D-VNE

Figure 3.11: Mean IP link utilization with varying load

0.0 0.3 0.6 0.9
IP Link Utilization

(5th Percentile)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

D-VNE
FAST-MULE

(a) CDF of 5th percentile IP link
utilization

0.0 0.3 0.6 0.9
IP Link Utilization

(Mean)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

D-VNE
FAST-MULE

(b) CDF of mean IP link utilization

0.0 0.3 0.6 0.9
IP Link Utilization

(95th Percentile)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

D-VNE
FAST-MULE

(c) CDF of 95th percentile IP link
utilization

Figure 3.12: Load distribution at the IP layer

Another aspect that can also be tributary to such behavior is the extent to which the algo-
rithms are exploiting the topological �exibility of multi-layer networks. After the end of each

78

4 5 6 7 8 9 10
VN Arrival Rate

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

R
at

io
 o

f n
o.

 o
f n

ew
 IP

 L
in

ks
(F

A
ST

-M
U

LE
 :

D
-V

N
E)

Figure 3.13: Ratio of newly created IP links (FAST-MULE : D-VNE) with varying load

simulation we counted the total number of new IP links that were established by FAST-MULE
and D-VNE, respectively, and present the ratio of these numbers in Figure 3.13. As we can
observe, FAST-MULE consistantly created more IP links compared to D-VNE and hence was
able to accept more VNs in the long run. Because of the higher number of IP links, the graph
diameter reduced and resulted in shorter embedding paths, resulting in lower utilization of in-
dividual links. Because of the joint optimization approach, FAST-MULE was able to make better
decisions regarding creation of new IP links and also for embedding paths, hence, the higher
acceptance ratio and lower link utilization.

Topological Properties of the solution

For each simulation setting, we computed the mean embedding path length for both the virtual
links and the newly created IP links and present the result in Figure 3.14. We observe from Fig-
ure 3.14(a) that FAST-MULE embedded the virtual links on shorter paths (≈30%) compared to
D-VNE. This is a combined e�ect of being able to create more IP links on the long run as well as
the joint embedding of virtual nodes and virtual links whenever possible. We also present the
mean embedding path length for the newly created IP links in Figure 3.14(b). Since the OTN is
static and FAST-MULE established signi�cantly more new IP links compared to that of D-VNE,
IP link embedding paths became longer in case of FAST-MULE.

79

4 5 6 7 8 9 10
VN Arrival Rate

0.00
0.75
1.50
2.25
3.00
3.75
4.50

M
ea

n
Em

be
dd

in
g

Pa
th

 L
en

.
FAST-MULE D-VNE

(a) VN to IP mapping

4 5 6 7 8 9 10
VN Arrival Rate

0.0

0.5

1.0

1.5

2.0

M
ea

n
Em

be
dd

in
g

Pa
th

 L
en

.

FAST-MULE D-VNE

(b) IP to OTN mapping

Figure 3.14: Mean embedding path length

3.6 Related Works

Multi-Layer Embedding

A few works in the research literature addressed the problem of embedding in multi-layer net-
works [168, 169, 2]. In [168], the authors consider the problem of application-aware tra�c em-
bedding on IP/Multi-layer Protocol Switching(MPLS)- over-Optical Network. Tra�c requests

80

are given between pairs of routers in the network, where each request has di�erentiated ser-
vice requirements in terms of bandwidth, tolerable end-to-end delay, and tolerable end-to-end
path availability. Here, the possibility of establishing new IP links is also considered when
the IP/MPLS layer does not have su�cient capacity to meet the demand of a given request.
However, in [168], the end points of the requests are �xed and it only addresses the link rout-
ing problem. Moreover, [168] neither does propose an optimal solution to the problem, nor
presents complexity analysis of the proposed heuristic. Furthermore, the creation of new IP
links is restricted to the pair of IP nodes that are not already connected.

In [169], the problem of Service Function Chaining (SFC) in IP-over-OTN networks is ad-
dressed. This work considers service function chains distributed across multiple data centers,
where the data centers, representing the electronic layer, are interconnected via an optical net-
work. The authors propose an algorithm in [169] to route each SFC request across the data
centers. Therefore, even though the substrate network is a multi-layer one, the routing prob-
lem is addressed only in for optical layer. Furthermore, the placement of the network functions
in the requested SFC is considered given, and the di�erent segments (pair of service functions)
that make up the SFC are routed sequentially.

To the best of our knowledge, the only work that considered the problem of multi-layer vir-
tual network embedding while considering both node and link embedding is presented in [2].
Zhang et al., proposed a heuristic for solving the multi-layer VNE problem for IP-over-DWDM
networks. They also consider the possibility of modifying IP layer topology by allocating wave-
lengths from the underlying DWDM network. Zhang et al., proposed a two step embedding
process that �rst embeds the virtual nodes then the virtual links, which limits the solution space
and hence the optimality of the embedding. In contrast, we propose an ILP formulation for op-
timally solving the multi-layer VNE problem. Also, our heuristic does not embed the virtual
nodes and links independently from each other, rather tries to embed them simultaneously.

Multi-Layer Network Optimization

An orthogonal but related area of research in multi-layer network optimization focuses on
the issue of capacity planning in multi-layer networks [170, 171]. During the initial capacity
planning a tra�c matrix for the IP layer is given and su�cient capacity needs to be allocated in
both IP and Optical layers to support that tra�c matrix. Di�erent variants of the problem exist
that take di�erent technological constraints and deployment models into account [172, 173,
174, 175]. While the results from [172] are applicable for generic multi-layer network, however,
that from [173] is speci�c to IP/MPLS-over-OTN-over-DWDM optical networks, with particular
emphasis on the technological constraints of the OTN layer. Similar to [173], the work presented
in [174] considers the capacity planning problem for OTN-over-DWDM networks.

81

Another research direction, that has been well explored in the research literature is that of
protection planning for multi-layer networks [176, 177, 178, 179, 180]. Multi-layer protection
planning involves deciding which layer will be in charge of protecting what, and coordinating
the protection schemes across di�erent layers [176, 181]. For instance, in [181], the authors
showcase the limitations of traditional capacity planning in IP-over-OTN networks where each
layer is treated in isolation. Subsequently, the authors motivate the advantages of coordinat-
ing across the di�erent layers, and illustrate these bene�ts in Multi-Layer Restoration (MLR)
planning. To achieve their goals, the authors compared MLR against restoration planning per-
formed at the IP-layer alone and showed signi�cant savings in the number of interfaces used
and provisioned network resources (i.e., wavelengths in their case). In [177], the authors address
the problem of designing a multi-layer protection scheme for MPLS-over-OTN networks. They
evaluate single and multi-layer survivability schemes under di�erent spare capacity allocation
strategies (e.g., shared vs. dedicated). In the single layer survivability scheme, they propose to
protect every Label Switched Path (LSP) against failures in the IP or in the OTN layer. Whereas,
in the multi-layer survivability scheme, the OTN layer is protected against physical link and
OXC failures, and the IP layer is protected against routers and IP/Optical interface failures.

In contrast to capacity and protection planning, in multi-layer VNE, the endpoint of the de-
mands, i.e., virtual node placement, is not known in advance, making this one a fundamentally
di�erent problem. Further, the body of research in multi-layer capacity and protection planning
has demonstrated clear advantages of resource allocation when the layers are jointly optimized
as opposed to considering them in isolation [182, 181, 177]. Our solution approach also takes a
joint optimization approach to the multi-layer VNE problem.

3.7 Chapter Summary

In this chapter, we studied MULE, i.e., multi-layer virtual network embedding on an IP-over-
OTN substrate network. We proposed an ILP formulation, OPT -MULE, for optimally solving
MULE and a heuristic, FAST -MULE, to address the computational complexity of the ILP. To the
best of our knowledge, this is the �rst optimal solution to multi-layer VNE. Our evaluation of
FAST -MULE shows that it performs within 1.47× of the optimal solution on average. FAST -
MULE also outperformed state-of-the-art heuristic for multi-layer VNE and allocated ≈70%
less resources on average while accepting≈60% more VN requests on average. Finally, we also
proved that our proposed heuristic computes the optimal solution for star shaped VNs with
uniform bandwidth demand in polynomial time.

82

Chapter 4

Dedicated Protection for Survivable
Virtual Network Embedding

4.1 Introduction

In this chapter, we study the problem of 1 + 1-Protected Virtual Network Embedding (1 + 1 –
ProViNE) with the objective of minimizing resource provisioning cost in the Substrate Network
(SN), while protecting each node and link in a Virtual Network (VN) request with dedicated
backup resource in SN. The primary and backup embeddings need to be disjoint to ensure that
a single physical node failure does not a�ect both the primary and the backup. If the primary
embedding of a VN is a�ected by a physical node failure, the service provider operating on the
VN should not incur a signi�cant service disruption typical when migrating the whole or part
of the VN to the backup. Indeed, during a single physical node failure, the disjoint primary and
backup embeddings both accessible to the service provider enables the infrastructure provider
to instantly switch tra�c to the backup embedding without requiring any re-embedding deci-
sion. This capability of instantly switching tra�c to the backup facilitates fast recovery within
tens of milliseconds, which is a typical SLA between an OTN provider and customer [60, 61].

A major challenge in solving 1 + 1 – ProViNE is to �nd the primary and backup embedding
at the same time. Relevant literature [3] shows that sequentially embedding the primary and
backup can lead to failure in embedding even though a feasible embedding exists. In this regard,
we proposeDedicated Protection for VirtualNetworkEmbedding (DRONE), a suite of solutions
for 1 + 1 – ProViNE. We focus on single node failure scenario since it is the most probable
case [105, 106], and leave the multiple failure scenario for future investigation. Speci�cally, we
make the following contributions in this chapter:

83

• OPT-DRONE: An Integer Linear Program (ILP) formulation for optimally solving 1 + 1 –
ProViNE, improving on the quadratic formulation from previous work [3]. We also show
that 1 + 1 – ProViNE is at least as hard as jointly solving balanced graph partitioning and
minimum unsplittable �ow problems, both of which are NP-Hard [107, 108].

• FAST-DRONE: A heuristic to tackle the computational complexity of OPT-DRONE and
�nd solution to large problem instances in a reasonable time frame.

• Evaluation of the proposed solutions using realistic network topologies. Our key �ndings
are: (i) FAST-DRONE uses ≈14.3% additional resources on average compared to OPT-
DRONE, while executing 200× – 1200× faster; (ii) FAST-DRONE outperforms state-of-
the-art solution for providing dedicated protection to VNs [3] by accepting 4× more VN
requests on average.

The rest of the chapter is organized as follows. We begin with introducing the mathematical
notations and a formal de�nition of 1 + 1 – ProViNE in Section 4.2. Then we present the ILP
formulation of 1 + 1 – ProViNE, i.e., OPT-DRONE in Section 4.3 followed by the details of
FAST-DRONE in Section 4.4. Section 4.5 presents our evaluation of DRONE. Then we discuss
he related works and contrast our solution with state-of-the-art in Section 4.6. Finally, we
summerize the chapter contributions in Section 4.7.

4.2 1 + 1 - Protected Virtual Network Embedding Problem

In this section, we �rst present a mathematical representation of the inputs: the SN and the VN
request. Then we formally de�ne 1 + 1 – ProViNE.

4.2.1 Substrate Network

We represent the SN as an undirected graph,G = (V,E), where V andE are the set of substrate
nodes and links, respectively. The set of neighbors of each substrate node u ∈ V is represented
byN (u). Each substrate link (u, v) ∈ E has the following attributes: (i) buv : bandwidth capac-
ity of the link (u, v), and (ii) Cuv : cost of allocating unit bandwidth on (u, v) for provisioning
a virtual link.

84

4.2.2 Virtual Network

We represent a VN as an undirected graph Ḡ = (V̄ , Ē), where V̄ and Ē are the set of virtual
nodes and virtual links, respectively. Each virtual link (ū, v̄) ∈ Ē has bandwidth requirement
būv̄. We also have a set of location constraints, L = {L(ū)|L(ū) ⊆ V, ∀ū ∈ V̄ }, such that
a virtual node ū ∈ V̄ can only be provisioned on a substrate node u ∈ L(ū). The location
constraint set for ū ∈ V̄ contains all substrate nodes when there is no location constraint for
ū. The binary variable `ūu represents the location constraint as follows:

`ūu =

{
1 if ū ∈ V̄ can be provisioned on u ∈ V,
0 otherwise.

4.2.3 1 + 1 – ProViNE Problem Statement

Given a SN G = (V,E), VN request Ḡ = (V̄ , Ē), and a set of location constraints L, embed Ḡ
on G such that:

• Each virtual node ū ∈ Ḡ has a primary and a backup embedding in the SN, satisfying the
location constraint.

• For each virtual node ū ∈ Ḡ, the substrate nodes used for the primary embedding are
disjoint from the substrate nodes used for the backup embedding.

• Each virtual link (ū, v̄) ∈ Ē has a primary and a backup embedding in the SN. A primary
or backup embedding of a virtual link on the SN corresponds to a single path in the
SN having at least būv̄ available bandwidth. The substrate paths corresponding to the
primary and backup embedding of a virtual link (ū, v̄) ∈ Ē are represented by Pūv̄ and
P ′ūv̄, respectively.

• Backup embedding of a virtual link is disjoint from the set of substrate paths used for
primary embedding of the virtual links. The same disjointedness principle applies for the
primary embedding.

• The total cost of provisioning bandwidth in the SN is minimum according to the following
cost function: ∑

∀(ū,v̄)∈Ē

∑
∀(u,v)∈Pūv̄∪P ′

ūv̄

Cuv × būv̄ (4.1)

85

A

B

F

E

D
C G

15

15

15

15

15

15

15
15

15

15

(a) Substrate Network

{A, B, C}

{C, D}

{E, F, G}
a

b c

Location Constraint

5

5

5

(b) Virtual Network Request

A

B

F

E

D
C G

15

15

15

15

15

15

15 15

15a

c

b

ca

b

15

P
ri
m
ar
y

B
ack
u
p

(c) Embedding by DRONE

Figure 4.1: Example VN embedding with DRONE

Therefore, a solution of 1 + 1 – ProViNE will yield two disjoint embeddings of a VN request
on the SN while minimizing the given cost function (4.1). Figure 4.1 shows such an example
with dark nodes and lines denoting the primary, and gray nodes and lines denoting the backup
embedding of a VN request on a SN.

4.3 ILP Formulation: OPT-DRONE

1 + 1 – ProViNE’s objective is to ensure fault tolerance of a VN by providing dedicated protection
to each VN element with minimal resource overhead. This ensures that a single physical element
failure does not bring down both the primary and backup embedding of the same VN element.
To �nd an optimal solution, we �rst transform the input VN (Section 4.3.1), which ensures that
the primary and the backup embedding are computed simultaneously, and then provide an ILP

86

Table 4.1: Summary of key notations
G = (V,E) Physical Network
buv Residual Bandwidth capacity of physical link

(u, v) ∈ E
Cuv Cost of allocating unit bandwidth on physical link

(u, v) ∈ E for provisioning a virtual link
Ḡ = (V̄ , Ē) Virtual Network Request
būv̄ Bandwidth requirement of virtual link (ū, v̄) ∈ Ē
L(ū) Location constraint set for virtual node ū ∈ V̄
`ūu ∈ {0, 1} `ūu = 1 if u ∈ L(ū), u ∈ V, ū ∈ V̄
G̃ = (Ṽ , Ẽ) Replica of virtual network request Ḡ
Ĝ = (V̂ , Ê) Transformed virtual network request, Ĝ = Ḡ ∪ G̃
xûv̂uv ∈ {0, 1} xûv̂uv = 1 if (u, v) ∈ E is on the embedded physical

path for (û, v̂) ∈ Ē
yûu ∈ {0, 1} yûu = 1 if û ∈ V̂ is mapped to u ∈ V

formulation for the optimal embedding (Section 4.3.2). A glossary of key notations used in the
ILP formulation is provided in Table 4.1.

4.3.1 Virtual Network Transformation

We formulate 1 + 1 – ProViNE as simultaneously embedding two copies of the same VN dis-
jointly on the SN. To accomplish this goal, we �rst replicate the input VN, Ḡ to obtain a shadow
VN, G̃ = (Ṽ , Ẽ). G̃ has the same number of nodes and links as Ḡ and each shadow virtual link
(ũ, ṽ) ∈ Ẽ has the same bandwidth requirement as the original virtual link (ū, v̄) ∈ Ē. We
enumerate the nodes in the shadow VN G̃ by using the following transformation function:
τ(ū) = ũ.

Our transformed input now contains the graph Ĝ = (V̂ , Ê), s.t. V̂ = V̄ ∪ Ṽ and Ê = Ē∪Ẽ.
We now embed Ĝ on G in such a way that any node u ∈ V̄ and any node ũ ∈ Ṽ are not
provisioned on the same physical node. Similar constraints apply on the virtual links as well.

87

4.3.2 ILP Formulation

We begin by introducing the decision variables (Section 4.3.2). Then we present the constraints
(Section 4.3.2) followed by the objective function (Section 4.3.2).

Decision Variables

A virtual link is mapped to a physical path. The following decision variable indicates the map-
ping between a virtual link and a physical link.

xûv̂uv =

{
1 if (û, v̂) ∈ Ê is mapped to (u, v) ∈ E,
0 otherwise.

The following decision variable represents the virtual node mapping:

yûu =

{
1 if û ∈ V̂ is mapped to u ∈ V,
0 otherwise.

Constraints

Link Mapping Constraints: We ensure that every virtual link is mapped to a non-zero
length physical path by constraint (4.2). It also ensures that no virtual link is left unmapped.
Physical link resource constraint is expressed using constraint (4.3). Finally, constraint (4.4)
makes sure that the in-�ow and out-�ow of each physical node is equal except at the nodes
where the endpoints of a virtual link are mapped. Constraint (4.4) ensures a continuous path
between the mapped endpoints of a virtual link [183].

∀(û, v̂) ∈ Ê :
∑

∀(u,v)∈E

xûv̂uv ≥ 1 (4.2)

∀(u, v) ∈ E :
∑

∀(û,v̂)∈Ê

xûv̂uv × bûv̂ ≤ buv (4.3)

∀û, v̂ ∈ V̂ ,∀u ∈ V :
∑

∀v∈N (u)

(xûv̂uv − xûv̂vu) = yûu − yv̂u (4.4)

The binary nature of the virtual link mapping decision variable along with the �ow constraint
prevents any virtual link being mapped to more than one physical path. This restricts the link
mapping to the Multi-Commodity Unsplittable Flow Problem [108].

88

Node Mapping Constraints: Equations (4.5) and (4.6) ensure that a virtual node is mapped
to exactly one physical node according to the given location constraints, respectively. Then,
equation (4.7) ensures that a physical node does not host more than one virtual node from the
same virtual network request.

∀û ∈ V̂ ,∀u ∈ V :
∑
∀u∈V

yûu = 1 (4.5)

∀û ∈ V̂ ,∀u ∈ V : yûu ≤ `ûu (4.6)

∀u ∈ V :
∑
û∈V̂

yûu ≤ 1 (4.7)

The virtual node embedding follows from the virtual link embedding since we do not have
any cost associated with virtual node embedding. Therefore, the problem of coordinated node
and link embedding is at least as hard as the Multi-commodity Unsplittable Flow Problem with
Unknown Sources and Destinations.

Disjointedness Constraints: We need to ensure that every virtual link in Ḡ and its corre-
sponding virtual link in G̃ is embedded on node and link disjoint paths in SN. To ensure this
disjointedness property, we �rst constrain the virtual links in Ḡ and G̃ to be mapped on disjoint
set of physical links using equations (4.8) and (4.9).

∀(u, v) ∈ E :
∑

∀(ũ,ṽ)∈Ẽ

xũṽuv = 0 if xūv̄uv = 1,∀(ū, v̄) ∈ Ē (4.8)

∀(u, v) ∈ E : xūv̄uv = 0 if
∑

∀(ũ,ṽ)∈Ẽ

xũṽuv > 0,∀(ū, v̄) ∈ Ē (4.9)

Then we forbid the virtual link endpoints of the primary embedding to be intermediate
nodes on the path of backup embedding and vice versa using equations (4.10) and (4.11).

∀u ∈ V : yūu = 0, if
∑

∀(ũ,ṽ)∈Ẽ

∑
∀v∈N (u)

xũṽuv > 0 (4.10)

∀u ∈ V :
∑

∀(ũ,ṽ)∈Ẽ

∑
∀v∈N (u)

xũṽuv = 0, if yūu = 1 (4.11)

We also ensure that the physical paths corresponding to the virtual links in Ḡ and G̃ do
not share any intermediate nodes. This constraint is necessary to ensure that a physical failure

89

does not a�ect a primary resource and its corresponding backup resource at the same time.

∀u ∈ V :
∑

∀(ũ,ṽ)∈Ẽ

∑
∀v∈N (u)

xũṽuv = 0, if
∑

∀(ū,v̄)∈Ē

∑
∀v∈N (u)

xūv̄uv > 0 (4.12)

∀u ∈ V :
∑

∀(ū,v̄)∈Ē

∑
∀v∈N (u)

xūv̄uv = 0, if
∑

∀(ũ,ṽ)∈Ẽ

∑
∀v∈N (u)

xũṽuv > 0 (4.13)

Objective Function

Our objective is to minimize the cost of provisioning bandwidth on the physical links. There-
fore, we have the following objective function:

minimize

 ∑
∀(û,v̂)∈Ê

∑
∀(u,v)∈E

xûv̂uv × Cuv × bûv̂

4.3.3 Hardness of 1 + 1 – ProViNE

As discussed earlier in Section 4.3.2, the coordinated node and link mapping without the dis-
jointedness constraints is at least as hard as solving the NP-Hard Multi-commodity Unsplittable
Flow Problem with Unknown Source and Destinations. State-of-the art literature reveals that this
problem is also hard to approximate even when the source and destination of the �ows are
known. Recent research works have found (2 + ε) approximation algorithms for line and cy-
cle graphs, respectively [184]. However, �nding constant factor approximation algorithms for
general graphs still remains open [185]. With the added mutual exclusion constraints, the em-
bedding problem becomes at least as hard as partitioning the SN while minimizing the cost of
multi-commodity unsplittable �ow with unknown sources and destinations in each of the par-
tition. Even an easier version of this problem, balanced graph partitioning, is NP-hard [186] and
does not have a constant factor approximation algorithm [107, 186]. This makes it challenging
to devise an constant factor approximation algorithm for 1 + 1 – ProViNE.

4.4 Heuristic Solution: FAST-DRONE

Given the NP-hard nature of the 1 + 1 – ProViNE problem, we resort to a heuristic, i.e., FAST-
DRONE, for �nding solutions within a reasonable time frame. First, we restructure 1 + 1 –

90

ProViNE for the ease of designing a heuristic, while keeping the original problem intact in its
meaning (Section 4.4.1). Then we present our heuristic algorithm in detail (Section 4.4.2, Sec-
tion 4.4.3, Section 4.4.4, and Section 4.4.5) to solve the restructured problem. We also analyze
the running time of FAST-DRONE (Section 4.4.6) and provide a guideline on parallel implemen-
tation of FAST-DRONE on a multi-core machine (Section 4.4.7).

4.4.1 Problem Restructuring

We reformulate 1 + 1 – ProViNE as a variant of graph partitioning problem as follows:
Given an SN G = (V,E), a VN request Ḡ = (V̄ , Ē), and a set of location constraints,

L = {L(ū)|L(ū) ⊆ V, ∀ū ∈ V̄ } (Section 4.2.2), 1 + 1 – ProViNE requires to partition the graph
G into two disjoint partitions P and Q such that:

• ∀ū ∈ V̄ , P has at least one element from each L(ū).

• ∀ū ∈ V̄ , Q has at least one element from each L(ū).

• The sub-graph induced by the elements of each set L(ū) in P (and Q) is connected.

• The sum of costs of embedding Ḡ on P and Q is minimum according to the given cost
function (4.1).

The sets P and Q are disjoint partitions of G where the primary and backup resources for
Ḡ can be provisioned without violating the disjointedness constraint of 1 + 1 – ProViNE. An
optimal P and Q will minimize the total cost of primary and backup link embedding. Such
optimal P ,Q will yield the optimal solution to 1 + 1 – ProViNE.

Graph partitioning, which is an NP-hard problem [186], can be reduced to the aforemen-
tioned partitioning problem by relaxing the location constraint, i.e., setting each set L(ū),
∀ū ∈ V̄ , equal to V . Once we have the two partitions, embedding the virtual links inside one
partition is at least as hard as solving the NP-Hard Multi-commodity Unsplittable Flow prob-
lem [108], since we are not allowed to embed a virtual link over multiple substrate paths. In the
next section, we present our heuristic algorithm based on this reformulation.

4.4.2 Heuristic Algorithm

In order to �nd a solution to 1 + 1 – ProViNE we need to partition the SN s.t. the total cost of
embedding the virtual links in the partitions are minimized (Section 4.4.1). Our heuristic starts

91

with a seed mapping set containing the primary and backup mapping of one virtual node and
goes through the following three phases to partition the SN and embed the VN:

Node Mapping Phase: Use the seed mapping and location constraint set to �nd a primary
and backup node embedding for the other virtual nodes. This phase yields a partial partitioning
of the SN. This partial partition acts as a seed that we grow to a complete partition of the SN
into two disjoint subgraphs.

Partitioning Phase: Once we have a seed primary and backup partition from the node
mapping phase, we grow the seed partition to include the rest of the substrate nodes into either
of the partitions. At the end of this phase, all of the substrate nodes are either assigned to the
primary or to the backup partition.

Link Mapping Phase: In this phase, we have the virtual node mapping and the primary
and backup partition of the SN as input. We embed the virtual links in these partitions sepa-
rately by using the Constrained Shortest Path First algorithm.

We run this three phase algorithm for di�erent initial seed node mapping and retain the
solution with the minimum cost. To generate di�erent seed node mappings we identify the
virtual nodes that have the smallest location constraint set. We call these virtual nodes the
most constrained virtual nodes. Such virtual nodes may lead to infeasible embedding if they are
not embedded �rst, since they have the fewest options for embedding. For each of these most
constrained virtual nodes ūc, we take every pair of substrate nodes from ūc’s location constraint
set L(ūc) and consider that pair as a primary and backup node embedding for ūc. In this way,
we generate a number of seed node mappings and execute the above-described three phase
algorithm. In the rest of this section, we describe the individual phases in detail.

4.4.3 Node Mapping Phase

The node mapping phase follows a greedy approach to map the virtual nodes to its’ primary
and backup substrate nodes, while satisfying the location constraint. In this phase, we map the
virtual nodes one at a time and select them in the increasing order of their location constraint set
size. The rationale for following this order is that a virtual node with fewer possible locations
for mapping is more constrained. Mapping a less constrained virtual node �rst might lead to
infeasible mapping of the more constrained virtual node(s).

Node mapping is performed by theMapVNodes procedure presented in Algorithm 2. We �rst
initialize the primary and backup node mapping sets nmapp and nmaps, respectively, with the
provided seed. Then we take one virtual node at a time according to the aforementioned order
(line 5) and iterate over its location constraint set to �nd the best substrate node for primary

92

Algorithm 2: FAST-DRONE: Node mapping phase
Input: G: substrate network; Ḡ: virtual network request; seed: seed mapping

1 function MapVNodes(G, Ḡ, seed)
2 nmapp(seed.node)← seed.primary, nmaps(seed.node)← seed.backup
3 taken(seed.primary)← false, taken(seed.backup)← false
4 P ← φ, Q ← φ

/* Sequence V̄ represents virtual nodes sorted in decreasing order
of location constraint set size */

5 foreach ū ∈ V̄ do
6 best← NIL
7 foreach c ∈ location(ū) do
8 if not taken(c) and IsBetterAssignment(G,P ,Q, c, best) then best← c
9 if best 6= NIL then
10 taken(best)← true, nmapp(ū)← best, P ← P ∪ {best}
11 best← NIL
12 foreach c ∈ location(ū) do
13 if not taken(c) and IsBetterAssignment(G,Q,P , c, best) then best← c
14 if best 6= NIL then
15 taken(best)← true, nmaps(ū)← best, Q ← Q∪ {best}
16 return {nmapp, nmaps}

mapping (line 7 – 10) . After �nding a primary mapping, we determine the corresponding
backup mapping (line 12 – 15). While considering a substrate node u ∈ V as primary mapping
of a virtual node, we try to determine if u is a better choice compared to bestu, the best choice of
substrate node that we have seen so far considering the node mappings we already have. This
is evaluated using the IsBetterAssignment procedure. This procedure is outlined in Algorithm 3
and performs the following tests in the order they are listed. We choose this order to minimize
the chances of not �nding a solution and to create a partition that yields a close to optimal
embedding.

• Infeasibility Test (line 2): Does adding u to the primary mapping makes the backup
mapping impossible to be connected and vice versa? If the answer is yes, then we do not
consider u for primary node mapping of the virtual node. Otherwise, we perform the
next test.

• Compact Mapping Test (line 4 – 6): Does considering u instead of bestu in the primary
(or backup) mapping decreases the mean shortest path length among the nodes currently

93

present in the primary (or backup) mapping set? If the answer is yes then u is considered
to be better than bestu. Otherwise, we perform the next test.

• Connectivity Contribution Test (line 7 – 14): Does u contribute more connectivity to
the mapping set (primary or backup) compared to bestu? If the answer is yes, then bestu is
updated with u. We measure connectivity contribution using the following:

– Number of connected components decreased in the current mapping set if u is con-
sidered instead of bestu in the mapping set.

– Number of links incident from u to the current mapping set compared to bestu.

We iterate over all possible substrate nodes u in the location constraint set of a virtual node
and �nd the best among them for the mapping. We do the same iteration and tests again (line
24 of Algorithm 2) to �nd a backup mapping for that virtual node. We repeat this procedure
for all the virtual nodes and we �nally obtain a primary and backup mapping of the virtual
nodes, nmapp and nmaps, respectively. This primary and backup mapping sets acts as seed
primary and backup partitions (P0 and Q0, respectively) that we grow to full partitions in the
Partitioning phase.

Algorithm 3: FAST-DRONE: Check for better node assignment
1 function IsBetterAssignment(G, P , Q, u, bestu)
2 if not IsFeasiblePartition(G, P , Q, u) then return false
3 if bestu = NIL then return true
4 sp_reduction_current←MeanSPReduction(G,P ,Q, u)
5 sp_reduction_best←MeanSPReduction(G,P ,Q, bestu)
6 if sp_reduction_current > sp_reduction_best then return true
7 else if sp_reduction_current = sp_reduction_best then
8 decrease_current← ComponentsReduced(G,P , u)
9 decrease_best← ComponentsReduced(G,P , bestu)

10 if decrease_current > decrease_best then return true
11 else if decrease_current = decrease_best then
12 cut_current← NumCutEdges(G,P , u)
13 cut_best← NumCutEdges(G,P , bestu)
14 if cut_current > cut_best then return true
15 return false

94

4.4.4 Partitioning Phase

Algorithm 4: FAST-DRONE: Partitioning phase
Input: G: substrate network; nmapp: primary node mapping; nmaps: backup node

mapping
1 function PartitionGraph(G, nmapp, nmaps)
2 P ← Q ← φ
3 foreach np ∈ nmapp do P ← P ∪ {np}
4 foreach ns ∈ nmaps do Q ← Q∪ {ns}
5 taken← Array of size |V |, initialized with false
6 foreach v ∈ V do
7 if not taken(v) then
8 if not IsFeasiblePartition(G,P ,Q, v) then Q ← Q∪ {v}
9 else
10 x←MeanSPReduction(G,P ,Q, u)
11 y ←MeanSPReduction(G,Q,P , u)
12 if x > y then P ← P ∪ {v}
13 else if x = y then
14 δp ← ComponentsReduced(G,P , v)
15 δs ← ComponentsReduced(G,Q, v)
16 if δp > δs then P ← P ∪ {v}
17 else if δp = δs then
18 cutp ← NumCutEdges(G,P , v)
19 cuts ← NumCutEdges(G,Q, v)
20 if cutp > cuts then P ← P ∪ {v}
21 else if cutp < cuts then Q ← Q∪ {v}
22 else Assign u to the smaller partition
23 else Q ← Q∪ {v}
24 return {P ,Q}

Given two seed primary (P0) and backup (Q0) partitions obtained from the node mapping
phase, we partition the substrate network G into two disjoint partitions P and Q for the pri-
mary and backup embeddings of the virtual network, respectively. The partitioning process is
performed using the PartitionGraph procedure (Algorithm 5). We consider the substrate nodes
that are not already assigned to any of the partitions one at a time, and perform the following
tests in the order they are listed. Such order is chosen for similar reasons as discussed in the
node mapping phase.

95

• Infeasibility Test: Does adding u toP makes the partitionQ impossible to be connected
(line 6)? If the answer is yes, then we do not consider u for P , rather we add u to Q.

• Compact Partition Test: Does including u to P reduce shortest path length more than
that reduced when u is added toQ (9 – 11)? If the answer is yes, then add u toP , otherwise
evaluate the next test. Mean-SP-Reduction procedure computes the reduction in mean
shortest path length within a partition if a candidate node is added to that partition.

• Connectivity Contribution Test: We determine whether a candidate node u ∈ V con-
tributes more connectivity to P or to Q by evaluating the following:

– Does including u inP reduces more the number of components compared to adding u to
Q (line 14 – 16)? If the answer is yes, then u is added toP , otherwise we evaluate the
next criterion. Components-Reduced procedure computes the reduction in number
of components if a candidate node is added to a partition.

– Does the candidate node u ∈ V has more substrate links going to P compared to Q
(line 19 – 24)? If the answer is yes then u is added to P , otherwise u is added to Q.
Num-Cut-Edges procedure computes the number of substrate links from a candidate
node to a partition.

Load Balancing Test: If all the previous tests fail to assign a u ∈ V to either P or Q,
then we assign u to P if |P| < |Q|, otherwise u is assigned to Q.

PartitionGraph procedure iterates over all the unassigned substrate nodes u ∈ V and assigns
u to either P or to Q. At the end of this phase, we have two disjoint partitions, each of them
has at least one node from each of the location constraint sets. Therefore, this partitioning
conforms to the conditions as described in Section 4.4.1.

4.4.5 Link Mapping Phase

Given the two disjoint partitions, P andQ, and the node mappings for the virtual nodes in each
partition, we use constrained shortest path �rst algorithm to map a virtual link to a substrate
path inside a partition. Application of shortest path based algorithms are common practice in
cases when virtual links cannot be split and embedded on multiple substrate paths [187]. We
also have this constraint in 1 + 1 – ProViNE.

All of the three phases are combined and presented in the FAST-DRONE procedure (Algo-
rithm 7). Line 2 corresponds to the node mapping phase, Line 3 represents the partition growing
phase, and �nally lines 4 and 5 give us the link mappings.

96

Algorithm 5: FAST-DRONE algorithm
Input: G: substrate network; Ḡ: virtual network request; location: location

constraints
1 function FAST-DRONE(G, Ḡ, location)
2 {nmapp, nmaps} ←MapVNodes(G, Ḡ, location)
3 {P ,Q} ← PartitionGraph(G, nmapp, nmaps)
4 emapp ← EmbedAllVLinks(G, Ḡ,P , nmapp)
5 emaps ← EmbedAllVLinks(G, Ḡ,Q, nmaps)
6 Compute embedding_cost from emapp and emaps
7 return {nmapp, emapp, nmaps, emaps, cost}

4.4.6 Running Time Analysis

Before going to the analysis we �rst introduce the following notations:

• n = Number of vertices in the substrate network

• n′ = Number of vertices in the virtual network

• m = Number of edges in the substrate network

• m′ = Number of edges in the virtual network

• σ = Maximum size of a location constraints set for any virtual node

• δ = Maximum degree of a substrate node

We analyze the running time of FAST-DRONE procedure by analyzing the running time for each
of the phases as follows:

Node Mapping Phase: Sorting the virtual nodes requires O(n′ log n′) time. Then for each
of these n′ virtual nodes, we traverse its location constraint set, which can have ≤ σ elements.
For each of these O(σ) nodes, we perform: (i) feasibility check (ii) compute the reduction in
shortest path length (iii) compute the decrease in number of components and (iv) compute the
number of edges incident form the candidate substrate node to the current set of mappings.

Task (i) can be accomplished inO(n+m) time by simply keeping a disjoint set data structure
with O(n) elements, and perform union operation on the data structure. Task (ii) can take up
to O(n′3) time. Task (iii) can be performed in O(n+m) time in the worst case using a disjoint

97

set data structure. Finally for task (iv), the number of edges incident from a candidate substrate
node to a mapping set can be computed in O(δ) time. Therefore, the mapping phase runs in
O(n′σ(n+m+ δ + n′3)) time.

Graph Partitioning Phase We iterate over O(n) unassigned substrate nodes and perform
similar steps as in the node mapping phase. Therefore, the time complexity of each iteration is
the same as the four tasks described for the node mapping phase. Hence, partitioning the graph
requires O(n(n+m+ δ + n′3)) time.

Link Mapping Phase For the link mapping phase, we compute shortest path between the
mapped nodes for each of the m′ virtual links using Dijkstra’s shortest path algorithm. This
requires O(m′m log n) time in total.

Overall, the running time of the proposed heuristic is: O((n′σ + n)(n + m + δ + n′3) +
m′m log n).

4.4.7 Parallel Implementation of FAST-DRONE

The proposed heuristic, i.e., FAST-DRONE can be implemented as a multi-threaded program
to utilize multiple CPU cores. We observed in Algorithm 2 that embedding of the �rst virtual
node to its primary and backup substrate nodes has the most impact on the subsequent embed-
dings. To mitigate this impact, we can consider all possible initial primary/backup embedding
combinations for the most constrained virtual node, i.e., the virtual node with the smallest lo-
cation constraint set and then run the rest of the heuristic. We can parallelize this process by
executing each run of the heuristic with one combination of primary/backup embedding of the
�rst virtual node on a separate thread running on one CPU core. After the parallel executions
�nish, we can choose the best embedding among all the parallel executions.

4.5 Performance Evaluation

We evaluate the proposed solutions for 1 + 1 – ProViNE through extensive simulations. We
perform simulations using both randomly generated network topologies with various connec-
tivity levels and a real ISP topology. Section 4.5.1 describes the simulation setup in detail and
Section 4.5.2 de�nes the performance metrics. Then we present our evaluation results focusing
on the following two aspects.

First, we perform micro-benchmarking of our solutions and compare with PAR [3], a recent
work on survivable virtual infrastructure embedding with dedicated resources. For the micro-
benchmarking scenario, we consider each VN embedding request in isolation and assume that

98

the VN can always be embedded on the SN. Under these assumptions, we measure the resource
e�ciency of our proposed solutions and compare our results with that of [3].

Second, we perform steady state analysis of FAST-DRONE and compare with that of PAR [3].
The steady state analysis considers VN arrivals and departures over a period of time and also
considers the possibility of failing to embed a VN request on the SN. The steady state analysis
provides valuable insight on the number of accepted VNs and the substrate resource utilization
in a longer time frame.

4.5.1 Simulation Setup

Testbed

We have implemented OPT-DRONE, the ILP based optimal solution for 1 + 1 – ProViNE using
IBM ILOG CPLEX 12.5 C++ libraries. The heuristic is also implemented in C++. We imple-
mented the heuristic as a multi-threaded program by following the guidelines in Section 4.4.7.
Both the heuristic and CPLEX solutions were run on a machine with hyper-threaded 8×10 core
Intel Xeon E7-8870 CPU and 1 TB of memory. Both the CPLEX and heuristic implementations
spawn up to 160 threads to saturate all the processing cores during their executions. We have
developed an in-house discrete event simulator that simulates the arrival and departure of VNs
for the steady state scenario.

Substrate Network Topology

We have generated random topologies for the micro-benchmarking scenario by varying the
number of substrate nodes from 50 to 200 in increments of 25, and varying the Link-to-Node
Ratio (LNR) from 1.2 to 2.2 in steps of 0.1. We used SNs with di�erent LNR to study the im-
pact of substrate network’s connectivity on FAST-DRONE’s performance. For the steady state
scenario, we have used the topology of a large ISP (AS-6461) from the Rocketfuel ISP topology
dataset [164] containing 141 nodes and 374 links. We used random integers uniformly dis-
tributed between 35000 Mbps and 40000 Mbps as link bandwidth, since link bandwidth is not
speci�ed in [164].

Virtual Network Topology

We generated three types of VN topologies for the micro-benchmarking scenario: ring, star and
randomly connected graphs with up to 16 nodes to study the impact of di�erent types of VNs

99

on FAST-DRONE’s performance. As stated earlier, the micro-benchmarking scenario evaluates
the resource e�ciency of the algorithms given that the substrate network’s capacity and the
virtual nodes’ location constraints yield a feasible embedding. In order to ensure that the VNs
have a feasible embedding, we have iteratively grown the VNs from an input SN as follows.

We �rst start with an empty VN and add exactly one virtual node and some virtual links to
the VN in each iteration. During an iteration, we �rst randomly select a substrate node and its
neighbor as the primary and backup embedding for the new virtual node being added. Then
we �nd paths in the SN from these primary and backup embeddings to the primary and backup
embeddings of the existing virtual nodes, respectively. These existing virtual nodes are selected
according to the type of VN (e.g., ring, star, random) that we are trying to grow. Each pair of
these newly found primary and backup paths in the SN, correspond to a virtual link between
the virtual node being added and the selected virtual nodes from the already grown VN. While
computing the paths, we maintain the disjointedness invariant of 1 + 1 – ProViNE as described
in Section 4.2.3. This procedure ensures that the grown VN has at least one valid embedding
on the SN. This process is continued until a VN of a desired size is found.

For the steady state scenario, we generated VNs with random connectivity. We set the
VN connectivity level at 50% and vary the number of virtual nodes from 4 to 8. The virtual
link bandwidth requirements are integers chosen uniformly between 12000 Mbps and 15000
Mbps. The VN arrival rate follows a Poisson distribution with a mean from 4 to 10 VNs per 100
time units. The VN life time is exponentially distributed with a mean of 1000 time units. These
parameters have been chosen in accordance with the standards used in the related literature [55,
188]. For the location constraint of a virtual node, we randomly choose a substrate node and
all the nodes reachable within a 3-hop radius.

4.5.2 Performance Metrics

• Embedding Cost: The embedding cost is the cost of provisioning bandwidth for the
virtual links and their backups, computed using (4.1).

• Execution Time: The time required for an algorithm to �nd the solution to 1 + 1 –
ProViNE.

• Mean embedding path length: For a given VN request, this is the mean of the substrate
path lengths corresponding to the virtual link embeddings.

• Acceptance Ratio: Acceptance ratio is the fraction of VN requests that have been suc-
cessfully embedded on the SN over all the VN requests.

100

• Utilization: We compute the utilization of a substrate link as the ratio of total bandwidth
allocated to the embedded virtual links to that substrate link’s capacity.

4.5.3 Micro-benchmarking Results

Our micro-benchmarking evaluation scenario focuses on the following aspects: (i) comparing
the resource e�ciency of the proposed heuristic (FAST-DRONE) with that of the optimal (OPT-
DRONE); (ii) analyzing the impact of VN topology type; (iii) analyzing the impact of substrate
network connectivity levels; (iv) demonstrating the scalability of FAST-DRONE and (v) com-
paring DRONE with PAR [3].

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
Cost Ratio (FAST-DRONE : OPT-DRONE)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Ring VN Random VN Star VN All VN Type

Figure 4.2: Comparison between OPT-DRONE and FAST-DRONE

Comparison between OPT-DRONE and FAST-DRONE

In this section, we present the results on how much extra resource is provisioned by FAST-
DRONE compared to OPT-DRONE. This extra resource usage is measured as the ratio of FAST-
DRONE’s cost to OPT-DRONE’s cost since our cost function is proportional to the total band-
width allocated for the VN. Figure 4.2 shows the Cumulative Distribution Function (CDF) of
cost ratio for di�erent types of VN requests as well as the CDF for all types combined. A point
(x, y) on this curve gives us the fraction y of total VN requests with cost ratio ≤ x. This plot

101

shows that about 70% VN requests are embedded by FAST-DRONE with at most 15% extra re-
sources, while 90% VN requests are embedded with at most 23% extra resources compared to
OPT-DRONE. On average this extra resource provisioning is 14.3% over all VN request types.

Impact of VN Request Type

Figure 4.3(a) presents result for the cost ratio of di�erent types of VN requests on di�erent sizes
of SNs. A take away from this result is that FAST-DRONE performs better for star VN topologies
compared to ring and randomly connected VN topologies. The reason behind such behavior is
that only the center node in a star topology imposes high disjointedness requirement. On the
other hand, all nodes in a ring or a randomly connected VN topology impose similar disjoint-
edness requirement. This intensi�es resource contention while allocating disjoint paths in the
SN leading to longer paths, hence, the higher cost ratio.

We also compute the mean substrate path lengths for the embedded virtual links to validate
this �nding and present the result along with 5th and 95th percentile error bars in Figure 4.3(b).
The di�erence between mean embedded path length obtained by FAST-DRONE compared to
OPT-DRONE is slightly higher for ring and randomly connected VN topologies (15% and 13%,
respectively) compared to star VN topologies (12.5%). If we consider the 95th percentile of the
spectrum, this di�erence is more signi�cant, i.e., 13.8%, 12%, and 10%, for ring, random, and star
VN topologies, respectively.

Impact of Substrate Network Connectivity

In this section, we present results on how the connectivity level of the underlying SN impacts
the performance of FAST-DRONE. We varied the LNR of the generated substrate networks from
1.2 to 2.2 in increments of 0.1 and measured the mean FAST-DRONE to OPT-DRONE cost ratio
for each case. Figure 4.4(a) shows the mean cost ratio with 5th and 95th percentile error bars
against di�erent LNRs. This plot gives us an idea about a good operating region for FAST-
DRONE. As we can observe, FAST-DRONE allocates about 15% extra resources compared to
the optimal solution for SNs having an LNR≤ 1.8. For higher LNR, the increased path diversity
may lead to more sub-optimal solution since the heuristic does not explore all the paths to keep
the running time fast.

We also compute the mean of embedded substrate path lengths corresponding to the virtual
links and present the results in Figure 4.4(b). The takeaway from this �gure is that, a lower LNR
in the SN, i.e., sparse SNs cause both OPT-DRONE and FAST-DRONE to select longer paths for
virtual link embedding. This is due to less path diversity in the SN. However, with increasing

102

Random Ring Star
VN Request Type

1.0

1.1

1.2

1.3

1.4

M
ea

n
C

os
t R

at
io

(F
A

ST
-D

R
O

N
E

: O
PT

-D
R

O
N

E)
50 Node SN
75 Node SN

100 Node SN
125 Node SN

150 Node SN
175 Node SN

(a) Impact on cost ratio

Random Ring Star
VN Request Type

1
2
3
4
5
6
7
8
9

M
ea

n
Em

be
dd

in
g

Pa
th

 L
en

gt
h FAST-DRONE OPT-DRONE

(b) Impact on mean embedding path length

Figure 4.3: Impact of VN request type

LNR, more paths become available in the SN and the mean path lengths for embedding virtual
links become shorter. However, in line with the previous observation, FAST-DRONE explores

103

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2
Substrate Network LNR

1.0

1.1

1.2

1.3

1.4
C

os
t R

at
io

(F
A

ST
-D

R
O

N
E

: O
PT

-D
R

O
N

E)

(a) Impact on cost ratio

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2
Substrate Network LNR

0
2
4
6
8

10
12
14
16

M
ea

n
Em

be
dd

in
g

Pa
th

 L
en

gt
h FAST-DRONE OPT-DRONE

(b) Impact on mean embedded path length

Figure 4.4: Impact of SN connectivity

a much smaller set of paths to keep the running time fast. As a result, the gap between mean
embedded path lengths for OPT-DRONE and FAST-DRONE increases.

104

Scalability of Heuristic

50 75 100 125 150 175
Substrate Network Node Count

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
FA

ST
-D

R
O

N
E

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

FAST-DRONE OPT-DRONE

100

101

102

103

104

M
ea

n
O

PT
-D

R
O

N
E

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Figure 4.5: Comparison of execution time

To demonstrate the scalability of FAST-DRONE we show the execution times of FAST-
DRONE and OPT-DRONE on same problem instances in Figure 4.5. As it turns out, FAST-
DRONE takes less than 500 ms on average over all test cases, whereas OPT-DRONE takes more
than 2 minutes to run on average on the smallest SN instance. For larger instances, the exe-
cution time exponentially increases for OPT-DRONE and becomes in the order of hours (e.g.,
about 110 minutes on average for a 175 node SN). We found FAST-DRONE to be 200 – 1200
times faster than OPT-DRONE depending on the problem instance. With our current setup
OPT-DRONE did not scale beyond SNs with more than 175 nodes.

Comparison with PAR [3]

PAR [3] is a greedy heuristic for embedding a VN request on a SN with 1 + 1-protection. PAR
maximizes the probability of accepting a VN request by �rst embedding the virtual nodes on
substrate nodes with higher residual node capacities. After node embedding, PAR embeds the
virtual links using a modi�ed version of Suurballe’s algorithm [189]. In our case, we do not
have node capacities. Therefore, we �rst implemented PAR by randomly mapping a virtual
node ū ∈ V̄ to a substrate node within its location constraint set L(ū). However, such random
mapping lead to infeasible solutions almost all the time. Then we used our proposed MapVN-
odes (Algorithm 2) procedure to map the virtual nodes. The link embedding was done exactly

105

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Cost Ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
FAST-DRONE : OPT-DRONE PAR : OPT-DRONE

(a) Comparison with OPT-DRONE

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Cost Ratio (PAR : FAST-DRONE)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) Cost ratio of PAR to FAST-DRONE

Figure 4.6: Comparison between FAST-DRONE and PAR [3]

the same way as described in [3]. It is worth noting that even after the modi�cation in the node
embedding, PAR could only �nd solutions for ≈12% test cases in our simulation setting.

We �rst compare how much extra resource is allocated by PAR and FAST-DRONE com-
pared to the optimal solution (OPT-DRONE). For this comparison, we compute the ratio of
costs (cost is computed using (4.1)) between PAR and OPT-DRONE, and FAST-DRONE and OPT-
DRONE. Figure 4.6(a) shows the CDF of these cost ratios. This plot shows that in 90% cases,

106

PAR allocates up to 40% additional resources compared to the optimal, whereas, FAST-DRONE
allocates up to 23% additional resources. On average, the amount of extra resource allocated
compared to the optimal is 25% and 14.3% for PAR and FAST-DRONE, respectively. We also
compute the ratio of PAR’s cost to that of FAST-DRONE and plot the CDF in Figure 4.6(b) to see
how much FAST-DRONE improves over PAR. This plot shows that PAR never performs better
than FAST-DRONE and allocates up to 40% extra resources compared to FAST-DRONE at the
90th percentile. On average, we found PAR to allocate 17.5% additional resources compared to
FAST-DRONE.

4.5.4 Steady State Analysis

Our steady state analysis focuses on the following aspects: (i) comparing the acceptance ratio
obtained by FAST-DRONE with that of PAR [3] under di�erent loads, i.e., VN arrival rates
(Section 4.5.4), (ii) compare the impact of FAST-DRONE on the load distribution on substrate
links with that of PAR (Section 4.5.4), and (iii) analyze topological properties of the solutions
(Section 4.5.4). We perform the steady state analysis using the VN arrival rate and duration
parameters described in Section 4.5.1 for a total of 10000 time units. The total number of VNs
used in this simulation was varied between 400 to 960.

Acceptance Ratio

In this section, we report our �ndings on the acceptance ratio obtained by FAST-DRONE and
compare that with the acceptance ratio obtained by using PAR [3]. We consider the �rst 1000
time units of the simulation as the warm up period and discard the values from this duration.
We take the mean of the acceptance ratio obtained during the rest of the simulation and report
it along with 5th and 95th percentile values under varying VN arrival rates in Figure 4.7. We
can see from the results that FAST-DRONE outperforms PAR in all cases and accepts 3.8×
more VNs on average over all VN arrival rates. There are two possible reasons contributing
this di�erence: (i) either the network is being quickly saturated by one algorithm leading to its
lower acceptance ratio, or (ii) the one algorithm having lower acceptance ratio is not su�ciently
exploring the search space to be able to utilize the SN resources, hence, leaving SN resources
unused. In the next section, we analyze how FAST-DRONE and PAR distribute the load on the
SN to gain more insight into the di�erence between their achieved acceptance ratios.

107

4 5 6 7 8 9 10
VN Arrival Rate

0.0

0.1

0.2

0.3

0.4

A
cc

ep
ta

nc
e

R
at

io
FAST-DRONE PAR

Figure 4.7: VN acceptance ratio

4 5 6 7 8 9 10
VN Arrival Rate

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
Su

bs
tr

at
e

Li
nk

U
ti

liz
at

io
n

FAST-DRONE PAR

Figure 4.8: Mean substrate link utilization with varying load

Load Distribution on SN

We measure the utilization of each substrate link at each VN arrival and departure events,
and compute the mean utilization for each substrate link. We �rst present results showing

108

0.0 0.3 0.6 0.9
Substrate Link

Util. (Mean)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

FAST-DRONE
PAR

(a) Link utilization (Mean)

0.0 0.3 0.6 0.9
Substrate Link

Util. (5th Percentile)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

FAST-DRONE
PAR

(b) Link utilization (5th percentile)

0.0 0.3 0.6 0.9
Substrate Link

Util. (95th Percentile)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

FAST-DRONE
PAR

(c) Link utilization (95th percentile)

Figure 4.9: Load distribution on substrate network

the mean substrate link utilization with varying VN arrival rates in Figure 4.8. As we can
see, there is a slight increase in the mean substrate link utilization with increasing VN arrival
rate. Also substrate link utilization is on average 2.5× higher for FAST-DRONE compared to
PAR. However, this plot, representing the mean utilization, fails to capture the variance in link
utilization and does not give us much insight into how the load is distributed across the SN.

In order to capture the essence of load distribution across the substrate links, we compute
the CDF of average, 5th and 95th percentile substrate link utilization for each VN arrival rate.
However, we found the CDFs for di�erent VN arrival rates to follow similar trend, hence, we
combined the CDFs for di�erent VN arrival rates into one and present the results in Figure 4.9. It
is evident from Figure 4.9 that a signi�cant portion of the substrate links (≈30%) remain unused
by PAR throughout the simulation. In case of FAST-DRONE, the fraction of unused substrate
links is less than 5%. In addition, for any level of utilization x, the fraction of substrate links
having utilization ≥ x is larger for FAST-DRONE compared to PAR for all three cases, i.e.,
average, 5th and 95th percentile. When load distribution is combined with acceptance ratio,
we observe that despite having unused capacity in the SN, PAR yields lesser acceptance ratio
compared to FAST-DRONE. This indicates that FAST-DRONE is exploring larger portion of the
solution space compared to PAR, hence, the increased acceptance ratio.

109

4 5 6 7 8 9 10
VN Arrival Rate

0

2

4

6

8

10

12

M
ea

n
Em

be
dd

in
g

Pa
th

 L
en

gt
h

FAST-DRONE PAR

(a) Mean embedding path length vs. VN arrival rate

1 3 5 7 9 11 13 15 17 19
Mean Embedding Path Length

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

FAST-DRONE PAR

(b) CDF of mean embedded path length

Figure 4.10: Topological properties of solutions

110

Topological Properties of the Solutions

We compute the mean embedding path lengths for the virtual links and present the results in
Figure 4.10. Figure 4.10(a) shows the variation in mean path length with varying VN arrival
rate, and Figure 4.10(b) shows the CDF of mean path lengths over all VN arrival rates. The
results show that for similar VN arrival rate and also for all VN arrival rates FAST-DRONE
yields embeddings that have slightly longer mean embedding path length compared to PAR.
According to our cost function (4.1), longer embedding paths result into an increased cost.
Therefore, results from these plots are counterintuitive when they are compared to that from
Section 4.5.3, which indicated that FAST-DRONE yields more resource e�cient embeddings
compared to PAR. The reason behind this slightly longer paths during the steady state scenario
is that, a higher acceptance ratio for FAST-DRONE pushes the network closer to saturation,
hence, exhausting the shorter paths as more VNs are embedded. Therefore, FAST-DRONE is
forced to choose the longer paths for the later VNs. In case of PAR, the lower acceptance ratio
and the lower network utilization still leaves su�cient room in the shorter paths, resulting in
shorter embedding paths on average.

4.6 Related Works

In this section, we �rst discuss the research e�orts that address di�erent aspects of survivable
virtual network embedding problem. Then we focus our discussion on the works that are closely
related to 1 + 1 – ProViNE. Finally, we brie�y discuss the known results regarding the hardness
of unsplittable �ow problem and graph partitioning problem.

Survivable Virtual Network Embedding (SVNE)

Network survivability has been extensively studied in the context of mapping IP links over
WDM optical networks [190, 191, 192, 193]. However, unlike VN embedding, IP link mapping
over WDM networks assume that the endpoints are already mapped and addresses the issue of
provisioning light paths for embedding IP links. In contrast, node embedding is as important as
link embedding in VNE, and a coordination between node and link embedding have been shown
to increase the acceptance ratio of VNs [55]. Ensuring survivability in the context of VNE was
�rst addressed by Rahman et al., in [69]. They formulated the problem of ensuring survivability
in VNs under single substrate link failure as a Mixed Integer Program and proposed heuristics
to obtain solutions in a reasonable time. However, unlike 1 + 1 – ProViNE their proposal does
not protect VNs from node failures. A number of subsequent research works since then have

111

addressed di�erent aspects of SVNE such as considering node failures [194, 195, 196, 197, 198],
optimizing backup resource allocation [199, 200], and ensuring certain level of availability of
the virtual resources [201, 202, 203]. In the rest of this section, we brie�y discuss some of the
works that consider di�erent aspects of SVNE and contrast them with our proposal.

Some of the early works that consider node failure for SVNE are presented in [194, 195]. Yu
et al., addressed the issue of ensuring survivability under regional substrate failures in [194].
A regional substrate failure corresponds to a substrate damage of a facility due to a disaster,
leading to multiple substrate node failures. Yu et al., addresses the regional failure scenario
by pro-actively provisioning backup nodes at di�erent geographical locations. Subsequent re-
search on ensuring survivability under regional failures, including the ones presented in [196]
and [197], propose to take reactive measures after a regional failure and also allow VNs to op-
erate with degraded QoS during regional failures for reducing backup provisioning overhead.
The research presented in [195] and [198] address the SVNE problem for a single substrate node
failure. Both of these works propose to enhance a VN with additional virtual resources. Dur-
ing a substrate node failure, virtual nodes and links are migrated to the additional resources to
restore the VN. In contrast, we take a proactive approach and provide dedicated protection for
each component of the VN to facilitate fast recovery.

Some SVNE approaches optimize the backup bandwidth provisioning by sharing the backup
path of multiple virtual links [199] or by leveraging multipath embedding of virtual links [200].
However, with a shared backup scheme such as [199], multiple virtual links sharing the same
backup can su�er from degraded QoS during a single substrate link failure. Khan et al., pro-
poses to optimize the backup bandwidth provisioning by embedding a virtual link over multi-
ple substrate paths and provisioning a fraction of the virtual link bandwidth instead of the full
bandwidth over each such path. The advantage of this approach is that it requires less backup
bandwidth and can survive single link failures with full QoS. However, they assume virtual
links can be splittable, which is not the case for 1 + 1 – ProViNE.

SVNE problem has also been addressed from the point of view of guaranteeing availability.
For instance, the research presented in [201] and [202] have addressed the issue of guaranteeing
availability of virtual resources in the context of Virtual Data Centers (VDCs). A VDC is an ex-
tension to a VN to include compute, memory and storage resources. Jiang et al., , has addressed
has addressed the issue of ensuring VN availability for optical SNs in [203]. These works deter-
mine the number of backups required for a virtual resource based on the historical reliability
data on the substrate resources. Subsequently, the embedding ensures that the primary and the
backups provide a desired level of availability for that virtual resource. In contrast, the number
of backup resources are already known for 1 + 1 – ProViNE and we need to �nd a resource
e�cient embedding.

112

Virtual Network Embedding with Dedicated Protection

The motivation for 1 + 1 – ProViNE comes from use cases in T-SDN virtualization, where cus-
tomers are provided with full-�edged VNs instead of traditional end-to-end connectivity. The
work presented in [70] identi�es dedicated protection for an entire VN topology as one possible
customer requirement for reliability among others. Therefore, it becomes important for the InP
to embed a customer VN request with 1 + 1-protection for the entire topology in a resource
e�cient way. In this context, the most related to our work is the one by Ye et al., in [3], which
addresses the problem of providing dedicated protection for VNE. They formulate the problem
using a Quadratic Integer Program in contrast to our ILP formulation. However, the major dif-
ference between their approach and ours is the objective. They focused on increasing the VN
request acceptance ratio over time, whereas we focus on minimizing the resource allocation
cost for embedding VNs. Ye et al., proposed a greedy heuristic based on the node resource re-
quirement, which is not suitable for our case since we do not consider any node capacity or
node embedding cost. Lastly, [3] does not consider the location constraint, which is an impor-
tant constraint in our case. Another closely related work is from Jiang et al., [204], where they
propose a backup scheme where the backup virtual nodes are disjoint from the primary virtual
nodes. However, the backup nodes can share a single substrate node and therefore exhibit lesser
survivability compared to 1 + 1 – ProViNE. They also do not provision full backup of the virtual
links, rather provisions some backup paths that can be used to route between the virtual nodes
during a single substrate resource failure. More recently, Shahriar et al., has addressed the 1 + 1
– ProViNE problem in the context of Elastic Optical Networks (EONs) [205]. In contrast to our
solution, they only consider providing protection to the virtual links and allow for degraded
QoS during substrate failure.

Unsplittable Flow and Graph Partitioning

The root of providing dedicated protection for virtual network embedding goes back to com-
binatorial optimization problems such as graph partitioning and multi commodity unsplittable
�ow problem [108]. Relevant literature shows that they are computationally hard to solve.
Finding a constant factor approximation algorithm for these problems for general graphs is still
open [185, 186, 206]. The best known approximation ratio for graph partitioning is not con-
stant, rather it is a poly-logarithm function of the number of nodes [186]. For the unsplittable
�ow problem with known sources and destinations, the �rst constant factor approximation al-
gorithm had (7 + ε) and (8 + ε) approximation ratio for simple line graph and cycle graph,
respectively [185]. Approximation ratio for the same types of graphs has since been improved
to (2+ε) by Anagnostopoulos et al., [184]. Friggstad et al., has proposed a Linear Programming

113

relaxation based algorithm for unsplittable �ows on trees [207]. However, the approximation
ratio for this algorithm is not constant, rather it is a logarithmic function of the number of
nodes. Without known sources for the commodity and the �ow destinations, this problem is
even harder to solve.

4.7 Chapter Summary

In this chapter, we presented solutions for the 1 + 1 – Protected Virtual Ntwork Embedding
(1 + 1 – ProViNE) problem that embeds a VN on an SN while ensuring dedicated backup for
each virtual node and link. We presented DRONE, a suite of solutions for 1 + 1 – ProViNE.
We devised an ILP based optimal solution (OPT-DRONE) as well as a heuristic (FAST-DRONE)
for solving larger problem instances. Trace driven simulations using both real and synthetic
network topologies showed that FAST-DRONE can solve 1 + 1 – ProViNE in a reasonable time
frame with only 14.3% extra resources on average compared to OPT-DRONE. Simulation results
also showed that FAST-DRONE can accept 3.8×more VN requests compared to state-of-the-art
solution [3].

114

Chapter 5

Adaptive Monitoring of Softwarized
Networks

5.1 Introduction

In this chapter, we address a longstanding issue in network monitoring in the context of soft-
warized networks. Namely, striking a balance between network monitoring overhead and the
accuracy of the network view constructed from monitoring data. Constructing an accurate view
of a network in a timely manner leaves substantial resource footprint across all the network-
ing planes. For the control plane, constructing an accurate and real-time global network view
requires frequently querying the data plane for tra�c statistics. A short interval between suc-
cessive queries increases the accuracy and timeliness of the network view, however, increases
control plane bandwidth and message processing overhead at the controller [208]. For the data
plane, �ne-grained and accurate monitoring of the network packets (e.g., through INT) or �ows
(e.g., using TCAMs) is typically achieved at the expense of increased data plane bandwidth [102]
and memory overhead [89], respectively. In this regard, we aim to identify less interesting obser-
vations while collecting monitoring data and adapt the monitoring accordingly. Our objective
is to reduce both the control and data plane overhead without negatively impacting the quality
of collected monitoring data. To this end, we make the following contributions:

• PayLess: A tra�c intensity-aware variable frequency monitoring algorithm for reducing
control plane overhead in OpenFlow network monitoring.

• Evaluation of PayLess on Mininet and comparison with two contemporary approaches,
namely, periodic polling and FlowSense [209].

115

• LINT: An accuracy-adaptive and lightweight in-band network telemetry mechanism that
runs in the data plane and reduces data plane overhead of network telemetry using live
network tra�c.

• Evaluation of LINT using a combination of network emulation and simulation and pub-
licly available real network traces.

The rest of the chapter is organized as follows. We �rst give a brief overview of OpenFlow
network monitoring and INT in Section 5.2. Then, we present PayLess, our contributions in
reducing the control plane overhead for OpenFlow network monitoring in Section 5.3. We also
evaluate PayLess using Mininet network emulation and present the results in Section 5.3. Then,
we describe LINT, our work on reducing the data plane overhead of INT in Section 5.4. Here,
we motivate the problem by demonstrating the impact of performing network telemetry on
live network tra�c using some representative data center and WAN packet traces. Then, we
present an accuracy-adaptive and lightweight INT mechanism followed by its evaluation in the
same section. Finally, we summarize the chapter contributions in Section 5.6.

5.2 Background

5.2.1 OpenFlow Network Monitoring

We �rst brie�y describe how OpenFlow sets up the forwarding path for a new �ow in the
network. OpenFlow identi�es a �ow using the �elds obtained from layer 2, layer 3 and layer 4
headers of a packet as de�ned in the OpenFlow speci�cation. When a switch receives a packet
that belongs to a �ow not matching any rules in the switch’s forwarding table, the switch sends
a PacketIn message to the controller. Upon receiving a PacketIn message from a switch, the
controller computes the path that the packets belonging to the �ow should take leveraging
a global view of the network. Then, the controller installs necessary forwarding rules in the
switches on the �ow’s path by sending a FlowMod message. The controller can specify an idle
timeout for a forwarding rule. This idle timeout refers to an inactivity period, after which a
forwarding rule (and eventually the associated �ow) is evicted from the switch’s �ow table.

After a �ow rule is installed in a switch, there are multiple ways of monitoring the �ow. A
passive approach is piggybacking the �ow table’s counter on a FlowRemoved message. When a
�ow is evicted from a switch (e.g., due to idle timeout expiration), the switch sends a FlowRemoved
message to the controller. This message contains the duration of the �ow as well as the num-
ber of bytes matching this �ow entry in the switch. In addition to this passive approach, the

116

Table 5.1: Example of telemetry data

Telemetry data Description

Switch ID Identi�er associated with a switch
Ingress Port ID Identi�er of the port the packet arrived on
Egress Port ID Identi�er of the packet’s output port
Ingress Timestamp The packet’s time of arrival
Egress Timestamp The time when the packet exits the switch
Hop Latency Time spent by the packet in the device
Egress port TX utilization Utilization of the packet’s output port
Queue occupancy Queue size when the packet was enqueued for output
Queue congestion status Fraction of queue being used

controller can also actively query the switch for collecting statistics about a �ow table entry.
To do so, the controller sends a FlowStatisticsRequest message to the switch for querying
about a speci�c �ow. In response, the switch sends a FlowStatisticsReply message to the
controller which contains the duration and the byte count for the requested �ows.

5.2.2 In-band Network Telemetry (INT)

INT [94] has recently emerged as a means to obtain per-packet real time view of the net-
work. INT is an outstanding e�ort to enable network devices (e.g., software and hardware
switches, Network Interface Cards (NICs)) to embed device internal state such as packet pro-
cessing latency, queue depth and link utilization into each passing packet, consequently, fa-
cilitating a real-time and microscopic view into network tra�c. Such �ne-grained telemetry
capability is enabling new use-cases such as pin-pointing the root cause of congestion and
packet drops through switch queue pro�ling [95] and per-packet �ne-grained feedback to sup-
port low-latency data center transport [96], which are otherwise di�cult to perform with tradi-
tional network monitoring. As of today, INT is supported by commodity hardware such as �xed
function and programmable switches [95, 97], and SmartNICs [98, 99], and is being deployed
in production telecommunications and data center networks [100, 96].

INT enables network devices to add telemetry information directly to the passing packets
with minimal involvement from the control plane. The INT speci�cation makes the following
conceptual classi�cation of network devices:

117

INT
source

INT
sink

INT
transit

INT
transit

To
collector

INT Metadata header Telemetry data Packet

Figure 5.1: INT in action

• INT source: This is the �rst network device on a packet’s path that initiates INT. INT
source can be a software switch, a SmartNIC, an INT capable top-of-rack switch or a
border router.

• INT transit: The network devices on a packet’s path that embed telemetry information
into the packets are called the INT transit nodes.

• INT sink: The last INT capable device on a packet’s path is the INT sink. An INT sink
strips o� all the telemetry information from a packet, constructs an INT report according
to the INT speci�cation [94] and sends the INT report to a collector. The INT sink can be
con�gured to send all or selectively some of the reports to collector based on prede�ned
policies.

The operation of INT is summarized in Figure 5.1. An INT source can be con�gured to
initiate telemetry data collection for each packet or for packets matching a watchlist. The INT
source initiates the telemetry data collection process by encapsulating the packet using one
of the protocols described in the INT speci�cation and inserting an INT metadata header (12
bytes) to a packet. An INT header contains control information such as the maximum number
of INT capable network devices on the packet’s path, the encapsulation protocol to use for INT
and the set of telemetry data that each INT transit device should add to the packet. Then, each
INT transit device adds telemetry data to the packets carrying INT metadata header. Finally, the
INT sink strips the telemetry information from the packets, removes the encapsulation and INT
metadata headers and restores the original packet before sending it to its destination. The sink
can be con�gured to send all reports to a collector or report only a subset based on pre-de�ned
policies (e.g., report only when total path latency exceeds a threshold).

The operation of INT is summarized in Figure 5.1. An INT source can be con�gured to
initiate telemetry data collection for each packet or for packets matching a watchlist. The INT
source initiates telemetry data collection process by by encapsulating the packet using one of

118

the protocols described in the INT speci�cation and inserting an INTmetadata header (12 bytes)
into a packet. INT header contains control information such as the maximum number of INT
capable network devices on the packet’s path, the type of encapsulation protocol to use for
INT and the set of telemetry data items that each INT transit device should add to the packet.
Then, each INT transit device adds telemetry data items to the packets carrying INT metadata
header. Finally, the INT sink strips the telemetry information from the packets, removes the
encapsulation and INT metadata headers and restores the original packet before sending it to its
destination. The sink can be con�gured to send all reports to a collector or report only a subset
based on pre-de�ned policies (e.g., report only when total path latency exceeds a threshold).

The current INT speci�cation de�nes a set of telemetry data (4 bytes each) as presented
in Table 5.1 [94]. However, programmable switches and SmartNICs enabled by the Protocol
Independent Switch Architecture (PISA) [210] can be programmed using the P4 programming
language [24] for computing other functions on the packets and the �ows (e.g., mean packet
size, moving average of queue occupancy), and augment the packets with the result. Telemetry
data collected through INT can be used for answering network monitoring queries that require
per-packet information (e.g., identifying �ows that have a congested switch on its path, com-
puting per-packet end-to-end latency distribution, per-switch queue pro�ling for identifying
root cause of congestion or increased tail latency, among others) or provide feedback to control
and management applications (e.g., congestion control [96]).

5.3 PayLess: Adaptive Monitoring from the Control Plane

In this section, we present PayLess, an adaptive monitoring algorithm that adjusts the frequency
of collecting network statistics from the SDN control plane based on the intensity of network
tra�c. Our goal is to collect accurate and timely statistics from the network without incurring
a substantial overhead. We assume that the controller uses OpenFlow protocol for querying the
switches and collecting statistics from them as described in Section 5.2.1. Although we present
our solution in the context of OpenFlow, however, this is applicable to any scenario where a
logically centralized and remote control plane collects statistics from the data plane. In the
following, we �rst describe the PayLess algorithm in Section 5.3.1. Then, we present a concrete
implementation of the algorithm for a link utilization monitoring use case in Section 5.3.2.
Finally, we present our evaluation of PayLess in Section 5.3.3.

119

5.3.1 The Monitoring Algorithm

A straw man approach for �ow statistics collection is to periodically poll the switches by send-
ing the FlowStatisticsRequest message. A high frequency polling (i.e., short interval be-
tween consecutive queries) will generate a near real-time view of the active �ows. However,
this will generate a substantial number of control messages, consuming network bandwidth be-
tween the data and control plane, and increasing the message processing load on the controller.
To strike a balance between statistics collection accuracy and incurred network overhead, we
propose a variable frequency �ow statistics collection algorithm.

We propose that the SDN controller maintains a table A in the control plane for tracking
the active �ows. When the �rst packet of a �ow arrives at a switch and the switch sends a
PacketIn message, the controller adds a new �ow entry to A along with an initial statistics
collection timeout τ . If the �ow expires from the switch within the next τ time units, the
controller will receive the expired �ow’s statistics in a FlowRemoved message. Otherwise, a
timeout event will be triggered in the controller after τ time units and the controller sends a
FlowStatisticsRequestmessage to the corresponding switch for collecting that �ow’s statis-
tics (e.g., packet and/or byte count). After collecting statistics of a �ow from the switch, the
controller adjusts the timeout τ of that �ow based as follows:

• If that �ow’s statistics (after collecting from the switch) did not signi�cantly change
within the last τ time period (i.e., the di�erence between the previous and current value
is below a threshold ∆1), its statistics collection timeout is multiplied by a factor α. For a
�ow with low packet or byte rate, this process will be repeated until a maximum timeout
value of Tmax is reached.

• If the collected statistics changed signi�cantly since the last query, i.e., the di�erence is
more than ∆2, the statistics collection timeout of that �ow is divided by a factor β. For a
�ow, that is signi�cantly changing, this process may be repeated until a minimum timeout
value of Tmin is reached.

The rationale behind this timeout adjustment is that �ows that signi�cantly changed in
volume (bytes or packets) have higher chances of contributing to triggering interesting network
events (e.g., increase link utilization or become heavy-hitters). Therefore, once we detect such
change, we increase the corresponding �ow’s polling frequency. For a similar reason, we reduce
the polling frequency of the steady �ows since they are not conveying much information at
the time. If their contribution changes then the algorithm will adapt the polling frequency
accordingly.

120

We further optimize the proposed algorithm by batching multiple FlowStatisticsRequest
messages together for �ows with the same timeout. In this way, we manage to reduce the spread
of monitoring tra�c in the network without a�ecting the e�ectiveness of polling with a variable
frequency. We present the pseudo-code of the described algorithm in Algorithm 6.

Algorithm 6: PayLess algorithm
Input: A: Active �ows table at the controller; S : association between statistics

collection timeout and active �ows (indexed by timeout value)
1 function ScheduleFlowStatisticsCollectionEvent e
2 if e is Initialization event then A ← φ, S ← φ, U ← φ
3 if e is a PacketIn event then
4 f ← 〈e.switch, e.switch_port, Tmin, 0〉
5 S[Tmin]← S[Tmin] ∪ {f}
6 else if e is a STATISTICS_COLLECTION_TIMEOUT event then
7 τ ← e.timeout
8 foreach �ow f ∈ S[τ] do send FlowStatisticsRequest to f.switch
9 else if e is a FlowStatisticsReply event for �ow f then
10 δbytes ← e.byte_count− f.byte_count
11 δduration ← e.duration− f.duration
12 checkpoint← GetCurrentT imestamp()
13 U [f.port][f.switch][checkpoint]← 〈δbytes, δduration〉
14 if δbytes < ∆1 then
15 f.τ ← min(αf.τ, Tmax)
16 Move f to S[f.τ]

17 else if δbytes > ∆2 then
18 f.τ ← max(f.τ

β
, Tmin)

19 Move f to S[f.τ]

5.3.2 Implementation: Link Utilization Monitoring

As a concrete use case of our proposed monitoring algorithm, we implement a prototype link
utilization monitoring application on Floodlight SDN controller [211]. The source code of the
modi�ed Floodlight controller is made available at [212]. Furthermore, without loss of gener-
ality, we assume the �ows are identi�ed by their source and destination IP addresses.

We intercept the PacketIn and FlowRemoved messages for keeping track of �ow installa-
tions and removals from the switches, respectively. We also maintain a hash table indexed by

121

the schedule timeout value, where each bucket with timeout τ contains a list of active �ows that
should be polled every τ milliseconds. Each hash table bucket is assigned a worker thread that
wakes up every τ milliseconds and sends a FlowStatisticsRequest message to the switches
corresponding to the �ows in the bucket. The FlowStatisticsReply messages are received
asynchronously by the monitoring module. The latter creates a measurement checkpoint for
each received FlowStatisticsReply message. The contribution of a �ow is calculated by
dividing its di�erential byte count by the time duration from the previous checkpoint. The
monitoring module examines the measurement checkpoints of the link being monitored and
updates the utilization at the previous checkpoints if necessary. The active �ow entries are
moved around the hash table buckets with lower or higher timeout values depending on time-
out adjustment described in Section 5.3.1. Currently, we provide a REST API for obtaining link
utilization information of all links in the network.

5.3.3 Evaluation

We evaluate the link utilization monitoring application built using PayLess algorithm through
network emulation on Mininet [109]. We have also implement two other approaches for link
utilization monitoring, namely, FlowSense [209] and periodic polling. FlowSense proposes
a zero-cost link monitoring algorithm that relies on the �ow statistics piggybacked on the
FlowRemoved messages for constructing a view of link utilization at the SDN control plane.
In contrast, in the periodic polling approach, the controller polls the switches at a constant in-
terval to gather link utilization information. In the following, we �rst describe the experimental
setup followed by the evaluation metrics. Finally, we discuss the evaluation results.

(h1,h8, 10Mbps)

T = 0s T = 60s4 10

(h1,h8,
10Mbps)

12

(h2,h7, 20Mbps)

17 23

(h2,h7, 20Mbps)

28 30

(h2,h7, 50Mbps)

33 35 48

(h2,h7, 50Mbps)

533814 25

(h3,h6, 20Mbps)

(h2,h7, 50Mbps)

Figure 5.2: Tra�c mix for PayLess evaluation

122

Experiment Setup

We deployed a 3-level tree topology on Mininet as shown in Figure 5.3. We used iperf for
generating UDP �ows for a total duration of 100s between the end hosts. The end-points, arrival
and departure time, and goodput of the UDP �ows used are shown in Figure 5.2. We have set
the idle timeout of the �ows in a switch to 5s. We have also deliberately introduced pauses
of di�erent duration between the �ows in the tra�c to experiment with di�erent scenarios.
Pauses less than the idle timeout were placed between the 28th and the 30th second, and also
between the 33 and the 35 seconds to observe how PayLess and Flowsense react to sudden
tra�c spikes. The minimum and maximum polling interval for PayLess were set to 500 ms and
5 s, respectively. For the periodic polling case, the polling interval was set to 1 s. The parameters
∆1 and ∆2 described in Section 5.3.1 were set to 100 MB. Finally, we have set α and β described
in Section 5.3.1 to 2 and 6, respectively. β was set to a higher value for quickly reacting to and
adapting to the changes in tra�c.

Sw-0

Sw-2Sw-1

Sw-4Sw-3 Sw-6Sw-5

h1 h2 h3 h4 h5 h6 h7 h8

Figure 5.3: Network topology for PayLess evaluation

Evaluation Metrics

Utilization Link utilization is measured as the instantaneous throughput obtained from that
link, normalized by the link’s capacity. We report the utilization of the link between switches
Sw-0 and Sw-1 from Figure 5.3. According to the tra�c mix, this link is part of all the �ows and
is the most heavily used. We also experiment with di�erent values of minimum polling interval
(Tmin) and show its e�ect on the trade-o� between accuracy and monitoring overhead.

123

Overhead We compute overhead in terms of the number of FlowStatisticsRequest mes-
sages sent from the controller. We compute the overhead at timeout expiration events when
�ows with the same monitoring timeout are queried together for statistics. When applicable,
we report PayLess’s overhead normalized by the overhead of the periodic polling approach.

Results

0 10 20 30 40 50 60
Time (second)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
or

m
al

iz
ed

 L
in

k
U

ti
liz

at
io

n

FlowSense Periodic Polling PayLess

Figure 5.4: Link utilization measurement

Utilization Figure 5.4 shows the utilization of the Sw0-Sw1 link over the emulation duration,
measured using three di�erent techniques. The baseline scenario, i.e., periodic polling has the
most resemblance with the tra�c pattern used (Figure 5.2). Flowsense fails to capture the tra�c
spikes because of its coarse grained measurement approach. The tra�c pauses less than the idle
timeout value cause Flowsense to report less than the actual utilization. In contrast, PayLess
very closely follows the utilization pattern obtained from periodic polling. Although PayLess
did not succeed to fully capture the �rst spike in the tra�c, the algorithm quickly adjusted to
successfully capture the subsequent tra�c spikes. We also compute the normalized root mean
squared error (NRMSE) (RMSE normalized by the range of utilization values) on a rolling basis
over the course of emulation and found the quartiles to be 4.2%, 13%, and 18.4%, respectively.

124

0 10 20 30 40 50 60
Time (second)

0

5

10

15

20

M
on

it
or

in
g

O
ve

rh
ea

d
(O

pe
nF

lo
w

 m
es

sa
ge

s)
Periodic Polling PayLess

Figure 5.5: Control plane messaging overhead

 0
 0.2
 0.4
 0.6
 0.8

 0 20 40 60 80 100

N
or

m
al

iz
ed

 L
in

k
 U

ti
li

za
ti

on

Time (second)

Tmin = 1000 ms
 0

 0.2
 0.4
 0.6
 0.8

Tmin = 500 ms
 0

 0.2
 0.4
 0.6
 0.8 Tmin = 250 ms

 0
 0.2
 0.4
 0.6
 0.8 Polling every 250 ms

Figure 5.6: E�ect of Tmin on measured link utilization

125

250 500 1000 2000
Tmin (milliseconds)

0

5

10

15
N

or
m

al
iz

ed
 M

es
sa

gi
ng

 O
ve

rh
ea

d
(%

) Overhead Error

0

5

10

15

20

N
or

m
al

iz
ed

 R
M

SE
 (%

)

Figure 5.7: Overhead and measurement error

Overhead Figure 5.5 shows the messaging overhead of the baseline periodic polling approach
and PayLess. Since Flowsense does not actively send FlowStatisticsRequest messages for
statistics collection, it has zero messaging overhead. The periodic polling approach polls all
the active �ows after the �xed timeout expires. This causes a large number of messages to
be injected in the network at each query time. In contrast, PayLess reduces the number of
FlowStatisticsRequestmessages sent (consequently the number of FlowStatisticsReply
messages) by assigning di�erent timeouts to �ows and spreading the messages over time. It is
also evident from Figure 5.5 that PayLess has more query points across the timeline. However,
during each query time, PayLess sends out lesser number of messages to get �ow statistics
compared to that of the periodic polling approach. Over the course of emulation, we found
PayLess to be sending 50% less messages compared to the periodic polling approach.

Although Flowsense has zero measurement overhead, it is signi�cantly less accurate com-
pared to PayLess. In addition, the monitoring tra�c incurred by PayLess is very low, only 6.6
messages per second on average, compared to 13.5 messages per second on average for periodic
polling in our experiment scenario. In summary, the adaptive approach taken by PayLess can
achieve an accuracy close to that of the periodic polling approach, while substantially reduce
the messaging overhead.

126

E�ect of Minimum Polling Frequency Tmin As explained in Algorithm 6, PayLess adapts
the monitoring frequency to changes in tra�c intensity. For a rapidly changing �ow, the pol-
ing interval sharply decreases (i.e., polling frequency sharply increases) and reaches Tmin. In
Figure 5.6, we present the impact of Tmin on monitoring accuracy (we scale the time axis by
duplicating the tra�c pattern in Figure 5.2). As the baseline, we consider the time series of
monitoring data obtained by periodically polling the �ow statistics every 250 ms. Evidently,
monitoring accuracy remains the highest, i.e., the least distortion is observed on the time series
graph, for Tmin = 250 ms. With higher values of Tmin, monitoring accuracy gradually degrades
as can be observed by the distorted shape of the time series. However, monitoring accuracy
comes at the cost of network overhead, which we present in Figure 5.7. This �gure presents the
NRMSE of the obtained monitoring data compared to periodic polling, computed over all the
measurements obtained during emulation. We also show the incurred messaging overhead for
di�erent values of Tmin in Figure 5.7, normalized by that of the periodic polling approach. The
Tmin parameter can be adjusted to trade-o� accuracy with messaging overhead, depending on
the application requirements.

5.4 LINT: Accuracy-adaptive INT from the Data Plane

In this section, we aim at reducing the data plane overhead of INT while reaping its bene�ts
as much as possible. Our objective is to identify and �lter the less interesting observations of
telemetry data directly in the data plane without negatively impacting the quality of collected
telemetry data. We use the quality of results produced by di�erent network monitoring queries
as an indicator of the quality of the telemetry data. To this end, we present LINT, an accuracy-
adaptive and Lightweight INT mechanism that runs in the data plane. Network devices em-
ploying LINT independently decide on selectively reporting telemetry data on a passing pack-
ets, without any explicit coordination and intervention from a control plane. In the following,
we �rst present an empirical study demonstrating the extent of incurred INT data plane over-
head using real network traces. Then, we present our solution in Section 5.4.2 followed by the
evaluation of LINT using real network traces in Section 5.4.3.

5.4.1 Motivation

There are several sources of overhead in INT. First, the INT source adds a 12 byte INT metadata
header to each packet [94]. Then, each INT transit node adds one or more telemetry data items
to the packet according to the instruction embedded in the INT metadata header. The INT
speci�cation reserves 4 bytes for each telemetry data item to be added [94]. Therefore, a switch

127

2 4
Hops

0

20

40

60

80

Pe
r-

pa
ck

et
 o

ve
rh

ea
d

(%
 o

f p
ac

ke
t s

iz
e)

(a) FB-WS [213]

1 2 3 4 5
Hops

0

20

40

60

80

100

120

Pe
r-

pa
ck

et
 o

ve
rh

ea
d

(%
 o

f p
ac

ke
t s

iz
e)

(b) UNIV1 [214]

1 2 3 4 5
Hops

0

20

40

60

80

Pe
r-

pa
ck

et
 o

ve
rh

ea
d

(%
 o

f p
ac

ke
t s

iz
e)

(c) CAIDA (Equinix 2016) [215]

Figure 5.8: Packet size increase due to INT

reporting 3 data items such as its SwitchID, the hop latency and the queue occupancy will add
12 bytes to the passing packets. Since each transit node on a packet’s path adds telemetry data
to the packet, INT overhead increases linearly with the path length of the packet. For instance,
if a packet goes through 5 INT switches (including the INT source) and each switch is adding 3
telemetry data items, then the packet will have 72 bytes added to it when it reaches the INT sink.
For MTU size packets (1500 bytes for Ethernet), the bit overhead can translate to ≈5% increase
in packet size. However, the mean and median packet sizes in most networks are typically much
smaller than the MTU (e.g., median packet size is close to 250 bytes in data centers [214, 213]),
resulting in higher per-packet bit overhead due to INT.

More recently, an empirical study in [102] sheds light on the extent of network goodput
degradation due to INT’s bit overhead in the data plane. This study used ns3 simulation on a
fat-tree data center network [216] with synthetic tra�c generated from a web search workload.
The results show that INT’s bit overhead in the data plane can reduce network goodput by as
much as ≈ 20%. In this section, we present a complementary study to that presented in [102],
demonstrating the extent of per-packet bit overhead on some publicly available real network
traces. Speci�cally, we analyze the traces from Facebook’s production web service cluster (FB-
WS) [213], a campus data center network (UNIV1 data set from [214]) and a wide-area network
tra�c capture from CAIDA (Equinix 2016) [215]. Unlike the UNIV1 and CAIDA traces, the

128

2 4
Hops

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 g
oo

dp
ut

30.0% 50.0% 70.0%

(a) FB-WS

1 2 3 4 5
Hops

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 g
oo

dp
ut

30.0% 50.0% 70.0%

(b) UNIV1

1 2 3 4 5
Hops

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 g
oo

dp
ut

30.0% 50.0% 70.0%

(c) CAIDA

Figure 5.9: Mean normalized goodput of a link by varying the INT hops (i.e., the per-packet
overhead) and link utilization (considering median packet sizes from di�erent network traces)

FB-WS trace does not contain packet captures. Rather, it contains meta-data extracted from
sampled packets (e.g., packet size, source and destination racks and pods) from the end-hosts.

The result of our analysis is presented in Figure 5.8. For this analysis, we assumed collecting
three telemetry data items from each switch on a packet’s path. We varied the number of INT
devices on a packet’s path (i.e., Hops in the �gure) from 1 to 5. To provide some context, in a
fat-tree data center network [216], a path between servers within the same pod and di�erent
pods is 2 and 4 hops, respectively. For wide area networks such as the autonomous system
level graph, the median path length lies between 5 and 6 [217]. Note that for the FB-WS trace,
we leveraged the meta-data describing a packet’s source and destination pod and rack, and
correlated that with Facebook’s data center network architecture [218] to identify the number
of hops. All the clusters in Facebook’s production network exhibited similar behavior, except
for the Hadoop cluster, where almost all the packets were MTU sized. For the other traces,
no such meta-data was made available, hence, we experimented with a range of hop counts.
In Figure 5.8, we plot the distribution of per-packet overhead (the box represents the quartiles
and the bars’ end points represent the extremes) in terms of percent increases from original
packet size.

For the FB-WS, UNIV1, and CAIDA traces, the median packet size increase is ≈40%, ≈40%,
and≈10% compared to the original packet size, respectively, for collecting three telemetry data

129

items on a 4-hop path. On the higher end of the distribution, we observe the 75th percentile
overhead under the same setting to be ≈70%, ≈90%, and ≈30%, respectively, which is signi�-
cant. A direct consequence of packet size increase for transporting telemetry data is reduced
network goodput since lesser fraction of the bits in a packet remain available for transporting
the original network tra�c.

We also conduct another analytical study to measure the impact of INT data plane overhead
on network goodput. For this study, we consider a 10 Gbps network link carrying tra�c similar
to that of the UNIV1 trace [213]. We assume the packet sizes to be uniform and equal to the
median packet size in UNIV1 trace. With this assumption, we compute that link’s goodput
considering di�erent levels of utilization and normalize the result with that from the case when
INT is not used. We can see from the results in Figure 5.9 that even for one hop, INT data plane
overhead can reduce network goodput by ≈20%. Moreover, on a typical pod-to-pod path in a
fat-tree topology (i.e., 4 hops), the goodput can reduce by ≈30% due to packet size increase.
These analytical results motivate the need for mechanisms that can strike a balance between
INT data plane overhead and the quality of collected telemetry data for answering network
monitoring queries.

5.4.2 The LINT Algorithm

We can draw an analogy between INT and sensor networks. INT capable devices are simi-
lar to sensors that measure and report certain metrics from the environment to a collector or
sink. Sensors are typically resource constrained (e.g., limited battery life and limited network
bandwidth), therefore, need to carefully measure and report without abusing the constrained
resources. Albeit not constraint, however, INT needs to work in a way to not incur signif-
icant data plane overhead, thereby, negatively impacting regular network operations. Given
the similarity, we leverage techniques from model-driven data acquisition, a well-studied topic
in the sensor networking literature for reducing data transmission from sensor nodes to the
sinks [219]. We propose LINT, an accuracy-adaptive and lightweight INT mechanism that can
run in programmable data plane. LINT selectively reports telemetry data items on passing pack-
ets by estimating accuracy loss at the collector. LINT can be implemented within the constraints
of commodity programmable PISA devices, and can work without any global coordination and
intervention from a control plane.

In the following, we �rst give a brief overview of model-driven data acquisition that forms
the basis of our solution followed by the description of LINT. We also present LINT-�ow, an
extension of LINT that takes the �ow-context of the packets into consideration. Finally, we
conclude this section with some implementation considerations for LINT.

130

Overview of Model-driven Data Acquisition

In the model-driven data acquisition paradigm, a prediction model is used to determine if sen-
sors should be queried for new data or to �lter the data at the sensor level. The prediction model
is devised for capturing the pattern of the measurements or for correlating measurements of
di�erent metrics. At one extreme of the approach is the one presented in [219], where the
model is solely used for determining if a query engine should query the sensor nodes for mea-
surements or not. The query engine queries a sensor only when it determines that the model
output is not su�cient for maintaining a satisfactory level of accuracy. In contrast, the Span-
ish Inquisition Protocol (SIP) [220] is on the other extreme where a predictor is used to solely
determine if a sensor reading should be transmitted to a sink or can be dropped at the sensor
level. The sensors using SIP use a predictor function to forecast what the sink is expecting next
to receive. When the estimation indicates that the current sensor reading is far o� from what
the sink is expecting, only then the sensors send their readings to the sink. Our problem is close
to the latter, i.e., determining from the data plane if telemetry data items should be reported.
Hence, we will use SIP as a basis for our solution. A comprehensive survey of model-driven
data acquisition techniques can be found in [221].

LINT: Accuracy-adaptive and Lightweight INT

Overview While designing LINT, our goal is to keep it lightweight. In other words, LINT
should be capable of running within the constraint of commodity PISA devices such as no �oat-
ing point operations, limited to no multiplication and no division, no loops or recursion, limited
number of match-action stages and limited match-action entries per-stage, and only one state-
ful register memory read-modify-write per packet processing stage [210, 222]. Furthermore,
executing LINT should not consume substantial amount of device resources and should leave
enough resources for running other applications (e.g., [223, 224, 225, 226]) on a PISA device.

Therefore, to keep LINT simple, we build on SIP presented in [220]. For each packet with
an INT metadata header that arrives at a PISA device, LINT makes the decision of reporting
a telemetry data item according to Algorithm 7 as follows. A device running LINT tries to
estimate the amount of error that can be introduced at the collector if the requested telemetry
data items are not piggybacked on the current packet. For estimating this error, the device
uses a predictor function for each telemetry data item of interest. The predictor function for a
telemetry data item d is used for computing the following:

• dnextD : the predictor function applied on all past observations of d in this device.

• dnextC : the predictor function applied on the observations of d reported to the collector.

131

Algorithm 7: LINT algorithm
Input: p = The current packet; D = metrics to monitor; α = weight parameter of

EWMA; δ = error threshold
1 function LINT(p,D, α, δ)
2 foreach d ∈ D do
3 vald ← current observation of d
4 s← dnextD , t← dnextC

5 dnextD ← αvald + (1− α)s
6 deviation← |dnextD − t|
7 if deviation > δdnextD then
8 p.add_telemetry_observation(d, vald)
9 dnextC ← αvald + (1− α)t

Essentially, the quantity dnextC denotes what the collector will predict about the observation
of d if the current observation is not reported. The device decides to report the currently ob-
served value of d if the di�erence between dnextD and dnextC is within an operator de�ned fraction
δ of dnextD , i.e., |dnextD − dnextC | ≤ δ × dnextD . In other words, when the device estimates that the
prediction error at the collector can go above an acceptable threshold, it reports the current ob-
servation. Otherwise, the device skips reporting the current observation of d. In this way, LINT
adapts telemetry data reporting to estimated error. Note that we can choose the parameter δ to
be in the form 2−m, in this way replace the multiplication operation by a bit shift operation.

Device and collector coordination The value of dnextD is updated whenever a packet arrives
with INT metadata header instruction for reporting d. However, dnextC is updated only when
the device reports the an observation of d piggybacking on a packet. The collector replaces
any missing telemetry data item d not reported by a device on the packet’s path by using the
same predictor function as the device. In this way, both the device and the collector stay in
sync about the extent of the error due to not reporting an observation of a telemetry data item
d. Also, each device independently makes their own decision. Indeed, additional information
about the error estimate can improve the quality of decision making for a device. However,
that would require coordination between the devices and is not a desirable for keeping LINT
lightweight.

132

Choice of predictor function

The concrete realization of LINT requires deciding on a predictor function that can be com-
puted within the constraints of PISA devices. In this regard, we chose from the moving average
family of predictor functions since they have a constant memory footprint, have less num-
ber of parameters to tune and are computationally lightweight. We leave the exploration of
more computationally demanding predictor such as machine learning based prediction [227]
for a future exploration. Speci�cally, we chose to use Exponentially Weighted Moving Average
(EWMA) [228] for LINT. EWMA computes moving average of a data stream by applying expo-
nentially decaying weights to the items in the stream according to the order they appear. As
time progresses, observations further in the past have lesser and lesser impact on EWMA. We
can recursively compute EWMA for a stream of observations x̃ = 〈x0, x1, . . . xt〉 as follows:

S0 = x0

St = αxt + (1− α)St−1 (0 < α < 1)

Here, xt is the observation at the current time t, St is the EWMA at time t computed from xt
andSt−1. The weightα determines how much importance will be given to the past observations.
The multiplication term involving the fraction α can be avoided by choosing α of the form 2−m

(for some integer m > 0) [222]. By doing so, we can rewrite the EWMA computation equation
as follows:

St = St−1 + 2−m(xt − St−1) (m > 0) (5.1)

The multiplication by 2−m (m > 0) in (5.1) can be performed by shifting bits to the right m
times, which is supported by commodity programmable hardware.

LINT-Flow: Flow-context aware LINT

Very often packets from the same network �ow exhibit similar behavior (e.g., often due to pack-
ets of the same �ow belonging to the same application) and are subjected to same operational
policies (e.g., packets from the same �ow sent to the same output queue based on �ow priority).
Therefore, applying the predictor function with a packet’s �ow context in consideration has
the potential to reduce errors. In this regard, we propose LINT-�ow, an extension of LINT that
also takes a packet’s �ow context into consideration while applying the predictor.

In contrast to maintaining a pair of EWMA values for each telemetry data item (i.e., EWMA
of all observations in a device and EWMA of the observations reported to the collector from the
device), we maintain a pair of EWMA values for each observed �ow in a hash table. Without loss

133

Algorithm 8: LINT-�ow algorithm
Input: p = The current packet; D = telemetry data items of interest; FDD = table for

per-�ow EWMA values of all the observations for telemetry data items in D;
FCD = table for per-�ow EWMA values of the previously reported observations
for telemetry data items in D; α = weight parameter of EWMA; δ = error
threshold

1 function LINT(p,D,FDD ,FCD , α, δ)
2 flow_key ← 〈p.src_ip, p.dst_ip, p.nw_proto, p.src_port, p.dst_port〉
3 foreach d ∈ D do
4 vald ← current observation of d
5 s← FDd [flow_key], t← FCd [flow_key]
6 dnextD ← αvald + (1− α)s
7 FDd [flow_key]← dnextD

8 deviation← |dnextD − t|
9 if deviation > δdnextD then
10 p.add_telemetry_observation(d, vald)
11 FCd [flow_key]← αdcurrent + (1− α)t

of generality we assume the network �ows are identi�ed by the �ve tuple (source IP, destination
IP, network protocol, source port, destination port). When a packet with INT metadata header
arrives at a device, LINT-�ow identi�es the hash table entries corresponding to the �ow that
the packet belongs to and updates the EWMA values accordingly. Subsequently, LINT-�ow
considers the di�erence between the EWMA values corresponding to the packet’s �ow while
deciding which telemetry data item(s) should be reported on a packet. The LINT-�ow algorithm
is presented as pseudocode in Algorithm 8.

Implementation Considerations

Realizing LINT on programmable data plane will require changes to the INT protocol message
formats. One key issue that must be addressed is how to communicate to the collector that only
a subset of the originally requested telemetry data items have been reported. One solution is to
embed a bitmap at each INT transit node, representing the telemetry data items that the node
is reporting. To avoid consuming more bits, this bitmap can share unused space in other �elds
such as the SwitchID. Devising a robust solution for this issue requires further investigation
and we leave it for future exploration.

Our ongoing implementation e�ort is mostly simulation-centric and in part is around bmv2,

134

the P4 reference software switch. A full-�edged implementation on a programmable PISA hard-
ware is yet to be done. In this section, we brie�y describe the potential data plane resource
requirements for LINT. For the LINT algorithm, we need two stateful registers per telemetry
data item for maintaining the EWMA of the observations at the device and the EWMA of the
observations sent to the collector. Therefore, a total of 2|D| processing stages and 2|D| register
entries will be needed for dealing with a set telemetry data itemsD. For instance, to selectively
report hop latency and queue occupancy (i.e., D = {hop latency, queue occupancy}), we will
require 4 processing stages and 8 register entries in total. Finally, the parameters α and δ are
not expected to change very frequently, therefore, we can specify them as constants during
pipeline con�guration.

The limited number of memory access per processing stage (typically 1 for known hardware
targets [226]) pose a problem in conditionally updating the EWMA of the observations sent
to the collector. Once this EWMA value is accessed from the corresponding register entry,
the register entry cannot be accessed again in the same or subsequent processing stage. This
limitation can be addressed by recirculating a packet with EWMA update (if needed) within the
switch and update the corresponding register entry while processing the recirculated packet.

For the LINT-�ow algorithm, we will need 4|D| processing stages considering a �ow cache
implementation similar to that in [226]. However, at each processing stage we will require a
hash table that can be implemented using a register array for keeping track of the active set of
�ows and their corresponding EWMA values. Indeed, keeping track of all �ows per processing
stage will be impractical. However, one observation is that most network �ows are short-lived,
especially in data centers [214, 213]. Therefore, the active set of �ows will be changing fast,
which creates the opportunity for applying cache eviction policies to track only a subset of
�ows at a time. We present a simulation to study demonstrating the impact of tracking a limited
number of �ows per processing stage in Section 5.4.3.

5.4.3 Evaluation

We employ a combination of network emulation and simulation to evaluate the e�ectiveness
of LINT and LINT-�ow. Before describing the evaluation results we �rst brie�y describe the
methodology. The goal of our evaluation is to contrast between di�erent aspects of LINT with
that of performing INT for each packet in the network. To accomplish this, we �rst deploy a net-
work consisting of bmv2 switches (P4 software switch) using Mininet. The bmv2 switches run
a P4 program that implements INT (a modi�ed version of the int.p4 implementation provided
with the ONOS SDN controller). After subjecting the deployed network with tra�c through dif-
ferent hosts, we collect the generated INT reports by passively capturing packets on relevant

135

INT sink switch interfaces. These INT reports provide us with the ground truth to compare
against. Then, we simulate LINT and LINT-�ow on the on the captured INT reports to obtain
modi�ed INT reports that LINT and LINT-�ow would generate when deployed in the network.
These generated INT reports are then used for executing several network monitoring queries
and the results are compared against the query results obtained using the ground truth. Since
network emulation does not provide predictable and reproducible timing behavior, we cannot
reproduce the same per-packet latency and queue occupancy in the switches in successive runs
and compare between approaches, hence, our hybrid approach.

In the following, we �rst describe the setup and the evaluation metrics. Then we present our
evaluation results focusing on the following scenarios: (i) evaluation of INT data plane overhead
reduction by using LINT; (ii) evaluation of the impact of selectively reporting telemetry data
items by LINT on the result of network monitoring queries; and (iii) evaluation of LINT-�ow,
including studying the impact of limiting the memory for tracking �ows.

Setup

Topology andWorkload We used a 4-port fat-tree data center network topology (20 switches,
32 links) for our evaluation. Each top-of-the-rack switch in each pod was connected with a traf-
�c generating host. We enabled jumbo Ethernet frames on all the interfaces to avoid packet frag-
mentation during our experiments. For the workload, we used the packet capture from UNIV1
trace [214]. We divided and distributed the capture �les to the Mininet hosts, and replayed
them using the tcpreplay tool. We used ONOS controller for path setup, and for con�guring the
bmv2 switches to embed SwitchID, hop latency and queue occupancy on all packets. Out of the
4 pods in the topology, the hosts from pod 0 and pod 3 sent tra�c to the hosts in pod 1 and pod
2, creating an aggregation tra�c pattern (similar to partition–aggregate or reduce workload).
This pod-to-pod path consists of 4 INT hops.

Network Monitoring Queries We used the INT reports for answering the following ques-
tions about the network:

• (QTail) Tail latency [95]: Which �ows have at least one packet with total hop latency in
the tail latency zone? For our experiment, we use the 95-th percentile of total hop latency
from all collected INT reports as the threshold for tail latency zone.

• (QCongestion) Congested switch identi�cation: Which �ows have a congested switch
on their path? We de�ne a congested switch to be a switch where a packet is experi-
encing more than x% of its path’s total hop latency. We set this threshold to 40% in our
experiments.

136

• (QLatency) Path latency: What is the total hop-latency experienced by each of the pack-
ets?

• (QQueue) Queue pro�ling [95]: Obtain the time series of queue occupancy in a switch
within a given time window.

Parameter Selection We experimented with di�erent values of α (in the form 2−m) and
consistently obtained the best results for α = 2−1, hence, used this value for reporting all the
results. We varied δ between 2−6 and 2−1 in multiples of 2 in the experiments.

Evaluation Metrics

Recall We evaluate queries QTail and QCongestion using recall, i.e., the fraction of identi�ed �ows
in the tail latency zone or having a congested switch, respectively, that are also identi�ed by the
ground truth. For these two queries, we are interested in measuring the fraction of the culprit
�ows that can still be identi�ed by LINT, hence, the choice of using recall.

Normalized Root Mean Squared Error (NRMSE) We evaluate QLatency and QQueue by mea-
suring the deviation from the ground truth using NRMSE. For the metrics of interest in these
queries, we �rst compute the square-root of the mean squared error (RMSE) across all the col-
lected INT reports. Then we normalize the RMSE by the range of values of that metric and
express as percentage.

Overhead reduction We measure overhead reduction by taking the ratio of the number of
observations for telemetry data items that were not reported by LINT (and LINT-�ow) to the
total number of telemetry data item observations collected in the ground truth.

Per-packet overhead Per-packet overhead is computed as the percent increase in packet
size due to embedding telemetry data items.

Data plane Overhead Reduction

Our �rst set of results demonstrate the e�ectiveness of LINT in reducing data plane overhead
compared to regular INT. In Figure 5.10(a), we present the percentage overhead reduction by
LINT compared to regular INT for di�erent values of δ. The parameter δ provides a tuning

137

1
26

1
25

1
24

1
23

1
22

1
2

Delta ()

0

10

20

30

40
O

ve
rh

ea
d

R
ed

uc
ti

on
 (%

)

(a) Overhead reduction compared to per-packet INT

1
26

1
25

1
24

1
23

1
22

1
2

Delta ()

0
20
40
60
80

100

Pe
r-

pa
ck

et
 o

ve
rh

ea
d

(%
 o

f p
ac

ke
t s

iz
e)

LINT INT

(b) Distribution of per-packet overhead

Figure 5.10: Overhead comparison between LINT and INT

knob in our algorithm to increase or decrease overhead while having an opposite e�ect on how
often telemetry data items are reported from the data plane. As we can see, even with a very
small δ (= 2−6), LINT can reduce 20% data plane overhead compared to regular INT. We can
clearly see that a higher δ also increases the gain in overhead reduction. However, this savings
in overhead comes at the cost of degrading the quality of results of the monitoring queries as
we will discuss in Section 5.4.3.

We also present the distribution of per-packet overhead incurred by both LINT and INT
in Figure 5.10(b). The boxes in this �gure represent the quartiles of the distribution while the

138

1
26

1
25

1
24

1
23

1
22

1
2

Delta ()

0.0
0.2
0.4
0.6
0.8
1.0

R
ec

al
l

QTail QCongestion

Figure 5.11: QTail and QCongestion Recall

bars’ endpoints represent the extremes of the distribution. Although LINT’s overhead in the
extreme can be as bad as INT, however, the higher quartiles are signi�cantly smaller for LINT.
For instance, for δ = 2−4, LINT reduces the 75th-percentile overhead of INT from ≈90% to
≈60%.

Query Performance

We demonstrate LINT’s capability of retaining useful information even after deciding not to
report some observations of the telemetry data items. We evaluate QTail and QCongestion using
recall and QLatency and QQueue using NRMSE.

QTail and QCongestion In Figure 5.11, we present the recall of queries QTail and QCongestion com-
puted using the telemetry data obtained through LINT and compared against the ground truth.
As noted earlier, δ is a tuning knob to �nd a trade-o� between overhead and accuracy, which
is also evident in this �gure. Increasing δ causes recall of both of the queries to degrade. For
QTail, the recall starts to degrade slowly and then falls sharply. This is because errors due to
selectively reporting telemetry data items causes the tail latency threshold to diverge further
from that computed using the ground truth.

However, QCongestion can tolerate more noise in the data as long as the ratios of latency values
collected from di�erent switches remain similar. As a result, even after estimating some of the
missing values with EWMA, QCongestion retains a very high recall. For instance, for the highest
δ used in our experiments (δ = 2−1) QCongestion’s recall is still more than 0.95, only a few points

139

1
26

1
25

1
24

1
23

1
22

1
2

Delta ()

0

4

8

12

16

20
N

or
m

al
iz

ed
 R

M
SE

 (%
)

(a) NRMSE of total hop latency

1
26

1
25

1
24

1
23

1
22

1
2

Delta ()

0
1
2
3
4
5
6

N
or

m
al

iz
ed

 R
M

SE
 (%

)

(b) Mean NRMSE of queue occupancy for all switches

Figure 5.12: QLatency and QQueue NRMSE

below its best recall (for δ = 2−6). However, the precision of QCongestion degrades with higher
δ (not shown), increasing the chances of raising false alarms. Comparing between the quality
of the query results and the overhead reduction, we �nd δ = 2−5 to be a good trade-o� in our
experiment setting. With δ = 2−5, we still have a substantial overhead reduction of about 25%
while maintaining a recall above 0.9 for both of the queries.

140

QLatency and QQueue We present the NRMSE of the results of QLatency and QQueue in Figure 5.12.
For QLatency, we compute the NRMSE of the total hop latency for all INT reports collected
through LINT (Figure 5.12(a)). For QQueue, we compute the NRMSE of the stream of queue
occupancy observations for each of the switches collected through LINT and present the mean
along with standard deviation across the switches in Figure 5.12(b). We observe a similar trend
as the previous queries, i.e., a higher δ degrades the quality of the query results. However, for
the previously identi�ed operating point, δ = 2−5, the NRMSE is minute for both QLatency(less
than 2%) and QQueue(less than 0.25%).

LINT-�ow Performance and Trade-o�s

100 200 300 400 500
Number of flows tracked per processing stage

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

QTail QCongestion

Figure 5.13: Impact of number of track �ows per-stage on QTail and QCongestion

We demonstrate the impact of having limited memory on LINT-�ow by �xing the number
of simultaneously tracked �ows per processing stage (between 100 and 500) and employing
least recently used (LRU) eviction policy for the old �ows. We present the results on QTail
and QCongestion recall in Figure 5.13. For these results we set δ to 2−5. Our �rst observation
is that considering �ow-context while selectively reporting telemetry data items substantially
improves the recall for both queries. Although not shown here for space constraints, the same
holds for higher δ as well. However, the number of �ows that can be simultaneously tracked at
each stage had very little impact on the recall. We also observed similar behavior for overhead
reduction. This behavior can be attributed to a combination of factors such as the short-lived
nature of the �ows, the use of LRU policy to exclude the old �ows, and the reduction in IP
address entropy due to rewriting the IP addresses in the trace with the ones of the Mininet
hosts in the network. However, we plan to investigate further to identify the root cause.

141

1
26

1
25

1
24

1
23

1
22

1
2

Delta ()

0

10

20

30
O

ve
rh

ea
d

R
ed

uc
ti

on
 (%

)

Figure 5.14: Overhead reduction by LINT-�ow

Even for LINT-�ow the overhead reduction is dominated by the δ parameter. We present re-
sults on overhead reduction in Figure 5.14 by �xing the number of �ows simultaneously tracked
at each stage to 100 and varying δ. Indeed, considering �ow-context leads to reporting more
telemetry data items for keeping the per-�ow error estimate within bounds, consequently, re-
ducing the gain. However, the overhead reduction still remains within 15% –25% range.

5.5 Related Works

Traditional IP Network Monitoring

There exists a number of �ow based network monitoring tools for traditional IP networks. Net-
Flow [78] from Cisco is the most prevalent one. NetFlow probes are attached to a switch as
special modules. These probes collect either complete or sampled tra�c statistics, and send
them to a central collector [80]. NetFlow version 9 has been adopted to be a common and uni-
versal standard by IP Flow Information Export (IPFIX) IETF working group, so that non-Cisco
devices can send data to NetFlow collectors. NetFlow provides information such as source and
destination IP address, port number, byte count, etc. It supports di�erent technologies like
multi-cast, IPSec, and MPLS. Another �ow sampling method is sFlow [229], which was intro-
duced and maintained by InMon as an open standard. It uses time-based sampling for capturing
tra�c information. Another proprietary �ow sampling method is JFlow [79], developed by the
Juniper Networks. JFlow is quite similar to NetFlow. JFlow provides detailed information about

142

each �ow by applying statistical sampling just like NetFlow and sFlow. Except for sFlow, Net-
Flow and JFlow are both proprietary solutions and incur a large up-front licensing and setup
cost to be deployed in a network. sFlow is less expensive to deploy, but it is not widely adopted
by the vendors.

Softwarized Network Monitoring

The �ow table programming capability of OpenFlow has stimulated a substantial body of re-
search in OpenFlow network monitoring [72, 208, 230, 231]. Thanks to the �ow table pro-
gramming capabilities of OpenFlow, a wide-range of monitoring tasks now can be carried out
only using commodity OpenFlow switches, including, tra�c matrix computation [86, 232, 233],
heavy-hitter or elephant �ow detection [84, 234, 235, 236], latency and packet loss monitor-
ing [237, 238, 239, 240] and network security monitoring [241, 242, 243, 244], among others.
The �ow table programming capabilities of OpenFlow was further extended by the recent ad-
vances in PISA network devices and the P4 programming language. PISA devices and P4 further
extended network programmability, enabling programmable packet parsing and actions, and
stateful operation in the data plane through the use of general purpose registers. Consequently,
a substantial body of work leveraged programmable data plane capabilities for monitoring, es-
pecially for sketch-based tra�c summary computation in the data plane [245]. Sketches are
compact data structures with a �xed memory that can compute an approximate summary of a
data stream [246]. Research in sketch-based network monitoring has been focused on design-
ing and implementing monitoring task speci�c sketches (e.g., for heavy-hitter detection [247],
network anomaly detection [248]) for programmable data planes [249, 250]. In contrast to these
task speci�c approaches, UnivMon proposes a universal sketch data structure that is capable
of computing a wide-range of function over stream of packets [251]. Unlike INT, sketch-based
approaches provide a summary computed from the network tra�c instead of providing per-
packet microscopic visibility into the network.

More recently, INT has emerged as a standard for providing unprecedented visibility into
the network that was not possible with traditional network monitoring technologies. Since the
release of initial speci�cation, many applications of INT for network operations and manage-
ment have been proposed, including for failure detection [252, 253], congestion control [96] and
tracking the data plane rules matched by the �ows [95, 254], among others. Although INT was
initially proposed for IP networks, several extensions of INT have been proposed such as for
wireless networks [255] and multi-layer IP-over-Optical networks [256, 257, 258]. It is worth
mentioning that INT is one of several concurrent e�orts towards performing in-band network
telemetry using live network tra�c (cf. In-situ Operations, Administration, and Maintenance
(IOAM) standardization e�ort within the IETF [259]).

143

Accuracy – overhead Trade-o� in SDN (OpenFlow) Monitoring

A longstanding problem in network monitoring has been addressing the trade-o� between the
overhead of collecting network monitoring data and the accuracy of the network view con-
structed from the data. For OpenFlow networks, the overhead stems from multiple sources,
namely, the control plane resource usage for statistics collection and the load on the con-
troller [208], and the data plane resource usage, i.e., the usage of limited TCAM memory [89]. In
this chapter, we focus on reducing the control plane overhead. A substantial body of work ad-
dressing the data plane resource usage in OpenFlow network monitoring exists in the literature.
Interested readers are referred to some of the notable works in the area presented in [84, 234].

PayLess is inspired by the history of using adaptive sampling techniques in wireless sen-
sor networks [260, 261, 262, 263, 264]. The main focus of these works have been e�ectively
collecting sensor data while minimizing the use of their constrained resources such as battery
and network bandwidth. Adaptive sampling techniques have also been used in the context of
traditional IP networks [265, 266]. However, to the best of our knowledge PayLess is among
one of the �rsts to propose a variable rate adaptive sampling mechanism for reducing control
plane overhead of OpenFlow network monitoring. Several other contemporary works such as
FlowSense [209] and OpenNetMon [267] have also proposed mechanisms for reducing con-
trol plane overhead of SDN monitoring. FlowSense proposed a passive monitoring approach
that relied on the information piggybacked into OpenFlow PacketIn and FlowRemoved mes-
sages. In contrast, OpenNetMon proposed a similar adaptive sampling approach for querying
the switches from the control plane.

A substantial number of works in the research literature have since addressed the control
plane overhead issue in OpenFlow network monitoring [72, 208]. For instance, OpenSample,
one of the early works in SDN monitoring, proposes to leverage the sFlow functionality avail-
able in switches to construct a global network view at the control plane [268]. Instead of relying
on OpenFlow counters, OpenSample con�gures the switch ports to send sampled packets to the
control plane. Sampled packets allow the control plane to compute approximate statistics about
the network �ows, however, the �ow counters in the OpenFlow switches provide an accurate
statistics of that particular �ow. PayLess and many of the subsequent works in the literature
rely on the �ow counters as opposed to on sampled packets. Apart from adjusting the moni-
toring frequency, other works in the literature have also focused on aspects such as adapting
the set of switches and the set of �ows to monitor [269, 270, 271], and adapting the granularity
of �ow rules to monitor [84, 272, 273] for reducing SDN monitoring overhead. For a detailed
survey on these approaches and others, the readers are referred to some of the �eld surveys
available in [72, 208, 231].

144

INT Overhead Reduction

One approach for reducing INT overhead involves using probe packets to collect telemetry data
from INT capable devices instead of piggybacking the same on live network tra�c [274, 275].
Probing the network in this way requires carefully crafting the probe packets and planning the
probe paths for maximum network coverage. Pan et al., addresses this problem by proposing
an optimization based approach in [274]. However, probe packets are often not subjected to
the same treatment as the live network tra�c, therefore, can obtain an incorrect view of the
network.

Several approaches have been proposed to reduce INT overhead for live network tra�c. For
instance, Marques et al., have proposed an o�ine optimization approach for INT in [276]. Their
approach assumes the knowledge of all network �ows and devises an o�ine schedule for what
telemetry data item should be collected by packets of which �ows while considering constraints
such as MTU limitations. An online approach for reducing INT overhead is presented by Tang
et al., in [101]. They implement INT capabilities in Open vSwitch and employ sampling for
deciding which packets should be subjected to INT along the way. A central controller adjusts
the sampling rate at the end hosts and con�gures a watchlist of �ows to monitor. In contrast
to these aforementioned approaches, we propose an online mechanism that works completely
in the data plane without the intervention of a centralized controller. Also, each switch inde-
pendently decides on which telemetry data items to report without any global coordination. In
contrast to the sampling-based approaches such as those presented in [101, 252], we propose
to adapt telemetry data reporting based on error estimates computed within the data plane.

Very recently PINT [102] proposed a randomized algorithm for INT. PINT �xes the bit over-
head allowed on a packet for INT. Then, each network device makes a random decision for
embedding INT data. Since switches randomly decide on embedding INT data, therefore, the
requested telemetry data items can be reported across multiple packets. PINT also proposes
mechanisms for minimizing the number of packets required to collect all required telemetry
data items. PINT is e�ective for executing network monitoring queries that work with ag-
gregate data and when network �ows are not short-lived. In contrast to PINT, we propose
a complimentary approach for supporting network monitoring queries that rely on per-hop
telemetry data and is oblivious to �ow duration.

5.6 Chapter Summary

In this chapter, we have addressed the issue of striking a balance between network monitoring
overhead and accuracy considering both control and data plane overhead. In this context, we

145

�rst introduced PayLess, a tra�c-intensity adaptive variable frequency algorithm for monitor-
ing an SDN from the control plane. We implemented a network link utilization monitoring
use-case using the PayLess algorithm on Floodlight OpenFlow controller. We have evaluated
and compared its performance with that of Flowsense, a passive zero cost link utilization moni-
toring algorithm for OpenFlow networks, and a periodic polling method. We found that PayLess
can achieve higher accuracy of statistics collection than Flowsense. Yet, the incurred messaging
overhead is up to 50% of the overhead in an equivalent periodic poling strategy.

We also presented LINT, an accuracy-adaptive and lightweight INT mechanism. LINT op-
erates entirely in the data plane without any control plane intervention and without any global
co-ordination. We also proposed LINT-�ow, an extension of LINT that takes each packet’s �ow-
context into consideration for selectively reporting telemetry data. We evaluated LINT using
a real data-center tra�c trace. Our evaluation results demonstrate the e�ectiveness of LINT
in reducing data plane overhead by ≈25% while maintaining more than 0.9 recall for network
monitoring queries trying to identify �ows with high latency and �ows with congested switches
in the network. Furthermore, with appropriate parameter settings switch queue occupancy and
switch processing delay computed from telemetry data collected using LINT exhibited less than
0.25% and less than 2% normalized RMSE, respectively. Even across all parameter values used
in the experiments, LINT achieved comparable data plane overhead reduction while incurring
≈5% NRMSE on average.

146

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Telecommunications and data center network operators are increasingly adopting network
softwarization for diversifying their supply chain, enabling on-demand service provisioning,
achieving better control over the network resources, and accelerating the time-to-market for
new services. However, reaping the full bene�ts of softwarization requires resource manage-
ment mechanisms that can take full advantage of the �exibility brought forth by softwarization.
In this context, this dissertation challenged some of the current resource management practices
and addressed the shortcomings in how resource allocation is performed and how softwarized
networks are monitored. Speci�cally, we addressed four resource management challenges in
three key enablers of network softwarization, namely SDN, NFV, and network virtualization.
In the following, we summarize our contributions.

In Chapter 2, we presented the design and implementation of µNF, a system for building
VNFs and SFCs from reusable, independently deployable, and loosely-coupled components en-
abling �ner-grained resource allocation and scaling. Our design goal has been to keep the µNFs
simple and develop the necessary primitives to transparently enable di�erent communication
patterns between them. We demonstrated the e�ectiveness of our system through a DPDK
based prototype implementation and experimental evaluation. We employed a number of tech-
niques such as batched I/O, zero-copy kernel-bypass network I/O, parallelization and cache
pre-fetching for implementing and optimizing the system. The main takeaway is our demon-
stration that disaggregating complex VNFs using the proposed software architecture combined
with the above techniques is indeed a viable and competitive solution for composing VNFs
and SFCs. This is further supported by our experimental evaluation showing that the com-

147

bined engineering e�ort enables �ner-grained resource allocation and scaling while attaining
comparable performance as state-of-the-art monolithic implementations. Key results from our
testbed evaluation are: (i) compared to monolithic VNF based SFCs, µNF-based ones achieve
the same throughput by using less CPU cycles per packet on average (≈17% less CPU cycles
in our experiment setup); (ii) compared to NetBricks [1], state-of-the-art system for realizing
SFCs in a run-to-completion manner, µNF-based SFCs require lesser number of CPU cores for
achieving the same packet processing throughput.

In Chapter 3, we studied the MULti-layer virtual network Embedding (MULE) problem
that embeds a VN on a multi-layer IP-over-OTN, and jointly optimizes the cost of allocating
resources for the VN and the cost of creating new IP links as necessary. We have proposed an
ILP formulation, OPT-MULE, for optimally solving MULE. To the best of our knowledge, this is
the �rst optimal solution to the multi-layer VNE problem. We have also devised a polynomial
time heuristic, FAST-MULE, to address the computational complexity of the optimal solution.
FAST-MULE collapses the multi-layer network into a single-layer network and reduces the joint
computation of virtual node and link embedding, and creation of new IP links and their mapping
to an instance of computing maximum �ow in the collapsed graph. We have shown that our
proposed polynomial time heuristic obtains optimal solution for a special class of VNs, namely,
for star shaped VNs with uniform bandwidth demand. Our empirical evaluation of FAST-MULE
shows that it performs within 1.47× of the optimal solution on average. FAST-MULE also
outperformed state-of-the-art heuristic for the multi-layer VNE problem and allocated ≈66%
less resources while accepting ≈60% more VN requests on average.

In Chapter 4, we studied the 1 + 1 – Protected Virtual Ntwork Embedding (1 + 1 – ProViNE)
problem that embeds a VN on an SN while ensuring dedicated backup for each virtual node
and link, mutually exclusive from their primary embedding. To this end, we have presented
DRONE, a suite of solutions for 1 + 1 – ProViNE. We devised an ILP based optimal solution
(OPT-DRONE) for DRONE, improving over the quadratic linear program solution in state-of-
the-art [3]. We also proposed a polynomial time heuristic algorithm (FAST-DRONE) to tackle
the computational complexity of the optimal solution. Our heuristic is constructed on a restruc-
tured representation of DRONE where we transform DRONE into an instance of jointly per-
forming partitioning of the SN into two parts and VNE within the two partitions. We have eval-
uated our solutions using both real and synthetic network topologies and under both static and
dynamic scenarios. Our evaluation results show that FAST-DRONE can solve 1 + 1 – ProViNE
in a reasonable time frame allocating only 14.3% additional resources on average compared
to OPT-DRONE. Our evaluation results also show that FAST-DRONE can accept 4× more VN
requests compared to state-of-the-art heuristic [3].

Finally, in Chapter 5, we have addressed a longstanding issue in network monitoring, namely,
striking a balance between network monitoring overhead and the accuracy of the network view

148

constructed from monitoring data in the context of softwarized networks. In this context, we
�rst introduced PayLess, a tra�c-intensity adaptive variable frequency algorithm for monitor-
ing an SDN from the control plane. PayLess focuses on reducing the control plane overhead of
softwarized network monitoring without substantially sacri�cing the accuracy. We have imple-
mented a network link utilization monitoring use-case using PayLess on Floodlight OpenFlow
controller. We have evaluated and compared PayLess with FlowSense, a passive link utilization
monitoring algorithm for OpenFlow networks, and a periodic polling method as a baseline. We
found that PayLess can achieve higher accuracy of statistics collection than FlowSense. Yet,
the incurred messaging overhead is up to 50% of the overhead in an equivalent periodic pol-
ing strategy. In the same vein, we also present LINT, an accuracy-adaptive and lightweight
INT mechanism. In contrast to PayLess, LINT focuses on reducing the data plane overhead of
network monitoring. LINT operates entirely in the data plane without any control plane inter-
vention and without any global co-ordination. We also propose LINT-�ow, a variation of LINT
that takes each packet’s �ow-context into consideration for selectively reporting telemetry data.
We evaluate LINT using a real data-center tra�c trace. Our evaluation results demonstrate the
e�ectiveness of LINT in reducing data plane overhead by 25% while maintaining more than 0.9
recall for network monitoring queries trying to identify �ows with high latency and �ows with
congested switches in the network. Furthermore, with appropriate parameter settings switch
queue occupancy and switch processing delay computed from telemetry data collected using
LINT exhibited less than 0.25% and less than 2% normalized RMSE, respectively. Even across
all parameter values used in the experiments, LINT achieved comparable data plane overhead
reduction while incurring ≈5% NRMSE on average.

In this dissertation, we have addressed four key resource management challenges, paving
the way for e�ective resource management in next generation communication networks. We
have employed various methodologies, including, system design and implementation, and op-
timization and algorithm design for proposing novel solutions to these problems. We have also
demonstrated the e�ectiveness and superiority of our proposed solutions through extensive
testbed evaluation, network emulation and simulations using realistic scenarios, and comparing
to state-of-the-art solutions when possible. In the following, we brie�y discuss some interesting
future research directions and some issues that require further investigation.

149

6.2 Future Research Direction

6.2.1 VNF Disaggregation

Granularity of VNF Decomposition In this thesis, we proposed a system for composing
SFCs and VNFs from independently deployable loosely-coupled µNFs. Orthogonal to the sys-
tem design is the identi�cation of the set of µNFs in the �rst place. From our initial survey this
appears to be rather challenging primarily because it requires domain speci�c knowledge. Also
determining the granularity of such tasks is non-trivial. On one hand, most of the academic
works propose low level packet processing functions (e.g., TCP processing functions [127]) as
VNF building blocks. On the other hand, state-of-the-art commercial VNFs [152] are composed
from coarser-grained building blocks. Finer granularity increases re-usability whereas coarser
granularity reduces overhead. The best way to decompose a VNF intoµNFs remains an interesting
research question.

Packet Ownership Transfer When a µNF is �nished processing a packet and transfers it to
another µNF, the ownership of the packet should be transferred to that other µNF as well, i.e.,
the previous µNF should not be able to access the packet content using the previously acquired
packet handler. Virtual switches provide this abstraction by copying packets between ports,
so, the previous copy becomes invalidated. However, this is a di�cult problem to solve using
a shared memory subsystem. In our implementation, µNFs rely on the hugetlbfs to obtain
virtual-to-physical memory translation of the packet addresses. This �le system should be ac-
cessible to the µNFs to ensure that they can always obtain a valid translation. This requirement
also raises the issue that µNFs can always read packet content even after the packet has been
transferred to other µNFs, and consequently, ownership is not transferred. Ownership transfer
between multiple processes has been studied in HPC systems [277]. However, the state-of-
the-art in that area still performs at least one message copy, which in our case would add a
signi�cant latency in packet processing. Ownership transfer in shared-memory multi-process
system with zero-copy remains an open question. As a workaround in our implementation we
created disjoint segments in the huge table area and assign one area to µNFs of the same pro-
cessing graph. This does not solve the problem 100%, however, it provides isolation between
µNFs from di�erent processing graphs.

µNF Orchestration Our contribution in this dissertation primarily focused on developing a
working solution and addressing the engineering challenges for enabling VNF and SFC com-
position from independently deployable µNFs while operating at line rate. However, to get

150

the best out of such architecture we also need to address orchestration problems such as µNF
graph optimization, incorporating parallelization and consolidation of µNF instances, optimal
placement of µNF graph across multiple machines, scaling out µNF instances across multiple
machines, state management between scaled out instances, fault-tolerance, and scheduling of
µNF instances for better resource utilization, among others.

6.2.2 Transport SDN Virtualization

Multi-layer VNE In this dissertation, we have considered a deployment scenario where an
IP network is provisioned on top of a static OTN. One immediate future direction can be con-
sidering a dynamic OTN where more capacity can be provisioned by establishing new light
paths in the underlying DWDM network. In this case, one needs to take technological con-
straints of DWDM networks into account such as wavelength continuity constraints. These
additional physical layer constraints add new dimension to the problem and merits a separate
investigation. Another emerging technology for deploying the physical layer of transport net-
works is Elastic Optical Networks (EONs) [278]. In contrast to DWDM networks, EONs allow
�ner-grained spectrum resource allocation capabilities and the �exibility to tune transmission
parameters such as modulation format, forward error correction overhead, and baud-rate [279].
At the same time, EONs bring additional physical layer constraints such as ensuring both the
continuity and contiguity of spectrum allocation on a light path. Therefore, solving the multi-
layer VNE problem for IP-over-EON multi-layer network comes with its unique challenges and
is an interesting future research direction.

Survivable VNE We believe that the formulation of the 1 + 1 – ProViNE problem will open
up new avenues for future research. One such possibility is to investigate the problem of pro-
viding mixed backup scheme for the VNs. A mixed backup scheme consists of providing both
shared and dedicated backup to the VN elements based on the service provider’s request. A
mixed backup scheme can enable the service providers to have dedicated protection for criti-
cal network paths while shared protection for best e�ort network paths for instance. Another
interesting research direction is to investigate how exactly tra�c will be switched from the
primary to the backup embedding when such dedicated protection is present. In this context,
ensuring the consistency of network state (e.g., routing table, access control lists, rate limiters)
between the primary and the backup instances of the VN elements is of practical importance
and requires further investigation. Furthermore, dedicated protection for VNs can also be con-
sidered for emerging EON enabled transport networks, which brings its unique challenges and
merits further investigation.

151

6.2.3 Softwarized Network Monitoring

Adaptive monitoring from the control plane In PayLess, we resorted to using static
thresholds for tra�c intensity change while deciding on increasing or decreasing the polling
frequency. An issue with using static threshold is that the threshold has to be set and tuned
based on domain expertise. An interesting future research direction is to devise mechanisms
for automatically setting and adjusting the thresholds based on the characteristics of network
tra�c. In this regard, the use of Machine Learning (ML) techniques can be a promising di-
rection to pursue. Furthermore, the use of ML techniques can be leveraged to determine the
polling frequency itself. Another aspect of adaptive monitoring from the control plane is to
also determine the set of switches and the �ows on those switches to be monitored. Although,
this was not the focus of PayLess, a substantial body of literature exists in this area. However,
there is still room in the literature for exploring the use of ML techniques in this context. An
interesting direction along this line would be to explore the use of Graph Neural Networks that
capture the network topology and the tra�c �ow for automatically adapt the set of switches
to monitor, the set of �ows in these switches to monitor, and the frequency of polling statistics
about those �ows.

Adaptive monitoring from the data plane While designing and implementing LINT, we
resorted to using EWMA function for predicting the missing values and estimating error in the
data plane. Indeed, we have seen promising results from using EWMA. However, an interesting
avenue for further investigation is to explore what other predictor functions can be used in the
data plane and evaluate the trade-o�s between their computation complexity and quality of the
results of monitoring queries. If some predictor functions cannot be directly implemented in the
data plane due to the data plane constraints, one would need to resort to approximation tech-
niques such as �xed-point arithmetic and using pre-computed tables in the data plane. Doing
so would also create another trade-o� between data plane resource usage and the accuracy of
approximation, which merits a separate investigation. Another interesting research direction
to pursue is to investigate the use of information theory measures for quality of information
aware adaptive telemetry.

152

References

[1] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker, “Netbricks: Taking the
V out of NFV,” in Proceedings of USENIX OSDI, 2016, pp. 203–216.

[2] J. Zhang, Y. Ji, M. Song, H. Li, R. Gu, Y. Zhao, and J. Zhang, “Dynamic virtual network em-
bedding over multilayer optical networks,” IEEE/OSA Journal of Optical Communications
and Networking, vol. 7, no. 9, pp. 918–927, September 2015.

[3] Z. Ye, A. N. Patel, P. N. Ji, and C. Qiao, “Survivable virtual infrastructure mapping with
dedicated protection in transport software-de�ned networks [invited],” IEEE/OSA Journal
of Optical Communications and Networking, vol. 7, no. 2, pp. A183–A189, February 2015.

[4] “IMT vision – framework and overall objectives of the future development of IMT for
2020 and beyond,” Recommendation ITU-R M.2083-0, 2015.

[5] L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart, G. Palukar, and
W. Snow, “Central o�ce re-architected as a data center,” IEEE Communications Magazine,
vol. 54, no. 10, pp. 96–101, October 2016.

[6] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Dietzel, D. Wagner, M. Wichtl-
huber, J. Tapiador, N. Vallina-Rodriguez, O. Hohlfeld, and G. Smaragdakis, “The lock-
down e�ect: Implications of the covid-19 pandemic on internet tra�c,” in Proceedings of
the ACM Internet Measurement Conference, ser. IMC ’20, 2020, p. 1–18.

[7] A. Lutu, D. Perino, M. Bagnulo, E. Frias-Martinez, and J. Khangosstar, “A characterization
of the covid-19 pandemic impact on a mobile network operator tra�c,” in Proceedings of
the ACM Internet Measurement Conference, ser. IMC ’20, 2020, p. 19–33.

[8] “Cisco visual networking index: Forecast and trends, 2018–2023,” White paper,
Cisco Systems. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-741490.html

153

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

[9] “Network slicing use case requirements,” Reference Document, GSMA Association, June
2018. [Online]. Available: https://www.gsma.com/futurenetworks/wp-content/uploads/
2018/06/Network-Slicing-Use-Case-Requirements-_-FInal-.pdf

[10] X. Foukas, G. Patounas, A. Elmokash�, and M. K. Marina, “Network slicing in 5G: Survey
and challenges,” IEEE Communications Magazine, vol. 55, no. 5, pp. 94–100, 2017.

[11] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey on low latency
towards 5G: Ran, core network and caching solutions,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 4, pp. 3098–3130, Fourth quarter 2018.

[12] D. G. Messerschmitt, “The convergence of telecommunications and computing: what are
the implications today?” Proceedings of the IEEE, vol. 84, no. 8, pp. 1167–1186, August
1996.

[13] T. V. Doan, V. Bajpai, and S. Crawford, “A longitudinal view of net�ix: Content delivery
over ipv6 and content cache deployments,” in Proceedings of IEEE INFOCOM, 2020, pp.
1073–1082.

[14] C. Perera, Y. Qin, J. C. Estrella, S. Rei�-Marganiec, and A. V. Vasilakos, “Fog computing
for sustainable smart cities: A survey,” ACM Computing Surveys, vol. 50, no. 3, Jun. 2017.

[15] M. Calder, X. Fan, Z. Hu, E. Katz-Bassett, J. Heidemann, and R. Govindan, “Mapping the
expansion of google’s serving infrastructure,” in Proceedings of ACM Internet Measure-
ment Conference, 2013, p. 313–326.

[16] M. Ammar, E. Zegura, and Y. Zhao, “A vision for zero-hop networking (zen),” in Proceed-
ings of IEEE ICDCS, 2017, pp. 1765–1770.

[17] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer,
J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat, “B4: Experience with a
globally-deployed software de�ned wan,” in Proceedings of ACM SIGCOMM Conference,
2013, pp. 3–14.

[18] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and R. Wattenhofer,
“Achieving high utilization with software-driven wan,” in Proceedings of ACM SIGCOMM
Conference, 2013, pp. 15–26.

[19] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus, M. Hines, T. Kim,
A. Narayanan, A. Jain, V. Lin, C. Rice, B. Rogan, A. Singh, B. Tanaka, M. Verma, P. Sood,

154

https://www.gsma.com/futurenetworks/wp-content/uploads/2018/06/Network-Slicing-Use-Case-Requirements-_-FInal-.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2018/06/Network-Slicing-Use-Case-Requirements-_-FInal-.pdf

M. Tariq, M. Tierney, D. Trumic, V. Valancius, C. Ying, M. Kallahalla, B. Koley, and A. Vah-
dat, “Taking the edge o� with espresso: Scale, reliability and programmability for global
internet peering,” in Proceedings of ACM SIGCOMM Conference, 2017, pp. 432–445.

[20] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Madhyastha, I. Cunha, J. Quinn,
S. Hasan, P. Lapukhov, and H. Zeng, “Engineering egress with edge fabric: Steering
oceans of content to the world,” in Proceedings of ACM SIGCOMM Conference, 2017, pp.
418–431.

[21] H. Freeman and R. Boutaba, “Networking industry transformation through softwariza-
tion [the president’s page],” IEEE Communications Magazine, vol. 54, no. 8, pp. 4–6, Au-
gust 2016.

[22] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker, “Ethane: Taking
control of the enterprise,” in Proceedings of ACM SIGCOMM Conference, 2007, pp. 1–12.

[23] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “Open�ow: enabling innovation in campus networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, March 2008.

[24] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Ta-
layco, A. Vahdat, G. Varghese, and D. Walker, “P4: Programming protocol-independent
packet processors,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, July 2014.

[25] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and issues,” Internet Requests
for Comments, RFC Editor, RFC 3234, February 2002. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc3234.txt

[26] “Network Functions Virtualisation – Introductory White Paper,” White paper, The
European Telecommunications Standards Institute (ETSI), Oct 2012. [Online]. Available:
https://portal.etsi.org/nfv/nfv_white_paper.pdf

[27] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar, “Making mid-
dleboxes someone else’s problem: network processing as a cloud service,” in Proceedings
of ACM SIGCOMM Conference, 2012, pp. 13–24.

[28] M. Chowdhury and R. Boutaba, “A survey of network virtualization,” Elsevier Computer
Networks, vol. 54, no. 5, pp. 862–876, April 2010.

[29] J. S. Turner and D. E. Taylor, “Diversifying the internet,” in Proceedings of IEEE GLOBE-
COM, 2005, pp. 755–760.

155

http://www.rfc-editor.org/rfc/rfc3234.txt
http://www.rfc-editor.org/rfc/rfc3234.txt
https://portal.etsi.org/nfv/nfv_white_paper.pdf

[30] P. Rost, A. Banchs, I. Berberana, M. Breitbach, M. Doll, H. Droste, C. Mannweiler, M. A.
Puente, K. Samdanis, and B. Sayadi, “Mobile network architecture evolution toward 5G,”
IEEE Communications Magazine, vol. 54, no. 5, pp. 84–91, May 2016.

[31] X. Foukas, G. Patounas, A. Elmokash�, and M. K. Marina, “Network slicing in 5G: Survey
and challenges,” IEEE Communications Magazine, vol. 55, no. 5, pp. 94–100, May 2017.

[32] A. Gupta, R. MacDavid, R. Birkner, M. Canini, N. Feamster, J. Rexford, and L. Vanbever,
“An industrial-scale software de�ned internet exchange point,” in Proceedings of USENIX
NSDI, 2016, pp. 1–14.

[33] “Verizon sdn/nfv reference architecture,” White paper, Verizon, May 2016.

[34] “Flexible network-based, enterprise-class software-de�ned solutions for hy-
brid public/private network connectivity,” White paper, AT&T, June 2018.
[Online]. Available: https://www.business.att.com/content/dam/attbusiness/briefs/
att-sd-wan-solutions-whitepaper.pdf

[35] S. Tse and G. Choudhury, “Real-time tra�c management in AT&T’s sdn-enabled core
ip/optical network,” in Proceedings of OSA Optical Fiber Communication Conference, 2018,
pp. Tu3H–2.

[36] M. S. Bon�m, K. L. Dias, and S. F. Fernandes, “Integrated NFV/SDN architectures: A
systematic literature review,” ACM Computing Surveys, vol. 51, no. 6, pp. 114:1–114:39,
February 2019.

[37] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network slicing and soft-
warization: A survey on principles, enabling technologies, and solutions,” IEEE Commu-
nications Surveys & Tutorials, vol. 20, no. 3, pp. 2429–2453, Third quarter 2018.

[38] “Management concept, architecture and requirements for mobile networks that include
virtualized network functions,” Technical speci�cation 28.500 Version 16.0.0, July 2020.

[39] “Telus network as a service.” [Online]. Available: https://www.telus.com/en/bc/business/
data-networks/naas

[40] “AT&T switched ethernet with network on demand.” [Online]. Available: https:
//smallbusiness.att.com/switchedethernet/

[41] “Bell virtual network service.” [Online]. Available: https://business.bell.ca/shop/
medium-large/internet-private-networks/virtual-network-services

156

https://www.business.att.com/content/dam/attbusiness/briefs/att-sd-wan-solutions-whitepaper.pdf
https://www.business.att.com/content/dam/attbusiness/briefs/att-sd-wan-solutions-whitepaper.pdf
https://www.telus.com/en/bc/business/data-networks/naas
https://www.telus.com/en/bc/business/data-networks/naas
https://smallbusiness.att.com/switchedethernet/
https://smallbusiness.att.com/switchedethernet/
https://business.bell.ca/shop/medium-large/internet-private-networks/virtual-network-services
https://business.bell.ca/shop/medium-large/internet-private-networks/virtual-network-services

[42] Y. Zhang, L. Cui, W. Wang, and Y. Zhang, “A survey on software de�ned networking with
multiple controllers,” Springer Journal of Network and Computer Applications, vol. 103, pp.
101 – 118, February 2018.

[43] “Open platform for NFV (OPNFV).” [Online]. Available: https://www.opnfv.org/

[44] “Open source MANO,” https://osm.etsi.org/. [Online]. Available: https://osm.etsi.org/

[45] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and S. Shenker, “E2:
a framework for NFV applications,” in Proceedings of ACM SOSP, 2015, pp. 121–136.

[46] P. Quinn and T. Nadeau, “Problem statement for service function chaining,”
Internet Requests for Comments, RFC 7498, April 2015. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc7498.txt

[47] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and implementation of a
consolidated middlebox architecture,” in Proceedings of USENIX NSDI, 2012, pp. 323–336.

[48] A. Bremler-Barr, Y. Harchol, and D. Hay, “OpenBox: A software-de�ned framework for
developing, deploying, and managing network functions,” in Proceedings of ACM SIG-
COMM Conference, 2016, pp. 511–524.

[49] S. R. Chowdhury, M. A. Salahuddin, N. Limam, and R. Boutaba, “Re-architecting nfv
ecosystem with microservices: State of the art and research challenges,” IEEE Network,
vol. 33, no. 3, pp. 168–176, May 2019.

[50] R. Roseboro, “Cloud-native nfv architecture for agile service creation & scaling,” White
paper, January 2016.

[51] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G. Rabbani, Q. Zhang,
and M. F. Zhani, “Data center network virtualization: A survey,” IEEE Communications
Surveys & Tutorials, vol. 15, no. 2, pp. 909–928, Second quarter 2013.

[52] “Amazon Virtual Private Cloud,” http://aws.amazon.com/vpc/.

[53] “SDN Architecture for Transport Networks,” White paper, Open Networking Foundation
(ONF), March 2016. [Online]. Available: https://www.opennetworking.org/wp-content/
uploads/2014/10/SDN_Architecture_for_Transport_Networks_TR522.pdf

[54] “Global Transport SDN Prototype Demonstration,” White paper, Open Networking
Foundation (ONF), October 2014. [Online]. Available: https://www.opennetworking.
org/images/stories/downloads/sdn-resources/technical-reports/oif-p0105_031_18.pdf

157

https://www.opnfv.org/
https://osm.etsi.org/
http://www.rfc-editor.org/rfc/rfc7498.txt
http://www.rfc-editor.org/rfc/rfc7498.txt
https://www.opennetworking.org/wp-content/uploads/2014/10/SDN_Architecture_for_Transport_Networks_TR522.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/SDN_Architecture_for_Transport_Networks_TR522.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/oif-p0105_031_18.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/oif-p0105_031_18.pdf

[55] N. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual network embedding with
coordinated node and link mapping,” in Proceedings of IEEE INFOCOM, 2009, pp. 783–791.

[56] A. Razzaq and M. S. Rathore, “An approach towards resource e�cient virtual network
embedding,” in Evolving Internet (INTERNET), 2010 Second International Conference on.
IEEE, 2010, pp. 68–73.

[57] J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. De Meer, “Energy
e�cient virtual network embedding,” IEEE Communications Letters, vol. 16, no. 5, pp.
756–759, May 2012.

[58] S. Ayoubi, C. Assi, K. Shaban, and L. Narayanan, “MINTED: Multicast virtual network
embedding in cloud data centers with delay constraints,” IEEE Transactions on Commu-
nications, vol. 63, no. 4, pp. 1291–1305, April 2015.

[59] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach, “Virtual network
embedding: A survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 4, pp. 1888–
1906, Fourth quarter 2013.

[60] S. Ramamurthy and B. Mukherjee, “Survivable WDM mesh networks. Part I-protection,”
in INFOCOM’99., vol. 2. IEEE, 1999, pp. 744–751.

[61] P. A. Bonenfant, “Optical layer survivability: a comprehensive approach,” in Optical Fiber
Communication Conference and Exhibit, 1998. OFC’98., Technical Digest. IEEE, 1998, pp.
270–271.

[62] X. Zhao, V. Vusirikala, B. Koley, V. Kamalov, and T. Hofmeister, “The prospect of inter-
data-center optical networks,” IEEE Communications Magazine, vol. 51, no. 9, pp. 32–38,
September 2013.

[63] N. Ghani, S. Dixit, and T.-S. Wang, “On IP-over-WDM integration,” IEEE Communications
Magazine, vol. 38, no. 3, pp. 72–84, March 2000.

[64] X. Jin, Y. Li, D. Wei, S. Li, J. Gao, L. Xu, G. Li, W. Xu, and J. Rexford, “Optimizing bulk
transfers with software-de�ned optical wan,” in Proceedings of ACM SIGCOMM Confer-
ence, 2016, pp. 87–100.

[65] A. L. Chiu, G. Choudhury, G. Clapp, R. Doverspike, M. Feuer, J. W. Gannett, J. Jackel, G. T.
Kim, J. G. Klincewicz, T. J. Kwon, G. Li, P. Magill, J. M. Simmons, R. A. Skoog, J. Strand,
A. Von Lehmen, B. J. Wilson, S. L. Woodward, and D. Xu, “Architectures and protocols for
capacity e�cient, highly dynamic and highly resilient core networks [invited],” IEEE/OSA
Journal of Optical Communications and Networking, vol. 4, no. 1, pp. 1–14, 2012.

158

[66] C. Janz, L. Ong, K. Sethuraman, and V. Shukla, “Emerging transport sdn architecture and
use cases,” IEEE Communications Magazine, vol. 54, no. 10, pp. 116–121, October 2016.

[67] “Cisco nLight™technology: A multi-layer control plane architecture
for IP and optical convergence,” White paper, Cisco Systems, 2012.
[Online]. Available: https://www.cisco.com/c/en/us/products/collateral/switches/
catalyst-3750-series-switches/whitepaper_c11-718852.pdf

[68] S. Dahlfort and D. CAVIGLIA, “IP-optical convergence: a complete solution,” Ericsson
Review, May 2014.

[69] M. R. Rahman, I. Aib, and R. Boutaba, “Survivable virtual network embedding,” in IFIP
Networking 2010. Springer, 2010, pp. 40–52.

[70] W. Wang, Y. Lin, Y. Zhao, G. Zhang, J. Zhang, J. Han, H. Chen, B. Hou, Y. Ji, and L. Zong,
“First demonstration of virtual transport network services with multi-layer protection
schemes over �exi-grid optical networks,” IEEE Communications Letters, vol. 20, no. 2,
pp. 260–263, 2016.

[71] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio, and L. Vanbever,
“Blink: Fast connectivity recovery entirely in the data plane,” in USENIX NSDI, 2019, pp.
161–176.

[72] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for tra�c engineering
in sdn-open�ow networks,” Computer Networks, vol. 71, pp. 1–30, October 2014.

[73] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut, V. T.
Lam, F. Matus, R. Pan, N. Yadav et al., “Conga: Distributed congestion-aware load bal-
ancing for datacenters,” in Proceedings of the 2014 ACM conference on SIGCOMM, 2014,
pp. 503–514.

[74] T. De Schepper, S. Latré, and J. Famaey, “Flow management and load balancing in
dynamic heterogeneous lans,” IEEE Transactions on Network and Service Management,
vol. 15, no. 2, pp. 693–706, 2018.

[75] V. Sekar, N. G. Du�eld, O. Spatscheck, J. E. van der Merwe, and H. Zhang, “Lads: Large-
scale automated ddos detection system.” in USENIX ATC, 2006, pp. 171–184.

[76] J. Boite, P. Nardin, F. Rebecchi, M. Bouet, and V. Conan, “Statesec: Stateful monitoring
for ddos protection in software de�ned networks,” in IEEE NetSoft, 2017, pp. 1–9.

159

https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-3750-series-switches/whitepaper_c11-718852.pdf
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-3750-series-switches/whitepaper_c11-718852.pdf

[77] B. Claise and R. Wolter, Network Management: Accounting and Performance Strategies.
Cisco Press, 2006.

[78] “Introduction to cisco ios® net�ow,” White paper, Cisco Systems, May 2012. [On-
line]. Available: https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/
ios-net�ow/prod_white_paper0900aecd80406232.pdf

[79] A. C. Myers, “JFlow: Practical mostly-static information �ow control,” in Proceedings of
ACM SIGPLAN-SIGACT POPL, 1999, pp. 228–241.

[80] C. Systems, “Cisco CNS NetFlow Collection Engine,”
http://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/index.html.

[81] “sFlow sampling rate guideline.” [Online]. Available: https://blog.s�ow.com/2009/06/
sampling-rates.html

[82] P. Phaal, S. Panchen, and N. McKee, “Inmon corporation’s s�ow: A method
for monitoring tra�c in switched and routed networks,” Internet Requests for
Comments, RFC Editor, RFC 3176, September 2001. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc3176.txt

[83] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better net�ow,” ACM SIGCOMM
Computer Communication Review, vol. 34, no. 4, pp. 245–256, 2004.

[84] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “DREAM: dynamic resource allocation
for software-de�ned measurement,” in Proceedings of ACM SIGCOMM Conference, 2015,
pp. 419–430.

[85] Y. Zhang, “An adaptive �ow counting method for anomaly detection in sdn,” in Proceed-
ings of the ninth ACM conference on Emerging networking experiments and technologies.
ACM, 2013, pp. 25–30.

[86] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: tra�c matrix estimator for open-
�ow networks,” in Passive and Active Measurement. Springer, 2010, pp. 201–210.

[87] G. Liu, M. Trotter, Y. Ren, and T. Wood, “Netalytics: Cloud-scale application performance
monitoring with sdn and nfv,” in Proceedings of the 17th International Middleware Confer-
ence, 2016, pp. 1–14.

[88] B. S. Nataraj, S. Khanna, and V. Srinivasan, “Ternary content addressable memory cell,”
November 2000, uS Patent 6,154,384.

160

https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.pdf
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.pdf
https://blog.sflow.com/2009/06/sampling-rates.html
https://blog.sflow.com/2009/06/sampling-rates.html
http://www.rfc-editor.org/rfc/rfc3176.txt
http://www.rfc-editor.org/rfc/rfc3176.txt

[89] M. Moshref, M. Yu, and R. Govindan, “Resource/accuracy tradeo�s in software-de�ned
measurement,” in Proceedings of ACM HotSDN Workshop, 2013, pp. 73–78.

[90] W. Stallings, SNMP, SNMPv2, and CMIP: The practical guide to network management.
Addison-Wesley Longman Publishing Co., 1993.

[91] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and W. Willinger, “Sonata:
Query-driven streaming network telemetry,” in ACM SIGCOMM, 2018, p. 357–371.

[92] F. Paolucci, A. Sgambelluri, F. Cugini, and P. Castoldi, “Network telemetry streaming
services in sdn-based disaggregated optical networks,” Journal of Lightwave Technology,
vol. 36, no. 15, pp. 3142–3149, 2018.

[93] H. Song, F. Qin, P. Martinez-Julia, L. Ciavaglia, and A. Wang, “Network teleme-
try framework,” Working Draft, IETF Secretariat, Internet-Draft draft-ietf-opsawg-
ntf-04, September 2020. [Online]. Available: http://www.ietf.org/internet-drafts/
draft-ietf-opsawg-ntf-04.txt

[94] T. P. A. W. Group, “In-band Network Telemetry (INT) data plane speci�cation,” June
2020. [Online]. Available: https://github.com/p4lang/p4-applications/blob/master/docs/
INT_v2_1.pdf

[95] “Barefoot deep insight™– solution brief,” Barefoot Networks, White pa-
per, 2018. [Online]. Available: https://www.barefootnetworks.com/static/app/pdf/
DI-UG42-003ea-ProdBrief.pdf

[96] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao, M. Zhang, F. Kelly, M. Al-
izadeh, and M. Yu, “HPCC: High precision congestion control,” in ACM SIGCOMM, 2019,
p. 44–58.

[97] “Cisco streaming telemetry.” [Online]. Available: https://developer.cisco.com/docs/
ios-xe/#!streaming-telemetry-quick-start-guide/streaming-telemetry

[98] “Int using netronome agilio cx smartnic.” [Online]. Available: https://www.netronome.
com/blog/in-band-network-telemetry-its-not-rocket-science/

[99] Y. Feng, S. Panda, S. G. Kulkarni, K. K. Ramakrishnan, and N. Du�eld, “A smartnic-
accelerated monitoring platform for in-band network telemetry,” in IEEE LANMAN, 2020,
pp. 1–6.

161

http://www.ietf.org/internet-drafts/draft-ietf-opsawg-ntf-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-opsawg-ntf-04.txt
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://www.barefootnetworks.com/static/app/pdf/DI-UG42-003ea-ProdBrief.pdf
https://www.barefootnetworks.com/static/app/pdf/DI-UG42-003ea-ProdBrief.pdf
https://developer.cisco.com/docs/ios-xe/#!streaming-telemetry-quick-start-guide/streaming-telemetry
https://developer.cisco.com/docs/ios-xe/#!streaming-telemetry-quick-start-guide/streaming-telemetry
https://www.netronome.com/blog/in-band-network-telemetry-its-not-rocket-science/
https://www.netronome.com/blog/in-band-network-telemetry-its-not-rocket-science/

[100] “Making the switch: Disruptive telecom white box collaboration accelerates and opens
the platform, powering unprecedented network performance and insights,” April 2017.
[Online]. Available: https://about.att.com/story/white_box_collaboration.html

[101] S. Tang, D. Li, B. Niu, J. Peng, and Z. Zhu, “Sel-int: A runtime-programmable selective in-
band network telemetry system,” IEEE Transactions on Network and Service Management,
vol. 17, no. 2, pp. 708–721, 2020.

[102] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M. Mitzenmacher, “Pint: Prob-
abilistic in-band network telemetry,” in Proceedings of ACM SIGCOMM Conference, 2020,
p. 662–680.

[103] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Musta�n, and L. Sa-
�na, “Microservices: yesterday, today, and tomorrow,” in Present and Ulterior Software
Engineering. Springer, 2017, pp. 195–216.

[104] “ITU-t recommendation g.709/y.1331: Interfaces for the optical transport network,”
Technical Report, 2016. [Online]. Available: http://www.itu.int/rec/T-REC-G.709/

[105] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in data centers: mea-
surement, analysis, and implications,” in ACM SIGCOMMCCR, vol. 41, no. 4. ACM, 2011,
pp. 350–361.

[106] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, Y. Ganjali, and C. Diot,
“Characterization of failures in an operational ip backbone network,” IEEE/ACM Trans-
actions on Networking (TON), vol. 16, no. 4, pp. 749–762, 2008.

[107] R. Krauthgamer, J. S. Naor, and R. Schwartz, “Partitioning graphs into balanced compo-
nents,” in Proc. of SODA, 2009, pp. 942–949.

[108] Y. Dinitz, N. Garg, and M. X. Goemans, “On the single-source unsplittable �ow problem,”
Combinatorica, vol. 19, no. 1, pp. 17–41, 1999.

[109] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyping for
software-de�ned networks,” in ACM HotNets, 2010, pp. 1–6.

[110] P4 Language Consortium. 2018. Behavioral Model (BMv2), 2018. [Online]. Available:
https://github.com/p4lang/behavioral-model

[111] “NIST De�nition of Microservices, Application Containers and System Virtual
Machines,” NIST Special Publication 800-180 (DRAFT), National Institute of Standards

162

https://about.att.com/story/white_box_collaboration.html
http://www.itu.int/rec/T-REC-G.709/
https://github.com/p4lang/behavioral-model

and Technology (NIST), Feb 2016. [Online]. Available: http://csrc.nist.gov/publications/
drafts/800-180/sp800-180_draft.pdf

[112] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Musta�n, and L. Sa-
�na, “Microservices: yesterday, today, and tomorrow,” in Present and Ulterior Software
Engineering. Springer, 2017, pp. 195–216.

[113] Surendra, M. Tufail, S. Majee, C. Captari, and S. Homma, “Service function chaining
use cases in data centers,” Working Draft, IETF Secretariat, Internet-Draft draft-
ietf-sfc-dc-use-cases-06, February 2017. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-sfc-dc-use-cases-06

[114] “Blue coat® systems proxysg™,” Tech. Report, Blue Coat® Systems, Tech. Report.
[Online]. Available: https://bto.bluecoat.com/sites/default/�les/tech_pubs/SGOS_4.3.1_
Upgrade_Downgrade.pdf

[115] “Barracuda web application �rewall.” [Online]. Available: https://www.barracuda.com/
products/webapplication�rewall

[116] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click modular router,” ACM
SIGOPS Operating Systems Review, vol. 33, no. 5, pp. 217–231, December 1999.

[117] “Network Functions Virtualisation (NFV); Virtual Network Functions Architecture,”
White paper, Dec 2014, accessed: Feb 05, 2017. [Online]. Available: http://www.etsi.org/
deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_NFV-SWA001v010101p.pdf

[118] C. Dumitrescu, “Design patterns for packet processing applications on multi-core intel
architecture processors.” White Paper, December 2008.

[119] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and F. Huici, “ClickOS
and the art of network function virtualization,” in Proceedings of USENIX NSDI, 2014, pp.
459–473.

[120] “Receiver side scaling,” https://www.kernel.org/doc/Documentation/networking/
scaling.txt. [Online]. Available: https://www.kernel.org/doc/Documentation/
networking/scaling.txt

[121] “TOSCA Simple Pro�le for Network Functions Virtualization (NFV) Version 1.0,”
Committee Speci�cation Draft 03, Mar 2014, accessed: Apr 09, 2017. [Online]. Available:
https://docs.oasis-open.org/tosca/tosca-nfv/v1.0/csd03/tosca-nfv-v1.0-csd03.pdf

163

http://csrc.nist.gov/publications/drafts/800-180/sp800-180_draft.pdf
http://csrc.nist.gov/publications/drafts/800-180/sp800-180_draft.pdf
https://tools.ietf.org/html/draft-ietf-sfc-dc-use-cases-06
https://tools.ietf.org/html/draft-ietf-sfc-dc-use-cases-06
https://bto.bluecoat.com/sites/default/files/tech_pubs/SGOS_4.3.1_Upgrade_Downgrade.pdf
https://bto.bluecoat.com/sites/default/files/tech_pubs/SGOS_4.3.1_Upgrade_Downgrade.pdf
https://www.barracuda.com/products/webapplicationfirewall
https://www.barracuda.com/products/webapplicationfirewall
http://www.etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_NFV-SWA001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_NFV-SWA001v010101p.pdf
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://docs.oasis-open.org/tosca/tosca-nfv/v1.0/csd03/tosca-nfv-v1.0-csd03.pdf

[122] R. Penno, P. Quinn, D. Zhou, and J. Li, “Yang data model for service function
chaining,” Working Draft, IETF Secretariat, Internet-Draft draft-penno-sfc-yang-15,
June 2016, http://www.ietf.org/internet-drafts/draft-penno-sfc-yang-15.txt. [Online].
Available: http://www.ietf.org/internet-drafts/draft-penno-sfc-yang-15.txt

[123] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy, “SoftNIC: A software NIC
to augment hardware,” Dept. EECS, Univ. California, Berkeley, Berkeley, CA, USA, Tech.
Rep. UCB/EECS-2015-155, 2015.

[124] “Network Functions Virtualisation (NFV); Management and Orchestration ,” White
paper, Dec 2014, accessed: Apr 09, 2017. [Online]. Available: http://www.etsi.org/
deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf

[125] Y. Zhang, B. Anwer, V. Gopalakrishnan, B. Han, J. Reich, A. Shaikh, and Z.-L. Zhang,
“Parabox: Exploiting parallelism for virtual network functions in service chaining,” in
Proceedings of ACM SOSR, 2017, pp. 143–149.

[126] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “Nfp: Enabling network function parallelism in
nfv,” in Proceedings of ACM SIGCOMM, 2017, pp. 43–56.

[127] G. Liu, Y. Ren, M. Yurchenko, K. Ramakrishnan, and T. Wood, “Microboxes: high perfor-
mance nfv with customizable, asynchronous tcp stacks and dynamic subscriptions,” in
Proceedings of ACM SIGCOMM Conference, 2018, pp. 504–517.

[128] “Intel data path development kit,” http://dpdk.org/. [Online]. Available: http://dpdk.org/

[129] “hugetlbfs kernel documentation.” [Online]. Available: https://www.kernel.org/doc/
Documentation/vm/hugetlbpage.txt

[130] J. C. Mogul and K. Ramakrishnan, “Eliminating receive livelock in an interrupt-driven
kernel,” ACM Transactions on Computer Systems, vol. 15, no. 3, pp. 217–252, 1997.

[131] C. Dovrolis, B. Thayer, and P. Ramanathan, “Hip: hybrid interrupt-polling for the net-
work interface,” ACM SIGOPS Operating Systems Review, vol. 35, no. 4, pp. 50–60, 2001.

[132] J. Hwang, K. Ramakrishnan, and T. Wood, “NetVM: high performance and �exible net-
working using virtualization on commodity platforms,” in Proceedings of USENIX NSDI,
2014, pp. 445–458.

[133] “Kernel address space layout randomization.” [Online]. Available: https://www.kernel.
org/doc/html/v4.13/security/self-protection.html

164

http://www.ietf.org/internet-drafts/draft-penno-sfc-yang-15.txt
http://www.ietf.org/internet-drafts/draft-penno-sfc-yang-15.txt
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://dpdk.org/
http://dpdk.org/
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/html/v4.13/security/self-protection.html
https://www.kernel.org/doc/html/v4.13/security/self-protection.html

[134] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, T. Wood, M. Aru-
maithurai, and X. Fu, “Nfvnice: Dynamic backpressure and scheduling for nfv service
chains,” in Proceedings of ACM SIGCOMM, 2017, pp. 71–84.

[135] “Cfs scheduler,” https://www.kernel.org/doc/Documentation/scheduler/
sched-design-CFS.txt. [Online]. Available: https://www.kernel.org/doc/Documentation/
scheduler/sched-design-CFS.txt

[136] “Real-time group scheduling,” https://www.kernel.org/doc/Documentation/scheduler/
sched-rt-group.txt. [Online]. Available: https://www.kernel.org/doc/Documentation/
scheduler/sched-rt-group.txt

[137] “pktgen-dpdk,” http://git.dpdk.org/apps/pktgen-dpdk/. [Online]. Available: http://git.
dpdk.org/apps/pktgen-dpdk/

[138] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle, “Moongen: A script-
able high-speed packet generator,” in Proceedings of ACM IMC. ACM, 2015, pp. 275–287.

[139] C. Sieber, R. Durner, M. Ehm, W. Kellerer, and P. Sharma, “Towards optimal adaptation
of nfv packet processing to modern cpu memory architectures,” in Proceedings of the 2nd
Workshop on Cloud-Assisted Networking. ACM, 2017, pp. 7–12.

[140] “Netbricks repository,” https://github.com/NetSys/NetBricks. [Online]. Available: https:
//github.com/NetSys/NetBricks

[141] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the social network’s
(datacenter) network,” inACM SIGCOMMComputer Communication Review, vol. 45, no. 4.
ACM, 2015, pp. 123–137.

[142] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet processing,” in Proceedings
of ACM/IEEE ANCS, 2015, pp. 5–16.

[143] W. Sun and R. Ricci, “Fast and �exible: Parallel packet processing with gpus and click,”
in Proceedings of ACM/IEEE ANCS, 2013, pp. 25–36.

[144] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon, “NBA (network balancing act): a high-
performance packet processing framework for heterogeneous processors,” in Proceedings
of ACM EuroSys, 2015, pp. 22:1–22:14.

[145] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng, and E. Chen, “Clicknp:
Highly �exible and high performance network processing with recon�gurable hardware,”
in Proceedings of ACM SIGCOMM Conference, 2016, pp. 1–14.

165

https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt
http://git.dpdk.org/apps/pktgen-dpdk/
http://git.dpdk.org/apps/pktgen-dpdk/
https://github.com/NetSys/NetBricks
https://github.com/NetSys/NetBricks
https://github.com/NetSys/NetBricks

[146] M. Gallo and R. Laufer, “Clicknf: a modular stack for custom network functions,” in Pro-
ceedings of USENIX ATC, 2018, pp. 745–757.

[147] M. A. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park, “mOS: A reusable networking stack
for �ow monitoring middleboxes,” in Proceedings of USENIX NSDI, 2017, pp. 113–129.

[148] B. Anwer, T. Benson, N. Feamster, and D. Levin, “Programming slick network functions,”
in Proceedings of ACM SOSR, 2015, pp. 14:1–14:13.

[149] R. Kawashima and H. Matsuo, “A generic and e�cient local service function chaining
framework for user VM-dedicated micro-VNFs,” IEICE Transactions on Communications,
vol. E100.B, pp. 2017–2026, 2017.

[150] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire, S. Smith,
S. Hand, and J. Crowcroft, “Unikernels: Library operating systems for the cloud,” ACM
SIGPLAN Notices, vol. 48, no. 4, pp. 461–472, April 2013.

[151] P. L. Ventre, P. Lungaroni, G. Siracusano, C. Pisa, F. Schmidt, F. Lombardo, and S. Salsano,
“On the �y orchestration of unikernels: Tuning and performance evaluation of virtual
infrastructure managers,” IEEE Transactions on Cloud Computing, 2018 (Early Access).

[152] “Clearwater IMS,” Project documentation, October 2018. [Online]. Available: https:
//media.readthedocs.org/pdf/clearwater/latest/clearwater.pdf

[153] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba, “Topology-aware
prediction of virtual network function resource requirements,” IEEE Transactions on Net-
work and Service Management, vol. 14, no. 1, pp. 106–120, March 2017.

[154] J. Duan, C. Wu, F. Le, A. X. Liu, and Y. Peng, “Dynamic scaling of virtualized, distributed
service chains: A case study of ims,” IEEE Journal on Selected Areas in Communications,
vol. 35, no. 11, pp. 2501–2511, November 2017.

[155] M. T. Raza, S. Lu, M. Gerla, and X. Li, “Refactoring network functions modules to reduce
latencies and improve fault tolerance in nfv,” IEEE Journal on Selected Areas in Commu-
nications, vol. 36, no. 10, pp. 2275–2287, Oct 2018.

[156] F. Rambach, B. Konrad, L. Dembeck, U. Gebhard, M. Gunkel, M. Quagliotti, L. Serra, and
V. Lopez, “A multilayer cost model for metro/core networks,” IEEE/OSA Journal of Optical
Communications and Networking, vol. 5, no. 3, pp. 210–225, March 2013.

[157] E. Modiano, “Tra�c grooming in wdm networks,” IEEE Communications Magazine,
vol. 39, no. 7, pp. 124–129, July 2001.

166

https://media.readthedocs.org/pdf/clearwater/latest/clearwater.pdf
https://media.readthedocs.org/pdf/clearwater/latest/clearwater.pdf

[158] K. Zhu and B. Mukherjee, “A review of tra�c grooming in wdm optical networks: Ar-
chitectures and challenges,” Optical Networks Magazine, vol. 4, no. 2, pp. 55–64, 2003.

[159] D. BianchiAn, G. Parthasarathy, and Y. Xu, “Otn system and method for supporting
single-�ber bidirectional transmission of supervisory channel light,” September 2015,
wO Application WO2015127780. [Online]. Available: https://patents.google.com/patent/
WO2015127780A1/en

[160] S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Q. Mo, and J. Wang, “Full-
duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km
orbital angular momentum �ber,” Scienti�c reports, vol. 6, p. 38181, 2016.

[161] “Link aggregation control protocol.” [Online]. Available: http://www.ieee802.org/3/ad/
public/mar99/seaman_1_0399.pdf

[162] Y. Dinitz, N. Garg, and M. X. Goemans, “On the single-source unsplittable �ow problem,”
in Proceedings of IEEE FOCS, 1998, pp. 290–299.

[163] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic e�ciency for net-
work �ow problems,” Journal of the ACM, vol. 19, no. 2, pp. 248–264, April 1972.

[164] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies with Rocketfuel,” in
Proceedings of ACM SIGCOMM Conference, 2002, pp. 133–145.

[165] P. Erdös and A. Rényi, “On random graphs, i,” Publicationes Mathematicae (Debrecen),
vol. 6, pp. 290–297, 1959.

[166] M. R. Rahman and R. Boutaba, “SVNE: Survivable virtual network embedding algo-
rithms for network virtualization,” IEEE Transactions onNetwork and ServiceManagement,
vol. 10, no. 2, pp. 105–118, June 2013.

[167] S. R. Chowdhury, R. Ahmed, M. M. Alam Khan, N. Shahriar, R. Boutaba, J. Mitra, and
F. Zeng, “Dedicated protection for survivable virtual network embedding,” IEEE Transac-
tions on Network and Service Management, vol. 13, no. 4, pp. 913–926, December 2016.

[168] M. Savi, C. Rozic, C. Matrakidis, D. Klonidis, D. Siracusa, and I. Tomkos, “Bene�ts of
multi-layer application-aware resource allocation and optimization,” in Proc. of IEEE Eu-
CNC, 2017, pp. 1–5.

[169] Y. Li, H. Li, Y. Liu, and Y. Ji, “Multi-layer service function chaining scheduling based on
auxiliary graph in ip over optical network,” in Proc. of SPIE, 2017, pp. 10 464 – 10 464 – 10.

167

https://patents.google.com/patent/WO2015127780A1/en
https://patents.google.com/patent/WO2015127780A1/en
http://www.ieee802.org/3/ad/public/mar99/seaman_1_0399.pdf
http://www.ieee802.org/3/ad/public/mar99/seaman_1_0399.pdf

[170] R. Nejabati, E. Escalona, S. Peng, and D. Simeonidou, “Optical network virtualization,” in
Proceedings of Optical Network Design and Modeling, Feb 2011, pp. 1–5.

[171] Ć. Rožić, D. Klonidis, and I. Tomkos, “A survey of multi-layer network optimization,” in
Proceedings of Optical Network Design and Modeling, 2016, pp. 1–6.

[172] M. Duelli, E. Weber, and M. Menth, “A generic algorithm for capex-aware multi-layer
network design,” in Proceedings of ITG Symposium on Photonic Networks, 2009, pp. 1–8.

[173] I. Katib and D. Medhi, “IP/MPLS-over-OTN-over-DWDM multilayer networks: an inte-
grated three-layer capacity optimization model, a heuristic, and a study,” IEEE Transac-
tions on Network and Service Management, vol. 9, no. 3, pp. 240–253, September 2012.

[174] C. Govardan, S. R. DS, C. Jagadeesh, R. Gowrishankar, P. Beherey, B. S. Kishorez et al.,
“A heuristic algorithm for network optimization of otn over dwdm network,” in Proc. of
IEEE ANTS, 2015, pp. 1–6.

[175] E. Palkopoulou, D. A. Schupke, and T. Bauschert, “Energy e�ciency and capex minimiza-
tion for backbone network planning: Is there a tradeo�?” in Proc. of IEEE ANTS, 2009,
pp. 1–3.

[176] H. Zhang and A. Durresi, “Di�erentiated multi-layer survivability in IP/WDM networks,”
in Proceedings of IEEE/IFIP NOMS, 2002, pp. 681–694.

[177] W. Bigos, B. Cousin, S. Gosselin, M. Le Foll, and H. Nakajima, “Survivable MPLS over
optical transport networks: Cost and resource usage analysis,” IEEE Journal on Selected
Areas in Communications, vol. 25, no. 5, pp. 949–962, June 2007.

[178] W. Lu, X. Yin, X. Cheng, and Z. Zhu, “On cost-e�cient integrated multilayer protection
planning in ip-over-eons,” Journal of Lightwave Technology, vol. 36, no. 10, pp. 2037–2048,
2018.

[179] A. Alashaikh, D. Tipper, and T. Gomes, “Supporting di�erentiated resilience classes in
multilayer networks,” in Proceedings of IEEE DRCN, 2016, pp. 31–38.

[180] M. Tornatore, D. Lucerna, B. Mukherjee, and A. Pattavina, “Multilayer protection with
availability guarantees in optical wdm networks,” Journal of Network and Systems Man-
agement, vol. 20, no. 1, pp. 34–55, March 2012.

[181] O. Gerstel, C. Fils�ls, T. Telkamp, M. Gunkel, M. Horne�er, V. Lopez, and A. Mayoral,
“Multi-layer capacity planning for ip-optical networks,” IEEE Communications Magazine,
vol. 52, no. 1, pp. 44–51, January 2014.

168

[182] P. Demeester, M. Gryseels, A. Autenrieth, C. Brianza, L. Castagna, G. Signorelli,
R. Clemenfe, M. Ravera, A. Jajszczyk, D. Janukowicz, K. Van Doorselaere, and Y. Harada,
“Resilience in multilayer networks,” IEEE Communications Magazine, vol. 37, no. 8, pp.
70–76, August 1999.

[183] M. Melo, J. Carapinha, S. Sargento, L. Torres, P. N. Tran, U. Killat, and A. Timm-Giel, “Vir-
tual network mapping–an optimization problem,” in Mobile Networks and Management.
Springer, 2012, pp. 187–200.

[184] A. Anagnostopoulos, F. Grandoni, S. Leonardi, and A. Wiese, “A mazing 2+ ε approxima-
tion for unsplittable �ow on a path,” in Proceedings of ACM-SIAM SODA 2014. SIAM,
2014, pp. 26–41.

[185] P. Bonsma, J. Schulz, and A. Wiese, “A constant factor approximation algorithm for un-
splittable �ow on paths,” in Proceedings of IEEE FOCS 2011, 2011, pp. 47–56.

[186] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, “Recent advances in
graph partitioning,” in Algorithm Engineering: Selected Results and Surveys, LNCS 9220.
Springer-Verlag, 2015 (in press).

[187] Y. Zhu and M. H. Ammar, “Algorithms for assigning substrate network resources to vir-
tual network components.” in INFOCOM, vol. 1200, no. 2006, 2006, pp. 1–12.

[188] M. R. Rahman and R. Boutaba, “SVNE: Survivable Virtual Network Embedding Algo-
rithms for Network Virtualization,” Network and Service Management, IEEE Transactions
on, vol. 10, no. 2, pp. 105–118, 2013.

[189] J. W. Suurballe, “Disjoint paths in a network,” Networks, vol. 4, no. 2, pp. 125–145, 1974.

[190] M. Kurant and P. Thiran, “Survivable mapping algorithm by ring trimming (smart) for
large ip-over-wdm networks,” in IEEE BroadNets, 2004, pp. 44–53.

[191] Z. Zhou, T. Lin, K. Thulasiraman, G. Xue, and S. Sahni, “Novel survivable logical topology
routing in ip-over-wdm networks by logical protecting spanning tree set,” in IEEE ICUMT,
2012, pp. 650–656.

[192] C. Liu and L. Ruan, “A new survivable mapping problem in ip-over-wdm networks,” Se-
lected Areas in Communications, IEEE Journal on, vol. 25, no. 3, pp. 25–34, 2007.

[193] M. Kurant and P. Thiran, “Survivable routing of mesh topologies in ip-over-wdm net-
works by recursive graph contraction,” Selected Areas in Communications, IEEE Journal
on, vol. 25, no. 5, pp. 922–933, 2007.

169

[194] H. Yu, C. Qiao, V. Anand, X. Liu, H. Di, and G. Sun, “Survivable virtual infrastructure
mapping in a federated computing and networking system under single regional failures,”
in Proc. of IEEE GLOBECOM, 2010, pp. 1–6.

[195] H. Yu, V. Anand, C. Qiao, and G. Sun, “Cost e�cient design of survivable virtual infras-
tructure to recover from facility node failures,” in Proc. of IEEE ICC, 2011, pp. 1–6.

[196] X. Liu, Y. Wang, A. Xiao, X. Qiu, and W. Li, “Disaster-prediction based virtual network
mapping against multiple regional failures,” in Proceedings of IEEE/IFIP IM 2015. IEEE,
2015, pp. 371–378.

[197] M. Pourvali, K. Liang, F. Gu, H. Bai, K. Shaban, S. Khan, and N. Ghani, “Progressive
recovery for network virtualization after large-scale disasters,” in ICNC 2016, 2016.

[198] B. Guo, C. Qiao, J. Wang, H. Yu, Y. Zuo, J. Li, Z. Chen, and Y. He, “Survivable virtual
network design and embedding to survive a facility node failure,” Lightwave Technology,
Journal of, vol. 32, no. 3, pp. 483–493, 2014.

[199] T. Guo, N. Wang, K. Moessner, and R. Tafazolli, “Shared backup network provision for
virtual network embedding,” in IEEE International Conference on Communications (ICC).
IEEE, 2011, pp. 1–5.

[200] M. M. A. Khan, N. Shahriar, R. Ahmed, and R. Boutaba, “SiMPLE: Survivability in multi-
path link embedding,” in ACM/IEEE/IFIP CNSM 2015, Barcelona, Spain, November 9-13,
2015, 2015, pp. 210–218.

[201] M. G. Rabbani, M. F. Zhani, and R. Boutaba, “On achieving high survivability in virtual-
ized data centers,” IEICE Transactions on Communications, vol. 97, no. 1, pp. 10–18, 2014.

[202] Q. Zhang, M. F. Zhani, M. Jabri, and R. Boutaba, “Venice: Reliable virtual data center
embedding in clouds,” in Proc. of IEEE INFOCOM 2014, Toronto, Canada. IEEE, 2014, pp.
289–297.

[203] H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-aware survivable virtual network
embedding in optical datacenter networks,” Optical Communications and Networking,
IEEE/OSA Journal of, vol. 7, no. 12, pp. 1160–1171, 2015.

[204] H. Jiang, L. Gong, and Z. Zuqing, “E�cient joint approaches for location-constrained
survivable virtual network embedding,” in IEEE GLOBECOM, 2014, pp. 1810–1815.

170

[205] N. Shahriar, S. Taeb, S. R. Chowdhury, M. Zul�qar, M. Tornatore, R. Boutaba, J. Mitra, and
M. Hemmati, “Reliable slicing of 5g transport networks with bandwidth squeezing and
multi-path provisioning,” IEEE Transactions on Network and Service Management, vol. 17,
no. 3, pp. 1418–1431, 2020.

[206] M. Skutella, “Approximating the Single Source Unsplittable Min-cost Flow Problem,”
Mathematical Programming, vol. 91, no. 3, pp. 493–514, 2002.

[207] Z. Friggstad and Z. Gao, “On linear programming relaxations for unsplittable �ow
in trees,” in LIPIcs-Leibniz International Proceedings in Informatics, vol. 40. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[208] A. Yassine, H. Rahimi, and S. Shirmohammadi, “Software de�ned network tra�c mea-
surement: Current trends and challenges,” IEEE Instrumentation & Measurement Maga-
zine, vol. 18, no. 2, pp. 42–50, April 2015.

[209] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Madhyastha, “FlowSense:
Monitoring Network Utilization with Zero Measurement Cost,” in Passive andActiveMea-
surement. Springer, 2013, pp. 31–41.

[210] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica, and
M. Horowitz, “Forwarding metamorphosis: Fast programmable match-action processing
in hardware for sdn,” in Proceedings of ACM SIGCOMM Conference, 2013, pp. 99–110.

[211] “Floodlight open�ow controller,” http://www.project�oodlight.org/�oodlight/.

[212] “Payless github repository.” [Online]. Available: https://github.com/srcvirus/�oodlight/
tree/master/src/main/java/net/�oodlightcontroller/netmonitor

[213] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the social network’s
(datacenter) network,” in Proceedings of ACM SIGCOMM Conference, 2015, p. 123–137.

[214] T. Benson, A. Akella, and D. A. Maltz, “Network tra�c characteristics of data centers in
the wild,” in Proceedings of the ACM Internet Measurement Conference, 2010, p. 267–280.

[215] “The CAIDA UCSD anonymized internet traces - 2016 - 2016/04/06 13:19:00 utc.”
[Online]. Available: https://www.caida.org/data/passive/passive_dataset.xml

[216] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network
architecture,” in ACM SIGCOMM, 2008, p. 63–74.

171

https://github.com/srcvirus/floodlight/tree/master/src/main/java/net/floodlightcontroller/netmonitor
https://github.com/srcvirus/floodlight/tree/master/src/main/java/net/floodlightcontroller/netmonitor
https://www.caida.org/data/passive/passive_dataset.xml

[217] K. Bakhshaliyev, M. A. Canbaz, and M. H. Gunes, “Investigating characteristics of internet
paths,” ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 4, no. 3, September 2019.

[218] “Introducing data center fabric, the next-generation face-
book data center network,” November 2014. [On-
line]. Available: https://engineering.fb.com/production-engineering/
introducing-data-center-fabric-the-next-generation-facebook-data-center-network/

[219] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and W. Hong, “Model-driven
data acquisition in sensor networks,” in VLDB, 2004, pp. 588–599.

[220] D. Goldsmith and J. Brusey, “The spanish inquisition protocol—model based transmission
reduction for wireless sensor networks,” in IEEE SENSORS, 2010, pp. 2043–2048.

[221] G. M. Dias, B. Bellalta, and S. Oechsner, “A survey about prediction-based data reduction
in wireless sensor networks,” ACM Comput. Surv., vol. 49, no. 3, Nov. 2016.

[222] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy, J. Nelson, and S. Peter,
“Evaluating the power of �exible packet processing for network resource allocation,” in
USENIX NSDI, 2017, pp. 67–82.

[223] A. C. Lapolli, J. Adilson Marques, and L. P. Gaspary, “O�oading real-time ddos attack
detection to programmable data planes,” in IFIP/IEEE IM, 2019, pp. 19–27.

[224] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica, “Netcache: Bal-
ancing key-value stores with fast in-network caching,” in ACM SOSP, 2017, p. 121–136.

[225] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and J. Rexford, “Heavy-
hitter detection entirely in the data plane,” in ACM SOSR, 2017, pp. 164–176.

[226] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Turbo�ow: Information rich �ow record
generation on commodity switches,” in Proceedings of ACM EuroSys. ACM, 2018, pp.
11:1–11:16.

[227] Z. Xiong and N. Zilberman, “Do switches dream of machine learning? toward in-network
classi�cation,” in ACM HotNets, 2019, p. 25–33.

[228] J. S. Hunter, “The exponentially weighted moving average,” Journal of quality technology,
vol. 18, no. 4, pp. 203–210, 1986.

[229] “Tra�c Monitoring using sFlow,” http://www.s�ow.org/.

172

https://engineering.fb.com/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/

[230] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig,
“Software-de�ned networking: A comprehensive survey,” Proceedings of the IEEE, vol.
103, no. 1, pp. 14–76, January 2015.

[231] P. Tsai, C. Tsai, C. Hsu, and C. Yang, “Network monitoring in software-de�ned network-
ing: A review,” IEEE Systems Journal, vol. 12, no. 4, pp. 3958–3969, December 2018.

[232] Y. Gong, X. Wang, M. Malboubi, S. Wang, S. Xu, and C.-N. Chuah, “Towards accurate
online tra�c matrix estimation in software-de�ned networks,” in Proceedings of the 1st
ACM SIGCOMM Symposium on Software De�ned Networking Research, 2015.

[233] Y. Tian, W. Chen, and C. Lea, “An sdn-based tra�c matrix estimation framework,” IEEE
Transactions on Network and Service Management, vol. 15, no. 4, pp. 1435–1445, 2018.

[234] L. Jose, M. Yu, and J. Rexford, “Online measurement of large tra�c aggregates on com-
modity switches,” in Proc. of the USENIX HotICE workshop, 2011.

[235] L. Yang, B. Ng, and W. K. G. Seah, “Heavy hitter detection and identi�cation in software
de�ned networking,” in 2016 25th International Conference on Computer Communication
and Networks (ICCCN), 2016, pp. 1–10.

[236] Y. Afek, A. Bremler-Barr, S. Landau Feibish, and L. Schi�, “Detecting heavy �ows in the
sdn match and action model,” Computer Networks, vol. 136, pp. 1 – 12, 2018.

[237] K. Phemius and M. Bouet, “Monitoring latency with open�ow,” in Proceedings of the 9th
International Conference on Network and Service Management (CNSM 2013), 2013, pp. 122–
125.

[238] A. Atary and A. Bremler-Barr, “E�cient round-trip time monitoring in open�ow net-
works,” in IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Com-
puter Communications, 2016, pp. 1–9.

[239] C. Yu, C. Lumezanu, A. Sharma, Q. Xu, G. Jiang, and H. Madhyastha, “Software-de�ned
latency monitoring in data center networks,” in PAM, 2015, pp. 360–372.

[240] X. Zhang, Y. Wang, J. Zhang, L. Wang, and Y. Zhao, “Ringlm: A link-level packet loss
monitoring solution for software-de�ned networks,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 8, pp. 1703–1720, 2019.

[241] S. Shin and G. Gu, “Cloudwatcher: Network security monitoring using open�ow in dy-
namic cloud networks (or: How to provide security monitoring as a service in clouds?),”

173

in 2012 20th IEEE international conference on network protocols (ICNP). IEEE, 2012, pp.
1–6.

[242] S. Shirali-Shahreza and Y. Ganjali, “E�cient implementation of security applications
in open�ow controller with �exam,” in 2013 IEEE 21st Annual Symposium on High-
Performance Interconnects, 2013, pp. 49–54.

[243] S. Lee, J. Kim, S. Shin, P. Porras, and V. Yegneswaran, “Athena: A framework for scalable
anomaly detection in software-de�ned networks,” in 2017 47th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN), 2017, pp. 249–260.

[244] J. Zheng, Q. Li, G. Gu, J. Cao, D. K. Y. Yau, and J. Wu, “Realtime ddos defense using cots
sdn switches via adaptive correlation analysis,” IEEE Transactions on Information Forensics
and Security, vol. 13, no. 7, pp. 1838–1853, 2018.

[245] M. Yu, L. Jose, and R. Miao, “Software de�ned tra�c measurement with opensketch,” in
Proceedings of USENIX NSDI, 2013, pp. 29–42.

[246] G. Cormode and S. Muthukrishnan, “An improved data stream summary: the count-min
sketch and its applications,” Journal of Algorithms, vol. 55, no. 1, pp. 58–75, 2005.

[247] L. Tang, Q. Huang, and P. P. Lee, “Mv-sketch: A fast and compact invertible sketch for
heavy �ow detection in network data streams,” in IEEE INFOCOM, 2019.

[248] Q. Huang and P. P. C. Lee, “Ld-sketch: A distributed sketching design for accurate and
scalable anomaly detection in network data streams,” in IEEE INFOCOM 2014 - IEEE Con-
ference on Computer Communications, April 2014, pp. 1420–1428.

[249] Q. Huang, X. Jin, P. P. Lee, R. Li, L. Tang, Y.-C. Chen, and G. Zhang, “SketchVisor: Robust
network measurement for software packet processing,” in Proceedings of ACM SIGCOMM
Conference, 2017, pp. 113–126.

[250] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li, and S. Uhlig, “Elas-
tic sketch: Adaptive and fast network-wide measurements,” in Proceedings of ACM SIG-
COMM Conference, 2018, pp. 561–575.

[251] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One sketch to rule them
all: Rethinking network �ow monitoring with UnivMon,” in Proceedings of ACM SIG-
COMM Conference, 2016, pp. 101–114.

174

[252] T. Pan, E. Song, C. Jia, W. Cao, T. Huang, and B. Liu, “Lightweight network-wide telemetry
without explicitly using probe packets,” in IEEE INFOCOM Workshops, 2020, pp. 1354–
1355.

[253] C. Jia, T. Pan, Z. Bian, X. Lin, E. Song, C. Xu, T. Huang, and Y. Liu, “Rapid detection and
localization of gray failures in data centers via in-band network telemetry,” in Proceedings
of IEEE/IFIP NOMS, 2020, pp. 1–9.

[254] S. Wang, Y. Chen, J. Li, H. Hu, J. Tsai, and Y. Lin, “A bandwidth-e�cient int system for
tracking the rules matched by the packets of a �ow,” in IEEE GLOBECOM, 2019, pp. 1–6.

[255] P. Janakaraj, P. Pinyoanuntapong, P. Wang, and M. Lee, “Towards in-band telemetry for
self driving wireless networks,” in IEEE INFOCOM Workshops 2020, 2020, pp. 766–773.

[256] M. Anand, R. Subrahmaniam, and R. Valiveti, “Point: An intent-driven framework for
integrated packet-optical in-band network telemetry,” in IEEE ICC, 2018, pp. 1–6.

[257] S. Tang, J. Kong, B. Niu, and Z. Zhu, “Programmable multilayer int: An enabler for ai-
assisted network automation,” IEEE Communications Magazine, vol. 58, no. 1, pp. 26–32,
2020.

[258] B. Niu, J. Kong, S. Tang, Y. Li, and Z. Zhu, “Visualize your ip-over-optical network in
realtime: A p4-based �exible multilayer in-band network telemetry (ml-int) system,” IEEE
Access, vol. 7, pp. 82 413–82 423, 2019.

[259] F. Brockners, S. Bhandari, and T. Mizrahi, “Data �elds for in-situ oam,” Working
Draft, IETF Secretariat, Internet-Draft draft-ietf-ippm-ioam-data-10, July 2020. [Online].
Available: http://www.ietf.org/internet-drafts/draft-ietf-ippm-ioam-data-10.txt

[260] A. Jain and E. Y. Chang, “Adaptive sampling for sensor networks,” in Proceeedings of ACM
VLDB workshop on Data management for sensor networks, 2004, pp. 10–16.

[261] B. Gedik, L. Liu, and P. Yu, “Asap: An adaptive sampling approach to data collection in
sensor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 12,
pp. 1766–1783, December 2007.

[262] J. Kho, A. Rogers, and N. R. Jennings, “Decentralized control of adaptive sampling in
wireless sensor networks,” ACM Transactions on Sensor Networks, vol. 5, no. 3, p. 19, May
2009.

175

http://www.ietf.org/internet-drafts/draft-ietf-ippm-ioam-data-10.txt

[263] C. Alippi, G. Anastasi, M. Di Francesco, and M. Roveri, “An adaptive sampling algorithm
for e�ective energy management in wireless sensor networks with energy-hungry sen-
sors,” IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 2, pp. 335–344,
February 2010.

[264] R. Willett, A. Martin, and R. Nowak, “Backcasting: adaptive sampling for sensor net-
works,” in Proceedings of ACM IPSN, 2004, pp. 124–133.

[265] E. Hernandez, M. Chidester, and A. George, “Adaptive sampling for network manage-
ment,” Journal of Network and Systems Management, vol. 9, no. 4, pp. 409–434, 2001.

[266] G. Androulidakis, V. Chatzigiannakis, and S. Papavassiliou, “Network anomaly detection
and classi�cation via opportunistic sampling,” Network, IEEE, vol. 23, no. 1, pp. 6–12, 2009.

[267] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon: Network monitoring
in open�ow software-de�ned networks,” in 2014 IEEE Network Operations and Manage-
ment Symposium (NOMS), 2014, pp. 1–8.

[268] J. Suh, T. Kwon, C. Dixon, W. Felter, and J. Carter, “Opensample: A low-latency, sampling-
based measurement platform for commodity sdn,” in Proceedings of IEEE ICDCS, 2014, pp.
228–237.

[269] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “Cemon: A cost-e�ective �ow monitoring system
in software de�ned networks,” Computer Networks, vol. 92, pp. 101–115, 2015.

[270] H. Tahaei, R. Salleh, S. Khan, R. Izard, K.-K. R. Choo, and N. B. Anuar, “A multi-objective
software de�ned network tra�c measurement,” Measurement, vol. 95, pp. 317–327, 2017.

[271] S. Bera, S. Misra, and A. Jamalipour, “Flowstat: Adaptive �ow-rule placement for per-
�ow statistics in sdn,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 3,
pp. 530–539, March 2019.

[272] H. Xu, Z. Yu, C. Qian, X.-Y. Li, Z. Liu, and L. Huang, “Minimizing �ow statistics collection
cost using wildcard-based requests in sdns,” IEEE/ACMTransactions on Networking (TON),
vol. 25, no. 6, pp. 3587–3601, 2017.

[273] G. Zhao, H. Xu, J. Fan, L. Huang, and C. Qiao, “Hi�: Hybrid rule placement for �ne-
grained �ow management in sdns,” in Proceedings of IEEE INFOCOM, 2020, pp. 2341–2350.

[274] T. Pan, E. Song, Z. Bian, X. Lin, X. Peng, J. Zhang, T. Huang, B. Liu, and Y. Liu, “Int-path:
Towards optimal path planning for in-band network-wide telemetry,” in Proceedings of
IEEE INFOCOM, 2019, pp. 487–495.

176

[275] Y. Lin, Y. Zhou, Z. Liu, K. Liu, Y. Wang, M. Xu, J. Bi, Y. Liu, and J. Wu, “Netview: Towards
on-demand network-wide telemetry in the data center,” Elsevier Computer Networks, vol.
180, p. 107386, 2020.

[276] J. A. Marques, M. C. Luizelli, R. I. T. da Costa Filho, and L. P. Gaspary, “An optimization-
based approach for e�cient network monitoring using in-band network telemetry,”
Springer Journal of Internet Services and Applications, vol. 10, no. 1, p. 12, 2019.

[277] A. Friedley, T. Hoe�er, G. Bronevetsky, A. Lumsdaine, and C.-C. Ma, “Ownership pass-
ing: E�cient distributed memory programming on multi-core systems,” ACM SIGPLAN
Notices, vol. 48, no. 8, pp. 177–186, February 2013.

[278] G. Zhang, M. De Leenheer, A. Morea, and B. Mukherjee, “A survey on OFDM-based
elastic core optical networking,” IEEE Communications Surveys & Tutorials, vol. 15, no. 1,
pp. 65–87, First quarter 2013.

[279] N. Shahriar, S. Taeb, S. R. Chowdhury, M. Tornatore, R. Boutaba, J. Mitra, and M. Hem-
mati, “Achieving a fully-�exible virtual network embedding in elastic optical networks,”
in Proceedings of IEEE INFOCOM, 2019, pp. 1756–1764.

177

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Network Transformation through ``Softwarization''
	Resource Management Challenges
	Fine-grained Resource Allocation and Scaling in NFV
	Virtual Network Embedding over Transport SDN
	Accuracy – Overhead Trade-off in Network Monitoring

	Thesis Contributions
	A dissaggregated packet processing architecture for NFV
	Multi-layer Virtual Network Embedding
	Dedicated Protection for Survivable Virtual Network Embedding
	Adaptive Monitoring of Softwarized Networks
	Summary of Results

	Thesis Organization

	A Disaggregated Virtual Network Function Architecture
	Introduction
	The Microservices Software Architecture
	Motivation
	Commonality in Packet Processing Tasks
	Performance Implications of Monolithic VNFs

	Design Goals and Choices
	System Description
	Assumptions
	System Architecture: Birds Eye View
	System Components
	SFC Deployment
	Auto-scaling

	Optimizations
	Pipelined Cache Pre-fetching
	Parallel execution of NFs

	Implementation
	Agent
	NF
	Rx and Tx Services
	Port
	NF Scheduling

	Performance Evaluation
	Experiment Setup
	Microbenchmarks
	Service Level Performance

	Related Works
	Chapter Summary

	Multi-Layer Virtual Network Embedding
	Introduction
	Multi-Layer Virtual Network Embedding Problem
	Substrate Optical Transport Network (OTN)
	Substrate IP Network
	Virtual Network (VN)
	Problem Definition
	Illustrative Example

	ILP Formulation: OPT-MULE
	Decision Variables
	Constraints
	Objective Function
	Hardness of OPT-MULE

	FAST-MULE: A Heuristic Approach
	Challenges
	Heuristic Algorithm
	Running Time Analysis
	Illustrative Example
	Optimality of FAST-MULE for Star VN Topology
	Parallel Implementation of FAST-MULE

	Evaluation Results
	Simulation Setup
	Evaluation Metrics
	Micro-benchmarking Results
	Steady State Analysis

	Related Works
	Chapter Summary

	Dedicated Protection for Survivable Virtual Network Embedding
	Introduction
	1 + 1 - Protected Virtual Network Embedding Problem
	Substrate Network
	Virtual Network
	1 + 1 – ProViNE Problem Statement

	ILP Formulation: OPT-DRONE
	Virtual Network Transformation
	ILP Formulation
	Hardness of 1 + 1 – ProViNE

	Heuristic Solution: FAST-DRONE
	Problem Restructuring
	Heuristic Algorithm
	Node Mapping Phase
	Partitioning Phase
	Link Mapping Phase
	Running Time Analysis
	Parallel Implementation of FAST-DRONE

	Performance Evaluation
	Simulation Setup
	Performance Metrics
	Micro-benchmarking Results
	Steady State Analysis

	Related Works
	Chapter Summary

	Adaptive Monitoring of Softwarized Networks
	Introduction
	Background
	OpenFlow Network Monitoring
	In-band Network Telemetry (INT)

	PayLess: Adaptive Monitoring from the Control Plane
	The Monitoring Algorithm
	Implementation: Link Utilization Monitoring
	Evaluation

	LINT: Accuracy-adaptive INT from the Data Plane
	Motivation
	The LINT Algorithm
	Evaluation

	Related Works
	Chapter Summary

	Conclusion and Future Work
	Conclusion
	Future Research Direction
	VNF Disaggregation
	Transport SDN Virtualization
	Softwarized Network Monitoring

	References

