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Abstract

In generality, perfect predictions of the structure and dynamics of multi-body quantum
systems are few and far between. As experimental design advances and becomes more
refined, experimentally probing the interactions of multiple quantum systems has become
commonplace. Predicting this behavior is not a “one size fits all” problem, and has lead to
the inception of a multitude of successful theoretical techniques which have made precise
and verifiable predictions through, in many cases, clever approximations and assumptions.
As the state-of-the-art pushes the quantum frontier to new experimental regimes, many of
the old techniques become invalid, and there is often no tractable methodology to fall back
on.

This work focuses on expanding the theoretical techniques for making predictions in
newly accessible experimental regimes. The transport of quantum information in a room-
temperature dipolar spin network is veritably diffusive in nature, but much less is known
about the transport properties of such a sample at low temperatures. This work presup-
poses that diffusion is still a good model for incoherent transport at low temperatures,
and proposes a new method to calculate its diffusion coefficient. The diffusion coefficient
is reported as a function of the temperature of the ensemble. Further, the interaction of
an i.i.d. spin ensemble with a quantized electromagnetic field has long been analyzed via
restriction to the Dicke subspace implicit in the Holstein—Primakoff approximation, as well
as other within other approximations. This work reanalyzes the conditions under which
such a restriction is valid. In regimes where it is shownt that restricting to the Dicke
subspace would be invalid, the Hamiltonian structure is thoroughly analyzed. Various pre-
dictions can be made by appealing to a reduction in effective dimensionality via a direct
sum decomposition.

The main theme of the techniques utilized throughout this work is to appeal to a
reduction in difficulty via various theoretical tools in order to prepare for an otherwise
intractable computational analysis. Computational insights due to this technique have
then gone on to motivate directly provable theoretical results, which might otherwise have
remained hidden behind the complexity of the structure and dynamics of a multi-body
quantum system.
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Chapter 1

Introduction

Quantum physics is proving to be an extremely useful theoretical framework for describing
microscopic systems, leading to advances in fundamental physics and the advent of nan-
otechnology, with the holy grail being a universal quantum processor [33]. Unlike classical
physics, multi-body quantum systems provide the unique challenge of an exponentially
growing state space [12]. To contrast, an N body classical physics problem has a state
space of dimension 3N, whereas an N body system of spin-1/2 particles has a state space
dimension of 2¥. This massive increase in the number of dimensions over a classical prob-
lem is a double edged sword. On one hand, the induced degrees of freedom provide the
capacity to store information in a manner that is seemingly entirely de-localized, bring-
ing with it all the banes and boons of entanglement [12][1]. On the other hand, keeping
track of all these degrees of freedom either theoretically or computationally can prove
insurmountable.

Recently, advances in condensed matter physics and quantum simulators have induced
a refreshed interest into multi-body physics[12][17]. Quantum annealers can solve classical
optimization problems by encoding onto a multi-body quantum system, where the solution
is given by the ground state of the Hamiltonian [39]. Ton and atom traps are able to directly
observe the the transport of quantum information in spin chains, giving rise to proposed
technologies such as quantum wires [26] [55]. The theoretical tools for solving multi-body
systems are varied and often beautifully clever [17].

This work re-examines a familiar structure present in many forms throughout the field
of multi-body physics: ensembles of identical spin-1/2 particles. With the spin-1/2 particle
serving as the prototypical two level system, and foundation of many proposed and realized
quantum technologies [13], it is imperative to better understand how large ensembles of



these particles behave [8]. Two settings are considered here: spins which are coupled to a
quantized electromagentic field, and those which are not.

1.1 Quantization of the Electromagnetic Field

In classical spin resonance experiments, all electromagnetic fields are modeled as completely
classical objects, that is they do not have their own Hilbert spaces [13]. While a good
approximation for many experimental regimes such as room temperature nuclear magnetic
resonance (NMR), quantum electrodynamics (QED) indicates that this is not quite true -
fields are also quantum objects that can store information in their own Hilbert spaces[52].
The first major success of QED was correctly predicting the so-called Lamb shift of the
Hydrogen spectrum in 1947, in which Lamb correctly predicted and measured that the
presence of the quantum electromagnetic vacuum splits the energies of otherwise degenerate
electronic orbitals[30].

Cavity quantum electrodynamics, or cavity QED, allows for a natural extension of many
spin-resonance experiments, which is able to model the various interactions of quantum
electromagnetic fields. In particular, the model under consideration here is a one dimen-
sional single mode cavity. The usual approach is to consider a field confined to a length

L along the z direction, such that it is electrically polarized in the @ direction [37]. The
field is completely defined by Maxwell’s Equations in free space [19],
10B
V-E=14 t VXE=——
1 oE
V-B=0 VXB:—<4’/TJ(’I“,15)+W>. (1.1)
c

Solving these equations, for the spatial profile of the electric field under the assumption
that E = E,(z,t)x and that only the first mode coming from separation of variables is
allowed, it is a common exercise to show that

E.(z,t) = Egsin(mwz/L)q(t), (1.2)

for £y = 4/ e%/ Here, ¢(t) is a yet to be determined function, and V' is the effective cavity

volume, V = LA. The only non-zero component of B can be computed using the Maxwell
equations, which yields
_ HoeoL dq(t)

By(z,t) = - EQCOS(?TZ/L)T. (1.3)




Computing the classical energy over this region of volume gives the Hamiltonian for the
electromagnetic field,

1 1 1 1
H=_[dV|eE:+ —B) = -w’¢* + =p° 1.4
2/ (60 x+M0 y) 2wq +2p7 ( )
where p = ¢. This Hamiltonian is easily recognized as the harmonic oscillator, and quantiz-
ing the Hamiltonian by promoting ¢ and p to operators ¢ and p such that they canonically
commute,
4,5] = ih1., (15)
yields the equally well known quantum harmonic oscillator [37].

The quantum harmonic oscillator (QHO) is solved by making an operator transforma-

tion to the ladder operators [37], defined such that

X 1 .

= m(wcqﬂLlp), (1.6)
yielding

H. = hw.(ata + 0.51). (1.7)

The eigenstates of this Hamiltonian are known as Fock states, or number states, indexed
by |n) for n € N. Thus, X
He|n) = hw.(n + 0.5) |n) . (1.8)

From the canonical commutation operators, it can be determined that [a,a!] = 1, which
allows one to compute their action on the Fock number basis states,

iln) = vln — 1)
a'ln) =vn+1|n+1).

Now, one can introduce a spin-1/2 particle in this cavity at some location zy € [0, L]
along with a large classical magnetic field along z for the purpose of giving the spin a well
defined Zeeman splitting. The Zeeman splitting is described by the Hamiltonian [13],
Y hByy . hwy

HS 9 0, = TO'Z. (19)

In the above internal Hamiltonian of the spin ~ is the gyromagnetic ratio of the spin
particle, and &, is the Pauli z operator, which can be written in its eigenbasis as

o= = [e)el = lg)gl - (1.10)
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In the regimes of interest to this work, the spin is well described as by a point particle [13]
with a magnetic dipole moment of

. hy,. . R
Q= %(axac—kayyjtazz). (1.11)
Thus the interaction of the (stationary) spin with the quantum field is described by the
minimal coupling Hamiltonian [37], such that
Hi = E(2) - o= hg(z) (@' +a) ® (64 +6.), (1.12)

where g(z) is a scalar function encoding the overlap of the quantum field with the spin at
given location of the spin, assuming that the spin is point-like compared to L. For electron
spin resonance systems (ESR), the strength of the spin—cavity interaction is given by the

geometric parameter
How
9o = Gelmy | 5y (1.13)

where g, is the electron Landau g-factor, up is the Bohr magneton, g is the permeability
of free—space, and V, is the mode volume of the cavity.

Combining all the pieces together, the Hamiltonian for the entire system is given by
H=H.1+1&H, +H. (1.14)

Omitting the tensor products and identities where clear, defining gy = g(2¢), this allows
the Hamiltonian to be written as

1 -
=H = w4 0.5ws6, + go(alo_ + aoy) + go(aléy +ao_). (1.15)

In the above Hamiltonian the lone identity was omitted since it a constant energy shift,
leading to an un-physical global phase in the time evolution of an arbitrary state. The
coupling Hamiltonian has been split into two groups, as they are behave differently. The
a'é_ + a6, term is a so-called “flip-flop” exchange, which mediates the transfer of excita-
tions between the spin and the field, and is thus occasionally called an “energy conserving
term” [37]. This is in part because the term conserves excitations, which are defined as
eigenvalues of the operator K,

~

1+ 6,
5

K=dlawl+1e (1.16)

When the spin and cavity are on resonance, w, = w. = wyp, the excitation operator maps
directly to the internal energy portion of the Hamiltonian. Thus, if the spin-cavity coupling

4



is treated as a perturbative drive, it can be thought of as driving transitions to a state
with the same energy eigenvalue. The a'6, +ad_ term is often referred to as the “counter-
rotating” term, and it does not conserve the number of excitations, rather, it raises and
lowers them in steps of size 2.

The derived Hamiltonian can be extended to the many-spin case by repeating the
coupling process for every spin of interest. Each spin is located at some z; € [0, L], leading
to an effective spin-cavity coupling of g; = ¢(z;). Further, inhomogenieties or variations
in the field at a given z; would lead to variation in the Zeeman splitting even if each spin
has the same gyromagnetic ratio. Take w; = 7By(z;) to be splitting for the ith spin. For
convenience assume that the spins are non-interacting. Then, the total Hamiltonian is
given by

1 At 1 i) ~ (i At a( PN At (i ~ (3
—H =w.a'a+ 3 Zw§ Vgl ¢ Z (gi(aTo_) + aai)) + gi(aTai) + aa(_))). (1.17)

In order to simplify the Hamiltonian, it’s often assumed that the classical field is very
nearly uniform, so that wgl) ~ w, for all 7, and that all spins are concentrated about
L/2 such that g; = go for each i. Experimentally a uniform magnetic field is never truly
satisfied, but coil design can significantly mitigate sources of inhomogeneity [54]. There is
a trade-off of scales in any multi-spin experiment, in that the higher the spin-density, the
more closely the uniform coupling approximation will be satisfied, which then competes
with the fact that spin-spin coupling cannot be neglected if the spins are close together. For
example, dipolar coupling between spins scales as 1/d®, where d is the separation between

two spins [13].

Under the uniform coupling assumptlons the Hamlltonlan can be rewritten using the
collective operators J, = 0.5, 6 and J. =>. 6. which span the algebra of s((2; C).
The move to collected operators seems to seems to imply that an ensemble of spins, being
indistinguishable to the cavity, will emulate behavior tantamount to a single spin with a
much higher value for its angular momentum. The consequences of this interpretation will
be explored in great depth in Section 3.1. Further, we assume that the spin ensemble and
the cavity are on resonance, such that ws = w. = wy. The collective Hamiltonian can be
then written compactly using this notation as,

1 - o o A o A
=H = woa'a +wo ), + go(a'J_ +aJy) + go(a'J + aJo). (1.18)

The number of collective excitations can be similarly defined by extending K with a summa-
tion over all spins, analogous to how the collective Hamiltonian was derived. In particular,



omitting the tensor products with identity for brevity,
K=a'a+J.+ g (1.19)
The validity of the uniform coupling approximations varies based on the experimental
apparatus, and variations from the mean coupling strengths will serve to cause unitary
errors relative to the idealized prediction. Of course, in any realistic scenario, noise and
decoherence is nigh unavoidable. Much of this work relies on the validity of these assump-
tions, which contrasts with the fact there is likely no physical system without imperfections.
While this work focuses primarily on the ideal setting, modeling the effective noise caused
by these inhomogenieties is an interesting and difficult problem [%], which may be a fruitful
avenue for future work.

1.2 The Rotating Wave Approximation

Considering the Hamiltonian for a single spin coupled to the cavity, given by equation
(1.15), there are further approximations that can be made to simplify the problem. In
particular, consider moving into a rotating frame generated by

1~
ﬁHO = deTd + 0.5&)06'2. (120)

In general, a frame transformation generated by Ug(t) does the following [37]:

W) — |¢¥r) = Ug 1)

~ ~ PN dU
H — Hyo = UgHUL +1i dRUT (1.21)
Thus, in the case where
t
Ur = exp 1}2’ (1.22)

the rotating frame Hamiltonian is transformed to
1 - . . .
ﬁHTot(t) = 3qo (Bl(w_wO)thé'_ + e (w wo)t CLO'+) + Jdo (61(w+w0)t&Ta—+ + e_l(w+w°)td6_). (123)

It is useful now to to particularize to a set of parameter ranges on the phenomenological
constants present in the Hamiltonian. The experimental apparatus in mind for this work is



an electron spin resonance (ESR) system where a collection of electrons will be interacting
with a 1D microwave cavity. With a large static field, wy can be taken to be on the order
of 10 GHz, while gy is on the order of 10 Hz [2]. The rotating frame Hamiltonian can be
written as

1 . .
ﬁ’}-[mt(t) = go(a'o_ + a6.) + go(e®'a’o, + e *'ag_). (1.24)

Above, the excitation number conserving portion of the interaction Hamiltonian is static
in the rotating frame, while the excitation raising and lowering term picks up a time
dependence that corresponds to it rotating opposite the rotating frame. It is for this
reason that these terms are dubbed “counter-rotating”.

Since gp/wp < 1, the interaction Hamiltonian can be well treated as a perturbation of
Ho. With this in mind, excitation non-conserving transitions inherit a highly suppressed
transition rate to the point of being effectively un-observable in most experiments [37].
Further, when the spin and cavity are on resonance, w = wy, this is the only term in the
Hamiltonian which doesn’t commute with the dominant H, term, making it secular. All
of these arguments coalesce together to form the backbone of the rotating wave approxi-
mation (RWA) — the excitation raising and lower terms can be removed from the original
Hamiltonian with confidence that any predictions derived would be in good agreement with
reality. In summation, the Hamiltonian of theoretical interest is given by,

1 -
~Hyo = woa'a + 0.5w6, + go(ate_ + a6, (1.25)

which is referred to in literature as the Jaynes-Cummings Hamiltonian [12].

The above argument can be analogously extended to the case where many spins are
uniformly (and resonantly) coupled to the single mode cavity, due to the fact that the
collective operators satisfy the same commutation relations as the single spin operators,

(., Ji] = £Js. (1.26)
Thus, the collective Hamiltonian under the rotating wave approximation is
1~ A N N
+Hre = wolla 4 wod, + go(atJ_ +aJy), (1.27)
which is referred to in the literature as the Tavis-Cummings Hamiltonian[18]. The validity

of the rotating wave approximation for the ensemble is usually given with the condition
that wy > gO\/N . This work’s discussion on the TC Hamiltonian focuses on systems
in the strong coupling regime, where the field interaction with the spins can be resolved
experimentally and the RWA holds. This work further avoids discussing dynamics in the
ultra-strong coupling regime, in which the RWA is violated in a measurable fashion. A
more precise discussion on the condition for the validity of the RWA is given in 3.1.
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1.3 Dipolar Spin Hamiltonian

Consider now an ensemble of energetically identical spins, distinguished by their fixed
locations in space, experiencing a large, uniform, classical magnetic field. Take each of
these spins to be interacting with all-to-all connections through dipole-dipole coupling.
Due to the large field, a secular approximation can be made on the homonuclear dipole

interaction, including only the A and B terms of the dipolar alphabet [13]. Thus,
7:[ = 7_23 + ﬂDipolaTa (128>
where R » )
Ho =hByy Y 59 = hwy.J., (1.29)
and
~ h2~? 3 9,AA~ 1, Ae) A A () A
Hipotar = “0 ! Z T (5959 - L(5089 4 505DY). (1.30)
i#]

In equation (1.30), it should be understood that r;; is the distance between the spins
labeled by indices 7 and j, and 6;; is the angle that a line connecting these two spins makes
with external magnetic field, which in this case is along the z direction, in the lab frame.
Further, it should be understood that SS9 is one-half of the Pauli-z operator for spin i,
such that o
(S0, 89 = e, "6,;5, (1.31)
where u,v,n € {z,y, 2z}, and the angular momentum ladder operators are defined as usual
so that » » »
S¥ =80 £3i80). (1.32)

Global magnetization is a conserved quantity, which follows from the commutation
relation, [jz,’}:[] = 0. Moving into a rotating frame generated by J, will cancel the Zee-
man portion of the Hamiltonian, yielding a time independent rotating frame Hamiltonian
consisting of only the homonuclear dipolar interaction:

. PRV B i
Hoor = By by (SS9 — 2 (5089 4 5050)), (1.33)
i#£]
where b;; is defined such that
,uoh72(1 — 3 cos? Qij)

3 )
8mry;




for convenience. Now, consider the action of this Hamiltonian on states contained within
the Zeeman basis. An N-partite state is an element of the Zeeman basis if every subsystem’s
state is an eigenstate of 6,. That is, each spin is either aligned or anti-aligned with
the magnetic field. The first term of the rotating frame Hamiltonian, given by the A
term in the dipolar alphabet [43], is simply a state dependent energy shift. On the other
hand, the term originating from the B portion of the dipolar alphabet, mediates a mutual
spin flip exchange [13]. For this reason, this term shall be referred to as the flip-flop
term or interaction. In other words, the flip-flop interaction appears to facilitate a local
distribution of magnetization to move through the spin network, whilst still conserving
the total magnetization. Thus one would expect that the action of the flip-flop term,
will mediate a local transport of magnetization. Given the global conservation law, it is
reasonable to guess that this transport will be diffusive in nature. Assuming this is indeed
the case, a diffusion coefficient should be given to quantify the diffusion rate.

Spin diffusion was first measured in 1998 [50], confirming the suspicions of early re-
searchers in that there were additional sources of noise causing rapid spin-lattice relaxation
present in solid NMR samples [5][1][50]. The notion of spin diffusion was later firmly con-
nected to theoretically tractable computations of moments of the measured spectral line
shape [31]. After overcoming many technological hurdles, the 1998 experiment directly
verified the predicted diffusion rates in a Calcium Flouride crystal, which is cubic and has
full translational symmetry [56]. Further, it was found that dipolar ordered states had a
larger diffusion coefficient (and thus a faster diffusion rate) than Zeeman ordered states,
and this discrepancy was attributed to coherent transport effects via interference of initially
correlated neighboring spins [7].



Chapter 2

Semi-Classical Spin Diffusion

Historically, spin diffusion has referred to a few concepts, including the spatial diffusion
of spin-active particles of a liquid, like Helium-3 [22], and the diffusion of polarization in
a crystalline solid[1][56]. This chapter focuses on the latter. In particular, spin-diffusion
in crystalline solids has been able to aptly describe the evolution of many body quasi-
equilibrium states, which are many-body quantum states which deviate slightly from ther-
mal equilibrium [18]. With this class of states, it is common to make a long wavelength,
meaning that the deviations from equilibrium vary slowly and continuously as a function
of some spatial dimension. In this regime, theory and experiment coincide on the diffu-
sion rates of Calcium-Fluoride, and the state-of-the-art for calculating the diffusion rate
theoretically uses what is known as a modified Kubo formula [7][18]. Derivation of the
Kubo formula utilizes the fact that the state of the crystal is near equilibrium to take
thermodynamic derivatives in order to simplify particular quantities. In particular, linear
response of magnetization with respect to a large external field is assumed [27][25].

It is then clear that the Kubo formula approach would be incorrect for states which
are far from thermodynamic equilibrium, as this would violate the underlying assumptions
needed to derive the formula. Due to the difficulty of polarizing large ensembles of spins, in
part because of the very long nuclear 7T times at the bath temperatures required, very little
effort has gone into developing methods for calculating diffusion rates in regimes far from
thermal equilibrium. With rapidly improving technology, highly polarized spin ensembles
are becoming more feasible experimentally [21] [10], and thus should no longer be ignored
theoretically.

This chapter focuses on describing the characteristic properties of spin-diffusion in a
highly polarized spin ensemble. This approach is further motivated to focus on a single
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atomic species crystal, particularly a single crystal sample of Silicon-29. There has been
some promising work recently in terms of polarizing Phosphorus within a Silicon crystal,
and due to Silicon’s long T} times, this makes it an excellent experimental candidate to
focus on theoretically [21].

2.1 Casting the Problem as a Random Walk

Before transforming the Hamiltonian any further, it is instructive to consider the expected
initial state of the spin ensemble. The working assumption for this approach requires that
the crystal is initially highly polarized and all spins contain no initial quantum correlations,
so that

2

where 1 — € is the initial polarization, and € is taken to be small, but non-zero, 0 < ¢ < 1.
Equivalently, the state of the spins can be recast directly in the Zeeman basis, {|0), |1)},
so that

po = (1(11 + (1 — e)&z))w, (2.1)

= (1= P10k + St ) (22)

By treating this density matrix as a statistical ensemble of pure states, one can see that
each spin has a probability py = 1—5 to be aligned with the external field, and a probability
p1 = 5 to be anti-aligned with the external field (under a projective measurement). This
directly implies that the number of spins anti-aligned (or equivalently, aligned) with the
external field is an instance of a binomial distribution, defined by N and probability p;.
A full quantum treatment would involve averaging over all 2V possible crystal states.
This can be avoided by noting that for highly polarized ensembles, the induced binomial
distribution on the number of anti-aligned spins will not be strongly supported after about
three standard deviations from the mean, so that the range on the number of anti-aligned
spins which contribute significantly is considerably bounded:

Ne € € Ne € €
— _ - < R — — — — ). .
maX{O, 5 3,/N2(1 2)}_nszg_ S 3 N5(1=3) (2.3)

This still leaves the issue that for a given number of anti-aligned spins, n, in a lattice there

n= (M) o
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possible spatial distributions of anti-aligned spins, which can easily become a significant
quantity for large ensembles. Due to the fact that we expect that the behaviour of a
particular anti-aligned spin will depend mainly upon its local neighbourhood of spins, its
vicinity to crystal edges, and state of the crystal as a whole, one can make the a priori
assumption that many of these crystal instances will display similar transport properties.
Thus a Monte Carlo type approach to numerical simulations can be used, such that each
trial starts by sampling a Bernoulli distribution for each spin to determine its initial state.
Ignoring spatial distribution of spins, this is equivalent to sampling a binomial distribution
to determine the number of anti-aligned spins. The advantage to the repeated Bernoulli
sampling approach is that it takes care of randomized spatial distributions for free.

To reiterate, it is expected that the flip-flop term in the Hamiltonian will mediate a
diffusion process for local magnetization. In particular, for a given polarization one can
produce a set of meaningful pure states corresponding to the true state of the crystal,
which after averaging will give the bulk behaviour for the true mixed state of the crystal.
It still remains to be shown how to calculate the effective diffusion coefficient, as a function
of the polarization of the initial state.

In order to compute the rate at which magnetization diffuses through the crystal, one
needs to determine the time evolution of the crystal, at least approximately. For a time
independent Hamiltonian, the propagation operator can be written symbolically as the
exponential of the Hamiltonian,

O(t) = exp <%’Ht) (2.5)

This propagation operator is not functionally useful for large system sizes, as it does not
have a clean closed from solution. In order to sidestep the exponential difficulty of this
problem, it is common to appeal to perturbation theory. In particular, the Dyson expansion
is a reasonable choice, since the Hamiltonian is already of the form H = Ho+ A\V. To
prepare for this expansion, one can move into the interaction picture generated by

Ho=h) b;SHSY), (2.6)
i#j
so that ) -
UD(t) = GItHO. (27)
Then, R
[¥p) =Up [¢¥), (2.8)



and it is important to note that all the crystal states of interest are eigenstates of 7:[0,
and so this transformation adds an un-physical global phase which can be safely ignored.
Taking A = 0.25, and

V=0, (8P8Y 4§95, (2.9)

the Schrodinger equation in the interaction picture transforms to

d 1.~
1@ [vp) = ZlVD(t) VD) . (2.10)
In the above equation, R ) o
Vi(t) = Up(t)VUL(1), (2.11)
which simplifies to the following by use of an identity[7]:
Vo) = by (g@s&%ij (1) + 59 §g>zﬂ<t>) | (2.12)
i#]
where
ilj(t) = H exp (21t(blz — blj) A£1)> = exXp <Z 21t(blz — blj)gél)> . (213)
I£i,5 l#1,5
Notice, R R
L}i(t) = L;;(t), (2.14)

which guarantees that the interaction picture Hamiltonian is still self-adjoint, and thus
evolution is still unitary. Further, note that the action of this operator on a crystal state
which is solely the product of Zeeman states can be calculated exactly without the need
for any approximations:

ﬁz’j |wc7“ystal> = €exXp <1t( Z (bl'L - blj) - Z (blz - blj))) ’wcrystal> . (215>
I£i.j I£i.j

aligned anti—aligned
For convenience, define
Q)= > (u—biy) = > (bu—by). (2.16)
I#i, (7]
aligned anti—aligned
Q) will often be referred to as the “mean-field” frequency of the crystal state, as it is

dependent on the relative orientations of spins throughout the crystal. The solution of
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the Schrodinger equation in the interaction picture is formally a time-ordered exponential,
which shall be expanded as a Dyson series [37]:

¢
U:Texp(/ dsVD(s)):]I—I—U(1)+U(2)—|—---. (2.17)
0
Here, the Dyson terms are given as usual:
. 1. [t -
oW = Zi/ dt, Vp(ty) (2.18)
. 10 t t1 R .
U®=—— [ dy / dty Vi (1) Vp (ts) (2.19)

A

N 1 n t t1 tn—1 R R
0 = (3) / dt, / dty - / dt, Vp(t)Vn(ts) -+ Vo(ta).  (2.20)
0 0 0

The Dyson series provides path towards computing transition probabilities for the quan-
tum state of the crystal. At zeroth order, there are no non-trivial transition probabilities,
and thus no transport occurs. At first order, any anti-aligned spin can swap places with
any aligned spin, so long as their dipolar coupling constant is non-zero. That is, oppo-
sitely aligned spins ¢ and j can swap orientations so long as b;; # 0. Now, due to the
abundance of aligned spins relative the the number of anti-aligned spins in a given crystal
state of interest, one can view the crystal as a sea of aligned spins with a few ant-aligned
spin defects which are allowed to move around this sea in a random manner. In fact, the
discrete spin sites coupled with transition probabilities in a particular time step can be
mapped to a similar classical problem of a random walk. That is to say, this perturbation
scheme can be interpreted so that magnetization “defects” take a random walk through the
crystal lattice. While this random walk is a classical notion, the walk weights themselves
are computed from quantum theory.

Now, a random walk will converge to a Wiener process, by way of the central limit

theorem [15]. This means that in the continuous limit of the random walk, the distribution
induced by the psuedo-random motion of spin defects converges to a Gaussian. Likewise,
the Green’s function for the diffusion equation is a Gaussian [I1]. Thus, one can take

the correspondence of these two functions to posit an effective diffusion rate for the spin
defects. More precisely, in 3 spatial dimensions the diffusion rate is written as

2
D= %. (2.21)
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Here, 6 is a dimensional factor, dt is the length of a time-step, and (r?) is the mean squared
distance of the random movement of a defect with an initially known location after a time
ot.

With an expression for calculating the effective diffusion coefficient in terms of transition
probabilities, and a method for calculating these probabilities, it remains only to calculate
the diffusion coefficient. To do so, consider a particular initial state of the crystal, called
lin). Then, for a particular spin defect at index n, sum over all of its possible transitions,
each of which produces a final state of the crystal, referred to without loss of generality as
|out). Then, the probability that a particular transition occurs within a time period dt is

given by
2

Phop = ‘<0ut) 0(6%) ‘m> , (2.22)

so that

<T2> = Z Phop<rhop)2- (223)

hops

While Vp(t) is a sum over N(N — 1) terms, any given transition will not require all
terms of the sum:

(100, 5059

Onln =+ ) = Gimin. (2.24)

Thus for a first order transition of a defect at index n hoping to an allowed index m, only
two terms of the sum need to be considered. For this transition, written as (n — m) for
brevity, the matrix element can be computed as follows:

S
= i/ dty byn (eimﬂmn(in) + eitlgmn(in)>
4 Jo

Ul = <0ut o

bym [* ,
= dty exp (L (in)t:)
2 Jo
U exp (iQnm(in)t) — 1
= 210, (in) \ P A
by €Xp —iQ"";(m)t — exp —_m”;(m)t 1 (in)t
= , , exp
Qi (in) 21 2
bm . Qum(in)t 1Qm (in)t
= i 2.25
Qo (i1) sin 5 exp 5 ( )
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Then, at first order, for the spin defect at index n, for some well chosen dt, with surrounding
crystal state represented as |in), it will see an effective diffusion coefficient of

’ b2 7'2 Q ot
(1) ~ nm' nm . 2 S‘nm
D))~ zm: 601922, sin® ——, (2.26)
where the sum over m is only over indices with initial spin state aligned with the external
field, as indicated by the apostrophe notation.

Continuing on to second order transitions, there is now a summation over 4 indices,
culminating in N?(N — 1)? terms, and each term of the sum contains a product of 2
flip-flop operators. This mediates two new types of transitions, (n — r — m) and
(n — m,p — q), or in words, a double hop transition and two independent single hop
transitions. To calculate the matrix elements for the double hop, notice that the sum will
be over terms of the following form:

AAAAA

— 6n15kr6iﬂkl(in)t2 §jr5im€igij (insn—r)ty ) (227>

In the above equation, €;;(in;n — r) indicates that this must be calculated as a function
of the updated crystal state, after the first hop. After some arithmetic,

. s (e +Qen)t : i Qmrt :
@ _ ) 10yl [(SID S (i + Q) _ sin g itQyr
Utn= 2 5. ( Ot 0 P 2 O Py ) 22

r#n,m

where the explicit dependence of €2 on the crystal state is omitted for notational brevity.
For the case of the double hop transition, there needs to be least two spin defects in the
lattice, which shall be labelled by indices n and p without any loss of generality. Then,
transitions are of the form,

AL AL A

iQp(in)t iQ;; (in;n—m)t
= SpmOime ki ( )25iq(5jp€ 4 ( )t

O Ope G, 5 s inipa)t (2.29)

The intuition for these terms is that the time ordered integrals should not distinguish which
single hop “happened first”. Further, notice that all summations here are cancelled by the
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Kronecker deltas. Then, calculating the matrix element for these types of transitions,

7@ @ ‘m>

n—m,p—q <

. —bpmb
@ | ) = —mpe ; - O (.
- 1 mn )
U ‘m> 1 / dt / dts (exp (1Q (zn)tg) exp (1qu(m n — m)tl)
0 0

+ exp (1Q0 (in)ta) exp (iQumn (in;p — q)tl)). (2.30)

The integrals can be computed, but the exact form of the solution is omitted as there is
little intuition to be gained. These new terms provide a method to calculate a second order
estimate for the effective diffusion rate of the spin defect at index n,

D~ g 3 (10 + U, D

v, | >m (2.31)

Calculating higher order terms follows similarly, and enumerating all allowed transitions
at a particular order is tedious but intuitive and can be done diagrammatically in a manner
which is superficially similar to the diagrammatic approach of a Feynman diagram.

2.2 Computation of Diffusion Coefficients

For the purpose of computation and picking experimental parameters, the computations
shall be focused on computing the spin diffusion rates of single crystal of Silicon-29, which
has a tetrahedral (diamond) crystal structure. Generation of the crystal is done by in-
putting the positions of a single unit cell, and then tiling the unit cell repeatedly so that
the crystal is represented as a lattice of unit cells. Due to computational constraints, this
work focuses on a crystal with N = 400 discrete spins, corresponding to a unit cell tiling of
5 x5 x2in z,y, z respectively. For simulations on crystals with N spins at Dyson order n,
the required sums have a computation cost O(e N x N") floating point operations. Plainly,
there is a slight advantage at higher values for the polarization.

Once the crystal is generated, the geometric coupling factors r;; and 6,; are computed,
which then fully determine the dipolar coupling constants b;;. The time step 6t = 1072
seconds, as the largest b;; is on the order of 1kHz. Given a set of polarization values and
number of trials per instance of polarization, the algorithm randomly initializes each atomic
site with an aligned or anti-aligned spin. As previously discussed, this initialization is a
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series of Bernoulli trials weighted by the induced probabilities from the initial polarization.
These crystal initializations are then used to calculate the required initial values of €,,,.
Computing the value of equation (2.31) for each spin defect within the crystal results in
the effective diffusion coefficient for the spin defects in a given trial. Once a diffusion
coefficient is computed for each spin, the values are averaged to an effective diffusion rate
for the crystal state. The resulting output is then a series of diffusion coefficients indexed
by their initial crystal state. These values are then plotted as a function of polarization.

Once the data collection completes (which takes about 64 hours on 16 cores at 3 GHz
in Mathematica for 400 spins over 8 values for the polarization with 500 trials per polariza-
tion), the resultant collection of diffusion coefficients as a function of polarization are fitted
to a regression model, with the goal being a pattern-less residual plot. On the following
pages the results of the computations and their regressions are given.

N=400 Spins, 5+#5%2 Tetrahedral Unit Cells, Second Order Transitions
D [cm?/s]
4.x107"}

3.x107"}

2.x107"

1x10f |

0.02 0.04 0.06 0.08 010 ¢

Figure 2.1: Diffusion as a function of polarization for a 400 spin tetrahedral crys-
tal of Silicon—29. The function fitted via regression is given by the function D(e) =
V1.76376 % 10733 + € x 2.19458 x 103! in units of square centimeters per second. the
points at various values of polarization indicate computational values sampled during the
Monte Carlo simulation.
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Figure 2.2: Residuals for fit of diffusion as a function of polarization for a 400 spin tetra-
hedral crystal of Silicon—29, as pictured in figure 2.1.
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N=200 Spins, 5*5%1 Tetrahedral Unit Cells, Second Order Transitions
D [cm’/s]

1.4x107"1}
1.2x10™"+
1.x10°1 ¢

8.x102}:

6.x10712}
4.x10712}

2.x107"2¢

: : : : — €
0.02 0.04 0.06 0.08 0.10

Figure 2.3: Diffusion as a function of polarization for a 200 spin tetrahedral crys-
tal of Silicon—29. The function fitted via regression is given by the function D(e) =
V/1.55248 * 10734 + € x 1.21782 x 1032 in units of square centimeters per second. the
points at various values of polarization indicate computational values sampled during the
Monte Carlo simulation.
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Figure 2.4: Residuals Residuals for fit of diffusion as a function of polarization for a 400
spin tetrahedral crystal of Silicon—29, as pictured in figure 2.3. The clear flat lines in the
residual plot are caused by trials in the Monte Carlo simulation which were initialized
with no spin excitations, and thus the crystal state had an effective diffusion rate of 0. As
polarization increases, this crystal state becomes increasingly common.
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400 Spins, Two Separated 5x5%1 Crystals (54 nm), Second Order
D [em®/s]
2.x107"}

15x107"1

1.x10™M 3

5.x10712¢
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T0.02 T0.04 0.06 “0.08 7010
Figure 2.5: Diffusion as a function of polarization for two 200 spin tetrahedral crystals of
Silicon—29 separated by 54 nm. The function fitted via regression is given by the function
D(e) = v/1.3696 % 10~34 + € x 2.9675 * 10-32 in units of square centimeters per second. the

points at various values of polarization indicate computational values sampled during the
Monte Carlo simulation.
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400 Spins, Two Separated 5x5*1 Crystals (108 nm), Second Order
D [em%/s]
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Figure 2.6: Diffusion as a function of polarization for two 200 spin tetrahedral crystals of
Silicon—29 seperated by 108 nm. The function fitted via regression is given by the function
D(e) = v/1.3633 * 1073* + € x 2.9828 * 10732 in units of square centimeters per second. the

points at various values of polarization indicate computational values sampled during the
Monte Carlo simulation.
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400 Spins, Two Separated 5x5%1 Crystals (1080 nm), Second Order
D [em®/s]
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Figure 2.7: Diffusion as a function of polarization for two 200 spin tetrahedral crystals
of Silicon—29 separated by 1080 nm. The function fitted via regression is given by the
function D(€) = v/1.4851 % 10734 4 € x 2.98462 * 1032 in units of square centimeters per
second. the points at various values of polarization indicate computational values sampled
during the Monte Carlo simulation.
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Chapter 3

Cavity QED

The predictive power of QED was first demonstrated via the prediction and observation
the Lamb shift in 1947, effectively describing the fine structure of the hydrogen atom by
including its interaction with the electromagnetic vacuum into the model[30]. With modern
experimental design and fabrication techniques, the state of the electromagnetic field has
become much more controllable [16]. High quality resonators provide the ability to restrict
Maxwell’s equations to permit the existence of only single field mode, greatly simplifying
the physics and allowing for a direct probe into the quantized structure of the EM field
[37]. The dynamics of light confined to a resonator, and the study thereof, is referred to
as cavity quantum electrodynamics (cQED), or just cavity QED.

Cavity QED further allows for a precise investigation of light-matter interaction, and the
Jaynes-Cummings model first appeared as an attempt to explain spontaneous emission and
absorption of photons by atoms [12]. This model’s predictions has been highly successful,
and the Hamiltonian has been extended to describe the general interaction of two-level
systems minimally coupled to bosonic fields, generally referred to as qubits (the two level
systems) and photons (the state of the cavity) [12]. In part because the Jaynes-Cummings
(JC) model admits analytic solutions, novel light-matter effects such as quantum Rabi
oscillations, revivals, and photon anti-bunching have been experimentally verified to high
precision [12]. Specific experimental platforms for investigating the structure and physics of
the JC Hamiltnonian include Rydberg atoms in optical cavities [31], and superconducting
qubits coupled to a superconducting resonator [35].

The JC model only described the interaction of a single qubit with the photon field,
the natural extension of this model to an ensembles of qubits is encapsulated by the Tavis-
Cummings (TC) model. This model was used by Tavis and Cummings in 1968 to describe
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the collective interaction of matter with radiation, describing a highly enhanced photon
emission rate in the spin ensemble, which would become known as the phenomenon of
super-radiance [18]. Unlike the JC Hamiltonian, the TC Hamiltonian does not directly
admit analytic solutions, and as such many techniques for approximating and transforming
the Hamiltonian have been used to varying degress of success. In the original paper, Tavis
and Cummings recast the energy eigenvector problem as a differential equation which
could then be solved numerically or in their case, approximately [18]. More recent works
tout exact solutions to the Tavis-Cummings model though they are only “exact” after one
takes a series of restrictions and approximations on the structure of the model itself [6]. In
terms of a complete description of the eigenvalue and eigenvector structure, none has been
presented of ensembles of more than 3 spins [15].

This chapter presents a solution to the problem of determining the structure of TC
Hamiltonian. With this solution in hand, various predictions on the phenomena surround-
ing the Tavis-Cummings model can be recomputed in and arguably more precise manner
than ever before. This chapter is broken down into four sections, starting with the energy
level structure of the Hamiltonian, then an analysis of thermal states of the model, experi-
mentally motivated dynamics of an initially thermal state, and finally, the cavity’s impact
and mediation of coherences between spins in a thermal state.

3.1 Structure of the Tavis-Cummings Hamiltonian

The trick to the recipe for diagonalizing the TC model is partly inspired by the solution to
the JC Hamiltonian. When faced with diagonalizing an infinite dimensional Hilbert space
coupled to a two-level system, writing out a large matrix is hopeless. The saving grace
is that the JC model conserves excitations, and so the eigenspace of ¢ from equation
(1.25) decouples into an infinite ladder of non-interacting two level systems, spanned by
{lg) |n),|e) |n — 1)} for n > 1, and a decoupled ground state of |g) |0). To see how to diag-
onalize the decoupled two level systems, we simply need to set up a matrix representation
within these smaller spaces. Computing the action of H JC,

%7—1;0 lg) |n) = (nwy — 0.5wy + 0.5wp) |g) |n) + gov/n |e) [n — 1)
%7:[]0 ley [n — 1) = ((n — 1wy + 0.5wg + 0.5wp) |€) |n — 1) + gov/n|g) |n) . (3.1)

Above, the 0.5wy1 term was reintroduced to the Hamiltonian so that the dominant energy
term would be given by the number of excitations times wy. Thus, the action of the
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Hamiltonian can be decomposed into a collection non-interacting two level systems:
1
h
1 .
ﬁHJc le) [n — 1) = gov/n|g) [n) + nwo |e) [n — 1).

e lg) In) = nwo lg) [n) + gov/nle) n — 1)

The natural matrix representation for this system is given by

[QZ% gv%ﬂ B % E —111 {WO +090\/ﬁ nwo —Ogox/ﬁ} E _111 . (82

By orthogonally diagonalizing an arbitrary block of the Hamiltonian, the entire Hamil-
tonian is now solved, with eigenstates and eigenvalues of

n, £) = %qm n) £ |e) [n — 1))
Hje |n, +) = h(nwo £ gov/n) |n, £) . (3.3)

As mentioned previously, there is one additional eigenstate, |g) |0), with eigenvalue 0. It is
clear that this list is exhaustive, as the given eigenstates span the entire composite Hilbert
space. These spin-cavity eigenstates are often called “dressed states”, or equivalently that
the spin-cavity energy levels “hybridize” [37]. This hybridization can be seen directly in
figure 3.1.

......

Figure 3.1: Graphical depiction of the hybridization of energy levels in the Jaynes-
Cummings ladder. A bar represents a state (or states), with energy loosely corresponding
to their vertical height in the diagram, relative to the ground state, given as the lowest
lying black bar.
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Unfortunately, the trick of diagonalizing the TC model simply by breaking down the
Hamiltonian into constant excitation subspaces will not be as fruitful. Given N spin-1/2
particles in a TC model, the number of states present at the k-th excitation level grows like
a sum of binomial coefficients up until the N +1 st level, where there will be all 2V possible
spin states present for each excitation level after this point. To clarify, the dimension of
the k-th excitation level (for k < N + 1), called Dy, is given by

b= (1) »

k'=0

For k > N + 1, it is then clear that D, = 2V, For many experimentally reasonable values
of N, diagonalizing a set of matrices with this sort of scaling behaviour is hopeless past
the first few excitation levels.

The solution to this problem is to appeal to a symmetry that exists solely on the spins.
Since the spins are energetically identical, total angular momentum J? = j§ + j; + jZQ
commutes with the TC Hamiltonian. This means that total angular momentum of the spins
is a conserved quantity and serves as an additional good quantum number for eigenstates
of the Hamiltonian. J? has eigenvalues of j € {N/2,N/2 —1,--- [ {N/2}}, where {N/2}
denotes the fractional part of N/2,

(N/2} := N/2 — | N/2]. (3.5)

A quick counting argument will reveal that the the listed angular momentum subspaces
do not account for all 2V possible basis states. In truth, there are many distinct copies
of each angular momentum subspace, and when accounting for the degeneracies the full
dimensionality of 2V is reached. The number of energetically degenerate copies of each
angular momentum subspace are a result of repeatedly block diagonalizing by irreducible
representations. In physics, computing the irreducible representations of the tensor product
of two angular momentum representations is extremely common, and appealing the to

Clebsch-Gordan tables allows for easy computations [32]. For example,
1 1
SR 2140
2 “ 2 @
oioir (o020,
27272 2 27272

Above, it should be understood that this shorthand notation represents that the tensor
product of two spin-1/2 Hilbert spaces is isomorphic to the direct sum of a spin-1 and
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a spin-0 Hilbert space, and similarly for the second equation. Repeating this process N
times for each spin is unwieldy and inefficient with regard to keeping track of the number
of copies of a given angular momentum space. The graphical solution to this problem
is a hybrid of quantum chemistry and group theory due to Yamanouchi and Kotani[33],
who created a branching diagram for computing the number of copies of a given angular
momentum subspace.

S
5 |
9, |
4 -
7,
3 -
51,

2 |

Figure 3.2: Yamanouchi-Kotani branching diagram for computing the number of copies
of a given angular momentum subspace for an ensemble of N spin-1/2 particles. Figure
taken from [10].

To produce figure 3.2, label the horizontal axis with integer values, denoting the number
of spins, and label the vertical axis with integer and half integer values, denoting angular
momentum subspaces. The base case is simply that a single spin is spin-1/2, and there
are no degeneracies, so a 1 is places at this point on the graph. then draw lines connecting
the adjacent angular momentum spaces one value of N to the right, adding together the
degeneracies of the originating angular momentum subspaces to compute the number of
degenerate subspaces at that particular intersection.

From figure 3.2, one can appeal to intuition and write down a combinatorial formula
for the number of copies of the j angular momentum subspace given an identical ensemble
of N spin-1/2 particles. To compute the number at a vertical position j, and horizontal
position N, one counts the number of total paths that terminate at or above (N, j), and
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subtract off all paths that terminate at or above (N, j + 1):

_( N N B N(2j +1)
= <N/2 —j) - (N/2 —(j+ 1)> T (N2 (N2 +j+ D) (3.6)

It is valid to wonder what, if anything, distinguishes the otherwise energetically degen-
erate copies of each angular momentum subspace. The solution is to apply Schur-Weyl
duality [53], which loosely states that each irreducible representation appearing in the di-

rect sum decomposition of %®N is paired with a representation of Sy, the permutation
group of degree N. Further, each of these pairs is labeled by a standard Young tableau, of
at most two rows with IV boxes. A standard Young tableau on N symbols is a graphical
depiction of a partition of NV, formed by stacking rows, totalling N boxes across all rows. In
particular from the top of the diagram to bottom, the number of boxes in each row should
be decreasing. These boxes are then labeled by integer values from 1 to IV, such that the
labels are strictly increasing from left to right, as well as top to bottom. An example of a
standard Young tableau is given below.

—_

3[4]
2[5

The shape of the Young tableau determines the dimension of the angular momentum
irreducible representation, and then the entries of the tableaux label the different copies.
To compute the angular momentum subspace of a given standard Young tableau, the
formula is to take one half the difference of the number of boxes in the top row and the
number of boxes in the bottom row. Since these are standard Young tableaux, the top row
must have an equal or greater amount of boxes, and thus the angular momentum is always
non-negative. A particular integer labelling of these boxes determines the spin exchange
symmetries of any given degenerate subspace, and the number of valid label assignments
is then equal to the number of degenerate copies of that particular angular momentum
subspace. In the previously given example of a standard Young tableau,

13[4]
2[5

corresponds to a particular instance of the j = 1/2 subspace for N = 5 spin-1/2 particles.
There are four other valid label assignments, adding up to 5 degenerate copies of the
j = 1/2 subspace for N = 5.

Without digressing too far into the representation theory of finite groups, the most
pertinent implication of Schur-Weyl duality to this work is that each subspace is uniquely
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labeled by which permutations under spin labeling leaves that subspace invariant. Thus,
irreducible representations of the general linear group (an angular momentum subspace)
pair with irreducible representations of the symmetric group (a permutation symmetry of
the labeling of the spin particles).

The simplest example of the pairing of the symmetric group with the general linear
group manifests within the j = N/2 subspace, often referred to as the fully symmetric
subspace, since each state contained in this subspace is invariant under any relabeling of
the N spin-1/2 particles. In the case of two spin-1/2 particles, the symmetric group has
two irreducible representations: fully symmetric and fully anti-symmetric. Because of the
small size of the example, all of the basis states can be listed in full generality. Using the
notation of |7, m) to denote the total angular momentum j and z-component m state, and
omitting tensor products for simplicity, the basis states are listed below:

|17—1>
1,0) = %um €) + [¢) [g))
1,1)

0,0) = ——(1g) le) — e} lg)).

Above, the angular momentum j = 1 space, when written as a tensor product of the
consistent spin-1/2 basis states, is indeed invariant under exchange of spins. On the other
hand, the j = 0 state gains a minus sign under spin exchange and thus is anti-symmetric
under this permutation. In summation, the 57 = 1 angular momentum subspace is invariant
under every spin relabeling (exchange and identity), while the j = 0 angular momentum
subspace is only invariant under the identity relabeling, where no labels change.

The last example given will be N = 3, as it is the smallest case with multiple copies of
a given angular momentum subspace. The fully symmetric subspace is given below:

;—;) = 1999)

53 = 5199 +1gea) + leas)
5+3) = 5(19ee) + [ecg) + lege)
3 3
2 5) = |eee) .
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Notice that each state is completely unchanged under reordering of Hilbert spaces. There
are two spin-1/2 subspaces that can be simultaneously formed. The standard way to
compute the representations of these states are to use the Clebsch-Gordan tables, given in
figure 3.3.

) J  J
Notation: MM
1/2x1/2| ] (3 M M
1 1 o Y0 =,/ —cosd 5/2
[f7zsi72] 1] 0o o ! dm 2x1/2| 351 37 m; m; | Coefficients
172 1721172 1/2] 1 3 - [FEa7zl )sesae -
-1/2 +1/2[1/2-1/2]1 Y = —4f— sinfe'?® +2-1/2| 1/5 a/s| 5/2 372
|-17z2-172] 1 Bx #1+1/2 | 4/5-1/5[+1/2 +172
yo— 3 3 2q9_ 1 +1-1/2| 2/5 3/5| s/2 3s2
1x1/2 [37 2=V E\E T 0+1/2| 3/5-2/5|-1/2 -1/2
i +3/2| 372 172 s 0-1/2| 3/5 2/5| 5/2 3/2
[ a7 1z Yl =- .IS_ sin fcosd ¢ - -1+1/2| 2/5-3/5|-3/2 -3s2
+1-1/2| 173 23| 372 12 T % -1-1/2| a5 /5| 52
0+1/2| 2/3-1/3|-1/2 172 T _ 3/2x1/2 Lol 7 |-zarz| /s —as3)-5r2
Y2 = o )2 gin?getiv FErza2 1]+ z-72]
0-1/2| 273 1/3| 32| 2 = 3\ o;
—1 +1/2| 1/3-2/3]-3/2 +3/2-1/2[1/4 3/4) 2 1
2x1[71 EEZEE +1/2+1/2[3/4-1/4] 0 0
X33 2] = 3/2x1 |22l vzavziz el 2
I+2+'| 1] +2 +2 l+3."2+'| 1|+3/2 +3/2 =12+ -1zl -1
+2 0073 23 3 2 +372 0 2/5 3/5| 572 3/2 172 -1/2-1/2[3/4 174 2
+14112/3-1/3] +1 41 41 1172 41| 35 —2s5 |12 +1/2 102 -3/2 +1/2| 1/4-3/4|-2
— +2-111/15 1/3 3/5 +3/2-11/10  2/5 1/2 |-3r2-1/2] 1
1x1] 2 +1 0l8ns 1/6-310] 3 2 1 +1/2 0| 3/5 1715 -1/3] 572 352 12
#2{ 2 1| |lov| 2512211000 0 0 0 -1/2+1|310-8/15 16|-1/2 172 -1/2
[ LT+ 1 T -1(1/5 172 310 ~1/2 113710 815 176
+1 ofiz w2l 2 1 0 003 o0-25 3 2 1 -1/2 0| a/5 -1/15 173 572 3s2
o+11/2-1/2l 0 0 © -1+1)1/5-12 30f -1 -1 ~3/2 #1110 -2/5 1/2|-3/2 -3r2
+1-1|1/6 1/2 1/3 o-1| 2/5 122 1710 —1/2-1| 3/5 2/5| 5/2
0 o0lz/3 o0-1/3] 2 1 -1 ola/s-1/6-3/10] 3 2 -3/2 0| 2/5 -3/5|-5/2
-1 +1|1/6-1/2 1/3] -1 1| -2 +1|115-1/3 35| -2 -2 [z 1
o-1fizz 12| 2 -1-1|2/3 13| 3
]f;,_"‘ = [:—l)m}‘?"‘ =1 Of1/2-1/2|-2 1 -2 0]1/3-2/3]-3 Ui jarmyme| i1 jeJ M)
bl P w m o, —im —& = i =y =Fm f L .
Etltlat, o= gy vmeme B2 = (1)1 (igjymam lizir T M)

Figure 3.3: Classical collection of Clebsch-Gordan tables, taken from [32].

The following spin-1/2 subspace was formed by combining a composite spin-1 with a
spin-1/2:

53], = J=eas) +1sea) = 2laoe)
530, = J52leca) —lgee) = ege)).

The Young tableaux corresponding to the above angular momentum subspace is given by

1]2]




The energetically indistinguishable copy of the above spin-1/2 subspace, formed by com-

bining a composite spin-0 with a spin-1/2, is given below:

1 1 1

|§7 —§>2 = ﬁ(legg) — lgeg))
11 1
—, =) = ——=(|lege) — |gee)),
55, = leoe) ~ loee)

which has a corresponding Young tableaux of

1]3]
5T

For completeness, the Young tableaux corresponding to the spin-3/2 subspace is given by
112[3]

The above examples provide valuable insight into the details hiding behind the de-
composition into irreducible representations of angular momentum. These subspaces are
effectively indistinguishable experimentally if one restricts the observables to collective op-
erators, as their actions are identical across these subspaces, and will thus be often referred
to as degenerate subspaces. Further, each angular momentum subspace, regardless of their
dimension, are completely non-interacting under the Tavis-Cummings Hamiltonian. In
fact, any Hamiltonian which can be written entirely in terms of the collective angular
momentum operators will allow no transitions between angular momentum subspaces.

Given that distinguishing the actual micro-state configurations of a particular angular
momentum subspace is nigh indeterminable, it is important to note that the details of
a particular configuration in no way impact one’s ability to compute the action of the
Hamiltonian. The utility of the above discussion has been that one can determine which
angular momentum subspaces will occur, how many copies of each occur, and their respec-
tive energies. For instance, given N spin-1/2 particles, the angular momentum subspace(s)
indexed by j has 2j + 1 states, each separated in energy by hwy, with the ground state
having an energy of —jhwy, which is energetically separated from the lowest possible en-
ergy spin state by (N/2 — j)hwy. Each state in subspace then is written as |j, m), with
m € {—j,—j +1,---,j}, and the action of the sl(2;C) operators appearing in the TC
Hamiltonian can be computed via the commutation relations, or looked up [32]:

J. g, m) = m|j,m) (3.7)
Jeljym) = Vi@ +1) —mm £ 1) [j,m+1). (3.8)
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By ignoring the labels on states coming from different subspaces of the same angular
momentum, and instead including the degeneracies as statistical weights where ever nec-
essary, the problem size is reduced immensely. Without this reduction of size, there are
2N spin eigenstates to consider, whereas the reduction allows one to only consider O(N?)
eigenstates, as computed below.

N/2

> (25 +1) =0(N?).
i={N/2}

Given that one can describe the entire spin ensemble without loss of information as a
collection of non-interaction angular momentum subspaces, it remains only to consider an
arbitrary angular momentum subspace j stemming from N spins, coupled indistinguishably
to a single mode EM field. To better visualize the coming procedure, consider the energy
level diagram in figure 3.4. The horizontal direction is labeled by Fock states, and the
vertical direction corresponds to the number of excitations present.

|J, =7 +5) J, =7 +4) J, =3 +3)
J, =7 +4) J, =3 +3) J, =3 +2)
J, =7 +3) J, =i +2) j, =3+ 1)
J, =7 +2) =i+ 1) 1j, =)
J, =i +1) 1J, =)
1J, =)

10) 1) 2)

Figure 3.4: Partial sketch of the energy level diagram for an angular momentum subspace
and a single mode EM field, without considering H;,;. The ladders terminate vertically at
27 + 1 rungs, and continue horizontally infinitely.
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Since the interaction Hamiltonian,
Hine = hgo(alJ_ +aJy), (3.9)

preserves angular momentum and the number of excitations, it can be immediately un-
derstood that H;,: can only couple levels in the energy level diagram of figure 3.4 which
are on the same horizontal plane. That is, each of these excitation levels can be treated
as independent blocks when re-diagonalizing under the interaction Hamiltonian. This in-
duces a set of bases under which one can simply compute matrix representations for each
excitation block. It is important to recall that the lowest lying energy state in this ladder
is not a 0 excitation state, rather it is a

ko(j) == N/2—j (3.10)

excitation state. The general trend of these bases as a function of k excitations above the
ground, ko(j), is given below:

Bjo={lj,—7)10)}
B],l = {|j7 _]> |1> ) ’j7 _] + 1> |O>}
Bio={l5, =) 12) .17, =7+ 1) 1), |5, —j +2)|0)}
Bjoy = {1, —=3) 127 + 1), 13, =3 + 1) [25) ,--- , 17, 5) 10)}
k=0 =) k) g, —d + 1) [k = 1) - 14, 4) [k —25) }. (3.11)

It is then clear that the effective excitation basis increases in dimension by one for
each level of excitation above the angular momentum ground state, until the dimension
saturates at 2j + 1 for excitations above 2j. For bookkeeping, define the dimension of the
vector space spanned by these bases as

Fixing this ordering of the basis is natural with regard to appealing to intuition, and as
it turns out, is also natural when it comes to setting up a coupling matrix. Each state in
this infinite collection of bases is diagonal under H,o, and thus the action of Hy is entirely
determined by the number of excitations present. Since each basis is a set of constant
excitations, this serves only as a constant multiple times the identity, and can be safely
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ignored for diagonalization purposes. In general, given a diagonalizable matrix A such that
A = B + cl, for some diagonalizable matrix B and scalar ¢, then if B is diagonalized by
P then so is A. As a quick proof,

D=P'BP=PYA—cl)P=P'AP —cl = P 'AP=D +cl. (3.13)

Given this fact, it suffices to only consider a matrix representation of Hing With respect
to each of these bases. Turning back to the energy level diagram of figure 3.4, it is clear
that only horizontally adjacent states have a non-zero matrix element, since the photon
and spin ladder operators only change the excitation level of each Hilbert space by one.
The implication of this, paired with the fixed order of the bases in equation (3.11), is that
the coupling matrix is symmetric and tridiagonal with a 0 diagonal. That is,

[0 lo(i k) |
lo(j,k) 0 L(jk)
L(j, k) = l1(j,k) 0 , (3.14)
- ln1(j, k)
I ln-1(J, k) 0 |

where n = D, — 1, and for ¢ € {0,1,--- ,n — 1},
L k) = (=i + il (k= i Hia |4, =5 +i = 1) [k =i + 1)
=NgoV/j(j+1) = (=j +i—)(—j +i)Vk —i+1
= hgo\/ (207 —i(i — 1)) (k — i +1). (3.15)

Thus, a general solution to the Tavis-Cummings Hamiltonian is mathematically equiv-
alent to a solution to diagonalizing L(j, k) for arbitrary allowed values of j and k. L(j, k)
is known as a Jacobi operator in linear algebra literature, connected closely to the study
of orthogonal polynomials, and finding their eigenvalues is in general not possible to do
in a closed form [19]. In fact, a theorem due to Jacobi states that any real symmetric
matrix can be transformed into a matrix of tridiagonal form, which, if a general solution
for the eigenvalues existed, would seemingly contradict the result of Galois on the general
insolubility of polynomials of degree 5 or greater [30]. Interestingly enough there exists
a recurrence relation for the characteristic polynomial of Jacobi operators, which can be
directly applied to the coupling matrix L(j, k). Let det(L(j, k) — A1) = f,,41, then

fn+1 = _)\fn - ln(]: k)anfla fl = 17 fO = 0. (316)
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The above formula is directly derived from applying the Laplace expansion definition of a
matrix determinant to L(j, k). It is through the recurrence relation for the determinant
(and thus the characteristic polynomial) that the correspondence between Jacobi operators
and orthogonal polynomials is made clear [19].

The state of the art of determining the eigenvalues of Jacobi matrices is quite outside the
scope of this work, and a quick attempt at applying theoretical tools from that field did not
immediately yield promising results. It would seem that an analytic solution to the Tavis-
Cummings problem is still out of reach. That being said, there is a lot of new structure
that can be exploited here for the efficient extraction of relevant information. Dual to
the theoretical tools, there exist powerful computational tools for finding the eigenvalues
of Jacobi operators, namely there exists a single thread eigenvalue algorithm with run-
time O(nlogn) on an n dimensional operator[9]. This would require particularizing for all
values of j and k of interest, though the efficiency gain is still drastic over a naive approach
ignoring the non-interacting block structure of the Hamiltonian.

Before any numerical analysis, there are still some valuable insights which can be ex-
tracted from these coupling matrices. From theoretical work in numerical analysis, this
form of matrix is also well known and referred to as a hollow tridiagonal matrix. A par-
ticularly useful property is that the eigenvalues of the coupling matrix come in opposite
signed pairs — that is, if A is an eigenvalue of L(j, k), then so is —A [51]. In particular if
D; . is odd, then L(j, k) has a 0 eigenvalue. This can be confirmed by using the recursive
determinant formula with A = 0,

det(L(j, k) = fuir
_ln(j7 k>2fn—1
ln(jv k>2lﬂ*2(j7 k>2fn*3

In the above equation, if D;; is odd, then n is even and thus the recursion terminates
with fo = 0 multiplying the recursive product chain, leading to a 0 determinant, which
necessitates the existence of at least one 0 eigenvalue, as expected.

The fact that the spectrum,
A k) = D] LG, K)o = Mo, v # 0, (3.17)
of the coupling matrix is symmetric about zero also means that the respective arithmetic
mean is 0. This can equivalently seen by relating the sum of eigenvalues to the trace:

1 ., trL(jk)

(MG ) = —= D h=

—0. 1
nt1 4 0 (3.18)
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In lieu of a complete description of the spectrum, a statistical description may suffice. The
statistical distribution of a single coupling matrix on its own is not particularly insightful,
as it is just a symmetric sum of delta peaks. The statistics of all the energy levels within
an excitation level across all angular momentum subspaces has the opportunity to be
much more insightful. Since the mean of the splittings within each angular momentum
subspace is 0, the mean of the entire distribution will be 0. The variance of a given angular
momentum subspace can be shown to be proportional to tr L(j, k)?

I
N
+ | =
—_
i\
>
o

1
= tr L(j, k)2 1

The square of the coupling matrix can be computed exactly, as it is still a sparse
matrix, this time a pentadiagonal matrix. The exact form is given below, suppressing the
dependence on j and k for brevity.

_l% 0 l1ls i
0 B+8B 0 Il
Lly 0 . -
LGk = | (3.20)
lzl3 lnflln
' 2+02 0
i L1l 0 lfL ]

Then, the trace of the square of the coupling matrix is simply the twice the sum of the
squares of all the [;(j, k) coefficients.

n

tr L(j, k)? = 2212-(]', k)? =2n°g Y (20 —i(i — 1)) (k —i+1). (3.21)

i=1
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Conveniently, the above sum can be computed exactly using the following formulae:

n

. onn+1
ZIZ_ (2 )
", nm+1)@2n+1
ZIZ ( )6( )

izﬂ ~ nP(n+1)?
—~ 4
=1
Rearranging the coupling coefficients for convenience,
1 . \2 . .
hQ—ggli(j, k)? = (2ij —i(i— 1)) (k—i+1)

=i(i— (2 + 1) — (k+1))
=i’ — (2 +1+k+1)+i(25 + 1)(k+1).

Thus,

n*(n + 1)* nn+1)2n+1)

Tl (@ )+ (1)

tr L(j, k)* = 21} (

)+ Dk + 1)@). (3.22)

Recall that n is a function of j and k through the fact that n = D;; — 1. Simplifying
further and reintroducing the 7 and k dependence,

R g3 Djx(Dyr — 1) (3

tr L(j,k)? = 5 §Djyk(Dj,k -1)— (27 +1)+(k+1)(2Djr — 1)

+3(2j + 1) (k+ 1)>. (3.23)

Then, the variance can be written explicitly:

Var G k) = TR0 (B, (D 1) = (25 1)+ (4 )20 - 1)

+3(25 + 1) (k + 1)). (3.24)

39



When dealing with multiple angular momentum subspaces, it is vital to note that the k&
in equation (3.24) indexes the number of excitations above the angular momentum ground
state, which itself has ko(j) = N/2 — j intrinsic spin excitations. This further implies that
for a given excitation value, only the angular momentum subspaces with ko(j) > 0 have
energy levels at this this excitation level. Given the basic characteristics of the energy
level splittings previously discusses in this section, it is straightforward to provide a partial
sketch of the energy level diagram for the full Tavis-Cummings Hamiltonian.

j=N/2 j=N/2-1 j=N/2-2

Figure 3.5: Sketch of the energy level diagram for the first three angular momentum sub-
spaces and their respective first four excitation subspaces in the Tavis-Cummings Hamil-
tonian. Excitations increase moving vertically upwards, and angular momentum decreases
moving horizontally to the right, as labeled in the sketch.

The energy level splittings of figure 3.5 are exaggerated, since the splittings are of
order gg, whereas the subspaces are split by wqy, and it has been enforced that gy < wy.
Regardless, the exaggeration allows for a cleaner visualization of the split levels in each
subspace at a given excitation. The number of split levels in subspace j at ko(j) + k
excitations is given by D .

One can actually solve the for the energy splittings exactly for the first few excitation
levels of an arbitrary angular momentum subspace j. Recall that L(j, k) has off diagonal
components [;(j, k), given by

LG k) = hgoyJi((27 + 1) — i) ((k +1) —i). (3.25)
For simplicity, take hgy = 1, as they simply determine the units of the energy shifts. For

k = 0 excitations above the ground, there is no splitting and the coupling matrix is a 1x1
0 matrix, so A(7,0) = {0}. Each next subspace will have an additional dimension on the
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matrix until the dimension reaches 25 + 1, such that £ = 1 excitation above the ground,
the coupling matrix can be written as

LG 1) = L/Oz_; \/()2_3} . (3.26)

Finding the eigenvalues of the above matrix and introducing the scaling factors, one finds,

A(j, 1) = {~Tgor/2], hgor/27 }. (3.27)

Continuing to k = 2,

0 VZ2iV2 0
L(j,2) = |V2jV2 0 VA7 =2, (3.28)
0 Va4 —2 0

yielding

A(G,2) = {—hgo\/3] — 2,0, hgo/8j — 2} (3.29)

In principle this process can be repeated until at least £ = 8 excitations above the
ground, where there will be 4 distinct oppositely signed pairs of eigenvalues and one zero
eigenvalue, which can be reduced to a fourth order polynomial. For £ = 9 and beyond,
one can simplify to a fifth order polynomial, which has no general algebraic solution. If
further reductions of order exist, they would indicate the possibility of an exactly solvable
model. As a final computation, consider k = 3 excitations above the ground

0 V2iV3 0 0
N B2 Y B RV v Vo R
0 0 V6i—6 0

yielding

A(j,3) = { - hgo\/5(2j — 1) + /6452 — 645 + 25, —hgo\/5(2j —1) — /6452 — 645 + 25,

hgo\/5(2j — 1) — /6452 — 645 + 25, hgo\/5(2j — 1) + /6452 — 645 + 25}.
(3.31)

While the next few excitation levels have closed form solutions for the energy level split-
tings, they become increasingly unwieldy, while the process to compute them remains
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identical. For this reason, they are omitted. As it stands, the computed splittings deter-
mine the entire energy level structure for the first four excitation levels across all angular
momentum subspaces. The more useful interpretation with regards to determining low
temperature behavior of the Gibbs thermal sate is that the Hilbert space is fully solved
for all eigenstates within four excitation levels above the true ground state. Graphically,
these states are represented by figure 3.7, which includes the degeneracies of the respective
angular momentum subspaces.

x 1 x (N—1) x N(N-3)/2 xN(N-1)(N-5)/6

Figure 3.6: Sketch of the energy level diagram for the first four angular momentum sub-
spaces and the first four excitation subspaces in the Tavis-Cummings Hamiltonian. Ex-
citations increase moving vertically upwards, and angular momentum decreases moving
horizontally to the right. This sketch includes the degeneracy of the angular momentum
subspaces as label, illustrating there is only a single copy of the j = N/2 subspace, N — 1
copies of the j = N/2 — 1 subspace, and so on.

Figure 3.7: Graphical representation of the energy levels determined with previously com-
puted closed form splittings, labelled horizontally by the number of degeneracies of each
angular momentum subspace.

Recall equation (3.6), which determined that there are

g N!(25 + 1)
TT(NJ/2 = PHYN/2 45+ 1)!

(3.32)

copies of angular momentum subspace j. Interpreting this value with statistics in mind, if
one were to randomly sample an eigenstate and determine its corresponding angular mo-
mentum subspace Hre, then the probability that its subspace has total angular momentum
jis (24 + 1)d;/2". Further, if one were to randomly sample the eigenstates of the full TC
Hamiltonian, at excitation level k, then the probability that this eigenstate is contained
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within an angular momentum j space is Dj_py(j)d; /Dy. Recall that Dj measures the
number of states present across all angular momentum subspaces with excitation number
k. Denoting the collection of all the energy levels of the Tavis-Cummings Hamiltonian as
a function of k excitations as £(k), defined by

E(k) = JAGH), (3.33)

the above insights make clear the following:

(E(k)) =0 (3.34)
N/2
D . d
Var(E(k)) = 3 —HESUEE Var A,k — ko())
j=min{N/2—k,{N/2}} k

N/2 J
= > Pt L.k~ ko())* (3.35)

k

j=min{N/2—k,{N/2}}

The d; have a combinatorial dependence on j, and it is unlikely that there is an informative
closed form expression for this sum. That being said, computing this sum requires only
O(N) floating point operations, assuming that the factorial can be computed in O(1) flops.
This can be achieved by appealing to Gosper’s approximation, which becomes increasingly
accurate with increasing V. Numerical plots of the variance of the energy level distribution
as a function of excitations can thus be readily produces for ensembles of even N = 1000
spins:

As one can see in figure 3.8, there are two regimes of interest elucidated with the
knowledge of the variance. The first, slow growth regime is induced by the fact that as
one introduces more excitations into the system, so too does one include more angular
momentum subspaces. Importantly, the ground state is introduced first, which always has
a magnitude 0 energy level splitting. Then, the dominant structure is the degeneracy of
that next angular momentum subspace. Given a sketch of d; it is clear that the number of
degenerate copies of an angular momentum subspace are rapidly increasing as one moves
from j = N/2 towards jma which is in close proximity to the lowest angular momentum
subspaces. Thus, as k increases, there is an increasingly large 0 valued contribution to
the average, which persists until k &~ j,,... Hence the suppression of the magnitude of the
variance of £(k) in this regime.

Near N/2 there is an inflection point where the standard deviation changes behavior to
be much more regular as a function of k. The standard deviation is very closely modelled
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Figure 3.8: A plot of \/Var(E(k)), the standard deviation of the Lamb shifts as a function
of excitations, for an N = 1000 spin TC model. Notice the change in concavity in the
standard deviation at approximately k = N/2 = 500.

with a vk, meaning the variance is linear in k. Intuitively, around k = N /2, all angular
momentum subspaces have a constant dimension of 25 + 1 as k further increases, such
that any impact from the spins is effectively identical with increasing k. The photonic
contribution does still increase, with the action of the ladder operators bringing in a vk
dependence into the coupling matrix. Thus, the variance, being a trace of the square of
this matrix, picks up a linear dependence on k. Then, one would expect that the standard
deviation has a vk dependence after k = N /2, which is indeed illustrated in figure 3.8.

The variance is linear in k£ beyond this point, as indicated by figure 3.9, and performing
regression of the variance as a function of N and k reveals that the dominant growth
behavior of this line is slightly less than g2 Nk. The regression of the slope of the variance
can be seen graphically in figure 3.10. In fact, one can derive the following relationship:
the variance of the collective Lamb shift splittings, as function of k excitations, grows as
the product of N and k for £ > N + 1, so that

Var(E(k)) = O(Nk). (3.36)

The derivation of this statement hinges on understanding how degeneracies of lower angular
momentum subspaces dominate the statistics. In fact, the derivation works by considering
only the strong support of d; as a function of the angular momentum space j, which
encompasses only the lowest O(v/N) subspaces.
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Figure 3.9: Variance of the unit-less (A = go = 1) Lamb shift splittings for N = 1000
spin—1/2 particles. Notice that the variance becomes linear in k soon after & = N/2 = 500.
Notice the non-linearity and reduction of scale of the variance in the lower excitation
subspaces as compared to the £ > N/2 subspaces.
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Figure 3.10: Slope of the variance of the collective Lamb shift splittings in the linear regime,
for various N. Points mark computed values of the slope for each N. The regression model
is Slope(N) = 0.9989N — 0.27, with an R?* value of nearly 1.

Turning now to a brief investigation of the behavior of d; as a function of j, the location
of Jmaz, can be done numerically. As it stands, d; is not a continuous function of j, but by
elevating factorials to Gamma functions or utilizing the Gosper’s approximation, one can
sidestep this issue. Computing j,.. and performing regression for a range of values of N
produces the curve seen in figure 3.11.
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Figure 3.11: A plot of a fit for j,,.,, as a function of the number of spins, N. The points
indicate numerically computed values of j,,.. for select values of N such that 0 < N < 1000,
and the solid line is given by the regression model, —0.268755 + 0.459957 % N0-51029,

As illustrate in figure 3.11, j,,.. follows an almost square root of N dependence, at
least up to N = 10,000. The fit was found by first finding the power law using a log-log
regression. Then, that power was utilized to transform the data such that linear regression
was done to enhance the fit. This resulted in

Jmaz(N) = 0.06724 + 0.450427 + N°-51029, (3.37)

It should be noted that there is seemingly no single power law dependence that accurately
describes jq. for all ranges of N. After a variety of transformations were attempted on
the data, this one was determined to be the best fit, even though there are structured
residuals, visualized in figure 3.12.

From joint research on this subject, an approximate mathematical relationship for
Jmaz €an be computing by appealing to digamma functions [16]. The resulting formula is
extremely precise, with increasing accuracy at higher values of N:

N 1 1
]maw(N):g__—i_——i_
2 2 6VN

From the same work, the region of strong support is approximately determined. For
visualization’s sake, figure 3.13 showcases the shape of the the degeneracy distribution as a
function of 7, and illustrates that almost all population is contained within a small fraction
of the lowest angular momentum subspaces, all localized near j,,q..

1

O(x):

(3.38)
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Figure 3.12: A plot of residuals of the fit for j,,q.-

Mathematically, external work has shown that the strong support of d; is all j such
that 0 < j < O(VN) [16]. Then, to prove the statement about the variance, it is easiest
to work with k > NN, since this fixes D;, = 2. Then,

Var(E(k)) = 2iN > dy (LG bP) (3.39)

Recall that the trace of the square is given by,

tr(L(j, k)*) = % 1Bjl* ~ % 1Bl (2K + 45 + 13)
+ |Bjsl* (27K + 4k + 85 + 23/2)
— 1Bl (185K + 44 + 22K + 53)
+4(jk +2j + k +2). (3.40)

Using the fact now that |B; ;| = 2j + 1,

. 8 . . .
tr(L(j, k)%) = k(gf’ +45% — gj)
[
- N(3] + 2j 33)
4 34
+ (532—2]2 ?g—2). (3.41)
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Figure 3.13: Degeneracy as a function of angular momentum, scaled by the total number

of states. Here, N = 1000, the horizontal axis labels j, and the vertical axis represents the
degeneracy weighting function, d;/2N.

We focusing on only the terms of order k, the dominant part of the expression is given by

4
gk:(2j3 + 352 — 2). (3.42)

It remains to determine the order k£ contribution to the entire variance,

4 dj .. . .
Var(£(k)) = -k > 2—;(273 +352—2j) + -, (3.43)
J

where the terms of order &° will be dropped moving forward.

In order to make the sum over j tractable, one can bound d; to show that for all allowed

values of 7, ; .
o= O(N). (3.44)

Since d; < d;- for each j, this bound needs only to be shown for j = jya.. Then, taking
only the leading term of jimes = VN /2,

4 VN2 < N )
e N2+ N2+ 1\N/2+VN/2+1)

Focusing on the first factor,

(3.45)

2
N+l
VN+1 +

= O(1/VN). (3.46)
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Since k = N/2+VN/2+1, |N/2 — k| = o(n*?), which allows for the utilization of the
following asymptotic equivalence relation[11]:

N
(N ) oL (2PN, (3.47)
k N7 /2

Then, using the fact that N — 2k = /N — 2,
1
T (IR — VAR — VBN = (14 O(1VN)). (348)

Putting this together with the asymptotic equivalence relation,

2N

(N/2+\]/VN/2+1> \/W(

This finally implies

1+ O0(1/V'N)) = 02V /VN). (3.49)

djpoe = OV /N), (3.50)
and thus it hold that for all allowed j,
d;2~N = O(1/N). (3.51)

Utilizing all of these facts about d;, and that the strong support of the weighting func-
tion is from 0 to O(v/N), the sum can be computed explicitly under these approximations
as

4kd; 25° —|—3] —2] 4k ‘ ‘
IR ST o)er -2

J
OV
~ o(ﬁ) > (25% + 357 - 2j)
=0

(5)ow?)

(NE). (3.52)

O
O

Then, the root mean square energy level splitting of the Tavis-Cummings model grows
as goO(V NEk), which parallels the energy level splittings of the Jaynes-Cummings model,
which grows as exactly gov/k. The non-linear energy level splittings of the JC model
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have been used to verify that superconducting qubits are interacting with a resonator in
a quantum manner [10]. The same non-linearity is then present in the TC model at high
(k > N) excitation values, now with an additional collective enhancement factor of v/N. It
is then reasonable to believe that this same experimental design can be used to verify that
a collection of qubits is interacting with quantized EM field under a collective quantum
interaction.
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3.2 Thermal Behavior of the TC Hamiltonian

To connect the results presented so far and make predictions about physical reality, one
needs to consider thermal states and experimentally accessible measurements. The de-
scriptive statistics on (k) provide information on the support of the accessible energy
levels and their magnification due to degeneracies. All things being equal, if the support
of £(k) is small compared to the dominant energy scale of the problem, then the thermal
skew due to the Gibbs factor e #¥ is effectively constant across the entire excitation space
for most values of g = kBLT This is indeed valid under the previously made assumption
that go < wp. Thus the support of £(k) is determined by diagonalizations of L(j, k), and
the shape of the distribution over this support is more strongly dependent on degeneracy

counting than temperature effects.

The visualization of £(k) can be made through a plot of the density of states. The
density of states is defined as a function energy, with value given by the number of states
present at a given energy. The state weighting function is computed as a sum of degenera-
cies of eigenstates within accessible angular momentum subspaces at a given energy:

DY {dj AEAGR) (3.53)

0 else

Then, the density of states is a sum over delta-function weighted by wy, such that

n(E) =YY" wi(N)S(E — h(kwo + Ago)). (3.54)
)

k=0 \e€(k

With a log variable transformation on n(FE) for the sake of visualization, the density of
states can be directly plotted to illustrate the energy level structure of the TC system across
excitation spaces, and demonstrate the breakdown of the rotating wave approximation in
certain parameter regimes. The density of states for the case where the rotating wave
approximation is valid is given in figure 3.14, and in figure 3.15 for the case where the

RWA breaks down.

The density of states provides direct access to the partition function, as the partition
function can be acquired by taking the Laplace transform of the density of states:

Z(B) = / h dEe PEn(E). (3.55)

0

This definition is equivalent to the Hamiltonian focused definition to be given in equa-
tion (3.57), but arguably provides a better intuition for how the shape of the degeneracy
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Figure 3.14: Scaled density of states for N = 20 spins, with w/g = 500. The rotating wave
approximation is valid for the entire range of k values shown in this plot. The increasing
thickness of the lines at each excitation subspace illustrates both the growth of the variance
of the Lamb shift as a function of excitations and that eventually, at high enough energies,
the RWA will become invalid.
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Figure 3.15: Scaled density of states for N = 20 spins, with w/g = 100. The RWA begins
to break down at around k£ = 15 excitations, and overlapping subspaces indicated that the
notion of “excitation number” is not a good quantum number, violating the underlying
assumptions. Thus, the TC model should not be used for high energy experiments or
systems with ultra—strong coupling.
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levels.

The computation of a full thermal distribution is straightforward at this point. Plot
E(k) about k on the x-axis, scaling the axis by go/wp, up to some kyq,. This produces an
un-normalized plot of an infinite temperature distribution. To include finite temperature,
simply multiply by the curve e #F, where E is the energy scaled appropriately, and finally
normalize the entire curve to area 1 (equivalently, divide by the partition function).

To illustrate this behavior, consider an ensemble of N = 100 spins. Thanks to the
subspace decomposition, computing all eigenvalues for every subspace up to k = 200
excitations can be done in a matter of minutes on a laptop. From there, it is only a few
more seconds of computation time to combine all of that data into a thermal distribution for
a given temperature. As a first attempt at visualization, consider a reasonable experimental
situation where the spin-cavity system sits in a dilution refrigerator at 7" = 0.1 Kelvin.
Take wg = 10 GHz, and gy = 10 Hz.

It seems almost surprising that even at such a low temperature, with relatively small
ensemble of spins, that the average energy is so far from the ground state energy. Thanks
to the efficiency of all the necessary computations, one can easily plot the average thermal
energy as a function of temperature to see how far one has to cool in order to get a
distribution near the ground state.

Figure 3.17 illustrates that there is a region where the expected energy of the thermal
ensemble varies much more rapidly than on the rest of the domain. Based on everything
learned thus far, this behavior can be attributed to degeneracies of angular momentum
subspaces. The partition function, and the Gibbs thermal state for this Hamiltonian,
given by )

. e—BHrc

PT = troPHrc’ (3.56)
can be easily calculated numerically, as indicated by the calculation of the previous plots.
This is mainly due to the fact that the only important quantities that need to be extracted
from the coupling matrices are the eigenvalues. If the eigenvectors corresponding to the

computed energy level splittings were required, it would be much more computationally
difficult.

The partition function for a Hamiltonian with energetically degenerate, but all discrete,

quantum states is given as a function of inverse temperature, § = kBLT, such that

Z(B) = tre” ™ =" D(E)ePE. (3.57)
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Figure 3.16: Thermal population distribution for the TC Hamiltonian at wy = 10 GHz,
g = 10 Hz, and N = 100 spins, for selected temperatures of T = 0.025, 0.200, 1.000 Kelvin.
Notice that at each temperature, the ground state population is not appreciably populated
for temperatures on the order of hundreds of mK or greater.
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Figure 3.17: Plot of the average thermal energy for an N = 100 spin TC model as a
function of T in Kelvin.

In equation (3.57), one sums over all energy eigenvalues of 7:[, denoted by FE, with de-
generacy given as D(F). This can be broken down into a triple sum, over the two good
quantum numbers (k and j) and then finally the energy level splittings within a (j,k)
subspace. Then,

oo max{N/2—k{N/2}}

ZB) = > dj< > exp (= hB(kwy + )\go))). (3.58)
k=0 AEA(

Jj=NJ/2 Jk—ko(j))

The form of the partition function in equation (3.58) fully illustrates how the block de-
composition can aid both in computations and for intuition. As a note, the sum over j in
equation (3.58) is meant to be taken as counting down — this could easily be transformed
into a proper summation, but at the cost of clarity within the argument of the exponential.

In order for any summation representing the partition function to be well defined, it
must converge. By inspection, notice that while the contributions from the degeneracies
of angular momentum spaces is quite large, the contribution is bounded and achieves a
maximum contribution when k = L%J Similar behaviour occurs due to the sum over \.
The infinite sum over k is then eventually dominated by a decaying exponential, which
converges so long as the temperature is positive. The Tavis-Cummings Hamiltonian is
infinite dimensional and thus does not permit negative temperatures. For the sake of
argument, a negative temperature could be introduced on the spin system before it is

coupled to the cavity, and then rapidly introduced, which would be modeled by upgrading
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go to a switching function at some critical time t3. Even in this case, the resulting state
would not be a thermal state of the new Hamiltonian, and after some thermalization time,
the resulting temperature would still be positive with a finite partition function.

Even though convergence is guaranteed for the partition function as a whole, there
is still a clear competition for dominance at the lower excitation levels between d; and
exp(—kfhwy). Consider for a moment the portion of the partition function formed by only
summing over the ground states, as those terms provide the necessary intuition without
much distraction:

NN =3) s . N(N —1)(N —5)
2 * 6

It is not uncommon in an electron spin resonance (ESR) experiment to consider and ensem-
ble of between 10 and 10'® spins coupled collectively and resonantly to a single mode EM
field in a cold dilution refrigerator [41]. Consider N = 10'? with the usual wy = 10GHz. It
appears that while one is considering angular momentum subspaces far above j,,4., then
decreasing j leads to increasing powers in N in the expression for the degeneracy. Since
numerics leads one to expect jae = O(\/N ), the region of strong support for the angular
momentum degeneracy distribution occurs about 10'2 — 10° ~ 10'? angular momentum
subspaces away from the true ground state. Thus one would expect this behaviour to re-
main true for a long while. Within these low excitation angular momentum ground states,
the dominant term, as a function of k, is then

e+ (N —1)e P04 e ?FMo 1 (3.59)

(N exp(—Bhwy))". (3.60)

For large spin ensembles, the low excitation sector of the partition function can be
viewed approximately as a sum over truncated geometric series. The geometric series with
the largest rate factors are then the ground states of each angular momentum subspace
with an approximate rate factor of r = N exp(—fhwy), and one would expect then that
their behavior dominates over the other truncated series. It is well known that for geomet-
ric series, convergence is guaranteed if |r| < 1. So then, how does this behavior translate
into the partition function? The only tunable parameter in the model is currently taken to
be the temperature, and so temperature is the determining factor for the “convergence be-
havior” of the truncated geometric series. Translating r < 1 into experimental parameters,
one finds

hw() hw()
NeXp(_k;B_T)<1 =4 T<m

The critical temperature for the example parameters given comes out to 71, = 0.00276437
degrees Kelvin. Then, one can compute the behavior of the full partition function for the

(3.61)
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first 4 excitation levels across all angular momentum subspaces. That is, a sum over all
energy levels drawn in figure 3.7. To help visualize how the partition function behaves as
a function of temperature, consider a plot of partial sums of the partition function, given
in figure 3.18. The kth partial sum of the partition function is written Z,(53), and defined
in equation (3.62).

k max{N/2—k {N/2}}

Ze(B) = > dj< > exp (= Bh(Kwy+ /\go))). (3.62)
k=0 AEA(

j=N/2 3,k —ko(4))

Since the ground state is set adjusted to an eigenenergy of E = 0, the population of
the ground state is simply given as 1/Z(f). This puts the ground state population in
the cold regime at T' = 0.002 < T, at 0.999974. At the critical temperature, the ground
state population is approximately 0.35, and in the hot regime, T' = 0.0035 > T., the
ground state population is at least less than 107, There is clearly an extreme sensitivity
to temperature in the lowest regime, with a fast transition from the ground state being
very well populated below 7., and being hardly populated above T.. Surprisingly, the
simplistic geometric series argument produced a very accurate rule for computing where
this cut lies, given the back of the envelope nature of its computation. Mathematically,
the drastic change in low excitation behavior is precisely determined by the competing
scaling of degeneracy terms and Gibbs thermal factors in the partition function. For this
reason, thermal states with temperature below T, shall be called temperature dominated,
while thermal state with temperature above T, shall be called degeneracy dominated.

So where does the population go in the degeneracy dominated regime? By appealing
to smaller ensembles of spins, this question becomes much easier to answer. The average
energy as a function of temperature, plotted in figure 3.17 gives the approximate location
of population by first indicating which excitation level is dominant. Since the ground
states of each angular momentum space are populate faster due to equivalent orders of
contribution from the Gibbs factors and degeneracy factors, one would expect that most of
the thermal population occurs in the ground states near the location of the average energy,
with some population in nearby excited states as well. In particular, the N = 100 plot of
figure 3.17 shows a very rapid rise in average energy to just above £/ = 40hw. Given that
Jmaz(100) = 5, it is unsurprising that after average energy reaches approximately 45hw the
slope as a function of temperature becomes drastically reduced. It would be at this point
that any scaling effects due to newly introduced degenerate angular momentum subspaces
begin to saturated, and thermal scaling begins to take back control. That being said, the
presence of the degeneracies has irreversibly pushed up the average thermal energy at a
given temperature.
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Figure 3.18: Plots of Z,(/3) with temperature below, at, and above, the critical temperature
for an TC model particularized to N = 10'? spins. Notice the vastly different scales and
concavities for each temperature. In particular, the T' = .0035 sample does not appreciably
populate the ground state.
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To illustrate the transition between the temperature and degeneracy dominated regime,
consider zooming in on the average energy as a function of temperature for N = 100 spins,
focusing on temperatures nearby to the critical temperature for this ensemble, T, = 0.01658
K. This behavior is illustrated in figure 3.19
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Figure 3.19: Plot of the average thermal energy for an N = 100 spin TC model as a
function of T' (in Kelvin) in the ultra—cold temperature regime. Marked on this plot
are the constant lines T, = 0.01658 and (F) = fwy, which nearly intersect on the curve
describing the average thermal energy for this ensemble.

As seen in figure 3.19, the critical temperature almost exactly corresponds to (E) = huwy
for N = 100. In actuality, (E);_; 655 ~ 1.003hwp, the coincidence is indeed striking,
albeit a likely artifact of the particular parameter set. One would indeed expect that
within the temperature dominated regime, average energy be near or less than Awy, since
the population is almost entirely contained within the true ground state, which has an
energy eigenvalue of 0. The drastic increase in average energy as temperature rises into
the degeneracy dominated regime corresponds directly to the drastic decrease in population
of the lowest lying excitation spaces.

To investigate the sharpness of the transition as a function of N, consider a plot of the
expected energy as function of temperature, with the identical values for wy and gy, while
also varying N. First, consider the average thermal energy in the degeneracy dominated
regime.

Now, consider a plot of the same behaviour, while restricting to even lower tempera-
tures, in order to focus on the temperature dominated regime.
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Figure 3.20: Plot of the average thermal energy for varying N, as labelled by the legend,
as a function of T'. In the degeneracy dominated regime, the expected energy is concave
down in 7', and monotonically increasing in V.
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Figure 3.21: Plot of the average thermal energy for various sized spin ensembles, given by
N, as a function of the temperature T'. In the temperature dominated regime, the expected
energy is concave up in 7', and monotonically increasing in N.

A full description of the behavior of this function is not possible to do exactly in a closed
form. This is due to the fact that the expected energy can be written as a derivative of
the natural logarithm of the partition function, which itself admits no closed form solution
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for the Tavis-Cummings Model.

02(8) ~—~ . up
o e

=20 Z5 25

= ~Z(9)(E) (3.69)
1_02(p)

— W= TTm e

— (E) = —m%ﬁz(ﬁ) (3.64)

Thus, while an exact closed form equation describing this behavior is seemingly out of
reach, useful trends and information can still be extracted.

Firstly, at a given temperature, the difference in expected energy as a function of N
appears quite regular, and is in fact linear. To see this, consider a plot of the average
energy as a function of N, given a fixed temperature 7T'.
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Figure 3.22: Plot of the average thermal energy of the TC model for select temperatures
as a function of the number of the spins, N. Notice that at each temperature, (E) is a
linear function of N.
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Regression confirms what the eye suspects in figure 3.22, each constant temperature
slice is a linear function in N. This indicates that the average energy as a function of N
and T in this regime can be written as a linear function in N, with slope and intercept
depending solely on 7', at least for the values considered numerically.

(EY(N,T) = m(T)N + b(T) (3.65)

Now, fitting m(7") and b(T) proves to be much more challenging, as these functions
inherit the complicated behavior of the partition function. After a bit of investigation, and
many failed fits, it became clear that m(7T") was a much more complicated function than
b(T). In fact, it was discovered by repeated variable transformation that b(T") could be fit
to a two parameter model:

b(T) = aT exp (- %), v,y € R,. (3.66)

A large confounding issue with the regression for m(7T') was that the function seemed to
involve a 0 x oo type limit as 7" — 0. The limits always converged to 0 for any attempted
model, but proved to be difficult for the numerical regression algorithms to handle. A
variety of variable transformations were done in an attempt to improve stability, and
eventually a 3 parameter model was reached that yielded good fitting behaviour:

z

logm(T) =x 4+ ylogT + TiT

x,y,z €R (3.67)

Putting everything together, the resulting fit to the data produced the following final
approximate function for (E).

.0435
T1.1

(E) (N, T) ~ exp ( (3.68)

0.03675
— 0.688) 70092276 1 T exp (2.57011 — )

The main issue with the fit is that small residuals in the function m(T') are magnified
by when they are multiplied by large N. This causes the deviation seen in the plots of
figures 3.23 and 3.24, which show the predicted values of (F) from the regressed model
along with the actual computed values.
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Figure 3.23: Shown are plots of average energy of the TC model as a function of tempera-
ture for various values of N, in the temperature dominated regime. Computed values at a
given value of N are labeled by the legend, and their corresponding predicted values from
the regression model are indicated by the dashed lines.
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Figure 3.24: Shown are plots of average energy of the TC model as a function of temper-
ature for various values of IV, in the degeneracy dominated regime. Computed values at a
given value of N are labeled by the legend, and their corresponding predicted values from
the regression model are indicated by the dashed lines.
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3.3 Dynamics of Initially Thermal States

The sensitivity of the thermal state to temperature, and the surprisingly low critical tem-
perature for ensuring a state has a significant population in the low excitation eigenstates,
has profound impacts on experimental design and interpretation. The common practice in
literature is often to assume that population is only contained in the j = N/2 subspace,
and that the dominant experimental signature seen in these experiments is determined by
transitions between the £ = 0 and k£ = 1 excitation subspaces within this angular mo-
mentum space [41, 3, 23, 28]. For an ensemble of N spins, the k& = 1 energies of these
eigenstates are split by +hgov/N, which can easily rise into the MHz regime. This has led
to the confusing notion of single spin ¢, given by g = ¢o, usually on the order of tens of
Hertz, and collective spin g, given as g = gov/N, which occasionally even replaces gy in the
statement of the Tavis-Cummings Hamiltonian [11, 3, 23, 28]. As already shown in this
work, the energy eigenstructure, and its relation to thermal states, has a much more rich
and complex structure than these assumptions seem to imply.

At present, experimentally accessible information for a quantum system described by a
Tavis-Cummings Hamiltonian are given as expectation values of observables. In particular,
one can measure on the spins through a magnetic interaction, or on the cavity through
homodyne detection of a field quadrature [20]. Measurement on the spins would physically
require a set of conducting coils be introduced around the spins, which can pick up a

free induction decay (FID) signal, effectively measuring <JAJ;> The presence of these coils

is dual purposed, as one can also send current through them, inducing a magnetic field,
which provides some measure of collective control on the spins. The cavity observable is
taken to be the z field quadrature, represented by % <d + dT>. By appealing to the circuit
description of QED, this is realized through current or voltage measurements across the
quantum resonator. As with the spins, the observable operator can be similarly utilized as
a control on the EM field by sending current or voltage into the resonator.

The detection of the precession of spins has been long studied through the field of
NMR, and the pulse sequences of NMR for enhanced sensitivity translate directly to the
measurement of a Tavis-Cummings type system. The theoretical description of an experi-
ment is then seemingly straightforward: define an initial state, a pulse sequence, and then
an observable. The pulse sequence corresponds to a series of unitary actions on the initial
state, and then computation of the observable is simply the expected value of that updated
state evolving in time. Further, time evolution of an energy eigenstate is simple:

iEt

H[(0) = E[(0)) = [o(t) =e™ [1(0)). (3.69)
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By linearity, this extends to any superposition of energy eigenstates. As of yet, the actual
components of the eigenstates in the spin-cavity basis, B;, have not been needed for any
computations. Unfortunately, in order to compute the action of J, or a', one needs either
the representation of these operators in the energy eigenbasis, or the components of the
energy eigenbasis in the spin-cavity basis. In either case, a full orthogonal diagonalization
of L(j, k) is now required, and there is a major loss of computational efficiency since the
O(nlogn) eigenvalue algorithm is no longer sufficient.

It is clear that there are two paths to experimental prediction that do not overload
computational scaling: small spin ensembles and restrictions to low excitation subspaces.
The restriction to low excitation subspaces embodies the current practice for descriptions of
large spin Tavis-Cummings models. As discussed, this requires one to be in the temperature
dominated regime of the thermal distribution. The representations of the actions of J,, and
the photon ladder operators can be computed with relative ease when restricting to the
lowest excitation subspaces. For small numbers of spins, even a full Hamiltonian description
of is feasible, and can provide insight into high spin low excitation simulations, without
having to be computationally clever.

Consider a Tavis-Cummings Hamiltonian with N = 3 spin-1/2 particles. There are two
angular momentum subspaces, j = 3/2 with degeneracy 1 and j = 1/2 with degeneracy
2. The energy splitting eigenvalues can be easily computed. Starting with the j = 1/2
subspace, which has a ground state with £ = 1 excitation. For k > 2,

A(1/2,k) = {—hgoVk — 1, hgov/k — 1} (3.70)

The respective eigenvectors to the above eigenvalues are given by

1
5 (172,212} k= 1) = 1/2,1/2) [k~ 2))

1
5 (11722172} k= 1) +[1/2,1/2) [k = 2)).

The j = 3/2 ground state is the true ground state of the Hamiltonian, with k£ = 0 excita-
tions. At k = 1, the energy splitting eigenvalues are given by

A(3/2,1) = {—V/3Rgo, V3hgo}, (3.71)

with corresponding eigenvectors of

1
S5 (1372.-3/2) 1) = I3/2,-1/2)|0))

(13/2,=3/2) 11) +13/2,-1/2) [0} ).

-

2
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Moving on to k£ = 2,

A(3/2,2) = {—V/10hgy, 0, v10kg, }, (3.72)
with corresponding eigenvectors,

1
¢—1—0(\/§|3/2’ —3/2)[2) — V5 3/2, -1/2) |1) + v2[3/2,1/2) |0) )
1

NG
(V313/2, -3/2) 12) + V5 13/2, —1/2) |1) + v/2|3/2,1/2) |0) ).

(V213/2,-3/2)|2) V3 3/2,1/2)0))
1
VD)

For k > 3, the energy eigenvalues can indeed be written in closed form,

A(3/2,k) = { - hgg\/E)k: — 5+ 16k — 32k + 16, —hgo\/E)k: — 5 —/16k2 — 32k + 16,

hgo\/E)k: 5 /I6KE — 32k 1 16, hgo\/5k — 5 + V/IGRE — 32k 1 16}.
(3.73)

The energy eigenvectors as a general function of £ become very unwieldy, their closed form
solution is omitted here, but can be found in [16]. With the structure of the Hamiltonian
determined, interpreting the outcome of experimentally motivated simulations is possi-
ble. The N = 3 hybridized energy level ladder, additionally marked with j+ meditated
transitions, is given in figure 3.25.

Consider a simple experimental procedure of “pulse and measure”. The unitary se-
quence is then simply a 6 rotation about the x axis, and then an acquisition of the free
induction decay, allowing the system to evolve under the Hamiltonian. This sequence can
be mathematically described by a single unitary operator, such that

O(t) = exp (_f‘t) exp ( _ i@jx). (3.74)

The FID signal can be then computed as
(dut0)) = tr (G000 1), (375

for some initial state p;,. Computing the action of the transverse pulse can, in principle
be done by appealing to the modified Euler formula for su(2) to SU(2) correspondence:

0 0

exp(—iﬁn-&) :]lcos§—in-6'sin§. (3.76)
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Figure 3.25: Illustration of the resulting hybridization of energy levels in the Tavis—
Cummings model for N = 3, explicitly on resonance such that wy = ws = w.. Vertical
single arrow lines (red) indicate transitions mediated by j+, meaning that the eigenstates
represented by the horizontal bars have a non-zero j+ matrix element. Transitions are
all-to—all between neighboring excitation subspaces of the same angular momentum, with
some transitions between the k£ = 2 and k£ = 3 subspaces omitted for clarity. Note that
there are no allowed transitions via collective spin or photon operators between distinct
angular momentum subspaces, regardless of the value of j. Separation between excita-
tion spaces is a constant wg, denoted by bidirectional arrows (blue) between the pre—
hybridized angular momentum states. Lamb shift splittings are denoted be bidirectional
arrows (green) to the right of the hybridized states. In the j = 1/2 subspaces, these split-
tings are given by E) /) = goVk. In the j =3 /2 subspace, the Lamb shifts are given by:

Espp1 = goV3 ~ 1.73gy, E322 = 90V/10 &~ 3.16g0, E3/231 = 9oV 10 — V73 &~ 1.21gp, and
E3/232 = 9oV 10 + V73 ~ 4.31gp.
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Above, n is a three dimensional real unit vector, and & is a symbolic vector with Pauli
operator components, such that

N0 =n,0, +ny0y,+n.0,. (3.77)
Thus,
al 0 0
Ugr(0) = exp ( — iQJx> = H (]1 cos — — i&;i) sin —), (3.78)
i=1

which in principle can be written as an order N polynomial in J;, but it is computationally
tedious to use in practice.

It was shown in [11] how to expand and simplify a general element of SU(2) in terms of
the generating element, n - J, for a given total angular momentum representation labelled
by j. Given a 3 dimensional real unit vector n, and 6 € R, for a spin-j representation of

J,
R . 27 (0 .
Ur(0) = exp (ifn - J) = p;! ) (2isin(6/2)n - J)". (3.79)

The coefficients, ¢J(0), are defined such that for z = sin®(6/2), e = 0.5(1 — (—=1)%77),

4= (o3) P (o) o0

The operator Trunc truncates an ordered series, which should be understood in this context
as operating on the Taylor series expansion of the argument. To illustrate the behavior of
the operator, consider the truncation of a general power series which converges on some
interval about z = 0:

Trgnc(Zakzk) = Zakzk. (3.81)
k=0 k=0

If desired, the formulae for fully expanding out the coefficients of equation (3.79) can be
utilized to fully define the action of a J, pulse and subsequent expectation values. A full
treatment in this manner is far too computationally complex for ensembles with large V.
The full time evolution treatment is given for N = 3 below.

One can numerically compute the expected value for J, as a function of time for a small
N Tavis-Cummings model by solving the Schrodinger equation. For larger N samples, this
approach is extremely inefficient. The experimental observable of interest is the spectrum

formed by taking the Fourier transform of the resultant time series for <J;(t)> Before
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diving into the numerics, it is instructive to first simply consider the qualitative actions of
the desired operators. For now, take N = 3, with an initial state in the ground state of
the Hamiltonian.

Firstly, assuming that all population starts in the ground state translates to an initial
state entirely within the 7 = 3/2 angular momentum subspace. Since the collective sym-
metry isn’t broken in this scenario, all populations must remain in this subspace. The 6
rotation about x can be written as a polynomial in jz, and will thus be able to excite co-
herences in the & = 0, 1, 2, 3 excitation subspaces. Because the resultant state is a coherent
superposition, each term in the superposition picks up a time dependent complex phase
with frequency equal to the state’s energy. A detection through J,,, which couples neigh-
bouring angular excitation spaces, will yield a signal at the difference of energies of any
two populated states which are separated by a single excitation. For example, transitions
between the £k = 0 and k£ = 1 subspaces mediated by J,, should produce a non-zero signal
of frequencies w + gov/N. If 0 is small, one might expect that rotation unitary will only
induce coherences of an appreciable magnitude on excitation space over. That is, for small
0, the polynomial for Ug is well approximated by the first order terms. This assumption
will be rigorously derived later in the section for general N. Denote the ground state as

l9) =13/2,-3/2) 10), (3.82)
and the k = 1 states as

oo .90V = —=[3/2,~3/2) 1) £ —=[3/2,~1/2) |0} (3.83)

V2 V2
Under the small # assumption, the action of the rotation unitary is then
Ur(0) |9) = ao lg) + a— |wo — goVN) + ay |wo + goVN) . (3.84)
The coefficients are a function of # and can be determined through the matrix elements,
Qp = <g) UR(8> ‘g>
a_ = <w0 - go\/ﬁ UR(Q) ‘9>
a, = <w0 + gox/ﬁ‘ Ur(6) ’g> .

Further effort into computing these coefficients will be done later in this section in a more
general setting. Now, determining the time evolution of this state is trivial since the
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superposition is already expressed within the energy eigenbasis:

W(t)) = exp (— itH/h)Ur(0) |g) = o |g) +a_e @o0VME |0 — g V/N)
+ oz+e_i(“’°+g°*/ﬁ)t |wo + go\/ﬁ> .

It only remains to compute the expected value of J, as a function of time, which is given
as

(L) = ()] o)
= a3a+e*i(w°+g°\m)t <g) Iy |wo + go\/ﬁ>
+ ozz‘)a_e_i(”o_gm/ﬁ)t <g‘ JA;E ‘wo — gox/ﬁ> + h.c.

— 23%( <g‘ UR(—Q) ‘g> (e—i(wo-i-g()\/ﬁ)t <g’ jx wo + 90\/N>‘2
(o] deon = VY[ ) ). (3.85)

+ e—i(wo—go\/ﬁ)t

The exact magnitudes given as matrix elements could be computed here, but the precise
expressions are not very enlightening. The main result of this derivation is to illustrate

that there are two sinusoidal components of <jx (t)>, with frequencies w = wy &+ govV N. In

the Fourier transform of the FID signal, one should see peaks about these frequencies and
nowhere else. It is expected that they will be of similar magnitude.

Now, by convention the ground state has been taken to be a state of 0 energy, and so
it takes a trivial complex phase as its time evolution. If the initial state was an eigenstate
with energy splitting eigenvalue A\; and k excitations, then any excited coherence with a
state of k + 1 excitations and energy splitting eigenvalue of Ay would induce a sinusoidal
signal of frequency w = wy + (Af — A;). In case of the ground state, k = 0, A\; = 0, and
A f= ﬂ:go\/ﬁ .

To confirm and visualize this prediction, consider a full numerical simulation of this
phenomenon. Consider the particular parameter set of wy = 10, gy = 0.2/4/3, and h = 1.
These experimentally unrealistic parameters ensure that full numerical simulation of a
measured signal does contain incommensurate time scales, and lends to easier visualization
of the resulting spectrum. Finally, take § = 0.1. Computing the time evolution of the initial
state with these parameters and taking the Fourier transform of the measured signal results
in figure 3.26
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Figure 3.26: Fourier transform of the Free Induction Decay signal measured through

A

<Jx(t)> for the TC model initially in the ground state, with N = 3 spins, under a J,

pulse of § = 0.1. The signal is scaled so that the maximum is equal to 1. Notice the peaks
are precisely located at wy & govV/N = 10 £ 0.2, as predicted.

Figure 3.26 is not all that surprising, it is the usual prediction made for the spectra of
the Tavis-Cummings system, often made without consideration of the temperature of the
sample or the angle of rotation. It is the goal of this section to show that two peaks shifted
from wy by £gov/N, as shown in figure 3.26 almost never the correct description.

Small spin examples have lower computation difficulty, and so consider relaxing the
small angle assumption. The expectation is that with a larger flip angle, additional coher-
ences will be excited within the £ = 2 and k£ = 3 subspaces, leading to more peaks than
just the £gov/N peaks. In principle, these coherences exist in the small angle case, but are
negligible in magnitude. Importantly, the additional coherences will introduce new peaks
in the Fourier transform of the measured signal, located at the energy differences between
the £ = 1 and 2 subspaces, as well as the between the k£ = 2 and 3 subspaces. Given that
the N = 3 Tavis-Cummings model has been solved earlier in this section, one can refer
to the sets of eigenvalues given in equations (3.72) and (3.73) to predict the locations of
the newly induced peaks. The spectrum for the case of § = 7/4 is shown in figure 3.27.
Additionally, the spectrum for 6 = 7 /2 is shown in figure 3.28.

While the spectrum is still dominated by the gov N splittings, one should note that
for N = 3, there are 4 spin states within the Dicke subspace, and 4 outside of it. As N
increases, the proportion of states contained in the Dicke subspace falls drastically. For
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Figure 3.27: Fourier transform of the Free Induction Decay signal measured through
<J;,(t)> for the TC model initially in the ground state, with N = 3 spins, under a J,

pulse of # = 7 /4. Notice that peaks are located at wy + govV N, but that these two peaks
are no longer the sole structure of the spectrum.
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Figure 3.28: Fourier transform of the Free Induction Decay signal measured through
<jx(t)>, under a J, pulse of # = 7/2. Notice that peaks are located at wy + goV'N,
but that these two peaks are no longer the sole structure of the spectrum.

N = 5, there are 6 spin states within the Dicke subspace, and thus there are 26 states
outside of it. In order for these considerations to be appreciable within the structure of
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the spectrum, the initial states will now taken to be thermal states.

For the sake of simulation efficiency and visualization, take the following parameter set
of N =5, wy =10, gg = .2/\/3, and A = kg = 1. Thermal states of this ensemble are then
written as )

5 — —BH
pr = e " 3.86
Z(9) (350
where Z(8) is the partition function given as Z(8) = trexp(—8#H), and g = 1/T. Due
to the experimentally unusual parameter set, the values of T" in the current temperature
scale are not all that enlightening, and so the temperature of these states will be indexed

by their purity,

P(p) = (). (3.87)

By no means is the purity one-to-one with temperature, but the utility here is that the
purity gives a sense of how clustered the population is. A purity near 1 indicates that most
of the population is contained within a single pure state. Based on previous investigations
into the thermal trends of the TC model, a high purity sample is one where most of the
population is contained in the ground state of the system. As the temperature increases,
the state leaves the temperature dominated regime and enters the degeneracy dominated
regime, with a correspondingly increasing spread of population about higher energy states.
These states will have low values of purity.

Consider a small flip angle, § = 0.1. Then, a low temperature, high purity state should
reproduce the spectral shape of figure 3.26, where the initial state was the ground state
of the Hamiltonian. Figure 3.29 shows the spectrum for a thermal state with a purity of
0.999, that is, almost all of the initial population is contained in the ground state of the
N = 5 TC Hamiltonian. The image confirms that a very low temperature thermal state
behaves as expected, producing the two peak shifted above and below wy by gov/N. As
usual, the magnitude is normalized so that the maximum signal is equal to 1.

Now, increasing the flip angle to larger values for 6 reproduces similar trends as com-
pared to figures 3.27 and 3.28, and will be thus omitted. Focusing instead on varying
the temperature of the intitial state (and thus its purity), consider the same procedure of
inducing a small angle rotation and measuring the FID signal, but now with increasingly
larger values for temperature. As noted, the increase in temperature yields a corresponding
decrease in purity. For reference, the spectra of figures 3.29 to 3.32 are all normalized to
the amplitude of the signal for the 0.999 purity case given in figure 3.29. Notice both the
decrease in signal amplitude relative to the coldest sample with increasing temperature, as
well as the change in shape and narrowing of the peak modes.
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Figure 3.29: Fourier transform of the Free Induction Decay signal measured through
<jx(t)> of an initially thermal state of the TC Hamiltonian with N = 5 spins. The

purity of the thermal state is 0.999. The state is initially perturbed by a J, pulse with
0 =0.1.
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Figure 3.30: Fourier transform of the Free Induction Decay signal measured through
<jx(t)> of an initially thermal state of the TC Hamiltonian with N = 5 spins. The

purity of the thermal state is 0.234. The state is initially perturbed by a J, pulse with
0 =0.1.
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Figure 3.31: Fourier transform of the Free Induction Decay signal measured through
<jx(t)> of an initially thermal state of the TC Hamiltonian with N = 5 spins. The
purity of the thermal state is 0.039. The state is initially perturbed by a J, pulse with
0 =0.1.
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Figure 3.32: Fourier transform of the Free Induction Decay signal measured through
<jx(t)> of an initially thermal state of the TC Hamiltonian with N = 5 spins. The

purity of the thermal state is 0.013. The state is initially perturbed by a J, pulse with
0 =0.1.
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In principle, one can calculate the locations of more peaks expected in these simulations
without much difficulty since the spectrum for N = 3 is fully solved above, and N =5
can be solved exactly as well. In order to compute the magnitudes of the peaks at a given
predicted location in frequency space, one has to compute the state after the Ramsey pulse,
and all of the relevant matrix elements. This process is significantly more computationally
challenging when it comes to scaling N, as the eigenvector problem does not receive the
speed up to O(nlogn) floating point operations, which was present in the algorithm for the
eigenvalue problem. Further, the structure here is non-negligible since there is a possibility
that a matrix element could be 0; there is no a priori reason why a matrix element shouldn’t
be 0. In practice though, this seems to be a very rare occurrence. In point of fact, the
only 0 matrix element discovered thus far is in the 7 = 1 angular momentum space, where
the two unshifted (coupling matrix eigenvalue 0) states of neighboring excitation subspaces
have a 0 matrix element.

Figures 3.27 and 3.28 well illustrate that even if all population is initially contained in
the Dicke subspace, a single peak splitting is an insufficient description of the dynamics.
It is all too common in literature to see a Dicke approximation, resulting in two peaks
split by gov'N [11, 3, 29]. When factoring in the results of the numerical investigation into
thermal states, which showed that a Dicke ground state assumption is only valid when
temperatures are less than 10 mK, one should be very careful of the approximations and
restrictions made when attempting to predict the spectrum of a spin ensemble coupled to
a cavity.

To fully illustrate the deviation a full theoretical computation has with the Dicke ap-
proximation in common experimental regimes, consider N = 100 spins. While this quantity
is still small compared to most spin samples, it is likely large enough to illustrate typical
behavior while still being computationally tractable. Returning to the experimental pa-
rameter set of wg = 10GH z, g9 = 10H z, with temperature 7' = 0.120 K. The thermal state
of this quantum system is in the rising portion of the degeneracy dominated regime, with
an average energy of approximately 40hwy.

The goal for an ensemble of this size is to predict the spectrum without tracking an
exponentially scaling amount of eigenvector data. That being said, representations of J,
are dense in the energy eigenbasis, and so eigenvectors will still need to be computed. That
being said, under a small flip-angle approximation, the computational cost can be reduced
to a point where spectra are efficiently calculable.
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Consider a thermal state undergoing purely Unitary evolution. Under this assumption,
one needs only to determine the contribution for a general state, and then average the result
over all possible state. For ease of visualization, initial state can be generally represented
as an density matrix in the following simplistic notation:

Ze-ﬁEd ) |EXE| = ZP (3.88)

In order to control and measure the spin system, a weakly coupled set of induction coils
are introduced into the system, which can be modeled as a toggle-able perturbation Hamil-
tonian of the form V = Q coswt.J,. Under the assumption that pulses happen quickly, and
that back-action from measurement is negligible to the energy eigenstructure, this Hamil-
tonian provides access to control through collective x rotations, and measurement through
a magnetic free induction decay (FID) of the spin ensemble. Mathematically, the unitary
is written

A~

Ur(0) = exp (—i0.J,). (3.89)
The observable is simply
A <Jz> , (3.90)

where A is a real amplitude depending on the spin-coil coupling and any signal amplifica-
tions. For convenience, take A = 1.

Making use of the expansion in equation (3.79), one can expand the relevant rotation
unitary in terms of angular momentum dependent representations of .J, and its powers, so
that

exp (—i0J,) = @ (Z Cg’;? (—2i sin(9/2)jz)p)

=P (cg(e)n — 2icl (A) sin(0/2)J, + - - - ) (3.91)

It is instructive to determine how each operator in the sum impacts the good quantum
numbers of j and k. Total angular momentum is unchanged, since all operators are col-
lective, so Aj = 0. On the other hand, J, = 0.5(J, + .J_), and so J, raises and lowers
the number of excitations present in an energy eigenstate by 1. That is, J, mediated
transitions with Ak = £1. In a similar vain, sz mediates transitions with Ak = 0, £2, j;’
mediates transitions with Ak = +1,+3, and so on.
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Based on the N = 3 spin example, it is expected that the experimentally relevant
portion of the J, spectrum will occur about +w, and these transitions are exactly those
with Ak = 41. Preparing for a future small angle approximation, one can neglect the
contribution of powers of JE and higher, as the order two term does not mediate the
desired transition, and the order 3 term comes with a pre-factor of ¢(6)sin®(#/2), which
will end up being absorbed in the error term of the small angle approximation. Then, the
relevant action of the rotation unitary on a particular energy eigenstate can be written as
follows: A

Ur(0) |E) = o |E) + > af |EF) + Y oy [E7)+- . (3.92)

q s

The + and — superscript notation of equation (3.92) indicate a sum over energy eigenstates
with the excitation subspace either one excitation above (+) or one excitation below (—)
the excitation subspace of the initial state |E).

By orthonormality of the energy eigenstates, these coefficients can be written as a
matrix elements multiplied by trigonometric terms, such that

— () (3.93)

oF = —2isin(6/2)c)(6) <E;'E 7, E> (3.94)

With the coherence amplitudes determined, time evolution of this state must too be de-
termined for predicting the outcome of a FID measurement. In this case, the utility of
working in the energy eigenbasis is precisely the ease in which Hamiltonian evolution can
be determined:

[VE(t)) = exp(—itH/h)Ur(9) | E)
= ape P E) + 3 af e ENEN) £ age EUM B (3.95)

q T

Thus, the contribution of |E)E| term of the density matrix to <jz> to up first order
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transitions can be written as,

(t))
= 22?)?(04804*61 (B ~E)/h <E‘ I ‘E;>)

+2 Z %(aga;e_i(ET_E)t/h <E‘ J
£)

E>‘2 sin((E- — E)t/h)). (3.96)

E—>)

sin((E,” — E)t/h)

= (—4c)(0) (0) sin(G/Q))(Z ‘<Ej J.
+ Z ‘<E‘

As it currently stands, the flip angle contribution is dependent on the angular momen-
tum subspace containing |E). It shall be shown that under the assumption that 0 < 1,
the j dependency vanishes. Two cases need to be considered in order to compute the
expansions of ¢(A) and ¢(6), given by (3.80). If 2j is even, € = 0, and if 2j is odd, € = 1.
The odd case can indeed occur since for odd N, all angular momentum subspaces are given
by half integer representations. Then, for e = 0,

() = 1. (3.97)
For € = 1, recalling that  had been previously defined as sin?(6/2),

c)(0) = 005(0/2)1}15123:@

= cos(#/2) Trunc (1 + Iy 3i +- )

Li—1/2] 2 8
:COS<9/2)(1+M+'”)
= (1- % +0(0M) (1 + % +0(6"))
=1+0(0%).

Notice that in the above derivation, were it not for the truncation operator,
cos(0/2) ~ cos(6/2)
1 —sin?(0/2)  lcos(6/2)]

= +1, (3.98)
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and so for small angles and large values of j, this approximation is very close to the true
value. Following a similar approach for ¢](6), when e = 0,

sin?(9/2)  3sin*(0/2)
6 40
2

9 4
=1+ 5. +0(0".

) =1+

For e =1,

: 251n2(9/2) 8sin*(0/2)
c{(e)_cos(e/2)< LIS +)

3
(1——+O 94)<1+ + O( 94))

9 4
_1+ﬂ+0(9)

Thus, under the small angle approximation, the 7 dependency on the effect of the flip-angle
drops out completely, yielding

co() =1+ O(6%) (3.99)
c(0) =1+ ; +0(6Y), (3.100)

which holds for all values of j.

Then, for every initial state |F), the flip-angle contribution to <jx> is constant for
E

every considered transition. Denoting this flip angle contribution as F'(6),

F(0) = —4(1+ 0(6)) (1 +6%/24 4+ 0(6%)) (0/2 + 6° /48 + O(6°))
= —20(1+0(6") (1 +62/24 4+ O(6")) (1 — 6%/24 + O(6"))
= =20+ O(6). (3.101)

Thus, for small flip-angles 6, one can very well approximate the flip angle contribution
as a global amplitude on the FID of the spin ensemble, depending linearly on 6. Note
that the global flip-angle dependence for § < 1 generally applies to any collective spin
system with conserved excitations and angular momentum. The particular frequencies of
the sine functions, multiplied by the relevant matrix elements of the energy eigenvectors
and thermal population, determine the fine structure particular to the Tavis-Cummings
Hamiltonian.
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Putting everything together, the FID signal due to a full thermal density matrix can
be effectively determined. Take the evolving density matrix to be

p(t) = exp (— itH/R)Ur(0)pUr(0)" exp (itH/h). (3.102)
Then,

J, E>‘2 sin((E — E)t/h)

T

E>‘2 sin((E- — E)t/h)) (3.103)
_ %F(é’) EE:P(E) (Z ‘<E;
+ 2 ‘<E;

The FID signal, being a large complicated sum of sine functions, is not very useful in
its current form, as the more relevant observable is the Fourier transform of the signal.
Luckily, the Fourier transform of a sinusoidal function is easy to determine,

J.|E) ‘2 sin((EF — E)t/h)

J )E>

“sin((B- — E)t/h)). (3.104)

Flsin(wot)|(w) = —im (6 (w — wo) — 0w + wy)), (3.105)

where §(w) is the Dirac d-function. Thus, under unitary evolution and a small flip-angle,
the spectrum is a weighted sum of Dirac d-functions, whose locations and amplitudes can
be predicted with relative ease. Each eigenstate, |F), induces a set of peaks through
transitions to states differing by a single excitations, |E), located at

1

Weak = iﬁ(Ef — E), (3.106)

with the modulus of the complex amplitude given by

A

2
Apear, = 270 |0] P(E) ‘<Ef 7, E>‘ o). (3.107)
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Further particularizing to the case of the Tavis-Cummings system, if F is a k excitation
state with an energy level splitting eigenvalue of A;, then Fy must be a k £ 1 excitation
state. Define the energy level splitting eigenvalue of E; as As. Then,

1
+—(Ef — E) = £((k £ 1)wo + Argo — kw — Aigo)

h
=+(two+ (A — A)go), (3.108)

where it should be understood that all four possible combinations of signs are valid fre-
quencies. That is, coupling to a k£ + 1 and k — 1 excitation state both induce a peak about
+wp and —wy, with equal magnitude. This implies the spectrum is symmetric about w = 0,
as one might expect.

With the small angle dependence determined, it remains to compute the necessary
matrix elements, as well as thermal populations, in order to compute the shape of the
spectrum. To do so, one can particularize a set of parameters appeal to numerics. Given
N =100, T = 0.12K, wy = 10GHz, and gy = 10Hz, the figure 3.33 shows the spectrum due
to j+ transitions, and figure 3.34 shows the spectrum due to J_ transitions. The spectrum
due to J, is then the average of the two spectra.

0.00005
0.00004

0.00003

0.00002

0.00001 F

20 10 0 10 20

Figure 3.33: Fourier spectrum of the observable <j+ (t)> The horizontal axis is in units
of go, shifted so that wy = 10GHz is located at the origin. The vertical axis is the peak
amplitude given in equation (3.107), divided by 276. For reference, wy + goV'N is located
at 10 on the horizontal axis. Notice that the two peaks are split approximately .6 of gov/N,
markedly narrower than the Dicke prediction.
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Figure 3.34: Spectrum of the observable <j_(t)> The horizontal axis is in units of gy,

shifted so that wy = 10GHz is located at the origin. The vertical axis is the peak amplitude
given in equation (3.107), divided by 276. For reference, wy + goV/'N is located at 10 on
the horizontal axis.

Using insights from signal analysis, given an exponential decay process on the mea-
surement signal each point corresponding to a delta function peak would then transform
into the peak of a Lorentzian, of width dependent on the decay time scale. Thus for an
experiment in the laboratory, where the sample is in contact with some environment, as
described by a Lindblad master equation, the spectrum would be broadened as compared
to the calculated peaks in figures 3.33 and 3.34. That being said, it is unlikely that a noise
process of this form would cause a shift in the center frequency of these peaks, and thus the
qualitative structure should remain. This is further reinforced if the experiment is done in
a cavity with a large quality factor, meaning the quantum system has very long coherence
times.

In order to extend this result to the case when the flip-angle  is not small, retracing the
previous derivation before the approximations shows that one needs to modify the values
ap and o . This is done by considering the entire polynomial expansion for Ug(6). Then,
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Q is sensitive to all even powers of J, and af]t is sensitive to all odd powers of J,. Thus,

: 4¢}(0) sin?(0/2 "
o ci6) - AOIID)  y
2 (_1)i4icj 2 i 72i
-3 J.(0) (sin?(0/2)) <E’Jz E> (3.109)
Similarly, »
0F = —2i Z o i)f‘)'cgzﬂ(e)(sm(e/z))”“ <Ei J2it1 E> (3.110)

The difficulty of computing these equations for general # almost entirely the cost of the
higher order matrix elements. Since J,, couples an excitation space to neighboring excita-
tion blocks, the relevant portion of its action must be represented with at least 3 blocks
worth of dimensionality. Applying the same argument to JE, one must now consider the
action of the operator across 5 neighboring excitation spaces in order to determine the
values of the relevant central 3 blocks. In this approach, the dimension of the necessary
matrix grows wildly. If one attempts instead to consider the action of powers of J, as
a sum of products of J+ and J_, then this matrix element can be thought of as a walk
through excitation subspaces. Though, this yields the issue that for the 2¢-th power of J,
there are (%) ~ 4/V/i possible paths, as i — oo [11]. The number of relevant terms for

the 27 + 1-st powers of J, are computed similarly, with identical asymptotic behavior. For
example, at third order in Jm, the relevant portion of the action of J3 is given by

(Er
Since the range over which ¢ runs takes a maximum at N/2, this means that the number
of products to be considered is almost exponential in N. The resulting matrix element
must then be written as sum over (2;) (or (2:51)) terms, each of which is a product of 2¢
(or 2i 4+ 1) floating points. For now, it seems, exact computations with general flip-angles
are out of reach.

1
E> S ESN (e ded 4 T+ T T 2) |B) (3.111)

Even if one is unable to compute the shape of this spectrum, there is a still a little
that can be said about its qualitative behaviour. Since the eigenstructure is unchanged,
and the focus is still on the spectral region about wg, the locations of each d-function
are unchanged. What is changed is then the magnitude of each peak. For small 0, this
work has determined that the shape of the spectrum is dependent on temperature, with a
magnitude scaling linearly in 6. For larger values of 6, it is as of yet unclear how varying 6
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and T will impact the overall shape and magnitude of the resultant spectrum. In any case,
from the overwhelming evidence of this section, it appears that the Dicke approximation
fails in all but the coldest experimental situations.
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3.4 Cavity Mediated Spin-Spin Coherence

The notion of multi-body spin coherence in NMR stems from the language in which the
states are written. In high temperature NMR, the assumed state for a single spin species
is a thermal density matrix with a minute polarization, 0 < e < 1,

~

1
pr=5+eo). (3.112)
In reality there can be on the order of 10%* spins present in a single sample, but for all
experimental purposes, the measurement signals are identical to having averaged many
experiments on a single spin of the same species as the bulk. Consider even a composite
density matrix of two spins:

~

po =~ (1 +2¢], + 663, (3.113)

A~ =

In many cases, the second order spin coherence term, where two Pauli operators are
tensored together, is completely neglected. This is entirely reasonable when one considers
that if the polarization, €, is on the order of 107°, then €2 is on the order of 10~'? and signif-
icantly more difficult to observe. Further, if the observable being measured is a collective
spin operator, such as jz, then without a specially designed pulse sequence the higher order
terms won’t even come into the signal. That being said, it is entirely possible to experimen-
tally measure these quantities, and non-zero values of higher order spin coherence terms
are attributed to the build up of correlations and entanglement [11, 3, 23, 28]. Generally
these terms most interesting in the presence of spin-spin interaction Hamiltonian, which
can produce non-trivial quantum correlations and be used to investigate the scrambling of
quantum information through an environment of spins, among other phenomenon [25].

As it currently stands, the Tavis-Cummings Hamiltonian has no spin-spin interaction
term. Though, spins can interact by exchanging quantum information through the cavity.
The super conducting qubit community often utilizes a cavity to engineer entangling gates
between otherwise non-interacting qubits, with good success [3].

Given the tools of the previous sections, one can investigate the effect the cavity has
on spin-spin coherence for thermal spin ensembles. In particular, one should be able to
answer the question, does thermalizing in the presence of a cavity enhance or inhibit spin-
spin correlations as compared to a isolated spin ensemble? For a baseline, consider the
thermal state of an isolated spin ensemble of N spins with inverse temperature 8 = 1/(kgT)
and Hamiltonian

Hy = huwo... (3.114)
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Then,
1 N

5 1 hw ,
A —BHs _ {1 - tanh LRPIORN 11
D Z(ﬁ)e | | 2( an (2kBT)OZ (3.115)

i=1

Now, expanding out the product into sums,

=1

1 hw al hw al
N 0 ~ (i 2 0 ~ (1) ~ (5
i 2—N(]1 — tanh (ZkBT) E a§> + tanh (Qk:BT) géj og)ag) - ) (3.116)

It is then clear that the m-th order spin coherence term of the thermal density matrix is
weighted by tanh™(0.58kwy).

In order to connect these weights with the Tavis-Cummings Hamiltonian, it is conve-
nient to rewrite the sums over Pauli operators in terms of collective operators. In this
language it will be possible to write the m-th weight as an expectation value of a collective
operator. For m = 1, the procedure is simple,

N
> 6 =2J.. (3.117)

N N
ce0) = Z ((33)(3(]) _ %(33)(39))
1#£] 1,j=1
N N
B ST 0
2,7=1 =1
N N N
— (ZM) (Z@”) -Y 1
i=1 j=1 i=1
= 4J% — N1. (3.118)

As the order increases, the algebra becomes increasingly more challenging. To summarize
the procedure, one first rewrites the sum so that leading order can be written as

om Jjm, (3.119)

and then subtracts off all the terms introduced in order to ensure equality. While difficult
to parse, there is a generating function that sets up the algebraic problem. Denote the
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spin-spin coherence operator as Cn, which is given by the unscaled sum of products of
Pauli operators, as per the expanded multi-body thermal state. Then,

N

Co= > <(H&§“>)( 11 (1—5%1-(1))). (3.120)

ilv"'vimzl (p7Q)€S2(m)

Above, the set Sy(m) denotes the set of all unique combinations of integers from 1 to m
of length two. For example,

(1,2)} (3.121)
(1,2),(1,3),(2,3)}- (3.122)

52(2) = {
52(3) = {

Utilizing this formula it is possible, albeit tedious, to simplify the entire expression
down to a polynomial in J,. The first few are listed below:

Co=1 3.123
Cy = 2J, 3.124
Cy=4J>— N1 3.125

Cy=8J° — (6N —4)J.
Cy = 16J* — (24N — 32)J% 4+ (3N? — 6N)1
Cs = 32J° — (80N — 160).J% 4 (30N? — 100N + 48).J..

Now, it must be the case that ém are trace 0 for all m > 1. Thus, there are a few relations
worth noting:

tr.J? = N2NV~2

tr jf =0

tr J4 = (24N — 32)N2V =6 — N(3N — 6)2V
tr JAZ5 =0

These formulae can be utilized to related weights of the spin coherence operators to expec-
tation values of observables. Given a more general density operator, still only polarized
along the z direction, define coefficients «,, such that

1 A R
,5:2—N<]1—|—04101+04202+"')- (3.129)
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Then,

A N
< > a (3.130)
2
and the fact that o
tr J,C,, =0, m > 2 (3.131)

can be checked in either representation, though it is more obvious using the Pauli sums.
For example, for m = 2,

N N
PN 1 . )
i 5 (k) 5(1) 5()
J,Cy = 2( g g8 )( E aay ), (3.132)

k=1 ]

it clear that the full sum over Pauli operators from the J, can cancel at most one Pauli
within the sum expansion of Cs. Thus in every term of the resulting sum, there is at least
one Pauli operator present, which necessitates a 0 trace. This exact argument for counting
the number of Pauli operators present in each term of a sum can be used to show the
following trace relation:

tr J*C,, =0, N >m > k. (3.133)

Solving for the weight, one finds

a; =2 <J> /N. (3.134)
This can be similarly done for the next weight, by first computing <j22> After solving and

g = m<<ﬂ> - %) (3.135)

Thus, under the promise that a state p can be written as per equation (3.129), one is able
to measure the weights of the coherence operators directly through expectation values of
collective observables.

simplifying,

The desire to experimentally determine the weights of the coherence operators in a
spin sample which thermalized in the presence of a cavity motivates an expression for
computing expectation values of j;” Assuming that a partial trace over the cavity Hilbert
space results in a spin state which can be written of the form given in equation (3.129), the
expectation values of j;" will allow direct comparison to a thermal spin ensemble which
thermalized without a cavity present.
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In a somewhat surprising manner, expectation values of jzm can be computed directly
on thermal states of the Tavis-Cummings Hamiltonian, under a few scaling assumptions.
The trick is to write out all matrix representations in the excitation basis, that is, to not
rediagonalize under the interaction Hamiltonian. In this basis, powers of j;” have diagonal
representations, and are thus trivial to compute.

Consider first for a moment an (un-normalized) thermal density operator with respect
to the Tavis-Cummings Hamiltonian:

e — exp < — 5hw0f(> Z d;exp ( — 5hgofl(j, k)) (3.136)
.k

In the above equation, recall that K is the excitation operator, and f)( J, k) is the repre-
sentation of the interaction part of the Hamiltonian in a particular angular momentum
and excitation subspace. Since these operators commute, and the excitation operator is
diagonal within a subspace, they can be rewritten using their representations within each
subspace:

h g k)
= Zdjem""okexp< ﬁhgoL j, k > Zd e’ﬁh"’okz (=8 go ) . (3.137)

Jk

Now, under the assumption that Shgy is small enough to truncate the Taylor expansion
for the fine structure of the thermal state, the infinite sum can be truncated. Since the

goal is to find <j;”>, which is diagonal in the excitation basis, it is most efficient to use

the same representation for the interaction portion of the Hamiltonian. Thus, take the
coupling matrix representation of the interaction Hamiltonian, L(j, k), which is a hollow
tri-diagonal matrix.

By linearity of the trace, expectation values of j;” reduce to computing the following
traces, such that 1, m € Z, .
tr L(j, k)" J". (3.138)

Now, odd powers of L(j, k) have a 0 diagonal, and thus the product with powers of J,
will have a 0 trace. That is, one can neglect the first and third order terms, leaving the
zeroth and second order terms dominating. Under this truncation of the Taylor series
for the fine structure of the thermal state, there is but a fourth order error, scaling as
O((Bhgo | L(j, k)|,)*). It remains to compute the zeroth and second order traces. Recall
that the dimension of the subspace with angular momentum j and & excitations above the
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ground state has dimension D;; = n(j, k) + 1, and the square of the coupling matrix is
written as

[ 2 0 Ll ]
0 B+12 0 Iy
41 0o . e
LG k)= | o | - (3.139)
l2l3 . . T ln—lln
2,+02 0
i ln_1l, 0 2]

Then similarly, the representation of j;" can be written explicitly in each j, k basis, which
is given as
(=)™

—ir1)m
SR = IR | (3.140)
(=j+n)"
Thus, the zeroth order trace is given by the sum,
n(j,k)
tr L(j, k)°J Z —j+p)™ (3.141)
p=0

Taking the convention that l(7, k) = l,4+1(j, k) = 0, the second order trace is further given
by,

n(j,k)

tr L(j, k) LG k)™ = Y (D4 2,)(—i+p)" (3.142)

p=0
All the pieces are present to write down a truncated expression for the expectation values
of powers of J,.

Defining the partition function as usual, such that Z(5) = tr exp(—ﬁ?:[), the thermal
expectation values of relevance are given as

Im\ __ 1 —BH Fm
<Jz > = 7 oA jm. (3.143)
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Expanding out the expression into computationally friendly sums,

Jr) = LS gjesnt (f i+ + Pl 2 (=4 p)”
7(5) & o 2

+ O((Bhgo |L(J, k)|oo)4)). (3.144)

Now, the error term is still within the sum over all non-interacting subspaces, and in
principle has some dependence on j and k. The belief is that since gy ~ 10~%wq in most
experimental situations, the magnitude of the error due to the omission of these fine struc-
ture terms will be highly suppressed, leaving this expression as a good approximation of
the true expectation value.

Consider once more N = 100 spins at wg = 10 GHz coupled to a quantized field with
go = 10 Hz. For a spin ensemble with no cavity present, the thermal expectation values of
J, and jf can be easily computed using the trace relations and the expanded thermal state.
These functions of temperature shall be used as a baseline reference for values extracted
from equation (3.144).

A . OélN . _E h(,do
(h) == =-3 tanh (570). (3.145)
Similarly,
o\ NN-1) N NN-1 ., fw, N
<Jz> = et = et () + (3.146)

The following plots compare the temperature dependencies of <jz> and <j22> at tem-
peratures below 1 K, for the spin ensemble and the Tavis-Cummings ensemble.
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Figure 3.35: Plots of <J;> as a function of temperature for an N = 100 spin ensemble. The

solid line is plot of equation (3.145), the lone spin ensemble prediction. The points give
computed values of equation (3.144) particularized to m = 1, the TC model estimation for

<jz> Notice the close agreement between these values.
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Figure 3.36: Plots of <j22> as a function of temperature for an N = 100 spin ensemble. The

solid line is plot of equation (3.146), the lone spin ensemble prediction. The points give
computed values of equation (3.144) particularized to m = 2, the TC model estimation for

<jz2> Notice the poor agreement between these values at low temperatures.

The plot of <j22> within figure 3.36 shows that the spin ensemble and the Tavis-
Cummings system have a clear deviation in these expectation values. Somewhat sur-

A

prisingly, <Jz> seems to be very similar for the two systems. Closer inspection into the

points will show that this is not truly the case. Consider a plot of the absolute value of
the difference between those two curves.

Figure 3.37 shows that while the two curves are indeed close, they differ by about 1076,
and the magnitude of this difference appears to be an increasing function of temperature.

This is contrasted with the plots of <j §>, which has a the deviation decreasing as a function

of temperature. It should be noted that this deviation must be bounded, as the infinite
temperature limit of the two expectation values must both be 0, and thus their differences
also eventually converge to 0.

It is unlikely that these deviations are caused by the error terms. Focusing once more
on equation (3.144), the difference between this expectation value and the spin only case is
deeper than just the correction term proportional to g3. While J, is only sensitive to spin
excitations, the thermal populations of the eigenstates is based on the total excitations
present in that state. To clarify, consider a simple pure state of the form |j, —j + 1) [1).
In the Tavis-Cummings setting, this state would be thermally weighted as a state with
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Residuals
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Figure 3.37: Plots of the absolute value of the difference <Jz> for a lone spin ensemble

and a Tavis-Cummings system, with N = 100 spins present in the ensemble. Notice the
apparent divergence in predictions with increasing temperature.

two excitations, picking up a factor of exp(—20fuwy), divided by the partition function.
For comparison, a spin ensemble (no cavity present) would energetically see that this
state has but a single excitation, and so its thermal factor would instead be exp(—pBhwy),
divided by the partition function. In effect, any given eigenvalue of J, will contribute to
the expectation value multiple times with different thermal pre-factors, due to the fact
that the spins thermalized with the cavity present. This effect is amplified for computing
expectation values of higher powers of jz, due to the increase in magnitude of overall scale.

The computed expectation values have thus far been static thermal values. Recall that
J, does not commute with the entire Tavis-Cummings Hamiltonian, and thus will have a
non-trivial time evolution for many states. If one were able to perform a radio-frequency
pulse along the z direction within the lab frame, then the excited coherences would be
confined to a single excitation subspace. The resulting time evolution of these coherences
should then be observable through a FID measurement of <j;”(t)> Assuming that the
initial state of the system is thermal before the coherences are excited, the same procedure
of calculating a Fermi spectrum for J,, should apply to J, as well. As expected, the first
attempt shall consider a small flip angle, # < 1, which in this case corresponds to a pulse
unitary of the form

A~

Ur(0) = exp (—i0.J,). (3.147)

Under a z pulse, only a single excitation subspace will have excited coherences for a
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given initial state |E). Then,
ﬁR(Q) |E) = Z a; | E;) . (3.148)

By orthonormality of the energy eigenbasis,

;= <E Ur(0) (E>
= c(0) — 2ic)(0) sin(6/2) <E 7. E>
— 92d(0) sin?(8/2) <E J2 E> T (3.149)

Pressing forward without computing or simplifying the expansion of equation (3.149), the
expectation value for J, can be computed as a time dependent quantity,

<jz(t)>E - ; (a;eiEpt/h> (aqeieq/h) <Ep

Notice that unlike the expectation value for jx, which was computed by two single sums,
the expectation value for J, requires the computation of a double sum. Further note
that the matrix element of equation (3.150) is not the corresponding complex conjugate
of equation (3.149). This would appear to indicate that for a given pair of eigenstates
of energy E, and E,, the magnitude of the frequency mode at w = (E, + E,)/h is more

J.

Eq>. (3.150)

complicated than an absolute value of a matrix element. Given that a measurement of J,
is only sensitive to coherences within a given excitation subspace, the induced frequency
modes in an FID measurement will be centered about w = 0, making a measurement of
these signals highly sensitive to factors such as 1/f noise. Thus, a measurement of this
type is more sensitive to noise sources and more difficult to compute. As such, further
progress into this derivation is experimentally unmotivated.
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Chapter 4

Conclusion and Future Work

4.1 Spin Diffusion

By considering highly polarized ensemble quantum spin systems, one can treat the quantum
density matrix as an ensemble of pure states undergoing random walk transport. It should
be noted that quantum models with flip-flop coupling often lead to ballistic transport of
energy. That is, the standard deviation of motion scales linearly with time, as opposed to
diffusion where it scales as the square root. These results are well known and confirmed
in many one dimensional models [55, 17], but the complexity of 3 spatial dimensions,
especially those with all-to-all connections no translational invariance, has inhibited a
complete investigation into coherent transport behavior in large systems|[17].

Under the assumption that diffusion is a good model for transport of magnetization
in large highly polarized crystals, this method should be able to be confirmed in the near
future by low temperature experiments utilizing state of the art dynamic polarization tech-
niques. There is a surprising yet reassuring coincidence that the computed magnitudes of
the diffusion coefficient at low polarization is on the same order as the diffusion coefficient
at high temperature. The fact that similar values are obtained for the same physical phe-
nomenon utilizing vastly different formulations lends hope to the validity of this argument.

Confirmation of the diffusive transport assumption by future experiments will hopefully
motivate a re-examination of how quantum transport is treated in non-integrable quantum
systems. Further theoretical investigation into the origin of the approximate cube root
dependence of the diffusion coefficient on polarization could end up being very fruitful. It is
expected that the true dependence of diffusivity on polarization is much more complicated,
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though it is certainly known that the diffusion rate should be 0 when the crystal is fully
polarized, which this model does not reproduce.

4.2 Cavity QED

The research on the Tavis-Cummings Hamiltonian began as an investigation into determin-
ing the structure of higher order energy level splittings present within the Tavis-Cummings
model, that is, splittings other than +g¢yv/N. During the many discussions and presen-
tations of this work within Cory group, these shifts were referred to as Lamb shifts, in
part due to the historical similarity of a quantized field splitting otherwise degenerate
energy levels of angular momentum states. Within this work, hybridization of otherwise
degenerate energy levels have simply been referred to as energy level splittings to avoid
confusion.

There had been previously been a great deal of research into the behavior of a Tavis-
Cummings system within the Dicke subspace, and the first goal of this work was to extend
the procedure to other angular momentum subspaces. By thinking in this manner, it
was discovered that by simply utilizing representations of the actions of jz, that it was
possible to reduce the task of solving the Hamiltonian to finding eigenvalues of tridiagonal
matrices, with dimension bounded by N + 1. Pushing forward and trying a multitude of
theoretical tools to extract as much information as possible, it was found that the eigenvalue
problem on these types of matrices had a huge computational speedup. It was assuredly the
computational speed of computing the partition function for visualizing various behavior
that allowed many of these new insights to come to light.

The study of the Tavis-Cummings Hamiltonian is far from complete. This particular
new method into inspecting the intricacies present merely scratches the surface of what
can be discovered. The connection of the coupling matrices to Jacobi operators, and thus
orthogonal polynomials, is an exciting direction for continued theoretic research into the
structure of this Hamiltonian.

Further, a great portion of this work was restricted to Gibbs thermal states. This
restriction seems reasonable in a great many laboratory situations, but can most definitely
be relaxed for future studies. For instance, considering a spin ensemble which with a
state initialized separately from the cavity and then introduced to the quantized field
may yield various insights into the nature of coherence growth, information transport, and
entanglement. In addition, initially coherent states on the cavity (and possibly even the
spin ensemble) can be excited experimentally, and may prove to offer a wealth of new
structure to explore.
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Regardless of the initial state, knowledge of the full energy level structure of the Tavis-
Cummings Hamiltonian is invaluable in any investigation. It is the belief of the author
that this work provides a recipe for mapping that full structure efficiently, and in a manner
that can be readily utilized in any scenario.

While not covered in this work, the hope is that knowledge of the energy level structure
of the Hamiltonian can be used to develop new control methods for processing and storing
quantum information.

Revisiting the formulation of the Hamiltonian itself, more precise experimental setups
may wish to account for the effect of minute field inhomogeneities in the classical magnetic
field. Including this effect will distinguish the spins, which will cause a major reshuffling
of the eigenstates and inhibit the use of the method presented in this work. Assuming
deviations in the field are small compared to the mean,

1 N

the inhomogenous field term can be written as a perturbation,

1 N o N
=1 =1

Here, ¢; = 0.5(w; — @). Assuming each ¢; is small, tools of perturbation theory would be a
good place to start and investigation into the impact these terms have on time evolution
of states assumed to be in a perfect Tavis-Cummings model. Treating the distribution of
field deviations, €;, as an unknown gradient, it may even be the case that these deviations
can be measured directly, providing a new method of mapping magnetic fields on atomic
scales.

With the mapped energy level structure, there is hope that new techniques in cavity
cooling of a spin ensemble may yet emerge. Cavity cooling aims to utilize a leaky cavity
to enhance the cooling rates of a spin ensemble, which is currently limited by the fact
that collective cooling models do not coupling neighboring angular momentum subspaces.
With better knowledge of the induced energy level structure of the Tavis-Cummings, it
is possible that non-collective control schema, such as gradient pulses or enhancement of
existing field inhomogeneities, can be better utilized to drive population towards the true
ground state of |[N/2, —N/2) |0) with an enhanced rate.

The possible avenues for future exploration are seemingly endless, and the information
and methods presented in this work are hopefully a large step forward into the discovery
or refinement of new experimental technique.
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