
Integration of Satellite Data, Physically-based Model, and Deep 

Neural Networks for Historical Terrestrial Water Storage 

Reconstruction 

 

 

 

by 

Qiutong Yu 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Science 

in 

Geography 

 

 

Waterloo, Ontario, Canada, 2021 

© Qiutong Yu 2021 

 



ii 

 

Author’s Declaration 

 This thesis consists of material all of which I authored or co-authored, a Statement of 

Contributions is included in the thesis. This is a true copy of the thesis, including any required 

final revisions, as accepted by my examiners.  

 I understand that my thesis may be made electronically available to the public. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Statement of Contributions 

 This thesis consists of four chapters all of which I have been the lead author. While my 

colleagues Hongjie He and Dr. Ke Yang assisted with the data preprocessing, Dr. Shusen Wang 

from Nature Resources Canada proposed the initial concept of this study, and my supervisor, 

Professor Dr. Jonathan Li, provided comments and edits on Chapters 1, 3 and 4, they have taken a 

more collaborative role as coauthor on Chapter 3. As the lead author of Chapter 3, I conceptualized 

the experiment design, conducted the coding for model constructions, carried out data analysis, 

and created figures and tables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

Abstract 

 Terrestrial water storage (TWS) is an essential part of the global water cycle. Long-term 

monitoring of observed and modeled TWS is fundamental to analyze droughts, floods, and other 

meteorological extreme events caused by the effects of climate change on the hydrological cycle. 

Over the past several decades, hydrologists have been applying physically-based global 

hydrological model (GHM) and land surface model (LSM) to simulate TWS and the water 

components (e.g., groundwater storage) composing TWS. However, the reliability of these 

physically-based models is often affected by uncertainties in climatic forcing data, model 

parameters, model structure, and mechanisms for physical process representations. Launched in 

March 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite mission 

exclusively applies remote sensing techniques to measure the variations in TWS on a global scale. 

The mission length of GRACE, however, is too short to meet the requirements for analyzing long-

term TWS. Therefore, lots of effort has been devoted to the reconstruction of GRACE-like TWS 

data during the pre-GRACE era. Data-driven methods, such as multilinear regression and machine 

learning, exhibit a great potential to improve TWS assessments by integrating GRACE 

observations and physically-based simulations. The advances in artificial intelligence enable 

adaptive learning of correlations between variables in complex spatiotemporal systems. As for 

GRACE reconstruction, the applicability of various deep learning techniques has not been well 

studied previously. Thus, in this study, three deep learning-based models are developed based on 

the LSM-simulated TWS, to reconstruct the historical TWS in the Canadian landmass from 1979 

to 2002. The performance of the models is evaluated against the GRACE-observed TWS 

anomalies from 2002 to 2004, and 2014 to 2016. The trained models achieve a mean correlation 

coefficient of 0.96, with a mean RMSE of 53 mm. The results show that the LSM-based deep 

learning models significantly improve the match between original LSM simulations and GRACE 

observations. 
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Chapter 1  

Introduction 

1.1. Motivation 

 Environmental instability may prove to be the greatest challenge that human being will 

face over the next several decades. This instability is primarily resulting from a combination of 

abrupt change drivers including human activity, forest fires, and floods, as well as gradual change 

drivers such as climate change and pollution (Janzen et al., 2020). Effective environmental 

management requires a demonstrated understanding of how these change drivers are impacting the 

status and trends, as well as how the landmass is changing. To ensure that any region in Canada is 

able to effectively manage the problem of environmental instability, the Canada Centre for 

Mapping and Earth Observation (CCMEO) of Natural Resources Canada (NRCan) has 

implemented a five-year project ‘Earth Observation Baseline Data for Cumulative Effects’ 

(EO4CE) which directly contributes to the Government of Canada’s Cumulative Effects (CE) 

assessments of environmental change and human activities. The EO4CE project aims to develop 

Earth Observation (EO) -based baseline datasets of a wide range of status and trends variables and 

improve capacity to conduct regional impact assessments through the development of baseline 

data on a national scale (Janzen et al., 2020). The production of these datasets will be 

operationalized to support current CE assessments, future assessments, and ongoing monitoring. 

 Terrestrial Water Storage (TWS) includes all the water components in terrestrial ecosystem, 

which represents water resources availability. Its dynamics under the different scenarios of 

environmental change and human disturbance is key to determine water resources sustainability 

and vulnerability. As such, TWS information is critical in CE assessments and it is one of the key 

parameters to be studied in the EO4CE project. The activities in producing high quality and long-

term datasets for TWS involve the integration of various datasets from remote sensing, in situ 

observations, and simulated outputs from land surface and hydrological models.  

 The emergence of satellite remote sensing enabled continuous monitoring over 

hydrological fluxes at different spatial resolutions. NASA launched the Gravity Recovery and 

Climate Experiment (GRACE) mission in March 2002, offering monthly TWS anomalies (TWSA) 

(i.e., deviations from a long-term mean) measurements at global scale. The operating mechanism 
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of GRACE data acquisition is that the satellites detect the change in gravity field over a region. 

The primary reason for changes in the Earth’s gravity field is the redistribution of water mass 

within thin fluid envelope of the Earth, and GRACE enables to detect tiny changes in the Earth’s 

mass redistributions related to spatiotemporal variations of TWS at monthly time-scale (Dankwa 

et al., 2018). GRACE observations have been widely adopted to understand the temporal trends in 

TWS variations at regional and global scales (Andersen et al., 2005; Rodell et al., 2009; Famiglietti 

et al., 2011; Frappart et al., 2013; Voss et al., 2013; Shamsudduha et al., 2017; Lezzaik et al., 

2018;). However, the observations of TWS from the GRACE satellite has data available for only 

15 years (2002-2017), which does not meet the requirement for producing the baseline TWS 

information that can be used to calculate the Climate Normal which requires at least 30 years 

(Arguez et al., 2019). Therefore, the extension of the GRACE-observed TWS dataset for Canada’s 

Landmass is an important process for the delivery of EO4CE project. 

 Hydrological fluxes simulated by physically-based Land Surface Models (LSM) have 

become a widely used data resources for analyzing environmental changes and water resources 

management (Jing et al., 2020). The Ecological Assimilation of Land and Climate Observation 

(EALCO) model developed by NRCan is a LSM which simulates the energy, water, and carbon 

dynamics by utilizing land and meteorological observation information, which can provide 

hydrologic information with a relatively high spatial and temporal resolution (Wang et al., 2014b). 

In addition, EALCO is able to produce TWS simulations for long-term time span, as it is forced 

by long-term climatic data. However, there are notable discrepancies found in TWS trends between 

GRACE satellite observations and EALCO model simulations. Because the development of LSM 

is based on mathematical representations of physical processes that dominate the flow and storage 

of water in space and time (Sun et al., 2019). And the construction of LSM can be restricted to a 

sparse set of in situ measurements. Consequently, deficient spatiotemporal coverage of in situ 

observations and parameter uncertainties made the model’s understanding of long-term trends in 

water storage limited. Despite the data availability over longer period, the TWS estimates from 

EALCO cannot be directly adopted as the historical TWS dataset for the EO4CE project. 

 The GRACE TWS data have been widely used to adjust, calibrate, and assimilate the TWS 

simulations from LSMs (Lo et al., 2010; Houborg et al., 2012; van Dijk et al., 2014; Schumacher 

et al., 2016; Khaki et al., 2017), for tuning model parameters as well as improving the model’s 
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predictive performance. Previous studies have indicated that there is a linear or polynomial 

correlation between GRACE-observed TWSA and LSM-simulated TWSA in the region of 

Amazon basin (Nie et al., 2015; Humphrey et al., 2017). This suggests that these calibrated 

physical models are applicable in extending the time span of GRACE TWS (2002 - 2017) to that 

of these models. Additionally, adjusted LSMs can be used to bridge the data gap for the 1-year 

missing data between GRACE and its successor, GRACE-FO (launched in 2018), by substitution 

with LSM simulations to fill gaps in GRACE-derived TWS.  

 Nevertheless, previous works regarding LSM-GRACE fusion are only proven to be 

applicable in certain areas, which may not apply in other basins, especially those with dry, cold 

climatic conditions and intense human interventions (Jing et al., 2020). In different environmental 

scenarios, the linear correlation between LSM simulations and GRACE observations can be either 

poor or strong. Moreover, the GRACE-LSM assimilation could be confined by intrinsic 

uncertainties in parameterization and architecture of LSMs, as well as the extrinsic uncertainties 

from the assimilation methodology adopted (Scanlon et al., 2018). 

 Recent studies have been focusing on using machine learning (ML) -based methods to link 

LSM-simulated TWS with GRACE TWS for hindcasting and forecasting TWS over the periods 

when GRACE TWS observation is not available (Sun et al., 2019; Sun et al., 2020; Jing et al., 

2020). Machine learning-based methods are data-driven (i.e., black box models). Pure data-driven 

models are only suitable for studies with sufficient number of observations, but without 

comprehensive understanding of the underlying physical processes (Sun et al., 2019). For instance, 

a regression model between in-situ runoff observations and GRACE observations. However, in 

reality the variation of TWS is resulting from complex and sophisticated hydrologic processes, 

and the physical principles of these processes cannot be overlooked as reconstructing GRACE 

TWS. Therefore, it is desirable to adopt a hybrid approach by incorporating the information 

represented in physically-based LSM, with the advances in data-driven machine learning models. 

Moreover, only a handful of deep learning algorithms were applied to reconstructing GRACE 

TWS, it is necessary to examine the capabilities of more algorithms and architectures due to the 

rapid evolvement of deep learning techniques. 
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1.2. Objective of the study 

 This thesis aims to develop deep learning (DL)-based models and construct the historical 

TWS dataset for Canada’s landmass. The main concept is to calibrate EALCO-simulated TWSA 

by learning the spatiotemporal patterns of matchings between EALCO simulations and GRACE 

satellite observations using deep learning techniques. Once trained and validated, these deep 

learning-based models are able to predict GRACE-like TWS with using LSM TWS simulation as 

inputs (i.e., without requiring observed GRACE TWS as inputs), so that the existing TWS records 

can be extended for generating the baseline historical TWS datasets in Canada. The hybrid 

approach is examined on three DL models built on different network architectures. The predictive 

performance of each model is assessed and compared to a pure data-driven method (i.e., only using 

GRACE TWS data), as well as the LSM-simulated TWSA, thereby proposing an optimal predictor 

for TWS data reconstruction. This research directly contributes to the delivery of the CCMEO 

cumulative effects project. Also, it is expected to improve the water modelling research in CCMEO 

and collaborates with other researchers in Canada. 

1.3. Structure of the thesis 

 This thesis is structured in accordance with the University of Waterloo manuscript-option 

format which a manuscript article is presented in a standalone chapter and prepared to be submitted 

for publication. Chapter 1 introduces the motivation and research objectives of this study. Chapter 

2 reviews previous studies regarding monitoring/quantifying of TWS for hydrological research, 

assimilation of GRACE TWS data into physically-based model simulations, reconstruction of 

GRACE TWS data, and applications of ML and DL techniques in hydrology and earth system 

science. Chapter 3 presents the manuscript entitled “Reconstructing GRACE-like TWS Anomalies 

in the Canadian Landmass Using Deep Learning and Land Surface Model”, which details the 

methodology, results, and findings of this study. Finally, Chapter 4 summarizes the contributions 

and limitations of this study, as well as recommendations for future work. 
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Chapter 2  

Related Studies 

 This chapter is divided into three sections designed to review previous studies relevant to 

this research. Section 2.1 presents the methodologies for monitoring and quantifying TWS, as well 

as the significance of TWS in hydrometeorology. Section 2.2 reviews studies regarding data fusion 

of GRACE-derived TWS, climate datasets, and physically-based LSM or global hydrological 

models (GHM), aimed at hindcasting historical TWS data, forecasting future TWS variations, 

downscaling the GRACE data to finer spatiotemporal resolutions, or filling the observation gaps 

between GRACE and GRACE-FO missions. Lastly, Section 2.3 presents some applications of ML 

and DL in general geoscientific studies, with a focus on hydrology. 

2.1. Assessment of terrestrial water storage  

 Terrestrial water storage (TWS) can be defined as the sum of water stored above and below 

Earth’s surface (Rodell et al., 2018), which is given by the following equation: 

                                     𝑇𝑊𝑆 = 𝑆𝑊𝑆 + 𝑆𝑀𝑆 + 𝑆𝑛𝑊𝑆 + 𝐺𝑊𝑆 + 𝐶𝑊𝑆                                       (2.1)        

where SWS stands for surface water, SMS is surface and root soil moisture, SnWS is water stored 

in snow and ice, GWS is groundwater, and CWS is water stored in vegetations (also known as 

canopy water). 

 Variations in TWS are often caused by exchanges with oceans and the atmosphere through 

the mass fluxes in hydrological processes (e.g., evaporation and groundwater flow) (Ni et al., 2017), 

as well as human activities (e.g., groundwater withdrawal for irrigation) (Shamsudduha & Panda, 

2019). It is important to monitor and quantify TWS variations as it reflects water availability, 

hydrological extremes, and human impacts on the water cycle (Famiglietti, 2004), thus helping 

further research in environmental studies, as well as efficient water resource management and 

policies (Fu et al., 2015). For instance, Ni et al. (2017) analyzed the intercorrelations of TWS 

changes and El Nino events at global scale, based on a combination of multiple data sources such 

as LSM simulations, GRACE observations, and precipitation record. 

 Typical methods to estimate the TWS include in situ observations, land surface models, 

and remote sensing observations. In situ surface measurements of TWS are essentially limited over 
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large areas because normally the process is costly and labor-intensive. As a result, the monitoring 

and analysis of TWS variations have been hindered for large-scale areas (Yang et al., 2013). 

Although some components of TWS, such as soil moisture, snow water equivalent (SWE), 

groundwater, can be measured in situ, those measurements are generally local, which lacks an 

observational basis for estimating these components at large scales (Serreze et al. 1999; Robock 

et al. 2000; Alley et al. 2002; Tang et al., 2010). As a result, the need for better observations of 

TWS and its components is increasingly recognized over the recent years. 

2.1.1. Physically-based modelling 

 Physically-based hydrological models have been widely applied to investigate spatial 

distribution and trends of TWS at global scale, and to have a better understanding of climate 

dynamics. Model estimates is commonly produced by the simulation of land surface fluxes such 

as precipitation, evapotranspiration, air temperature, solar longwave radiation (Tang et al., 2010; 

Ma et al., 2017). Global land surface models (LSMs) and global hydrological water resource 

models (GHWRMs) are two most commonly used types of global hydrological models (GHM) 

(Bierkens, 2015). 

 By definition, LSMs are models that simulate mass fluxes between the land surface and 

the atmosphere (e.g., energy flux, water flux, and carbon flux), while GHWRMs focus on the earth 

water cycle and its subdomains in order to deal with global water availability concerns (Zhang et 

al., 2017). Hence, one of the major differences between LSMs and GHWRMs is that LSMs are 

more physically-based as integrating carbon, energy, and water balances. On the other hands, 

LSMs may not accurately simulate variations in TWS because of their emphasis on fluxes (Milly 

et al., 2010). Additionally, GHWRMs take human water consumption into consideration, whereas 

most LSMs do not (Scanlon et al., 2018). Nevertheless, LSMs have been widely applied to 

analyzing the spatiotemporal variations in TWS as well as modelling hydrological variables that 

composed the TWS.  

 Rapid development of LSM has resulted in improvement of existing physical process 

representation, with addition of new processes and functionalities. Several studies have conducted 

comparison of LSMs performance on simulating water cycles. The Water Model Intercomparison 

Project evaluated five GHMs and six LSMs developed between 1994 and 2010 (Haddeland et al., 

2011). The project reveals large differences in simulated evapotranspiration and runoff. The 
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variations are ranging from 42,000 to 85,000 km3/year. Schewe et al. (2014) suggest that the results 

of these intercomparison projects indicate that there are considerable uncertainties in included 

GHMs and LSMs, which also underscore the necessity to adopt multiple models for studying 

fluxes and water storage. Moreover, these projects have primarily focus on particular schemes 

such as evapotranspiration, runoff, or soil moisture content, which does not meet the requirement 

for a comprehensive TWS assessment (Zhang et al., 2017). 

 The scheme of LSM structures have developed from simplex to complex over the years. 

This ‘evolution’ is based on the need to integrate more feedback mechanisms between various 

earth subsystems, as well as more sophisticated characterization of physical processes (Cai et al., 

2014). Therefore, for these evolved LSMs which have more complex structure, more complicated 

evaluation standard is needed, which required miscellaneous observational datasets to assess their 

performances (Luo et al., 2012). However, conventional tests have been mainly carried out at 

smaller scales in order to have better measurements for in situ observations. For large scale LSM 

simulation, it is necessary to assess the model performance under a variety of natural conditions 

or different environmental scenarios (Ma et al., 2017). For instance, Cai et al. (2014) presented a 

comparative study to examine the performances of some widely-used global LSMs (VICM, CLM, 

Noah, Noah-MP) in water balance simulations over the contiguous United States. The results show 

that Noah-MP outperforms other models regarding simulating soil moisture and TWS. However, 

the comparison does not give a comprehensive evaluation of the model performance in the entire 

study region. Because the climates, ecosystems, and human activity level of each river basin within 

a large-scale region could be noticeably different. Therefore, the transferability and flexibility of 

a hydrological model must be elucidated by assessing basins consisting of significantly varying, 

complicated natural conditions (Gupta et al., 2014). For example, in a study evaluating the 

capability of Noah-MP, Ma et al. (2017) selected 18 test regions across the entire contiguous 

United States. Their results show that Noah-MP performs poorly on simulating the monthly TWSA 

in regions that severely affected by either agricultural production or extreme climatic events, which 

caused sudden change in the local water storage. The authors further suggest that Noah-MP needs 

to have additional modules focusing on human-induced disturbances and reservoir water storage 

change, in order to improve its performance over certain river basins. 
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 It is worth mentioning that, for a given study area with identical meteorological forcing 

data, there still are large differences between the TWS simulations from different LSMs. The 

uncertainties in the physical process representation of each model make it difficult to determine a 

general-purpose LSM for any regions. Therefore, the selection of model for simulating TWS 

should consider the hydrometeorological regimes of the study area. 

Table 2-1. Comparison of some commonly used LSMs in simulating TWS 

Model Name CLM4.0 Noah-MP CLSM-F2.5 EALCO (v4.2) 

Paper Lawrence et al. (2011) Niu et al. (2011) Koster et al. (2000) Wang et al. (2014a) 

Spatial resolution in 

North America 

0.125o in NLDAS grid 0.125o in 

NLDAS grid 

0.125o in NLDAS 

grid 

5km 

Temporal resolution 1 hour 1 hour 1 hour 0.5 hour 

Number of snow 

layers 

5 3 3 Dynamic snow 

layering 

Dynamical 

vegetation 

Yes Yes No Yes 

Human-induced 

disturbance 

No No No No 

 

 

Figure 2-1. Schematic diagram of EALCO model. Source: Janzen et al. (2020) 

 EALCO is an EO-based LSM developed by NRCan for simulating the physical processes 

existing in the terrestrial water cycles (Wang, 2005). The model incorporates five major modules 

(as shown in Figure 2-1) designed for modelling land surface radiation transfer, energy balance, 

water dynamics, carbon cycle, and nitrogen biogeochemical cycles, respectively (Wang, 2008).   
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 The module of water cycle is dynamically correlated with the other four modules in order 

to coordinate the feedback mechanism of atmosphere and ecosystem (e.g., vegetation) in the water 

cycle. EALCO estimates the TWS variations by simulating a variety of physical processes with 

equivalent weight in terrestrial water cycle, which are listed as follow: 

 Canopy evapotranspiration by leaf transpiration and canopy evaporation 

 Plant root water uptake and plant water storage. 

 Soil evaporation and snow sublimation at ground surface.  

 Soil water transfers and soil water-groundwater interactions. 

 Snow processes which use dynamic snow layering schemes for snow accumulation and 

thaw simulations.  

 Sublimation from intercepted rain, snow, dew, or frost. 

 Open water surface evaporation from lakes, reservoirs, and rivers. 

 The EALCO LSM incorporates various mechanisms specifically designed for simulating 

water and energy fluxes in cold region, so that it can be better applied in Canadian regions (Zhong 

et al., 2020). Its performance has been evaluated in several LSM/GHM intercomparison studies 

(Widlowski et al., 2011; Medlyn et al., 2015). Moreover, EALCO is able to provide the terrestrial 

TWS dynamics at relatively high spatiotemporal resolutions (Janzen et al., 2020). To sum up, the 

robustness of EALCO is reliable as shown in previous works, thus EALCO is expected to be 

effectively applicable in this thesis research. 

2.1.2. Satellite observations 

 As mentioned previously, one noticeable disadvantage of existing GHM and LSM is the 

lack of comprehensive modeling of all components in the water cycle. For instance, most of 

commonly used physical models tend to underestimate the TWS changes caused by human-

induced and climatic impacts (Jiang et al., 2020). Tang et al. (2010) also argued that the main 

limitation in using model-simulated TWS is in a given river basin, the effects of artificial reservoirs 

and irrigation water withdrawals, are not represented in most LSMs. 

 In recent years, satellite remote sensing (RS) has become a viable tool to investigate the 

spatiotemporal pattern of various hydrological variables at local or global scales. A number of 

satellite-borne instruments have been used for monitoring water storage changes. For instance, 

Jiang et al. (2020) implemented an independent component analysis of Global Navigation Satellite 
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System (GNSS) observations to investigate sudden TWS changes related to hydrometeorological 

extremes. GNSS remotely detects near-real-time TWS changes after significant hydrological 

events by measuring instantaneous water loading signals with millimeter-level precision, which 

provides useful constraints for operational hydrological monitoring of daily TWS variations. 

However, continuous GNSS-based tracking of TWS is greatly limited by station density and GNSS 

data processing procedures, which is not suitable for long-term TWS assessment. Lee et al. (2015) 

quantified the surface water storage changes in large scale forested floodplains using the L-band 

Synthetic Aperture Radar (SAR) instrument and Envisat altimetry measurements. In this paper, 

SAR images were used to extract the flooded extents, and satellite radar altimetry measures the 

water level. The variations in surface water storage were estimated by integrating the extracted 

flooded extents and water level measurements. Moreover, Yuan et al. (2017) applied 

Interferometric SAR and satellite altimetry measurements to map the spatial pattern of water depth 

and water volumes in floodplains. The two-dimensional (2D) maps were then used to estimate the 

absolute water storages over the study areas. It is worth mentioning that radar-based assessments 

rely on the SAR backscattering coefficients to estimate water level changes. However, the 

preferred L-band wavelength SAR data is only provided by a few satellites, which results in time 

gaps when observational data from these satellites were not available. Furthermore, the capability 

of radars and radiometers can be adversely affected by atmospheric and near-surface phenomena 

(Rodell et al., 2009). 

 The GRACE satellite mission was launched in March 2002, which was a cooperative 

project between NASA and German Aerospace Center (DLR) for monitoring the anomalies in 

Earth's gravity field (Rodell et al., 2009). The mission was carried out by two identical satellites 

operating in a coorbiting manner with 500 km altitude, each following the other with a distance of 

approximately 220 km. The satellites emit microwaves to monitor their separation distance, which 

changes as the satellites pass through gravity anomalies (Tapley et al., 2004). For example, when 

the first satellite reaches a positive gravity anomaly, its attraction increases, so the distance 

between the satellites increases. And when the second satellite reaches the gravity anomaly, its 

attraction also increases, thereby reducing the inter-satellite distance. Consequently, GRACE is 

able to demonstrate the mass changes in the earth surface in an aggregate form but cannot 

distinguish the components. The inter-satellite distance measurements are used to calculate the 

temporal changes in the gravity field after removing the effects of non-gravitational accelerations 
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as detected by onboard accelerometers (Tapley et al., 2004). These gravity changes are related to 

the redistribution of mass, which mostly caused by the circulation of water through lands, oceans, 

and atmosphere. After removing the atmospheric and oceanic effects, the monthly gravity 

variations obtained from GRACE can be inverted for global estimates of vertically integrated 

terrestrial water storage. And its accuracy increases as the spatial scale increases (Swenson & Wahr, 

2002; Swenson et al., 2006). Comparing with SAR and other satellite instruments, GRACE has 

the major advantage that it is capable to detect changes in groundwater storage underneath the land 

surface (Rodell et al., 2009).  

 There is now substantial research adopting GRACE data to assess TWS variability, both 

on land and in the oceans (Jiang et al., 2014). For instance, Rodell et al. (2018) conduct an 

observation-based assessment of how global water landscape response to human impacts and 

climate changes, by quantifying trends in TWS observed by GRACE. In this study, the authors 

quantified 34 trends in GRACE-observed TWS from 2002 to 2016, and their findings show that 

seasonal variability, overexploitation of groundwater, climate change are the major driving factors 

of these trends. Bonsor et al. (2018) analyzed GRACE TWS data to estimate the interannual TWS 

variations in basins where in-situ observations are scarce. In a review study, Jiang et al. (2014) 

summarized a variety of hydrological applications of GRACE data including TWS change 

monitoring, drought analysis, flood analysis, hydrological components evaluation, and glacier 

mass balance detection. 

 Nevertheless, GRACE observations are not the optimal dataset for real-time water storage 

monitoring due to the latency period of two to three months, monthly temporal resolution, and data 

gaps (Jiang et al., 2020). Nevertheless, it has significantly facilitated the evaluations of GHM and 

LSM at the large scales (Niu et al., 2007; Cai et al., 2014; Ni et al., 2017; Zhang et al., 2017; Ma 

et al., 2017; Sliwainska et al., 2018; Scanlon et al., 2018; Scanlon et al., 2019). Although there is 

often a mismatch between the spatial resolution of GRACE product and that of corresponding 

GHM or LSM, the GRACE-derived TWS data can be downscaled to finer spatial resolution by 

applying proper post-processing procedures.  

 The post-processing of raw GRACE data results in different levels of data. The Level-0 

data is the raw result of telemetry data reception. The Level-1 data is the output after converting 

binary encoded Level 0 data to engineering units, and to quantities used in Level-2 processing. 
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Level-2 data is presented in the form of near-monthly potential spherical harmonic coefficients 

with their full error variance-covariance matrix (Tapley et al., 2004). The Level-3 GRACE data is 

derived from Level-2 solutions to depict the Equivalent Water Height (EWH) to a normally 

geographic coordinate system (Landerer & Swenson, 2012). The Level-3 GRACE TWS products 

are available in two different types of solutions, spherical harmonic coefficient (SHC) solutions 

and mascon solutions, respectively (example products shown in Figure 2-2). Monthly TWSA 

product of both solutions can be downloaded from the website of NASA Jet Propulsion Laboratory 

(JPL) (https://grace.jpl.nasa.gov/data/monthly-mass-grids), in gridded format. The SHC solution 

product contains gridded TWS estimates derived from the Level-2 dataset through de-stripe and 

smoothing (Swenson & Wahr, 2006). On the other hands, the mascon solutions apply mass 

concentration blocks (i.e., mascon) to parameterize the gravity field (Watkins et al., 2015).  

 

Figure 2-2. The 2003–2013 TWS trend (top) and annual amplitude (bottom) for JPL RL05M 

mascon solution (left) and JPL RL05 spherical harmonic solution DS300 (right), expressed in 

cm/year and centimeter of EWH, respectively. Source: Watkins et al. (2015) 

https://grace.jpl.nasa.gov/data/monthly-mass-grids
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 The two GRACE solutions mainly differ in the adopted basis functions. The selection of 

solution products should be based on the research objective. For instance, the mascon solution 

contains information of geophysical location while SHCs lack localization information. However, 

each mascon estimate brings uncertainties resulting from leakage errors (i.e., errors in coastlines, 

which are intrinsic to the mascon basis functions) and solution errors (i.e., errors in the 

parameterization process) (Sun et al., 2020). Fortunately, these errors could be reduced or even 

removed during the data inversion process, by modelling the mascon’s localization as priori 

information (Zhong et al., 2020). 

2.2. Data fusion of GRACE, physically-based models, and climatic data  

2.2.1. Assimilating GRACE observations into model simulations  

 The inaccuracies and uncertainties in GHM and LSM often limited their reliability. These 

drawbacks are results from oversimplified representation of hydrometeorological processes and 

the errors of climate forcing data (Soltani et al., 2021). GRACE satellite observations have 

facilitated novel approaches to calibrate and adjust GHM and LSM. One solution is to improve the 

model performance through changes in model architectures and hyperparameters (Lo et al., 2010), 

where GRACE data is used as a reference data. Another solution is to adopt data assimilation 

techniques, by using advanced statistical methods based on prior and posterior information, to 

directly calibrate and adjust the outputs of models, as well as reducing the systematic deficiencies 

in model. As a result, the simulation is able to fit better to the corresponding GRACE observation 

(van Dijk et al., 2014; Schumacher et al., 2016).  

 Considerable effort in recent years has been devoted to assimilating GRACE TWS into 

physically-based hydrological models to improve the model simulation of various TWS 

components. At each assimilation step whenever a new observation is available, the assimilation 

scheme applies error corrections based on the discrepancies between model simulations and 

GRACE observations. Apte et al. (2008) indicated that the accuracy of simulations and 

observations determine the correction level to be applied to the models, and correspondingly 

weight of observations. The authors adopt a Bayesian perspective by suggesting that assimilation 

updates the probability distribution function (PDF) of each state variable of the model in the 

presence of observation. However, hydrological models are high-dimensional which is either non-

Gaussian or nonlinear. The computational burden would be large when the posterior PDF is not 
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analytically derivable for the state variables (Vrugt et al., 2013). Therefore, techniques of 

sequential filtering or variational filtering are applied to numerically solved the Bayesian 

estimation (see Figure 2-3) (Subramanian et al., 2012). 

 

Figure 2-3. Scheme of variational filtering (left) and scheme of sequential filtering (right). 

Source: Soltani et al., 2021 

 For instance, van Dijk et al. (2014) conducted a global water cycle analysis that integrates 

GRACE-observed TWS, satellite water level altimetry, and simulations from five GHMs. Their 

approach was to combine GHM-simulated water balance components with several ancillary data 

sources (e.g., lake water level), to generate a combination of prior estimates of monthly TWS 

variations. The data assimilation was carried out by sequentially merging the ensembled model 

estimates and GRACE observations. However, the results contain great uncertainties occur in 

regions where glacier mass loss occurs. The authors suggested that the uncertainties could be 

caused by the error in original GRACE TWS data over glaciated land area. Schumacher et al. 

(2016) systematically assess the effects of spatially correlated errors in GRACE TWSA products 

as assimilating into WaterGAP GHM, by introducing the GRACE data in various spatial scales. 

They noticed that higher spatial resolution of TWSA observations would increase the impact of 

GRACE error correlation on the assimilation results, particularly in basins that are elongated in 

north–south direction and in basins where there is a large difference between model-simulated 

TWSA and GRACE-derived TWSA.  

 In addition to GRACE data errors, model uncertainties could result from model parameters, 

model structure, surface meteorological forcing, and unmodeled processes such as human 
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activities (Zhang et al., 2017). In other words, the modeling remains imperfect as the models still 

need further improvements on simulating all physical processes of water cycle and the 

intercorrelations between different water components. Girotto et al. (2017) investigate the 

modeling errors as assimilating GRACE TWS data into Catchment Land Surface Model (CLSM) 

over India. They noticed that GRACE is able to detect the TWS depletion caused by human-

induced groundwater extraction, while the model failed to demonstrate such reduction as 

simulating representations of groundwater. Thus, the assimilation introduces a strong negative 

trend in simulated groundwater in the particular regions. However, the assimilation also introduces 

a negative trend in simulated evapotranspiration, which is unrealistic because evapotranspiration 

is likely enhanced by irrigation, but the model does not simulate irrigation. It shows that the 

assimilation is a double-edged sword as it can degrade certain water components while improving 

the others. 

 The interaction between physically-based models and GRACE data is a mutual process 

since GRACE data is able to improve the modeling performance by facilitating parameter tuning 

and uncertainty reduction, and in which the models provide a baseline and reference for data fusion 

and interpolation (Rajabi et al., 2018). Previous studies have shown that GRACE-derived TWS 

data have the capability of improving physically-based simulations, while there are some obstacles 

when assimilating GRACE observations into GHM or LSM. One of the impediments is that 

GRACE observations and LSM simulations have huge discrepancies in spatial and temporal 

resolutions (Soltani et al., 2021). In fact, the hydrological applications of GRACE-derived TWS 

are often limited due to their monthly temporal resolution and coarse spatial resolution (~110 km), 

and the distinguishing of different water storage components (Girotto et al., 2016). Fortunately, 

the fusion of GRACE TWS and model-simulated TWS have the potential to partition the vertically 

integrated GRACE observations into disintegrated surface and subsurface water components. 

Schumacher et al. (2018) suggested that the integration of GRACE data and GHM/LSM does not 

only improve simulation of seasonality and trend of TWS, but also it improves the simulation of 

individual water storage components. For instance, Girotto et al. (2016) proposes an assimilation 

system to integrate gridded GRACE-TWS observations and LSM, for specifically improving 

groundwater and soil moisture estimates. 
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 Moreover, the fusion techniques can be used to downscale GRACE-TWS information to 

finer spatial and temporal scales (Rahaman et al., 2019). In fact, downscaling has been an 

important role in research related to satellite remote sensing. Yin et al. (2018) indicated that the 

downscaling methods can be categorized into dynamic downscaling and statistical downscaling. 

Dynamic downscaling is to construct a regional numerical model at higher spatial resolution, and 

the model can be applied at smaller scales. Statistical downscaling is to establish the relationship 

between large-scale variables and data from small-scale observations. Dynamic downscaling has 

been widely adopted to downscale GRACE TWS through assimilating into LSMs (Zaitchik et al., 

2008; Houborg et al., 2012; Sahoo et al., 2013), but such applications often require extensive 

computing time as well as complex data sources, and many of the above-mentioned procedures 

depend on the selected LSM, some of which are lacking surface or groundwater components 

(Sahour et al., 2020). On the contrary, statistical downscaling is relatively simple to implement. 

During recent years, a variety of statistical methods, such as multivariate regression and artificial 

neural networks (ANN), have been applied to downscale GRACE data to high resolution dataset 

(Yin et al., 2018; Seyoum et al., 2019; Sahour et al., 2020; Zhong et al., 2020).  

2.2.2. Reconstruction/Extension of GRACE TWS datasets using climatic variables 

 The temporal coverage is often referred as the major shortcoming of GRACE-derived TWS 

data because the time span of available GRACE observations is less than 20 years (April 2002 to 

the present), along with a 1-year data gap between the two GRACE missions (July 2017 to May 

2018), which greatly limits GRACE applications for long-term and consistent hydrological studies. 

Classical approaches to hindcast historical TWS would either rely on physically-based models or 

basin-scale water balance calculations (Mueller et al., 2011). However, the estimation may be 

limited by uncertainties in model parameters and structures. Therefore, a number of studies have 

dedicated to the subject of data-driven reconstruction of GRACE TWS dataset by constructing 

empirical relationships between GRACE TWS and related climatic and hydrological variables 

(Nie et al., 2015; Humphrey et al., 2017; Tang et al., 2017; Yin et al., 2019; Li et al., 2020; 

Sohoulande et al., 2020). For instance, Nie et al. (2015) reconstructed monthly and annual TWS 

time series over the Amazon Basin from 1948 to 2012 by integrating GRACE TWSA data, with 

multiple hydrological variables derived from Global Land Data Assimilation System (GLDAS) 

products, including monthly precipitation, evapotranspiration, surface runoff, and subsurface 

runoff. Humphrey et al. (2017) presented a global TWS data reconstruction for the period 1985 to 
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2015 using a statistical model based on precipitation and temperature, but the reconstructed 

product neglects temporal variability and trends. Tang et al. (2017) developed a water balance 

model for reconstructing annual TWS change and groundwater storage (GWS) change during 1980 

to 2015. The model is based on Budyko equation which describe the correlations between mean 

annual precipitation, mean annual evapotranspiration, and runoff. The model parameters were 

estimated by minimizing the root-mean-square error (RMSE) between the Budyko-incorporated 

TWS and GRACE-derived TWS. Sohoulande et al. (2020) proposed a unified predictive 

framework to retrieve monthly TWSA by incorporating climatic and hydrological variables as 

considering the impacts of lag signals. The framework consists of two stages operating on gridded 

data. The first stage applies principal component analysis on multiple meteorologic variables 

represented in time-series form. In the second stage, a multivariate regression is applied on the 

principal components’ scores. The authors noted that for certain locations the prediction of TWS 

is limited because the framework is not comprehensive enough as it only relies on climate forcing. 

2.3. ML/DL applications in geoscientific and hydrological studies 

 The advances in data acquisition techniques, such as satellite remote sensing and 

crowdsourcing tools, have led to the substantial growth of the volume and variety of geospatial 

data (Yuan et al., 2020). With the abundant data sources and enhanced computational power, many 

machine learning (ML) techniques have made great contribution in geoscientific studies 

(Reichstein et al., 2019). Deep learning (DL) is a subbranch of ML focusing on large-size and deep 

ANNs. It has gained remarkable results in modelling spatiotemporal data (i.e., combining spatial 

learning and sequence learning) in the fields of computer vision and time-series analysis, which 

provides opportunities for novel methods in environmental monitoring from satellite imagery data 

(Shen, 2018). Reichstein et al. (2019) argued that classical ML approaches may not be optimal for 

modelling spatiotemporal systems (e.g., water cycles). On the other hands, DL is able to gain 

further understanding of these complex systems by automated feature extraction. Therefore, they 

suggested that DL should be used for analyzing the system behavior dominated by spatiotemporal 

context, as well as performing spatial and temporal interpolation (i.e., predictive ability).  

2.3.1. Common DL network architectures in geoscientific studies 

 This section summarizes a selection of the cornerstone neural network architectures that 

commonly used by papers related to geoscience and spatiotemporal data. 
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Autoencoders 

 Autoencoders (AE) are neural networks (or elements of deep neural networks) that are used 

to reduce the dimensionality of datasets and then reproduce the inputs, so that the output will be a 

close representation of the input (Hinton & Salakhutdinov, 2006). Autoencoding refers to a 

unsupervised data compression algorithm that learned automatically from data samples. AE is 

divided into two parts, namely encoder and decoder, and each part can be regarded as several 

hidden layers between an input layer and an output layer. The performance of the network is 

measured by how close the outputs approximate the inputs after training. AE are implemented in 

an unsupervised manner to generate a representation feature of the dataset within the hidden layer 

neurons in the bottleneck, also called the latent vector (see Figure 2-4a), the trained weights are 

optimized as generating these features. On the output side, the network needs to reconstruct the 

inputs with condensed information (Shen, 2018). Zhang et al. (2019) proposed an unsupervised 

RS image segmentation method based on a dual autoencoder network, which shows satisfactory 

results on water information extraction.  

Convolutional neural network 

 Convolutional neural network (CNN) is composed of a stack of basic units that shrink in 

width from input to output (see Figure 2-4b). Each basic unit could be one of the operational layers 

including convolutional layer, pooling layer, and activation layer (Yuan et al., 2020). A 

convolutional layer applies multiple cascaded convolution kernels to extract intricate knowledge 

from the input. For example, a convolutional layer that processes an image can extract positional 

information from images, such as understanding spatial autocorrelation. The pooling layer can 

obtain the dimensionally-reduced data from the input data through max-pooling or average-

pooling operations. CNNs have been widely applied to deal with imagery analytical tasks such as 

missing data prediction (Das & Ghosh, 2017), cloud removal (Zhang et al., 2018), and land surface 

temperature reconstruction (Wu et al., 2019), due to its strong nonlinear representation capability, 

which acquired state-of-the-art results. For instance, Pan et al. (2019) introduced a CNN-based 

model to predict daily precipitation and tested it at 14 monitoring sites across the contiguous 

United States and proved that, if provided with sufficient data, the precipitation estimates from the 

CNN method are better than the reanalysis precipitation products and statistical downscaling 

products. In computer vision, CNN have shown its significance for the analysis of RS imagery. 
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Recurrent neural networks and Long short-term memory networks 

 Recurrent neural network (RNN) includes a recurrent layer which the neurons within the 

layer could be connected to each other. This mechanism enables RNNs to carry information 

learned within a neuron to the next neuron in the same layer. Therefore, RNN is convenient when 

the input data is in sequential format such as a time-series data or a text. RNN has become an 

important model for analyzing time-series changes in spatiotemporal systems due to its excellent 

performance in short sequence processing. Spatiotemporal systems are common in the real-world, 

such as traffic flow, diffusion of air pollutants, and regional precipitation. Hindcasting or 

forecasting the past/future states of these spatiotemporal systems based on the available 

observations is a significant and challenging problem. For some complex spatiotemporal 

dynamical systems like atmosphere and aquifer, traditional numerical models are not capable to 

make prediction due to the lack of knowledge about the systems’ inner mechanisms. In these 

complex situations, RNN-based methods have been proven useful for making accurate predictions, 

by which the systems’ inner mechanisms can be learned based on the historical data (Zheng et al., 

2015). For instance, Freeman et al. (2018) applied the RNN model to nowcast air pollution with 

time series data from air monitoring stations in Kuwait. In general, RNN shows advantage in 

handling short sequence problems. 

 However, RNN perform relatively poor on processing time series data over a long period 

(Yuan et al., 2020). As a variant of RNN, Long Short-Term Memory (LSTM) networks have been 

widely adopted for problems with long time sequence. A LSTM layer is composed by a number 

of memory blocks that are recurrently connected (see Figure 2-4c). Each memory block contains 

memory cells and gate units (input gate, forget gate, output gate). Gates are neural net layer with 

trainable weights, which enables optional transfer of information within the memory block. During 

the training process, the input gate determines if the inputs are significant to be saved in the 

memory cell, the forget gate determines if which past state memory should be reserved, and the 

output gate decides how the saved memory is used to produce the output. This mechanism allows 

the LSTM network to remember information from the long past while neglecting nonessential 

information (Shen, 2018). Unlike RNN, LSTM neurons produce two different values yielded by a 

series of activations and operations. You et al. (2017) developed a LSTM-based model for crop 

yield prediction in which enables real-time forecasting. Reddy and Prasad (2018) applied LSTM 
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and ANN on satellite-derived vegetation index to forecast changes in vegetation cover. Yang et al. 

(2018) built an end-to-end LSTM network to conduct forecast of seawater surface temperature. 

One convolutional layer was added to the network so that not both temporal and spatial 

relationships of the time series data are included. In addition, Fang et al. (2017) and Fang et al. 

(2019) estimated the long-term soil moisture by LSTM, which exhibits enhanced transferability 

capability as comparing with autoregressive models and traditional linear regression.  

 

Figure 2-4. Architectures of components of four types of DNN structures: (a) Autoencoder, (b) 

CNN, (c) RNN and LSTM, and (d) GAN. Source: Sit et al. (2020) 

Generative adversarial networks 

 Generative adversarial networks (GAN) were motivated by the need to model high-

dimensional and multimodal distributions (Goodfellow et al., 2014). It consists of two separately 

running neural networks, which are generator and discriminator, respectively (see Figure2-4d). 

The two networks are competing with each other during the training. The generator aims to 

generate fake examples out of the input dataset while the discriminator aims to determine whether 

the generated example is fake or not. As they both intend to ‘fool’ each other, it causes them to 
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improve their capability of generating fake outputs and discriminating fake from real. GANs are 

capable of learning translation tasks such as super-resolution (Lei et al., 2020) or image-to-image 

translation (Isola et al., 2017), which can be applied in RS imagery processing and analysis. 

2.3.2. DL opportunities in hydrology and water resource  

Table 2-2. Conventional methods and DL-based methods for geoscientific tasks. Source: 

Reichstein et al. (2019) 
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 Unlike some other disciplines, the applications of DL have not been widely adopted in 

solving problems in earth system science, especially in the field of hydrology. Previous works 

regarding DL applications in hydrology can be categorized into three main types, first is the 

extraction of hydrometeorological information from gridded data (e.g., RS imagery); Second is the 

dynamic modeling of hydrologic variables observed/measured by sensor networks; and third is the 

learning and prediction of intricate data distributions (Shen et al., 2018). Nevertheless, in fields 

related to earth system science such as RS and GIS, application of DL has progressed rapidly 

because it has done exceedingly well in extracting information from raw observations and 

measurements. Reichstein et al. (2019) summarized the comparisons between conventional 

approaches and DL approaches to a variety of geoscientific tasks, as shown in Table 2-2. 

 Due to the fact that hydrological modelling relies on sequential datasets, many of previous 

studies focus on sequence prediction tasks and regression tasks. And studies based on imagery 

data (or 2D maps) tend to work on matrix prediction tasks. Therefore, CNNs and LSTMs are 

commonly used in DL-based hydrologic research, while GANs have not been widely adopted in 

this filed (Sit et al., 2020). The selection of network architecture also depends on the type of 

subdomain. For instance, some studies focus on groundwater modelling with ancillary data on 2D 

maps, such as CO2 saturation field map (Mo et al. 2019), water balance map (Sun et al., 2019), 

and hydraulic conductivity field map (Zhou et al., 2020). As a result, these studies used CNNs to 

construct the models. On the other hands, some studies focused on capabilities of surface water 

prediction, such as water temperature and water level. For instance, Xiao et al. (2019) developed 

a ConvLSTM model to predict the temperature of seawater surface based on satellite-derived 

temperature data for 36 years. The results showed that the ConvLSTM model significantly 

outperforms two different LSTM models for short-term and mid-term prediction. Qi et al. (2019) 

forecasted daily reservoir inflow by integrating the results from the LSTM models and 

decomposed inflow data. 

2.3.3. GRACE data processing using ML and DL 

 During the past few years, applying ML/DL technologies on GRACE data have gained a 

lot of attention. Most of these previous works focus on two tasks: the spatial downscaling of 

GRACE data, and the reconstruction/extension of GRACE-derived dataset. As mentioned 

previously, the application of GRACE at local scales has been greatly limited due to the coarse 
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spatial resolution. Seyoum et al. (2019) implemented a tree-based model based on Boosted 

Regression Tree, to downscale GRACE-derived TWSA into high-resolution map of GWS 

anomalies in a glacial aquifer. Rahaman et al. (2019) adopted random forest, an unsupervised ML 

method, to integrate GRACE data with other hydrological variables simulated by the Noah LSM. 

Their proposed method downscaled the spatial resolution of GRACE-derived GWS anomalies in 

Northern High Plains aquifer from 1 degree to 0.25 degrees. Similarly, Chen et al. (2019) 

developed a random forest model for downscaling GRACE-derived GWS in northeast China. 

Sahour et al. (2020) applied multilayer perceptron to extract relationships between coarse 

resolution GRACE observations (110 km x 110 km) and various hydrologic variables (e.g., 

precipitation, snow cover, streamflow, temperature, soil moisture and evapotranspiration). The 

extracted relationships and fine-resolution dataset of these variables are used to predict monthly 

TWS data for the test site, with a downscaled spatial resolution of approximately 14 km x 14 km.  

 As for the reconstruction or extension of GRACE datasets, the utilization of ML and DL 

methods has been shown to be useful by a number of recently published studies. In a study by 

Yang et al. (2018), the authors used random forest, support vector machines, and ANN methods 

to hindcast over 50 years of GRACE-like TWSA time series in large-scale river basins located in 

northwestern China, based on GRACE-derived TWSA and hydrological variables from GLDAS. 

The results showed that the random forest outperform other methods. Ahmed et al. (2019) 

forecasted GRACE TWS on 10 major African watersheds and predicted drought events. A 

recurrent dynamic ANN model was constructed to investigate the nonlinear relationships between 

GRACE TWS data and related hydrological variables. Sun et al. (2019) applied three CNN models 

which originally designed for semantic segmentation, to learn the spatiotemporal patterns of 

mismatch between GRACE-derived TWSA and TWSA simulated by Noah LSM in India’s 

landmass. The trained models are capable to predict TWSA at any timestamp given the 

corresponding Noah simulations. Jing et al. (2020) conducted a case study to hindcast historical 

TWSA at the Nile River basin by developing a ML-based reconstruction model incorporating 

random forest algorithm and a spatially moving window structure. The model was then used to 

calibrate LSM-simulated historical TWSA from GLDAS based on GRACE-derived TWSA. It is 

noticeable that previous efforts have demonstrated the potential of ML/DL in reconstructing 

GRACE-like data at basin and local scales. However only a handful of ML/DL architectures were 

applied, it is worth to examine the capabilities of more architectures. 
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Chapter 3  

Reconstructing GRACE-like TWS Anomalies in the Canadian 

Landmass Using Deep Learning and Land Surface Model 

3.1. Introduction 

 Terrestrial water storage (TWS) is referred to water volumes both underneath and above 

the Earth’s surface (Jing et al., 2020). TWS is considered as the main component of terrestrial and 

worldwide hydrological process, which its dynamics under different scenarios of environmental 

changes including climate change and human disturbance is key to determine water resources 

sustainability and vulnerability (Famiglietti, 2011). As such, the change in TWS is considered as 

one of the key parameters to be studied for the assessment of hydrological cycle. The earlier 

methods for quantifying TWS have been relied either on global hydrological models (GHM) 

(Khaki et al. 2017; Shokri et al. 2018) or land surface models (LSM) (Kumar et al. 2017; Nie et al. 

2019) which integrate some atmospheric and surface properties with in-situ observations (Tourian 

et al., 2018). However, the construction of these models is based on principles of physical 

processes of water storage, which requires large number of ground-based data that are costly, time-

consuming, and restricted to a sparse set of in-situ monitoring stations. As a result, inadequate 

spatial and temporal coverage of ground-based observations and uncertainties in storage 

coefficients limit the understanding of water storage changes at large scales.  

 The emergence of satellite remote sensing (RS) enabled continuous monitoring over 

hydrological fluxes at different spatial resolutions. The variations in TWS change the gravity filed 

over a region which can be effectively detected at large scales by the Gravity Recovery and Climate 

Experiment (GRACE) satellite launched in March 2002. So far, GRACE satellite is probably the 

only RS-based method to quantify long-term TWS anomalies (TWSA) at large-scales. The primary 

reason for temporal changes of the Earth’s gravity field is the redistribution of water mass within 

thin fluid envelope of the Earth, and GRACE enables to detect tiny changes in the Earth’s mass 

redistributions related to spatiotemporal variations of TWS at monthly time scale (Dankwa et al., 

2018). The activities in producing high quality and long-term datasets for TWS normally involve 

the integration of various datasets from satellite observations, in-situ observations, and outputs 

from land surface and climate models.  
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 Previous studies have employed the fusion of GRACE data into global hydrologic and land 

surface models as an attempt to enhance the model’s prediction skills. A combination of Global 

Land Data Assimilation System (GLDAS), statistical models, and GRACE was applied by Peng 

et al. (2017) to measure TWS variations within Tarim River basin from 2002 to 2015. Scanlon et 

al. (2018) evaluated the trends in land water storage comparing global hydrologic and water 

resource models, global LSMs, and GRACE data over 186 global basins. They found a large spread 

in the results of these models and weak matching rules between the models and the GRACE 

solutions, and that the global models may underestimate the trend in future climate change and 

human-induced water storage variations. A statistical model trained with GRACE data was applied 

by Humphrey and Gudmundsson (2019) to directly build past climate-driven variations of TWS 

from historical and meteorological datasets on daily and monthly basis.  

 However, the observations from the GRACE satellite have data available for only about 15 

years, which does not meet the requirement for producing a baseline TWS information that can be 

used to calculate the Climate Normal which requires at least 30 years (Arguez et al., 2019). 

Nowadays, various methods have been developed for the reconstruction of missing information in 

RS data for different problems. But most reconstruction methods are based on linear models and 

can only be used under limited conditions. This limitation contributes to the difficulty in handling 

complex surfaces and large amount of missing data (Shen et al., 2015). For some complex 

spatiotemporal dynamical systems like atmosphere and aquifer, traditional numerical models are 

not capable to make prediction due to the lack of knowledge about the systems’ inner mechanisms. 

On the contrary, deep learning-based methods have proven useful for making accurate predictions 

for complex spatiotemporal systems, by which the systems’ inner mechanisms can be learned 

based on the historical data (Shi & Yeung, 2018). 

 In fact, data-driven methods such as machine learning (ML) and deep learning (DL) can 

serve as useful modeling techniques to quantify and simulate TWS for better prediction and deeper 

understanding of water cycles (Sun et al., 2019). In recent years, learning-based models have been 

increasingly used to predict hydrological variables by learning the correlation between the main 

variables and other related parameters (Sahoo et al., 2017; Hamshaw et al., 2018; Broxton et al., 

2019; Kim et al., 2019; Quilty et al., 2019). For instance, Artificial Neural Network (ANN) model 

is one of the prevalent methods to reconstruct GRACE-like time series dataset (Long et al., 2014; 
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Zhang et al., 2016). The fusion of ANN model into GRACE data was applied by Chen et al. (2019) 

to reconstruct the historical TWS record in Songhua River basin, Northern China. Mukherjee and 

Ramachandran (2018) applied support vector machine, ANN, and linear regression model on 

GRACE-derived TWSA to predict ground water level. Their finding suggests that the performance 

of the models improved when climatic observations are integrated with GEACE TWS data. In 

addition to ANN-based model, Sun et al. (2019) reconstructed GRACE TWSA data of India’s 

landmass by integrating LSM with convolutional neural networks (CNN). The results revealed 

that the CNN model can effectively enhance the performance of LSMs with providing the water 

components. Nevertheless, previous efforts are only proven to be applicable in certain cases, which 

may not apply in other basins, especially those with harsh climate, arid climate, or intense human 

interventions (Jing et al., 2020). In different environmental scenarios, the correlations between 

hydrological variables (i.e., LSM simulations) and GRACE observations cannot be generalized. 

Moreover, only a handful of DL architectures were applied to reconstructing GRACE-like TWS, 

it is necessary to examine the capabilities of more algorithms and architectures such as recurrent 

neural network (RNN) and generative adversarial network (GAN). 

 The objective of this study is to develop DL-based models for reconstructing the historical 

terrestrial water storage datasets for Canada’s landmass, based on the statistical correlations 

between LSM-simulated TWSA and GRACE-derived TWSA during the first GRACE mission 

(2002-2017). So that the existing TWS records can be extended and improved for generating the 

baseline TWS dataset for Canada. Three types of DL architectures (CNN, conditional GAN 

(cGAN), and deep convolutional autoencoder (DCAE)) are trained to learn the spatiotemporal 

pattern of the correlations between GRACE observations and corresponding LSM simulations. 

These trained models are able to predict GRACE-like TWSA with using LSM simulation as inputs 

(i.e., without requiring observed GRACE TWS as inputs). In addition, a convolutional LSTM 

(ConvLSTM) model is trained to learn the temporal variations in the GRACE TWSA time series, 

which considers the input data as sequences and make predictions only based on temporal trends 

existed in GRACE data (i.e., without referencing to the LSM simulations). The results of the four 

models are compared in order to choose the optimal method for the final reconstruction. In the 

following, Section 3.2 describes the data used, as well as the data pre-processing methods. Section 

3.3 presents the methodology and implementation details of model constructions. The results are 
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presented and discussed in Section 3.4. And lastly, Section 3.5 states the main conclusions and 

findings.  

3.2. Data and data preprocessing 

 

Figure 3-1. Map of the study area. Canada’s landmass is represented by brown color 

3.2.1. GRACE TWSA data 

 

Figure 3-2. Trend of GRACE TWS in the study area, calculated as the linear slope of the TWS 

over 2002-2016. 
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 The GRACE monthly TWSA product (RL06 spherical harmonics solution) was 

downloaded from the Jet Propulsion Laboratory (https://podaac.jpl.nasa.gov) of NASA. The 

product is provided with a grid resolution of 1 degree (~110km) at global scale. The original 

GRACE TWSA data measures the deviations from the mean TWS between January 2004 to 

December 2009 (i.e., the baseline value). In this study, the baseline value was adjusted to the mean 

TWS between April 2002 to December 2016 (i.e., the study period), so that GRACE TWSA and 

EALCO TWSA data can be comparable to each other (Zhong et al., 2020). The data was clipped 

by a Canadian national boundary shapefile to cover the Canada’s landmass, and then reprojected 

to Canada Lambert Conformal Conic (CanLCC) projection. Figure 3-2 shows the GRACE TWS 

trend during the study period. The trend exhibits values varying across the locations, and there are 

strong negative trends in Yukon and Arctic region. The significant long-term water loss in these 

regions is presumably resulting from melting glaciers and permafrost (Wang & Li, 2016).  

3.2.2. EALCO-simulated TWSA data 

 The EALCO (Ecological Assimilation of Land and Climate Observation) model is a LSM 

developed by Natural Resources Canada. EALCO simulates the energy, water, and carbon 

dynamics by assimilating land and meteorological observation information, which can provide 

hydrologic information with a relatively high spatial and temporal resolution (Wang, 2005). 

However, EALCO cannot provide complete information brought by the GRACE satellites, as it 

may underestimate the trends caused by climate change (e.g., glacial ablation) and human-induced 

water storage changes. As can be seen from Figure 3-3, EALCO does not reflect the decreasing 

trend indicated by GRACE. Therefore, the TWS data simulated by the EALCO LSM is not 

applicable to directly reconstruct the historic TWS dataset. 

 The EALCO daily TWS product (v4.2) used in this study cover the period from January 

1979 to December 2016, with a spatial resolution of 5km. EALCO TWS was calculated from 

simulations for soil water content, snow water equivalent and canopy water. The simulations and 

calibration were independent from GRACE TWS data. The EALCO TWSA was calculated by 

subtracting the same baseline value as the GRACE TWSA. Then the EALCO TWSA data was 

upscaled to 110 km resolution using the arithmetic mean to match the spatial resolution of the 

GRACE TWSA data. The EALCO data was processed to have same extents and coordinate system 

as the GRACE data, in order to ensure that pixelwise match between EALCO and GRACE. Lastly, 

https://podaac.jpl.nasa.gov/
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the daily EALCO TWSA data was averaged accordingly to match the temporal coverage of 

GRACE TWSA. EALCO data prior to the GRACE mission (before April 5, 2020) was resampled 

to 30-days averages and prepared for reconstructing the historical TWS dataset. As a result, there 

are 158 GRACE-EALCO pairs (see Figure 3-4) representing all the GRACE coverage phases from 

April 2002 to December 2016. To be compatible with the convolutional operations during the 

model training, the image dimension of both datasets is clipped to 48 pixels x 48 pixels. 

 

Figure 3-3. Comparison of nationwide mean EALCO-simulated TWSA and mean GRACE-

derived TWSA. Red background indicates the time coverage of the testing set. 

 

Figure 3-4. GRACE TWSA (left) and upscaled EALCO TWSA (right) for April 2002 under 

CanLCC projection 
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3.2.3. Train-test split and further processing 

 In total there are 158 GRACE-EALCO monthly data pairs, corresponding to the 158 

GRACE coverage months. Given its sequenced time-series form, the first 20 months (April 2002 

to February 2004) and the last 20 months (October 2014 to December 2016) are used as testing 

data. The rest 118 months are used for training. Moreover, data augmentation techniques (e.g., 

flipping, rotation) were applied to the training set to deal with the problem of insufficient amount 

of data. Lastly, EALCO TWSA and GRACE TWSA are separately normalized to the range of [-

1, 1] for facilitating the model training process. 

3.3. Methods 

 Let y denote the GRACE TWSA as the predictand variable, and X be the EALCO TWSA 

as the predicator. The three DL models (CNN, cGAN, and DCAE) are trained to solve a regression 

problem with paired training data X = {𝑋𝑖}1
𝑁 and y = {𝑦𝑖}1

𝑁, as stated in the formula: 

                  𝑦 = 𝑓(𝑋, 𝑝)                                                 (3.1) 

where 𝑁 represents the total number of training samples, 𝑖 is the index of training samples, and 𝑝 

denotes the model parameters. The trained models are able to take EALCO data as inputs and 

predict reconstructed GRACE-like TWSA without GRACE observations. Since the study task is 

essentially a regression problem, the hyperbolic tangent function (tanh) is adopted as the activation 

function of the final output layer and mean-square-error (MSE) is used as the global loss function 

for these three models. 

3.3.1. Squeeze-and-Excitation U-Net CNN 

 By interleaving a stack of functional layers such as convolutional layer, pooling layer, and 

fully connected layer, CNNs can extract the distinguishable and representative features from RS 

images in a hierarchical manner, which can be effectively applied to various RS-related image 

analysis tasks such as land cover classification (Al-Najjar et al., 2019), ground object detection 

(Miyamoto et al., 2018) and land use change detection (Cao et al., 2019). 

 The CNN-based model used in this study is a Squeeze-and-Excitation (SE) network (Hu et 

al., 2020) based on a U-Net backbone architecture (SEUNet). The SE block is a mechanism which 

enables the network to perform feature recalibration by using global information to selectively 

enhance important features and suppress secondary ones (Hu et al., 2020). The operation process 
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of a SE block contains two parts: squeeze operation and excitation operation. The squeeze 

operation applies a global average pooling to aggregate feature maps across their spatial 

dimensions and scale each feature map to a real number which characterizes the global distribution 

of feature responses. The excitation operation takes the global descriptor (output of squeeze 

operation) and calculates weights for each feature channel, and then applies these weights to the 

feature maps to generate the final output of the SE block. U-Net has demonstrated excellent 

performance on small training datasets (Sun et al., 2019). It follows an encoder-decoder structure 

to conduct gradual transitions from inputs to outputs. In this study, the building blocks of original 

U-Net architecture were replaced with SE blocks (see Figure 3-5). 

3.3.2. Pix2Pix conditional GAN 

 The GAN architecture is composed of a discriminator model and a generator model. The 

training of the two models takes place in a synchronous and adversarial manner. The generator 

produces plausible images to ‘deceive’ the discriminator, and the discriminator identifies the 

plausible images. The Pix2Pix is a type of cGAN model developed by Isola et al. (2017), which 

the generation of the output image is conditional on the input images (see Figure 3-6). It has been 

demonstrated on a range of image-to-image translation tasks such as converting digital maps to 

satellite imagery (and vice versa), black-white photo to colored photo, and object sketches to object 

photographs. 

 

Figure 3-5. Schematic diagram of the SEUNet architecture 
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Figure 3-6. Diagram of training a Pix2Pix conditional GAN to map EALCO TWSA to GRACE 

TWSA. The discriminator D learns to classify between fake (generated, EALCO) and real 

(GRACE, EALCO) tuples. Unlike an unconditional GAN, both the generator and discriminator 

take the predictor (EALCO) as inputs. 

 The Pix2Pix generator is an encoder-decoder CNN using a U-Net architecture. The model 

takes a source image (EALCO simulation) and generates a target image (GRACE-like prediction). 

The generator model is updated to minimize the loss threshold for the discriminator to mark 

generated images as real. On the other hand, the discriminator is based on a PatchGAN structure 

that performs conditional classification based on the relationship between the model output and 

the number of pixels in the input image (Isola et al. 2017). It takes both the source image (GRACE 

observation) and the target image (GRACE-like prediction) as input and estimate the likelihood of 

whether the target image is real or a fake translation of the source image.  

3.3.3. Deep Convolutional Autoencoder 

 The autoencoder (AE) is also an encoder-decoder structure by which the encoder provides 

compressed feature representation of the input and the decoder reconstructs the input from the 

representation (Azarang et al., 2019). In a DCAE model, the encoder consists of convolutional 

layers, and the decoder is composed of convolutional transpose layers. Comparing with original 

AE, DCAE is more suitable for image processing tasks such as and colorization of greyscale image 
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restoration of damaged image, and image denoising. The diagram of the DCAE model constructed 

for this study is shown in Figure 3-7.  

 

Figure 3-7. Schematic diagram of the proposed DCAE architecture 

 The encoder contains 3 convolution layers for down-sampling by 3x3 kernel and ReLU 

activation function, thus the number of filters increases gradually from 64 to 256. The third 

convolutional layer is then flattened and connected a fully connected layer (FC layer). In the 

bottleneck, the input is converted to a dense representation (a.k.a. latent space representation) as a 

128x128 tensor, which stores all the crucial information needed for feature detection from the 

original input data. This representation is connected to the second FC layer for prediction. The 

predicted values are reshaped to feature map dimensions, which allows the decoder to properly 

reconstruct the input data to a full image. Symmetrically, the decoder contains 3 convolutional 

transpose layers for up-sampling by 3x3 kernel and tanh activation function. 

3.3.4. Encoding-Forecasting ConvLSTM 

 ConvLSTM was introduced by Shi et al. (2015) for the task of precipitation nowcasting 

based on Radar Echo images. They formulate precipitation nowcasting as a spatiotemporal 

sequence forecasting problem that can be solved under the general sequence-to-sequence learning 

framework. For general-purpose sequence modeling, Fully-connected long short-term memory 

(FC-LSTM) has proven useful for modeling long-range temporal dependencies. FC-LSTM is an 

encoder-decoder forecasting model which reconstructs the input sequence and predicts the future 

sequence simultaneously. However, FC-LSTM does not take spatial texture into consideration, 
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which can be only used to conduct time-series modelling on 1D tabulated data. ConvLSTM 

extends the FC-LSTM to have convolutional structures in each of its transitional stages, which can 

be directly applied on 2D image sequences. By using a convolution operator, the state of each 

grid/pixel in the input image is determined by its neighboring grids. 

 

Figure 3-8. Encoding-forecasting ConvLSTM architecture. Source: Shi et al. (2015) 

 By stacking multiple ConvLSTM layers, Shi et al. (2015) developed an encoding-

forecasting structure (see Figure 3-8) to build an end-to-end trainable model for Radar Echo 

precipitation nowcasting. Their experiment results show that ConvLSTM is better than FC-LSTM 

in handling spatiotemporal correlations. 

 

Figure 3-9. Illustration of the sequence modelling. Cells in green are input frames and 

predicted/evaluated cells are in purple. The first sequence starts from the first month, and the 

second sequence starts from the second month. 

 In this study, the Encoding-forecasting ConvLSTM model is used to compare with other 

three models that are constructed by the hybrid modelling approach. The inputs of the ConvLSTM 

model are the time series of GRACE TWSA. To achieve that, the training and testing datasets 

require further processing to be transformed to sequenced inputs. In the data-loading module of 

the model, the consecutive GRACE images were sliced with a 20-frame-wide sliding window (1 
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step sliding). Therefore, each sequence consists of 20 frames. The first 19 frames are for input, 

and the last frame is for the model to make prediction and evaluation, as shown in Figure 3-9. The 

19 input frames (i.e., 19 GRACE months) are set to ensure seasonal spatiotemporal trends are 

handled by the network. During the training process, the model updates its weights based on the 

prediction result of the last frame (as comparing to the ground truth of the last frame). 

 Additionally, the model has two modes: forecasting mode and hindcasting mode. The two 

modes are trained separately on different inputs. For forecasting mode, the sequenced inputs are 

constructed by starting from the first GRACE month (April 2002). For hindcasting mode, the data 

was sequenced in reversed order (starts from December 2016). 

3.3.5. Implementation details and Evaluation metrics 

 

Figure 3-10. Workflow diagram. EALCO-simulated and GRACE-derived TWSA were 

calculated by subtracting the baseline value (mean TWS between April 2002 and December 

2016). The spatial resolution of EALCO TWSA was then upscaled from 5km to 110km to be 

matched with that of GRACE TWSA. SEUNet, Pix2Pix and DCAE take both EALCO and 

GRACE TWSA as inputs, and ConvLSTM only takes GRACE as input sequences. 

 All models were implemented on the open-source package Keras 2 using Python 3.7. All 

models are trained for 100 epochs. Adam optimizer was used to train the models with a learning 

rate of 0.01 and batch size of 1, as recommend by Isola et al. (2017) for image-to-image translation 

task. All experiments were carried out on a Windows10 desktop running with sole GPU (NVIDA 

2070-super, 8Gb RAM). A detailed workflow chart for this study is presented in Figure 3-10. 

 To evaluate the performances of the four trained models, Pearson’s correlation coefficient 

(CC) and root-mean-square error (RMSE) between GRACE TWSA and model-predicted TWSA 

are calculated by the following formulas: 



36 

 

                            𝐶𝐶 = ∑ (𝑦𝑖 − 𝑦̅)𝑛
𝑖=1 (𝑔𝑖 − 𝑔̅)/√∑ (𝑦𝑖 − 𝑦̅)2 ∑ (𝑔𝑖 − 𝑔̅)2𝑛

𝑖=1
𝑛
𝑖=1                               (3.2) 

                            𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑔𝑖)2𝑛

𝑖=1                                                                                                     (3.3) 

where y is the predicted TWSA, g is the GRACE-observed TWSA, n is the number of samples in 

the testing set. The range of CC is [-1, 1] which measures the linear correlations between predicted 

TWSA and GRACE-derived TWSA. 

3.4. Results and Discussion 

3.4.1. Comparison of model-predicted TWSA 

 For EALCO and trained DL models, the CC and RMSE between the simulated/predicted 

TWSA and GRACE TWSA at both the nationwide level and pixelwise level are compared. 

Magnitudes and spatial distribution of pixelwise mean CC and mean RMSE of EALCO and trained 

DL models during the testing periods are shown in Figure 3-11. It is worth noting that the metrics 

between EALCO and GRACE is the baseline for the performance assessment of DL models. 

Figures 3-11a and 3-11f illustrates the comparison between EALCO-simulated TWSA and 

GRACE-observed TWSA in the testing set. It can be seen that there are large discrepancies 

between GRACE and EALCO in the Arctic region and Tatshenshini-Alsek provincial park, where 

both have spectacular glacier and icefield landscapes. As for DL-corrected TWSA, DCAE 

spatially outperforms other three models, and the results of SEUNet and Pix2Pix demonstrate 

similar spatial pattern while SEUNet slightly outperforms Pix2Pix. As shown in Figure 3-11(g, h, 

i, j), most of uncertainties exist in the glacial and coastal areas. Specifically, the predicted TWSA 

has higher accuracy in inland regions than in landmass edges (including southern borders). The 

errors could be derived from multiple factors. For example, the broken landmass (e.g., island, 

peninsula), the geological attributes of tundra and glacier, the agricultural activities in southern 

Ontario, and the interpolation of ocean grids. It is noticeable that ConvLSTM performs 

significantly poorer than other three DL models on the testing set. Even though ConvLSTM does 

not take EALCO TWSA with LSM-related uncertainties, its RMSE exhibits similar spatial pattern 

as the RMSE of EALCO TWSA, while its correlation with GRACE is generally higher than that 

of GRACE and EALCO. It could be caused by the model parameters and the uncertainties (or 

dramatical variations) of GRACE TWSA in cold regions, which makes the temporal changes of 

TWSA unpredictable. Overall, the three hybrid methods (Pix2Pix, SEUNet, DCAE) demonstrate 
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satisfactory predictability in the study area, and significantly improve the TWSA modelling as 

comparing to original EALCO simulations (baseline) and ConvLSTM predictions.  

 

Figure 3-11. Spatial distributions of pixelwise mean CC (a, b, c, d, e) and mean RMSE (f, g, h, i, 

j) derived from EALCO, ConvLSTM, Pix2Pix, SEUNet and DCAE 

 The results of nationwide mean CC and mean RMSE are summarized in Table 3-1. As 

comparing to GRACE observations with EALCO simulations, the mean CC is 0.89 and the mean 

RMSE is about 105 mm. As mentioned previously, the correlation strength between physically-

based LSM and GRACE is dependent on the hydrometeorology and the structure/parameterization 

of the LSM, which does not reflect all factors attributing to the variations in TWSA. At the 
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nationwide level, the three hybrid methods (Pix2Pix, SEUNet, DCAE) all achieves high 

correlation (>0.96) with the GRACE TWSA. And the ConvLSTM modeled TWSA also has 

slightly higher correlations (0.93) with the GRACE TWSA than EALCO does. As for the model 

predictability, ConvLSTM has a mean RMSE of 89 mm, which improves the baseline by 

approximately 15%. Pix2Pix and SEUNet have mean RMSE of 67 mm (36% improvement over 

the baseline) and 64 mm (38% improvement over the baseline), respectively. DCAE is the optimal 

method for enhancing EALCO simulations, by which the mean CC is 0.99 and the mean RMSE is 

about 53 mm, resulting in 49% improvement over the baseline. 

Table 3-1. Comparison of nationwide mean CC and mean RMSE 

Model # Parameter RMSEtest (mm) CCtest 

EALCO N/A 105 0.89 

ConvLSTM 1,858,049 89 0.93 

Pix2Pix GAN 34,544,514 67 0.96 

SEUNet 1,964,093 64 0.96 

DCAE 76,125,313 53 0.99 

  

 Figure 3-12 plots the nationwide mean TWSA time series from four trained DL models 

during the GRACE mission from April 2002 to December 2016. For comparison, the EALCO-

simulated TWSA (blue dash line) and GRACE-derived TWSA (black dash dot line) are also 

plotted. It can be seen from the figure that the fluctuations indicate the seasonal variations in 

TWSA. EALCO and all trained models are capable to fit the drying trends and wetting trends by 

capturing the seasonal variations. The ConvLSTM model tends to underestimate the dry conditions 

and overestimate the wet conditions, throughout the training and testing. In contrast, other three 

DL models achieve high accuracy during the training phases. But in the testing phases, the Pix2Pix 

model and the SEUNet model clearly deviate from the GRACE observations as these two models 

overestimate TWSA. DCAE performs well during both training and testing phases.  

 To sum up, the ConvLSTM model performs poorly throughout the training and testing. 

During the training periods, the performances of the three hybrid methods are all significantly 

better than the original EALCO TWSA. During the testing periods, the performances of DL 
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models fade slightly, but the models generally still outperform original EALCO. The results further 

suggest that, by learning the relationship between EALCO simulations (as the predictor) and 

GRACE observations (as the predictand variable) in pairs, the EALCO simulation results can be 

significantly improved, which give a better prediction for TWSA. 

 The selected examples of reconstructed monthly TWSA maps for four seasons during the 

testing periods are demonstrated in Figures 3-13, 3-14, 3-15, and 3-16, corresponding to the TWSA 

spatial distributions in January 2003, July 2003, October 2014, and April 2015, respectively. It is 

worth mentioning that April and October are normally the time when most regions of Canada reach 

maximum and minimum TWS values (Wang et al., 2014b). 

 There are several factors that may cause the ConvLSTM model failed to achieve 

expectations. First of all, the amount of GRACE data is insufficient due to the temporal resolution 

and mission length of GRACE, resulting in only 158 available data samples. According to previous 

studies (Shi et al., 2017; Zhu et al., 2018) on applying ConvLSTM model to predict geospatial 

time series, the training was normally taken on more than 10,000 consecutive samples, given the 

nature of the study data such as precipitation and wind speed. For instance, the original Encoding-

Forecasting ConvLSTM model was built to nowcast the precipitation from radar echo images 

which record the reflectance intensity, movement and thickness of clouds, and the time interval 

between each input frame is normally about 5 to 10 minutes (Shi et al., 2015). Additionally, radar 

echo data can be seen as a dynamic feature with predictable trajectories (the movement of clouds). 

On the contrary, TWS data is location-stationary in which can be seen as a static feature. 

Furthermore, the ConvLSTM model was expected to detect the long-term trends (e.g., deglaciation) 

in the TWSA data. However, the GRACE observation is technically not consecutive, which only 

offers the TWS measurements for certain durations. This discontinuity may also cause the model 

predictions to be deviated from the observations. 

 By incorporating physical model simulations, the three hybrid modelling approaches 

(Pix2Pix, SEUNet, DCAE) focus on the pixel/patch-based correlations between the EALCO 

TWSA and GRACE TWSA. As a result, the models’ performances are not affected by the 

discontinuity of the GRACE observations. The trained models are able to predict TWSA for all 

times whenever EALCO TWSA data are available. Nevertheless, the long-term trends exist in the 

TWS data can affect the prediction accuracy because the model cannot detect those trends. 
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Figure 3-12. Comparison of model-reconstructed GRACE-like TWSA, EALCO-simulated 

TWSA, and GRACE-derived TWSA during training (white background) and testing periods (red 

background) at nationwide level. From top to bottom: ConvLSTM, Pix2Pix, SEUNet, DCAE 
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Figure 3-13. Reconstructed TWSA maps for January 2003 

 

Figure 3-14. Reconstructed TWSA maps for July 2003 
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Figure 3-15. Reconstructed TWSA maps for October 2014 

 

Figure 3-16. Reconstructed TWSA maps for April 2015 
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3.4.2. Reconstruction for pre-GRACE years from 1979 to 2002 

 Finally, the trained DCAE model was applied to reconstruct (i.e., hindcasting) the TWSA 

time series from January 1979 to March 2002 for the Canadian landmass. The results are 

demonstrated in Figure 3-17. It can be seen that EALCO tends to overestimate dry conditions 

during 2002 to 2009, thus its simulations for pre-GRACE years are more likely to have 

overestimated values for dry conditions, and the reconstruction moderately adjusts the original 

EALCO simulations over dry conditions. As for post-GRACE forecasting, even though the DCAE 

model has been evaluated against GRACE-derived TWSA from 2014 to 2016, there is an obvious 

downward trend in the GRACE TWS since 2010, the model’s capability for long-term forecasting 

remains uncertain. 

 

Figure 3-17. DCAE-reconstructed TWSA from 1979 to 2002 (green line in white background), 

as comparing to GRACE TWSA from 2002 to 2016 (black dash dot line in red background). 

 

Figure 3-18. DCAE-predicted TWSA for January 1979 (right), comparing to its corresponding 

EALCO-simulated TWSA (left) 
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3.4.3. Limitations 

 It is worth noting some drawbacks in the workflow of this study, which need to be further 

investigated in future research. First of all, no forcing dataset (e.g., in-situ precipitation 

measurements) was used. The lack of climatic forcing data hinders this research from assessing 

the effects of extreme events (e.g., droughts, floods, rainstorm) on the reconstructed TWSA. 

Secondly, the pairing of physical simulation and GRACE observation ignores the temporal 

correlations (or long-term trends) existed in each TWSA time series. For future studies, it is worth 

to examine the applicability of pairing physical simulations sequences with corresponding GRACE 

observation sequences. Thirdly, only one GRACE solution product was used in this study, 

resulting in the overlook of uncertainties in GRACE-derived TWSA (the ground truth). Moreover, 

the TWSA reconstruction was conducted for the entire Canadian landmass, but the relationships 

between hydrological variables of LSM and GRACE TWS can be varying in different river basins. 

Last but not least, the study does not assess the interannual variability in the predicted and observed 

TWSA. For future studies, the input data can be de-seasonalized (i.e., detrending) to remove the 

seasonal trends before or after the model training.  

3.5. Conclusions 

 This study applied a hybrid approach to predict GRACE-like TWSA over the Canadian 

landmass. Physically-based modeling and deep learning techniques were combined to train image-

to-image transition models. The DL models take a pair of EALCO-GRACE samples and learn the 

statistical relationships between LSM-simulated TWSA and GRACE-observed TWSA in order to 

predict GRACE-like TWSA based on the LSM simulations. The hybrid approach was compared 

to a time-series prediction approach which only utilizes GRACE observations. The time-series 

prediction model is based on Convolutional LSTM (ConvLSTM) networks. It takes a number of 

temporally consecutive samples as an input sequence, and then learns the spatiotemporal 

trajectories exist in the sequence. The trained ConvLSTM model is able to hindcast/forecast the 

TWSA during the time period when the GRACE observation is unavailable.  The performances of 

these DL models were assessed by correlation coefficients and RMSE on both pixelwise level and 

nationwide level. The results show that the three LSM-based DL models (Pix2Pix, SEUNet, 

DCAE) and the ConvLSTM model are all capable to improve the original EALCO TWSA, while 

the LSM-based DL models significantly outperform the ConvLSTM model. By comparison, the 

DCAE model exhibits the optimal solution to calibrate EALCO simulations to better fit the 
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GRACE observations, by reducing the nationwide mean RMSE from 104.6 mm to 53.11 mm. As 

for the spatial patter of predicted TWSA, the LSM-based DL models perform reasonably in most 

of the study area, while exhibit noticeable uncertainties in dry, cold, and intensively irrigated areas. 

 This study indicates that deep learning techniques is a promising alternative to 

conventional data assimilation methods in future hydrological research. The major contribution of 

this study is that the feasibility of various DL network types in TWS reconstruction was 

investigated and examined, which provides a new train of thought for in-depth study on the 

application of deep learning in hydrology and other geoscientific disciplines. Future research will 

focus on adding climate forcing and temporal correlations to the hybrid modelling approach 

adopted in this study. 
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Chapter 4  

Conclusions and Recommendations for Future Research 

4.1. Thesis Conclusions 

 Long-term Terrestrial Water Storage (TWS) monitoring is crucial for assessing the 

cumulative effect from environmental change and human activities. Physically-based models, such 

as global hydrological model (GHM) and land surface model (LSM), are increasingly applied for 

simulating the variations in TWS. However, the applications of simulated TWS are often hindered 

by the uncertainties in climatic forcing, parameterization, and physical process representations 

(e.g., missing information for groundwater), especially when a fine spatiotemporal resolution is 

required. The Gravity Recovery and Climate Experiment (GRACE) dual-satellite was the very 

first remote sensing mission to monitor temporal changes in TWS, which provides new insights 

for understanding the global water cycle. However, the available TWS observation data from 

GRACE satellites is insufficient due to its short mission length, which is not qualified to construct 

a baseline TWS dataset for calculating the Climate Normal over a period of 30 years. Previous 

works have applied GRACE-derived TWS to calibrate the TWS simulation results from 

GHM/LSM by using data assimilation techniques. Due to the large discrepancies and weak 

matching links between model simulations and satellite observations, conventional statistical 

methods such as linear regression, normally require abundant knowledge of basin characteristics 

(i.e., more predictors) that might not be available at all time. 

 In recent years, several researchers dedicated to developing new data fusion methods based 

on machine learning (ML) and deep learning (DL), for GRACE and physical model simulations. 

DL techniques are capable to extract and learn complex relationships between the variables in 

dynamic spatiotemporal systems. The learned relationships (either linear or nonlinear) can be used 

to make prediction with computational robustness while prior knowledge of underlying physical 

processes is not required. 

 This thesis presented a comparative study of the performance of various DL network 

architectures in the task of TWS anomalies (TWSA) reconstruction from GRACE observations. 

In this study, four deep learning-based models to reconstruct GRACE-like TWSA for Canada’s 

Landmass. The first model is based on ConvLSTM networks, which considers the input data as 
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time series sequences. The ConvLSTM model only takes the GRACE time series to learn the 

temporal trends of observed TWSA, and then hindcast/forecast TWSA for time periods beyond 

the GRACE mission. And other three models (Pix2Pix conditional GAN, SEUNet CNN, deep 

convolutional autoencoder) are based on a hybrid modelling approach aimed at learning the 

correlations between LSM-simulated TWSA and GRACE-derived TWSA, both in gridded format, 

by which each input raster (EALCO simulations) is mapped to a corresponding output raster 

(GRACE observations). Results show that three LSM-based DL models significantly outperform 

the ConvLSTM model. Hence, the knowledges acquired from decades of hydrological modelling 

is worthwhile for reconstructing TWA, which should not be neglected. Additionally, the hybrid 

modelling approach significantly improves the original LSM-simulated TWS by increasing its 

correlations with GRACE-observed TWS.  

 To sum up, this study demonstrated the potential of combining physical modelling and DL 

algorithms to perform TWS reconstruction at a large scale. By comparing the performance of the 

three LSM-based DL models, the deep convolutional autoencoder (DCAE) provides the most 

promising results, which improves the original LSM simulations by about 49%. Thus, the DCAE 

model is applied to construct the historical TWS baseline dataset for the Canadian landmass. 

4.2. Recommendations for Future Research 

 Despite its capability to extend the GRACE TWS dataset with improvements over original 

EALCO LSM simulation, there are some primary limitations of the proposed hybrid modelling 

approach, as listed below: 

• No use of meteorological and ecological forcing data such as precipitation, air temperature, 

normalized difference vegetation index. These variables can be used as additional 

predictors for estimating TWSA. The lack of climatic forcing data also hinders this 

research from assessing the effects of extreme events (e.g., droughts, floods, rainstorm) on 

the reconstructed TWSA. 

• The hybrid method does not explore the temporal correlations. TWS variations can have 

time lag effect as well as long-term trends. Even though the ConvLSTM model does not 

produce satisfactory results in this study, the applicability of time-series modelling in TWS 

reconstruction is worth further investigations. 
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• The performances of the DL models can be further assessed on different GRACE solutions, 

and the uncertainties in GRACE-derived TWS should be taken into consideration. 

Capturing GRACE observations does not mean getting closer to the ‘actual’ TWS.  

• Due to the absence of GRACE-FO TWS data, this study does not evaluate the applicability 

of the purposed DCAE model on long-term forecasting of TWS. 

• The study is conducted for the entire Canadian landmass as a whole, which neglects the 

environmental differences between river basins.  

• The study does not deseasonalize the input data to assess the interannual variability in the 

predicted and observed TWSA.  

 For future research, some sophisticated preprocessing techniques, such as sequencing and 

detrending, can be employed to investigate the temporal variations of TWS. Meanwhile, additional 

forcing datasets can be combined with TWS data to enhance the predictability of the DL models. 

And the performances of the models can be tested against TWS derived from GRACE-FO 

observations. Furthermore, instead of conducting a nationwide modelling and analysis, a basin-

based study can be carried out for improving the models’ performances in specific regions such as 

the Arctic and Southern Ontario. 
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