
Simple Termination Criteria for
Stochastic Gradient Descent

Algorithm

by

Sina Baghal

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2021

c© Sina Baghal 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Mahdi Soltanolkotabi
Assistant Professor, Departments of Electrical and
Computer Engineering and Computer Science,
University of Southern California

Supervisor: Stephen Vavasis
Professor, Department of Combinatorics and Optimization,
University of Waterloo

Internal Members: Joseph Cheriyan, Henry Wolkowicz
Professor, Department of Combinatorics and Optimization,
University of Waterloo

Internal-External Member: Aukosh Jagannath
Assistant Professor, Department of Statistics and Actuarial Science,
University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Stochastic gradient descent (SGD) algorithm is widely used in modern mathematical opti-
mization. Because of its scalability and ease of implementation, SGD is usually preferred
to other methods including the gradient descent algorithm in the large scale optimization.
Similar to other iterative methods, SGD also needs to be employed in conjunction with a
strategy to terminate the algorithm in order to prevent a phenomenon called overfitting.
As overfitting is prevalent in supervised machine learning and noisy optimization problems,
developing simple and practical termination criteria is therefor important. This thesis fo-
cuses on developing simple termination criteria for SGD for two fundamental problems:
binary linear classification and least squares deconvolution.

In the binary linear classification problem, we introduce a new and simple termination
criterion for SGD applied to binary classification using logistic regression and hinge loss
with constant step-size α > 0. Precisely, we terminate the algorithm once the margin is at
least to 1. Namely,

Terminate when (2yk+1 − 1)ζTk+1θk ≥ 1

where θk is the current iterate of SGD and (ζk+1, yk+1) is the sampled data point at the
next iteration of SGD. Notably, our proposed criterion adds no additional computational
cost to the SGD algorithm. We analyze the behavior of the classifier at termination, where
we sample from a normal distribution with unknown means µ0,µ1 ∈ Rd and variances
σ2Id. Here σ > 0 and Id is the d× d identity matrix. As such, we make no assumptions on
the separability of the data set. When the variance is not too large, we have the following
results:

1. The test will be activated for any fixed positive step-size. In particular, we establish
an upper bound for the expected number of iterations before the activation occurs.
This upper bound tends to a numeric constant when σ converges to zero. In fact, we
show that the expected time until termination decreases linearly as the data becomes
more separable (i.e., as the noise σ → 0).

2. We prove that the accuracy of the classifier at termination nearly matches the ac-
curacy of an optimal classifier. Accuracy is the fraction of predictions that a clas-
sification model got right while an optimal classifier minimizes the probability of
misclassification when the sample is drawn from the same distribution as the train-
ing data.

When the variance is large, we show that the test will be activated for a sufficiently small
step-size. Finally, we empirically evaluate the performance of our termination criterion

iv

versus a baseline competitor. We compare performances on both synthetic (Gaussian and
heavy-tailed t-distribution) as well as real data sets (MNIST 51 and CIFAR-10 49). In
our experiments, we observe that our test yields relatively accurate classifiers with small
variation across multiple runs.

The termination criteria for SGD for the least squares deconvolution problem has not
been studied in the previous literature. In this thesis, we study the SGD algorithm with
a fixed step size α applied to the least square deconvolution problem [34]. We adopt the
setting wherein the blurred image is contaminated with a Gaussian white noise. Under this
model, we first demonstrate a novel concentration inequality which shows that for small
enough step size α, the SGD path should follow the gradient flow trajectory with over-
whelming probability. Inspired by numerical observation, we propose a new termination
criterion for SGD for the least squares deconvolution. As a first step towards developing
theoretical guarantees for our termination criterion, we provide an upper bound for the `2-
error term for the iterate at termination when the gradient descent algorithm is considered.
We postpone a full analysis of our termination criterion to future work.

v

Acknowledgements

First and foremost, I would like to thank my advisor Stephen Vavasis. Thank you
for your unwavering support and your patience with me. I’m truly grateful for sharing
your wisdom with me and will always appreciate the extra hours you put for reading my
papers and presentations and giving me feedback and new ideas. I would like to thank my
thesis committee, Henry Wolkowicz, Joseph Cheriyan, Mahdi Soltanolkotabi and Aukosh
Jagannath for putting the time and effort to read my thesis and for their valuable feedback
on this document. Thank you Henry for your numerous constructive comments.

I am also thankful to my friends in Waterloo for the cheerful moments we had together.
Many thanks to Benjamin, Brett, Kazuhiro, Mahdi, Chris, Ali, Soroush, Advaith, Rose,
Weston and of course Sir Winston. Special thanks to my friends in the US, Khashayar,
Shahab (Abbas), Mahmood and Reza, for the numerous mirthful phone conversations. I
am grateful for all the assistance from the members of the department administration,
specifically Melissa Cambridge.

vi

To my family

vii

Table of Contents

List of Figures xi

Notation xiv

1 Introduction 1

1.1 Mathematical optimization . 2

1.2 Termination criteria in iterative algorithms 5

1.3 Stochastic gradient descent (SGD) . 6

1.4 Supervised machine learning . 7

1.4.1 SGD for general distribution . 11

1.4.2 Regularization in supervised machine learning 13

1.4.3 Binary linear classification . 14

1.5 Linear least squares problems . 16

1.5.1 Regularization techniques for LLS 18

1.6 Termination criteria for SGD . 21

1.7 Outline of the thesis . 23

2 Preliminaries 24

2.1 Optimization . 24

2.1.1 Convex analysis . 24

2.1.2 Convergence of SGD . 27

viii

2.2 Probability theory . 29

2.2.1 Probability distributions . 29

2.2.2 Normal distributions . 31

2.2.3 Martingales and stopping times . 32

2.2.4 Martingales . 32

2.2.5 Stopping times . 33

2.2.6 Concentration inequality . 33

2.2.7 Hoeffding’s inequality . 34

2.2.8 Azuma’s inequality . 35

2.2.9 Concentration for norm . 36

2.2.10 Markov Chain Theory . 37

2.2.11 Drift criterion . 37

3 A Termination Criterion for SGD for Binary Classification 39

3.1 Binary classification problem . 40

3.2 Stopping criterion for SGD . 45

3.2.1 Stopping criterion . 45

3.3 Analysis of stopping criterion . 47

3.3.1 Low regime, proof of Theorem 6 . 51

3.3.2 High regime, proof of Theorem 7 58

3.3.3 Angle bound, proof of Theorem 8 69

3.4 Numerical experiments . 70

3.4.1 Experiments with synthetic data 72

3.4.2 Experiments with real data . 75

4 SGD with Early Stopping for Least Squares Deconvolution 82

4.1 Image deblurring . 83

4.1.1 The discrete Picard condition . 86

ix

4.2 Least square deconvolution . 88

4.2.1 Regularization . 89

4.3 SGD with early stopping . 90

4.3.1 Implicit regularization of SGD with early stopping 92

4.4 Numerical experiments . 95

4.5 Stopping time analysis . 97

4.6 A matrix concentration inequality for products 105

5 Conclusion and Future Work 109

5.1 Key results . 109

5.2 Future work . 110

Bibliography 112

x

List of Figures

1.1 The normal curve over real numbers with mean 0 and variance 1. A random
variable which follows this probability distribution is denoted by z ∼ N(0, 1).
It is also said that z is sampled from the normal distribution. Normal
distributions will be discussed more in Section 2.2. 4

1.2 A cartoon depiction of the concept of overfitting in supervised machine learn-
ing. 10

1.3 Complexity versus error. 13

1.4 In a binary linear classification problem, the task of the learner is to find
a hyperplane (linear classifier) which separates two group of points while
minimizing the number of misclassifications. 15

1.5 Common surrogate loss functions: exponential, hinge, logistic and truncated
quadratic [5]. Here, the staircase non-convex function is the 0 − 1 loss
function which is equal to 0, if the model predicts correct, 1 otherwise. . . 16

1.6 Image deblurring is the process of removing blurring artifact from images
(Chapter 4). The corresponding iterates for k = 0, 50, 100, 150, 300 of the
GD algorithm are pictured. Notice that the iterate 50 exhibits a desirable
accuracy. 21

3.1 Re-centring phase. Here synthetic Gaussian data is generated in R3 and the
green dot denotes the origin. 41

xi

3.2 Performance of stopping criterion (3.15) on a mixture of Gaussians as σ is
varied. Plots (a), (b) are logistic and (c), (d) are hinge. All plots show tests
for values of σ equally spaced from 0.05 to 2.0. For each value of σ, ten
trials were run. Plots (a), (c) show the relationship between σ and k, the
iteration number when (3.15) first holds. Plots (b), (d) show the accuracy as
red asterisks. The green asterisks show the accuracy of the optimal classifier.
The black curve on the right is the ratio of the average accuracy (over 10
trials) of the classifier when (3.15) holds to the accuracy of the optimal
classifier. 71

3.3 Each plot shows 10 random runs of SGD applied to normally distributed
data with indicated values of σ and for a fixed dimension d = 500. For
each of the ten runs, five termination tests corresponding to five colors were
applied. SVS was tried with p = 32, 128, 512, depicted as red, magenta and
cyan circles respectively. Test (3.15) is indicated with a blue asterisk. A
green ‘+’ corresponds to termination after 1.5k iterations, where k is the
iteration index that (3.15) first holds. The notation (l/200) means logistic
loss with α̃ = 1/200; simillarly (h/10) means hinge loss with α̃ = 1/10, and
so on. 73

3.4 Refer to the caption of Fig. 3.3 for the key to the plots. 74

3.5 Tests on the student-t distribution (heavy tailed) with two degrees of free-
dom and the indicated value of parameter β. See the caption of Fig. 3.3 for
explanation of the plots. 76

3.6 Refer to the caption of Fig. 3.5 for the key to the plots 77

3.7 Tests on the MNIST handwritten digit data set for discerning “1” from “8”
and “7” from “9” for both hinge and logistic, and for both α̃ = 1/10 and
α̃ = 1/200. Refer to the caption of Fig. 3.3 for the key to the plots. 78

3.8 Refer to the caption of Fig. 3.7 for the key to the plots 79

3.9 Tests on the CIFAR-10 image set for two tasks, for logistic and hinge losses,
and for α̃ = 1/10 and α̃ = 1/200. Refer to the caption of Fig. 3.3 for the key
to the plots. The plot in the first row, right, does not include cyan circles
because the training data was exhausted before the SVS test could activate
for p = 512. 80

3.10 Refer to the caption of Fig. 3.9 for the key to the plots 81

xii

4.1 The inverse problem is to reconstruct the system or the input while the
other two quantities are provided. Almost always, the output is revealed to
us imprecisely meaning that it has been contaminated with some noise. . . 84

4.2 A sharp image (left) and its corresponding blurred image. The PSF 1
81
·

ones(9, 9) is used for artificially blurring the sharp image. The noise level

here equals to 0.05 i.e., ‖ξ‖
‖Ax∗‖ ≈ 0.015 and (m,n) = (10404, 10000). 87

4.3 The error terms ‖xGD
k − x∗‖ (left), ‖xSGD

k − x∗‖ (right), and ‖xCGLS
k − x∗‖

(center) where {xSGD
k }+∞

k=0, {xGD
k }+∞

k=0 and {xCGLS
k }+∞

k=0 are the iterates of
SGD, GD and CGLS algorithms applied to the least-squares problem (4.5)
respectively. Here x∗, A and b are constructed as in Figure 4.2. We observe
that TSGD, TGD and TCGLS are equal to 54m, 48 and 9 respectively and also
ESGD ≈ EGD ≈ ECGLS. 96

4.4 Plots of the sequence {‖AxSGD
k ‖}+∞

k=0 where the sequence {xSGD
k }+∞

k=0 is gen-
erated by Algorithm 9. From left to right, the noise levels are equal to
0.015, 0.03 and 0.06 respectively. The corresponding value of ‖AxSGD

TSGD
‖ is

plotted by a red dot. 97

4.5 Plot of the decay rates for {log(λi)}ni=1 (blue curve) and {log((x∗i)
2)}ni=1

(green curve). Here the same data as in Figure 4.2 is used. It can be
observed that for r = 500, the informal assumption (4.41) holds. 99

4.6 We consider the SGD algorithm applied to the least-squares problem with
A ∈ R3×2, σ = 0.5 and α = 0.001. The diagonal lines are the level sets
of the objective function, the green asterisk is x∗, the red asterisk is xLS,
the path of blue dots are the SGD iterates, and the light-blue curve is the
gradient flow. 106

xiii

Notation

We use the following mathematical notation in this thesis:

• d-dimensional Euclidean space is denoted by Rd.

• bold-faced variable are vectors e.g., x,u, · · · . Coordinates of x are denoted by un-
derscore notation xi.

• transpose of a vector x is denoted by xT .

• d by d identity matrix is denoted by Id.

• diag : Rd → Rd×d places each input vector on the diagonal.

• the inner product between x,y ∈ Rd is denoted by 〈x,y〉 or xTy.

• the ith row or column of a matrix A is denoted by A[i, :] and A[:, i] respectively.

• ‖x‖, ‖x‖2 or ‖x‖F denote the 2-norm or Frobenius norm of x i.e., ‖x‖F :=
√∑d

i=1 x
2
i .

• ∇f(x) denotes the gradient of a function f : Rd → R at x.

• A � 0 means that first A is a symmetric matrix and second xTAx ≥ 0 for all x.

• N(µ,Σ) denotes the normal distribution with µ and covariance matrix Σ.

• E[X] and Var[X] denotes the expected value and the variance of a random variable
X. Thus, Var[X] := E[(X − E[X])2].

• ζ ∼ P means that the random variable ζ follows the probability distribution P . We
also say that ζ is sampled from the distribution P .

• sign : R→ {−1,+1} is the sign function.

• a ∧ b := min{a, b}.

xiv

Chapter 1

Introduction

This thesis studies the termination criteria for the stochastic gradient descent (SGD) algo-
rithm arising in supervised learning and least-squares problem. The SGD algorithm is one
of the most widely used iterative methods in modern optimization and machine learning.
In large-scale optimization problems, SGD is usually preferred to other methods includ-
ing gradient descent because of its scalability and ease of implementation [89, 10, 11, 12].
Furthermore, as a consequence of a phenomenon called overfitting any iterative algorithm
must be stopped once the model has reached some desirable accuracy. The strategies
based on which algorithms are halted are called termination criteria. Termination criteria
are the most commonly used techniques to prevent overfitting due to their simplicity and
effectiveness [38].

The main purpose of this chapter is to introduce and describe the basic concepts that
we need throughout this thesis. In Section 1.1, we describe mathematical optimization. In
Section 1.2, we explain the concept of termination criteria for iterative methods with a focus
on gradient based algorithms such as gradient descent. In Section 1.3, we introduce the
SGD algorithm. After that, in Section 1.4, we provide an explanation of supervised machine
learning and the overfitting phenomenon. In Section 1.5, we discuss the least squares (LS)
problem. Particularly, we will mention Tikhonov regularization and termination criteria
for the LS problem in the presence of noise. Section 1.6 describes the difference between
termination criteria for SGD and GD. Moreover, it provides a brief history of termination
criteria for the SGD algorithm. Finally, in Section 1.7, we will outline the subsequent
chapters of this thesis.

1

1.1 Mathematical optimization

Mathematical optimization is about finding the minima or maxima of a given function.
We use the following notation:

- x is called the variables or parameters

- f is the objective or cost function

- ci are the constraint functions, which determine specific set of equations or inequali-
ties that the variable x must satisfy. Denote by E and I the set of indices for equality
and inequality constraints, respectively.

With this notation, the optimization problem can be formulated as follows.

min
x∈Rd

f(x) s.t.
ci(x) = 0, i ∈ E
ci(x) = 0, i ∈ I. (1.1)

Computational algorithms used for solving (1.1) are divided into two categories: direct
and iterative methods. Direct methods such as the Simplex method are not discussed in
this thesis. We are primarily focusing on the iterative methods.

In iterative methods, a sequence of approximations (called iterates) are generated where
each approximation is derived from the previous ones. Different iterative algorithms differ
in their strategies to move from one iterate to the next one. Almost all these algorithms
use the value of the objective function f , possibly its first and second derivatives and the
set of constraints ci. A good algorithm should be robust and accurate. In other words, its
performance should not overly sensitive to the starting point and the errors in the data.
Moreover, efficiency is always important in optimization meaning that algorithms shall not
require excessive computer time or storage.

The most basic iterative method is the gradient descent (GD) algorithm (Algorithm 1)
which works by iteratively moving in the opposite direction of the gradient of the function
at the current iterate.

Conjugate gradient (CG) algorithm is another important iterative method which per-
form updates by moving along the conjugate directions. The first variant of CG meth-
ods was first proposed in the 1950s [41] as a new way for finding solutions to symmetric
quadratic equations i.e.,

min
x∈Rd

f(x) :=
1

2
‖Ax− b‖2 , (1.2)

2

Algorithm 1: Gradient descent algorithm to solve minx∈Rd f(x)

Initialize: x0 ∈ Rd, α > 0
Set k ← 0
Repeat until a stopping criterion is satisfied

Update xk+1 = xk − α∇f(xk)
k ← k + 1

end

Optimization problem (1.2) is called the least squares problem. Algorithm 2 describes
the CG algorithm. In many interesting cases, CG or its variants has the opportunity to
converge to the solution of (1.2) fast [65].

Algorithm 2: Conjugate gradient method for solving (1.2)

Initialize: x0 ∈ Rd,
Set Ã = ATA, r0 ← Ãx0 − b, p0 ← −r0, k ← 0
Repeat until a stopping criterion is satisfied

αk ←
rTk rk

pTk Ãpk

xk+1 ← xk + αkpk

rk+1 ← rk + αkÃpk

βk+1 ←
rTk+1rk+1

rTk rk

pk+1 ← −rk+1 + βk+1pk

k ← k + 1
end

In contrast to GD or CG, quasi-Newton methods perform updates using the second-
order information of the function f i.e., the Hessian∇2f(x) or its approximations. Because
of this, quasi-Newton methods are called second-order methods. In this thesis, we only
consider gradient based methods where the update rules at each iteration are constructed
using only first order information i.e., f(x), ∇f(x) and etc.

Algorithms such as GD or CG are also called deterministic where the output of the
model is fully determined by the parameter values and the initial conditions. In these
algorithms, at each iteration the function value or its derivatives are computed to determine
the next step. However, we commonly face optimization problems where the model is not

3

fully specified and as a result ∇f is not computable. This could be due to the fact
that the function value depends on some information which will be received in the future
(think about a financial portfolio optimization problem where the future interest rates are
unknown). A typical way of modeling these optimization problem is by way of expressing
the objective function in a form of the expectation. In doing so, we assume that the
future uncertainty follows some probability distribution P . For instance suppose that ζ
represents the uncertain parameter in our model. Assuming that ζ follows some probability
distribution P i.e., ζ ∼ P , we can formulate our optimization problem in the following
form:

min
x
f(x) := Eζ∼P [F (x, ζ)] (1.3)

Here the objective function is a multidimensional integral and presumably it cannot be
computed with a high accuracy. It is important to underline that modeling the unknown
distribution P is quite task-specific. Nevertheless, in the absence of any prior knowledge
about the distribution P , the normal distribution is an appropriate default choice. This
is primarily due to the fact that normal distributions exhibit the maximum amount of
uncertainty once the mean and variance are fixed. Figure 1.1.

Figure 1.1: The normal curve over real numbers with mean 0 and variance 1. A random
variable which follows this probability distribution is denoted by z ∼ N(0, 1). It is also
said that z is sampled from the normal distribution. Normal distributions will be discussed
more in Section 2.2.

As argued above, deterministic algorithms such as GD may not be a sensible/possible
choice for solving (1.3) and instead stochastic algorithms are employed. The most basic

4

algorithm for solving (1.3) is called the stochastic gradient descent algorithm (SGD) which
will be explained in the subsequent sections. We will explain SGD in two different situations
wherein the distribution P has finite or infinite support. It is emphasized that stochastic
algorithms produce solutions that optimize the expected performance of the model.

1.2 Termination criteria in iterative algorithms

All the iterative optimization algorithms include a stopping criterion i.e., the condition
for halting the algorithm. Appropriate termination criteria are of utmost importance in
optimization as they save computational cost while securing solutions with high accuracy.
Some termination criteria used commonly in optimization algorithms include:

• Terminate if iteration count has reached some prespecified maximum value.

• Terminate if absolute function convergence criterion is satisfied e.g.,

f(xk) ≤ ABSTOL · f(x0).

• Terminate if change in the function value in consecutive iterations is relatively small
i.e.,

|f(xk)− f(xk−1)| ≤ ABSFTOL · f(x0).

• Terminate if CPU time exceeds some prespecified value.

Upon a good knowledge of the problem under consideration and the employed algo-
rithm, a specific termination criterion might be preferred to the ones listed above. For
example, in unconstrained convex optimization (Section 2.1.1) since solving (1.1) is equiv-
alent to finding x∗ such that

∇f(x∗) = 0,

the following stopping criterion is commonly used:

Terminate when ‖∇f(x)‖ ≤ ε‖∇f(x0)‖, (1.4)

where ε > 0 is a user-chosen parameter. Here for simplicity we assume that the optimization
problem is unconstrained i.e., E = ∅ and I = ∅. We should note in passing that the
termination criterion (1.4) is also widely used in non-convex optimization problems. Also,
it is worth noting that the termination criterion (1.4) is scale-invariant. In other words,

5

changing the function under consideration by f ← λf for some λ > 0 will not impact (1.4).
It is desirable for the stopping criterion to satisfy the scale-invariance property.

The least squares problem is a special case of convex optimization. Termination criteria
for (1.2), in particular for the case where the matrix A is sparse, have been well studied.
Here sparse means that only a small fraction of entries of A are non-zero. Some few
examples of this line of work include [84, 22, 85, 19, 4] where, in each of them, specific
stopping criteria are suggested for halting the algorithm.

1.3 Stochastic gradient descent (SGD)

Stochastic gradient descent and its variants play a key role in modern optimization. The
early history of SGD could be referenced back to the work [77]. Typical situations where
SGD is used is where the objective function has a finite-sum structure such as the following.

min
x∈Rd

f(x) :=
1

m

m∑
i=1

fi(x). (1.5)

It should be clear that the optimization problem (1.5) is a special case of (1.3) where the
support of the distribution P is finite and the corresponding distribution is uniform i.e.,

p(ζ1) = · · · = p(ζm) =
1

m
.

To obtain (1.5) from (1.3), adopt the shorthand fi(x) := F (x, ζi).

In certain settings, for example when m is large or the individual fi are complicated
functions, evaluating f(x) or ∇f(x) can be computationally expensive. Because of this,
gradient-based algorithms such as GD may not be a sensible choice for solving (1.5). On
the other hand, in the presence of a large amount of uniformity in our observations, a
full evaluation of f(x) or ∇f(x) may not be necessary to make progress in solving (1.5).
This motivates the idea that evaluating all the derivatives ∇fi might not be necessary
to perform updates and this is exactly what the SGD algorithm does. The basic idea is
natural: replace the actual gradient i.e., ∇f(xk) by an estimate thereof i.e., ∇fik(xk)
where ik ∼ Unif[m]. SGD algorithm applied to (1.5) is described in Algorithm 3. Here
i ∼ Unif[m] means that i is chosen from the set {1, · · · ,m} uniformly at random.

It is emphasized that
Ei∼Unif[m] [∇fi(x)] = ∇f(x). (1.6)

6

Algorithm 3: SGD algorithm for (1.5)

initialize: x0 ∈ Rn, α > 0
set k ← 0
repeat until a stopping criterion is satisfied

Update xk+1 = xk − α∇fik(x) where ik ∼ Unif[m]
k ← k + 1

end

In view of (1.6), ∇fi(x) where i ∼ Unif[m] is called an unbiased stochastic gradient at the
point x.

Optimization problems of the form (1.5) arise in data-fitting applications where fi
corresponds to a single observation and it models the misfit of a given parameter x [38].
In modern machine learning, optimization problems in a form of (1.5) are prevalent. As
a result, stochastic algorithms, in particular SGD, have been attracting a lot of attention
over the last decade. Scalability for large scale models [37] and parallelizability with big
training data [28] are among the most important features of the SGD algorithm.

The canonical example is the least squares problem where

fi(x) =
1

2

(
ζTi x− yi

)2
for all i = 1, · · · ,m.

Here (ζi, yi) for i = 1, · · · ,m are the training data point (Section 1.4). In the event where
the variable y is binary (consider y ∈ {0, 1}), a more appropriate model is the logistic
regression model, described by the choice

fi(x) = log
(
1 + exp

(
−(2yi − 1)ζTi x

))
for all i = 1, · · · ,m. (1.7)

It is noteworthy to mention that unlike the GD algorithm, termination criterion (1.4)
cannot be used for SGD. In fact, even in the case where each fi in (1.5) is a convex
function the condition ∇fik(xk) = 0 does not yield optimality at xk for the function f .
Because of this, understanding termination criteria for stochastic algorithms such as SGD
differ from their deterministic counterparts. We return to this issue in Section 1.6.

1.4 Supervised machine learning

The goal in supervised learning [79] is to make predictions using data. Consider the
prediction problem wherein the task is to find a function f within a certain class of functions

7

C that maps from an input space X (for example, a set of emails) to an output space Y (for
example, classifying those emails as spam or not-spam). We assume that we have access
to a set of input-output pairs (ζi, yi) ∈ X × Y for i = 1, · · · ,m which will henceforth be
called the training dataset such that f ∗(ζi) = yi for true (unknown) f ∗ ∈ C for almost all
i ∈ {1, · · · ,m}. These data are used to choose the function f̂ ∈ C and, assuming that there
exists a good degree of uniformity between ζi and yi, then the idea is that f̂ should provide
a good prediction on subsequent pairs (ζ, y) ∈ X × Y . The quality of the prediction that
f̂ : X → Y makes on a pair (ζ, y) is measured by way of a non-negative loss function. For
example, when both f(ζ) and y are real valued, the square loss `(f(ζ), y) := (f(ζ) − y)2

might be appropriate or, in the case where the label y takes binary values e.g., y ∈ {0, 1},
logistic loss function (1.7) is more appropriate (Notice that the choice of the loss function
` is task-specific).

Upon fixing the loss function `, we are interested in finding the function f̂ : X → Y in
such a way that would produce a small average loss value over (ζi, yi) for i = 1, · · · ,m. In
other words, we would like that

1

m

m∑
i=1

`(f̂(ζi), yi) (1.8)

to be small. We call (1.8) the training error for the loss function ` and the training data-set
{(ζi, yi) : i = 1, · · · ,m}.

In order to ensure that f̂ is indeed a good predictor, we assume that we have access to
another collection of data points (ζ̃i, ỹi) ∈ X ×Y for i = 1, · · · , m̃ which will henceforth be
called the validation dataset and it is disjoint from the training set. We then measure how
well f̂ is making prediction on (ζ̃i, ỹi). Provided that we are satisfied with the performance
of f̂ on (ζ̃i, ỹi) for i = 1, · · · , m̃, we could positively hope that f̂ should predict fine on
subsequent pairs (ζ, y) ∈ X × Y . Therefore, we will evaluate the following average.

1

m̃

m̃∑
i=1

`(f̂(ζ̃i), ỹi). (1.9)

A small value of (1.9) suggests that f̂ is indeed a good predictor. We call (1.9) the validation
error for the loss function ` and the validation dataset {(ζ̃i, ỹi) : i = 1, · · · , m̃}.

Finally, let us assume that the data pair (ζ, y) follows a probability distribution P on
the product space X ×Y (Section 2.2.1, Equation 2.8). The average loss induced by f̂ over
the entire dataset is called the generalization error :

E(ζ,y)∼P `(f̂(ζ), y) (1.10)

8

Here (ζ, y) ∼ P means that the random sample (ζ, y) follows the probability distribution
P . It is worth noting that the generalization error in (1.10) can be written in the form of
an integral as well e.g., (1.17).

We therefore encounter two optimization problems in supervised machine learning:
First, the minimization of the training error (1.8), namely

min
f∈C

1

m

m∑
i=1

`(f(ζi), yi). (1.11)

Second, the minimization of the average loss over the entire dataset, i.e.,

min
f∈C

E(ζ,y)∼P `(f(ζ), y). (1.12)

The optimization problems (1.11) and (1.12) are called the empirical risk minimization
and the expected loss minimization, respectively. There exists a trade-off between solving
these two optimization problems in the following sense: Solving (1.11) to optimality to
obtain f ∗ ∈ C does not necessary imply that f ∗ has a low generalization error meaning
that E(ζ,y)∼P `(f ∗(ζ), y) is not necessarily small, especially in the presence of noise.

Let us illustrate by an example: Suppose that we are given some blue and red points
as in Figure 1.2. These points are our training dataset (we can think of them as spam or
not-spam emails). The task is then to find a curve such that it separates these two set of
points from each other. Thus, we have training data-points (ζi, yi) where ζi represents the
dots in Figure 1.2 and yi ∈ {blue, red}. The class of functions C is considered to be set
of all functions that are 1 on one side of a curve and 0 on the other side. For a predictor
f , the prediction f(ζ) is defined in the most obvious way. Now in order to express our
task in terms of the optimization problems (1.11) and (1.12), it remains to define the loss
function. Let `0,1 be the 0-1 loss function, namely,

`0,1(f(ζ), y) =

{
0, f(ζ) = y

1, f(ζ) 6= y.

With all these notation and definitions, we are led to believe that the black curve (
denote it by f1) must have a lower generalization error that the green curve (denote it by
f2). Nonetheless, clearly f2 has a lower training error than f1. As it has been illustrated
in Figure 1.2, the reason that f1 yields lower generalization error is due to the fact that
f2 is fitting the noisy training data points. By noise, we mean the data points that are
not representative of the true properties of data. This phenomenon is called overfitting.

9

Figure 1.2: A cartoon depiction of the concept of overfitting in supervised machine learning.

The methods which are used to prevent overfitting without reducing the generalization
error nor the training error are called regularization. In the subsequent sections, we will
discuss more about regularization. The cartoon in Figure 1.2 is also an example of a binary
classification problem which we will return to in Section 1.4.3.

The class of functions C is generally parametrized by a vector θ ∈ Θ where Θ is a
subset of some fixed Euclidean space. We provide an example below from the neural
network literature which are not further pursued in this thesis. Here the class of functions
C used for training has a very specific structure.

Example 1. (Neural networks) A neural network is represented by θ ∈ Θ := RN1×N0 ×
· · · × RNL×NL−1 where N0 = d,NL = 1. Here, for an input ζ ∈ Rd, the output of the
network for θ = (WL, · · · ,W1) is equal to

fθ(ζ) = WL ◦ σ ◦WL−1 ◦ σ ◦ · · · ◦W2 ◦ σ ◦W1ζ, (1.13)

where σ is called the activation function which acts entry-wise on its vector input. Common
activation functions are ReLU i.e. σ(x) := max(x, 0), and sigmoid i.e. σ(x) := 1

1+ex
.

Given samples {(ζi, yi)}mi=1, the learning procedure involves the following empirical risk
minimization (1.11) where the square loss is used

`(fθ(ζ), y) = (y −WL ◦ σ · · · ◦ σ ◦W1ζ)2 . (1.14)

Neural networks forms the basis of remarkable advances in many areas of machine learning
[38].

10

1.4.1 SGD for general distribution

In Section 1.3, we discussed the SGD algorithm for the case where the objective function
is written in a finite-sum form. However, consider the expected loss minimization problem
(1.12) where the sum is taken over a general probability distribution. Can we use SGD to
solve the problems of the form in (1.12)? For clarity, in the rest of this chapter, we use
the parametrization C ≡ Θ to represent the elements of C whenever it is notionally more
convenient. Also, we denote

`θ(ζ, y) := `(f(ζ), y),

where θ ∈ Θ corresponds to f . With this notation, the minimization problem (1.12) is
rewritten as follows.

min
θ∈Θ

E(ζ,y)∼P `θ(ζ, y). (1.15)

Algorithm 4 describes the SGD algorithm applied to (1.15) where at the iteration k, we
sample (ζk, yk) from the distribution P . In this setting, the training set as in Section
1.3 is replaced by an oracle that generates instances (ζi, yi) on demand for i = 1, 2, · · · .
Notice that this new setting encompasses the previous one by letting P to be the uniform
distribution over the finite set

{(ζi, yi) : i = 1, · · · ,m} .

It is also assumed that the class of functions C has been parametrized by θ ∈ Θ in such
a way that the update formula

θk+1 = θk − α∇θk` (θk(ζk), yk) where (ζk, yk) ∼ P

makes sense. For example, in the binary classification problem (Section 1.4.3), each f ∈ C
can be represented as follows

f(ζ) = hTζ + b,

for some (h, b) ∈ Θ := Rd ×R. Thus, C ≡ Θ = Rd ×R.

Algorithm 4 converges to a neighborhood of the minimizer [70] whose size is controlled
by the following variance parameter

E
[∥∥∇θk`θk (ζk, yk)−∇θkE(ζ,y)∼P `θk(ζ, y)

∥∥2
]
≤ τ 2, (1.16)

for some τ > 0. The bound in (1.16) holds by assumption (Section 2.1.2). In words, we as-
sume that the stochastic gradients∇θk`θk (ζk, yk) and the full gradient∇θkE(ζ,y)∼P `θk(ζ, y)
are close to each other in the sense of (1.16). It is emphasized that after arriving at the
aforementioned neighborhood, the SGD iterates start to oscillate. We provide an illustra-
tive example next.

11

Algorithm 4: SGD algorithm for (1.15)

initialize: x0 ∈ Rn, α > 0
set k ← 0
repeat until a stopping criterion is satisfied

Update θk+1 = θk − α∇θk`θk (ζk, yk) where (ζk, yk) ∼ P
k ← k + 1

end

Example 2. Suppose that Θ = R and let

`θ(ζ, y) := −θyζ + log (1 + exp(θζ)) ,

where θ ∈ R and (ζ, y) ∼ P . In other words, we let

C ≡ {(ζ, y) 7→ −θyζ + log (1 + exp(θζ)) : θ ∈ R} .

We further assume that P follows a Gaussian mixture model:

P (y = 1) = P (y = 0) =
1

2
.

Once y is selected, then the marginal distribution of ζ is as follows.

ζ ∼ N(1− 2y, 1).

This means that

P(ζ ≤ t) =
1√
2π

exp

(
−(t− 1 + 2y)2

2

)
,

i.e., ζ is a real-valued random variable which is governed by a Gaussian distribution (Sec-
tion 2.2.2). We thus have

E(ζ,y)∼P `θ(ζ, y) =
1

2
√

2π

∫ +∞

−∞
log (1 + exp(θζ)) · exp

(
−(ζ − 1)2

2

)
dζ

+
1

2
√

2π

∫ +∞

−∞
log (1 + exp(−θζ)) · exp

(
−(ζ + 1)2

2

)
dζ.

(1.17)

Algorithm 4 used for solving (1.12) performs the following update rule:

θk+1 = θk +
α(2yk − 1)ζk

1 + exp(θk(2yk − 1)ζk)
.

Here (ζ1, y1), (ζ2, y2), · · · is a sequence of random variables drawn from the distribution P .
We return to this setting in Chapter 3.

12

1.4.2 Regularization in supervised machine learning

Avoiding overfitting is a major aspect of training in supervised machine learning. Over-
fitting occurs when the training error is small and generalization error is large i.e., the
generalization gap is large. Consider the training and generalization error minimization in
(1.8) and (1.12) respectively. Suppose that some iterative optimization e.g., SGD has been
used to train the desired model and denote f1, f2, · · · the corresponding iterates (fk corre-
sponds to θk in Algorithm 4). Denote the training and generalization error at iteration k
as follows.

Training-errork :=
1

m

m∑
i=1

`(fk(ζi), yi) and Gen-errork := E(ζ,y)∼P`(fk(ζ), y).

In view of the fact that increasing k, the complexity of model fk increases, the iteration
count k is also called the complexity of the model k. A typical relationship between
{Training-errork}+∞

k=0 and {Gen-errork}+∞
k=0 is illustrated in Figure 1.3. Ideally, we need to

halt our iterative algorithm once the generalization gap is small. This strategy is known
as early stopping or implicit regularization.

Figure 1.3: Complexity versus error.

A fundamental difference between the termination criteria we discussed in Section 1.2
and the ones in supervised machine learning is that the later are meant to produce low
generalization error rather than capturing convergence. We say an algorithm exhibits a
implicit regularization behaviour when for some termination criterion the generated model
has low generalization error as in Figure 1.3.

Generally, regularization is any modification we make to our learning algorithm in order
to reduce its generalization gap but not its training error [38]. Beside to early stopping, the
most common form of regularization is by adding a penalty term to the objective function.

13

By doing so, we give our algorithm a preference for one solution over another. This can be
formulated as follows: for some non-negative weight function J : C → R, we replace the
training error minimization (1.8) with the following regularized version.

min
f∈C

1

m

m∑
i=1

`(f(ζi), yi) + λJ(f). (1.18)

The weight function is designed in such a way that for undesirable functions f ∈ C, J(f)
is relatively large. Also, the parameter λ > 0 controls the intensity of the regularization
term. It is emphasized that the choice of function J is made based on the prior knowledge
we have about the problem under consideration. For a proper choice of λ, the orange curve
in Figure 1.3 becomes more flat towards the end and hence even a very small training error
should result in a low generalization error.

Regularization of the form (1.18) has a long history in optimization. In the subsequent
sections, as an example, we will discuss the Tikhonov regularization for solving noisy least
squares problem.

1.4.3 Binary linear classification

In a binary classification task, the goal is to specify which of the two categories some input
belongs to. With the notation from Section 1.4, in a binary classification problem, we have
that |Y| = 2 (for simplicity, denote Y = {0, 1}). The set of inputs i.e., X is also partitioned
as

X = X0 ∪ X1. (1.19)

By definition X0 ∩X1 = ∅. Then for any function f : X → Y , the number of misclassifica-
tions is defined by

error(f) := |{ζ ∈ X0 : f(ζ) = 1} ∪ {ζ ∈ X1 : f(ζ) = 0}| . (1.20)

The goal is now to find f such that error(f) is small. In supervised binary classification,
we are provided with m training data pairs

(ζ1, y1), · · · , (ζm, ym), (1.21)

where yi denotes the correct label for ζi. Using these m pairs, we would like to construct
a model such that for a new pair (ζ, y), it could predict y after observing ζ. In order to
made this task possible from a mathematical perspective, we need to assume that the set

14

of inputs X is structured in some particular way. To this end, we need to visualize the set
of inputs using some mathematical object. This is commonly done by way of embedding
X into some Euclidean space Rd. In other words, we assume that

X ⊆ Rd. (1.22)

In a binary linear classification task, we make one further fundamental assumption. We
suppose that the embedding (1.22) satisfies the following property:

X0 and X1 are almost separable by a hyperplane. (1.23)

Figure 1.4: In a binary linear classification problem, the task of the learner is to find a
hyperplane (linear classifier) which separates two group of points while minimizing the
number of misclassifications.

Here by the word almost, we mean that it might be the case where no hyperplane would
separate these two set of nodes X0 and X1 completely, but there exists some hyperplane
such that the number of misclassified nodes is negligible. Assumptions (1.22) and (1.23)
are illustrated in Figure 1.4. Notice that there exists a hyperplane which almost separates
blue and orange nodes from each other. Define the 0-1 error loss function as follows:

`0,1(z, y) =

{
0, sign (z) = 2y − 1

1, sign (z) 6= 2y − 1.

15

Figure 1.5: Common surrogate loss functions: exponential, hinge, logistic and truncated
quadratic [5]. Here, the staircase non-convex function is the 0 − 1 loss function which is
equal to 0, if the model predicts correct, 1 otherwise.

With this notation, the minimization of error(f) (1.20) can be written in the following
way:

min
(h,b)∈Rd×R

1

m

m∑
i=1

`0,1(fh,b (ζi) , yi), (1.24)

where fh,b is defined by
fh,b(ζ) := hTζ + b.

The optimization problem (1.24) is the empirical risk minimization defined in (1.8) which
is often intractable (exponential in d) [53]. As a result, a surrogate loss function is used
instead to replace (1.24) with a convex relaxation (Chapter 2). Some common loss func-
tions used for the task of binary classification are plotted in Figure 1.5. It is well known
that the model obtained using these surrogate loss functions provides a non-trivial upper
bound on the excess risk (error associated with the 0-1 loss function) under the weakest
possible condition [5]. Note that convexity of the surrogate loss functions make the solving
algorithms computationally efficient.

1.5 Linear least squares problems

Given an m × n matrix A and an n × 1 vector b, the least squares problem is to find a
vector x such that it minimizes ‖Ax − b‖. Therefore, we are interested in the following

16

optimization problem:

min f(x) :=
1

2
‖Ax− b‖2. (1.25)

The least squares problem appear in many applications. A few examples include digital
image restoration [34], statistical modeling [36] and curve fitting [35]. Below, we briefly
discuss three standard ways for solving (1.25): the normal equations, the QR decomposition
and the singular value decomposition (SVD).

It can be checked easily that f is a convex function and hence any solution xLS to (1.25)
must satisfy the following equation.

ATAxLS = ATb. (1.26)

Equation (1.26) is called the normal equation. We will only concentrate on the overdeter-
mined case where m > n and furthermore, we suppose that A has full column rank. Under
these assumption, by (1.26), we have that

xLS =
(
ATA

)−1
ATb. (1.27)

Since ATA is positive definite, we can use the Cholesky decomposition to obtain xLS from
(1.27). We next state the QR decomposition and SVD.

Fact 1. There exists a matrix Q i.e., QTQ = In, and a unique upper triangular matrix R
with non-negative diagonal entries such that A = QR.

Fact 2. We can write A = UΣV T where U ∈ Rm×n and V ∈ Rn×n such that UTU =
V TV = In, and Σ = diag (σ1, · · · , σn) with σi ≥ 0. The columns of U and V are called left
and right singular vectors respectively. σi are called the singular values of A.

In the case where A is full column rank, it holds that R is non-singular and σi > 0 in
the QR decomposition and SVD respectively. It is also readily verified that

A† :=
(
ATA

)−1
AT = R−1Q = V Σ−1UT , (1.28)

where A† is called the Moore-Penrose pseudoinverse of A. It is emphasized that the
QR decomposition and SVD methods are particularly helpful in the rank-deficient or ill-
condition problems i.e., some of singular values are either zero or very small respectively.
Such problems arise in many applications and regularization methods are necessary to
mitigate the bad effects of very small singular values. In the next subsection, we will
discuss some of the standard regularization methods used for solving the ill-conditioned
least squares problems.

17

1.5.1 Regularization techniques for LLS

Small singular values cause troubles when our task is solving (1.25). To illustrate, let us
assume that the singular values are ordered as follows.

σ1 ≥ · · · ≥ σn ≥ 0.

We clearly have that

‖xLS‖2 ≥
∣∣∣∣U [:, n]Tb

σn

∣∣∣∣ .
In particular, changing b to b+ εU [:, n] change xLS to xLS + x̃LS where

‖x̃LS‖2 ≥
ε

σn
.

Combining pieces, we conclude that the solution to (1.25) is potentially very large and
also very sensitive to error in the vector b. In consequence, we say that the least squares
problem (1.25) is ill-conditioned whenever σn ≈ 0. This issue will be intensified once the
vector b is noisy. To explain, let us write

b = Ax∗ + ζ, (1.29)

where ζ denotes the noise in our model and x∗ denotes the sought-after unknown vector
(when ζ = 0 in (1.29), A†b = x∗). By (1.27) and b as in (1.29), the solution to (1.25) can
be computed as follows.

xLS := x∗ + A†ζ

By (1.28), we have that

A†ζ =
n∑
i=1

U [:, i]Tζ

σi
V [:, i].

Similarly, we have that ∣∣∣∣U [:, n]Tζ

σn

∣∣∣∣� 0,

assuming that
|U [:, n]Tζ| 6≈ 0. (1.30)

The noise vector ζ can be formulated through some mathematical modeling. For example,
in Chapter 4, ζ is modeled as an isotropic random Gaussian vector. Under this assumption,
the condition in (1.30) always holds. In fact, we will see that the expected value of |U [:

18

, n]Tζ|2 is equal to the variance in the modeled noise. Notice that across many applications,
it is not only the last singular value that might happen to be near zero as, generally, in
ill-conditioned problems, for some s > 0 it holds that

σn−s+1 ≈ 0, · · · , σn ≈ 0. (1.31)

We summarize our discussion below:

Fact 3. When A is ill-conditioned, the solution xLS = A†b is dominated by the contribu-
tions from rounding and data errors. In view of this, A†b is called the naive solution to
(1.25).

To damp these contributions, the regularization methods are applied to the least squares
problem (1.25). Notice that, in many places, it is not only the smallest singular value which
is approximately zero, but it even holds that

U [:, n− s′ + 1]Tx∗ ≈ 0, · · · , U [:, n]Tx∗ ≈ 0, (1.32)

where s′ ≥ s where s is defined in (1.31). One such example is in the image deblurring
problems (Chapter 4). In view of (1.31) and (1.32), the following truncated sum might be
considered as the solution instead of xLS

Rk(xLS) =
k∑
i=1

U [:, i]Tb

σi
V [:, i]. (1.33)

For a properly chosen k, (1.33) produces a good approximation of x∗. This method is
called the truncated SVD (TSVD) method [34]. TSVD is a specific example of a broader
class of methods that are called spectral filtering methods, which have the following form

x∗filtered :=
n∑
i=1

fi
U [:, i]Tb

σi
V [:, i],

where fi are called the filter factors. The main idea of spectral filtering is to choose fi such
that for large singular values fi ≈ 1 and fi ≈ 0 for small singular values. To this end, one
common approach is to let

fi =
σ2
i

σ2
i + λ

, (1.34)

where λ > 0 is a parameter which needs to be tuned. It can be easily verified that for
fi in (1.34), the filtered solution x∗filtered, denote it by xλ, is the solution to the following
optimization problem.

min fλ(x) :=
1

2
‖Ax− b‖2 + λ‖x‖2. (1.35)

19

The optimization problem (1.35) is called the Tikhonov regularization problem [76, 71]. In
order to approximate the optimal regularized solution xλopt i.e.,

xλopt := argmin
λ>0

‖xλ − x∗‖,

we need to estimate the optimal value λopt. Trial and error schemes and the L-curve
criterion [31] are among the common strategies used in practice to tune λ. See also [26, 29].
It is emphasized that the task of tuning λ always requires the computation of the regularized
solution xλ for some few different values of λ. Finally, it is worth noting that specialized
methods have been developed for solving (1.35) where the matrix A is sparse. These
instances are called sparse least squares problems and they appear in many places such as
image deblurring. Some few examples of this line of work include [84, 22, 85].

The implicit regularization effect of early stopping is another form of regularization for
the least squares problem. To illustrate, we provide an example of an image deblurring
problem. As it will be detailed in Chapter 4, a digital image deblurring problem can
be formulated in a form of a least squares problem (1.25) where b is defined in (1.29).
The unknown x∗ represents the deblurred (also called sharp) image, the observed vector
b represents the blurred noisy image, and A is called the blurring matrix. We apply the
gradient descent algorithm on (1.25) (Algorithm 5).

Algorithm 5: GD algorithm to minimize 1
2
‖Ax− b‖2

initialize: x0 = 0 ∈ Rn, α > 0
for k = 0, 1, · · ·

Update xGD
k+1 = xGD

k − αAT
(
AxGD

k − b
)

k ← k + 1
end

It is worth noting that in this setting each xGD
k generated by Algorithm 5 represents

an image. In particular, x0 = 0 represents the pitch black image. See Figure 1.6 for an
example. Let us define

Error of xGD
k :=

‖xGD
k − x∗‖2

‖x∗‖2

.

From Figure 1.6, we observe that the error of xGD
k decays at first (and becomes close to a

regularized solution) and then it keeps ascending. In view of this, there exists an optimal
termination criterion Topt such that halting the algorithm at the iteration Topt yields a
desirable accuracy i.e.,

Error of xGD
Topt is small. (1.36)

20

Figure 1.6: Image deblurring is the process of removing blurring artifact from images
(Chapter 4). The corresponding iterates for k = 0, 50, 100, 150, 300 of the GD algorithm
are pictured. Notice that the iterate 50 exhibits a desirable accuracy.

Designing an explicit termination criterion T such that |T−Topt| is not too large is therefore
important. When (1.36) holds, we say that Algorithm 5 exhibits an implicit regularization
effect, also known as the semi-convergence behaviour [59, p. 89]. The semi-convergence
behaviour of iterative algorithms is well studied e.g., [20, 6, 33, 40, 85, 73].

For a general iterative algorithm applied to (1.25), the implicit regularization effect, the
error term and the termination criterion T are defined similarly as above. Notice that these
type of termination criteria are different from what we discussed in Section 1.2, in particular
the termination criteria used in the sparse least squares literature [84, 22, 85, 19, 4]. In
fact, in these line of works, termination criteria are designed to capture convergence to
the minimizer of the iterative algorithm being used rather that exploiting their implicit
regularization effects. In Chapter 4, we will study the implicit regularization effect of the
SGD algorithm applied to the least squares problem (1.25) arising in image deblurring.
Notice that the objective function in (1.25) can be written in a form of the finite-sum
consisting of m terms to which the SGD algorithm from Section 1.3 can be applied.

1.6 Termination criteria for SGD

This thesis deals with termination criteria for the SGD algorithm. Recall that in Section
1.4.2, we introduced the concept of early stopping regularization. Unlike regularization via
penalization, the early stopping approach does not change the training procedure and also
eliminates the required computations needed for the regularization term. In view of these
pleasant statistical and computational benefits, developing useful termination criteria for
iterative algorithms is therefore important.

While termination criteria for deterministic algorithms such as GD have been widely
studied e.g., [22, 68], in the case of stochastic algorithms such as SGD they are not well

21

understood yet. It is important to note that why a good termination criterion for GD
does not necessarily yield a proper termination criterion for SGD. Let us illustrate by an
example: In Example 2, consider the following test:

Terminate when ‖∇θk`θk(ζk, yk)‖ ≤ ε
∥∥∇θ0E(ζ,y)∼P`θ0(ζ, y)

∥∥. (1.37)

Further, assume that at some iteration k, we observe that

ζk � 0 and yk = 1. (1.38)

Notice that

‖∇θk`θk(ζk, yk)‖ =

∥∥∥∥ ζk
1 + exp(θkζk)

∥∥∥∥ .
Hence, by (1.38), we expect (1.37) is satisfied provided that θk > 0. In view of this, the
unlikely event (1.38) might cause termination even though the iterate θk might not have
any important statistical feature such as closeness to the minimizer or exhibiting a low
error as a classifier (1.20).

Recall that SGD with a constant step-size converges to a neighborhood of the minimizer,
whose size depends on the variance parameter defined in (1.16), and then starts to oscillate.
Termination criteria for the SGD algorithm to diagnose convergence to the minimizer is
therefore important. For SGD with a constant step-size such as Algorithms 3 and 4, in
[15, 69] the authors have developed explicit and cheaply computable termination criteria
to halt the iteration updates once the algorithm has arrived at a small neighborhood of
the minimizer.

The SGD algorithm with shrinking step-sizes does not exhibit the oscillatory behaviour
around the minimizer similar to the case where the step-size is fixed. It is well known that,
with a proper policy of shrinking step-sizes, SGD is guaranteed to converge to the minimizer
e.g., [62] and therefore some of the termination criteria from Section 1.2 could be used to
halt the algorithm once the convergence has occurred.

As argued in Sections 1.4.2 and 1.5.1, in the context of supervised machine learning or
noisy least squares problem, termination criteria for iterative algorithms to detect conver-
gence to the minimizer are not useful. In the context of supervised learning, the earliest
comprehensive numerical testing of a stopping criterion for SGD was introduced in [72].
Their stopping criterion, which we call it the small validation set (SVS) test, periodically
checks the accuracy of the iterate on the validation dataset. Every time the error on the
validation set improves, a copy of the model parameters is stored. The algorithm is halted
if there has been no improvement in the error on the validation set. Theoretical guarantees
for SVS are established in e.g., [52, 87].

22

1.7 Outline of the thesis

In the next chapter, we will provide some background material which we will need through-
out the thesis. We arrive at our first main result in Chapter 3 where we propose a new,
simple, and computationally inexpensive termination test for SGD applied to binary linear
classification on the logistic and hinge loss functions. Our theoretical results support the
effectiveness of our stopping criterion when the data is Gaussian distributed. We show
that our test terminates in a finite number of iterations and when the noise in the data
is not too large, the expected classifier at termination nearly minimizes the probability of
misclassification. Next, in Chapter 4, we consider the SGD algorithm for the least squares
deconvolution problem. We prove a new concentration inequality to demonstrate that the
SGD algorithm shall follow the gradient flow trajectory with high probability. Based on
numerical observations, we propose a computationally inexpensive termination criterion
for the SGD algorithm. As a first step towards developing a theoretical understanding for
our test, we provide a bound for the `2-error term for the iterate at termination for the GD
algorithm. Finally in Chapter 5, we summarize the key results of the thesis and list some
of the unanswered interesting questions which this work presents for the future inquiry.

23

Chapter 2

Preliminaries

In this chapter, we establish the basic notation and record some preliminary results that
we will use throughout the thesis. We should emphasize that none of the material in this
chapter is new.

2.1 Optimization

This section is devoted to some mathematical optimization background. Section 2.1.1
contains some basic definitions and examples from convex analysis. In Section 2.1.2, we
discuss the convergence analysis of the SGD algorithm.

2.1.1 Convex analysis

The concept of convexity is fundamental in optimization. Convex problems are easier to
solve both in theory and practice and they are present across many type of application
[13, 78, 9, 64, 7]. We begin by defining convex sets which is the most important object in
the convex analysis.

Definition 1. Set Ω ⊆ Rd is called convex if for any x,y ∈ Ω and λ ∈ (0, 1), we have
that λx+ (1− λ)y ∈ Ω.

Convex functions are basically those whose epigraphs (the set of points on or above the
graph of the function) are convex sets.

24

Definition 2. Let Ω ⊆ Rd be a convex set. We say f : Ω→ Rd is a convex function if for
every x,y ∈ Ω and any λ ∈ (0, 1), the following is true

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ) f(y).

Example 3. (Logistic function) The following function defined on the real line is convex.
This function is smooth, i.e. differentiable of any order.

f(t) := log (1 + exp(−t))

Also, we have that limt→+∞ f(t) = 0 and limt→−∞ f(t) = +∞.

Example 4. (Hinge function) The following function defined on the real line is convex. It
is worth noting that this function is only continuous and not differentiable.

h(t) := max(0, 1− t).

Again we have that limt→+∞ h(t) = 0 and limt→−∞ h(t) = +∞.

We next define global or local minimizer for a given function f .

Definition 3. For a function f : Ω→ Rd, x∗ ∈ Ω is called a local minimum if there exists
r > 0 such that for every y ∈ Ω ∩ Br(x

∗), it holds that f(x∗) ≤ f(y). Moreover, x∗ ∈ Ω
is called a global minimum if for every y ∈ Ω, it holds that f(x∗) ≤ f(y).

In this thesis, we only deal with unconstrained optimization problems. Because of this,
in the rest of this section, we let Ω = Rd.

The main goal of optimization is to analyze the set of minimizers of a given function.
Since optimization algorithms only perform iterates based on local information, naturally,
we do not expect them to converge to the global optimum. However, for the class of convex
functions every local minimum is also global and that is why convex functions are very
important. The following theorem lies at the heart of mathematical optimization.

Theorem 1. For any convex function f : Rd → R, every local minimum is also global.

Convex functions are not necessary differentiable as in Example 4 above. In such cases,
the sub-gradients play the same role as the gradients:

25

Definition 4. (Subdifferential) Every vector v satisfying the following inequality is called
a sub-gradient for the function f : Rd → R at x.

f(x) + 〈v,y − x〉 ≤ f(y), ∀y ∈ Rd.

For all points inside the interior of domain of f , the subdifferential (set of subgradients at
a fixed point) denoted by ∂f(x) is nonempty, e.g. Theorem 3.1.8 [9]. It is worth noting
that when f is differentiable at x then ∂f(x) = {∇f(x)}.

Example 5. Let h be the hinge function from Example 4. Then h is differentiable at any
given point except at 0. Sub-differential at 0 are computed as follows.

∂h(0) = [−1, 0].

Theorem 2. (First-Order Necessary Condition) Let f : Rd → R be a continuously dif-
ferentiable function. If x∗ is a local minimizer of f , it then holds that ∇f(x∗) = 0.
Conversely, if in addition f is convex, then x∗ is a local minimizer of f if and only if
∇f(x∗) = 0.

Proof. See e.g. Theorem 2.2 [66].

Theorem 2 leads to the following definition.

Definition 5. Every point x satisfying ∇f(x) = 0 is called a critical point for f .

Smoothness and strong convexity are defined next.

Definition 6. We say a convex differentiable function f is L-smooth if the following
inequality holds for all x,y ∈ Rd.

f(y) ≤ f(x) + 〈∇f(x),y − x〉+
L

2
‖y − x‖2. (2.1)

The bound in (2.1) provides a global upper estimate for f at a given point y. The
analogous lower bound is called strong convexity.

Definition 7. We say a differentiable convex function f is `-strongly convex if the following
inequality holds for all x,y ∈ Rd.

f(x) + 〈∇f(x),y − x〉+
`

2
‖y − x‖2 ≤ f(y).

26

Algorithm 6: Gradient Descent Algorithm

initialize: x0 ∈ Rd, α > 0
for k = 0, 1, · · ·

Update xk+1 = xk − α∇f(xk)
k ← k + 1

end

It can be readily verified that every differentiable convex function is 0-strongly convex,
this is known as sub-gradient inequality. However, when we discuss strongly convex func-
tions, we only refer to the case where ` > 0. We next state the most basic result regarding
the convergence of the GD algorithm.

Theorem 3 (Theorem 3.3, [14]). Let f be a convex L-smooth function and set α = 1
L

.
Assume that the sequence {xk}+∞

k=0 is generated by Algorithm 6. The following bound then
holds.

f(xk)− f(x∗) ≤ 2L‖x0 − x∗‖2

k
. (2.2)

We conclude this section by an illustrative example of the gradient descent algorithm
applied to the logistic function.

Example 6. Consider the following optimization problem:

min
x∈R

f(x) := log (1 + exp(−x)) .

We initialize GD at x0 = 0. Then the update formula with α = 1 is as follows.

xk+1 = xk +
1

1 + exp(xk)
.

It can be readily verified that xk ≈ log(k) and f(xk) ≈ 1
k
. In particular, xk → +∞ and

f(xk)→ infx∈R f(x).

2.1.2 Convergence of SGD

In Chapter 1, we wrote about stochastic optimization in the context of supervised learn-
ing. Nonetheless, as uncertainty appears almost in any type of application, stochastic

27

optimization methods are the sensible choice across a larger variety of problems. Stochas-
tic optimization problems are generally formulated as follows.

f(x) := Eζ∼P [F (x, ζ)] . (2.3)

Here x ∈ Rd is called the decision variable and ζ is a random variable which follows some
distribution P . It is important to underline that the analysis of the SGD algorithm and
also its variants are mostly done using this general formulation. Algorithm 9 describes
SGD algorithm applied to (2.3).

Algorithm 7: Stochastic gradient descent algorithm

initialize: x0 ∈ Rd, α > 0
for k = 0, 1, · · ·

Update xk+1 = xk − α∇xkF (xk, ζk) where ζk ∼ P
k ← k + 1

end

Under reasonable assumptions, we can always assume that

Eζ∼P [∇xF (x, ζ)] = ∇f(x), (2.4)

where the expected value and the derivative are interchanged. In view of (2.4), ∇xF (x, ζ)
are called unbiased stochastic gradients. For the convergence analysis of Algorithm 7, we
need to assume that the stochastic gradients ∇xF (x, ζ) satisfy some uniformity when
ζ ∼ P . The following condition is commonly assumed for the convergence analysis of the
Algorithm 7.

Eζ∼P
[
‖∇f(x)−∇xF (x, ζ)‖2

]
≤ τ 2 (2.5)

In words, stochastic gradients ∇xF (x, ζ) are expected to lie close to the main gradient
∇f(x). We have the following result.

Theorem 4 (Theorem 4.1, [50]). Suppose that the regularity conditions (2.4) and (2.5)

hold. Then with the step-size α = 1
L+ 1

β

where β = ‖x1−x∗‖
τ
·
√

2
k

the following holds.

E

[
f

(
1

k

k∑
i=1

xi

)]
− f(x∗) ≤ ‖x1 − x∗‖ · τ ·

√
2

k
+
L‖x1 − x∗‖2

k
. (2.6)

Notice the difference between the bounds in (2.2) and (2.6). Indeed, all the stochastic
algorithms only optimize the expected performance of the model rather than providing

28

deterministic guarantees. It is known that the bound in Theorem 4 is optimal. In fact,
from the classical theory of convex programming [63, 64], we know that for a stochastic
first order method where at each iteration an unbiased stochastic gradient is evaluated,
finding an ε-solution i.e. a point xε such that

E [f(xε)]−min f ≤ ε,

requires O
(

1
ε2

)
or, O

(
1
ε

)
if f is strongly convex, stochastic gradient evaluations.

It is worth mentiong that SGD variants have been the default algorithms of choice across
many machine learning applications. In particular, adaptive gradient methods have gained
paramount popularity in training deep neural networks where their key feature is that they
apply a preconditioning matrix for the gradient updates at each iteration. In other words,
different learning rates are considered for different coordinates in the gradient update. In
practice diagonal preconditioning are used whereas theoretical results are based on full-
matrix preconditioning. Examples of adaptive gradient methods include [17, 82, 88, 48, 74].

2.2 Probability theory

In this section, we establish the basic notation and record some preliminary results from
probability theory that we will use throughout the thesis.

2.2.1 Probability distributions

A random variables is a variable that can take on different values randomly.

Example 7. Let Ω be a set and A ⊆ Ω be a random subset of Ω. The indicator function
of the subset A is defined as follows.

1A(ω) =

{
1, ω ∈ A
0, ω 6∈ A.

A description of how likely a random variable is to take on each of its possible states is
called a probability distribution. For example, for a given real-valued random variable X,
we say X has density function p whenever it holds that

P (a ≤ X ≤ b) =

∫ b

a

p(x)dx. (2.7)

To be a probability distribution, a function p needs to satisfy the following properties:

29

1. p(x) ≥ 0 for all x ∈ R.

2.
∫ +∞
−∞ p(x)dx = 1.

When (2.7) holds, we write
X ∼ P. (2.8)

The probability density functions for multi-variate random variables are defined similarly
as in (2.7). In other words, for a random variable X in Rd, we say that X follows the
probability distribution P if

P (X ∈ [a1, b1]× · · · [ad, bd]) =

∫ b1

a1

· · ·
∫ bd

ad

p(x1, · · · , xd)dx1 · · · dxd.

Assuming that p satisfies (2.7), the cumulative distribution function of the random
variable X is defined as follows.

F (b) := P (X ≤ b) =

∫ b

−∞
p(t)dt.

It can be easily verified that

p(t) =
d

dt
F (t).

The expected value of some function f(X) with respect to a probability distribution p(x)
is the average value that f takes on when X ∼ P as in (2.8). In other words, we define

EX∼P [f(X)] :=

∫
p(x)f(x)dx.

Example 8. The probability density function of a random variable X which is uniformly
distributed on the interval [a, b] is given by

p(x) :=

{
1
b−a , x ∈ [a, b]

0, x /∈ [a, b].
(2.9)

Therefore, it holds that

E [X] =

∫ b

a

tdt =
b− a

2
.

When a random variable X follows the uniform distribution on [a, b], it is written X ∼
U(a, b).

30

2.2.2 Normal distributions

Gaussian distributions, also known as normal distributions, are the most commonly used
distribution over real numbers. The probability density function of a univariate Gaussian
with mean µ and variance σ2 is described by:

ϕµ,σ2(t) :=
1

σ
√

2π
exp

(
−(t− µ)2

2σ2

)
.

In particular, we denote a random variable ξ distributed as a Gaussian with mean µ and
variance σ2 by ξ ∼ N(µ, σ2) to mean P(ξ ≤ t) =

∫ t
−∞ ϕµ,σ2(t) dt. When the random

variable ξ ∼ N(0, 1), we denote its cumulative density function as

Φ(t) := P(ξ ≤ t) =
1√
2π

∫ t

−∞
exp

(
−s

2

2

)
ds,

and its complement by Φc(t) = 1−Φ(t). The symmetry of a normal around its mean yields
the identity, Φ(t) = Φc(−t).

One can, analogously, formulate a higher dimensional version of the univariate normal
distribution called a multivariate normal distribution. A random vector is a multivariate
normal distribution if every linear combination of its component is a univariate normal
distribution. We denote such multivariate normals by ξ ∼ N(µ,Σ) with µ ∈ Rd and Σ is
a symmetric positive semidefinite d× d matrix.

Normal distributions have interesting properties which simplify our computations through-
out Chapter 3. We list those which we specifically rely on. See [21] for proofs. Below,
v,v′ ∈ Rd, r ∈ R, ξ ∼ N(µ, σ2Id), ξ ∼ N(µ, σ2), and ψ ∼ N(0, 1).

Fact 4. Consider random variables of the form vTξ + r, i.e. affine functions of a given
normal distribution. A fundamental property of normal distributions is that they stay in
the same class of distributions after any such transformation. In particular, it holds that

vTξ + r ∼ N(vTµ+ r, σ2‖v‖2). (2.10)

Fact 5. Working with independent random variables makes the analysis significantly easier.
In particular, it is essential for us to know when the two random variables vTξ and v′Tξ
are independent. We will use the following simple fact multiple times in Chapter 3:

vTξ and v′Tξ are independent if and only if vTv′ = 0. (2.11)

31

Fact 6. Truncated normal distribution appear in our analysis. We will need the following
simple fact:

Eξ[ξ1{ξ≤b}] = 0 =⇒ Φ

(
b− µ
σ

)
· exp

(
1

2
·
(
b− µ
σ

)2
)
− σ

µ
= 0. (2.12)

Fact 7. We conclude our remarks on normal distributions with the statement of two facts
about the expected value of their norm. The following hold:

E
[
‖ξ‖2

]
= ‖µ‖2 + dσ2, Eξ[|ξ|] ≤

√
2

π
· σ + |µ| and E [|ψ|] =

√
2

π
. (2.13)

2.2.3 Martingales and stopping times

Here we state some relevant definitions and theorems regarding Martingales and stopping
times used in Chapters 3 and 4. We refer the reader to [18] for further details.

2.2.4 Martingales

For any probability space, (P,Ω,F), we call a sequence of σ-algebras, {Fk}∞k=0, a filtration
provided that Fi ⊂ F and F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ 2Ω holds. Given a filtration, it is natural
to define a sequence of random variables {Xk}∞k=0 with respect to the filtration, namely Xk

is a Fk-measurable function. If, in addition, the sequence satisfies

E[|Xk|] <∞ and E[Xk+1|Fk] ≤ Xk for all k, (2.14)

we say {Xk}∞k=0 is a supermartingale. Similarly, if the right hand side inequality in (2.14)
holds with an equality, then we refer to {Xk}∞k=0 as a martingale. Submartingales are
defined in a similar fashion. Note that martingales, supermartingales and submartingales
are the stochastic analogous of monotonic sequences. In other words, a sequence of random
variables is called a supermartingale, submartingale and martingale if in expectation it is
a non-increasing, non-decreasing and constant real-valued sequence respectively. As for
bounded monotonic sequences, bounded supermartingales, submartingales or martingales
converge almost surely; see e.g. Theorem 27.1 [45].

32

2.2.5 Stopping times

In probability theory, we are often interested in the (random) time at which a given stochas-
tic sequence exhibits a particular behavior. Such random variables are known as stopping
times. Precisely, a stopping time is a random variable T : Ω → N ∪ {0,∞} where the
event {T = k} ∈ Fk for each k, i.e., the decision to stop at time k must be measurable
with respect to the information known at that time. As we illustrate in Chapter 3, a
connection between stopping criteria (i.e. the decision to stop an algorithm) and stopping
times naturally exists.

Example 9. (Random walk on Z) A random walk is an stochastic process formed by
iteratively summing independent, identically distributed random variables. Random walks
on lattices for instance has been extensively studied [80] and its simplest case is constructed
as the following stochastic process: Suppose that {Xk}+∞

k=0 is an iid sequence of Bernoulli
random variables with P (Xk = 1) = 1

2
. Denote by Sn = X1 + · · · + Xn for every positive

integer n. For every positive integer K, define the random variable TK as follows.

TK = inf{n : Sn ≥ K}.

Clearly, TK is a stopping time with respect to the filtration Fk := σ (X1, · · · , Xk).

Supermartingales and stopping times are closely tied together, as seen in the theorem
below, which gives a bound on the expectation of a stopped supermartingale.

Theorem 5 (See [18] Theorem 4.8.5). Suppose that {Xk}∞k=0 is a supermartingale w.r.t
to the filtration {Fk}∞k=0 and let T be any stopping time satisfying E[T] <∞. Moreover if
E [|Xk+1 −Xk||Fk] ≤ B a.s. for some constant B > 0, then it holds that E[XT] ≤ E[X0].

Tower Rule Tower Rule is a simple lemma that we will use in our analysis multiple
times.

Lemma 1 (Tower Rule). Let (P,Ω,F) be a probability space with two sub σ-algebras G1 ⊆
G2. Given a random variable X on this space, if E [|X|] < +∞, then the following holds.

E [E [X|G2] |G1] = E [X|G1] . (2.15)

2.2.6 Concentration inequality

Non-asymptotic concentration bounds have been the subject of intensive study in the
data science literature [86]. This is mostly due to the fact that stochastic algorithms in

33

optimization have risen to an unprecedented popularity. A non-asymptotic concentration
inequality asserts that a random variable X concentrates around its mean i.e. E[X], with
high probability. In contrast with other types of statistical analysis, the non-asymptotic
point of view does not require the dimension to go off to infinity. A classic example of
asymptotic results is the law of large numbers. We state and prove Hoeffding’s and Azuma’s
concentration inequality. We need Azuma’s inequality in Chapter 4.

2.2.7 Hoeffding’s inequality

Hoeffding’s inequality illustrates a concentration bound for the sum of uniformly bounded
random variables. We state and prove it below.

Lemma 2 (Hoeffding’s inequality). Let X1, · · · , XN be random variables such that Xk ∈
[ak, bk] almost surely for all k ∈ [N]. Denote by SN := X1 + · · ·+XN . The following bound
then holds.

P (SN − E [SN] ≥ ε) ≤ exp

(
− 2ε2∑N

k=1 (bk − ak)2

)
. (2.16)

Proof of Lemma 2 follows from Hoeffding’s lemma which provides an upper bound
for the moment generating function of a bounded random variable. We state and prove
Hoeffding’s lemma below [1].

Lemma 3. Suppose that X is a random variable such that X ∈ [a, b] a.s. The following
bound then holds for all s ∈ R.

E [exp (s (X − E [X]))] ≤ exp

(
1

8
s2 (b− a)2

)
. (2.17)

Proof. First note that without loss of generality we can assume that E [X] = 0. Denote
p = −a

b−a and define L(x) := −px+ ln (1− p+ pex). We have that

eL(x) = (1− p+ pex) e−px = (1− p)e−px + pe(1−p)x. (2.18)

Plugging in x∗ = s(b− a) into (2.18), we will obtain that

eL(x∗) = (1− p)esa + pesb =
b− E[X]

b− a
esa +

E[X]− a
b− a

esb ≥ E
[
esX
]
. (2.19)

Here the last inequality follows from convexity of the exponential function. Now note that
L(0) = L′(0) = 0 and L′′(x) ≤ 1

4
for all x. Therefore, it holds that L(x) ≤ x2

8
and hence

using (2.19), we will conclude the proof.

34

We are now ready to prove Hoeffding’s inequality Lemma 2.

Proof of Lemma 2. By Markov inequality, for any s > 0, we will have that

P (SN − E [SN] ≥ ε) = P (exp (s (SN − E [SN])) ≥ esε)

≤ e−sεE [exp (s (SN − E [SN]))]

= e−sε
N∏
k=1

E [exp (s (Xk − E [Xk]))]

≤ e−sε
N∏
k=1

exp

(
s2

8
(bk − ak)2

)

= e−sε exp

(
s2

8

N∑
k=1

(bk − ak)2

)
.

Letting s = 4ε∑N
k=1(bk−ak)2

and using the above chain of bounds, we will conclude the lemma.

2.2.8 Azuma’s inequality

We now state and prove Azuma’s inequality. This concentration inequality provides high
probability concentration bounds for Martingales with bounded differences.

Lemma 4. (Azuma’s Inequality) Suppose that {Xk}+∞
k=0 is a martingale that satisfies |Xk −Xk−1| ≤

ck almost surely for all k ≥ 1. Here {ck}+∞
k=0 is a sequence of positive real numbers. Then

for all positive integer N and any ε > 0, the following bound is true.

P (|XN −X0| ≥ ε) ≤ 2 exp

(
−2ε2∑N
k=1 c

2
k

)
.

Proof. We first show that the following holds.

P (XN −X0 ≥ ε) ≤ exp

(
−2ε2∑N
k=1 c

2
k

)
. (2.20)

35

Note that for s > 0, we have that

P (XN −X0 ≥ ε) = P (exp (s(XN −X0)) ≥ exp(sε))

≤ exp(−sε)E [exp (s(XN −X0))]

= exp(−sε)E [E [exp (s(XN −X0)) |X1, · · · , XN−1]]

= exp(−sε)E

[
exp (s(XN −XN−1))E

[
exp

(
s
n−1∑
k=1

(Xk −Xk−1)

)
|X1, · · · , XN−1

]]

≤ exp(−sε)E

[
exp

(
s
n−1∑
k=1

(Xk −Xk−1)

)
E [exp (s(XN −XN−1)) |X1, · · · , XN−1]

]

≤ exp

(
−sε+

s2c2
N

8

)
E

[
[exp

(
s
n−1∑
k=1

(Xk −Xk−1)

)]
.

Here the second equality follows from tower rule Lemma 1 and the last inequality follows
from Hoeffding’s inequality. Iterating, we therefore obtain that

P (XN −X0 ≥ ε) ≤ exp

(
−sε+

s2
∑N

k=1 c
2
k

8

)
(2.21)

Plugging in s = 4ε∑N
k=1 c

2
k

in (2.21), we will obtain (2.20). Similarly, we will obtain

P (XN −X0 ≤ ε) ≤ exp

(
−2ε2∑N
k=1 c

2
k

)
. (2.22)

Combining (2.20) and (2.22), we will conclude the lemma.

2.2.9 Concentration for norm

Our last concentration bound is about the norm of Gaussian variables essentially asserts
that the norm of Gaussian random variables concentrate around its mean with overwhelm-
ing probability.

Lemma 5. Let ξ ∼ N(0, σ2Id). The following bound always hold.

P (‖ξ‖ ≥ εσ + E [‖ξ‖]) ≤ exp

(
−ε

2

2

)
for all ε ≥ 0. (2.23)

36

In addition, the following is true

E [‖ξ‖] ≤ σ

√
d+ 1

4
. (2.24)

Proof. See e.g. [86], p.40, Theorem 2.26. It is also well-known that E [‖ξ‖] =
σ
√

2Γ(d+1
2)

Γ(d2)
.

Now by Gautschi’s inequality, see [23], it follows that for all d > 1,

E [‖ξ‖] ≤ σ

√
d+ 1

4
. (2.25)

The proof is complete.

2.2.10 Markov Chain Theory

A Markov chain is a stochastic system such that the future state does not depend on how
the system has arrived at the current state. For example, stochastic iterative algorithms
which we discussed in Chapter 1 can be cast as Markov chains. An important concept in
the Markov chain theory is the idea of drift analysis. For a comprehensive treatment of
Markov chain see e.g. [56].

2.2.11 Drift criterion

Consider a Markov chain {θk}+∞
k=0 where for some set C and some non-negative function

V , the expected value of V (θk) decreasing by a fixed constant whenever θk−1 /∈ C, e.g.

E [V (θk)|θk−1] ≤ V (θk−1)− 1 whenever θk−1 /∈ C. (2.26)

Intuitively, the chain drifts towards set C, meaning that whenever the current iterate lies
outside of C, it tends to move back towards C. Having this drift criterion at hand, we can
establish a bound for the expected value of the first time that the chain {θk}+∞

k=0 lies inside
C. This idea which lies at the heart of our analysis in Chapter 3 is formulated below.

Proposition 1 ([56], Theorem 11.3.4). Given a Markov chain {θk}+∞
k=0 with θk ∈ Rd,

assume that there exist a non-negative function V and a subset C ⊆ Rd such that the drift
criterion (2.26) holds. Denote by τ1 the smallest positive k that θk ∈ C. The following
bound is then true.

E [τ1|θ0] ≤ V (θ0).

37

Proof. Fix a positive integer n. The following identity holds

V (θτ1∧n) = V (θ0) +
n∑
k=1

[V (θk)− V (θk−1)] 1{τ1∧n≥k}.

To ease the notation, we denote F−1 = σ ({θ0 = θ}). We continue

E [V (θτ1∧n)|F−1] = V (θ) +
n∑
k=1

E
[
E
[
(V (θk)− V (θk−1)) 1{τ1∧n≥k}|Fk−1

]
|F−1

]
= V (θ) + E

[(
n∑
k=1

E [V (θk)− V (θk−1)|Fk−1] 1{τ1∧n≥k}

)
|F−1

]
(2.27)

We now upper estimate the quantity inside the bracket in the above equation. Using (2.26),
since θk−1 6∈ C for all 1 ≤ k ≤ τ1, we have

E [V (θk)− V (θk−1)|Fk−1] 1{τ1∧n≥k} ≤ −1{τ1∧n≥k}. (2.28)

Plugging in the estimate (2.28) into (2.27), we obtain

n∑
k=1

E
[
(V (θk)− V (θk−1)) 1{τ1∧n≥k}|Fk−1

]
≤ −E [τ1 ∧ n] .

Therefore we have
E [V (θτ1∧n)|F−1] ≤ V (θ)− E [τ1 ∧ n|F−1] .

Since 0 ≤ E [V (θτ1∧n)|F−1], this gives E [τ1 ∧ n|F−1] ≤ V (θ). By monotone convergence
theorem the claim follows.

38

Chapter 3

A Termination Criterion for SGD for
Binary Classification

In this chapter, the binary linear classification problem is considered where a linear classifier
is sought by using the SGD algorithm to minimize the logistic and hinge expected loss
functions. In our setting, we observe a sequence of data points {(ζk, yk)}+∞

k=0 where yk ∈
{0, 1}. Letting {θk}+∞

k=0 be a sequence generated by the SGD algorithm, we

Terminate when (2yk+1 − 1)ζTk+1θk ≥ 1, (3.1)

Notice that the termination criterion (3.1) implies that the iterate θk is making a large
enough margin with the data point (ζk+1, yk+1). The main results of this chapter [3] are
as follows:

• We will analyze the termination criterion (3.1) by assuming that the data is dis-
tributed according to a Gaussian mixture model. With this assumption, we show
that θk is converging to an optimal classifier as k → +∞ (Lemma 6).

• Denoting by T the iterate where (3.1) occurs, we will first show that T is finite almost
surely (Theorems 6 and 7). Second, provided that the variance σ2 within the vectors
ζk is not too large, we will prove that the expected value of T decays exponentially
with respect to σ2 (Theorem 6).

• We prove that the accuracy of the classifier at termination nearly matches the ac-
curacy of an optimal classifier (Theorem 8). Accuracy is the fraction of predictions

39

that a classification model got right while an optimal classifier minimizes the prob-
ability of misclassification when the sample is drawn from the same distribution as
the training data.

• In Section 3.4, we empirically evaluate the performance of our stopping criterion
versus a baseline competitor. We compare performances on both synthetic (Gaussian
and heavy-tailed t-distribution) as well as real data sets (MNIST [51] and CIFAR-10
[49]). In our experiments, we observe that our test yields relatively accurate classifiers
with small variation across multiple runs.

The outline of this chapter is as follows: First, in Section 3.1, we recall the binary
classification problem from Chapter 1. We also discuss the Gaussian mixture models. Next,
in Section 3.2, we propose a termination criterion for SGD applied to expected logistic and
hinge loss functions (Algorithm 8). Next, in Section 3.3, we provide theoretical evidence
for the effectiveness of our stopping criterion by considering Gaussian mixture models. In
Section 3.4, we conduct numerical experiments on synthetic and real data sets.

3.1 Binary classification problem

We consider the binary classification problem where the data is generated based on a
Gaussian mixture model (GMM) [75, 54, 55]. In a Gaussian mixture model, the data is
generated based on two Gaussian distributions P0 ∼ N(µ1,Σ1) and P1 ∼ N(µ2,Σ2) at
each step according to a Bernoulli distribution. In other words, for some fixed p ∈ (0, 1),
a data point is generated from P0 with probability p and from P1 with probability 1− p.
Here the samples (ζ, y) ∈ Rd×{0, 1}. We consider linear predictors which means that for
a fixed suitable loss function `, we have that `θ(ζ, y) = `(θTζ, y).

We consider logistic and hing loss function (Examples 3 and 4). Our main goal here
is to compute the exact solution to the expected loss functions when GMM is considered,
see Lemma 6. We recall that in logistic regression the loss function is defined as follows

`(x, y) := −yx+ log (1 + exp(x)) . (3.2)

Also, the hinge loss is defined as the following

`(x, y) :=

{
max(1− x, 0) y = 1,

max(1 + x, 0) y = 0.
(3.3)

40

Figure 3.1: Re-centring phase. Here synthetic Gaussian data is generated in R3 and the
green dot denotes the origin.

We thus analyze learning by minimizing an expected loss problem of linear predictors (i.e.,
without bias) of the form

E(ζ,y)∼P [`(ζTθ, y)]

using logistic and hinge regression. Further, we will simplify our argument via two pre-
liminary steps. First, we re-centre the data points using some preliminary samples, i.e.
µ0 = −µ1. We enforce this assumption, with minimal loss in accuracy, by recentering the
data using a preliminary round of sampling. See Fig 3.1. Next because of the homogeneity
assumption (i.e. data is origin-centered), we can simplify the notation by redefining our
training examples to be ξk := (2yk − 1)ζk and then assuming that for all k ≥ 0, yk = 1.
Then the new samples ξ can be drawn from a single, mixed distribution P∗ with mean
µ := µ1 where sampling ξ ∼ P1 occurs with probability 0.5 and −ξ ∼ P0 occurs with
probability 0.5. For simplicity, we assume that Σ1 = Σ2 = σ2Id. Therefore, we obtain that
P∗ ∼ N(µ, σ2Id).

We make this simplification and, from this point on, we analyze the following optimiza-
tion problem:

min
θ∈Rd

f(θ) := Eξ∼P∗ [`(ξTθ, 1)]. (3.4)

Let us remark that the right-hand side of (3.4) is differentiable with respect to θ in either
cases of logistic and hinge loss functions. Indeed, in case of hinge loss, note that for any

41

θk−1, the function ξk 7→ `(ξTk θk−1, 1) is almost surely differentiable as Pξk
(
ξTk θk−1 = 1

)
=

0. Hence, we consider the expectation in (3.4) to be over Rd\
{
ξk : ξTk θk−1 = 1

}
on which

the argument is differentiable with respect to θk−1. In the lemma below, we provide closed-
from formula for the minimizer of the expected loss where P∗ ∼ N(µ, σ2Id). We will use
this result in Chapter 3.

Lemma 6 (Minimizer of the logistic and hinge expected loss). The function f defined
in (3.4) with ` defined in (3.2) or (3.3) has a unique minimizer at θ∗ = ρ∗µ for some
ρ∗ ∈ (0,+∞). Moreover, let r = ρ∗σ2. Then in the case of logistic regression, it holds that

r = 2 and in the case of hinge loss, w = σ
r‖µ‖ −

‖µ‖
σ

satisfies

1√
2π
· σ

‖µ‖
= Φ(w) · exp(1

2
w2). (3.5)

Proof. We consider the logistic and hinge loss case separately.

Logistic loss. We have

f(θ) = Eξ∼N(µ,σ2Id)[−θTξ + log(1 + exp(θTξ))].

Clearly, f is a convex function. We next observe that for any v,θ ∈ Rd with vTθ = 0, it
holds that

vT∇f (θ) = Eξ
[

ξTv

1 + exp(ξTθ)

]
= Eξ[ξTv]Eξ

[
1

1 + exp(ξTθ)

]
= vTµ·Eξ

[
1

1 + exp(ξTθ)

]
.

(3.6)
Here we used that ξTv and ξTθ are independent random variables and the expectation of
the product of two uncorrelated random variables is the product of the expectations. Now

note that for any θ, the quantity Eξ
[

1
1+exp(ξT θ)

]
is strictly positive. Therefore, if vTθ = 0

and ∇f(θ) = 0 then, using (3.6), we obtain that vTµ = 0. Hence, we established that
∇f(θ) = 0 implies θ = ρµ for some ρ ∈ R. On the other hand, using (3.6) again, we
have that ∇f(ρµ) = 0 if and only if µT∇f(ρµ) = 0. To see the only if direction, suppose
µT∇f(ρµ) = 0 and ∇f(ρµ) 6= 0. Then we have ∇f(ρµ) = v where the vector v is nonzero
such that vTµ = 0. By (3.6), we deduce ‖v‖2 = vT∇f(ρµ) = 0 yielding a contradiction.

Next, we consider the function,

g(ρ) := −Eξ
[

µTξ

1 + exp(ρµTξ)

]
.

42

Observe that g(ρ) = µT∇f(ρµ). Therefore, if we can show g(ρ) has a unique zero at
ρ = 2

σ2 =: ρ∗, we can conclude that µT∇f(ρ∗µ) = 0 which, in turn, gives us that ρ∗µ is
the unique solution to ∇f(ρ∗µ) = 0. It remains to show that ρ∗ is the unique zero of g.
By (2.10), z := µTξ ∼ N(‖µ‖2, σ2‖µ‖2). Therefore, this yields

g(ρ) =
1

σ‖µ‖
√

2π

∫ ∞
−∞

z

1 + exp(ρz)
exp

(
−(z − ‖µ‖2)2

2σ2‖µ‖2

)
dz.

Expanding out the term inside the integral, we conclude

z

1 + exp(ρz)
exp

(
−(z − ‖µ‖2)2

2σ2‖µ‖2

)
=

z

2 cosh
(
ρz
2

) exp

(
−ρz

2
− (z − ‖µ‖2)2

2σ2‖µ‖2

)
=

z

2 cosh
(
ρz
2

) exp

(
−z

2 + (ρσ2‖µ‖2 − 2‖µ‖2) z + ‖µ‖4

2σ2‖µ‖2

)
.

(3.7)

When ρ = ρ∗, we observe that equation (3.7) is an odd function of z. Therefore, the
function g(ρ∗) = 0, i.e. the integral of (3.7) is 0. To see that ρ∗ is the only zero of g, we
note that

g′(ρ) = Eξ

[(
µTξ

)2
exp(ρµTξ)

(1 + exp(ρµTξ))2

]
> 0.

Here, g′(ρ) = 0 implies that µTξ = 0 a.s. which is not true. As a result, the function g(ρ)
is strictly decreasing with a zero at ρ∗. The result follows.

Hinge loss. We begin by noting that f is differentiable and it holds that

∇f(θ) = −Eξ[ξ1{ξT θ≤1}].

We next observe that for any v,θ ∈ Rd such that vTθ = 0, it holds that

− vT∇f(θ) = Eξ[vTξ1{ξT θ≤1}] = Eξ[vTξ]Eξ[1{ξT θ≤1}] = vTµ · Eξ[1{ξT θ≤1}]. (3.8)

Here we used that ξTv and ξTθ are independent random variables and the expectation of
the product of two uncorrelated random variables is the product of the expectations. Now
note that for any θ, the quantity Eξ[1{ξT θ≤1}] is strictly positive. Therefore, if vTθ = 0
and ∇f(θ) = 0 then, using (3.8), we obtain that vTµ = 0. Hence, we established that
∇f(θ) = 0 implies θ = ρµ for some ρ ∈ R. On the other hand, using (3.8) again, we
have that ∇f(ρµ) = 0 if and only if µT∇f(ρµ) = 0. To see the only if direction, suppose

43

µT∇f(ρµ) = 0 and ∇f(ρµ) 6= 0. Then we have ∇f(ρµ) = v where the vector v is nonzero
such that vTµ = 0. By (3.8), we deduce ‖v‖2 = vT∇f(ρµ) = 0 yielding a contradiction.

Next, consider the function

g(ρ) = Eξ[µTξ1{ρξTµ≤1}]. (3.9)

Observe that g(ρ) = µT∇f(ρµ). Dominated Convergence Theorem yields that

lim
ρ→+∞

g(ρ) = Eξ[µTξ1{µT ξ≤0}], lim
ρ→−∞

g(ρ) = Eξ[µTξ1{µT ξ≥0}].

It, therefore, holds that limρ→+∞ g(ρ) < 0 and limρ→−∞ g(ρ) > 0. Since g(0) = Eξ[µTξ] >
0, it remains to show that g is a strictly decreasing function. To this end, we note that for
any fixed ρ1 < ρ2, it holds that

µTξ
(
1{ρ1µT ξ≤1} − 1{ρ2µT ξ≤1}

)
≥ 0 for any value of ξ. (3.10)

Indeed, if µTξ ≥ 0, then ρ1µ
Tξ ≤ ρ2µ

Tξ; thus ensuring 1{ρ1µT ξ≤1} ≥ 1{ρ2µT ξ≤1}. The case
µTξ ≤ 0 follows similarly. We, therefore, conclude that g(ρ1) ≥ g(ρ2). Finally, note that
g(ρ1) = g(ρ2), implies that (3.10) holds with equality, almost surely. Clearly, this yields a
contradiction. It remains to show (3.5). By (3.9), we have that g′(ρ∗) = Eξ[µTξ1{µT ξ≤ 1

ρ∗ }
].

Using (2.10) and (2.12), we obtain that

Φ

(
1− ρ∗‖µ‖2

ρ∗σ‖µ‖

)
· exp

(
1

2
·
(

1− ρ∗‖µ‖2

ρ∗σ‖µ‖

)2
)

=
1√
2π
· σ

‖µ‖
. (3.11)

The result immediately follows.

We call a classifier, θ∗, optimal if it minimizes the probability of misclassification i.e.

θ∗ ∈ argmax
θ

P
(
ζTθ > 0 | ζ ∼ P1

)
, (3.12)

We will use SGD with constant step-size to solve (3.4). Therefore, at each iteration, we
query ξk ∼ P∗ and updates the iterate based only on this sample as follows.

θk = θk−1 − α∇θ`(ξTk θk−1, 1). (3.13)

Here α > 0 is the algorithm’s constant step-size. As explained in Chapter 2, with constant
step-size, SGD only converges to a neighborhood of the minimizer. However, since the
condition (3.12) is scale-invariant, for the task of binary classification one does not require
convergence to a minimizer in order to obtain good classifiers and therefore constant step-
size is favorable as it also eliminates the unnecessary effort for scheduling the learning
rate.

44

3.2 Stopping criterion for SGD

Ordinarily in deterministic first-order optimization methods, one terminates when the norm
of the gradient falls below a predefined tolerance. In the case of SGD for binary classifica-
tion, this is unsuitable for two reasons. First, the true gradient is generally inaccessible to
the algorithm or it is computationally expensive to generate even a sufficient approxima-
tion of the gradient. Second, even if the computations were possible, an ‘optimal’ classifier
θ for the classification task is not necessarily the minimizer of the loss function since the
loss function is merely a surrogate for correct classification of the data. Note that, several
works [16, 25, 24, 60, 61] have suggested an alternative for the stochastic setting– terminate
when P(f(θ)−min f ≤ ε) ≥ 1− p for some chosen small ε > 0 and probability p.

For homogeneous linear classifiers applied to the hinge loss function, it has been shown
([57]) that the homotopic sub-gradient method converges to a maximal margin solution on
linearly separable data. In ([58]), SGD applied to the logistic loss on linearly separable
data will produce a sequence of θk that diverge to infinity, but when normalized also
converge to the L2-max margin solution. Little is known about the behavior of constant
step-size SGD when the linear separability assumption on the data is removed (see, e.g.,
[90]). The assumption of zero-noise in our context would mean that P0, P1 each reduce to
a single point, a trivial example of separable data. Since there is often noise in the sample
procedure, the data may not necessarily be linearly separable. Understanding the behavior
of SGD in the presence of noise is, therefore, important.

3.2.1 Stopping criterion

Even though the binary classifier is scale-free, the logistic and hinge regression loss is not.
It transitions from flat to unit-slope when ξTθ = O(1). This suggests that when θ reaches
this region, a classification has been made. Motivated by this, we propose the following
termination test: Sample ξ̂k ∼ P∗ and

Terminate when ξ̂Tk θk ≥ 1. (3.14)

However, the termination test (3.14) requires an additional sample and an additional inner
product per iteration and, as such, imposes a small additional cost. To reduce this cost,
in all our numerical experiments (Sec. 3.4), we use the test 3.1 which imposes no compu-
tational overhead as SGD already computes ξTk+1θk. We rewrite the termination criterion
(3.1) below.

Terminate when ξTk+1θk ≥ 1, (3.15)

45

After testing both (3.14) and (3.15), we found that compared to the variation between suc-
cessive randomized trials, their behaviors in numerical experiments were indistinguishable.

Notice that in support vector machine (SVM) theory [79], the scaling of the optimizing
classifier is constrained so that the margin between classes is O(1). Algorithm 8 describes
the termination criteria (3.14) as applied with the update rule governed by SGD.

Algorithm 8: SGD with termination test

initialize: θ0 ∈ Rd, α > 0, ξ̂0 ∼ P∗, k = 0
while ξ̂Tk θk < 1

Pick data point ξk+1 ∼ P∗.
Compute ∇θ`(ξTk+1θk, 1)
Update θ by setting

θk+1 ← θk − α∇θ`(ξTk+1θk, 1) (3.16)

Sample ξ̂k+1 ∼ P∗
k ← k + 1

end

Assumption 1. [The distribution P∗ is Gaussian] Our theoretical analysis makes a fur-
ther assumption on the distribution P∗. For the rest of this section and Sec. 3.3, P0 =
N(µ0, σ

2Id), P1 = N(µ1, σ
2Id), and therefore P∗ = N(µ, σ2Id), a Gaussian with unknown

mean µ (= µ1 = −µ0) and variance σ2Id. This assumption allows for non-separable data
provided σ > 0.

Using Lemma 6, we give an exact characterization of the set of optimal classifiers (3.12)
under Assumption 1. Note that (3.12) is rewritten as follows in terms of distribution P∗.

θ∗ ∈ argmax
θ

Pξ∼P∗
(
ξTθ > 0

)
, (3.17)

Lemma 7. Under Assumption 1, the set of optimal classifier defined in (3.17) equals to
{λθ∗ : λ > 0}.

Proof. Observe that the following simple fact holds.

Pξ̂
(
ξ̂Tθ ≥ t

)
= Φc

(
µTθ − t
σ‖θ‖

)
, for all θ ∈ Rd, t ∈ R and ξ̂ ∼ N(µ, σ2Id). (3.18)

46

Therefore we have that Pξ(ξTθ > 0) = Φc
(
‖µ‖
σ
· cos(wθ)

)
where ξ ∼ N(µ, σ2Id) and wθ

denotes the angle between the two vectors θ and µ. On the other hand a classifier θ is
optimal if and only if θ = ρµ for some ρ > 0, i.e. cos(wθ) = 0. The proof is complete after
noting that Φ is an increasing function.

3.3 Analysis of stopping criterion

In this section, we present our analysis of the stopping criterion (3.14) proposed in Sec-
tion 3.2. Here we introduce the first iteration at which the stopping criterion is satisfied,
denoted by the random variable

T := inf
{
k > 0 : ξ̂Tk θk ≥ 1

}
. (3.19)

By viewing the stopping criterion through the lens of stopping times, we are able to utilize
probability theory to analyze the classifier at termination θT . Throughout this section, we
work with the following filtration.

F0 = σ(θ0) and Fk := σ(θ0, ξ̂1, ξ1, ξ̂2, ξ2, . . . , ξ̂k, ξk), for all k ≥ 1 (3.20)

Clearly, the random variable θk is Fk-measurable. Our theoretical results are structured
as follows.

First, we show that SGD with our proposed termination test indeed stops after a finite
number of iterations. To do so, we provide a bound on E[T], i.e. the expected number
of iterations before termination. Yet, despite this guarantee, the resulting classifier at ter-
mination need not be optimal. Hence, our second result establishes that both θT and θ∗

point in approximately the same direction; thereby ensuring that the classifier at termina-
tion, θT , is nearly optimal. We remark the worst-case bounds established throughout these
sections are conservative; we observe in our experiments that the termination test stops
sooner while also yielding good classification properties for Gaussian and non-Gaussian
data sets.

To bound E[T], we identify subsets of Rd for which when an iterate enters the set,
termination (i.e. (3.14)) is highly likely to succeed. Such sets C, we call target sets.
Precisely, for any θ ∈ C and ξ̂ ∼ N(µ, σ2Id), the probability of terminating is at least
δ > 0,

∃ δ > 0 such that Pξ̂
(
ξ̂Tθ ≥ 1

)
≥ δ. (3.21)

47

We guarantee the iterates generated by SGD enter the target set by way of a drift function,
V : Rd → [0,+∞). A drift function, on average, decreases each time the iterate fails to
live in the target set. In other words, conditioned on the past iterates the following holds

(E[V (θk)|Fk−1]− V (θk−1)])1{θk−1 6∈C} ≤ −b1{θk−1 6∈C} (3.22)

for the target set C and some positive constant b. Loosely speaking, the iterates in expec-
tation drift towards the target set. Target sets and drift functions in the context of drift
analysis are well-studied in stochastic processes [56].

A natural choice for the target set is a neighborhood of the unique optimum solution
of (3.4), θ∗, with the drift function ‖θ − θ∗‖2. Indeed, it is known the iterates of SGD
converge to a neighborhood of θ∗ ([70]). However, an iterate may be nearly optimal well
before it enters this neighborhood. In fact when σ � ‖µ‖, we identify a target set where
satisfying the stopping criterion occurs at least half the time and does not require the
iterate to be near θ∗. We summarize below our target set and drift function.

1. Under the assumption σ ≤ c‖µ‖ for some numerical constant c, which we call the
Low Variance Regime, we define the target set to be

C = {θ : µTθ ≥ 1}, (3.23)

and the drift function by

V (θ) =
(
M − µTθ

)2
, (3.24)

for some constant M , to be determined later.

2. Under the assumption c‖µ‖ ≤ σ where the constant c is the same as in 1 above,
which we call the High Variance Regime, we define the target set to be

C = {θ : |ρσ2 − 1| < 1 and σ‖θ̃‖ ≤ c′}, (3.25)

for some numerical constant c′. Here, we orthogonally decompose θ = ρµ + θ̃ with
µT θ̃ = 0. We use the following drift function

V (θ) =
1

2α
‖θ − θ∗‖2. (3.26)

In Section 3.3.1 (resp. Section 3.3.2) we show that the pairs (C, V) defined in (3.23) and
(3.24) (resp. (3.25) and (3.26)) satisfies the drift equation (3.22) for any step-size α (resp.
for any sufficiently small step-size α).

48

As mentioned above, the target set C attracts the iterates generated by SGD. Each time
an iterate enters C, the stopping criterion holds with probability at least δ > 0. Provided
the iterates enters the set C an infinite number of times, then after waiting a geometrically
distributed many iterations, we expect the following condition to hold:

ξ̂Tk θk ≥ 1 and θk ∈ C. (3.27)

The SGD algorithm does not know the value of θ∗; therefore at each iteration, it cannot
check whether the condition (3.27) occurs. Nevertheless, we are able to compute a bound
on the average waiting time until (3.27) holds and the first time (3.27) holds is always an
upper bound on T , our stopping criterion. This is summarized in Lemma 8. Precisely, if
we denote by

TC := inf{k > 0 : ξ̂Tk θk ≥ 1 and θk ∈ C}, (3.28)

then T ≤ TC , thus yielding E[T] ≤ E[TC]. We bound E[TC] by way of stopping times τm
defined as the mth time the iterates of SGD enters C. Formally for any sequence {θk}∞k=0

generated by SGD starting at θ0 = 0, we set

τ1 := inf{k > 0 : θk ∈ C} (3.29)

and inductively, for m ≥ 2,

τm := inf{k > τm−1 : θk ∈ C}. (3.30)

The following lemma formalizes the discussion above.

Lemma 8. Let {θk}∞k=0 be a sequence generated by SGD such that θ0 = 0 and suppose
that E[τm] < +∞ for all m ≥ 1. Then the following holds

E[T] ≤ E[TC] ≤
∞∑
m=1

E[τm](1− δ)m−1, (3.31)

where δ satisfies (3.21).

Proof. We first show that
E
[
1{TC≥τm}

]
≤ (1− δ)m−1. (3.32)

Define the σ-algebra F ′ = σ(θ0, ξ1, ξ2, · · ·). From the independence between σ(ξ̂k)’s and
F ′ and also τi < +∞ a.s. for all i ≥ 1, the following is obtained:

E
[
1{TC≥τm}|F ′

]
= E

[
1{ξ̂Tτ1θτ1<1} · · · 1{ξ̂Tτm−1

θτm−1<1}|F
′
]

=
m−1∏
i=1

E
[
1{ξ̂Tτiθτi<1}|F

′
]

≤ (1− δ)m−1.

49

By taking expectations, we conclude (3.32) holds. Now since E[1{TC=+∞}] ≤ E[1{TC≥τm}]
for all m ≥ 1, it follows from (3.32) that TC <∞ a.s. We next observe that

E
[
TC1{TC=τm}|F ′

]
= E

[
τm1{TC=τm}|F ′

]
≤ τmE

[
1{ξ̂Tτ1θτ1<1} · · · 1{ξ̂Tτm−1

θτm−1<1}|F
′
]

= τm

m−1∏
i=1

E
[
1{ξ̂Tτiθτi<1}|F

′
]

≤ τm(1− δ)m−1.

Taking expectations yields E
[
TC1{TC=τm}

]
≤ E [τm] (1 − δ)m−1 for all m ≥ 1. Now since

TC <∞ a.s. we get 1 =
∑+∞

m=1 1{TC=τm} a.s. This yields that

E[T] ≤ E[TC] =
∞∑
m=1

E[TC1{TC=τm}] ≤
∞∑
m=1

E[τm](1− δ)m−1.

The proof is complete.

Now, in view of Lemma 8, it suffices to bound E[τm] by a sequence which can not grow
too fast in m. Indeed, we show that (3.22) implies the following

E[τm] = O(m). (3.33)

Theorem 6. (Low Regime) Let {θk}∞k=0 be a sequence generated by Algorithm 8 such that
θ0 = 0. There exists positive constants c, b and M such that provided σ ≤ c‖µ‖ the
following holds.

E[T] ≤ 2 +
2M2

b
·
(

Φc

(
‖µ‖
σ

)
+
ασ3

‖µ‖
· 1√

2π
exp

(
−‖µ‖

2

2σ2

)
+ 1

)
. (3.34)

Here the constants c, b and M are defined as follows:

1. For the logistic loss,

c = 0.33, b = α‖µ‖2, and M = 501 + 640α‖µ‖2. (3.35)

2. For the hinge loss,

c = 1.25, b = α‖µ‖2, and M = 501 + 782α‖µ‖2. (3.36)

50

Therefore, on relatively separable data (i.e. in the low variance regime), the expected
waiting time before termination exponentially decreases as the data becomes more separa-
ble (i.e. σ → 0). We prove Theorem 6 in Section 3.3.3. The next theorem shows that the
expected value of the stopping time is finite provided that the σ > c‖µ‖ and the step-size
is small enough.

Theorem 7. (High Regime) Suppose that σ > c‖µ‖ where c is defined in (3.35) and (3.36).
Then there exists a universal positive constant A such that if the step-size α satisfies

α ≤ A · ‖µ‖2

σ2(‖µ‖2 + dσ2)
, (3.37)

then it holds that E[T] < +∞. In particular, the termination criterion occurs almost
surely.

It remains to determine whether the classifier at termination θT , has desirable accuracy.
The scale-invariance of optimal classifiers means a classifier yields a lower probability of
misclassification the closer its direction aligns with any optimal classifier. In view of this,
it suffices to bound the absolute value of the inner product of any unit vector that is
perpendicular to θ∗, v with θT . The following theorem establishes a bound on E[|vTθT |].

Theorem 8. Let θ0 = 0. Fix any unit vector v ∈ Rd such that vTθ∗ = 0. Then the
following estimate holds

E[|vTθT |] ≤ σα

√
2

π
E[T]. (3.38)

In the low variance regime by combining Theorem 6 and 8 for a fixed step-size α it holds
that E[|vTθ|] ≤ O(σ). Thus, the more separable the data set is, the more accurate the
classifier θT is on average. In the high variance regime, Theorem 7 yields a very loose bound.
Yet despite this, our numerical result in Section 3.4 show promising accuracy of (3.14) in
this case as well. We conjecture that the inequality can be significantly strengthened.

3.3.1 Low regime, proof of Theorem 6

In this section, we investigate the low variance regime. We consider the target set C and
function V defined in (3.23) and (3.24) respectively, i.e.

C = {θ : µTθ ≥ 1}, V (θ) =
(
M − µTθ

)2
, (3.39)

where M is a constant to be determined. Next lemma shows that the drift equation (3.22)
holds for the pair (C, V).

51

Lemma 9 (Drift equation). Consider the SGD algorithm and let the set C and the function
V be as in (3.39). Define the constants c, b,M as in (3.35) and (3.36). Then provided that
σ ≤ c‖µ‖, the function V is a drift function with respect to the set C and it satisfies the
drift equation (3.22) with the constant b.

Proof. For simplicity we write F−1 := σ ({θ0 = θ}). Fix k ≥ 1 and write ξk = µ + σψk
with ψk ∼ N(0, Id). Denote ψk := µTψk

‖µ‖ , thus ψk ∼ N(0, 1). In order to show that the

function V satisfies the drift equation (3.22), it suffices to assume θk−1 6∈ C; in particular,
this means θTk−1µ < 1.

Logistic loss. By expanding out the term using the update formula, we get the following

V (θk) = V (θk−1)− 2αµTξk(M − µTθk−1)

1 + exp(ξTk θk−1)
+

α2(µTξk)
2

(1 + exp(ξTk θk−1))2
. (3.40)

We have

Eξk

[
µTξk

1 + exp(ξTk θk−1)
|Fk−1

]
= ‖µ‖2Eξk

[
1

1 + exp(ξTk θk−1)
|Fk−1

]
+ σ‖µ‖Eξk,ψk

[
ψk

1 + exp(ξTk θk−1)
|Fk−1

]
≥ ‖µ‖2Eξk

[
1

1 + exp(ξTk θk−1)
|Fk−1

]
+ σ‖µ‖Eψk

[
ψk1{ψk<0}

]
= ‖µ‖2Eξk

[
1

1 + exp(ξTk θk−1)

(
1{µT θk−1≥ξTk θk−1} + 1{µT θk−1<ξ

T
k θk−1}

)
|Fk−1

]
− σ‖µ‖

√
1

2π

≥ ‖µ‖2

1 + exp(µTθk−1)
Eξk

[
1{µT θk−1≥ξTk θk−1}|Fk−1

]
− σ‖µ‖

√
1

2π

≥ ‖µ‖2

2(1 + e)
− σ‖µ‖

√
1

2π

≥ 0.001‖µ‖2.

Here the first inequality follows from E[X] ≥ E[X1{X<0}] and 1 + exp(ξTk θk−1) ≥ 1, the
second equation from (2.13), and the second to last from the observation that for any
X normally distributed, P(E[X] ≥ X) = 1/2 and ξTk θk−1 ∼ N(µTθk−1, σ

2 ‖θk−1‖2) and
µTθk−1 < 1. The last inequality uses the assumption σ ≤ 0.33 ‖µ‖. By taking the
conditional expectations of (3.40) combined with the above sequence of inequalities, we

52

deduce the following bound

E [V (θk)− V (θk−1)|Fk−1]

= Eξk

[
−2αµTξk(M − µTθk−1)

1 + exp(ξTk θk−1)
|Fk−1

]
+ Eξk

[
α2(µTξk)

2

(1 + exp(ξTk θk−1))2
|Fk−1

]
≤ −0.002(M − 1)α‖µ‖2 + α2‖µ‖2

(
‖µ‖2 + σ2

)
= α‖µ‖2

[
−0.002(M − 1) + α

(
‖µ‖2 + σ2

)]
.

Here the first inequality follows from µTθk−1 < 1 and by upper bounding (µT ξk)2

(1+exp(ξTk θk−1))2

with (µTξk)
2 and then applying (2.13). A quick computation after plugging in the value of

M and the bound σ ≤ 0.33‖µ‖ from (3.35) yields the drift equation (3.22) with b = α‖µ‖2.

Hinge loss. By expanding out the term using the update formula, we get the following

V (θk) = V (θk−1)− 2α(M − µTθk−1)µTξk1{ξTk θk−1≤1} + α2(µTξk)
21{ξTk θk−1≤1}. (3.41)

We have

Eξk [1{ξTk θk−1≤1}µ
Tξk|Fk−1] = ‖µ‖2Eξk [1{ξTk θk−1≤1}|Fk−1] + σ‖µ‖Eξk,ψk [1{ξTk θk−1≤1}ψk|Fk−1]

≥ 1

2
‖µ‖2 + σ‖µ‖Eψk [ψk1{ψk<0}]

=
1

2
‖µ‖2 − σ‖µ‖

√
1

2π

≥ 0.001‖µ‖2.

Here the first inequality follows from 1{ξTk θk−1≤µT θk−1} ≤ 1{ξTk θk−1≤1} and Eξk [1{ξTk θk−1≤µT θk−1}] =
1
2
, and the second from (2.13). The last inequality uses the assumption σ ≤ 1.25‖µ‖. By

taking conditional expectations of (3.41) combined with the above sequence of inequalities,
we deduce the bound

E[V (θk)− V (θk−1)|Fk−1] = Eξk
[
−2α(M − µTθk−1)1{ξTk θk−1≤1}|Fk−1

]
+ Eξk

[
α2(µTξk)

21{ξTk θk−1≤1}|Fk−1

]
≤ α‖µ‖2

[
−0.002(M − 1) + α

(
‖µ‖2 + σ2

)]
.

A quick computation after plugging in the value of M and the bound σ ≤ 1.25‖µ‖ yields
the desired result.

53

Recall, the stopping times τm denote the mth time that the SGD iterates enter the
target set C. We show that E[τm] = O(m). To do so, we begin by stating a lemma that
gives a bound on the stopping time τ̃1 starting from any θ0. In other words, for an arbitrary
starting θ0, we define

τ̃1 := inf{k > 0 : θk ∈ C}.

We now establish upper bounds on E[τm] for m ≥ 1 in the following proposition.

Proposition 2. (Bound on E[τm]) Let θ0 = 0 and assume the notation and assumptions
of Lemma 9 hold. The following is true for all m ≥ 1

E[τm] ≤ (m− 1)

(
1 +

M2

b
· Φc

(
‖µ‖
σ

)
+
ασ3M2

‖µ‖b
· 1√

2π
exp

(
−‖µ‖

2

2σ2

))
+
M2

b
. (3.42)

Proof. First, the result for m = 1 follows immediately by combining Lemma 9 and Propo-
sition 1 with θ0 = 0. We now assume that τm−1 <∞ a.s. for some m ≥ 2. Fix an integer
n ≥ 1. We decompose the space to yield the following bounds

E
[
(τm − τm−1)∧n|Fτm−1+1

]
= E

[
((τm − τm−1) ∧ n)|Fτm−1+1

]
1{µT θτm−1+1≥1}

+ E
[
((τm − τm−1) ∧ n)|Fτm−1+1

]
1{µT θτm−1+1<1}

= 1{µT θτm−1+1≥1} + E
[
((τm − τm−1) ∧ n)|Fτm−1+1

]
1{µT θτm−1+1<1}

= 1{µT θτm−1+1≥1} +
∞∑
i=1

E
[
(τm − τm−1) ∧ n|Fτm−1+1

]
1{i−1<1−µT θτm−1+1≤i}

= 1 +
∞∑
i=1

E
[
τ̃1 ∧ n|θ0 = θτm−1+1

]
1{i−1<1−µT θτm−1+1≤i}.

(3.43)
Here the first equality follows because ((τm − τm−1) ∧ n)1{µT θτm−1+1≥1} = 1{µT θτm−1+1≥1}
and the last equality by the strong Markov property. We consider the logistic and hinge
loss case separately to show that the following is true

1{i−1<1−µT θτm−1+1≤i} ≤ 1{µT ξτm−1+1<
1−i
α
}. (3.44)

For clarity, in the next few inequalities, we write 1{.} instead of 1{.}. In case of logistic

54

loss, for each i ≥ 1, we observe the bound

1{i− 1 < 1− µTθτm−1+1 ≤ i} ≤ 1{i− 1 < 1− µTθτm−1+1}

= 1

{
i− 1 < 1− µTθτm−1 −

αµTξτm−1+1

1 + exp(ξTτm−1+1θτm−1)

}

≤ 1

{
i− 1 < −

αµTξτm−1+1

1 + exp(ξTτm−1+1θτm−1)

}
≤ 1

{
i− 1 < −αµTξτm−1+1

}
,

where the second inequality follows because µTθτm−1 ≥ 1 and the last inequality because
−αµTξτm−1+1 is positive since i− 1 ≥ 0.

In case of hinge loss, for each i ≥ 1, similar as above, we observe the bound

1
{
i− 1 < 1− µTθτm−1+1 ≤ i

}
≤ 1

{
i− 1 < 1− µTθτm−1+1

}
≤ 1

{
i− 1 < 1− µTθτm−1 − αµTξτm−1+11{ξTτm−1+1θτm−1≤1}

}
≤ 1

{
i− 1 < −αµTξτm−1+11{ξTτm−1+1θτm−1≤1}

}
= 1

{
i− 1 < −αµTξτm−1+1

}
.

(3.45)
Therefore we have shown that (3.44) holds. Setting θ0 = θτm−1+1 , by Proposition 1 for
each i ≥ 1, we deduce

E
[
τ̃1 ∧ n|θ0 = θτm−1+1

]
1{i−1<1−µT θτm−1+1≤i} ≤

(M − µTθτm−1+1)2

b
1{i−1<1−µT θτm−1+1≤i}

≤ (M + i− 1)2

b
1{µT ξτm−1+1<

1−i
α
}.

(3.46)

55

Finally we observe that

E
[
1{µT ξτm−1+1<

1−i
α
}

]
= E

[
∞∑
k=1

1{µT ξk+1<
1−i
α
}1{τm−1=k}

]

=
∞∑
k=1

E
[
1{µT ξk+1<

1−i
α
}

]
E
[
1{τm−1=k}

]
= Φ

(1−i
α
− ‖µ‖2

σ‖µ‖

) ∞∑
k=1

E
[
1{τm−1=k}

]
= Φ

(1−i
α
− ‖µ‖2

σ‖µ‖

)
.

(3.47)

The second equality is by independence and the third equality because µTξk+1 ∼ N(‖µ‖2 , σ2 ‖µ‖2).
By combining (3.43), (3.46), and (3.47), we obtain the following

E
[
(τm−τm−1) ∧ n

]
≤ 1 +

M2

b
· Φ
(
−‖µ‖

σ

)
+
∞∑
i=2

(M + i− 1)2

b
· Φ
(1−i

α
− ‖µ‖2

σ‖µ‖

)
= 1 +

M2

b
· Φc

(
‖µ‖
σ

)
+
∞∑
i=2

(M + i− 1)2

b
· Φc

(‖µ‖2 + i−1
α

σ‖µ‖

)

≤ 1 +
M2

b
· Φc

(
‖µ‖
σ

)
+
ασ‖µ‖
b
√

2π
·
∞∑
i=2

(M + i− 1)2

α‖µ‖2 + i− 1
· exp

(
−1

2

(‖µ‖2 + i−1
α

σ‖µ‖

)2
)
,

(3.48)
where we used the inequality Φc(t) < 1

t
√

2π
exp(− t2

2
) for all t > 0. Next, note that

M+i−1
α‖µ‖2+i−1

≤ M
α‖µ‖2 holds for all i ≥ 2. Using this we obtain the following bound

∞∑
i=2

(M + i− 1)2

α‖µ‖2 + i− 1
· exp

(
−1

2

(‖µ‖2 + i−1
α

σ‖µ‖

)2
)

≤ σM2

α‖µ‖3
·
∞∑
i=2

α‖µ‖2 + i− 1

ασ‖µ‖
· exp

(
−1

2

(
α‖µ‖2 + i− 1

ασ‖µ‖

)2
)

≤ σM2

α‖µ‖3
· ασ‖µ‖ ·

∫ +∞

‖µ‖
σ

t exp

(
−t

2

2

)
dt

=
σ2M2

‖µ‖2
· exp

(
−‖µ‖

2

2σ2

)
.

(3.49)

56

Here we have used that t 7→ t exp(− t2

2
) is decreasing over [1,+∞). Combining (3.48) and

(3.49), we obtain that

E [(τm − τm−1) ∧ n] ≤ 1 +
M2

b
· Φc

(
‖µ‖
σ

)
+
ασ3M2

‖µ‖b
· 1√

2π
exp

(
−‖µ‖

2

2σ2

)
. (3.50)

Taking the limit as n→ +∞, we observe that

E[τm] ≤ 1 +
M2

b
· Φc

(
‖µ‖
σ

)
+
ασ3M2

‖µ‖b
· 1√

2π
exp

(
−‖µ‖

2

2σ2

)
+ E[τm−1].

We then iterate the above inequality yielding

E[τm] ≤ (m− 1)

(
1 +

M2

b
· Φc

(
‖µ‖
σ

)
+
ασ3M2

‖µ‖b
· 1√

2π
exp

(
−‖µ‖

2

2σ2

))
+ E[τ1].

The result follows by plugging in the bound from Proposition 1 for the base case m = 1.

We are now ready to prove Theorem 6.

Proof of Theorem 6. In order to simplify the subsequent argument, we define the quantity,

M ′ := 1 +
M2

b
· Φc

(
‖µ‖
σ

)
+
ασ3M2

‖µ‖b
· 1√

2π
exp

(
−‖µ‖

2

2σ2

)
.

It is easy to see that

Pξ̂∼N(µ,σ2Id)

(
ξ̂Tθ ≥ 1

)
≥ 1

2
for any θ ∈ C.

Therefore δ = 1
2

satisfies (3.21). By Proposition 2 with Lemma 8, we conclude that

E[T] ≤ E[TC] =
∞∑
m=1

E[TC1{TC=τm}] ≤
∞∑
m=1

E[τm]

2m−1
≤

∞∑
m=1

(m− 1)M ′ + M2

b

2m−1
= 2M ′ +

2M2

b
.

57

3.3.2 High regime, proof of Theorem 7

In this section, we consider the high variance regime. We consider the target set C and
the function V defined in (3.25) and (3.26), respectively, i.e.

C :=
{
θ : |ρ− ρ∗| < 1

2
ρ∗ and σ‖θ̃‖ ≤ c′

}
and V (θ) :=

1

2α
‖θ − θ∗‖2, (3.51)

where the minimizer θ∗ = ρ∗µ is defined in Lemma 6 and the constant c′ is to be deter-
mined. We first aim to show that V is a drift function with respect to the set C under
the high variance regime assumption, meaning σ ≥ c‖µ‖. We next state a standard SGD
convergence result applied to the logistic and hinge loss functions. We need the following
technical lemma below.

Lemma 10. Consider the following convex optimization problem

min
θ
f(θ) (3.52)

Assume that θ∗ denotes the unique minimizer of f in (3.52) and the unbiased stochastic
gradients gk satisfy E [‖gk‖2] ≤ B. Let θ0 ∈ Rd. The sequence {θk}∞k=0 generated by SGD
with fixed step-sizes α satisfies the following for all k ≥ 1,

f(θk−1)− f(θ∗) ≤ 1

2α

(
‖θk−1 − θ∗‖2 − E

[
‖θk − θ∗‖2 |Fk−1

])
+
α

2
·B. (3.53)

Proof. We begin by observing that

gk :=
1

α
(θk−1 − θk)

and also
E [gk|Fk−1] = ∇θf(θk−1).

By convexity of the function f , we have the following

‖θk − θ∗‖2 = ‖θk−1 − θ∗‖2 − 2αgTk (θk−1 − θ∗) + α2 ‖gk‖2

= ‖θk−1 − θ∗‖2 − 2α(gk − E [gk|Fk−1])T (θk−1 − θ∗)− 2αE [gk|Fk−1]T (θk−1 − θ∗)
+ α2 ‖gk‖2

≤ ‖θk−1 − θ∗‖2 − 2α(gk − E [gk|Fk−1])T (θk−1 − θ∗)− 2α(f(θk−1)− f(θ∗))

+ α2 ‖gk‖2 .

58

By taking conditional expectations with respect to Fk−1 and rearranging the above in-
equality, we obtain that

f(θk−1)− f(θ∗) ≤ 1

2α

(
‖θk−1 − θ∗‖2 − E

[
‖θk − θ∗‖2 |Fk−1

])
+
α

2
E
[
‖gk‖2

]
. (3.54)

The result follows immediately.

By Lemma 10 for each k ≥ 1, we deduce

E[V (θk)|Fk−1]− V (θk−1) ≤ − (f(θk−1)− f(θ∗)) +
α

2
(‖µ‖2 + dσ2). (3.55)

Therefore, in order to show that the pair (C, V) in (3.51) satisfies the drift equation (3.22),
it suffices to lower bound the quantity f(θk−1)− f(θ∗) whenever θk−1 6∈ C. To do so, we
orthogonally decompose θk−1 = ρk−1µ+ θ̃k−1, i.e. µT θ̃k−1 = 0 and ρk−1 ∈ R and write

f(θk−1)− f(θ∗) = f(θk−1)− f(ρk−1µ)︸ ︷︷ ︸
(a)

+ f(ρk−1µ)− f(θ∗)︸ ︷︷ ︸
(b)

.
(3.56)

The assumption θk−1 6∈ C yields that either σ‖θ̃k−1‖ ≥ c′ or |ρk−1 − ρ∗| ≥ 1
2
ρ∗. In Lemma

11 (resp. 13), we show that (a) (resp. (b)) in (3.56) are both non-negative and they are
lower bounded by some positive constant provided that σ‖θ̃k−1‖ ≥ c′ and |ρk−1−ρ∗| ≤ 1

2
ρ∗

(resp. |ρk−1 − ρ∗| ≥ 1
2
ρ∗).

Lemma 11. (Lower bound for (a) in (3.56)) Fix θ ∈ Rd and orthogonally decompose
θ = ρµ+ θ̃ where µT θ̃ = 0 and ρ ∈ R. Then the following are true

1. f(θ)− f(ρµ) ≥ 0.

2. f(θ) − f(ρµ) ≥ 1 provided that |ρ − ρ∗| ≤ 1
2
ρ∗, σ‖θ̃‖ ≥ c′ and σ ≥ c‖µ‖ where c is

defined in (3.35) and (3.36). Here ρ∗ is defined in Lemma 6 and the constant c′ is
defined by 436 and 8 + 10ρ∗σ2 for the logistic and hinge loss respectively.

Proof. We consider the logistic and hinge loss separately.

Logistic loss. The two normal random variables, θ̃Tξ ∼ N(0, σ2‖θ̃‖2) and µTξ ∼
N(‖µ‖2, σ2‖µ‖2), are independent by (2.11). Since we have

Eξ[log(exp(−θ̃Tξ))] = Eξ[log(exp(θ̃Tξ))] = 0,

59

it holds that

f(θ) = Eξ
[
log
(
1 + exp(−θTξ)

)]
= Eξ

[
log
(

1 + exp(−θ̃Tξ) exp(−ρµTξ)
)]

= Eξ
[
log
(

exp(θ̃Tξ) + exp(−ρµTξ)
)]

= Eξ
[
log
(

exp(−θ̃Tξ) + exp(−ρµTξ)
)]
,

where the last equality is true because θ̃Tξ ∼ −θ̃Tξ. Therefore we obtain

Eξ
[
log
(
1 + exp(−θTξ)

)]
=

1

2
Eξ
[
log
(

exp(θ̃Tξ) + exp(−ρµTξ)
)]

+
1

2
Eξ
[
log
(

exp(−θ̃Tξ) + exp(−ρµTξ)
)]

=
1

2
Eξ
[
log
(

(exp(θ̃Tξ) + exp(−ρµTξ))(exp(−θ̃Tξ) + exp(−ρµTξ))
)]

=
1

2
Eξ
[
log
(

1 + exp(−θ̃Tξ − ρµTξ) + exp(θ̃Tξ − ρµTξ) + exp(−2ρµTξ)
)]
.

By the equality exp(θ̃Tξ) + exp(−θ̃Tξ) = 2 + 4 sinh2(θ̃
T ξ
2

), we have

Eξ
[
log
(
1 + exp(−θTξ)

)]
=

1

2
Eξ
[
log
(

1 + 2 exp(−ρµTξ) + exp(−2ρµTξ) + 4 sinh2(θ̃
T ξ
2

) exp(−ρµTξ)
)]
.

Therefore, we have

2Eξ
[
log

(
1 + exp(−θTξ)

1 + exp(−ρµTξ)

)]
= 2Eξ

[
log(1 + exp(−θTξ))

]
− Eξ

[
log
(
1 + exp(−ρµTξ)

)2
]

= Eξ

[
log

(
1 +

4 sinh2(θ̃
T ξ
2

) exp(−ρµTξ)

(1 + exp(−ρµTξ))2

)]
≥ 0.

(3.57)
Thereby, we showed that f(θ) − f(ρµ) ≥ 0. Now we establish the positive lower bound.
First, we note the following

1 + exp(−ρµTξ) = 2 exp(−ρµT ξ
2

) cosh(ρµ
T ξ
2

).

Fix a constant r > 0 and consider the set {ξ : |θTξ| > r}. Applying the inequality

60

x2 + y2 ≥ 2|xy| and (3.57), we obtain that

2Eξ
[
log

(
1 + exp(−θTξ)

1 + exp(−ρµTξ)

)]
= Eξ

[
log

(
1 +

4 sinh2(θ̃
T ξ
2

) exp(−ρµTξ)

(1 + exp(−ρµTξ))2

)]

= Eξ

[
log

(
1 +

sinh2(θ̃
T ξ
2

)

cosh2(ρ
2
µTξ)

)]

≥ Eξ

[
log

(
1 +

sinh2(θ̃
T ξ
2

)

cosh2(ρ
2
µTξ)

)
· 1{ξ:|θ̃T ξ|≥r}

]
(3.58)

≥ Eξ

[(
log 2 + log

(
| sinh(θ̃

T ξ
2

)|
cosh(ρ

2
µTξ)

))
· 1{ξ:|θ̃T ξ|≥r}

]
.

Here (3.58) follows from log

(
1 +

sinh2(θ̃T ξ
2

)

cosh2(ρ
2
µT ξ)

)
is always positive. From (2.10), we have

µTξ ∼ N(‖µ‖2, σ2‖µ‖2) and θ̃Tξ ∼ N(0, σ2‖θ̃‖2).

Therefore, θ̃Tξ = σ‖θ̃‖ψ where ψ ∼ N(0, 1). Moreover, a simple computation shows that

− log
(

cosh(
ρ

2
µTξ)

)
1{|θ̃T ξ|≥r} ≥ − log

(
cosh(

ρ

2
µTξ)

)
,

since cosh(ρ
2
µTξ) ≥ 1 always holds. Using the inequality log cosh(x) ≤ |x| for x, the

following bound holds

Eξ
[
log

(
1 + exp(−θTξ)

1 + exp(−ρµTξ)

)]
≥ 1

2
log(2) · Eψ

[
1{|ψ|≥ r

σ‖θ̃‖
}

]
+ 1

2
Eψ
[
log
∣∣∣sinh(σ‖θ̃‖ψ

2
)
∣∣∣ 1{|ψ|≥ r

σ‖θ̃‖
}

]
− 1

2
Eξ
[
log(cosh(ρ

2
µTξ))

]
≥ 1

2
log(2) · Eψ

[
1{|ψ|≥ r

σ‖θ̃‖
}

]
+ 1

2
Eψ
[
log
∣∣∣sinh(σ‖θ̃‖ψ

2
)
∣∣∣ 1{|ψ|≥ r

σ‖θ̃‖
}

]
− 1

2
Eξ
[
|ρ
2
µTξ|

]
≥ 1

2
log(2) · Eψ

[
1{|ψ|≥ r

σ‖θ̃‖
}

]
+ 1

2
Eψ
[
log
∣∣∣sinh(σ‖θ̃‖ψ

2
)
∣∣∣ 1{|ψ|≥ r

σ‖θ̃‖
}

]
− 3

4

(
‖µ‖2

σ2
+

√
2

π
· ‖µ‖
σ

)
,

(3.59)

61

where the last inequality uses (2.13) and ρ ≤ 3
σ2 . Using the inequality | sinh(x)| ≥ exp(|x|

2
)

for all |x| ≥ 2 log(
√

2 + 1) and letting r = 4 log(
√

2 + 1), we obtain

1
2

log(2) · Eψ
[
1
{|ψ|≥ 4 log(

√
2+1)}

σ‖θ̃‖

]
+ 1

2
Eψ
[
log
∣∣∣sinh(σ‖θ̃‖ψ

2
)
∣∣∣ 1{|ψ|≥ 4 log(

√
2+1)

σ‖θ̃‖
}

]
≥ 1

2
log(2) · Eψ

[
1
{|ψ|≥ 4 log(

√
2+1)

σ‖θ̃‖ }

]
+ 1

2
Eψ
[∣∣∣σ‖θ̃‖ψ4

∣∣∣ 1{|ψ|≥ 4 log(
√
2+1)

σ‖θ̃‖
}

]
≥ 1

2
log(2) · Eψ[1{|ψ|≥1}] + 1

2
Eψ
[∣∣∣σ‖θ̃‖ψ4

∣∣∣ 1|ψ|≥1}

]
(3.60)

≥

(
1
2

log(2) +
σ‖θ̃‖

8

)
· Φc(1).

Here (3.60) follows from the assumption that σ‖θ̃‖ ≥ 436. Combining (3.59), (3.60) and
the bounds σ ≥ 0.33‖µ‖ and σ‖θ̃‖ ≥ 436 the result follows.

Hinge loss. We begin by denoting ξ1 := ξT θ̃ and ξ2 := ξTµ. Notice that ξ1 and ξ2 are
independent random variables. Recall that `(t) := `(t, 1) = max(0, 1− t). We have that

f(θ)− f(ρµ) = Eξ
[
`(ξTθ)− `(ρξTµ)

]
= Eξ1,ξ2 [`(ξ1 + ρξ2)− `(ρξ2)]

= Eξ1,ξ2 [`(−ξ1 + ρξ2)− `(ρξ2)] .

The second equality follows since ξ1 ∼ −ξ1. We define the function

κ(ξ1, ξ2) := `(ξ1 + ρξ2) + `(−ξ1 + ρξ2)− 2`(ρξ2).

We therefore obtain that

2 (f(θ)− f(ρµ)) = Eξ1,ξ2 [κ(ξ1, ξ2)] .

Next we claim that
κ(ξ1, ξ2) = 0 whenever |ξ1| ≤ |1− ρξ2|. (3.61)

To see this, suppose that |ξ1| ≤ |1 − ρξ2| holds. We consider two cases. First, assume
that 0 ≤ 1 − ρξ2 which yields that ρξ2 − ξ1 ≤ 1 and ρξ2 + ξ1 ≤ 1. We therefore have
κ(ξ1, ξ2) = 1− ξ1− ρξ2 + 1 + ξ1− ρξ2− 2(1− ρξ2) = 0. Second, assume that 1− ρξ2 ≤ 0. It
thus holds that 1 ≤ ρξ2−ξ1 and 1 ≤ ρξ2 +ξ1. Now it immediately follows that κ(ξ1, ξ2) = 0
and equation (3.61) is established. We claim the following

κ(ξ1, ξ2) = |ξ1| − |1− ρξ2| whenever |ξ1| ≥ |1− ρξ2|. (3.62)

62

To this end, we again consider two cases. First, assume that ξ1 ≤ −|1− ρξ2|. This yields
that 1 ≤ −ξ1 + ρξ2 and ξ1 + ρξ2 ≤ 1, so it holds that κ(ξ1, ξ2) = 1 − ξ1 − ρξ2 − 2`(ρξ2).
The claim (3.62) follows from the following simple identity

2`(t) = 1− t+ |1− t|, ∀t ∈ R. (3.63)

Second, assume that ξ1 ≥ |1 − ρξ2|. It then holds that ξ1 + ρξ2 ≥ 1 and −ξ1 + ρξ2 ≤ 1
and therefore κ(ξ1, ξ2) = 1 + ξ1 − ρξ2 − 2`(ρξ2). The claim (3.62) follows from the identity
(3.63). We therefore obtain

Eξ1,ξ2 [κ(ξ1, ξ2)] = 2Eξ1,ξ2 [(`(ξ1 + ρξ2) + `(−ξ1 + ρξ2)− 2`(ρξ2))1{ξ1>0}] (3.64)

= 2Eξ1,ξ2 [(`(ξ1 + ρξ2) + `(−ξ1 + ρξ2)− 2`(ρξ2))1{ξ1≥|1−ρξ2|}] (3.65)

= Eξ1,ξ2 [(ξ1 − |1− ρξ2|)1{ξ1≥|1−ρξ2|}]. (3.66)

Here equation (3.64) holds because ξ1 ∼ −ξ1 and κ(ξ1, ξ2) = κ(−ξ1, ξ2). Equation (3.65) is
true because of claim (3.61) and (3.66) follows from claim (3.62). From (3.66), we conclude
that Eξ1,ξ2 [κ(ξ1, ξ2)] ≥ 0. We then observe the bound

Eξ1,ξ2 [(ξ1 − |1− ρξ2|)1{ξ1≥|1−ρξ2|}] = 1
2
Eξ1,ξ2 [ξ1 − |1− ρξ2|+ |ξ1 − |1− ρξ2||]

≥ −1
2
Eξ2 [|1− ρξ2|] + 1

2
Eξ1,ξ2 [|ξ1| − |1− ρξ2|]

= 1
2
Eξ1 [|ξ1|]− Eξ2 [|1− ρξ2|].

(3.67)

The second inequality follows from Eξ1 [ξ1] = 0 and the triangle inequality |x|−|y| ≤ ||x|−y|.
On the other hand, it holds that

Eξ1 [|ξ1|] =

√
2

π
· σ‖θ̃‖, (3.68)

and

Eξ[|1− ρµTξ|] ≤ 1 + ρEξ[|µTξ|] ≤ 1 + ρ‖µ‖

(√
2

π
· σ + ‖µ‖

)
. (3.69)

Combing equations (3.61), (3.62), (3.67), (3.68), and (3.69), we deduce

f(θ)− f(ρµ) ≥ 1

2

(√
1

2π
· σ‖θ̃‖ − 1− ρ‖µ‖

(√
2

π
· σ + ‖µ‖

))
. (3.70)

Using the bounds σ‖θ̃‖ ≥ 8 + 10ρ∗σ2, σ ≥ 0.62‖µ‖ and ρ ≤ 3
2
ρ∗, the result follows from

(3.70).

63

We next derive a lower bound (3.56), Part (b). But, first we need a basic lemma from
convex analysis.

Lemma 12. Suppose that g : R≥0 → R is a convex function with a minimizer at ρ∗ > 0.
Assume that g is twice differentiable on the interval [3

4
ρ∗, 5

4
ρ∗] and there exists a constant

B > 0 such that g′′(ρ) ≥ B for all ρ ∈ [3
4
ρ∗, 5

4
ρ∗]. Then it holds that

g(ρ)− g(ρ∗) ≥ ρ∗B

8
|ρ− ρ∗| for all ρ 6∈ [1

2
ρ∗, 3

2
ρ∗]. (3.71)

Proof. The proof follows by considering the second order Taylor series expansion of the
function g.

Lemma 13. (Lower bound for (b) in (3.56)) Fix θ ∈ Rd and orthogonally decompose
θ = ρµ+ θ̃. Suppose that |ρ− ρ∗| ≥ 1

2
ρ∗. Then provided that σ ≥ c‖µ‖ where the constant

c is defined in (3.35) and (3.36), there exists a positive constant A such that the following
is true

f(ρµ)− f(θ∗) ≥ A · ‖µ‖
2

σ2
. (3.72)

Proof. We consider the logistic and hinge loss separately.

Logistic loss. Define the function

g(ρ) := Eξ
[
log
(
1 + exp(−ρµTξ)

)]
, ξ ∼ N(µ, σ2Id).

By Lemma 6, we know that g is a convex function with a unique minimizer at ρ∗ := 2
σ2 .

Observe that f(ρµ)− f(θ∗) = g(ρ)− g(ρ∗); hence in order to prove (3.72), we instead aim
to bound this difference in the function g. From (2.10), we have µTξ ∼ N(‖µ‖2, σ2‖µ‖2).
It thus holds

4g′′(ρ) = E
(

(µTξ)2

cosh(ρ
2
µTξ)2

)
=

1

σ‖µ‖
√

2π

∫ ∞
−∞

z2

cosh2(ρz
2

)
exp

(
−(z − ‖µ‖2)2

2σ2‖µ‖2

)
dz.

64

Upper bounding cosh2(ρz
2

) by exp(|ρz|), we next obtain

4g′′(ρ) ≥ 1

σ‖µ‖
√

2π

∫ ∞
−∞

z2 exp (−|ρz|) exp

(
−(z − ‖µ‖2)2

2σ2‖µ‖2

)
dz

=
1

σ‖µ‖
√

2π

∫ ∞
−∞

z2 exp

(
−(z − ‖µ‖2)2 + 2σ2‖µ‖2|ρz|

2σ2‖µ‖2

)
dz,

=
1

σ‖µ‖
√

2π
· exp

(
−‖µ‖

2

2σ2

)∫ ∞
−∞

z2 exp

(
−z

2 − 2‖µ‖2z + 2σ2‖µ‖2|ρz|
2σ2‖µ‖2

)
dz

=
σ2‖µ‖2

√
2π
· exp

(
−‖µ‖

2

2σ2

)∫ +∞

−∞
z2 exp

(
−
z2 − 2‖µ‖

σ
z + 2|ρz|σ‖µ‖

2

)
dz

≥ σ2‖µ‖2

√
2π
· exp

(
−‖µ‖

2

2σ2

)∫ +∞

0

z2 exp

(
−z

2

2

)
exp

(
z

(
‖µ‖
σ
− ρσ‖µ‖

))
dz

≥ σ2‖µ‖2

√
2π
· exp

(
−‖µ‖

2

2σ2
− 1

2
−
∣∣∣∣‖µ‖σ − ρσ‖µ‖

∣∣∣∣) ∫ 1

0

z2dz.

Here the second to last inequality follows from the change of variables z → zσ‖µ‖. The last
inequality follows from restricting the integral’s domain to [0, 1] and also lower bounding

− z2

2
and z

(
‖µ‖
σ
− ρσ‖µ‖

)
by −1

2
and −

∣∣∣‖µ‖σ − ρσ‖µ‖∣∣∣ respectively. We see that

exp

(
−‖µ‖

2

2σ2
− 1

2
−
∣∣∣∣‖µ‖σ − ρσ‖µ‖

∣∣∣∣) ≥ exp

(
− 1

2c2
− 1

4c
− 1

2

)
,

for ρ ∈ [3
4
ρ∗, 5

4
ρ∗]. By Lemma 12, the result follows with the constant A computed as

follows

A =
1

12
√

2π
· exp

(
− 1

2c2
− 1

4c
− 1

2

)
.

Hinge loss. We begin by defining the function h(ρ) = f(ρµ). Therefore

f(ρµ) = Eξ[`(ρξTµ)] = Eξ[(1− ρξTµ)1{ρξTµ≤1}].

Hence, it holds that

h′(ρ) = µT∇f(ρµ) = −Eξ[ξTµ1{ρξTµ≤1}].

From (2.10), we obtain that µTξ ∼ N(‖µ‖2, σ2‖µ‖2). For ρ > 0, therefore, it holds that

h′(ρ) =
−1

σ‖µ‖
√

2π

∫ 1
ρ

−∞
z exp

(
−1

2
·
(

z

σ‖µ‖
− ‖µ‖

σ

)2
)
dz. (3.73)

65

Applying chain rule thus yields

h′′(ρ) =
1

ρ3σ‖µ‖
√

2π
exp

(
−1

2
·
(

1

ρσ‖µ‖
− ‖µ‖

σ

)2
)

for all ρ > 0.

Hence, for all ρ ∈ [3
4
ρ∗, 5

4
ρ∗] it holds that

h′′(ρ) ≥ 64

125ρ∗3σ‖µ‖
√

2π
exp

(
−1

2
· Γ2

)
,

where Γ := max
{∣∣∣ 4

3ρ∗σ‖µ‖ −
‖µ‖
σ

∣∣∣ , ∣∣∣ 4
5ρ∗σ‖µ‖ −

‖µ‖
σ

∣∣∣}. Therefore, by Lemma 12 and |ρ−ρ∗| ≥
1
2
ρ∗, it holds that

f(ρµ)− f(θ∗) ≥ 4

125
√

2π
· σ

r‖µ‖
· exp

(
−1

2
· Γ2

)
. (3.74)

Here r = ρ∗σ2. Note that r > 0 by Lemma 6. We aim to lower bound the right-hand side
of (3.74). We denote by w = σ

r‖µ‖ −
‖µ‖
σ

the quantity defined in Lemma 6. In particular,
by Lemma 6, the following holds

1√
2π
· σ

‖µ‖
= Φ(w) · exp(1

2
w2). (3.75)

We consider two cases. First suppose that w ≥ 1
(3
√

2−4)c
. Along with the assumption

σ
‖µ‖ ≥ c this implies that w ≥ 1

3
√

2−4
· ‖µ‖

σ
. A simple computation shows that

w2 ≥ 1

2
· Γ2 for all w ≥ 1

3
√

2− 4
· ‖µ‖
σ

On the other hand, by (3.75) for w ≥ 0, we obtain that 2
π
· σ2

‖µ‖2 ≥ exp(w2). Plugging in
the bounds

w2 ≥ 1

2
· Γ2, exp(−w2) ≥ π

2
· ‖µ‖

2

σ2
, and

σ

r‖µ‖
≥ w ≥ 1

(3
√

2− 4)c

into the right-hand-side of (3.74), we obtain that

f(ρµ)− f(θ∗) ≥
√

2π

125(3
√

2− 4)c
· ‖µ‖

2

σ2
.

66

Next, suppose that w < 1
(3
√

2−4)c
. In this case, the two factors σ

r‖µ‖ and exp
(
−1

2
· Γ2
)

in

(3.74) are lower bounded separately. Note that it always holds that w ≥ −‖µ‖
σ

as r > 0.
Therefore, it is easy to see that the latter factor is lower bounded by

exp

(
−1

2

(
4

3(3
√

2− 4)c
+

1

3c

)2
)
.

Hence, it remains to bound the factor σ
r‖µ‖ in (3.74). To this end, we show that w ≥ −‖µ‖

2σ

for all σ
‖µ‖ ≥ c. Note that a chain of change of variables gives

Φ(w) · exp

(
w2

2

)
=

1√
2π
·
∫ +∞

0

exp(−1

2
t2) · exp(wt) dt.

The right-hand side of (3.75) is an increasing function with respect to w. Therefore it
suffices to show that the following holds

1√
2π
· σ

‖µ‖
≥ Φ

(
−‖µ‖

2σ

)
· exp

(
‖µ‖2

8σ2

)
whenever

σ

‖µ‖
≥ c. (3.76)

However, it can be verified by a plot that

1√
2π
≥ t · Φ

(
− t

2

)
· exp

(
t2

8

)
holds for all t ∈ (0,

1

c
).

Therefore, we have shown that w ≥ −‖µ‖
2σ

which implies that σ
r‖µ‖ ≥

‖µ‖
2σ

. Finally we lower

bound the quantity σ
r‖µ‖ by c · ‖µ‖

2

2σ2 . We have concluded (3.72) in case of hinge loss function
where the constant A can be computed as follows

A = min

{
c

2
· exp

(
−1

2

(
4

3(3
√

2− 4)c
+

1

3c

)2
)
,

√
2π

125(3
√

2− 4)c

}
.

We now have the ingredients to prove Theorem 7.

Proof of Theorem 7. Consider the set C and function V defined in (3.51):

C :=
{
θ : |ρ− ρ∗| < 1

2
ρ∗ and σ‖θ̃‖ ≤ c′

}
and V (θ) =

1

2α
‖θ − θ∗‖2. (3.77)

67

We let c′ to be defined as in Lemma 11. This means that c′ equals to 436 and 8 + 10ρ∗σ2

in case of logistic and hinge loss respectively. We next show that there exists a positive
constant δ such that the following is true

Pξ
(
ξTθ ≥ 1

)
≥ δ for all θ ∈ C. (3.78)

Let θ ∈ C and orthogonally decompose it into θ = ρµ+θ̃. We have that ξTθ = ρξTµ+ξT θ̃.
Note that ρ > 0 as θ ∈ C. By (2.11), we see that ξTθ and ξT θ̃ are independent normal
random variables. It thus holds that

Pξ
(
ξTθ ≥ 1

)
≥ Pξ

(
ρξTµ ≥ 1

)
· Pξ

(
ξT θ̃ ≥ 0

)
=

1

2
· Pξ

(
ξTµ ≥ 1

ρ

)
. (3.79)

Rewrite the inequality ξTµ ≥ 1
ρ

by z := ξTµ−‖µ‖2
σ‖µ‖ ≥

1
ρ
−‖µ‖2

σ‖µ‖ . Noting that z ∼ N(0, 1) and

using the inequality 2
ρ∗
≥ 1

ρ
, we obtain that

Pξ
(
ξTθ ≥ 1

)
≥ δ :=

1

2
· Φc

(
2
ρ∗
− ‖µ‖2

σ‖µ‖

)
. (3.80)

We next show that the pair (C, V) satisfies the drift equation (3.22). Let us rewrite (3.56):

f(θk−1)− f(θ∗) = f(θk−1)− f(ρk−1µ)︸ ︷︷ ︸
(a)

+ f(ρk−1µ)− f(θ∗)︸ ︷︷ ︸
(b)

.
(3.81)

By Lemmas 11 and 13, both terms in (a) and (b) in (3.81) are non-negative . Assume
that θk−1 6∈ C. Therefore, either σ‖θ̃k−1‖ ≥ c′ or |ρk−1 − ρ∗| ≥ 1

2
ρ∗; this implies that the

quantity (a) is at least 1 or the quantity (b) is at least A · ‖µ‖
2

σ2 respectively. The constant

A in Lemma 13 satisfies 1 ≥ A · ‖µ‖
2

σ2 for all σ
‖µ‖ ≥ c. Hence it holds that

A · ‖µ‖
2

σ2
≤ f(θk−1)− f(θ∗) for all θk−1 6∈ C. (3.82)

We use (3.53) next to establish the drift equation (3.22). Recall that the following holds

f(θk−1)− f(θ∗) ≤ 1

2α

(
‖θk−1 − θ∗‖2 − E

[
‖θk − θ∗‖2 |Fk−1

])
+
α

2

(
‖µ‖2 + dσ2

)
. (3.83)

Combining the last two displayed inequalities and using the definition of function V , we
obtain that

(E [V (θk)|Fk−1]− V (θk−1)) ·1{θk−1 6∈C} ≤
(
α

2
(‖µ‖2 + dσ2)− A · ‖µ‖

2

σ2

)
·1{θk−1 6∈C}. (3.84)

68

Therefore, by choosing α < A · ‖µ‖2
σ2(‖µ‖2+dσ2)

, we obtain the drift equation (3.22) holds with

b := A
2
· ‖µ‖

2

σ2 . Next, we obtain bounds on E[τm] for m ≥ 1. By Lemma 1 and a simple
induction, we obtain that

E[τm] ≤ 1
b
V (0) + 1

b
(m− 1) sup

θ∈C
V (θ). (3.85)

Compactness of set C yields that, supθ∈C V (θ) < +∞. Therefore, for some constant γ,
the following is true

E[τm] ≤ γ ·m. (3.86)

Combining (3.86), (3.80) and Lemma 8, the proof immediately follows.

3.3.3 Angle bound, proof of Theorem 8

Proof of Theorem 8. Recall the SGD algorithm for logistic regression uses the update

θk = θk−1 +
αξk

1 + exp(ξTk θk−1)

and for hinge regression
θk = θk−1 + α1{ξTk θk−1≤1}ξk−1

where θ0 = 0 and ξ1, ξ2, · · ·
i.i.d∼ N(µ, σ2Id). It clearly holds in both cases that∣∣|vTθk| − |vTθk−1|

∣∣ ≤ α|vTξk−1|. (3.87)

We define a new random variable Xk := |vTθk| − kσα
√

2
π
. Observe that E [|X0|] = 0 and

for all k ≥ 1, it holds that

E [|Xk|] ≤ α

k∑
i=1

E
[∣∣vTξk∣∣]+ kσα

√
2

π
<∞,

i.e., Xk ∈ L1 for all k ≥ 1. Next, we have for any k ≥ 1

E [|Xk −Xk−1| | Fk−1] ≤ E
[∣∣|vTθk| − |vTθk−1|

∣∣ | Fk−1

]
+ σα

√
2

π
≤ 2σα

√
2

π
.

69

Here we used that vTξk ∼ N(0, σ2) along with (2.13). We also see that

E
[
|vTθk| | Fk−1

]
≤ |vTθk−1|+ σα

√
2

π
⇒ E [Xk | Fk−1] ≤ Xk−1.

Therefore, we have shown that X0, X1, · · · is a super-martingale. By Theorem 5, we have
E [XT] ≤ 0. The result follows.

3.4 Numerical experiments

We investigate the performance of our termination test on two popular data sets, MNIST
[51] and CIFAR-10 [49], as well as synthetic data generated from Gaussians and heavy-
tailed student t-distributions. All tests were performed using our zero overhead stopping
criteria outlined in (3.15); experiments using our test which required an extra sample (3.14)
are not presented since the behaviors of the two criteria were indistinguishable on all data
sets.

Comparison with a popular stopping criterion. We include as a baseline a popular
termination test, the small validation set (SVS) [72]. The SVS termination test is as
follows. One fixes a validation set of p instances (ζV

1 , y
V
1), . . . , (ζV

p , y
V
p) drawn from the

same distribution as the training data. Then for m = 1, 2, . . ., one checks the fraction
correct of the current classifier θml, where ml is the iteration index, on the p instances.
In other words, the SVS test is run once every l iterations. If the fraction correct fails to
increase compared to the last run of the SVS, then the SGD iterations are terminated.

Note the computational overhead of running the small validation set is about p times
the cost of one SGD iteration. Therefore, in order to make the overhead only a constant
factor, we choose l = 2p, meaning an approximately 50% overhead for SVS. In contrast,
the overhead for (3.15) is 0. The value of p is a tuning parameter for SVS; we exhibit
results for three different p values (see Figs. 3.3, 3.5, 3.7, 3.9).

Measuring the accuracy. In all the experiments, we measure the performance of a
method with a score, generally known as “accuracy,” that is the fraction correct on a large
validation set drawn from the same distribution as the training data. Thus, 1.0 is perfect
accuracy, while 0.5 means that θk is no better at classifying than random guessing. It is

70

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

sigma

0

1

2

3

4

5

6

7

8

9

10

it
e
ra

ti
o
n
s

104 (l) Iterations versus sigma

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

sigma

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

a
c
c
u
ra

c
y

(l) Accuracy versus sigma

(a) (b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

sigma

0

0.5

1

1.5

2

2.5

3

3.5

4

it
e
ra

ti
o
n
s

104 (h) Iterations versus sigma

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

sigma

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

a
c
c
u
ra

c
y

(h) Accuracy versus sigma

(c) (d)

Figure 3.2: Performance of stopping criterion (3.15) on a mixture of Gaussians as σ is
varied. Plots (a), (b) are logistic and (c), (d) are hinge. All plots show tests for values of
σ equally spaced from 0.05 to 2.0. For each value of σ, ten trials were run. Plots (a), (c)
show the relationship between σ and k, the iteration number when (3.15) first holds. Plots
(b), (d) show the accuracy as red asterisks. The green asterisks show the accuracy of the
optimal classifier. The black curve on the right is the ratio of the average accuracy (over
10 trials) of the classifier when (3.15) holds to the accuracy of the optimal classifier.

71

important to note that even on data for which the means µ0,µ1 are known a priori (e.g.,
synthetic data), the score of the optimal θ∗ will not be 1.0 because the large validation set
itself is noisy.

We center the data so that the linear classifier is homogeneous. In a preliminary phase,
100 samples are drawn from the training set. From this, µ0 and µ1 are estimated, and
then the average of these estimates is used to offset training instances during SGD.

Parameter settings. After centering, the vectors θ and ξ scale inversely, so the step-size
parameter α should scale as 1/σ2. Therefore, we take the step-size to be α̃/σ̃2. Here, σ̃2 is

the average of
∥∥ζj − µ̃yj∥∥2

, and µ̃i (i = 0 or i = 1) is the estimate of µi, averaged over the
two classes. We compute the quantities σ̃2 and µ̃i using the 100 samples described in the
preceding paragraph. Note that for the Gaussian mixture model, the expected value of σ̃2

is σ2d. For the synthetic data, the means and variances are known exactly a priori, so the
estimation procedures described in the previous two paragraphs are unnecessary. However,
we used them anyway in order to be consistent with the tests on the realistic data.

The parameter α̃ described in the last paragraph is a scale-free tuning parameter. It is
known (see, e.g., [61]) that a smaller α̃ corresponds to more iterations but greater ultimate
accuracy under a reasonable model of the data. Our termination test is obviously sensitive
to the choice of α̃: the condition ξTk+1θk ≥ 1 cannot hold unless ‖θk‖ ≥ 1/ ‖ξk+1‖, but
E [‖θk‖] ≤ O(αk). See also Theorems 6 and 7. On the other hand, SVS is only mildly
sensitive to α̃, according to our testing. Indeed, there is an upper bound of pl on the total
number of iterations possible before termination using the SVS condition, independent of
α̃ and of all other aspects of the problem. The dependence of the termination test on α̃ is
evidently desirable because the user is presumably seeking greater accuracy when a smaller
value of α̃ is selected.

3.4.1 Experiments with synthetic data

Normal distribution. We generated test and training data using a mixture of Gaussians
given by N(0, σ2I) for the 0-class and N(e1, σ

2I) for the 1-class, where e1 = (1, 0, . . . , 0)T ∈
Rd.

In Fig. 3.2, we present the running time and accuracy (fraction correct) of our termi-
nation test for a fixed dimension d = 500 and σ ranging from 0.05 to 2. We record 10 runs
for each value of σ. The performance of the classifier when our termination test (3.15)
holds almost matches the optimal classifier; in particular, the averaged accuracy of our

72

102 103 104

iterations

0.88

0.9

0.92

0.94

0.96

0.98

a
c
c
u
ra

c
y

GM sigma = 0.250000 (l/10)

102 103 104 105

iterations

0.88

0.9

0.92

0.94

0.96

0.98

1

a
c
c
u
ra

c
y

GM sigma = 0.250000 (l/200)

102 103 104

iterations

0.55

0.6

0.65

0.7

0.75

a
c
c
u
ra

c
y

GM sigma = 0.750000 (l/10)

102 104

iterations

0.55

0.6

0.65

0.7

0.75

a
c
c
u
ra

c
y

GM sigma = 0.750000 (l/200)

102 103 104

iterations

0.48

0.5

0.52

0.54

0.56

0.58

0.6

a
c
c
u
ra

c
y

GM sigma = 2.000000 (l/10)

102 104 106

iterations

0.5

0.55

0.6

a
c
c
u
ra

c
y

GM sigma = 2.000000 (l/200)

Figure 3.3: Each plot shows 10 random runs of SGD applied to normally distributed
data with indicated values of σ and for a fixed dimension d = 500. For each of the
ten runs, five termination tests corresponding to five colors were applied. SVS was tried
with p = 32, 128, 512, depicted as red, magenta and cyan circles respectively. Test (3.15) is
indicated with a blue asterisk. A green ‘+’ corresponds to termination after 1.5k iterations,
where k is the iteration index that (3.15) first holds. The notation (l/200) means logistic
loss with α̃ = 1/200; simillarly (h/10) means hinge loss with α̃ = 1/10, and so on.

73

102 103 104

iterations

0.88

0.9

0.92

0.94

0.96

0.98

a
c
c
u
ra

c
y

GM sigma = 0.250000 (h/10)

102 103 104

iterations

0.88

0.9

0.92

0.94

0.96

0.98

1

a
c
c
u
ra

c
y

GM sigma = 0.250000 (h/200)

102 103 104

iterations

0.55

0.6

0.65

0.7

0.75

a
c
c
u
ra

c
y

GM sigma = 0.750000 (h/10)

102 103 104 105

iterations

0.55

0.6

0.65

0.7

0.75
a
c
c
u
ra

c
y

GM sigma = 0.750000 (h/200)

102 103 104

iterations

0.48

0.5

0.52

0.54

0.56

0.58

a
c
c
u
ra

c
y

GM sigma = 2.000000 (h/10)

102 104

iterations

0.48

0.5

0.52

0.54

0.56

0.58

0.6

a
c
c
u
ra

c
y

GM sigma = 2.000000 (h/200)

Figure 3.4: Refer to the caption of Fig. 3.3 for the key to the plots.

74

classifier/accuracy of the optimal classifier over the 10 runs, black curve in Fig. 3.4, never
dips below 0.95.

In Fig. 3.3, we compare performance of (3.15) against SVS termination. One axis
shows accuracy while the other shows iteration count. We continued to run SGD for an
additional 1.5k iterations where k is the first iteration at which (3.15) holds (green ’+’) to
test whether accuracy improves after termination. The tests (for several values of σ, both
hinge and logistic, and two values of α̃) in Fig. 3.3 indicate that (3.15) is more accurate
than SVS, more predictable (i.e., there is less spread in the scatter plot), and that running
until 1.5k iterations does not significantly improve the solution. As expected, for a large
α̃, (3.15) requires fewer iterations than SVS with p = 512, while the opposite relationship
holds for a small α̃.

Heavy-tailed distribution. We consider the student t-distribution with two degrees of
freedom. This distribution is heavy-tailed since some of its higher moments are infinite.

The two classes were generated as follows. For ζ in the 0-class, each of the d entries of
ζ is chosen as βη, where β is varied in the experiments and η is drawn from the student
t-distribution with two degrees of freedom. For the 1-class, ζ is chosen in the same way
except that the first entry is incremented by 1. Fig. 3.5 shows our performance against
SVS. The results in this table show similar trends as in the normally distributed case. One
difference is that the accuracy achieved by our termination test (3.15) is more spread out
presumably because of the heavy-tailed nature of the data set.

3.4.2 Experiments with real data

MNIST handwritten digits. We compared our termination test on the MNIST hand-
written digit set [51] (d = 784, no preprocessing of the data other than centering between
the two means). Two trials are shown: distinguishing 1 from 8 (easy case) and distin-
guishing 7 from 9 (more difficult case). The test runs are obtained by running through the
training data in different randomized orders. The plots in Fig. 3.7 show similar trends as
before. As expected, the accuracy is overall higher for α̃ = 1/200 than for α̃ = 1/10.

CIFAR-10 image set. We compared our termination test on the CIFAR-10 [49] (d =
3072, no preprocessing of the data other than centering between the two means as described
earlier). Two trials are shown: distinguishing deer from airplanes and frogs from trucks.
As in MNIST, test runs are obtained by running through the training data in different
randomized orders.

75

102 103 104

iterations

0.6

0.7

0.8

0.9

1

a
c
c
u
ra

c
y

HT beta = 0.100000 dof = 2 (l/10)

102 103 104 105

iterations

0.6

0.7

0.8

0.9

1

a
c
c
u
ra

c
y

HT beta = 0.100000 dof = 2 (l/200)

102 103 104

iterations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

a
c
c
u
ra

c
y

HT beta = 0.300000 dof = 2 (l/10)

102 104

iterations

0.5

0.6

0.7

0.8
a
c
c
u
ra

c
y

HT beta = 0.300000 dof = 2 (l/200)

102 103 104

iterations

0.48

0.5

0.52

0.54

0.56

a
c
c
u
ra

c
y

HT beta = 0.900000 dof = 2 (l/10)

102 104 106

iterations

0.45

0.5

0.55

0.6

0.65

a
c
c
u
ra

c
y

HT beta = 0.900000 dof = 2 (l/200)

Figure 3.5: Tests on the student-t distribution (heavy tailed) with two degrees of freedom
and the indicated value of parameter β. See the caption of Fig. 3.3 for explanation of the
plots.

76

102 103 104

iterations

0.6

0.7

0.8

0.9

1

a
c
c
u
ra

c
y

HT beta = 0.100000 dof = 2 (h/10)

102 103 104 105

iterations

0.6

0.7

0.8

0.9

1

a
c
c
u
ra

c
y

HT beta = 0.100000 dof = 2 (h/200)

102 103 104

iterations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

a
c
c
u
ra

c
y

HT beta = 0.300000 dof = 2 (h/10)

102 103 104 105

iterations

0.5

0.6

0.7

0.8

a
c
c
u
ra

c
y

HT beta = 0.300000 dof = 2 (h/200)

102 103 104

iterations

0.48

0.5

0.52

0.54

a
c
c
u
ra

c
y

HT beta = 0.900000 dof = 2 (h/10)

102 104

iterations

0.5

0.55

0.6

a
c
c
u
ra

c
y

HT beta = 0.900000 dof = 2 (h/200)

Figure 3.6: Refer to the caption of Fig. 3.5 for the key to the plots

77

102 103

iterations

0.93

0.94

0.95

0.96

a
c
c
u
ra

c
y

"1" vs "8" in MNIST (l/10)

102 103

iterations

0.94

0.945

0.95

0.955

0.96

a
c
c
u
ra

c
y

"1" vs "8" in MNIST (l/200)

102 103 104

iterations

0.88

0.89

0.9

0.91

0.92

0.93

a
c
c
u
ra

c
y

"7" vs "9" in MNIST (l/10)

102 103 104

iterations

0.87

0.88

0.89

0.9

0.91

0.92

a
c
c
u
ra

c
y

"7" vs "9" in MNIST (l/200)

Figure 3.7: Tests on the MNIST handwritten digit data set for discerning “1” from “8”
and “7” from “9” for both hinge and logistic, and for both α̃ = 1/10 and α̃ = 1/200. Refer
to the caption of Fig. 3.3 for the key to the plots.

78

101 102 103 104

iterations

0.92

0.94

0.96

0.98

a
c
c
u
ra

c
y

"1" vs "8" in MNIST (h/10)

102 103

iterations

0.94

0.945

0.95

0.955

0.96

a
c
c
u
ra

c
y

"1" vs "8" in MNIST (h/200)

101 102 103 104

iterations

0.84

0.86

0.88

0.9

0.92

0.94

a
c
c
u
ra

c
y

"7" vs "9" in MNIST (h/10)

102 103 104

iterations

0.87

0.88

0.89

0.9

0.91

0.92

a
c
c
u
ra

c
y

"7" vs "9" in MNIST (h/200)

Figure 3.8: Refer to the caption of Fig. 3.7 for the key to the plots

79

102 103 104

iterations

0.72

0.74

0.76

0.78

0.8

0.82

0.84

a
c
c
u
ra

c
y

airplane vs deer in CIFAR-10 (l/10)

102 103 104

iterations

0.71

0.72

0.73

0.74

0.75

0.76

a
c
c
u
ra

c
y

airplane vs deer in CIFAR-10 (l/200)

102 103 104

iterations

0.75

0.8

0.85

a
c
c
u
ra

c
y

frog vs truck in CIFAR-10 (l/10)

102 103 104

iterations

0.76

0.77

0.78

0.79

0.8

0.81

a
c
c
u
ra

c
y

frog vs truck in CIFAR-10 (l/200)

Figure 3.9: Tests on the CIFAR-10 image set for two tasks, for logistic and hinge losses,
and for α̃ = 1/10 and α̃ = 1/200. Refer to the caption of Fig. 3.3 for the key to the plots.
The plot in the first row, right, does not include cyan circles because the training data was
exhausted before the SVS test could activate for p = 512.

80

101 102 103 104

iterations

0.7

0.75

0.8

a
c
c
u
ra

c
y

airplane vs deer in CIFAR-10 (h/10)

102 103

iterations

0.71

0.72

0.73

0.74

0.75

a
c
c
u
ra

c
y

airplane vs deer in CIFAR-10 (h/200)

101 102 103 104

iterations

0.75

0.8

0.85

a
c
c
u
ra

c
y

frog vs truck in CIFAR-10 (h/10)

102 103 104

iterations

0.76

0.77

0.78

0.79

0.8

0.81

0.82

a
c
c
u
ra

c
y

frog vs truck in CIFAR-10 (h/200)

Figure 3.10: Refer to the caption of Fig. 3.9 for the key to the plots

81

Chapter 4

SGD with Early Stopping for Least
Squares Deconvolution

Deconvolution has a wide range of application including image deblurring [34], electrical
impedance tomography [42] and optical microscopy [46]. The main aim of this chapter is
to explore the implicit regularization effect of the SGD algorithm with early stopping for
the least squares deconvolution problem for the task of image deblurring.

The key results of this chapter are as follows.

• Motivated by experimental observations, the SGD least squares deconvolution algo-
rithm exhibits the following phenomenon: SGD converges to a vicinity of the ground
solution (sharp image) after only a few batches of iterations. In other words, SGD
with early stopping has an implicit regularization effect.

• Theoretical justification is provided to ensure that SGD, with high probability, shall
follow the gradient flow trajectory (Theorem 9). Our approach is novel in the sense
that we establish our results by way of concentration of measures.

• Motivated by numerical evidence, we propose a new stopping time for SGD which
can be easily implemented for both GD and SGD algorithms. Based on the fact that
both GD and SGD behave similarly and that the GD algorithm is more amenable
to analysis, we analyze our stopping time for the GD algorithm instead of SGD
(Theorem 10).

82

• We conclude with a new concentration inequality for products of random contractions
(Theorem 11) which can be helpful in analysing other stochastic algorithms such as
k-streaming PCA [44].

The outline of this chapter is as follows: Section 4.1 is a brief description of image de-
blurring problems. Section 4.2 introduces and describes the least squares deconvolution
problem. In Section 4.3, we first recall that GD with early stopping does exhibit implicit
regularization. Next, we provide a theoretical result (Theorem 9) asserting that the SGD
least square deconvolution algorithm behaves similarly to GD. In Section 4.4, we present
our experimental observations. It is emphasized that a full experimental study of the SGD
algorithm for the deconvolution least squares problem is outside of the scope of this thesis;
our numerical experiment in this chapter is only for the purpose of motivating our analysis.
In Section 4.5, we propose our new stopping time and establish a theoretical upper bound
for the error term at termination. Finally, in Section 4.6, we establish a new concentration
bound for products of random contractions.

4.1 Image deblurring

Image deblurring is an important class of inverse problems, which are mathematical prob-
lems that arise when our aim is to reconstruct from a set of observations the causal factors
that created them. See Figure 4.1. These problems have wide application in medical
imaging, computer vision and machine learning, etc.

It is well known what a blurred image looks like and why they are visually unappealing.
Blurring is the operation (system) of producing the blurred image (output) from the sharp
image (input), occurs for diverse reasons, including defocusing camera’s lens, motion blur
caused by the object not being still when camera’s shutter was open, or due to variations in
the air that impact the light coming into the camera. In image deblurring, we are given a
blurred image and our task is to recover the sharp image. In order to reconstruct the sharp
image, we take a model-based approach where the blurring process is described based on a
concise mathematical model. The mathematical techniques used for image reconstruction
are called deconvolution methods.

Before discussing the way in which the blurring process is modeled, we first require to
represent an image using some mathematical object. A digital image (color or grayscale)
is composed of pixels (picture elements), each with its own corresponding light intensity.
In grayscale images, each pixel’s intensity is quantified by some integer value inside the
interval [0, 255] where 0 and 255 indicates black and white respectively. Based on this

83

Figure 4.1: The inverse problem is to reconstruct the system or the input while the other
two quantities are provided. Almost always, the output is revealed to us imprecisely
meaning that it has been contaminated with some noise.

representation, we shall present a grayscale image as a rectangular matrix whose elements
are its pixels’ intensities. After that, by stacking the columns of this matrix1, we obtain
a vector. All in all, we can represent the sharp image and blurred image by real-valued
vectors x∗ and b respectively.

We now state the assumption most commonly made about the blurring process. This
assumption is widely believed to be realistic in physical sciences and enables us to use a
large variety of mathematical tool-kits to perform the deblurring process.

Assumption 2. The blurring process is assumed to be linear, i.e., there exists a blurring
matrix A such that b = Ax∗ + ξ. Here ξ represents the additive noise in the observed
blurred image.

As in Assumption 2, we denote the additive noise in the blurred image by a vector ξ.
In this chapter, we use the Gaussian white noise model which is the most used model in
image restoration literature.

Assumption 3. We assume that the additive noise ξ is drawn from a isotropic Gaussian
distribution with mean zero. In other words, we let ξ ∼ N(0, σ2Im) where m is the
dimension of b and the standard deviation σ is proportional to the amplitude of the noise.

To complete our model, we still need to explain how we obtain the blurring matrix A.
To this end, we perform the following thought experiment: consider an image where all the

1The mathematical symbol for this operation is denoted by vec.

84

pixels are pitch black (intensity of 0) except only a single bright pixel (intensity of 255).
Taking a picture from this image will reveal to us how the blurring operator causes the
bright pixel to spread over its neighboring pixels.

Definition 8. A single bright pixel is called a point source and the function which describes
the blurring process is called the point spread function (PSF). When the PSF is the same
regardless of the location of the point source, we say that the blurring process is spatially
invariant. Note that in spatially invariant blurring processes, the PSF contains all the
information about the blurring.

Since it is natural to assume that the blurring process is a local phenomenon, PSFs can
be described using a matrix with very small dimensions in a spatially invariant blurring.
Finally, assuming that the imaging process captures all light, the pixel values in the PSF
must sum to 1.

Example 10. The following PSF tells us that in the blurring process each pixel in the
sharp image is replaced by the average of its nearest neighbors.

P =
1

9

1 1 1
1 1 1
1 1 1

 . (4.1)

Having the PSF at our disposal, it should be clear how the matrix A is constructed.
Due to the special structure of the matrix A, the matrix-vector product Ax is called
convolution. In Figure 4.2, we provide an example of a artificially blurred image using a
81× 81 PSF and a white Gaussian noise.

It is commonly assumed that the sharp image x∗ and the blurred noisy image b have
equal dimensions. As a result, A can be considered as a square matrix. However, this
assumption ignores the behavior of the blurring process at the boundary of the image. For
example, consider the PSF defined in (4.1). How do we compute the corresponding blurred
pixels which lie at boundary of the sharp image? One common approach called padding
with zeros is used to address this situation wherein we extend our sharp image by assuming
zero pixel values all the way around it. Since the value of these extended artificial pixels
is already known, we do not need to incorporate them into the unknown vector x∗. On
the other hand, the resultant extra artificial pixels inside the blurry noisy image b are kept
inside the noisy blurry image b as they provide useful information about the boundary
of the sharp image. As a result, A ∈ Rm×n is no longer a square matrix and instead is
rectangular with m ≥ n. Finally, the matrix A is supposed to be full column rank due to
the way it is constructed (using some small PSF matrix).

85

Assumption 4. We always assume that the blurring matrix A ∈ Rm×n has more rows
than columns i.e., m > n. Furthermore, we assume that A is full column rank meaning
that ATA ∈ Rn×n is non-singular.

We conclude this section by emphasizing that in the rest of this chapter

Assumptions 2, 3 and 4 hold, (4.2)

and also the following notation is adopted.

Notation 1. Denote the spectral decomposition of ATA as follows:

ATA =
n∑
i=1

λiuiu
T
i where λ1 ≥ · · · ≥ λn > 0, (4.3)

and the singular values of A by σi :=
√
λi for all i = 1, · · · , n. Moreover, we express the

components of x∗ in the basis of {u1, · · · ,un} by x∗1, · · · , x∗n, i.e.,

x∗i := 〈x∗,ui〉.

{x∗i }ni=1 are called the singular value expansion (SVE) coefficients of x∗ w.r.t. A.

4.1.1 The discrete Picard condition

It is well-known that as i increases the eigenvector ui tends to have more sign changes. As
a result, the spectral decomposition defined in (4.3) can be used for an expansion where
each ui represents a certain frequency. It is also well-known that, in this basis, most images
are described by their dominated low-frequency spectral components as the high-frequency
ones are smaller in magnitude (Book [34], Chapter 1, page 10). For future reference, we
state this fact as follows.

Fact 8. In the context of image deblurring, a standard assumption is that the SVE coef-
ficients x∗i = 〈x∗,ui〉 decay faster than the singular values σi. This condition is known as
discrete Picard condition, see e.g. (3.16) in [33].

We emphasize that some stronger relationship between the decay rates of SVE coeffi-
cients and the singular values is often considered. These heuristic assumptions help to make

86

Figure 4.2: A sharp image (left) and its corresponding blurred image. The PSF 1
81
·

ones(9, 9) is used for artificially blurring the sharp image. The noise level here equals to

0.05 i.e., ‖ξ‖
‖Ax∗‖ ≈ 0.015 and (m,n) = (10404, 10000).

87

the basic ideas and the techniques as clear as possible, rather than striving for maximal
generality. One of such common assumptions is as follows.

|x∗i | = λci for all i = 1, · · · , n, (4.4)

where c > 0 is a fixed parameter, e.g. see Eq. (20) in [30].

The relationship between SVE coefficients and the singular values are illustrated using
Picard plots. A detailed description of different varieties of PSFs, Picard plots and bound-
ary conditions in deblurring are not discussed in detail in this section. We refer the reader
to the books [34, 33].

4.2 Least square deconvolution

Let the blurring matrix A and the noisy blurred image b be mathematically modeled as
above. The reconstruction of x∗ from A and b is called deconvolution [32]. To this end,
minimizing the norm of the residual ‖Ax−b‖2 might seem a reasonable approach and thus
we are led naturally to the following least squares problem.

min
1

2
‖Ax− b‖2. (4.5)

Is the solution to (4.5) is a good estimate of the unknown vector x∗? In view of Assumption
4, we can compute the solution to (4.5) explicitly:

xLS :=
(
ATA

)−1
ATb. (4.6)

Recall that b = Ax∗+ ξ where ξ ∼ N(0, σ2Im). Therefore, we can rewrite (4.6) to obtain:

xLS = x∗ +
(
ATA

)−1
ATξ︸ ︷︷ ︸

:=ξLS

.

We observe that xLS is contaminated with the noise ξLS. Using Fact 4, we can easily verify
that

ξLS ∼ N(0, σ2
(
ATA

)−1
). (4.7)

By (4.3) and (4.7), we have that

E
[
‖ξLS‖2

]
= σ2

n∑
i=1

1

σ2
i

, (4.8)

where we used Facts 4 and 7. Combining (4.8) and the following fact reveals to us why
xLS is not a good estimate for the unknown vector x∗.

88

Fact 9. For a blurring matrix A, the singular values decay gradually to zero. As such, the
condition number of A which is defined as σ1

σn
is very large. Recall that, in this situation,

we say that matrix A is ill-conditioned.

All in all, the reason that xLS cannot be used as a good estimate of x∗ is due to the
amplification of high-frequency components of the noise in the data and this is caused by
the inversion of very small singular values of the ill-conditioned blurring matrix A. In the
next section, we recall the commonly used regularization methods from Section 1.5 and
the optimization algorithms used along these regularization method for reconstructing the
sharp image x∗ by solving (4.5).

4.2.1 Regularization

As previously reasoned in Section 4.2, solving the least squares problem (4.5) to optimality
does not necessary yield a desirable estimate of the sharp image x∗ and it may even lead
to a worse blurring than b. We also explained that the reason for this is that the inversion
of the very small singular values of the blurring matrix A will amplify the high-frequency
components of the noise in the data. We discussed in Section 1.5 that regularization
methods are the most commonly used approach for dealing with this phenomenon. In
particular, we stated the Tikhonov regularization method. We also mentioned that various
regularization methods for gradient-based algorithms such as GD, LSMR, LSQR and other
CG-type methods have been already researched. As far as we know, the previous literature
on the least squares deconvolution did not explore the performance of the SGD algorithm
for least squares deconvolution (Algorithm 9). Algorithm 9 will be further explored in the
rest of this chapter and particularly, the following observations are made.

• It is illustrated through numerical and theoretical evidence that SGD with early
stopping exhibits implicit regularization. Our theory in particular shows that SGD
and GD shall exhibit similar behaviour.

• Inspired by numerical experiments, we introduce a new easily implementable and
inexpensive stopping rule for SGD. Motivated by the fact that both GD and SGD
behave similarly and that the GD algorithm is more amenable to analysis, we analyze
our stopping time for the GD algorithm instead of SGD.

89

Algorithm 9: SGD algorithm for least squares deconvolution

initialize: xSGD
0 = 0, A and b as in (4.2), α > 0

for k = 0, 1, 2, · · ·
Choose ik ∈ {1, 2, · · · ,m} uniformly at random.
Update xSGD

k by setting

xSGD
k+1 = xSGD

k − α
(〈
A[ik, :]

T ,xSGD
k

〉
− bik

)
· A[ik, :]

T . (4.9)

k ← k + 1
end

4.3 SGD with early stopping

We begin this section by computing the expected value of the error squared term for the
GD algorithm (Algorithm 10).

Algorithm 10: GD algorithm for least squares deconvolution

initialize: xGD
0 = 0 ∈ Rn, A and b as in (4.2), α > 0

for k = 0, 1, · · ·
Update xGD

k+1 = xGD
k − αAT

(
AxGD

k − b
)

k ← k + 1
end

Proposition 3. Let {xGD
k }+∞

k=0 be the sequence generated by Algorithm 10. The following
is then true for all N ≥ 0.

E
[
‖xGD

N − x∗‖2
]

=
n∑
i=1

β2N
i (x∗i)

2 + σ2

n∑
i=1

(
1− βNi

)2

λi
, (4.10)

where βi = 1 − αλi. The eigenvalues λi and the SVE coefficients x∗i for i = 1, · · · , n are
defined in Notation 1.

Proof. Update formula of GD can be written as follows.

xGD
k =

(
I − α · ATA

)
xGD
k−1 + αATb. (4.11)

90

Iterating (4.11) and taking into account that x0 = 0, we obtain that

xGD
N = α

[
I + (I − αATA) + · · ·+ (I − αATA)N−1

]
ATb

= α
[
I + (I − αATA) + · · ·+ (I − αATA)N−1

]
AT (Ax∗ + ξ)

= α
[
I + (I − αATA) + · · ·+ (I − αATA)N−1

] (
ATAx∗ + ATAξLS

)
= α

[
I + (I − αATA) + · · ·+ (I − αATA)N−1

]
ATA (x∗ + ξLS)

=
(
I − (I − αATA)N

)
(x∗ + ξLS)

(4.12)

In the third equality, we used that ATξ = ATAξLS. By (4.12), we conclude that

xGD
N − x∗ = −(I − αATA)Nx∗ +

(
I − (I − αATA)N

)
ξLS. (4.13)

Hence, it holds that

‖xGD
N − x∗‖2 = ‖(I − αATA)Nx∗‖2 + ‖

(
I − (I − αATA)N

)
ξLS‖2

− 2ξTLS

(
I − (I − αATA)N

)
(I − αATA)Nx∗.

(4.14)

By Fact 4 and (4.7), we can see that

E
[
ξTLS

(
I − (I − αATA)N

)
(I − αATA)Nx∗

]
= 0 (4.15)

Furthermore by Fact 7 and (4.7), it can be verified that

E
[
‖
(
I − (I − αATA)N

)
ξLS‖2

]
= σ2 Tr

((
I −

(
I − αATA

)N) (
ATA

)−1
)
. (4.16)

Combining (4.14), (4.15) and (4.16), (4.10) readily follows.

We next illustrate that the implicit regularization effect of GD with early stopping for
least squares deconvolution follows from Facts 8, 9 and Proposition 3 under the assumption
that

α ≤ 1

λ1

. (4.17)

To this end, in view of Fact 9, let us suppose that for some 1 ≤ s ≤ n the following
approximation hold.

λi ≈ 0 for all i ≥ s. (4.18)

By Fact 8 and (4.18), we obtain that

x∗i ≈ 0 for all i ≥ s. (4.19)

91

By (4.18), (4.19) and the fact that βi for 1 ≤ i ≤ s converges to 0 rapidly, we are led to
believe that the following hold for some small k.

n∑
i=1

β2k
i (x∗i)

2 ≈ 0 and σ2

n∑
i=1

(
1− βki

)2

λi
≈ σ2

s∑
i=1

1

λi
. (4.20)

Notice that we used the assumption (4.17). On the other hand, we observe that

E
[
‖xLS − x∗‖2

]
= σ2

n∑
i=1

1

λi
. (4.21)

Finally, combining (4.18), (4.20) and (4.21), we get that

E
[
‖xGD

TGD
− x∗‖2

]
� E

[
‖xLS − x∗‖2

]
. (4.22)

Hence, if GD is halted at the optimal stopping time, it will exhibit an implicit regularization
effect in the sense of (4.22).

4.3.1 Implicit regularization of SGD with early stopping

We already reasoned that GD with early stopping for least squares deconvolution exhibits
favorable regularization. This section is devoted to understanding the implicit regulariza-
tion effect of SGD (Algorithm 9) with early stopping.

The following Theorem shows that the iterates generated by the SGD algorithm with
sufficiently small step-size follow the gradient flow with overwhelming probability.

Theorem 9. Let {xSGD
k }+∞

k=0 be a sequence generated by Algorithm 9. Fix i ∈ {1, · · · , n}
and let ui be an eigenvector of ATA as in Notation 1. Moreover, suppose that αλi < m.
The following concentration bound then holds for all N ≥ 0 and all positive real t.

P

(∣∣∣∣∣
〈
ui,x

SGD
N −

(
1−

(
1− αλi

m

)N)
xLS

〉∣∣∣∣∣ ≥ t

σi

)
≤ 2 exp

(
− t2

2αmτ 2
N

)
, (4.23)

where τ 2
N is a variance parameter depending on A, b and N . Particularly, it holds that

τ1 ≤ · · · ≤ τN .

Notice that, ideally, it must hold that mτN = O(1). In a discussion after the proof
of Theorem 9, we illustrate that under some reasonable assumption this bound holds.

92

Furthermore, by (4.12),
(

1−
(
1− αλi

m

)N)
xLS equals to xGD

N where the GD sequence is

generated using the step-size α
m

. Finally, note that

1−
(

1− αλi
m

)Nm
≈ 1− exp (−αλiN) ≈ 1− (1− αλi)N .

Thus, the SGD and GD iterates indeed lie close to each other in the sense of Theorem 9.

Proof of Theorem 9. Update formula (4.9) can be rewritten as follows.

xSGD
k+1 =

(
I − αA[ik, :]

TA[ik, :]
)
xSGD
k + αbikA[ik, :]

T

=
(
I − αA[ik, :]

TA[ik, :]
)
xSGD
k + αA[ik, :]

TA[ik, :]x
∗ + αξikA[ik, :]

T .
(4.24)

Therefore, we conclude that

xSGD
k+1 − x∗ =

(
I − αA[ik, :]

TA[ik, :]
) (
xSGD
k − x∗

)
+ αξikA[ik, :]

T . (4.25)

Taking conditional expectations from both sides in (4.25) verifies that for all k ≥ 1 it holds.

E
[
xSGD
k+1 − x∗|i0, · · · , ik−1

]
=
(
I − α

m
· ATA

) (
xSGD
k − x∗

)
+
α

m
ATξ

=
(
I − α

m
· ATA

) (
xSGD
k − x∗

)
+
α

m
ATAξLS.

(4.26)

Hence, by (4.26), we obtain that

E
[
xSGD
k+1 − xLS|i0, · · · , ik−1

]
=
(
I − α

m
· ATA

) (
xSGD
k − xLS

)
. (4.27)

Denote by zk := 〈ui,xSGD
k − xLS〉. Taking inner products from both sides of (4.27) with

ui, we see that

E [zk+1|i0, · · · , ik−1] =

(
1− αλi

m

)
zk. (4.28)

Denote by z̃k :=
(
1− αλi

m

)−k
zk. By (4.28), we have that

E [z̃k+1|i0, · · · , ik−1] = z̃k.

We next upper bound the difference |z̃k+1 − z̃k|. To this end, using (4.24), it can be seen
that there exists some positive constant M such that the following bound holds for all
k ≥ 0. ∣∣〈ui,xSGD

k+1 − xSGD
k 〉

∣∣ ≤ αM.

93

Notice that(
1− αλi

m

)k+1

· |z̃k+1 − z̃k| =
∣∣∣∣〈ui,xSGD

k+1 − xLS〉 −
(

1− αλi
m

)
〈ui,xSGD

k − xLS〉
∣∣∣∣

=

∣∣∣∣〈ui,xSGD
k+1 − xSGD

k 〉+
αλi
m
〈ui,xSGD

k − xLS〉
∣∣∣∣

≤ αM +
αλi
m

∣∣〈ui,xSGD
k − xLS〉

∣∣
≤ α

(
M +

λick
m

)
,

(4.29)

where ck is defined by
ck := sup

∣∣〈ui,xSGD
k − xLS〉

∣∣ < +∞.

Here the supremum is taken over possible values of xk for every possible choice of i0, · · · , ik
which is finite set and hence the supremum is finite. Set

τN := sup
k=1,··· ,N

M +
λick
m

.

The bound in (4.29) gives (
1− αλi

m

)k+1

|z̃k+1 − z̃k| ≤ ατN .

By Azuma’s inequality (Lemma 4) the following concentration bound holds for all positive
real t.

P

(
|z̃N − z̃0| ≥ t

(
1− αλi

m

)−N)
≤ 2 exp

(
− t2

2τ 2
Nα

2
∑N

k=1

(
1− αλi

m

)2(N−k)

)
.

To obtain (4.23), it suffices to verify the following bound.

α2

N∑
k=1

(
1− αλi

m

)2(N−k)

≤ mα

λi
.

This bound obviously holds and hence (4.23) holds. The proof is complete.

94

Ideally, it must hold that mτ 2
N = O(1

m
). To this end, we need to make the following

assumption.
σi
∣∣〈ui,xSGD

k − xLS〉
∣∣ = O(σ) +O(1). (4.30)

It is worth noting that the sequence {xSGD
k }+∞

k=0 converges to a neighborhood of xLS [70].
As a result, (4.30) follows since σi〈ui,xLS〉 ∼ N(0, σ2). Now, under the assumption that
(4.30) holds, to obtain mτ 2

N = O(1
m

), it suffices to have that

m

α

∣∣〈ui,xSGD
k+1 − xSGD

k

〉
| = O(1). (4.31)

Rewriting (4.31), we obtain that

m
∣∣(〈A[ik, :]

T ,xSGD
k

〉
− bik

)
· 〈ui, A[ik, :]

T 〉
∣∣ = O(1). (4.32)

By the design of the blurring matrix A, we expect to have∣∣〈A[ik, :]
T ,xSGD

k

〉
− bik

∣∣ = O(1) and
∣∣〈ui, A[ik, :]

T 〉
∣∣ = O(

1

m
). (4.33)

Combining (4.30), (4.32) and (4.33), we obtain that mτ 2
N = O(1

m
). We leave it for later

work to provide a rigorous proof for (4.30).

4.4 Numerical experiments

We conduct experiments where three algorithms are considered: SGD (Algorithm 9), GD
(Algorithm 5) and CGLS (Algorithm 2). It is emphasized that a full experimental compar-
ison of the SGD, GD, and CGLS algorithms for the deconvolution least squares problem
is outside of the scope of this thesis; our numerical experiments is only a motivation for
studying the SGD algorithm.

We denote {xSGD
k }+∞

k=0, {xGD
k }+∞

k=0 and {xCGLS
k }+∞

k=0 as the iterates of SGD, GD and CGLS
respectively. For each algorithm, we record the number of iterations it takes for the error
term ‖xk −x∗‖ to achieve its minimum value (denoted by TSGD, TGD and TCGLS for SGD,
GD and CGLS respectively). For example,

TGD := argmin
k≥0

‖xGD
k − x∗‖.

We also calculate the relative error at the instant when the iteration count is reached. For
the case of the GD algorithm, we can define

EGD :=
‖xGD

TGD
− x∗‖

‖x∗‖
, (4.34)

95

Figure 4.3: The error terms ‖xGD
k − x∗‖ (left), ‖xSGD

k − x∗‖ (right), and ‖xCGLS
k − x∗‖

(center) where {xSGD
k }+∞

k=0, {xGD
k }+∞

k=0 and {xCGLS
k }+∞

k=0 are the iterates of SGD, GD and
CGLS algorithms applied to the least-squares problem (4.5) respectively. Here x∗, A and
b are constructed as in Figure 4.2. We observe that TSGD, TGD and TCGLS are equal to 54m,
48 and 9 respectively and also ESGD ≈ EGD ≈ ECGLS.

where EGD is the relative error. ESGD and ECGLS are the corresponding relative errors for
SGD and CGLS algorithms receptively and are defined similarly to (4.34).

We perform a numerical experiment (Figure 4.3) to compute the values of TSGD, TGD,
TCGLS , ESGD, EGD and ECGLS. We observe that if the three algorithms are halted at their
respective optimal stopping time (namely TSGD, TGD and TCGLS), then they will produce
approximately equal relative errors. In other words, we have

ESGD ≈ EGD ≈ ECGLS. (4.35)

Furthermore, we have
TSGD ≈ mTGD. (4.36)

Moreover, in the event where the noise level is high enough, we observed that

TSGD < mTGD. (4.37)

It is emphasized that across several more experiments, we observed similar results as in
(4.35), (4.36) and (4.37). In our experiments, we plotted the sequences

{
‖AxSGD

k ‖
}+∞
k=0

and observed that for the GD and SGD algorithms both plots are Γ-shaped (Figure 4.4).
Particularly, as the noise level increases, the corner of the Γ-curve becomes closer to the
value ‖AxSGD

TSGD
‖. On the other hand, in a low noise regime, the error term at termination is

more robust to any unsubstantial miscalculation of the optimal stopping time. Motivated
by these observations, we propose the following stopping rule for the SGD algorithm:

TS := inf{k : ‖AxSGD
km ‖2 ≥ δ‖b‖2}, (4.38)

where δ ∈ (0, 1) is a hyperparameter. In the next section, we provide theoretical analysis
for the stopping rule (4.38).

96

Figure 4.4: Plots of the sequence {‖AxSGD
k ‖}+∞

k=0 where the sequence {xSGD
k }+∞

k=0 is generated
by Algorithm 9. From left to right, the noise levels are equal to 0.015, 0.03 and 0.06
respectively. The corresponding value of ‖AxSGD

TSGD
‖ is plotted by a red dot.

4.5 Stopping time analysis

As a first step towards understanding the behaviour of the stopping time (4.38), we provide
an analysis for the case where the iterates of the GD algorithm (Algorithm 11) are used
instead of SGD.

T := inf
{
k : ‖AxGD

k ‖2 ≥ δ‖b‖2
}
. (4.39)

Algorithm 11: GD for LS deconvolution with stopping criterion

initialize: xGD
0 = 0 ∈ Rn, A and b as in (4.2), α > 0, δ ∈ (0, 1)

while ‖Axk‖2 < δ‖b‖2

Update xGD
k+1 = xGD

k − αAT
(
AxGD

k − b
)

k ← k + 1
set T = k
end

We defer the analysis of (4.38) for later work (Section 5.2). The next theorem provides
a theoretical upper bound for the `2-error term at termination.

Theorem 10. Let {xGD
k }+∞

k=0, T and δ be as in Algorithm 11. Assume that for some
r ∈ {1, · · · , n} the following bound holds where {λi}ni=1 and {x∗i }ni=1 are defined in Notation
1. ∑

i>r

λi (x
∗
i)

2 ≤ 1− δ
2

∑
i≤r

λi (x
∗
i)

2 . (4.40)

Suppose that σ ≤ 1−δ
4
· ‖
√
ATAx∗‖√
m+1

and α satisfies αλ1 ≤ 1
2
. Then with probability at least

97

1− 2 exp
(
−m+1

8

)
, T is finite and the following bound holds.

‖xGD
T − x∗‖ ≤

√√√√ n∑
i=1

exp

(
2 log (4 (1− δ)) λi

λ1

)
x∗i

2 + σ

√√√√ n∑
i=1

min

{
1

λi
, log

(
1− δ

4

)2
λi
λ2
r

}
.

Here xGD
T denotes the iterate at termination.

Before turning to the proof of Theorem 10, it is important to note that the bound (4.40)
is guaranteed by assuming that the magnitude of the SVE coefficients x∗i decay faster than
the eigenvalues λi. Ideally, when using the assumption (4.4), the value of c > 0 should be
large enough. We already explained in 4.1.1 that in the context of image deblurring, such
fast decay rates are prevalent (Fact 8 and bound (4.4)). A large enough value of c and by
extension a fast decay rate will also ensure that

λ1

λr
is not large for r in (4.40). (4.41)

Under these heuristic assumptions, for properly chosen δ, we have

n∑
i=1

exp

(
2 log (4 (1− δ)) λi

λ1

)
x∗i

2 � ‖x∗‖2 &
n∑
i=1

min

{
1

λi
, log

(
1− δ

4

)2
λi
λ2
r

}
�

n∑
i=1

1

λi
.

Figure 4.5 exemplifies the fact that the assumed decay rate for the SVE coefficients is
appropriate in such a way that the informal assumption (4.41) also holds.

Ideally, Theorem 10 can be used for providing a good stopping criterion for GD if the
parameter δ is properly tuned. However, it is emphasized that Theorem 10 is only for
the purpose of providing insight for the SGD least squares deconvolution algorithm, hence
estimating the best value of δ is not a concern.

Before proving Theorem 9, we need three auxiliary lemmas.

Lemma 14. Let A,α and δ be as in Algorithm 11. Denote by

Φk :=
(
I −

(
I − αATA

)k)2

− δI.

Suppose that α < 1
λ1

. The following then holds.

Φ0 � Φ1 � Φ2 � · · · .

98

Figure 4.5: Plot of the decay rates for {log(λi)}ni=1 (blue curve) and {log((x∗i)
2)}ni=1 (green

curve). Here the same data as in Figure 4.2 is used. It can be observed that for r = 500,
the informal assumption (4.41) holds.

Proof. Note that Φk � 0 for all k ≥ 0. Fix k ≥ 0. We observe that

Φk � Φk+1 ⇐⇒
(
I −

(
I − αATA

)k)2

�
(
I −

(
I − αATA

)k+1
)2

⇐⇒ I −
(
I − αATA

)k � I −
(
I − αATA

)k+1

⇐⇒
(
I − αATA

)k+1 �
(
I − αATA

)k
.

The second implication holds by using the simple fact from elementary linear algebra
stating that for two commuting positive semidefinite matrices X and Y , it holds that
X � Y if and only if X2 � Y 2.

Lemma 15. Let α,w1, · · · , wr, x1, · · · , xr ∈ (0,+∞) such that wr ≤ · · · ≤ w1 and αw1 ≤
1
2
. Fix `, u ∈ (0, 1) and assume that positive real t satisfies the following bound.

` ≤
∑r

i=1 exp (t log(1− αwi))wixi∑r
i=1 wixi

≤ u. (4.42)

The following is then true.
− log(u)

2w1

≤ tα ≤ − log(`)

wr
. (4.43)

99

Proof. We begin by denoting µi = log(1 − αwi) and pi = wixi∑r
i=1 wixi

for all i ∈ [r]2. Note

that p1, · · · , pr define a probability distribution on [r]. Therefore, for any positive real t
satisfying (4.42), it holds that

` ≤ E [exp (tµi)] ≤ u. (4.44)

Using Jensen’s inequality, we obtain that

exp (tE [µi]) ≤ E [exp (tµi)]

By (4.44) and (4.76), we obtain that

t
r∑
i=1

µipi ≤ log(u) (4.45)

Applying the inequality log(1 + b) ≥ b
1+b

for all b > −1, we then obtain that

− log(1− αwi) = −µi ≤
αwi

1− αwi
≤ 2αwi, (4.46)

where the assumption 1
1−αwi ≤ 2 for all i ∈ [r] is used. Combining (4.45) and (4.46), we

have that

− log (u) ≤ 2tα
r∑
i=1

wipi. (4.47)

By (4.47) and
∑n

i=1 pi = 1, we have

− log(u) ≤ 2tαw1.

We thus obtain the LHS inequality in (4.43). To obtain the other bound in (4.43), since
µ1 ≤ · · · ≤ µr, we have that

` ≤ E [exp (tµi)] ≤ exp(tµr) ≤ exp(−tαwr), (4.48)

where the bound log(1− b) ≤ −b for all b < 1 is used. By (4.48), we see that

tα ≤ − log(`)

wr

The proof is complete.

2[r] := {1, · · · , r}

100

Lemma 16. Let {xGD
k }+∞

k=0, α and δ be as in Algorithm 11. The following identity holds.

‖AxGD
N ‖2 − δ‖b‖2 = (y∗ +ψ)T ΦN (y∗ +ψ)− δ‖ψ0‖2, (4.49)

where Φk is defined in (14), y∗ :=
√
ATAx∗, ψ :=

(
ATA

) 1
2 ξLS and ψ0 ∼ N(0, σ2Im−n).

Particularly, the sequence {‖AxGD
k ‖}+∞

k=0 is monotonically increasing provided that α < 1
λ1

.

Proof. By (4.12), it holds that

xGD
N =

(
I − (I − αATA)N

)
(x∗ + ξLS) . (4.50)

This yields that

‖AxGD
N ‖2 =

(
xGD
N

)T
ATAxGD

N

= (x∗ + ξLS)T
(
I −

(
I − αATA

)N)
ATA

(
I −

(
I − αATA

)N)
(x∗ + ξLS)

= (x∗ + ξLS)T
√
ATA

(
I −

(
I − αATA

)N)(
I −

(
I − αATA

)N)√
ATA (x∗ + ξLS)

= (y∗ +ψ)T (ΦN + δI) (y∗ +ψ)

In addition,

‖b‖2 = (x∗)TATAx∗ + 2(x∗)TATξ + ‖ξ‖2 = ‖y∗‖2 + 2(y∗)Tψ + ‖ξ‖2

= (y∗ +ψ)T (y∗ +ψ) +
(
‖ξ‖2 − ‖ψ‖2

)
.

Combining the pieces, we see that

‖AxGD
N ‖2 − δ‖b‖2 = (y∗ +ψ)T ΦN (y∗ +ψ)− δ

(
‖ξ‖2 − ‖ψ‖2

)
. (4.51)

Using ψ =
(
ATA

)− 1
2 ATξ, it holds that

‖ξ‖2 − ‖ψ‖2 = ξTξ −ψTψ = ξTξ − ξTA
(
ATA

)−1
ATξ. (4.52)

Let I −A
(
ATA

)−1
AT = WD0W

T where W TW = Im and D0 is a m×m diagonal matrix
with the first m− n diagonal entries equal to 1 and the rest equal to 0. Letting ψ0 to be
the first m− n entries of D0W

Tξ we obtain (4.49). Combining (4.49) and Lemma 14, we
obtain that ‖AxGD

k ‖ is increasing. The proof is complete.

Next proposition introduces deterministic stopping times τ1 and τ2 and shows that T
(Eq. (4.39)) lies in [τ1, τ2] with overwhelming probability provided that σ (Assumption 3)
is small enough. The proof is based on the concentration of measure for norm of random
Gaussian vectors.

101

Proposition 4. Define deterministic values τ1 and τ2 as follows.

τ1 := max
{
k : (y∗)TΦky

∗ ≤ −(1− δ) · ‖y∗‖2
}

and τ2 := min
{
k : (y∗)TΦky

∗ ≥ (1− δ) · ‖y∗‖2
}
.

Here Φk is defined in Lemma 14 and y∗ :=
√
ATAx∗. Provided that σ ≤ (1−δ)

8
· ‖y

∗‖√
m+1

, then

with probability at least 1− 2 exp
(
−m+1

8

)
, it holds that T ∈ [τ1, τ2].

Proof. By Lemma 5, the following holds with probability at least 1− 2 exp
(
−m+1

8

)
.

‖ψ0‖ ≤ σ(1
2

√
m− n+ 1 + ε) ≤ σ ·

√
m+ 1, ‖ψ‖ ≤ σ(1

2

√
n+ 1 + ε) ≤ σ

√
m+ 1, (4.53)

where we set ε = 1
2

√
m+ 1. By Lemma 16, ‖AxGD

k ‖ is monotonic for k = 0, 1, 2, · · · .
Therefore, T is finite if and only if the following bound holds.

‖AxLS‖2 − δ‖b‖2 = (1− δ)‖y∗ +ψ‖2 − δ‖ψ0‖2 ≥ 0. (4.54)

Assuming that the bounds in (4.53) hold, we obtain that

√
1− δ · ‖y∗ +ψ‖ ≥

√
1− δ · ‖y∗‖ −

√
1− δ · ‖ψ‖

≥
√

1− δ · ‖y∗‖ −
√

1− δ · σ ·
√
m+ 1

≥
√

1− δ · 8σ

1− δ
·
√
m+ 1−

√
1− δ · σ ·

√
m+ 1

≥ σ ·
√
m+ 1 ·

(
8√

1− δ
−
√

1− δ
)

≥ σ ·
√
m+ 1

≥ ‖ψ0‖.

We used the bound σ ≤ 1−δ
4
· ‖y

∗‖√
m+1

in the third inequality. Therefore T is finite assuming

that the bound (4.53) hold. We then have that3

(y∗ +ψ)T ΦT (y∗ +ψ) ≈ δ‖ψ0‖2 (4.55)

3It is clear that there exists t∗ ∈ [T − 1, T] such that (y∗ +ψ)
T

Φt∗ (y∗ +ψ) = δ‖ψ0‖2. Because of
this, the bounds in Theorem 9 for the error term at t∗ instead of T . However, for simplicity of expression,
we assume that this approximation holds.

102

By (4.53), we have∣∣δ‖ψ0‖2 −ψTΦkψ − 2ψTΦky
∗∣∣ ≤ σ2

(
ε+ 1

2

√
m− n+ 1

)2
+ σ2

(
ε+ 1

2

√
n+ 1

)2

+ 2σ‖y∗‖
(
ε+ 1

2

√
n+ 1

)
≤ 2σ2(m+ 1) + 2σ‖y∗‖

√
m+ 1

≤ 2
(

1
16

(1− δ)2 + 1
4
(1− δ)

)
‖y∗‖2

≤ (1− δ)‖y∗‖2.

Here we used the bounds σ
√
m+ 1 ≤ ‖y∗‖

2
. Therefore, with probability at least 1 −

2 exp
(
−m+1

8

)
, the following bound holds for all k.∣∣δ‖ψ0‖2 −ψTΦkψ − 2ψTΦky

∗∣∣ ≤ (1− δ)‖y∗‖2 (4.56)

By (4.55) and (4.56), we obtain that the following estimate holds with probability at least
1− 2 exp

(
−m+1

8

)
, ∣∣(y∗)TΦTy

∗∣∣ ≤ (1− δ)‖y∗‖2.

This immediately implies that T ∈ [τ1, τ2] with probability at least 1− 2 exp
(
−m+1

8

)
. The

proof is complete.

We are now ready to prove Theorem 9.

Proof of Theorem 9. Instantiate notation from Proposition 4. Denote µi := log(1 − αλi)
and recall the deterministic stopping times τ1 and τ2. Rearranging yields that

[τ1, τ2] ⊆

{
t : 1− δ ≤ 1

‖y∗‖2

n∑
i=1

(
1− (1− exp (tµi))

2)λix∗i 2 ≤ 2(1− δ)

}
. (4.57)

We will first show that

[τ1, τ2] ⊆
{
t : − log (4(1− δ)) · 1

λ1

≤ tα ≤ − log

(
1− δ

4

)
· 1

λr

}
. (4.58)

Using exp(tµi) ≤ 1− (1− exp (tµi))
2 ≤ 2 exp(tµi), we obtain that

[τ1, τ2] ⊆

{
t :

1− δ
2
≤ 1

‖y∗‖2

n∑
i=1

exp(tµi)λix
∗
i

2 ≤ 2(1− δ)

}
. (4.59)

103

By Assumption (4.40), we have

1

‖y∗‖2

∑
i≥r+1

λix
∗
i

2 ≤ 1− δ
2

. (4.60)

By (4.59) and (4.60), we have

[τ1, τ2] ⊆

{
t :

1− δ
4
≤ 1

‖y∗‖2

r∑
i=1

exp(tµi)λix
∗
i

2 ≤ 2(1− δ)

}
. (4.61)

Using Assumption (4.40), we obtain that
∑

i≥r+1 λix
∗
i

2 ≤
∑r

i=1 λix
∗
i

2. Therefore,∑r
i=1 exp(tµi)λix

∗
i

2

2
∑r

i=1 λix
∗
i

2 ≤ 1

‖y∗‖2

r∑
i=1

exp(tµi)λix
∗
i

2 ≤
∑r

i=1 exp(tµi)λix
∗
i

2∑r
i=1 λix

∗
i

2 . (4.62)

By (4.59), (4.61) and (4.62), we obtain that

[τ1, τ2] ⊆
{

1− δ
4
≤
∑r

i=1 exp(tµi)λix
∗
i

2∑r
i=1 λix

∗
i

2 ≤ 4(1− δ)
}
. (4.63)

By Lemma 15, the bound on α (αλ1 ≤ 1
2
) and (4.63), we obtain (4.58) as desired. Next,

denote

Cb := sup
t≥τ1

√∑
i=1

exp (2tµi)x∗i
2, and Cv :=

σ

σi
· sup

0≤t≤τ2
|1− exp(tµi)|. (4.64)

Our next aim is to upper bound Cb and Cv. Let k ∈ [τ1, τ2]. By (4.58), we have that

− log (3(1− δ)) · 1

λ1

≤ τ1 ≤ k (4.65)

By (4.65), we have

exp (2kµi) ≤ exp (−2kαλi) ≤ exp

(
2 log (3 (1− δ)) · λi

λ1

)
∀i ∈ [n], (4.66)

In order to bound Cv, using the inequality 1 + x ≤ exp(x), we obtain that

σ

σi
· (1− exp(kµi)) ≤

σ

σi
· (−kµi) = σσi · kα ·

log(1− αλi)
−αλi

≤ σσi · kα. (4.67)

104

We also clearly have that
σ

σi
· sup

0≤t≤τ2
|1− exp(tµi)| ≤

σ

σi
. (4.68)

By (4.58), (4.67) and (4.68), we obtain that

C2
v ≤ σ2

n∑
i=1

min

{
1

λi
, log

(
1− δ

4

)2

· λi
λ2
r

}
. (4.69)

The proof is complete.

4.6 A matrix concentration inequality for products

In this section, we present a non-asymptotic concentration inequality for the random matrix
product

Zn = (Id − αXn) (Id − αXn−1) · · · (Id − αX1) , (4.70)

where {Xk}+∞
k=1 is a sequence of bounded independent random positive semidefinite matrices

with common expectation E [Xk] = Σ. Under these assumptions, we show that, for small
enough positive α, Zn satisfies the concentration inequality

P (‖Zn − E [Zn]‖ ≥ t) ≤ 2d2 · exp

(
−t2

ασ2

)
for all t ≥ 0, (4.71)

where σ2 denotes a variance parameter. We remark that the bound (4.71) suggests that
for the least-squared problem the SGD algorithm trajectory follows the gradient flow with
overwhelming probability. See Figure 4.6.

Products of random matrices appear as building blocks for many stochastic iterative
algorithms, e.g. [67, 81]. While non-asymptotic bounds of averages of these matrices are
well developed, e.g. [83, 86], the analogous bounds of their products are much harder to
understand due to the non-commutative nature of matrix multiplication. As such, efforts to
understand bounds of this type have become an active area of research e.g. [39, 43, 47]. In
this note, we provide a non-asymptotic concentration bound (4.71) for the random matrix
product Zn (4.70). These instances appear, for example, in the stochastic gradient descent
algorithm applied to the linear least squares problem. We remark that bound (4.71) will
be of special interest when Xk is almost surely low rank for all k. In this event, almost all
eigenvalues of each factor in the matrix product Zn are equal to 1 whereas E[Zn] has an
exponentially decaying operator norm. (Note: Without loss of generality, we can assume

105

Figure 4.6: We consider the SGD algorithm applied to the least-squares problem with
A ∈ R3×2, σ = 0.5 and α = 0.001. The diagonal lines are the level sets of the objective
function, the green asterisk is x∗, the red asterisk is xLS, the path of blue dots are the
SGD iterates, and the light-blue curve is the gradient flow.

that Σ is positive definite.) Hence, it is interesting to observe that Zn concentrates around
its mean with overwhelming probability as in (4.71), especially in the case where Xk’s are
almost surely low rank matrices.

In [43], using the uniform smoothness property of the Schatten p-norm, the authors
have studied non-asymptotic bounds for the products of random matrices, in particular,
random contractions [43, Theorem 7.1]. To apply their result to the matrix product (4.70),
we will need to make some further assumptions. First, we need to assume some bound
involving |I − αXk| since the Araki-Lieb-Thirring inequality [8, IX.2.11] is used in their
analysis. Second, we need to assume a lower bound t2 ≥ cα2

∑n
k=1 ‖Xk − Σ‖2 which may

grow linearly in n. This will be problematic particularly since we are only interested in
the case where t ≤ 1.

On the other hand, compared to our result, the bound in [43, Theorem 7.1] has a weaker
dependency on the dimension d and, more importantly, it works in a broader variety of
instances. For example, one can use their bound when in (4.70), instead of I − αXk, we
consider the factors I − αkXk with αk decaying at a proper rate.

We next provide a proof for (4.71). The proof proceeds by constructing a martingale
sequence satisfying bounded differences and then applying Azuma’s inequality, Lemma
4. We assume that the positive semidefinite random matrices Xk in (4.70) are drawn
independently and they satisfy E [Xk] = Σ for all k. In addition, we suppose that Xk are

106

uniformly bounded in the operator norm, meaning that there exists r > 0 such that

‖Xk‖op ≤ r almost surely.

Let µ1, · · · ,µd denote the eigenvectors of Σ and λ1 ≥ · · · ≥ λd ≥ 0 denote the correspond-
ing eigenvalues. For each i ∈ [d] := {1, · · · , d}, define ci to be the infimum over all positive
reals for which

‖(Xk − λiI)µi‖op ≤ ciλi almost surely.

Note that ci < +∞ almost surely as ci ≤ 1+ r
λi

and also, because Xk is positive semidefinite,
ci = 0 whenever λi = 0. We will use the following parameter to measure the amount of
variation in Xk

σ2 :=
4d

3

d∑
i=1

c2
iλi.

Theorem 11. Suppose that α ∈ (0, 1
2r

). Then the following concentration inequality holds.

P
(
‖Zn − E [Zn]‖op ≥ t

)
≤ 2d2 · exp

(
−t2

ασ2

)
. (4.72)

Proof. Without loss of generality, we can assume that ci, λi > 0 for all i ∈ [d]. We will first
show that, for any i, j ∈ [d], the following bound holds for all t ≥ 0:

P
(∣∣µTi Znµj − E

[
µTi Znµj

]∣∣ ≥ t
√

4λi
3
· ci
)
≤ 2 exp

(
−t2

α

)
. (4.73)

Set Z0 = Id. Then we note that for all k ≥ 0,

E
[
µTi Zkµj

]
= µTi E [Zk]µj = µTi (I − αΣ)k µj = (1− αλi)k · δi,j,

where δi,j stands for Kronecker delta. For notational convenience, let us denote zk :=
µTi Zkµj. We have that

E [zk|Xk−1, · · · , X1] = µTi E [I − αXk]Zk−1µj = (1− αλi) zk−1. (4.74)

Denote qi := 1 − αλi and define the random variable Yk := q−ki · zk. Dividing both sides
of (4.74) by qki , we obtain that E [Yk|Xk−1, · · · , X1] = Yk−1. Thus, {Yk}+∞

k=1 is a martingale
with respect to {Xk}+∞

k=1. We observe that for all k ≥ 1

qki · |Yk − Yk−1| = |zk − qi · zk−1| = α
∣∣µTi (Xk − λiI)Zk−1µj

∣∣ ≤ αciλi,

107

where the assumption αr ≤ 1
2

yielded the bound ‖Zk−1‖ ≤ 1 a.s. Thus, by Azuma’s
inequality Lemma 4, we have that for any ε ≥ 0

P (|zn − E [zn] | ≥ ε) = P
(
|Yn − Y0| ≥ ε · q−ni

)
≤ 2 exp

(
−ε2

2α2λ2
i c

2
i

∑n−1
k=0 q

2k
i

)
.

(4.75)

Note that by Jensen’s inequality

λi ≤ ‖Σ‖ = ‖opE [Xk] ‖op ≤ E [‖Xk‖op] ≤ r. (4.76)

Therefore, by (4.76) and since α ∈ (0, 1
2r

), we obtain that
∑n−1

k=0 q
2k
i ≤ 2

3(1−qi) . Plugging

this bound into the right-hand side of (4.75) and letting ε = t
√

4λi
3
· ci, we will obtain

(4.73). Finally, in order to see (4.72), we observe that by (4.73), with probability exceeding

1− 2d2 · exp
(
− t2

α

)
, it holds that

‖Zn − E [Zn]‖2 ≤ t2 · 4d

3

d∑
i=1

c2
iλi.

Therefore,

P (‖Zn − E [Zn]‖ ≥ t · σ) ≤ 2d2 · exp

(
−t2

α

)
.

The result immediately follows since ‖Zn − E [Zn]‖op ≤ ‖Zn − E [Zn]‖.

108

Chapter 5

Conclusion and Future Work

While first order methods induce very low computational cost and require low memory
storage, they still need to be regularized to prevent overfitting. The most classical type
of regularization is by way of adding a penalty function to the objective function. An
alternative form however is based on a method called early stopping, in which we halt the
algorithm once some termination criterion has been activated. Imposing much less com-
putational cost is the main advantage of early stopping over other forms of regularization.

Because of its various favorable aspects, the stochastic gradient descent algorithm and
its variants play a key role in modern optimization. Scalability for large scale models [37]
and parallelizability with big training data [28] are among the most important features
of the SGD algorithm. Yet, despite these benefits, simple easily implemented termination
criteria for SGD are not well-studied. In this thesis, we studied the SGD algorithm with
a termination criterion for two fundamental problems: binary classification and the least
squares.

5.1 Key results

The key results of this thesis are summarized below.

I We have proposed a simple and computationally free termination test for SGD for
binary classification, supported by both theoretical and experimental results. The
theoretical results show that the test will stop SGD after a finite time with a bound on
the expected accuracy of the resulting classifier. In our experimental results, the plots

109

show consistent pattern that our test achieves low accuracy but is faster than SVS for
α̃ = 1/10, while it achieves higher accuracy with more iterations when α̃ = 1/200. This
is useful behavior in practice, compared to SVS, since it puts the accuracy/iterations
trade-off in the hands of the user who selects the step-size α̃. Another benefit of our
new termination criterion apparent from all plots is that the number of iterations is
more consistent across random trials, which is beneficial in the case that SGD is used
as a sub-problem of a larger computation. racy for the iteration at termination.

II In the case of least-squares problem, we considered the deconvolution task using the
SGD algorithm. We established a novel concentration bound to show that for a small
enough step-size, the SGD path shall follow the gradient flow trajectory. Motivated
by numerical observation, we proposed a new termination criterion for the SGD algo-
rithm for the least squares deconvolution problem. As a first step towards developing
theoretical guarantees for our termination criterion, we provide an upper bound for
the `2-error term for the iterate at termination when the gradient descent algorithm
is considered.

5.2 Future work

This thesis has raised many questions, some remained unanswered:

1. It will be interesting if we extend our results in Chapter 3, especially Theorem 6, to
the case where the logistic or hinge loss functions are replaced by some non-convex
function e.g., quasi-convex functions.

2. We would like to extend our results in the high variance regime (Theorem 7) in Chap-
ter 3. We need to establish an upper bound for E[T] based on the data parameters.

3. As observed in our numerical experiments, our test exhibits high accuracy on a
broader range of distributions. Therefore, extending our results in Chapter 3 to a
more general class of distributions rather than Gaussian would be interesting.

4. In Chapter 3, we studied the binary linear classification problem. Using kernel
methods, our results should be extendable to non-linear cases as well. We leave this
for later work.

5. Matrix product in the form of (4.70) appears ubiquitously in optimization. For
example, using the results in [27], we observe that at least six different well-known

110

algorithms for solving consistent linear systems including the randomized Kaczmarz
method, randomized Newton method, randomized coordinate descent method and
random Gaussian pursuit have the following update rule, [27] Eq. 2.8,

xn − x∗ = (I −Xn) · · · (I −X1) (x0 − x∗) , (5.1)

where Xk is a random matrix drawn i.i.d from some fixed distribution P . Therefore,
using results in [27], we can express the iterates of many randomized optimization
algorithms in the form of (5.1) where the corresponding probability distribution is
expressed in a unified manner. This motivates the following problem: Can we extend
results of [2] to obtain similar concentration bounds for the update rules (5.1) where
Xk ∼ P i.i.d and P is a given distribution as in [27]? In particular, can we use
these new bounds to improve the worst-case running time of algorithms for solving
linear systems? Recently in [44], the authors have used concentration of inequalities
to study the convergence property of streaming k-PCA.

6. Establishing theoretical upper bounds for the `2-error term at termination for the
following stopping time.

TS := inf
{
k : ‖AxSGD

k ‖2 ≥ δ‖b‖2
}
.

111

Bibliography

[1] Noga Alon and Joel H Spencer. The Probabilistic Method. John Wiley & Sons, 2004.

[2] Sina Baghal. A matrix concentration inequality for products, 2020.

[3] Sina Baghal, Courtney Paquette, and Stephen A. Vavasis. A termination criterion for
stochastic gradient descent for binary classification, 2020.

[4] Johnathan M Bardsley. Applications of a nonnegatively constrained iterative method
with statistically based stopping rules to CT, PET, and SPECT imaging. Electronic
Transactions on Numerical Analysis, 38:34–43, 2011.

[5] Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Convexity, classification,
and risk bounds. Journal of the American Statistical Association, 2006.

[6] Mario Bertero and Patrizia Boccacci. Introduction to inverse problems in imaging.
CRC press, 2020.

[7] Dimitri P Bertsekas. Convex Optimization Theory. Athena Scientific Belmont, 2009.

[8] Rajendra Bhatia. Matrix Analysis, volume 169. Springer Science & Business Media,
2013.

[9] J.M. Borwein and A.S. Lewis. Convex Analysis and Nonlinear Optimization: Theory
and Examples. Springer, 2006.

[10] Léon Bottou. Online Learning and Stochastic Approximations. On-line Learning in
Neural Networks, 17(9):142, 1998.

[11] Léon Bottou and Olivier Bousquet. The Tradeoffs of Large-Scale Learning. Optimiza-
tion for Machine Learning, page 351, 2011.

112

[12] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization Methods for Large-
Scale Machine Learning. Siam Review, 60(2):223–311, 2018.

[13] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[14] S. Bubeck. Convex Optimization: Algorithms and Complexity, volume 8. Now Pub-
lishers Inc., 2015.

[15] Jerry Chee and Panos Toulis. Convergence diagnostics for stochastic gradient descent
with constant learning rate. In International Conference on Artificial Intelligence and
Statistics, pages 1476–1485. PMLR, 2018.

[16] D. Drusvyatskiy and D. Davis. Robust stochastic optimization with the proximal
point method. preprint arXiv:1907.13307, 2019.

[17] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12(7),
2011.

[18] R. Durrett. Probability: Theory and Examples. Cambridge University Press, New
York, NY, USA, 4th edition, 2010.

[19] Tommy Elfving, Per Christian Hansen, and Touraj Nikazad. Convergence analysis for
column-action methods in image reconstruction. Numerical Algorithms, 74(3):905–
924, 2017.

[20] Tommy Elfving, Touraj Nikazad, and Per Christian Hansen. Semi-convergence and
relaxation parameters for a class of SIRT algorithms. Electronic Transactions on
Numerical Analysis, 37(274):321–336, 2010.

[21] F. Famoye. Continuous Univariate Distributions, volume 1. Technometrics, 37:466–
466, 11 1995.

[22] David Chin-Lung Fong and Michael Saunders. LSMR: An Iterative Algorithm for
Sparse Least-Squares Problems. SIAM Journal on Scientific Computing, 33(5):2950–
2971, 2011.

[23] Walter Gautschi. Some elementary inequalities relating to the gamma and incomplete
gamma function. Journal of Mathematics and Physics, 38(1-4):77–81, 1959.

113

[24] S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly
convex stochastic composite optimization, I: a generic algorithmic framework. SIAM
J. Optim., 22(4):1469–1492, 2012.

[25] S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly
convex stochastic composite optimization, II: Shrinking procedures and optimal algo-
rithms. SIAM J. Optim., 23(4):2061–2089, 2013.

[26] Gene H Golub and Urs Von Matt. Generalized cross-validation for large-scale prob-
lems. Journal of Computational and Graphical Statistics, 6(1):1–34, 1997.

[27] Robert M Gower and Peter Richtárik. Randomized iterative methods for linear sys-
tems. SIAM Journal on Matrix Analysis and Applications, 36(4):1660–1690, 2015.

[28] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo
Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch
sgd: Training Imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[29] Oleg Grodzevich and Henry Wolkowicz. Regularization using a parameterized trust
region subproblem. Mathematical Programming, 116(1):193–220, 2009.

[30] Per Christian Hansen. Analysis of Discrete Ill-posed Problems by Means of the L-
Curve. SIAM review, 34(4):561–580, 1992.

[31] Per Christian Hansen. The L-curve and its use in the numerical treatment of inverse
problems. Citeseer, 1999.

[32] Per Christian Hansen. Deconvolution and Regularization with Toeplitz Matrices.
Numerical Algorithms, 29(4):323–378, 2002.

[33] Per Christian Hansen. Discrete Inverse Problems: Insight and Algorithms. SIAM,
2010.

[34] Per Christian Hansen, James G Nagy, and Dianne P O’leary. Deblurring Images:
Matrices, Spectra, and Filtering. SIAM, 2006.

[35] Per Christian Hansen, Victor Pereyra, and Godela Scherer. Least squares data fitting
with applications. JHU Press, 2013.

[36] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with
sparsity: the lasso and generalizations. CRC press, 2015.

114

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[38] Jeff Heaton. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning,
2018.

[39] Amelia Henriksen and Rachel Ward. Concentration inequalities for random matrix
products. Linear Algebra and its Applications, 594:81–94, 2020.

[40] Gabor T Herman. Fundamentals of Computerized Tomography: Image Reconstruction
from Projections. Springer Science & Business Media, 2009.

[41] Magnus Rudolph Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for
solving linear systems. NBS Washington, DC, 49(1), 1952.

[42] David S Holder. Electrical Impedance Tomography: Methods, History and Applica-
tions. CRC Press, 2004.

[43] De Huang, Jonathan Niles-Weed, Joel A Tropp, and Rachel Ward. Matrix concentra-
tion for products. arXiv preprint arXiv:2003.05437, 2020.

[44] De Huang, Jonathan Niles-Weed, and Rachel Ward. Streaming k-PCA: Effi-
cient guarantees for Oja’s algorithm, beyond rank-one updates. arXiv preprint
arXiv:2102.03646, 2021.

[45] Jean Jacod and Philip Protter. Probability Essentials. Springer Science & Business
Media, 2012.

[46] Peter A Jansson. Deconvolution of Images and Spectra. Courier Corporation, 2014.

[47] Tarun Kathuria, Satyaki Mukherjee, and Nikhil Srivastava. On concentration inequal-
ities for random matrix products. arXiv preprint arXiv:2003.06319, 2020.

[48] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[49] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[50] Guanghui Lan. First-order and Stochastic Optimization Methods for Machine Learn-
ing. Springer, 2020.

115

[51] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[52] J. Lin, R. Camoriano, and L. Rosasco. Generalization properties and implicit regular-
ization for multiple passes sgm. In Proceedings of the 32nd International Conference
on Machine Learning, pages 2340–2348, 2016.

[53] Patrice Marcotte and Gilles Savard. Novel approaches to the discrimination problem.
Zeitschrift für Operations Research, 36(6):517–545, 1992.

[54] Geoffrey J McLachlan and David Peel. Finite Mixture Models. John Wiley & Sons,
2004.

[55] Paul D McNicholas. Mixture Model-Based Classification. CRC press, 2016.

[56] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Springer
Science & Business Media, 2012.

[57] D. Molitor, D. Needell, and R. Ward. Bias of homotopic gradient descent for the hinge
loss. preprint arXiv:1907.11746, 2019.

[58] M. Nacson, N. Srebro, and D. Soudry. Stochastic Gradient Descent on Separable
Data. In Conference on Artificial Intelligence and Statistics, 2019.

[59] Frank Natterer. The mathematics of computerized tomography. SIAM, 2001.

[60] Alexander V Nazin, Arkadi S Nemirovsky, Alexandre B Tsybakov, and Anatoli B Ju-
ditsky. Algorithms of robust stochastic optimization based on mirror descent method.
Automation and Remote Control, 80(9):1607–1627, 2019.

[61] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM J. Optim., 19(4):1574–1609, 2009.

[62] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust
stochastic approximation approach to stochastic programming. SIAM Journal on
optimization, 19(4):1574–1609, 2009.

[63] Arkadi Nemirovsky and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. Chichester: Wiley, 1983.

[64] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, vol-
ume 87. Springer Science & Business Media, 2013.

116

[65] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2nd
edition, 2006.

[66] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Science &
Business Media, 2006.

[67] Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of
Mathematical Biology, 15(3):267–273, 1982.

[68] Christopher C Paige and Michael A Saunders. LSQR: An algorithm for sparse linear
equations and sparse least squares. ACM Transactions on Mathematical Software
(TOMS), 8(1):43–71, 1982.

[69] Vivak Patel. Stopping criteria for, and strong convergence of, stochastic gradient
descent on Bottou-Curtis-Nocedal functions, 2020.

[70] G. Pflug. Stochastic minimization with constant step-size: asymptotic laws. SIAM J.
Control Optim., 24(4):655–666, 1986.

[71] David L Phillips. A technique for the numerical solution of certain integral equations
of the first kind. Journal of the ACM (JACM), 9(1):84–97, 1962.

[72] L. Prechelt. Early Stopping — But When?, pages 53–67. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

[73] Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Early stopping and non-
parametric regression: an optimal data-dependent stopping rule. The Journal of
Machine Learning Research, 15(1):335–366, 2014.

[74] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and
beyond. arXiv preprint arXiv:1904.09237, 2019.

[75] D. A. Reynolds and R. Rose. Robust text-independent speaker identification using
Gaussian mixture speaker models. Speech and Audio Processing, IEEE Transactions
on, 3, 02 1995.

[76] James D Riley. Solving systems of linear equations with a positive definite, sym-
metric, but possibly ill-conditioned matrix. Mathematical Tables and Other Aids to
Computation, pages 96–101, 1955.

[77] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals
of Mathematical Statistics, pages 400–407, 1951.

117

[78] R Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

[79] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, 2014.

[80] Frank Spitzer. Principles of Random Walk, volume 34. Springer Science & Business
Media, 2013.

[81] Thomas Strohmer and Roman Vershynin. A randomized Kaczmarz algorithm with
exponential convergence. Journal of Fourier Analysis and Applications, 15(2):262,
2009.

[82] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-RMSProp: Divide the gradient by
a running average of its recent magnitude. COURSERA: Neural networks for machine
learning, 4(2):26–31, 2012.

[83] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
Computational Mathematics, 12(4):389–434, 2012.

[84] E. van den Berg and M.P. Friedlander. Sparse optimization with least-squares con-
straints. SIAM J. Optim., 21(4):1201–1229, 2011.

[85] A. van der Sluis and H.A. van der Vorst. SIRT- and CG-type methods for the iterative
solution of sparse linear least-squares problems. Linear Algebra and its Applications,
130:257–303, 1990.

[86] Martin J Wainwright. High-dimensional Statistics: A Non-Asymptotic Viewpoint,
volume 48. Cambridge University Press, 2019.

[87] Y. Yao, L. Rosasco, and A. Caponnetto. On early stopping in gradient descent learn-
ing. Constructive Approximation, 26(2):289–315, 2007.

[88] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[89] Tong Zhang. Solving large scale linear prediction problems using stochastic gradient
descent algorithms. In Proceedings of the 21st International Conference on Machine
Learning, page 116, 2004.

[90] J. Ziwei and M. Telgarsky. Risk and parameter convergence of logistic regression.
preprint arXiv:1803.07300, 2018.

118

	List of Figures
	Notation
	Introduction
	Mathematical optimization
	Termination criteria in iterative algorithms
	Stochastic gradient descent (SGD)
	Supervised machine learning
	SGD for general distribution
	Regularization in supervised machine learning
	Binary linear classification

	Linear least squares problems
	Regularization techniques for LLS

	Termination criteria for SGD
	Outline of the thesis

	Preliminaries
	Optimization
	Convex analysis
	Convergence of SGD

	Probability theory
	Probability distributions
	Normal distributions
	Martingales and stopping times
	Martingales
	Stopping times
	Concentration inequality
	Hoeffding's inequality
	Azuma's inequality
	Concentration for norm
	Markov Chain Theory
	Drift criterion

	A Termination Criterion for SGD for Binary Classification
	Binary classification problem
	Stopping criterion for SGD
	Stopping criterion

	Analysis of stopping criterion
	Low regime, proof of Theorem 6
	High regime, proof of Theorem 7
	Angle bound, proof of Theorem 8

	Numerical experiments
	Experiments with synthetic data
	Experiments with real data

	SGD with Early Stopping for Least Squares Deconvolution
	Image deblurring
	The discrete Picard condition

	Least square deconvolution
	Regularization

	SGD with early stopping
	Implicit regularization of SGD with early stopping

	Numerical experiments
	Stopping time analysis
	A matrix concentration inequality for products

	Conclusion and Future Work
	Key results
	Future work

	Bibliography

