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Abstract

In recent years we have witnessed a dramatic increase in the applications of blockchain
and smart contracts in a variety of contexts, including supply-chain, decentralized finance,
and international money transfers. However, a critical stumbling block to their further
adoption is smart contract security (or more precisely, the lack thereof). Smart contracts,
once deployed on a blockchain, are immutable. Hence, unlike traditional software systems,
smart contracts are particularly vulnerable to latent security issues. It is therefore imper-
ative that security analysis tools be developed that help improve smart contract security if
they are to have continued adoption and impact. A particularly widespread class of secu-
rity vulnerabilities that afflicts Ethereum smart contracts is the gas-based denial of service
(DoS). Briefly, these vulnerabilities generally present in contracts containing unbounded
loops.

To address the described problem, we present Gas Gauge, a tool aimed at detecting gas-
based DoS vulnerabilities in Ethereum smart contracts. Gas Gauge consists of three major
components: the Detection Phase, Identification Phase, and Correction Phase. First, we
describe a highly accurate static analysis approach that finds all the loops in a smart
contract (the Detection Phase). Then, a set of inputs that causes the contract to run out
of gas is generated using a fuzzing approach. The last component uses static analysis and
run-time verification to predict the maximum loop bounds consistent with allowable gas
usage automatically. This component uses a binary search approach and an independent
parallel processing design to speed up the process. Each part of the tool can be used
separately for different purposes or all together to detect, identify and help repair the
contracts vulnerable to out-of-gas behaviors.

Gas Gauge was tested on 2,000 real-world solidity smart contracts. The results were
compared to seven state-of-the-art tools, and it was empirically demonstrated that Gas
Gauge is highly effective and useful.
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Chapter 1

Introduction

Smart contracts are one of the main features of blockchain. They are executable programs
that allow building a programmable value exchange between various parties without a
trusted third-party. Ethereum is a leading platform for smart contracts. Users can use
the Ethereum network to make new contracts, invoke accessible functions of a contract,
and transfer the cryptocurrency Ether (ETH) to other contracts or users. However, smart
contracts are vulnerable to several security attacks.

Every transaction and operation in Ethereum smart contracts costs a certain amount of
gas, a measurement unit for the amount of computational effort on the Ethereum Virtual
Machine (EVM), paid by the transaction initiation party. As part of the gas mechanism
on Ethereum, each transaction in a smart contract has an upper bound on the amount
of gas that can be spent. This gas, which is called the Block Gas Limit, determines the
amount of computation that can be done in a block of code. The sum of all transactions
in a block cannot exceed this gas limit. If the execution gas usage surpasses this limit, the
transaction fails [1]. As a result, the Ethereum Virtual Machine (EVM) raises an out-of-gas
exception, and the transaction gets denied. The execution of a function in a vulnerable
smart contract can be blocked indefinitely if out-of-gas conditions are not appropriately
handled. Therefore, denial-of-service (DoS) attacks can occur to a vulnerable contract to
block a transaction. This vulnerability is also known as DoS with Block Gas Limit [1].

Meanwhile, manual security analysis does not scale with the size and number of avail-
able smart contracts. This is the motivation behind smart contract verification tools.
Many developers have implemented multiple security scanners using techniques such as
static analysis, symbolic execution, or fuzzing in the past few years to audit smart con-
tracts for security vulnerabilities automatically. However, many of these scanners produce
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many false-positives or false-negatives. By verifying a smart contract against known vul-
nerabilities, the chances of deploying an exploitable contract are decreased. This is why it
is essential to determine just how useful current smart contract verification tools are.

We conducted a survey and compared three types of smart contract verification tools:
symbolic execution, static analysis, and a combination of the two. In this survey, we
scanned a benchmark of 25 contracts using seven state-of-the-art smart contract verification
tools and summarized the results by each tool’s performance. While the surveyed tools
have varying strengths and weaknesses, we noticed that none of the tools performed reliably
in identifying DoS with Block Gas Limit vulnerability. It was concluded that identifying
this vulnerability can be challenging for the current analyzing tools. Even if a tool can
detect this vulnerability, it may not provide an exact point when the contract reaches the
gas limit. Developers may need to spend hours to find this vulnerability, as it generally
occurs in contracts with unbounded loops. Furthermore, finding the maximum loop bound
before the contract runs out of gas can be challenging.

1.1 Problem Statement and Solution

1.1.1 Problem Statement

A noticeable amount of Ether is always used in smart contracts. Therefore, smart con-
tracts are an engaging target for attackers. This puts more pressure on the developers to
ensure the contract is free of bugs and vulnerabilities before deployment. Even though the
remaining balance of a vulnerable contract to gas-based DoS attacks can be locked forever,
most automatic scanners cannot detect all smart contract vulnerabilities reliably.

What makes these attacks unique is that they can be prevented by appropriate condi-
tions or require statements. Generally, to avoid these attacks, one needs to determine the
loops that can lead to a DoS attack, perform gas analysis to determine the exact point
(i.e., loop iteration) when out-of-gas occurs. Then, one can add proper conditions or re-
quire statements to prevent waste of gas or add an additional sentinel parameter to the
function with a loop allowing the logic to be broken into multiple transactions. However,
the problem is that although detection of gas concerns due to loops is easy, identifying
only the loops that can cause a contract to run out of gas is difficult. More importantly,
finding the exact point where out-of-gas starts to occur is very challenging. This is because
manual processing is potentially lengthy and a tedious task.
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1.1.2 Solution

In this thesis, we address these challenges by designing and implementing an automatic
tool called Gas Gauge. This tool contains three major algorithms. The first part is a static
analysis method that efficiently and accurately detects all the loops in a smart contract. We
refer to this part as the Detection Phase of the tool. The second part is a whitebox fuzzer
based on static analysis and run-time analysis. It identifies public functions containing
at least one input variable that affects a loop inside the function. The reason is that
unbounded loops are the leading cause of DoS with Block Gas Limit. Next, it finds a set
of inputs to the function that causes the contract to go out of gas by running and fuzzing
it. This part is referred to as the Identification Phase of the tool. This last algorithm uses
static analysis and run-time verification to predict the maximum allowed loop bounds in a
contract. It uses a binary search approach and an independent parallel processing design
to speed up the process. This part automatically infers the maximum number of allowed
iterations of loops in a contract before it runs out of gas. The maximum number of allowed
iterations is the threshold of that loop. The generated thresholds are given as a formula
based on the gas limit of the contract, the gas usage in the first iteration, and the average
gas usage of the other iterations of the loop. If the contract contains nested loops, the
formula is also based on the thresholds of the outer and inner loops. This formula can be
used in a ”require” statement with the loop’s bound to prevent out-of-gas errors. Hence,
we refer to this part as the Correction Phase of the tool. The tool can conveniently detect,
identify and help correct the contracts vulnerable to out-of-gas behaviors.

1.2 Contributions

This thesis makes four major contributions.

1. Design and implementation of a static analysis technique to efficiently and accurately
find all the loops in a smart contract

2. Design and implementation of a static and run time analysis (hybrid) whitebox Fuzzer
to find an out-of-gas instance in a smart contract containing public functions with
loops

3. Design and implementation of a static analysis and run-time verification binary
search-based method to identify loop thresholds in a smart contract

3



4. Verifying the result of the tool containing all the above methods and comparing them
with seven state-of-the-art tools on 2,000 real-world smart contracts

1.3 Applications of Gas Gauge

Gas Gauge has an extensive range of applications for contract developers, testers, auditors,
owners, and users. It can be used for gas-related vulnerability detection, debugging, ver-
ification, and certification of an Ethereum smart contract. Each component can be used
separately for different applications or all together to detect, identify and help repair the
contracts vulnerable to out-of-gas behaviors. To the best of our knowledge, Gas Gauge is
the first tool that provides such information.

The Detection Phase of the tool uses static analysis to extract important information
about contract’s loops using components like Control Flow Graph (CFG), function signa-
tures, variable dependencies, and so on and hence is fast and extremely accurate. It can
be used to detect all the loops in a smart contract. It can also be a part of another tool if
the tool requires an efficient and accurate loop finder.

The Identification Phase of the tool is a whitebox fuzzer based on static analysis and
run-time analysis. It helps the users identify the blocks of code vulnerable to DoS with
Block Gas Limit and provides them with inputs that can help the testing and debugging
process. If the tool does not find such a block, it means the contract is most likely not at
risk of this vulnerability at that block of code.

Finally, the Correction Phase ensures that if the loop bound is less than the reported
threshold, the contract is free of out-of-gas vulnerabilities in that block of code. It also helps
developers debug and improve their code if there is a chance for gas-related vulnerabilities.
Since this part uses run-time verification, it has no false positives.

1.4 Summary of the Results

We argue that our experimental evaluation reveals that Gas Gauge is extremely useful
and accurate. We have tested our tool on 2,000 real-world smart contracts extracted from
etherscan.io [2], one of the most popular Ethereum blockchain explorers. All these contracts
are manually scanned and made sure half of them contain at least one loop, and the other
half doesn’t contain any loops. Then, we compared our results against seven state-of-the-
are tools and generated promising results. Our tool uses run-time analysis to ensure no
false-positives, and our enhanced static analysis method ensures a low false-negative rate.
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1.5 Thesis Organization

The rest of this thesis is organized in the following way. Chapter 2 provides the information
needed for the rest of this thesis, briefly introduces the helper tools utilized to implement
Gas Gauge, and describes the minor contribution of this thesis, which is a short survey of
smart contract analysis tools. Chapter 3 describes the design and implementation of Gas
Gauge components. Chapter 4 presents the setup, results of our experimental evaluations
and the limitations of Gas Gaugeas well as the related work and tools to Gas Gauge.
Finally, the conclusion and future work are presented in Chapter 5.
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Chapter 2

Background

2.1 Background Information

Smart contracts are an application of blockchain and meant to store rules and agreements
made by several parties and execute an agreement when they are triggered. Many industries
are using smart contracts to perform trustless computations. Ethereum is one of the
leading blockchain platforms.It is a decentralized and open-source blockchain that contains
millions of accounts and billions of USD in capitalization, and hence, one of the most
prevalent underlying technologies for smart contracts [3]. They are commonly written in the
Solidity language, which is a Turing-complete JavaScript-like scripting language. Solidity
is tailored to smart contract-specific constructs, such as transferring funds, interacting with
and creating new smart contracts, and querying state variables on the chain. it then gets
compiled to Ethereum Virtual Machine (EVM) assembly instructions to be deployed on
the blockchain.

Smart contracts handle transactions in a cryptocurrency called Ether. Transactions and
procedures in Ethereum smart contracts require a certain amount of gas, a measurement
unit for the amount of computational effort on the Ethereum Virtual Machine (EVM). This
gas has to be paid by the transaction initiation participant. Thus, The more computational
or storage resources required to execute a transaction, the more gas needed. Gas-related
vulnerabilities are one of the most critical kinds of smart contract vulnerabilities.

Each transaction or function execution in smart contracts is bounded to a certain
amount of gas known as the Block Gas Limit. If the execution gas usage exceeds this limit,
the transaction gets reverted, and an out-of-gas error occurs [1]. If the out-of-gas error
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is not handled properly, the execution of that function can be blocked indefinitely. As a
result, denial-of-service (DoS) attacks can target contracts with gas-related vulnerabilities.
One of the principal kinds of gas-based vulnerabilities is known as DoS with Block Gas
Limit vulnerability, which mainly occurs in contracts with unbounded loops. Even harmless
programming patterns in centralized applications can lead to Denial of Service conditions
in smart contracts. This can happen when the cost of executing a function exceeds the
block gas limit [4].

2.2 Whitebox Fuzzing

Nowadays, security vulnerabilities in software products can be found by two fundamental
methods: Code inspection of binaries and blackbox fuzzing. Blackbox fuzzing is a class of
blackbox random testing that randomly mutates well-formed inputs to the program and
then tests the program on the resulting data in order to trigger a bug [5]. Blackbox fuzzing
is an effective method to test a program; however, it can have some limitations. Low code
coverage is one of the leading limitations of blackbox fuzzing resulting in missing security
bugs [5]. An alternative approach to blackbox fuzzing is whitebox fuzzing. It is a type of
automatic dynamic test generation, based on symbolic execution and constraint solving,
intended for large applications’ security testing [5].

2.3 Helper Tools

Developing an automatic gas analysis tool from Solidity source code requires a considerable
implementation effort that has been possible thanks to many existing open-source tools.
Slither [6] and Truffle Suite [7] are used to implement Gas Gauge. In particular, Slither
is used in the static analysis part of the implementation, and Truffle is used in the run
time analysis part. Slither provides many useful APIs to collect information, such as data
dependencies and function signatures. This is used to summarize the contract and extract
needed information for the other parts of the implementation. Slither also produces the
Control Flow Graph (CFG) of the contract. The CFG is used to find the loops in the
contract and their orders. Moreover, Truffle Suit is used to compile and deploy Solidity
smart contracts to a test Ethereum network. This allows us to use different sets of inputs
in the Identification Phase of the tool and use different threshold values in the Correction
Phase while retrieving useful gas-related information such as gas used and gas left.
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2.3.1 Slither

Slither [6] is a static analysis-based tool for examining smart contracts. Based on their
paper [6], Slither takes as initial input the Solidity Abstract Syntax Tree (AST) of a
smart contract generated by the Solidity compiler from the contract’s source code. Firstly,
Slither recovers some critical information from the input Solidity AST such as the contract’s
inheritance graph, the Control Flow Graph (CFG), and the list of expressions. Then, it
transforms the entire code to SlithIR, which is an internal representation language. SlithIR
facilitates the computation of a variety of code analyses using Static Single Assignment.
Generally, Static Single Assignment is a common representation in the compilation and
static analysis [6]. During the third stage, it does a set of predefined analyses such as
the reads and writes of variables analysis, the protected functions analysis, and the data
dependency analysis. This stage provides enhanced information to the other modules, such
as the vulnerability detection module for bug finding, the optimization detection module
for gas optimization, and the printer module for displaying the contracts’ information, or
for customized third-party tools.

2.3.2 Truffle Suite

In many parts of Gas Gauge, we used Truffle and Ganache that are the tools available
in Truffle Suite [7]. Truffle is a world-class and powerful development environment for
blockchains using the Ethereum Virtual Machine (EVM). Truffle offers built-in smart con-
tract compilation, linking, deployment, and binary management. It also offers automated
contract testing for fast development [7]. Truffle allows developers to write manageable
and straightforward test files for smart contracts in two different ways:

1. In JavaScript and TypeScript, for exercising your contracts from the outside world,
just like your application.

2. In Solidity, for exercising your contracts in advanced, bare-to-the-metal scenarios.

Ganache is a personal blockchain for rapid Ethereum. One can use it across the entire
development cycle to develop, deploy, and test dApps in a safe and deterministic environ-
ment [7].
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2.4 A Short Survey of Security Analysis Methods

Because smart contracts’ security vulnerabilities have caused users to lose millions of dol-
lars, many tools have been developed to scan the contracts and identify potentially vulnera-
ble code blocks. Standard techniques in these tools are static analysis, symbolic execution,
and fuzzing. We picked seven popular smart contract verification tools to put them to
the test. The selected tools are the industry standard tools that use static analysis, sym-
bolic execution, or a combination of both. The reason that fuzzers were not part of this
comparison is that they generally require manual test cases. It means the process is time
and resource consuming, and the quality of the results is affected by the quality of the test
cases made. The seven chosen tools are Mythril [8] , Securify [9], Securify2 [10], Smartcheck
[11], Slither [6], Manticore [12], and MPro [3]. In this survey, we used these tools to scan
a benchmark of 25 contracts containing 31 different kinds of vulnerabilities and warnings.
We evaluated the tools by each tool’s performance in terms of identified vulnerabilities,
the number of contracts scanned, false-positive rate, and false-negative rate. The standard
for correctness was determined by the manual auditing of smart contracts performed by
Quantstamp Certifications [13], the Smart Contract Weakness Classification Registry [4],
and [14]. We also manually audited some of the contracts to ensure the correctness of
the results. This survey was conducted between January to February 2020, and the most
updated version of each tool at that time was used.

2.4.1 The Main Goals of the Survey

The main goals of this survey were as follows:

1. A comparison between different common methods used in general smart contract
verification tools

2. A comparison between some of the well-known general smart contract verification
tools

3. Identifying critical vulnerabilities that are challenging to be detected by the well-
known tools

2.4.2 The Results of the Survey

The result of our survey is summarized in Table 2.1.
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Table 2.1: Smart Contract Verification Tools Comparison

Tool Name Method
Number of Contracts
Successfully Scanned

False Negative
Rate (%)

Identified
Vulnerabilities

Securify2.0
Static

Analysis
10 53

DoS with Failed Call
Unlocked Pragma

Slither
Static

Analysis
14 56

Unexpected Ether balance
Unlocked Pragma
Weak Randomness

SmartCheck
Static

Analysis
25 48

DOS With Block Gas Limit
DoS with Failed Call

Integer Over/underflow
Unexpected Ether balance

Unlocked Pragma
Weak Randomness

Mythril
Symbolic
Execution

12 84
DoS with Failed Call

Integer Over/underflow
Unexpected Ether balance

Manticore
Symbolic
Execution

5 80 Unexpected Ether balance

Securify
Symbolic
Execution

16 71

DoS with Failed Call
Integer Over/underflow

Reordering attack
Unexpected Ether balance

MPro
Static Analysis
and Symbolic

Execution
21 93

Integer Over/underflow
Unexpected Ether balance

Weak Randomness

Tools may not be able to scan a contract due to many reasons, including the unsup-
ported Pragma version of the contract, reaching the default time out, and so on. As we
can see in this table, SmartCheck is the only tool that scanned all the contracts. The false-
positive rate is calculated as the number of false-positives divided by the total number of
negatives (false-positive + true-negative). Each contract was only audited for particular
vulnerabilities. If a tool reported a vulnerability that was not checked by manual auditing,
the vulnerability was not counted towards either true or false positive. Hence, the false-
positive rates of all the tools are meager and not shown in the table. However, in general,
we expect some false-positives for static analysis tools and zero for symbolic execution tools.
The false-negative rate is calculated as the number of false-negatives divided by the total
number of positives (true-positives + false-negatives). As shown, SmartCheck performed
the best in this category as well. The Identified Vulnerabilities column lists the vulnera-
bilities identified correctly (true-positive) by each tool in at least one of the contracts in
the benchmark. Smartcheck was able to identify the most number of vulnerabilities and
hence the winner of this category.
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Static analysis tools have better results overall, especially in terms of scan rate and
false-positive rate. Also, Smartcheck outperformed other tools in most categories, and
hence is the winner of the comparison. However, we discovered that although gas-related
vulnerabilities are incredibly critical, many available tools cannot identify them reliably.
In our survey, most tools had difficulties identifying DoS with Block Gas Limit, one of
the principal gas-related vulnerabilities. Three of the contracts in our benchmark were
at risk of this vulnerability, and only Smartcheck was able to identify it in only one of
the contracts. As a result, we designed and implemented Gas Gauge dedicated to this
vulnerability. The next chapter explains the structure of Gas Gauge.
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Chapter 3

Description of Gas Gauge
Components

Gas Gauge was designed and implemented to address the gas-based vulnerabilities of smart
contracts. Since loops are the main cause of many gas-related vulnerabilities, the focus of
Gas Gauge is on loops. The main methods used in Gas Gauge are static analysis, run-time
analysis, and whitebox fuzzing, and it has many different components.

Gas Gauge contains three major parts: the Detection Phase, Identification Phase, and
Correction Phase. The user has the option to use each of the parts separately or use them
all together by passing in appropriate booleans. The Identification Phase and Correction
Phase require information generated by the Detection Phase; however, Identification Phase
and Correction Phase are independent of one another. The inputs to all methods are the
Solidity source code and the contract’s gas limit (optional if only Detection Phase is used).

The Detection Phase uses an advanced static analysis approach to efficiently and ac-
curately detect all the loops in a smart contract. Slither [6] is utilized to enhance this
part. The Identification Phase is a whitebox fuzzer based on static analysis and run-time
analysis. It identifies the public functions containing at least one input variable that affects
a loop inside the function. It uses static analysis to find the proper functions and inputs to
fuzz and uses a run-time white fuzzing technique to find a set of inputs to the function that
causes the contract to go out of gas. The Correction Phase uses static analysis and run-
time verification to predict loop thresholds. It is enhanced with a binary search approach
and an independent parallel processing design to speed up the process. This part identifies
all the contract’s functions containing loops using static analysis. Then, it automatically
infers the maximum number of allowed iterations before the contract runs out of gas. It

12



does so by using run-time verification and is improved by a binary search approach. The
maximum number of allowed iterations in a loop is referred to as the threshold of that loop.
The generated thresholds are given as a formula based on the gas limit of the contract,
the gas usage in the first iteration, and the average gas usage of the other iterations of the
loop. If the contract contains nested loops, the threshold also has a formula based on the
outer and inner loops. This formula can be used in a ”require” statement or any other
conditional statement with the loop’s bound to prevent out-of-gas errors. Therefore, it can
be used to repair (correct) contracts with gas-related vulnerabilities.

The structure of Gas Gauge is as shown in Figure 3.1. The following sections describe
each component of Gas Gauge in detail.

Figure 3.1: The Structure of Gas Gauge
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3.1 Detection Phase

3.1.1 Initial Contract Generator

The first and the simplest component is the Initial Contract Generator. In this step, a copy
of the original contract is made. If the Correction Phase is needed, the copied version is
formatted to make it easier for the other parts. For example, it removes all the comments,
and adds brackets and spaces if needed. Then, the new contract is fed to Slither.

3.1.2 Target Block Detector and Its Inputs

The Target Block Detector is one of the most important components of the design. In this
stage, Slither and other static analysis approaches are used to detect loops in the contract.
It does so by obtaining the CFG of the contract and looking for any loops in the CFG. Also,
the visibility of the functions containing loops and their signature is extracted. If only the
Detection Phase is needed, the program halts here and outputs the functions containing
loops along with the number of loops in each function. In any case, if the contract does
not contain any loops, the program halts here and outputs ”No loop detected”.

If the Identification Phase or Correction Phase is also needed, the types of variables
affecting the loop bounds are obtained. This process involves an advanced static analysis
and the printers available in Slither to gather the loop conditions, the variables affecting
the loops, variable dependencies, and function summaries. The variables affecting the
loop bounds are classified into four groups: State, Local, Constant, and Input variables.
State variables are essentially the contract variables whose values are permanently stored
in contract storage and can be accessed by all the contract functions. Constant variables
are the ones that only carry a fixed value and are defined within the target function.
Input variables carry their usual meaning: the inputs of the target function. Finally, Local
variables are declared and initialized inside the target function, and their context is within
a function and cannot be accessed outside. If a Local variable is detected, the Target
Block Detector performs induction to find a list of all State, Input, and Constant variables
affecting that local variable.

For the whitebox fuzzer, we can only fuzz public functions, and the aim is to find a set
of inputs that affect the loop bounds. Therefore, the Target Block Detector finds public
functions that contain loops that their bounds are affected by input variables (Input vari-
ables or Local variables affected by Input variables) and passes them to the Identification
Phase. If the Target Block Detector does not find a function satisfying mentioned criteria
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, the program halts. After identifying the target functions, the function signatures, and
the name, and the type of the input variables affecting the target loops are passed to the
run-time fuzzer.

For the Correction Phase the following is gathered and passed to the next part.

1. The function signatures for all the functions containing loops

2. Information about the loops, including the scope of each loop, and the type of each
loop (for, while do-while)

3. A list containing the order of the loops if the function contains nested loops

4. Information of the variables affecting the loop bounds and their types

3.2 Identification Phase

In the Identification Phase, a whitebox fuzzing approach is utilized to generate a set of
inputs for each unbounded loop in a public function in an Ethereum smart contract. The
bounds of these loops must be affected by at least one of the input variables of the func-
tion containing the loop; otherwise, fuzzing cannot be effective. This component takes
information from the previous parts of the tool and the contract’s gas limit as inputs and
outputs the set of values that make the contract go out of gas. If the contract does not
have any loops or the fuzzer cannot find the correct inputs after a predetermined number
of tries, it halts. Here, by public functions, we mean functions that can be called from the
outside of the contract. Thus, only functions with ”public” or ”external” visibility can be
fuzzed using our tool. The difference between the two types of visibilities is that ”public”
functions can be called internally or via messages, while ”external” functions can only be
called from other contracts or via transactions and cannot be called internally [15]. On the
other hand, ”internal” functions can only be accessed internally, meaning from within the
current contract or contracts deriving from it, and ”private” functions are only visible for
the contract they are defined in [15]. Hence ”private” and ”internal” functions cannot be
fuzzed directly without modifying the contract.

In this step, all the input variables in the target function get set to their initial values
(i.e., integers are set to zero, and arrays are set to an empty array). The input values
reported by the Target Block Detector get encoded in their binary representations. For
instance, for an integer variable, the initial state is 256 zeros. Then the tool picks a bit at
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random and flips it. Thus, if the value of the chosen bit is 0, it gets changed to 1 and 0
otherwise. Then, the binary encoding gets converted back to the original form. The only
exception is arrays. In this case, mainly the array size can affect the bound of a loop,
and hence, arrays get represented by 256 bits as arrays in Solidity can have up to 2256

elements. Instead of converting the binary representation to the original array form, it
gets converted to an integer, and the array size gets set to that. If multiple input variables
affect the loop bound, the binary representations get concatenated, the bit is flipped, and
the concatenated value gets converted back to the original forms.

Next, all the necessary files and test cases are generated automatically, and different
inputs are tested until the desired set of values is found. The goal is to find a set of inputs
that makes the contract run out of gas. Truffle Suite [7] is used to deploy the contract
to a test Ethereum network. This suite has a tool called Ganache, which provides a test
Ethereum network, and another tool called Truffle, which compiles and deploys Solidity
smart contracts to this network. A test file is generated in Solidity. This test file is used to
call the target function with generated input values. After generating all the needed files
and information, the contract gets deployed, and the target function gets fuzzed (tested
with different input values). Suppose the test case halts and returns the remaining gas in
the contract, the process repeats, and the fuzzer flips another bit. The process continues
until a set of input is found that makes the test case abort due to an out-of-gas exception.
At this point, the set of inputs used is reported as the output of the tool. To ensure the
tool does not run forever, users can choose the maximum number of bit flips.

Once the fuzzer finds set of input that cause the contract to run out of gas, it prints
out the function, the input variables affecting the loop, and the values that caused an
out-of-gas error for each of these variables. If for any reason, the tool is not able to find
the set before a halting condition is met, it only prints out the function signatures and the
information about input variables that might affect the loop bounds.

3.3 Correction Phase

The Identification Phase is particularly useful for developers or contract owners to scan
the contracts before deployment and check if the contract is at risk of DoS with Block
Gas Limit. Since the tool also provides an instance, it can help them examine the problem
further. However, one of the first steps to fix the code is to find the exact point at which the
out-of-gas condition starts to get triggered, and any arbitrary set of inputs is not enough.
This is the motivation behind the Correction Phase, which is intended to find the upper
bound limit of the loops in a smart contract.
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The output is a formula based on the maximum number of allowed iterations for loops
before the contract runs out of gas. We refer to this number as the threshold of the loop.
If the tool cannot find a threshold, it provides information such as the type of the loop
and the variables affecting its bound.

This part has multiple components. A detailed explanation of each of these components
is provided in the next subsections.

3.3.1 Modifier

The Modifier makes two copies of the contract generated in the Initial Contract Generator
and modifies them separately for each identified loop. The first is to measure the gas used
for the first and second iteration of each loop identified by the Target Block Detector. It
is because, generally, the first iteration of each loop consumes more gas than the other
iterations. The second iteration’s gas usage is typically the average gas usage of all the
other iterations of the loop. The reason is that in most loops, a similar operation happens
in each iteration. The first set is the input to the Estimator. The second is to change the
loop bound to the desired value. It allows us to run each loop with a specified number of
iterations and capture the gas left after that many iterations. The binary search model
uses this to test different values. The modifications only have an insignificant effect on the
behavior and gas usage of the contract. For both modified copies, a public function is added
as a wrapper to call the target function. This function can call ”public”, ”private”, and
”internal” functions but not ”external” ones. Therefore, external functions are changed to
”public”, so they can be called as well.

3.3.2 Threshold Estimator

The Threshold Estimator receives the first modified contract and automatically creates a
solidity test file and all the other necessary files for Truffle Suite [7]. Also, to get an actual
gas usage for each iteration, the new contract and test file are deployed to a test Ethereum
network. The Truffle Suite is used to deploy the contracts. The modified contract runs each
loop twice and captures the gas used in each iteration. One can call the function ”gasleft()
returns (uint256)” to get the gas left at any instance of the contract. This function always
exists in the global namespace and returns the remaining gas at any instance [16]. We
can call gasleft(), the target function or block of code in our contract, call gasleft() again,
and get the difference between the returned values of the two gasleft() calls. This way,
we can accurately and efficiently calculate the gas usage of the target block. Next, based
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on the gas usage amount reported by the Truffle Suite and the gas limit, the maximum
number of iterations that the loop can perform without running out of gas is estimated.
The pseudocode is shown as Algorithm 1.

Algorithm 1: Estimated threshold for a loop in a function

1 initial gas = gasleft() ;
2 while iteration < 2 do
3 original code inside the loop ;
4 if iteration == 0 then
5 gas 1 = initial gas− gasleft();
6 end
7 gas 2 = initial gas− (gas 1 + gasleft());

8 end
9 max iteration = 1 + (initial gas− gas 1)/gas 2 ;

3.3.3 Binary Search Threshold Calculator

With the gas mechanism on Ethereum, any instruction’s execution needs a relatively steady
amount of gas. Hence, we first use the run-time/static analyzer to get the estimated
threshold for a loop bound. It means any value over this threshold may trigger the out-
of-gas condition. To some degree, the estimated threshold is over or underestimated. One
reason is that there might be more complicated code inside the loop that varies by the
iterations. Also, the gas usage of other parts outside the loop is ignored in this way.
Therefore, we used a run-time verification approach to find a more accurate value. We
further use a binary search approach to cut down the action space rapidly. The estimated
threshold helps the binary search model have a proper starting point.

The second set of the modified files and the Estimator’s result are fed to the Binary
Search Threshold Calculator. The purpose is to run each loop with a specified number of
iterations and capture the gas left after that many iterations. The binary search model
uses this to test different values. In order to explain how the contract is modified, an
example is given below.

The code snippet below shows the original contract that contains two unbounded loops.
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1 pragma solidity >=0.4.24 <0.7;

2 contract TestContract{

3 uint[] numbers;

4 function addNumbers(uint[] calldata newNumbers) external

returns(uint){

5 for(uint i=0; i<newNumbers.length;i++) {

6 numbers.push(newNumbers[i]);

7 }

8 uint sum = 0;

9 for(uint j=0; j<numbers.length; j++){

10 sum += numbers[j];

11 }

12 }

13 }

The code snippet below illustrates how the contract is modified in order to find the
threshold for the first loop.

1 pragma solidity >=0.4.24 <0.7;

2 contract TestContract {

3 uint[] numbers;

4 function getStateVarInaddNumbers(uint[] memory input1) public

returns (uint) {

5 addNumbers(input1);

6 return gasleft ();

7 }

8 function addNumbers(uint[] memory newNumbers) public returns

(uint){

9 uint loopCounter = 0;

10 for(uint i=0; loopCounter < VALUE; i++) {

11 numbers.push(newNumbers[i]);

12 loopCounter = loopCounter + 1;

13 }

14 uint sum = 0;

15 for(uint j=0; 1 == 0 ; j++){

16 sum += numbers[j];

17 }

18 }

19 }
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As shown, a wrapper function is added, the visibility of the target function is changed
from ”external” to ”public”, the second loop’s condition is modified, so it does not get
executed, and the condition of the target loop is changed to execute the loop up to a
desired number of iterations. V ALUE is the number generated by the Binary Search
Threshold Calculator. Also, if the original loop bound is affected by an input variable as
identified in Target Block Detector, the generated test file is modified, so the value or size
of the input variable in the wrapper function is set to V ALUE where applicable. This
ensures the function does not fail if there is a condition that requires a specific value or
size of that variable inside the function. For example, in the shown code snippet, ”input1”
is set to an array of integer of size V ALUE. Similarly, if a state variable affects the loop
bound, the value or size of the variable is set to V ALUE inside the wrapper function before
calling the target function. For example, to test the second loop in the given code snippet,
”numbers” is set to an array of integers of size V ALUE before calling ”addNumbers”.

At this stage, by inputting different values to the target function, we can calculate
different gas usages. The goal here is to find two consecutive numbers, where only the larger
number makes the contract run out of gas. As mentioned before, the original contract and
test file are modified to change the loop bound to the desired value. Each loop in each
function is isolated to ensure the value is only affecting the target loop. For each value, the
contract is deployed and ran and the gas left is obtained. There is a lower bound and an
upper bound limit for the search space in the Binary Search model. They are initially set
to 0 and 5,000, respectively. Truffle has a time limit that one can run a contract. Once the
execution of a contract passes this limit, it throws a time out exception and stop running.
Therefore, if a loop runs for too many iterations, it might trigger the time out exception.
From our experiments, if the maximum number of loop iterations is less than 5,000, the
test does not trigger the time out condition. Also, if a loop threshold is over 5,000, there is
a lower chance of running out of gas as most contracts do not require that many iterations
in one loop. Hence, the upper bound is set to 5,000. The estimated threshold is used as
the starting point of the binary search. If the contract still has gas after testing a new
value, the original value + 1 and otherwise the original value− 1 is used as the next loop
bound. If the contract still has gas, the lower bound is changed to the value+1; otherwise,
the upper bound is changed to value− 1. Then, the new test value becomes the midpoint
of the lower and upper bound. The process repeats until the model finds two consecutive
numbers that only the larger one consumes all the gas.

The algorithm for this part is shown in Algorithm 2. The termination conditions are
as follows:

1. The loop threshold is found
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2. The lower bound becomes larger than or equal to the upper bound

3. The gas usage does not change with the change of the loop bound

4. An error is encountered

Algorithm 2: Run-time threshold of a loop in a function

1 guess = estimated value by static and run-time analysis;
2 lower = 0;
3 upper = 5, 000;
4 while not termination condition do
5 gas left =deploy the contract(guess);
6 if gas left < 0 then
7 new gas left = deploy the contract(guess− 1) ;
8 if new gas left < 0 then
9 upper = guess− 1;

10 else
11 threshold = guess− 1;
12 return threshold;

13 end

14 else
15 new gas left = deploy the contract(guess+ 1) ;
16 if new gas left > 0 then
17 lower = guess+ 1;
18 else
19 threshold = guess+ 1;
20 return threshold;

21 end

22 end
23 guess = upper + lower/2 ;

24 end

3.3.4 Optimizer

The last part is the Optimizer. It has two primary purposes. First, if the lower bound
reaches 5,000 or the value reported by the Estimator is over 5,000, it calculates the ap-
proximate threshold and returns it as the output. It does so by running the contract and
setting the target loop bound to 5,000. Based on the original gas, gas consumed by the
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first iteration, gas consumed by 5,000 iterations, and the remaining gas, it estimates the
loop’s threshold. This is used when the binary search is not able to find the threshold or
the threshold is larger than 5,000, and testing may take a long time or cause the test to
reach the time out limit.

Furthermore, to test a value in the Binary Search Threshold Calculator, the system
needs to run the contract with the target value, wait for the result, and then run the
contract with either value +1 or value -1. Each execution takes a few seconds; hence
running the contract twice each time may take a while. To speed up the process, the
Optimizer makes two extra copies of the generated files. Then, it changes the files slightly
to run the three contracts with three consecutive numbers simultaneously. These numbers
are the original number, the number plus one, and minus one. Then, based on the feedback
from running the original number, it decides to use the correct extra feedback. This way,
the run-time of the binary search gets reduced by almost 50%.

3.3.5 Output of the Correction Phase

An example of the output of the Correction Phase is provided in Figure 3.2.

Figure 3.2: Output of Correction Phase

The output contains the signature of the functions containing loops and the number of
loops in them. It also has the variables affecting the loop bounds and their datatype. It
provides the type of the loop (Normal/Single or Nested). Then, it provides the value of
the threshold found by the tool for the provided gas limit along with the gas consumption
of the first iteration and the average gas consumption for the other iterations. Finally, the
threshold formula is given in the following format:

(gasleft() − g1)/(g2)
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If there are nested loops in the contract, the formula is slightly different. The formula
for the inner loops is similar to the ones above, but it considers the outer loop has only
one iteration, and for the outer loops is similar to the following:

(gasleft() − g1)/(g2 + Internal)

Where gasleft() is the value returned by the function gasleft() placed right before the
loop in the source code, g1 is the gas consumption of the first iteration of the loop, g2 is
average gas consumption of the other iterations, and Internal is the gas consumption of
the internal loops.

This formula can be used in a ”require” statement to fix the code and prevent out-of-
gas exception for that loop. The statement has to be placed in the source code and right
before the loop. The user has to find the loop bound manually and place it in the ”require”
statement. So, an example of the ”require” statement looks like this:

require( loopBound < (gasleft() − g1)/(g2), ”Loop bound is over the threshold!” );

For instance, for the given example in 3.2, the size of the input variable ”receivers” is
the bound of the loop, the ”require” statement looks like this:

require(receivers.length < (gasleft() − 47420)/(5932), ”Loop bound is over the threshold!” );

In this case, if the user inputs an array of size greater than 899, the ”require” statement
gets triggered, and the execution stops before entering the loop.

3.3.6 The Time Complexity of the Correction Phase

In Solidity, a loop bound is an unsigned integer that can have a value from 0 to 2256. If
we assume this number is n for a given loop, the naive brute-force approach would require
running the loop with up to n different loop bounds until finding the right threshold. Hence
the time complexity of a naive brute-force approach is O(n). We can improve this by using
a binary search approach. We can cut the action space in half every time we use a new
value as the loop bound in this approach. Hence, the time complexity of a binary search
approach is O(log(n)). Due to the limitation of Truffle and to improve the run-time, we
set the maximum number for n to 5,000. If the actual threshold is over 5,000, the risk of
the contract running out of gas is low, and the threshold is only estimated based on the
gas usage of the first and second iteration and the gas left after 5,000 iterations. Thus
the loop only gets executed three times. If the actual threshold is under 5,000, the loop
is executed at most 13 times (log2(5, 000)). Therefore, the Correction Phase is extremely
fast and efficient compared to other methods.
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Chapter 4

Experimental Evaluation

4.1 Setup

We gathered a benchmark of 2,000 real-world Solidity smart contracts from etherscan.io
[2]. These contracts were manually handpicked to ensure 1,000 of them contain at least one
loop, and 1,000 of them do not contain any loops. Also, information such as the number
of functions, loops, and lines of code was manually collected from the 1,000 contracts with
loops in order to help us evaluate our results. Hence, in many cases, these values are used
as the ground truth.

We ran our experiments on a machine that was equipped with 8GB of RAM, a 4-
core Intel Xeon 2.2 GHz processor with Ubuntu 18.04 running. To test Gas Gauge, the
latest version of nodejs, Ethereum, truffle, ganache-cli, solc-select, python, and Slither were
installed. We deployed the target smart contract to a private chain using Ganache-cli.

Seven state-of-the-art tools were chosen to compare the results of Gas Gauge with them.
These seven tools are a combination of Gastap [17] and Gasol [18], Madmax [19], MPro
[3], Mythril [8], Securify2 [10], Slither [6], and SmartCheck [11].

MPro, Mythril, Securify2, Slither, and SmartCheck were installed using the instruction
provided on their official websites or documentation. There is no access to the source
code of Gastap and Gasol to test these tools; however, they have provided a web interface
(https://costa.fdi.ucm.es/gastap) to try a combination of the two tools. Thus, this interface
was used manually to scan our benchmark. MadMax is not open source either. However,
it is built into Contract Library [20]. Therefore, we manually searched for the contracts
in our benchmark and collected the reports generated by MadMax. As a result, in our
analysis, MadMax and GasTap/Gasol do not have a run-time.
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In all these experiments, Solc version 0.5.3 was used unless either the tool or the contract
required a different version.

The following subsections describe our different evaluations and our findings.

4.2 The Detection Phase

4.2.1 The Experimental Evaluation

In the experiment, we scan the 2,000 smart contracts using the Detection Phase of Gas
Gauge and seven industry-standard tools. This experiment’s goals were to verify the results
generated by our tool and compare them with well-known tools. The standard correctness
was determined by the information such as the number of loops and the number of functions
containing loops collected manually. The summary of this experiment is presented in
Table 4.1 and 4.2. Table 4.1 contains the summary of the benchmark containing 1,000
contracts with loops, and Table 4.2 shows the summary of the benchmark containing 1,000
contracts without loops. The timeout limit for this experiment was set to 3 hours per
contract for each of the tools.

Table 4.1: Detection Phase Comparison on 1,000 Smart Contracts with loops

Tool Name Method
Number of Contracts
Successfully Scanned

False Negative
Rate (%)

False Positive
Rate (%)

Average
Run-time (s)

Gas Gauge Static Analysis 997 0 0 10

GasTap+Gasol
Static Analysis and

static reasoning
120 36 0 -

Madmax Static analysis 921 79 0 -

MPro
Static Analysis

Symbolic Execution
851 100 0 242

Mythril Symbolic Execution 870 100 0 3109
Securify2 Static Analysis 548 47 0 176
Slither Static Analysis 997 85 0 2.6

SmartCheck Static Analysis 1000 47 0 2

It is important to mention that we could only obtain the reports of MadMax if the
contract existed on Contract Library. Thus, the column representing ”Number of Contracts
Successfully Scanned” shows the number of contracts available on Contract Library. As a
result, if a contract does not exist there, it is not necessarily a shortcoming of MadMax.
Also, since the interface provided to test GasTap/Gasol required manual testing and did
not support the majority of our contracts, this tool was ignored for the benchmark of
contracts without loops.
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Table 4.2: Detection Phase Comparison on 1,000 Smart Contracts without loops

Tool Name Method
Number of Contracts
Successfully Scanned

False Positive
Rate (%)

Average
Run-time (s)

Gas Gauge Static Analysis 1000 0 3.9
Madmax Static analysis 930 0 -

MPro
Static Analysis

Symbolic Execution
980 0 167

Mythril Symbolic Execution 949 0 1590
Securify2 Static Analysis 848 0 32.9
Slither Static Analysis 1000 0 1

SmartCheck Static Analysis 1000 0 1.8

Smartcheck is the only tool that successfully scanned all the contracts, and as shown,
it was the fastest tool. Although Smartcheck was the fastest tool, its accuracy is much
lower than Gas Gauge in detecting loops. When collecting information from SmartCheck,
”SOLIDITY GAS LIMIT IN LOOPS” is the vulnerability we considered. GasTap has the
least number of scanned contracts; however, it was able to detect loops in the majority of
those contracts. For Mythril and MPro, we were looking for ”SWC ID: 128” vulnerability;
however, neither tool detected such vulnerability, and no gas-related or DoS attack vul-
nerability is reported in the list of supported vulnerabilities. The run-time of both tools
was more than the others as they use symbolic execution at their cores. Furthermore,
both Slither and Securify2 were able to detect some of the loops in a reasonable time.
”calls-inside-a-loop” and ”costly-operations-inside-a-loop” are the vulnerabilities checked
for Slither, and ”External call in loop” is the one checked for Securify2. MadMax, which
is one the most common tools designed only for gas-based vulnerabilities, was only able to
detect some of the functions containing loops. ”DoS (Unbounded Operation)” and ”DoS
(Induction Variable Overflow)” are the kinds of warnings checked when summarizing the
reports of MadMax.

The second table does not contain any column for false-negative rates as non of the
contracts in that benchmark has any loops; thus, no false-negative can be reported. Also,
An impressive result is that neither tool has any false-positives.

As we can see, Gas Gauge was able to detect all the loops in the contracts that it
was able to scan. There were three contracts that Slither was not able to scan, and as a
result, our tool was not successful in checking them as well. The reason is that the report
generated by Slither is an essential part of our algorithms. Typically a tool may not scan
a contract for various reasons like reaching the timeout, lack of support for the Pragma
version, etc. Therefore, Gas Gauge can detect loops efficiently and accurately.
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4.2.2 Performance Analysis

In this experiment, we tried to find the main factors affecting the run-time of the Detection
Phase of Gas Gauge. We obtain the summary of each of the 1,000 contracts containing
loops in our benchmark. This summary contains the total number of functions, number of
functions containing loops, number of code lines (only source code lines without comments
and blank lines), and number of loops in each contract. We also measured the run-time
for each of the contracts for the Detection Phase. Figure 4.1 and 4.2 demonstrate our
findings.

Figure 4.1: Effect of the Number of Functions on the Run-time

As we can see, the total number of functions and functions with loops have some impacts
on the run-time. However, these effects are not as noticeable as the number of loops and
lines of code. It appears that the order of the factors impacting the run-time is the number
of lines of code, number of loops, number of functions containing loops, and total number
of functions. This is also expected because Detection Phase uses a static analysis approach
as its primary method.

ConsenSys has a tool called Solidity-metrics [21]. This tool provides Source Code
Metrics, Complexity, and Risk profile reports for projects written in Solidity. One of the
factors they provide is ”Complexity Score”, a custom complexity score derived from code
statements known to introduce code complexity such as branches, loops, calls, and external
interfaces. We obtained this score for each of the contracts and observed the impact on
the run-time. Figure 4.3 shows this impact.

As shown, this factor has a noticeable correlation with the run-time. Therefore, the
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Figure 4.2: Effect of the Number of Loops and Line of Code on the Run-time

Figure 4.3: Effect of the Complexity Score on the Run-time
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main factors in determining the run-time can be summarized into the ”Complexity Score”
of the code.

This experiment cannot be done on the other two parts of Gas Gauge. The reason is
that the other parts contain run-time analysis. This means that the time to deploy and run
the contracts has a significant impact on the run-time. Furthermore, for the Identification
Phase factors like the search space, the ability of the fuzzer to find the right set of inputs,
types of input variables, and the complexity of the target functions are essential factors
that cannot be measured easily. For the Correction Phase the estimated value reported
by the Threshold Estimator, complexity of the loop, and the actual threshold values are
some of the factors that affect the run-time noticeably and cannot be measured easily. As
a result, this experiment was only performed for the Detection Phase.

4.3 The Identification Phase

We performed two separate experiments for this part. The first experiment was done when
designing the algorithm of the fuzzer, and the second was to evaluate the results of the
Identification Phase.

4.3.1 Different Fuzzing Approaches

Three methods were considered when designing the whitebox fuzzer. The first approach
was a random bit flip, as described before. The second one was a random byte flip, which
flips every bit in the byte starting from the randomly chosen bit. Lastly, a random byte
shuffle was tested. In this approach, the fuzzer chooses a random bit to flip, and then all
the bits in the byte starting from the chosen bit get randomly shuffled. Figure 4.4 shows
a chart comparing the three methods on a benchmark of 28 contracts containing a total of
31 functions with loops. We tested each method ten times on each function and recorded
the average number of tries for each method until finding a set of inputs that causes the
out-of-gas exception. The number of tries means the number of different combinations of
inputs before finding a satisfying set. This number was bounded to fifty in our experiments
in order to halt the process promptly.
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Figure 4.4: A Comparison of Different Methods for the Whitebox Fuzzer

During this experiment, we obtained the following results:

1. Because our implementation finds the exact functions and variables to fuzz, in most
cases, all three methods can find the desired output within the first two tries. These
are simple cases when one input variable is the loop bound, so the fuzzer has a high
chance of finding the correct value for the value.

2. In some cases, when the bound is more complex, the fuzzer takes about 3 or 4 tries
to find a correct set of inputs using any of the approaches. An example of this is
when the difference between the values of two of the inputs is the loop bound.

3. There are also some cases that the fuzzer needs to try more numbers. An example of
this is when ”input mod 250” is the loop bound, and any number of loop iterations
more than 240 triggers the out-of-gas condition. These contracts were the determin-
ing factors, and as shown, bit flip outperformed the other two methods. Hence, the
bit flip approach was chosen in our design.
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4.3.2 The Experimental Evaluation

In this experiment, we evaluated the results of the Identification Phase. Generally, finding
an out-of-gas instance requires a run-time analysis based technique. To the best of our
knowledge, Gas Gauge is the first tool, and the Identification Phase is the first algorithm
that uses a run-time fuzzing technique to detect gas-related vulnerabilities and identify
out-of-gas instances automatically. Most other fuzzers either do not identify gas-based
vulnerabilities or require manual test cases. As a result, we did not find a direct competitor
to compare the results of Identification Phase.

Therefore, we manually checked each contract containing loops to obtain the number
of functions satisfying the condition of the fuzzer and the input variables affecting the
loops. Only public functions containing loops and at least one input variable affecting
the loop bounds satisfy the condition of the fuzzer. Only 979 functions in 501 contracts
met the mentioned criteria. Then, we ran our tool on the benchmark and obtained the
results. Lastly, we verified the results manually. The summary of the results is provided
in Table 4.3.

Table 4.3: Summary of Identification Phase Results
Number of Contracts Number of Functions Average Run-time s)

Total 1000 62750 -
Satisfying the
Condition of
the Fuzzer

501 979 -

Found by
the Fuzzer

499 968 53

Out of Gas
Instance Found
by the Fuzzer

331 614 61.5

The fuzzer was able to detect 968 functions in 499 contracts and identify their variables
correctly in 53 seconds per contract on average. Two of the contracts were not scanned by
Slither, and as a result, the fuzzer was not able to identify 11 functions. The fuzzer was
able to identify 614 instances of out-of-gas in 331 contracts. Although the fuzzer detected
the rest, it could not find an out-of-gas instance in them for various reasons. Some of
these reasons are that the fuzzer reached the maximum number of tries (was set to 10), the
function contained structs or multi-dimensional arrays, the code reverted, or there was a
required statement in the target function that was not satisfied. However, even when the
fuzzer could not find an out of the gas instance, it still provided the function signatures
with loops and variables affecting the loop bounds.

Overall, the fuzzer was able to detect all the correct functions in the contracts that
Slither could scan and identified an out-of-gas instance for the majority of these functions.
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Generally, fuzzers can only fuzz public functions. Furthermore, to find a set of input
variables that cause the contract to run out of gas, at least one of the input variables
should affect the loop bounds inside the function. We used a static analysis approach to
cut down the action space accurately and efficiently. Thus, our fuzzer needs to only fuzz
the public function containing loops affected by at least one of the input variables. As
shown in Table 4.3, out of 62,750 available functions, only 979 met these criteria. Also,
we statically detected the exact variables to fuzz. This caused the fuzzer to be able to
find an out-of-gas instance within the first two tries in most cases as the search space was
noticeably narrowed. If a general random fuzzer were used, the search space would be
much larger, and as a consequence, the fuzzer would need many more tries. As a result,
we did not compare our tool to a general random fuzzer.

4.4 The Correction Phase

In this experiment, we evaluated the results of the Correction Phase. Table 4.4 summarizes
our benchmark, and Table 4.5 provides a summary of the results of Correction Phase.

Table 4.4: Benchmark Summary
Number of
Contracts

1000

Total Number
of Functions

62750

Number of
Functions

Containing Loops
3582

Number of
Loops

4415

In the benchmark of 1,000 smart contracts, there are 4415 loops in 3582 functions.
Gas Gauge was able to find the thresholds for 932 loops in 467 contracts. 779 of these
thresholds were calculated using run-time verification with a high rate of accuracy, and
153 of these thresholds were estimated with an acceptable rate of accuracy. A threshold is
estimated if it is greater than 5,000 or for any reason, the run-time verification is not able
to find the correct number. The average run-time for each loop was about 389 seconds,
which is much faster than manual processing.

To the best of our knowledge, Gas Gauge is the first tool ever attempted to find the loop
upper bound limits in a smart contract. The closest tool to our work is GasTap/Gasol,
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Table 4.5: Summary of Correction Phase Results
Number of

Contracts Found
467

Total Number
of Thresholds

Found
932

Number of Thresholds
Found by Run-time

Verification
779

Number of Thresholds
Found by the

Estimator
153

Average Run-time
Per Contract (s)

733

Average Run-time
Per Loop (s)

389

which infers the upper bound limit of a function containing a loop. However, the format
of their output is very different than ours. Also, based on our experiment in 4.2, the pro-
vided web interface does not support most of the contracts in our benchmark. Meanwhile,
manually finding the thresholds is a tedious and time-consuming process.

Therefore, to get an idea of the accuracy of the calculated thresholds, we randomly
picked 10 of the contracts and found the actual thresholds of their loops manually. Then,
we obtained the values using Gas Gauge. Finally, we compared the manual results with the
ones generated by Gas Gauge. Based on our results, the calculated threshold is normally
about 2% lower than the actual threshold. We expect the calculated thresholds to be within
5% of the actual values and usually lower than the actual values since our modifications
to the code introduce an insignificant extra gas usage.

Overall, the Correction Phase of Gas Gauge performed very well, which shows that it
can be very handy to obtain loop thresholds in a smart contract.

4.5 Limitations of Gas Gauge

In many components of Gas Gauge Slither and Truffle Suite are used. Hence, Gas Gauge
is limited by the limitations of these two tools. If slither is not able to scan a contract or
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does not identify loops or data dependencies, all three algorithms of Gas Gauge miss some
important information.

Also, the time limit and compilation problems of Truffle Suite may cause our tool to
not operate properly. Functions that contain structs or multi-dimensional arrays are not
supported by our tool as well. A struct is just a custom type that can be defined within a
contract, and because it is different in each contract, it cannot be automated using Truffle
Suite. Also, multi-dimensional arrays add an extra degree of complexity to the automation
process, and because they are not common in Solidity contracts, they are not supported
in our tool.

Finally, Gas Gauge requires access to the source code of the contract written in Solidity.
Because we use run-time analysis in multiple sections of the tool, the contract has to be
written in Solidity. Although Solidity is one of the most common programming languages
used for smart contracts, there are other common languages that are not supported by our
tool.

4.6 Related Work

There are multiple general smart contract verification tools available that scan a contract
for multiple security vulnerabilities. The usual techniques in these tools are static analysis,
symbolic execution, and fuzzing. Some of the most well-known tools that use symbolic
execution, static analysis or a combination of both are Manticore [12], MPro [3], Mythril
[8], Securify [9] (deprecated), Securify2 [10], Slither [6], SmartCheck [11], Verx [22], and
Zeus [23]. These tools can detect multiple security vulnerabilities; however, most of them
cannot identify gas-related vulnerabilities, or if they can, their result is not reliable due
to their high false-negative rate. Fuzzer tools like ContractFuzzer [24], Echidna [25], and
Harvey [26] either do not discover gas-related vulnerabilities or require manual test cases,
which is a lengthy process.

Meanwhile, extensive research has focused on gas-related vulnerabilities of smart con-
tracts. Gastap [17] derives gas upper bounds for all public functions of smart contracts
via inferring size relations, generating gas equations, and solving the corresponding equa-
tions. Gasol [18] is an extension of Gastap [17]. It replaces the multiple accesses to the
same storage location with one access. Also, GasCheker [27] mainly focuses on automati-
cally identifying gas-inefficient code in smart contracts based on symbolic analysis to save
the gas usage for the creation of a contract or the invoking process of the functions in a
smart contract. GasFuzzer [28] proposes a gas-greedy strategy and a gas-leveling strat-
egy to detect Exceptions Disorder kind of security vulnerabilities. Madmax [19] uses a
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static program analysis technique to automatically detect gas-focused vulnerabilities. It
first decompiles EVM bytecode using Vandal, then detects gas-related security problems
from the decompiled code in Datalog language, which is a logic-based language. GasFuzz
[29] adopts feedback-directed fuzz testing to automatically generate inputs, leading to a
high gas consumption of contract functions. Additionally, eth-gas-reporter [30] reports gas
usage per unit test in a solidity smart contract. It can be used to get the amount of gas
used by calling a smart contract. However, most of these can not detect gas-related DoS
attacks directly, or they do not provide any information to fix the problem.

Gas Gauge can find all the loops in a contract reliably and quickly. Also, it identifies
the exact functions and variables and provides an out-of-gas instance that helps developers
investigate the problem further. Finally, to the best of our knowledge, no other tool
provides a contract’s loop thresholds. Gas Gauge is the only tool that accurately and
reliably finds the threshold values and provides more useful information like each loop’s
type, the variables affecting it. This information is extremely helpful in order to repair the
code and prevent gas-based attacks like DoS with Block Gas Limit.
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Chapter 5

Conclusions and Future Work

Conclusions:

Smart contracts are an essential application of blockchain. Because they involve mone-
tary transactions, it is crucial to make sure the contracts are risk-free. Many tools scan and
identify different vulnerabilities of smart contracts. One of the well-known vulnerabilities
the state-of-the-art tools cannot identify reliably is DoS with Block Gas Limit.

This thesis summarizes the design and implementation of Gas Gauge, an automatic
tool that helps developers and contract owners identify DoS with Block Gas vulnerability
and repair their code. This tool contains three powerful algorithms. The first one is a
static analysis approach that summarizes a contract and detects all the contract loops.
The second method is a whitebox fuzzeing based on static analysis and run-time analysis.
It identifies the public functions vulnerable to DoS With Block Gas limit. Since it uses
run-time fuzzing, it has zero false positives. Also, it uses an advanced static and run-
time analysis so, it has a low false-negative and is very efficient. The last algorithm is a
static analysis and run-time verification method that determines the point at which the
contract starts to go out of gas. Because it uses run-time verification, the results are
incredibly accurate. The method is also optimized using a binary search approach and an
independent parallel processing design to make it faster and more efficient.

Finally, our experimental evaluation results on 2,000 real-world Solidity smart contracts
show that all the three algorithms of Gas Gauge are extremely accurate and efficient. This
implementation and the results demonstrate that Gas Gauge is reliable and incredibly
useful.
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Future Work:

The current implementation only supports contracts written in Solidity. This is because
the code uses the source-code to extract useful information and utilizes the Truffle Suite
to performs run-time verification. As an improvement, we can modify our tool so that it
can support more programming languages like Vyper and JavaScript.

Also, the fuzzer can be improved so it can identify the private functions containing
loops and fuzz the public functions that call those private ones.

Furthermore, the Correction Phase uses a binary search to cut down the search space
quickly. However, it can be improved by adding a feedback-based approach to it. We can
use the amount of the remaining gas after each execution to guide the binary search to cut
down the search space even further.
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