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Abstract 

With the increasing demands and consequent miniaturization of electronic devices, 

electromigration is posing a challenge to the reliability not only of integrated circuits but also of 

the electronic packages. A methodology is reported that allows for quasi-continuous in-situ optical 

microscopic imaging of a cross-sectioned solder joint (sample) during testing for electromigration. 

This methodology is complemented with another approach that estimates the local temperature 

increase from Joule heating of the sample which allows for an appropriate temperature selection 

for the EM test to understand the contribution of failures from Joule heating. 

A SAC305 solder joint in a flip configuration was encapsulated in epoxy and cross-sectioned. 

Current stressing was applied to producing electromigration, with a theoretical current density in 

the range of (1.02 − 2.29) × 104 A/cm2. In-situ optical microscopic imaging and resistance 

measurements were performed simultaneously until an open circuit was observed. A crack and 

void started to form in an example experiment, and their evolution was recorded using the real-

time imaging. The void and the crack continued growing until the end of current stressing. The 

void area at the cross-section grew to 1500 μm2 while the crack grew to a length of 110 μm. After 

330 h, the experiment was stopped as an open circuit occurred, which was preceded by a 10% rise 

of the resistance, indicating failure due to electromigration. During the end of the test, the test 

vehicle temperature increased by 20 °C as a result of increased Joule heating due to the loss in 

cross-sectional area of the solder joint. The location of the void did not agree with the expected 

current crowding location at the solder joint corner. It was inferred that the formation of cracks 

due to internal stresses prompted the formation of the void at that location that resulted in the open 

circuit, demonstrating the interconnection between the various failure mechanisms caused by EM. 

Microstructural changes were also monitored after the open circuit and were possibly due to the 

thermal stress occurring once the sample cooled down. Hillock formation and additional cracks 

were observed 30 min after the open circuit.  

The results highlight the unique capacity of real-time imaging to support more detailed 

electromigration research in solder joints by tracing the source of specific failure events. 

Additionally, cross-sectioning of samples for real-time visuals decreases the cross-sectional area 

and increases the current density, allowing for accelerated EM testing. Thus, the use of real-time 



v 

 

visuals allows for accelerated tests which is helpful for studying EM under varying test conditions 

and comparing the reliability of different solder materials through a detailed analysis of the failure 

times. 

Keywords: Electromigration (EM), Current crowding, Solder joint, SAC305, In-situ testing, 

Reliability   
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Chapter 1. Introduction 

 

Soldering is an important process in electronics which is used to form electrical and mechanical 

connections between electronic devices. Through-hole technology (THT), surface mount 

technology (SMT), and area array packages are three common methods used to assemble 

electronic devices onto a substrate, such as a printed circuit board (PCB). THT is the process in 

which component leads are inserted into drilled holes on a PCB and then the leads are soldered 

onto the bottom side of the PCB. Alternatively, surface mount technology (SMT) is a method in 

which electronic devices, termed surface mount devices (SMD), are mounted directly on the 

printed circuit board (PCB) using solder. Flip chip technology, a sub-component of area array 

packages, is similar to SMT, but the method is used to mount a semiconductor device, such as an 

integrated circuit (IC) which consists of an assembly of electrical components, onto a substrate 

using a series of spherical solder bumps. Due to the layout of the flip chip configuration, flip chip 

allows for smaller spacing between conductors which produces overall smaller packages. 

Additionally, flip chip allows for higher speeds and better performance than both THT and SMD 

[1]. A schematic of the three methods is shown in Figure 1.1. However, due to the small size of 

the solder joints in flip chip configurations, many reliability concerns have been observed. 

 

 

Figure 1.1: (a) Through-hole technology showing leads on bottom side of PCB, (b) surface mount 

technology showing connection of device directly on PCB, (c) flip chip configuration showing 

series of solder joints. 
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Solder joints used in flip chip technology were primarily made of tin (Sn) and lead (Pb) alloys 

due to their excellent electrical and mechanical properties. However, due to environmental 

concerns, the electronic packaging industry shifted to Pb-free solder joints [2]. SnPb solder joints 

possessed some reliability concerns, such as low cycle fatigue due to the thermal stress and 

coefficient of thermal expansion (CTE) mismatch between the chip and substrate. However, these 

issues have been exacerbated with Pb-free solder joints since they possess a higher concentration 

of Sn, which is the primarily material responsible for the reliability concerns [2]. For instance, 

SAC305 is one of the most common lead-free alloys which is composed of 96.5% tin, 3% silver, 

and 0.5% copper, compared to Sn63Pb37, composed of only 63% tin. 

Reliability concerns are common in Sn-rich alloys since the formation of Sn whiskers can cause 

short circuits in electronic devices, as shown in Figure 1.2. Copper, which is commonly used as 

an alternative to Pb in Pb-free joints, reacts with the tin to form Cu6Sn5 compound, which is 

responsible for the whisker growth [3]. However, in flip chip technology, whisker growth is less 

of a concern since 1) the compressive stress on the solder joints from the metallization lines 

opposes whisker growth, and 2) the solder joints are further apart, so it is unlikely for a short circuit 

to occur [2]. 

 

Figure 1.2: Example of Sn whisker causing a short circuit between two legs (used with 

permission) [4]. 
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On the other hand, thermal-mechanical stresses are a more common reliability concern in flip 

chip configuration. Thermal-mechanical stress are caused by the CTE mismatch between the Si 

chip (α = 2.6 ppm/ °C) and PCB, which is made of flame retardant 4 (FR4), a glass-reinforced 

epoxy resin laminate (α = 18 ppm/ °C) [3]. During the reflow of solder joints at high temperatures, 

slight misalignment occurs between the solder joints and the pad on the PCB, but it does not cause 

failure. However, upon cooldown to room temperature, the PCB bends concave downwards, 

introducing large amounts of shear strain in the solder joints, which might lead to a complete 

fracture at the interface. The entire process is shown in Figures 1.3 (a) – (c). Epoxy underfill is 

used to significantly reduce this reliability concern. However, even with the underfill, fractures 

tend to happen with repeated temperature fluctuations. Temperature cycling and fatigue testing is 

performed to further study these effects, as established in JEDEC standard JESD22-A104D [2]. 

 

 

Figure 1.3: Example of thermo-mechanical stresses generated in a flip chip due to CTE 

mismatch, showing (a) flip chip before solder joining, (b) start of reflow process resulting in 

misalignment between upper and lower substrates, (c) stress generation causing boards to bend 

concave downward once assembly is cooled down to room temperature (used with permission) 

[4]. 
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Impact fracture is another reliability concern in which fracture of the solder joints occurs during 

shock or impact, such as when dropping an electronic device. This reliability concern becomes 

more severe when a solder joint ages. Kirkendall voids form at the interface between the solder 

joint and metallization line, due to the difference in diffusion rates of the metal atoms. The voids 

make the solder joint more brittle and ultimately more susceptible to fracture. Mini Charpy impact 

test machines can be used to measure the impact toughness of the studied solder joints [5]. Drop 

tests can also be used to capture dynamic responses causing solder joint failure while capturing all 

phases including the crack initiation, propagation and opening [6]. An example of crack formation 

is shown in Figures 1.4 (a) and (b). Similar to impact fracture testing, fatigue failure can also be 

studied using vibration loading to obtain cyclic stress versus number-of-cycles-to failure (or S-N) 

curves [7,8]. Reference [9] has demonstrated a relationship between thermal cycling and drop 

testing, showing a transition of failure modes when combining both factors. 

 

Figure 1.4: (a) Example of crack propagation in a SAC solder joint, (b) zoomed-in portion of 

upper interface (used with permission) [4]. 
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In addition to the previous concerns, one of the most serious reliability issues in flip chip 

configuration is electromigration (EM) which occurs under large current densities. Due to the low 

melting point of solder joints and their geometry, a phenomenon known as current crowding occurs 

in which non-uniform current density and temperature gradients are generated across the solder 

joints. These gradients cause intermetallic compound (IMC) growth and void nucleation, 

decreasing the mechanical strength and electrical properties of the solder joints. Unlike the 

previously mentioned reliability concerns, EM is not well-understood since it is linked to various 

factors and other migration phenomena which accelerate failure and make isolating the effects of 

EM challenging. 

 

1.1 Theory of electromigration 

Electromigration is the material transport of metal ions caused by the momentum transfer of 

moving electrons. When an electric current passes through a conductor, two main forces act on the 

metal ions of the conductor, namely the “electron wind” force (Fwind) and the electrostatic force 

(Ffield), as shown in Figure 1.5. Ffield is the force generated by the interaction of the electric field 

with the metal ions. This force is miniscule as the metal ions are shielded by the surrounding 

electrons and therefore can be ignored. On the other hand, Fwind  is generated by the momentum 

transfer of the electrons to the metal ions and is responsible for the electromigration phenomenon. 

For a conductor with small current density, typically smaller than 104 A/cm2 for solder and 106 

A/cm2 for either aluminum or copper, the electron wind force is negligible; therefore, 

electromigration does not occur [10]. 
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Figure 1.5: Forces acting on metal ion during current flow. Electron flow direction shown in green, 

electric field in red, and current in blue. Electromigration is responsible for electron wind force 

which displaces metal ion. Current density formula based on JEDEC standard [11]. 

 

However, when a threshold current density is reached, greater than 104 A/cm2 for solder and 

106 A/cm2 for aluminum and copper, known as the activation energy, the electron wind force 

exceeds the electrostatic force and induces a momentum exchange that is transferred to the nearby 

metal ions. This momentum transfer causes the metal ions to displace from their original position, 

away from the cathode. This results in loss of metal ions, and consequently material, at the cathode 

end. Alternatively, metal ions are deposited at the anode. Over time, this results in the formation 

of voids at the cathode and hillocks at the anode, which translates to an open and short circuit, 

respectively [12]. 

J.R. Black developed the first equation, called the Black’s equation, to quantify 

electromigration in a metal film conductor [12]: 

1

𝑀𝑇𝐹
= 𝐴 𝐽2𝑒

𝛗

𝑘𝑇  (1) 

where: 

MTF = median time to failure [h] 
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A = a constant which contains a factor involving the cross-sectional area of the film 

J = current density [
A

cm2] 

Φ = activation energy [eV] 

k = Boltzmann’s constant 

T = absolute temperature [K] 

 

Black’s equation is used to obtain the median time to failure (MTF) of a metal conductor which 

can be used to predict failure times depending on various parameters and experimental conditions. 

For example, reference [13] performed testing on a SnPb solder joint and reported Φ = 0.8 

eV/atom, J = 2.75 x 104 A/cm2, T = 413.15 K, giving a MTF of 1 h. The failure criterion of 

electromigration is a permanent resistance increase in a conductor. This increase is a result of void 

nucleation which decreases the effective cross-sectional area that electrons can pass through [10]. 

A decrease in cross-sectional area, for the same applied current, increases the current density, 

which decreases the MTF. Current density is a major factor in the determination of MTF, since the 

relationship between the variables is quadratic. 

Electromigration is influenced by many factors as highlighted in Black’s equation: current 

density, activation energy, Boltzmann’s constant and temperature. The activation energy is a 

material constant which entails the type of crystal structure, grain size, type of transport 

mechanism (grain boundary, bulk and surface diffusion) as well as other factors [12,14]. These 

factors make studying EM failure challenging; however, the activation energy factor is considered 

to have the largest potential for slowing down electromigration failure, as evidenced by the amount 

of research being done in that field [15–18]. 

Gradients, whether it be temperature, current or ion diffusion coefficient also affect 

electromigration as the diffusion of atoms is a direct result of the potential gradient across a 

conductor. Similarly, other migration mechanisms are also closely related and greatly impact 

electromigration. Electromigration (EM), thermomigration (TM), stress migration (SM) as well as 

chemical diffusion have all been shown to affect the reliability of electrical circuits [10]. 
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References [2] and [19] have demonstrated that failures due to EM are closely intertwined with 

TM, particularly in flip chip technology. Similarly, I. A. Blech was one of the first researchers to 

suggest a relationship between SM and EM [14]. Thus, as previously noted, many factors play a 

role on EM, and studying the contribution of each migration phenomenon on the failure 

mechanism is challenging. 

Thermomigration is the migration phenomena that is most closely linked to EM [20]. TM occurs 

when a large temperature gradient occurs in a conductor. In flip chip technology, non-uniform 

current densities are observed in the solder joints which consequently result in non-uniform 

temperature distributions. TM has an adverse effect on the reliability of solder joints, further 

accelerating damage from EM [19,21].  

 

1.2 Literature review 

Solder joints in the microelectronic industry serve to increase packing density and reduce space, 

ultimately leading to faster electronic devices. The gradual decrease in solder joint sizes has led to 

increased current densities, giving rise to electromigration concerns, risking the electrical and 

mechanical properties of solder joints [13,22–24]. The initial direction of research was aimed at 

IC interconnects (very large-scale integration metallization lines). Research included the 

relationship between current density and the median time to failure (MTF) for IC interconnects, 

with Black’s equation being widely used to predict the MTF for various electronic devices 

[3,16,25,26]. However, studying electromigration in solder joints has become more popular, in 

part due to the lower activation energy, around 0.8 eV for solder joints, for electromigration failure 

and thus requiring smaller current densities to reach failure [13,27]. A summary of the current 

densities typically observed in solder joints is shown in Table 1.1. 

Compared to IC interconnects, solder joints have unique features that influence their 

electromigration behavior including lower melting point, current crowding, and atomic flux 

divergence [28,29]. Current crowding is the non-uniform distribution of current density which is 

predominant in solder joints due to their geometry, wherein the current flow crowds at the corner 

of the solder joint to produce hot spots with increased current densities. Atomic flux divergence 

refers to a region of mass accumulation at the interface between the solder joint and metallization 
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line (usually Cu or Al), which occurs due to the difference in diffusion rates between the two 

materials, which increases the likelihood of electromigration induced failure mechanisms at the 

shared interface [30–32]. Furthermore, solder joints are more prone to electromigration failure due 

to their lower melting points corresponding to higher diffusivity, requiring lower current densities 

(by an order of 100) to achieve similar failure times [33]. 

Due to the differences in cross-sectional areas between the solder bump and the interconnect 

wire, current crowding can occur at the location of electron flow entrance in the solder bump. In 

solder joints, void propagation is observed in the cathode to follow a “pancake shape”, starting 

from the location of the highest current density and propagating horizontally in the under bump 

metallization (UBM) [31], as shown in Figure 1.6. This uneven current distribution across the 

solder joint has given rise to another driving factor, thermomigration [33]. EM also influences the 

formation of intermetallic compounds (IMCs); the formation of IMCs has been shown to accelerate 

failures in solder joints [34].  

Thus, the unique features in solder joints such as the interface geometry between the 

metallization lines and solder joint, solder composition as well as the anisotropic material 

properties of Sn have made solder joints a weak link in electronic packages. Mass flux divergence 

occurs at interfaces between dissimilar metals. In solder joints, this corresponds to the interface 

between the solder joint and metallization line, in which atomic flux divergence occurs. 

Additionally, due to the geometry of the solder joint, the conducting line is not straight but rather 

turns at the corner, creating non-uniform current distribution. Ultimately, these factors have also 

made the study of EM failure mechanisms challenging [24,35].  

 

Figure 1.6: Current crowding in solder joints, showing (a) electron flow direction, (b) void 

nucleation, (c) void growing along the solder joint-metallization line interface. The final diameter 

is reduced, increasing the current density. 
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Real-time viewing of flip chip configuration solder joints can assist in understanding the failure 

mechanisms in solder joints by capturing joint interface evolution involving IMC growth and crack 

formation [36,37]. In the literature, real-time viewing methods involved SEM monitoring, 

requiring multiple interruptions to the electromigration test [38]. Other electromigration imaging 

techniques required destructive cross-sectioning of multiple flip chip samples to capture changes 

at different time intervals [31]. This process is time consuming and introduces sample-to-sample 

variation when comparing micrographs from different samples. Interruptions to an EM test might 

affect the MTF, similar to DC pulsing which is shown to increase the MTF [39]. Therefore, an 

inaccurate result could be obtained from such an experiment. 

Yeh et al. [31] reported the current crowding phenomenon with electromigration for flip chip 

solder joints. The propagation of the interfacial voids was observed from cross-sectional studies 

of samples at 38 h, 40 h, and 43 h, respectively. Likewise, Yang et al. performed a similar 

experiment to document microstructural evolution, with five samples required to capture five time 

intervals [40]. Huang et al. designed a flip chip sample with 24 solder joints, but the SEM 

micrographs were only captured at a single time frame [41]. For all these studies, multiple samples 

were required for imaging, attributed to the destructive nature of cross-sectional imaging 

preparation. This procedure is tedious and increases the likelihood of sample failure during the 

imaging preparation process. Moreover, differences between the samples’ initial microstructure 

are expected to impact the final results. A suitable real-time imaging method is required to help 

eliminate the aforementioned problems. 

Lin et al. observed in-situ electromigration failure of a cross-sectioned PbSn flip-chip solder 

joint under SEM [42]. Current-stressing was interrupted four times to observe the specimen under 

the microscope. The test time was calculated by summing the current-stressing time, excluding the 

time elapsed during specimen observation. Thus, sources of error were introduced after each test 

interruption to allow the sample to reach a set stable temperature. Nevertheless, it was found that 

failure occurred in only 40 min, under a current density of 4 x 104 A/cm2, supporting the 

significance of current crowding on EM failure and the important of in-situ imaging to capture EM 

failure.  
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Table 1.1: Examples of EM testing conditions seen in literature. 
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1.3 Scope and objectives 

Research is focused on EM in flip chip solder joints, with flip chips regarded as a field of 

exceptional growth in packaging technology [13,24]. However, due to the miniaturized solder 

interconnects in flip-chip configuration, EM is a growing concern, and the electronic packaging 

industry is starting to face challenges in obtaining consistent reliability in solder joints 

[2,16,18,47]. Some defects were previously tolerated in larger solder joints, with a diameter greater 

than 300 μm, as the defects take up a relatively small percentage of the joint. However, for a 

smaller joint, the defects are still the same size, thereby taking up a larger percentage of the joint. 

Thus, the defects which, previously tolerated, are currently not tolerated as they take up a relatively 

larger area of the now smaller device [9]. Thus, with the shrinking microelectronic devices, the 

maximum tolerable current densities have also been decreasing for these devices. Ultimately, EM 

is a reliability concern as it causes permanent degradation of conductors often followed by a 

runaway failure mechanism resulting in fast complete failure of the joint. Certain applications, 

such as space travel, medical devices and military equipment, require high levels of reliability and 

small margins of error [10]. Thus, there is an urgent need to tackle EM. 

As shown in the previous section, in the present literature, EM testing methodology involves 

current stressing of a sample which is often complemented with in-situ resistance measurements. 

The resistance change is the main failure criterion, with cross-sectional micrographs being used as 

an optional step, involving destructive testing, to observe microstructural changes. This 

methodology is useful to predict EM failure times but fails to explain the physics behind the 

phenomenon of EM. 

Thus, the main objective of this research is to 1) allow in-situ monitoring of the electromigration 

process, 2) provide a constant condition under which EM proceeds, 3) obtain repeatable test results 

at short testing times. This is achieved by designing a test sample that can be cross-sectioned in a 

non-destructive process, leaving the resistance measuring circuit intact. This proposed 

methodology would provide a more detailed failure analysis, providing a better understanding of 

electromigration. Therefore, real-time visuals obtained during electromigration testing could be 

useful to learn more about the effects of unique features of solder joints, such as geometry, 

metallurgy, anisotropy of Sn, etc. on joint reliability and help mitigate electromigration. 
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Real-time viewing of electromigration in solder joints provides the ability to observe cracks and 

voids and determine the initial location of void formation and direction of propagation, and verify 

any defects caused solely by EM and not due to manufacturing processes as described in  flip-chip 

test vehicle preparation e.g. [33]. Furthermore, [27] has highlighted the importance of determining 

“the prevalence of either failure mode – nucleation vs. growth" which potentially can be 

determined by in-situ monitoring of a solder joint [33]. JEDEC JEP154 [11] guidelines were 

followed for the experimental method, including the preparation of the daisy chain test structure, 

choice of stressing conditions and the method for temperature measurement. Additionally, real-

time viewing was used to complement the failure analysis stated in JEP154. 

Equally important is the use of cross-sectioning during sample preparation prior to the real-time 

visual tests, which decreases the cross-sectional area and consequently increases the current 

density across the solder joints. This results in truly accelerated EM testing, the results of which 

could be used to determine the upper failure criteria limit in the test vehicles. Similarly, the effect 

of various variables on EM MTF, such as solder geometry, material composition, and surface 

finish, could be studied at an accelerated pace. Furthermore, different test vehicle designs could 

be developed and tested using this methodology to optimize certain parameters and increase 

reliability.   
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Chapter 2. Sample preparation and 

simulation 

 

In order to observe electromigration in solder joints, a test vehicle has to be prepared that 

resembles commercial flip-chip solder joints. Additionally, the test vehicle ought to be designed 

to induce electromigration, while minimizing the effects of Joule heating. The design requirements 

as well as the process development are highlighted in this section. The term ‘test vehicle’ refers to 

the PCB and solder joints. The term ‘specimen’ refers to the material producing the signal which 

is the solder joint. In this chapter, two test vehicles are described, with the second being an 

improvement over the first. 

 

2.1 PCB design requirements 

The PCB design must follow these requirements to ensure a properly functioning test vehicle: 

1) A multitude of channels to be designed to measure the resistance across a number of solder 

joints, which are formed in a daisy chain configuration 

2) Withstand high current density (104 −  105 A/cm2 for SAC305) 

3) Withstand high temperatures, occurring from Joule heating and high ambient temperature 

testing 

4) Limit current crowding to reduce sample-to-sample variations 

5) Ensure EM occurs only in solder joints and avoid EM in PCB copper traces 

6) Allow for current flow even after cross-sectioning 

7) Allow for easy reflow with proper surface finish selection 
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Figure 2.1: Design requirements for selection of solder joint and pad size. Typical geometry of test 

vehicle for solder joint diameter of 250 μm after reflow. 

 

The most important design requirement is the solder joint diameter, and consequently, the size 

of the PCB pad both of which are designed small enough. In order for EM to occur, the required 

current density has to be reached. The current value is limited by the availability of a power supply 

that can deliver high current, the ability of the test vehicle connectors and traces to withstand high 

current without fusing, and the solder joint diameter. It is the goal of the design to make the solder 

joint the weak link, failing first when the current level is increasing. 

As mentioned, the solder joint diameter and pad size directly affect the current density. A solder 

joint diameter of 250 μm was selected as this was the smallest available diameter available in a 

product on the market (Chipquick SMD2020). According to design requirements, a joint diameter 

of 250 μm would require a pad diameter of 200 μm, so the pad size was designed accordingly [48]. 

In flip chip configuration, the upper substrate usually is a silicon chip and lower is a high density 

PCB or an interposer. However, for this test vehicle, both substrates are PCBs with a typical 

thickness of 1.2 mm. The assembly, after reflow, is designed to look similar to Figure 2.1. 
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2.2 Test vehicle 1: eight solder joints 

The first test vehicle design was fabricated by Supplier 1 (Markham, Canada). The devices 

under test (DUTs) are solder joints produced between custom PCBs, forming a test vehicle for 

convenient handling in the experiments. The custom PCBs are two daughterboards connected to a 

single motherboard to form a flip configuration, as shown in Figures 2.2 (a) – (c). The daisy chain 

design has 8 solder joints, as illustrated in Figure 2.2 (d). Two signals (channels) were obtained 

from each solder joint: one including the resistance of some copper lines, the other without copper 

line resistance. Thus, there were a total of 16 channels, 8 odd and 8 even, to allow for resistance 

measurements across different sections of the flip configuration. The even channels were used to 

measure the resistance of the “solder-line specimens” which are the top and bottom copper traces 

as well as the solder joints, as shown by the “CH 1” contacts in Figure 2.3 (a). The odd channels 

were used to measure the resistance of the “solder specimens”, directly across the solder joints, as 

shown by the “CH 2” contacts in Figure 2.3 (a). The flow of current is indicated by the red line in 

Figure 2.3 (b). Close-ups with more details on an even and an odd channel are given in Figures 2.3 

(c) and (d), respectively. 
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Figure 2.2: (a) Bottom side of motherboard showing voltage probe pads. Flip configuration 

consists of two daughterboards soldered onto motherboard using SAC305 solder. Figure shows 

top side of components (b) before and (c) after bumping and reflow processes, and (d) cross-

sectional illustration of flip configuration [49]. 
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Figure 2.3: 3D visualization of flip chip channel configuration. Flip configuration consists of 16 

channels evenly split between even and odd channels. (a) Channel configurations, showing 

example of CH 1 (solder) and CH 2 (solder-line) (b) Current flow direction starting from 

motherboard to daughterboard and back. (c) Even channel configurations measure resistance of 

copper traces as well as that of solder sample. (d) Odd configurations measure resistance of solder 

sample alone [49]. 
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2.2.1 Solder joint simulation 

To ensure that the required current densities are reached, and to gauge the level of Joule heating 

in the solder joint, current density simulations were developed for a full solder joint and half a 

solder joint, respectively. Additionally, the metallization line thickness and width were varied to 

study their effect on current crowding. The joint diameter at the top, middle, and bottom were 200 

μm, 275 μm, and 200 μm, respectively. The length of the top and bottom copper lines were kept 

constant at 500 μm, respectively. Two thicknesses of 34.8 μm and 174.0 μm were used for the 

copper lines, corresponding to copper weight of 1 oz and 5 oz, respectively. Additionally, two 

widths of diameter 200 μm and 400 μm were used. Although ENIG surface finish used in the PCB 

design, the simulation was simplified to include copper only, since the PCB consisted of small 

amounts of nickel (3.8 μm) and gold (0.1 μm), and the material parameters are similar, as shown 

in Table 2.1. The boundary conditions were set such that 5 A of current flowed from the terminal 

to the ground using the DC current model. The software used was Comsol 5.5. Comsol’s ‘extra 

fine’ element size was used and the simulation was built based on the physics-controlled mesh, 

similar to Figure 2.4. The simulation files can be found on Google Drive1.  

 

Figure 2.4: Simulated dimensions of half solder joint showing the mesh, simulating cross-

sectioning. 

                                                

1 https://drive.google.com/drive/folders/1XwL_Iud0WLyswbLjMul1dFciiL1lpSCq?usp=sharing 
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Table 2.1: Material parameters used for simulation using built-in material library in Comsol 

Material Cu SAC305 [50,51] Au Ni 

Electrical conductivity [S/m] 5.81 x 107 9.63 x 106 4.56 x 107 1.38 x 107 

Coefficient of thermal expansion [1/K] 1.65 x 10-5 2.35 x 10-5 1.42 x 10-5 1.34 x 10-5 

Heat capacity at constant pressure 

[J/kg.K] 
3.84 x 102 2.32 x 102 1.29 x 102 4.45 x 102 

Density [kg/m3] 8.96 x 103 7.39 x 103 1.93 x 104 8.90 x 103 

Thermal conductivity [W/m.K] 4.01 x 102 5.87 x 101 3.17 x 102 0.907 x 102 

Young's modulus [Pa] 1.2 x 1011 4.1 x 1010 7.0 x 1010 2.19 x 1011 

Poisson’s ratio [1] 3.4 x 10-1 3.3 x 10-1 4.4 x 10-1 3.1 x 10-1 

 

 

2.2.1.1 Varying solder dimensions 

The current density across a solder joint is generally non-uniform [52]. Therefore, a current 

density simulation was performed to obtain the value and location of the maximum current density 

in the solder joint. To understand the phenomenon of current crowding, different geometries of the 

solder joint and metallization lines were simulated: full joint, half joint, thick line and wide line, 

as shown in Figures 2.5 (a) – (d). The dimensions of all the geometries are shown in Table 2.2. 

Figure 2.5 (a) shows the current density distribution of the reference full solder joint, with the 

maximum value at the corner of the solder joint. Figure 2.5 (b) shows the increase in the current 

density when the solder joint is cross-sectioned. Compared to the normal metallization line 

thickness corresponding to 1 oz Cu, the line with a thickness corresponding to 5 oz Cu decreased 

the maximum current density from 3.51 × 105 A/cm2 to 1.25 × 105 A/cm2, as shown in Figure 

2.5 (c). Similarly, the current density was decreased with wider lines, as shown in Figure 2.5 (d). 

The results agree with those shown in [53]. The effect of mesh density on the maximum current 

density is shown in Figure 2.6. 
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Figure 2.5: Current density simulation. Magnitude of the applied current was 5 A. The maximum 

solder diameter and height are 275 μm and 200 μm, respectively. Simulation shows (a) reference 

solder joint with 1 oz Cu and 200 μm wide lines (b) cross-sectioned solder joint (c) thick solder 

joint with 5 oz copper (d) 400 μm wide solder joint. Location of maximum current density always 

at interface corner adjacent to current source. Current flows from top-left corner (A) to bottom-

right one (B). 

 

 

Table 2.2: Results of simulation for different geometries. Applied current was 5 A, corresponding 

to a nominal current density of 1.59 x 104 A/cm2 according to the JEP154 standard [11]. 

Case 

Metallization line 

Maximum current 

density [A/cm2] 

Resistance (voltage drop for 5 A)  

Thickness 

[μm] 

Width 

[μm] 

Across current 

flow terminals 

[mΩ] 

Across solder 

joint [mΩ] 

Reference 34.8 200 3.51 x 105 1.25 0.648 

Cross-

sectioned 
34.8 200 6.12 x 105 2.51 1.29 

Thick line 174.0 200 1.25 x 105 0.662 0.533 

Wide line 34.8 400 2.38 x 105 0.747 0.557 
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Figure 2.6: Effect of mesh density on maximum current density, showing an increase in current 

density with finer mesh densities. 

 

2.2.1.2 Cross-sectioning and temperature gradient 

To understand the current distribution across the cross-sectioned solder planes, simulations 

using contour plots on slice planes were performed, as shown in Figures 2.7 (a) and (b). This 

simulation was performed to locate the plane with the highest current density. The magnitude of 

the applied current was 5 A. Another simulation was performed on a solder joint bisected in half, 

revealing the central plane in which the cross-sectional imaging was performed, as shown in Figure 

2.7 (c). As expected, current crowding occurred at the location of electron entrance and exit, with 

a maximum current density of 6.12 × 105 A/cm2, as shown in Figure 2.7 (c). The maximum 

current density occurred at the cross-sectioned plane. The current distribution was similar to the 

skin effect seen in alternating current. The results from this simulation highlight the significance 

of the presented real-time imaging methodology which is likely to capture microstructural changes 

in the plane with the largest current density. 

Similarly, another simulation was performed to determine if thermomigration would occur for 

an applied current level of 5 A for the cross-sectioned solder joint (filename “V2_cross-

sectioned_temp_gradient”). The Joule heating module was used which was part of the DC current 
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model. The surfaces are isolating and the non-stressed Cu traces were set at room temperature to 

study the effect of Joule heating on the current stressed portions of the joint. Looking at the 

literature, large temperature gradients of ⁓100 K/mm are required for thermomigration to occur 

[19]. Comparing the previous value with those in Figure 2.7 (d), there is a possibility that 

thermomigration would impact the experimental results, since the maximum value was 230 K/mm. 

Therefore, the test result failure mechanisms would entail both electromigration and 

thermomigration. However, this value occurred at the current crowding location, and the 

temperature gradient was more uniform throughout the solder joint. Nevertheless, it is concluded 

that thicker copper lines are required to decrease current crowding and consequently limit 

temperature gradients. 

 

 

Figure 2.7: Current density simulation showing (a) contour plot on middle plane, showing the 

largest current density in this plane (b) contour plot on top interface (c) simulation of the cross-

sectioned plane (d) temperature gradient across different sections of solder joint, revealing high 

gradients at the current crowding location. Current flows from top-left to bottom-right corner.  
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2.2.2 Bumping and reflow processes 

The solder formation process consisted of two steps: the bumping process of the daughterboards 

and the reflow process of the daughterboards onto the motherboard. Two methods were developed 

for the bumping process of the solder joints onto the daughterboard. The first method involved the 

use of 250 μm solder balls, and the second method involved the use of stencil printing using solder 

paste. The bumped boards were then assembled either manually using a hot plate, or automatically 

using a die bonder. The results of the assemblies obtained from both methods were then 

characterized by measuring the resistance across all channels. 

 

2.2.2.1 Solder balls 

The first method involved the use of Chipquik SMD 2020 - 25000, 0.010” (0.254 mm) diameter 

Sn96.5/Ag3.0/Cu0.5 solder balls2, as shown in Figures 2.8 (a) – (f), following a strict procedure: 

(a): Apply “Rosin Flux MG Chemicals #835-P” on daughterboard 

(b): Manually place solder balls on daughterboard pads, as shown in Figure 2.9 

(c): Reflow daughterboards on a hot plate for 5 min at 275 °C 

(d): Apply flux on motherboard 

(e): Place daughterboards on the motherboard then apply high-temperature (Kapton) tape around 

the white rectangular borders inside the motherboard. The tape prevents movement of the 

daughterboards during reflow. 

(f): Place assembly on the hot plate for 5 min at 275 °C 

Once the procedure is complemented, a conductivity test using a DMM is conducted to determine 

if the assembly was successful. 

 

                                                

2 Available from Chipquik (Ancaster, Canada): 

https://www.chipquik.com/store/product_info.php?products_id=1100034 
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Figure 2.8: Solder ball bumping process, showing steps (a) to (f). The terminal pitch is 2.54 mm. 

 

 

Figure 2.9: Micrograph of solder pad on daughterboard. The measured diameter of the pad 

opening is 208 μm. 
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Figure 2.10: Comparison of different flux types, showing (a) RA Rosin Flux Paste – 8342 and (b) 

MG Chemicals Rosin Flux pen #835-P.  

 

A series of steps were shown to optimize the manual bumping and reflow processes: 

 The use of a flux pen instead of flux paste; the flux paste applied an uneven layer, shown 

in Figure 2.1 (a), compared to the flux paste which applied an even layer, improving the 

reliability, as shown in Figure 2.1 (b). 

 Heating the assembly from the bottom upwards, as opposed to heating the entire assembly 

at once inside an oven. The former allows for the solder balls to melt, starting from the 

bottom, which ensured a connection was formed between the solder joint and PCB pad. 

 The use of Kapton tape for the accurate placement of the daughterboards onto the 

motherboard. 

 

2.2.2.2 Solder paste 

A stencil, which had holes of diameter 12 mils, was developed for the stencil printing process 

shown here and in Figures 2.11 (a) – (g). The daughterboard stencil is shown in Figure 2.12. 

(a) Scoop solder paste from original container into a petri dish. 

(b) Place daughterboard into fixture. 

(c) Locate solder pads with stencil and use alligator clips to fix stencil in place. 

(d) Lay solder paste onto stencil. 

(e) Spread solder paste across the stencil using the solder paste spreader and scrape off excess. 



27 

 

(f) Remove daughterboard, use tweezers if necessary. 

(g) Reflow assembly using the motherboard fixture 

After the procedure was completed, the PCB stencil was cleaned using lint-free wipes (Kimwipes) 

and isopropyl alcohol (IPA). 

 

Figure 2.11: Solder paste process, showing steps (a) to (g). 

 

 

Figure 2.12: Illustration of daughterboard stencil. Stencil was manufactured using stainless steel. 

Dimensions are 2.162 inches by 1.712 inches, with a thickness of 4 mils. Stencil holes have a 

diameter of 12 mils. 
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Figure 2.13: Bumping process of solder joints, showing daughterboard (a) before stencil printing 

(b) after printing and (c) after reflow. 

 

For the solder, KD Solz solder paste (KD MTEC, South Korea) was used which is SAC305 (Sn 

96.5%, Ag 3.0%, Cu 0.5%), with 11.5% flux by weight, as shown in Figure 2.13.  

It was concluded that the solder ball bumping process was the faster of the two processes, 

roughly by a factor of 3. Furthermore, many issues were encountered with stencil printing:  

 One or more solder pads often observed to be missing solder. In this case, the 

daughterboard had to be completely cleaned and the process was repeated. 

 In some cases, the daughterboard did not fit inside the fixture. The daughterboard was 

sanded on either end. Careful attention was taken to ensure accurate alignment with 

motherboard. 

 Solder paste moved when removing stencil. Alligator clips were used to clamp down the 

stencil onto the fixture. 

 Leftover solder paste blocked some of the holes in the stencil once the stencil was removed 

after screening. To solve this problem, the stencil was cleaned with IPA and the holes were 

examined under a microscope to ensure they were free of any paste. 

After multiple iterations of this process, it was observed that one screen pass was more effective 

than multiple passes as multiple passes applied an excess amount of solder on the pads. Similarly, 

roughly 2.5 mL of solder paste was enough for each daughterboard.  
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2.2.2.3 Tresky die bonder 

After reflow of the daughterboards, a Tresky T-3000-FC3 die bonder was used for the test 

vehicle assembly. The two daughterboards were flipped, placed next to a motherboard on the 

machine, picked by the machine, aligned, and placed on the motherboard using a bonding force of 

30 N, which was applied at a temperature of 260 °C and held for 5 min, as shown in Figures 2.14 

(a) – (e). 

 

 

 

Figure 2.14: Tresky T-3000-FC3 die bonder machine, showing (a) machine platform (b) 

superimposed images of daughter- and mother- boards (c) motherboard placement on heating plate 

(d) pick and place tool (e) reflow process. 
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2.2.3 Details of assembly 

Electroless nickel immersion gold (ENIG) was chosen as a surface finish for the solder pads. 

Details are given in Table 2.3. A cross-sectional view of the test vehicle as viewed under a 

microscope is shown in Figure 2.15. The thickness of all PCBs was 1.2 mm. Solder resist material 

thickness was kept at 20 μm over copper tracks and 30 μm on the bare PCB surface. The average 

diameter and height of the bumped solder joints, using the solder ball bumping process, were 305 

µm and 129 µm, respectively. The diameter of the copper pad on the daughterboards was 200 µm. 

 

Table 2.3: Surface Finish Parameters 

ENIG Surface Finish 

Material Nominal Thickness (µm) 

Copper 25.4 

Nickel 3.81 

Gold 0.05-0.10 

 

 

 

Figure 2.15: Cross-sectional morphology of solder joint on test vehicle showing parts of 

daughterboard, SAC305 solder, and motherboard. 
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2.2.4 Resistance characterization 

To ensure the reliability of the test vehicle, resistance measurements were taken for all solder 

joints in the test vehicle, prior to current stressing. All samples had very similar resistance values, 

as shown in Table 2.4. Each sample consists of 8 “solder line” and 8 “solder only” signals. Since 

both methods yielded similar results, the solder ball bumping was used since it was faster. The 

mean of the mean of the odd and even channels were 0.36352 and 2.73868 mΩ, respectively. Thus, 

percentage errors of up to 15 % can be expected from these results, which are attributed to 

differences in solder joint geometry, placement precision of solder joints, etc.  

Table 2.4: Different measurements of the 6 samples. The room temperature was 22 °C. The level 

of the probing current was 100 mA. Thermoelectric electromotive force (EMF) characterization 

measurements were not performed which could impact the resistance data. 

Sample 1 2 3 4 5 6 

Mean odd (solder only) [mΩ] 0.32994 0.39619 0.34506 0.33759 0.38135 0.39098 

Mean even (solder-line) [mΩ] 2.78384 2.77072 2.70799 2.70015 2.73612 2.73326 

Std Dev (odd) [mΩ] 0.04644 0.07155 0.02183 0.03093 0.06075 0.03358 

Std Dev (even) [mΩ] 0.1632 0.08968 0.06541 0.0746 0.07267 0.0888 

Min. resistance [mΩ] 0.27197 0.2931 0.31485 0.27771 0.30836 0.32375 

Max. resistance [mΩ] 3.06215 2.95695 2.84178 2.81408 2.84622 2.85969 

 

2.2.5 Test vehicle preparation for cross-sectional viewing 

To prevent breakage of the solder joint connections during the grinding process, the test vehicle 

was encapsulated in epoxy using the “ClaroCit Kit” brand (available from Struers)3, as shown by 

the sequence of images in Figures 2.16 and 2.17. The test vehicle was then ground sequentially 

using silicon carbide paper from 240 to 1200 grit and polished using alumina powder of micron 

sizes 1.0, 0.3, 0.1 and 0.05, respectively. A Pt1000 temperature sensor was attached with thermally 

conductive paste (TG-S606B silicone based thermal grease, t-Global Technology) to the surface 

of a cross-sectioned solder joint near the solder joint that was being imaged, as illustrated in Figure 

2.17 (b).  

                                                

3 

https://eshop.struers.com/US/EN/products/Mounting/Cold_mounting_resin/ClaroCit_Kit_800_g_powder_500_ml_li

quid_and_required_consumables(40200072).aspx 
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Figure 2.16: Sample preparation for cross-sectional viewing procedure. (a) Pads were covered with 

aluminum foil to prevent epoxy formation on pads (b) epoxy after curing (c) removal of foil, and 

(d) Pt1000 temperature sensor attached to sample along with voltage and current connections. 

 

Figure 2.17: Test vehicle after epoxy curing, showing (a) location of solder joints on left 

daughterboard and (b) schematic of test vehicle showing location of temperature sensor when 

current stressing is applied. 
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2.3 Test vehicle 2: two solder joints 

The second test vehicle was designed to allow for higher current densities across the solder 

joints. Photographs of the boards are shown in Figures 2.18 (a) and (b) before and after soldering, 

respectively. The layout is shown in Figure 2.18 (c). The same pad diameter and solder material 

as that in test vehicle 1 were used. However, the second test vehicle was designed to have wider 

current lines and fewer joints, providing a large distance between the solder joints to thermally 

separate the joints and reduce Joule heating. When inspecting the size of the solder pads, as shown 

in Figure 2.18 (d), it was found to be substantially larger than in the design (Figure 2.19), indicating 

a discrepancy between layout and actually produced PCB. 

 

 

Figure 2.18: Second variation of test vehicle consisting of motherboard and daughterboard, 

showing (a) photographs of bonding sides with 42 solder pads each board, (b) assembly with 

daughterboard flipped onto motherboard and a close-up of an example solder pad, and (c) layout 

indicating current direction and voltage probe pads. Current direction is shown in red and voltage 

drop for left and right solder joints is shown in blue and purple, respectively. Location of current-

stressed joints (DUTs) is inside orange squares. Only one of the joints DUT was cross-sectioned 

before EM testing.    
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The electrical layout created using KiCAD version 5.1.9 is shown in Figures 2.19 (a) and (b) 

for the motherboard and daughterboard, respectively. Only two solder joints were current stressed, 

which were located at the top of the test vehicle. Furthermore, there were multiple solder joints 

spread throughout the motherboard to resist the weight of the daughterboard. 

 

 

Figure 2.19: (a) Schematic of motherboard, with dimensions, showing one of current-stressed 

solder joints inside red rectangle (b) schematic of daughterboard and corresponding solder joint. 
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Chapter 3. Equipment used in EM test 

 

The equipment used in the electromigration test is discussed in this chapter. Equipment 

specifications are provided, followed by the characterization of the equipment. Additional 

equipment and processes, which were developed to optimize the test setup, are also shown. 

 

3.1 List of equipment and specifications 

This section deals with the specifications for the equipment used for the electromigration test. 

The equipment consists of 7 main components: power supply, oven, high temperature cables, high 

temperature connectors, multiplexer, and voltmeter. Additionally, some other accessories were 

used such as d-sub connectors, regular ribbon cables, resistance temperature detector (RTD) 

sensors, a computer with python (Spyder) installed as well as a mechanical support system, as 

shown in Figure 3.1. These components are explained in details in Appendices A and B. 

 

 

Figure 3.1: Overview of equipment for the electromigration test showing the main components: 

oven, mechanical support, multiplexer, voltmeter, power supply and a computer. 
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3.1.1 Commercial oven 

To verify the accuracy of the equipment, the equipment was calibrated and characterized. The 

oven used for the EM experiment should maintain a constant temperature (with very little 

fluctuation) and allow for various temperature transitions - “Ramp” and “Step”. Additionally, the 

temperature deviation in the oven’s workspace must be low since the tested samples might be 

positioned at different locations inside the oven, and a uniform temperature distribution is vital to 

allow for a controlled experiment. 

Due to these requirements, the FP053UL-120V Binder Oven was chosen for this application. 

This oven provides a large temperature range (5 to 300 °C) and a small temperature uniformity (2 

K at 150 °C). The multiplexer module used for this experiment was the Keithley 7708 model, 

which allows for up to 40 channels to be used. In the case of this experiment, eight Pt1000 

temperature sensors were used to measure the temperature distribution inside the oven at each 

corner, as shown in Figure 3.2.  

The oven temperature variation agrees with the ±2 °C specified in the specifications sheet, as 

shown in Figure 3.3. However, it was determined that a 2 °C temperature change is a considerable 

amount since the test would be run for up to 1000 h, and a small temperature difference between 

samples would be amplified due to the time at which the samples are tested. Thus, a temperature 

sensor is needed for each PCB sample being tested. 

Additionally, it was determined that placing the samples near the walls of the oven interior led 

to larger temperature fluctuations. This was later confirmed from the oven’s user manual. 
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Figure 3.2: Location of 8 temperature sensors and their respective color-coding shown in Figure 

3.3. The graphs on top are shown as solid lines, whereas the ones on bottom are shown as dotted 

lines with same color corresponding to their top counterpart. 

 

 

 

Figure 3.3: Temperature distribution curves inside the Binder Oven at 100 °C measured by eight 

sensors placed as indicated in Figure 3.2. The temperature range is approximately 2 °C at 100 °C, 

once the temperature stabilizes. Note: Accuracy of Pt1000: ± (0.15+0.002∗𝑇) 
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3.1.2 Custom-made oven and PID controller 

During certain applications, such as EM under a microscope, an oven cannot be used. Thus, a 

custom-made heating oven has to be created to increase the temperature of the test vehicle. 

Two variations of the experimental setup are shown in Figures 3.4 (a) and (b). Both methods 

incorporate a power supply and a multiplexer, serving to measure the resistance values of the 

different channels. Both the temperature and power characterization experiments were performed 

in a single test to accelerate the thermal resistance measurement, with the purpose of characterizing 

the effect of Joule heating on EM.  

The experimental setup for the accelerated pre-characterization testing utilizes the same 

equipment as that of the current stressing test, providing a robust system that allows for rapid 

testing and flexibility. A data acquisition system using the PyVISA Python package was developed 

for recording and saving the data as available in Appendix C. Additionally, the test vehicle was 

positioned under a microscope, with images being taken at a specific time-interval. The main 

difference between the two variations of the setup is the use of an upright microscope in the main 

method, as shown in Figure 3.4 (a), whereas an inverted microscope was used in Figure 3.4 (b). 

Additionally, two heating variations were provided, with the main setup using a hot plate and the 

alternative setup using a heating wire with an enclosure. The use of a heating wire allows for easier 

control of the temperature. The power delivered to the heating wire can be changed using a 

programmable power supply, allowing for automation during the pre-characterization tests. 

Figures 3.5 (a) and (b) show the physical experimental setup with its two variations. 

The test vehicle was positioned under a distance of 2.27 cm from the 20 x microscope objective 

lens. The interval rate was set using the “IS Capture for MA Series Camera” software to capture 

images at 1-h intervals, with a resolution of 2592 x 1944 pixels. In hindsight, 1-h intervals were 

deemed too long as the final failure cannot be resolved. For example, increasing the interval rate 

to 1 image every 1 min, assuming each image is 200 kB and the failure time is 300 h, would require 

6 GB of storage and allow capturing additional microstructural changes which could be beneficial 

for understanding the failure mechanism. Image processing, using GIMP software, was performed 

to measure the length of cracks and the area of the voids.  
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A test vehicle with a daisy chain configuration poses a challenge in identifying the solder joint 

that is most susceptible to failure. To counteract this problem, one of the solder joints was ground 

more than the other solder joints to ensure a smaller cross-sectional area and consequently, a larger 

current density to accelerate EM in that specific joint. 

 

 

Figure 3.4: Schematic of experimental setup used in characterization and current stressing tests, 

showing (a) main method, and (b) alternative method using inverted microscope that allows for 

automated temperature control. 
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Alternatively, as performed in another example experiment, the microscope was modified by 

attaching a stepper motor to one of the microscope’s X-Y translational control knobs. The stepper 

motor was controlled using an Arduino to automate the movement of the microscope stage to 

alternate between the solder joints in the daisy chain. This method allows for statistical evaluation 

when testing multiple samples simultaneously. Additional details of this setup and the 

proportional–integral–derivative (PID) controller are shown in Appendix C. 

 

 

Figure 3.5: Physical experimental setup, showing (a) main method, (b) alternative method, (c) 

enclosure used for alternative method, and (d) heating method and temperature sensor used for 

alternative method. 
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Chapter 4. Electromigration test results 

 

Sample-to-sample variations of the geometry and resistance at room temperature, both within 

the same test vehicle as well as between different test vehicles, were observed. To account for 

these variations, temperature and power pre-characterization tests were performed for each sample. 

Test vehicle 1 was used to obtain the real-time visuals in example 2, whereas test vehicle 2 was 

used to obtain the visuals in example 1. The pre-characterization tests were performed on both test 

vehicles, but only the results of test vehicle 2 are shown for simplicity. 

 

4.1 Pre-characterization tests 

The pre-characterization tests were split into the temperature and power tests, which were then 

combined to obtain the thermal resistance of the solder joints. 

4.1.1 Temperature characterization 

The temperature characterization involves the measurement of the temperature coefficient of 

resistance (TCR). The nominal temperature levels used were 50 °C, 100 °C and 140 °C. The 

resistance values of the DUTs were measured at each temperature value to obtain resistance versus 

temperature (R-T) graphs, enabling the calculation of the TCR. Examples of a temperature profile 

and corresponding resistance profile are shown in Figures 4.1 (a) and (b), respectively. 

The average temperature characterization (R-T) of two solder joints is shown in Figure 4.2. A 

line of best fit was drawn for the R-T graph. 

𝑅 = 𝑚𝑇 + 𝑏 (2) 

where m is the slope and b is the y-intercept. The TCR at 0 °C values were calculated dividing the 

slope by the y-intercept, TCR0 = m/b. Before cross-sectioning, the average slope of the SAC305 

solder joints was m = 1.67×10-6 Ω/°C, and the average TCR0 value was TCR0 = 4.84 × 10−3 K−1. 

At 20 °C, this calculates to TCR20 = 1/(20+1/TCR0) = 4.41×10-3 K-1, which is ≈10% larger than 

that reported in [54].  
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Figure 4.1: Temperature characterization test (a) heating curve of test. Three heating stages were 

utilized at three temperatures: 50, 100 and 140 °C. Sufficient time was elapsed between heating 

stages to ensure temperature stabilization of oven and ensure sample and temperature sensor reach 

same temperature. 
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Figure 4.2: Results of temperature characterization test. Line of best fit is drawn to obtain TCR 

value and error estimate. 

 

4.1.2 Power characterization 

Following the temperature characterization, a power characterization test was performed. To 

obtain the resistance versus power (R-P) graphs, nine current levels were used. The current values 

started at 0.5 A until 5 A, with 0.5 A steps. Each step was held for approximately 15 s, followed 

by 5 s wherein current was set at 0 A to allow for the sample to cool down. The entire test data 

plot and the zoomed-in portion when the current was switched on is shown in Figures 4.3 (a) and 

(b), respectively. 

To ensure that the flip configuration sample was not significantly affected by electromigration 

during the characterization phase, a limit equal to 50% of the EM current was set. The power and 

resistance values at each current level were averaged to obtain a point on the R-P graph. This 

procedure was repeated for all current levels. The line of best fit 

𝑅 = 𝑟𝑃 + 𝑠 (3) 
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was determined using nine data points interpolated between the measured R-P data, at 

approximately equal power intervals, as shown in in Figure 4.4. The equidistant interpolation was 

done to achieve approximately equal fitting-weight for lower and higher power data. The slope 

was found to be r = 0.00123 Ω/W.  

The results from the power characterization and the temperature characterization were 

combined by way of equating the right sides of equations 2 and 3,  

𝑇 =  
𝑟

𝑚
𝑃 +

(𝑠 − 𝑏)

𝑚
 (4) 

Thus, the thermal resistance of the SAC305 solder joint Rth = r/m was found to be Rth = 736 ± 28 

K/W. 

 

Figure 4.3: Power characterization test. Red part of curve shows when resistance measurements 

are recorded, and blue part shows portion when current is switched on and off. Figure shows, (a) 

entire test starting at 0.5 A until 5 A, with 0.5 A intervals (b) zoom in on the portion at which 

current was switched on. The resistance increased with higher current as a result of Joule heating. 
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Figure 4.4: Results of power characterization test. Line of best fit is drawn for solder joint. 
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4.2 EM test at room temperature 

An EM test was performed on test vehicle 1 using 5 A of current. However, the test was 

performed at room temperature without external heating to limit contribution from 

thermomigration and purely obtain failure from electromigration. The thermal resistance values 

for all the solder joints are shown in Figure 4.6, which were calculated using the pre-

characterization tests shown in Section 4.1. With a nominal solder joint diameter of 250 μm, the 

theoretical current density was calculated to be 1.02 × 104 A/cm2. Figure 4.5 (a) shows the 

resistance increase during the test, accompanied by the corresponding estimated temperature and 

temperature sensor readings, shown in Figures 4.5 (b) and (c). 

 

Figure 4.5: (a) Resistance of solder joints during room temperature current stressing test (b) 

temperature of individual solder joints calculated using thermal resistance (c) test vehicle 

temperature measured by Pt1000 temperature sensor. 
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Figure 4.6: Thermal resistance values are shown on left in blue and final resistance increase at 

end of test is shown on right in yellow. 

 

Some noise was present during the test due to room temperature fluctuations. To reduce the 

noise, a constant temperature chamber would be recommended. The test vehicle failed after 1600 

h of current stressing. A significant amount of Joule heating was recorded by the temperature 

sensor near the test vehicle. The recorded temperature was approximately 35 °C, compared to the 

room temperature of 22 °C. The estimated temperature using the thermal resistance method 

demonstrated a significant temperature difference between the solder joints, the largest being 20 

°C, between solder joints 2 and 8. This demonstrates that each solder joint produced a different 

amount of Joule heating, supporting the significance of this method to estimate the heating from 

each joint separately. 
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4.3 Real-time visuals (RTV) 

The results from the room temperature experiment lasted approximately 96 days. In order to 

accelerate the test, cross-sectioning was performed which was also used to obtain real-time visuals. 

 

4.3.1 RTV example 1: textbook scenario 

This section was taken, with minor modifications, from [55]. An example of a cross-sectioned 

solder joint between mother and daughter boards is shown in Figure 4.7 (a). Prior to EM testing, 

the R-T and R-P tests were repeated to obtain a thermal resistance of 559.1 K/W. The testing 

conditions are shown in Table 4.1. The error of Rth for the cross-sectioned sample was assumed 

equal to that obtained from the more numerous unharmed solder joints (i.e. before cross-

sectioning), err(Rth)= 28 K/W. 

The smallest diameter was along the middle of the joint, having a value of 333.4 μm, giving a 

theoretical current density of 2.29× 104 A/cm2, assuming that the solder joint was cut exactly in 

the middle.  

The EM test was starting by applying I = 10 A and heating the solder joint inside the enclosure 

to Tambient ≈60 °C as measured by a temperature sensor which was read out during the EM tests. 

The thermal resistance was used to estimate the temperature of the solder joint, TS, during current 

stressing, using 

𝑇𝑠 = 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 + 𝑃 ∙ 𝑅𝑡ℎ  (5) 

where P = R∙I2 is the electrical power delivered to the solder joint. It is assumed that energy 

from this is completely transformed into thermal energy (Joule heat). For this we assume the 

energy consumed by electromigration and thermomigration is negligible compared to the Joule 

heat. 

 Results obtained during the EM test for the solder joint resistance R and extrapolated 

temperature 𝑇𝑠 are shown in Figure 4.8. We expect eq. (5) to hold in first approximation even if 

the solder joint forms voids and cracks during electromigration, increasing its resistance 

permanently. This is supported by the facts that (a) the P in eq. (4) consumes the electrical power 
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delivered to the joint accounting for the rise in R, and (b) Rth does not depend much at all on the 

joint resistance but mainly on the thermal paths leading away from the joint. These paths are 

unaffected by voids or cracks growing in the solder joint itself. 

Having discussed the practicality of deriving TS using eq. (5), it remains to estimate the error 

of TS which depends on the Rth error: 

𝑒𝑟𝑟(𝑇𝑠) = 𝑃 ∙ 𝑒𝑟𝑟(𝑅𝑡ℎ) (6) 

This error is indicated by the dashed datalines in Figure 4.8 and ranges from 1.6 K (start of EM) 

to 2.3 K (end of EM).  

 

Table 4.1: Real-time viewing test factors and responses (RT=Room Temperature) 

Rinitial at RT 

(mΩ) 

Rinitial cross-section 

at RT (mΩ) 

R at start of 

EM test (mΩ) 

Time until 20% 

R increase (h) I (A) Rth (K/W) 

0.314 0.399 0.56 66 10 559.1 
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Figure 4.7: Evolution of electromigration failure in a single solder joint under I = 10 A and 

Tambient ≈60 °C, showing void nucleation at cathode and nucleation of smaller voids on anode. 

Current direction was from top metallization line (anode) to bottom (cathode). The current was 

switched off in (g) and the temperature was back at room temperature, down from a peak 

temperature of 107 °C, resulting in a complete separation crack along the anode interface. 
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Figure 4.8: Results from electromigration test with stressing current I = 10 A and nominal ambient 

temperature Tambient = 60 °C up to 40 % resistance increase. Variations are due to room temperature 

variations. R = V/I and P = V∙I, where V is voltage evolution measured across solder joint. 

 

Figures 4.7  (a) – (f) show the microstructural changes occurring from EM, with corresponding 

times. Significant void growth occurred at the cathode, verifying failure due to EM. Furthermore, 

cracks propagated along the anode interface between the metallization line and solder joint. The 

test was stopped prior to an open circuit, since our arbitrary 40% resistance increase criterion was 

met. Immediately after current stressing and external heating were stopped, the crack at the anode 

grew along the solder-metallization line interface, causing a complete loss of connection, as shown 

in Figure 4.7 (d). The thermal shock from the material cooldown resulted in fracture of the already 

weak solder joint, ultimately causing the crack propagation and solder joint separation. 
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The cracking overserved during cooling after EM raises the question of the real point of 

complete failure for the DUT under current stressing. Conventional EM testing may always go 

beyond the point in time when the DUT stops being able to survive a cool-down to room 

temperature. The opportunity exists to develop more advanced EM testing methodologies as well 

as more reliable definitions and experimental data for time-to-failure. 

The results highlight the impact of Joule heating on the increase of solder joint temperature and 

the importance of ambient temperature selection, adding to Joule heating, to accelerate 

electromigration experiments.  

Furthermore, if Rth is determined for each individual solder joint, the sample-to-sample 

variations could be reduced by selecting appropriate ambient temperatures to achieve the same 

overall solder temperature. Thus, the differences in thermal resistance could be balanced out by 

the ambient temperature selection. This would help to control the temperature variable more 

precisely for each sample, resulting in more precise EM test results.  

The current crowding location in this example agreed with the location observed in the literature 

in which the voids nucleated at the cathode interface between the metallization line and solder 

joint [52]. This failure mechanism was referred to as “discrete void growth and coalescence” in 

[24] in which smaller voids grew separately that later coalesced to form larger voids that negatively 

impacted the electrical resistance and mechanical integrity of the joint. Furthermore, the failure 

occuring due to the temperature cooldown at the end of the test is supported by [56], in which the 

authors observed that temperature fluctuations due to Joule heating and environmental conditions 

introduced fatigue in the solder joints, ultimately causing failure.  
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4.3.2 RTV example 2: current redistribution 

This section was taken, with minor modifications, from [49]. For this test, a sample from test 

vehicle 1 was used. The experimental setup is shown in Figure 3.4 (a). A data acquisition system 

using the PyVISA Python package was developed for recording and saving the data as available 

in Appendix C. 

The temperature was set at 50 °C using a custom-made oven shown in Figure 3.4 (b). The power 

supply was set to deliver a constant value of 5 A. A multiplexer was used to measure the resistance 

of the samples as well as that of the Pt1000 sensor, which were later converted to their 

corresponding temperature values using the formula 

 𝑅𝑇 = 𝑅0(1 + 𝐴 ∙ 𝑇 + 𝐵 ∙ 𝑇2) (7) 

which was re-arranged to solve for the temperature 

𝑇 =  
−𝑅0 ∙ 𝐴 + √𝑅0

2 ∙ 𝐴2 − 4 ∙ 𝑅0 ∙ 𝐵 ∙ (𝑅0 − 𝑅𝑇)

2 ∙ 𝑅0 ∙ 𝐵
 (8) 

where A, B and 𝑅0 are constants, with values of 3.9083 × 10−3, −5.775 × 10−7 and 1000, 

respectively. 𝑅𝑇 is the resistance at the temperature T. 

The 4-wire method was employed to allow for the detection of small resistance changes. The 

solder sample was cut in half during the grinding process, giving a theoretical current density of  

 𝐽 =  
𝐼

𝐴
=  

5 A

0.5 π𝑟2
=  1.37 × 104 A/cm2 (9) 

where J is the current density, I is the current, A is the cross-sectional area and r is radius of the 

cross-sectioned solder joint. In our case, the values for the variables I and r were 5 A and 152.4 

µm, respectively. This current density was determined by using the method outlined in standard 

JEP154 [11]. The test was run for 330 h to when an open circuit occurred.  
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Figure 4.9: (a) Resistance measurements showing resistance changes during test. Micrographs are 

shown in Figure 4.10 at the times indicated by dashed lines. (b) Growth of cracks & voids (c) 

Resistance measurements at the end of test immediately prior to failure. (d) Temperature 

fluctuations during test. 

An example of the microstructural evolution of the solder joint is presented, demonstrating the 

capability of the proposed method for enhanced electromigration monitoring. 

Figures 4.9 (a) and (c) show the entire data and zoomed-in data of the experimental solder 

resistance data. The temperature of the hot plate was assumed to be constant at 50 °C, which was 

different from that of the measured temperature due to Joule heating, as shown in Figure 4.9 (d). 

The test was interrupted around the 200-h mark to modify the microscope light source, explaining 

the increase in temperature.  

As shown in Figure 4.9 (a), the values of the resistance were relatively flat. A more detailed 

analysis shows the resistance increased approximately 0.5% in the first three days and then 

decreased with a more or less constant rate by approximately 2% in the following 9 days.  

However, towards the end of the test, there was a sharp peak occurring in the last hour of the test, 

wherein the resistance value increased to 13.63 mΩ. The resistance increase was attributed to 

defects introduced by electromigration. This claim is supported in the next section by a close 

examination of the microstructural changes which agree with the electromigration failures in the 

literature. 
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Figure 4.9 (b) shows measurements of the crack and void growth during the test. Both the crack 

and the void followed a similar pattern, with significant (sometimes abrupt) length and area 

increases, respectively, at certain time-intervals. Thus, the growth rate was non-linear, peaking at 

different times. One of the growth phases coincided for the crack and the void between the 130-h 

mark and the 150-h mark. Interestingly, no strong change was observed for the resistance signal 

during this phase. The strong growth in this phase was followed by relatively slow growth for 100 

h, with stronger growth again during the last 50 h of the test. 

Figures 4.10 (a) – (e) show micrographs chosen from five selected times during the evolution 

of the solder sample under current stressing for 330 h. Some scratches were present after the 

sample preparation procedure which were present prior to starting the test. A few notable 

observations during the test were recognized: 

1) Void formation at the top of the solder joint, with the fastest growth rate around the 150 h, 

indicated by the steepest slope in Figure 4.9 (b). 

2) Crack propagation, with the most prominent around the top void, growing to a length of 

100 μm towards the end of the test. 

3) Void formation at the bottom surface of the solder joint. The voids started growing at the 

bottom-left interface and propagated horizontally to the right. 

A few voids were present prior to current stressing, which were possibly due to the outgassing 

flux that got trapped in the solder during reflow, similar to what was reported in [57,58]. As a 

crack propagates due to electromigration, it can be expected that the current crowding location 

shifts from the solder joint corner to the region next to crack edges. Electrons are forced to flow 

around the crack, leaving the edges of the cracks with a larger current density, creating a new 

current crowding location. Such a location is expected to have caused void nucleation, which 

ultimately resulted in the void growing to the cross-sectional surface. A decrease in joint strength 

as a result of crack formation has been reported in the literature [59]. 

The relationship between voids and cracks has been reported in the literature. Wang et al. 

presented a theory about cracks forming at void sides [60]. Liang et al. stated the “current 

redistribution is the main reason accounting for void formation and propagation” [61]. Synkiewicz 

et. al. presented a similar theory, stating that void formation can lead to deformations in a solder 

joint structure which can alter current flow and temperature distribution [62]. 
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Our observations align with the previously presented theories. Examining the sequence of 

events occurring inside the solder matrix, crack formation and growth preceded void formation. 

Thus, the pre-existing internal stresses in the solder matrix, combined with the momentum transfer 

of the moving electrons to the metal ions inside the solder matrix, were likely to have prompted 

the void formation. Therefore, it is possible the crack was the probable influence of void formation 

that ultimately led to failure. 

In addition to the particular location of void formation, which did not occur at the corners, the 

void formed on the anode side. The electrons moved from the cathode (bottom) to the anode (top). 

Conventionally, void formation is observed on the cathode end [31]. However, in previous 

publications, voids have been observed also at the anode end. Liu et al. observed a void in the 

anode end of a Cu/Sn/Cu flip-chip joint which the authors attributed to vacancy backflow due to 

the backstress on the anode Cu trace lines [63]. Stahlmecke et. al. observed void formation at the 

anode end of silver nanowires. The cause remained unclear, but the authors theorized 

contamination could have played a role [64]. Yu et al. studied the location of void nucleation [65]. 

The authors categorized the void location and size based on four types, one of which, albeit an 

anomaly, occurred at the anode, similar to our results. Synkiewicz et al. supported this claim, 

concluding that there was a tendency for voids to form in different arrangements and locations 

[62].” 

Due to the cross-sectioning induced shape modification and increased current density of the 

solder joint, higher failure rates are expected as a result of current crowding, Joule heating, and 

heat flux concentration (thermomigration) effects. The exact influence of these factors on the 

cross-sectioned failure rates remains unclear; however, it is unlikely that Joule heating alone could 

have impacted the results, as thermal aging in a control experiment did not result in failures, even 

when considering the rise in local temperature of the solder joint due to Joule heating. However, 

it is likely that Joule heating, combined with current crowding, resulted in an uneven temperature 

distribution inside the solder joint giving rise to something like a hot region or a hot spot. Assuming 

the existence of a hot spot, the heat would travel away from the hot spot in all directions. Any 

thermomigration-type diffusion would be in these same directions. 

One probable explanation for the void formation at the anode side, that was previously 

mentioned, was the shift in current crowding location due to crack formation. The appearance of 
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the void immediately followed that of the crack. Both phenomena also occurred at the exact same 

location, which supports the probable connection between the two. Another probable explanation 

is the existence of a strong thermal gradient effect, typical of thermomigration, which forced atoms 

to travel from the anode to the cathode, opposing electromigration. When thermomigration forces 

are present due to large thermal gradients, it is shown that crack and void formation is accelerated 

[19]. Additionally, in many cases involving solder joints, EM is complemented with 

thermomigration, although the exact contribution of each migration phenomenon is unknown [2]. 

A combination of both theories is thus the most probable explanation for the appearance of the 

void at the anode, away from the solder joint corner.  

The results from this section can be set as the upper limit for failure criteria in our test vehicles. 

Additionally, under these accelerated conditions, the study of various variables on MTTF can still 

be performed as a means of comparing the effect of these variables on the MTTF, if the diffusion 

mechanism is assumed the same. At temperature values below the solder melting point, surface 

and grain diffusion are the predominant diffusion processes. The diffusion processes depend on 

the activation energy which is influenced by the solder material [10,12]. As the temperature 

increases and approaches the melting point, the predominant diffusion mechanism becomes the 

lattice diffusion [10]. 
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Figure 4.10: Screenshots of real-time video at (a) 0 h, (b) 102 h, (c) 139 h, (d) 171 h and (e) 276 

h, respectively. Images were taken every hour. The electrons flowed from bottom-left to top-right 

corner. 
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Figure 4.11: Microstructural changes after the test was stopped. (a) Image taken prior to test 

stoppage. (b) Image after 30 min of switching off power supply and hot plate, showing formation 

of two cracks. (c) Image after a few hours of test stoppage. The location of void formation was 

covered by a hillock. (d) Close-up image of hillock formation. 

 

More observations were noted once the test was stopped. Crack formation, as shown in Figure 

4.11, occurred in the test vehicle after 30 min of switching off the test setup. Since both the power 

supply and the hot plate were switched off, it was induced that these cracks were therefore a result 

of cooling. A hillock formed in place of the top void. Chemical diffusion, due to the difference in 

concentration gradients, could have played a role in the formation of this hillock. The atoms were 

able to rearrange based on the concentration gradients once the current and temperature gradients 

were eliminated. 

Figure 4.12 shows further examples of changes occurring due to current stressing in solder 

joints, demonstrating this method in capturing those changes. If solder joints are cross-sectioned 

after EM testing, damage to the solder joints due to grinding and polishing is more likely to occur 

since current stressing results in weaker solder joints. Additionally, epoxy is more likely to 

infiltrate through the cracks. 
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Figure 4.12: Another example of a current stressing test showing void and crack formation in two 

separate solder joints. 

 

In order to verify that any changes were solely a result of EM, a control experiment without 

current stressing from a power supply was constructed. The experiment was performed for 300 h 

over a hot plate at a temperature of 80 °C, which was chosen to match the actual EM test 

temperature considering Joule heating. No changes were observed in the sample, as shown in 

Figure 4.13. Thus, this control experiment supports that temperature alone could not have resulted 

in the void formation shown in Figure 4.11, and EM played a significant role. Furthermore, 

resistance measurements did not show any permanent resistance increase, confirming that current 

stressing was the direct cause of the void. 

 

 

 

 

Figure 4.13: Control setup of solder joint under 80°C and no current stressing. Figure shows test 

vehicle (a) before test start and (b) after test stoppage. No visible change was observed. 
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4.4 Comparison of test vehicles 

Both test vehicles were successful in observing EM failure in solder joints. Test vehicle 1 had 

8 solder joints, enabling more data set collection of EM failure tests, as opposed to test vehicle 2 

which only had 2 solder joints. However, the design came at the expense of Joule heating, in which 

the solder joints of test vehicle 1 had a more prominent effect on each other, in terms of heat 

generation. This finding demonstrated the importance of isolating the solder joints, by increasing 

the distance between them, to avoid the impact of external factors on the results of EM tests.  

 Additionally, it was more challenging to predict the location of failure in test vehicle 1, so the 

resistance of all 8 solder joints had to be measured in real-time. Similarly, it was more challenging 

to reflow and cross-section test vehicle 1, since any problems in a single solder joint would render 

the entire test vehicle obsolete as a result of the daisy chain configuration. The increased width of 

the current lines in test vehicle 2 allowed for higher current densities, which accelerated failure. 

Nevertheless, the shape and initial resistance of the solder joints in test vehicle 1 were more 

repeatable than those of test vehicle 2. These problems were attributed to the PCB fabrication and 

assembly processes, rather than the design.  

In the future, it is recommended that fewer joints are used, similar to test vehicle 2, to separate 

the effects of Joule heating and to ease the assembly process. Smaller solder joints, as small as 

50 μm, are presently available in the market4, which can be used to further accelerate EM studies. 

Additionally, wider current lines are also preferred to increase the maximum allowable current 

flowing in the test vehicle. However, the assembly process of test vehicle 1 is recommended for 

future designs. Manual solder ball bumping and automated assembly using a Tresky die bonder 

yielded reliable and repeatable results. 

  

                                                

4 https://www.easyspheres.com/sn96-5ag3-0cu0-5/ 
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Chapter 5. Conclusions 

 

The real-time viewing methodology was successful in allowing for simultaneous imaging and 

resistance measurements of the studied solder joints, revealing multiple failure types stemming 

from EM, such as void nucleation and growth, crack propagation, and brittle fracture due to IMC 

formation. Instead of performing acceleration through high temperature testing, these tests were 

truly accelerated through cross-sectioning, achieving complete failure and repeatable results in 

roughly 300 h at temperatures below 100 °C. These tests have the potential to provide better failure 

time estimation than high temperature testing, while still providing the necessary acceleration.  

Furthermore, real-time viewing of solder joints was successful in tracing the changes due to 

current stressing. This is important for identifying details about the location of failure mechanisms, 

including void formation, shifting location of current crowding caused by internal stresses and 

cracks, interconnection of different failure mechanisms, and changes in the solder joint 

microstructure after current stressing. Thus, capturing images at different time frames is important 

to pinpoint the cause of these changes in contrast to taking images only after failure. Real-time 

viewing can provide improved understanding in the study of electromigration in solder joints. 

Factors such as IMC and hillock formation as well as grain rotation could be better understood 

through in-situ imaging. Ultimately, the exact onset of void formation in this paper was only 

observed due to the in-situ behavior of the test setup, highlighting this method’s significance. 

Furthermore, real-time viewing helps identify failure-prone locations in a solder joint and 

accelerate EM failure. Most importantly, real-time viewing allows for comparing samples under 

the same accelerated conditions to obtain optimized parameters that minimize reliability concerns. 

In addition to the real-time viewing capability, the temperature estimation of a solder joint under 

current stressing resulted in a low estimation error and is a more accurate temperature estimation 

of individual solder joints compared to the use of a conventional temperature sensor. Joule heating 

cannot be ignored in typical EM testing as due to its substantial magnitude and change. The 

fraction of electrical energy consumed by electromigration remains to be studied. 
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In constant current EM tests, Joule heating is not constant but is mainly increasing, leading to 

an ever-accelerating joint stressing. More accelerated and more advanced EM testing 

methodologies with better control on specimen temperature during the test are conceivable as well 

as more reliable definitions and experimental data for time-to-failure.  

The microstructural evolution of a cross-sectioned solder joint coupled with in-situ resistance 

and temperature measurements helped identify another shortcoming of typical EM testing when 

the sample broke upon cool-down. This demonstrated the resistance of a mortally damaged DUT 

can appear healthy, remaining below the failure limit during current stressing for too long, while 

at the same time it cannot survive the thermal stress of the test end. 

With the accurate determination of the in-situ temperature of the solder joint during EM testing, 

design verification of test vehicles could be performed aiming at separating the effects of 

thermomigration from those of EM. This would be achieved by increasing current density and 

decreasing the thermal resistance of solder joints. Such effect separation is believed helpful for 

any further deepening of the understanding of EM in electronics packaging. 
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Appendix A: List of components 

Table A-1: Complete list of components used for EM test 

Equipment Model Number 

Power Supply Keysight 1xN6700C+4xN6751A 

Oven FP053UL-120V (with 100mm access port with silicon plug on right)  

High Temperature Cables 20 ft. Daburn 2609/50 

High Temperature Connectors 5xSullins WMC18DRYI 

Multiplexer Keithley 2x7708+1x2700 

Voltmeter Keysight 1x34220A 

Custom PCB Carrier Flip chip configuration solder PCB  

D-sub Connectors (5A current rating, 5 pairs, 36 position or higher)  (5xL17DCFRA37S) + (5xL17DCFRA37P) 

Ribbon Cables (5A current rating, >32 wire ribbon cables, >40 ft, 

easily ripped) - matching with D-sub connectors 

310J101-50 

High Temperature Insulation-Displacement Connector (IDC) (36 

contacts, 0.1 in pitch, >200°C) 

5xMAS-CON IDC 

GPIB (1xGPIB-USB Adapter) + (2xGPIB Connectors) 

RTD Sensors PT1000 

PC With Python (Spyder)5 

Software Testing Matlab Codes 

Mechanical Support System Custom-made (see Appendix) 

Off-the-shelf components per Hanger-Spring Design: 

6 x Extension Springs: 1.75” length 

20 x Screws: 4-40 thread size, ½” long  

20 x Nuts: 4-40 thread size 

Same components are required for the Hanger-Hook Design with the 

exception of springs (no springs required) 

                                                

5 https://www.spyder-ide.org/ 
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Appendix B: Custom-made components 

In addition to the off-the-shelf components, some equipment was manufactured to 

accommodate the custom-made PCBs. The components for the mechanical support system are 

shown in Table A-1. 

1) Mechanical support for card edge connectors 

In order to test multiple testing boards simultaneously, a mechanical support is needed to hold 

multiple card edge connectors inside the oven, which are used to connect the PCB to the 

multiplexer. A mechanical support is thus required to ensure an adequate number of connectors 

can fit securely inside the oven. The availability of the racks inside the oven was seen as an 

advantage since a mechanical support which incorporated the racks can be used, as opposed to 

building a new mechanical support which has to be stable on its own when held vertically. Utilizing 

the racks, a hanger-spring design was generated, in which a pair of springs would be attached to 

the design, and each of those springs would be attached to the top and bottom racks. This design 

would minimize any rotations which could occur due to the air convection which is generated by 

the fan inside the oven. Another design that incorporates the racks was also generated. Instead of 

using springs, a hook-like mechanism was used which allows for attaching the component directly 

onto the racks. Both designs are shown in Figure B-1. 

 

Figure B-1: Mechanical design showing (a) both hanger concepts, (b) card edge connector attached 

to hanger, and (c) dimensions of card edge connector 
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2) Epoxy 3D-printed mold 

During the preparation of the test vehicle for microscopy, the test vehicle has to be cured in 

epoxy to provide support to the solder joints during the shear cutting and grinding processes. No 

off-the-shelf components were available in the market that would be a perfect fit for the PCB and 

reduce the amount of epoxy wasted.  

A 3D-printed mold was designed and printed using PLA to allow for an optimized curing 

process, as shown in Figure B-2. 

 

 

Figure B-2: Epoxy mold, showing (a) CAD model in Solidworks. Dimensions in mm (b) top view 

of component, (c) component after 3D printing and PCB inversion, (d) plastic wrap usage to allow 

for reusable mold and (e) use of soldering helping hand to hold PCB in place during curing. 
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Appendix C: Setup automation 

1) In-situ resistance measurement code 

Filename: In-situ resistance measurements from Keithley 2700 MUX.py 
""" 

@author: Mostafa AbdelAziz 

Resistance measurements of 2 PCBs connected to Keithley 2700 MUX using 2 card 

edge connectors 

""" 

from IPython import get_ipython;    

get_ipython().magic('reset -sf') 

 

from itertools import chain 

import pyvisa as visa 

import time 

import matplotlib.pyplot as plt 

import scipy.io 

from math import sqrt 

 

def roots(a,b,c): 

    disc = b**2 - 4*a*c 

    if disc >= 0: 

        if ((-b + sqrt(disc))/(2*a))<300 and ((-b + sqrt(disc))/(2*a))>0: 

            return (-b + sqrt(disc))/(2*a) 

        elif ((-b - sqrt(disc))/(2*a))<300 and ((-b - sqrt(disc))/(2*a))>0: 

            return (-b - sqrt(disc))/(2*a) 

    else: 

        return -10000000 

     

plt.close('all') 

 

RealTimeReadings = 1; 

sampleName = 'Resistance Measurements of SAC305 flip 

chip_started_Nov25_samples A7 and A8_preconditioning_150°C'; 

SetCurrent = 5; 

failureflag = 0; 

 

A = 3.9083e-3; 

B = -5.775e-7; 

RTD0 = 1000; 

 

t = []  

T1 = [] 

T2 = [] 

T3 = [] 

T4 = [] 

R = [[] for z in range(16)] 

Vpcb1 = [[] for z in range(16)] 

Vpcb2 = [[] for z in range(16)] 

Tread1 = [] 

Tread2 = [] 

Tread3 = [] 
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Tread4 = [] 

 

fname=time.strftime("%y%m%d%H%M%S",time.localtime()) + sampleName #filename 

#GPIB INITIALIZATION WITH PYVISA 

rm = visa.ResourceManager() 

rm.list_resources() 

multiplexer = rm.open_resource('USB0::0x0957::0x0507::MY45000023::0::INSTR') 

 

channel1=['@2001','@2002','@2003','@2004','@2005','@2006','@2007','@2008','@2

009','@2010','@2011','@2012','@2013','@2014','@2015','@2016'] 

channel2=['@2021','@2022','@2023','@2024','@2025','@2026','@2027','@2028','@2

029','@2030','@2031','@2032','@2033','@2034','@2035','@2036'] 

color=['b','b--','g','g--','r','r--','c','c--','m','m--','y','y--','k','k--

','b-.','b:'] 

 

tic = time.perf_counter() 

 

while failureflag == 0: 

        toc=time.perf_counter() 

        t.append(toc-tic) 

#        try: 

        for j in range (16): 

            dc1 = multiplexer.query(':MEASure:SCALar:VOLTage:DC? (%s)' % 

(channel1[j])) 

            cur = float(5) 

            #The MUX saves the data with VDC and other characters after the 

number. The following obtains the numbers only: 

            sep = 'VDC' 

            rest = dc1.split(sep, 1)[0] 

            #If there is an OC, MUX records +9.9E37,... This next part 

removes parts after ","  

            sep1 = ',' 

            rest1 = rest.split(sep1, 1)[0] 

            rest2 = float(rest1) 

            Vpcb1[j].append(rest2) 

 

            dc2 = multiplexer.query(':MEASure:SCALar:VOLTage:DC? (%s)' % 

(channel2[j])) 

            rest3 = dc2.split(sep, 1)[0] 

            rest4 = rest3.split(sep1, 1)[0] 

            rest5 = float(rest4) 

            Vpcb2[j].append(rest5) 

             

            temp_values1 = 

multiplexer.query_ascii_values(':MEASure:SCALar:FRESistance? (%s)' 

%('@4001')) 

            opc1 = int(temp_values1[0]) 

            RR1 = roots(B*RTD0, A*RTD0, RTD0-float(opc1)); 

             

            # temp_values2 = 

multiplexer.query_ascii_values(':MEASure:SCALar:FRESistance? (%s)' 

%('@4002')) 

            # opc2 = int(temp_values2[0]) 

            # RR2 = roots(B*RTD0, A*RTD0, RTD0-float(opc2)); 
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            # temp_values3 = 

multiplexer.query_ascii_values(':MEASure:SCALar:FRESistance? (%s)' 

%('@4003')) 

            # opc3 = int(temp_values3[0]) 

            # RR3 = roots(B*RTD0, A*RTD0, RTD0-float(opc3)); 

 

            # temp_values4 = 

multiplexer.query_ascii_values(':MEASure:SCALar:FRESistance? (%s)' 

%('@4004')) 

            # opc4 = int(temp_values4[0]) 

            # RR4 = roots(B*RTD0, A*RTD0, RTD0-float(opc4)); 

             

        Tread1.append(RR1) 

        # Tread2.append(RR2) 

        # Tread3.append(RR3) 

        # Tread4.append(RR4) 

 

 

        ff = plt.figure(1) 

        plt.cla() 

        #list1= chain(range(1,5), range(7,8), range(14,16)) 

        list1= chain(range(1,13), range(14,16)) 

        for w in list1: 

            plt.plot(t,Vpcb1[w], '%s' %color[w]) 

        plt.xlabel('Time [s]') 

        plt.ylabel('Voltage [mV]') 

        plt.ion() 

        plt.show() 

        ff.canvas.draw() 

        ff.canvas.flush_events() 

 

        ff = plt.figure(2) 

        plt.cla() 

        #list2= chain(range(1,5), range(7,8), range(14,16)) 

        list2= chain(range(1,16)) 

        for w in list2: 

            plt.plot(t,Vpcb2[w], '%s' %color[w]) 

        plt.xlabel('Time [s]') 

        plt.ylabel('Voltage [mV]') 

        plt.ion() 

        plt.show() 

        ff.canvas.draw() 

        ff.canvas.flush_events() 

             

        plt.ion() 

        gg = plt.figure(3) 

        plt.cla() 

        plt.plot(t[max(0, len(t)-300):],Tread1[max(0, len(t)-300):]) 

        # plt.plot(t[max(0, len(t)-300):],Tread2[max(0, len(t)-300):]) 

        # plt.plot(t[max(0, len(t)-300):],Tread3[max(0, len(t)-300):]) 

        # plt.plot(t[max(0, len(t)-300):],Tread4[max(0, len(t)-300):]) 

        plt.xlabel('Time [s]') 

        plt.ylabel('Temperature [℃]') 

        plt.show() 

        gg.canvas.draw() 

        gg.canvas.flush_events()   
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        data = {} 

        data['t'] = t 

        data['R'] = R 

        data['T1'] = T1 

        # data['T2'] = T2 

        # data['T3'] = T3 

        # data['T4'] = T4 

        data['Tread1'] = Tread1 

        # data['Tread2'] = Tread2 

        # data['Tread3'] = Tread3   

        # data['Tread4'] = Tread4 

        data['Vpcb1'] = Vpcb1 

        data['Vpcb2'] = Vpcb2 

        saved = 0 

        while saved == 0: 

            try: 

                scipy.io.savemat('%s.mat' % fname, data) 

                saved = 1 

            except: 

                saved = 0 

        #time.sleep(5) 

        maxlength2save = 10000000 

        if len(t) > maxlength2save: 

            fname=time.strftime("%y%m%d%H%M%S",time.localtime()) + sampleName 

#filename   

            t = [] 

            T1 = [] 

            # T2 = [] 

            # T3 = [] 

            # T4 = [] 

            R = [[] for z in range(16)] 

            V = [[] for z in range(16)] 

            Vpcb1 = [[] for z in range(16)] 

            Vpcb2 = [[] for z in range(16)] 

 

multiplexer.close() 

rm.close()     
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2) Resistance measurement post-processing plotting code 

Filename: Plotting resistance measurements from Keithley 2700 MUX.py  
#@author: m8abdela, MIJO34 

from itertools import chain 

import scipy.io 

import matplotlib.pyplot as plt  

import numpy as np 

import matplotlib.patches as mpatches 

 

test1 = scipy.io.loadmat('201002170354Resistance Measurements of SAC305 flip 

chip_startedOct2,5PM,SolderJoint.mat') 

print(type(test1)) 

 

 

channel1=['@101','@102','@103','@104','@105','@106','@107','@108','@109','@11

0','@111','@112','@113','@114','@115','@116'] 

channel2=['@201','@202','@203','@204','@205','@206','@207','@208','@209','@21

0','@211','@212','@213','@214','@215','@216'] 

color=['b','b--','g','g--','r','r--','c','c--','m','m--','y','y--','k','k--

','b-.','b:'] 

 

#Test 1 

R1=test1['R'] 

t1=test1['t'] 

T1=test1['T1'] 

T2=test1['T2'] 

T3=test1['T3'] 

Vpcb1=test1['Vpcb1'] 

Vpcb2=test1['Vpcb2'] 

Tread1=test1['Tread1'] 

Tread2=test1['Tread2'] 

# 

##Plotting 

## Resistance Vs. Time 

#ax=plt.figure() 

##list1= chain(range(1,5), range(7,10), range(15,16)) 

##for w in list1: 

##for w in [x for x in range(16) if x != 9]: 

#plt.plot(t1[0]/3600,Vpcb1[15], '%s' %color[0]) 

##plt.plot((ttotal[0]/3600),(Vpcb1_total[0]), linewidth=2.0) 

#ax.legend(fontsize=24) 

#plt.xlabel('Time [hrs]', fontsize=34) 

#plt.rcParams['xtick.labelsize']=34 

#plt.rcParams['ytick.labelsize']=34 

#plt.ylabel('Resistance [mΩ]',fontsize=34) 

#plt.show() 

 

# Temperature Vs. Time 

ax=plt.figure() 

plt.plot((t1[0]/3600),(Tread1[0]), linewidth=2.0) 

plt.plot((t1[0]/3600),(Tread2[0]), linewidth=2.0) 

ax.legend(fontsize=24) 

plt.xlabel('Time [hrs]', fontsize=34) 

plt.rcParams['xtick.labelsize']=34 
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plt.rcParams['ytick.labelsize']=34 

plt.ylabel('Temperature [°C]',fontsize=34) 

plt.show() 

 

 

#Plotting 

# Resistance Vs. Time 

ax=plt.figure() 

plt.plot(t1[0]/3600,Vpcb1[0], '%s' %color[0]) 

ax.legend(fontsize=24) 

plt.xlabel('Time [hrs]', fontsize=34) 

plt.rcParams['xtick.labelsize']=34 

plt.rcParams['ytick.labelsize']=34 

plt.ylabel('Voltage [mV]',fontsize=34) 

plt.show() 

 

#Plotting 

# Resistance Vs. Time 

ax=plt.figure() 

plt.plot(t1[0]/3600,Vpcb1[1], '%s' %color[0]) 

ax.legend(fontsize=24) 

plt.xlabel('Time [hrs]', fontsize=34) 

plt.rcParams['xtick.labelsize']=34 

plt.rcParams['ytick.labelsize']=34 

plt.ylabel('Voltage [mV]',fontsize=34) 

plt.show() 

 

#Plotting 

# Resistance Vs. Time 

ax=plt.figure() 

plt.plot(t1[0]/3600,Vpcb1[2], '%s' %color[0]) 

ax.legend(fontsize=24) 

plt.xlabel('Time [hrs]', fontsize=34) 

plt.rcParams['xtick.labelsize']=34 

plt.rcParams['ytick.labelsize']=34 

plt.ylabel('Voltage [mV]',fontsize=34) 

plt.show() 

 

#Plotting 

# Resistance Vs. Time 

ax=plt.figure() 

plt.plot(t1[0]/3600,Vpcb1[3], '%s' %color[0]) 

ax.legend(fontsize=24) 

plt.xlabel('Time [hrs]', fontsize=34) 

plt.rcParams['xtick.labelsize']=34 

plt.rcParams['ytick.labelsize']=34 

plt.ylabel('Voltage [mV]',fontsize=34) 

plt.show() 

 

#Plotting 

# Resistance Vs. Time 

ax=plt.figure() 

plt.plot(t1[0]/3600,Vpcb1[4], '%s' %color[0]) 

ax.legend(fontsize=24) 

plt.xlabel('Time [hrs]', fontsize=34) 

plt.rcParams['xtick.labelsize']=34 
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plt.rcParams['ytick.labelsize']=34 

plt.ylabel('Voltage [mV]',fontsize=34) 

plt.show() 

 

#Plotting 

# Resistance Vs. Time 

ax=plt.figure() 

plt.plot(t1[0]/3600,Vpcb1[5], '%s' %color[0]) 

ax.legend(fontsize=24) 

plt.xlabel('Time [hrs]', fontsize=34) 

plt.rcParams['xtick.labelsize']=34 

plt.rcParams['ytick.labelsize']=34 

plt.ylabel('Voltage [mV]',fontsize=34) 

plt.show() 

 

#Plotting 

# Resistance Vs. Time 

ax=plt.figure() 

plt.plot(t1[0]/3600,Vpcb1[6], '%s' %color[0]) 

ax.legend(fontsize=24) 

plt.xlabel('Time [hrs]', fontsize=34) 

plt.rcParams['xtick.labelsize']=34 

plt.rcParams['ytick.labelsize']=34 

plt.ylabel('Voltage [mV]',fontsize=34) 

plt.show() 

 

#Plotting 

# Resistance Vs. Time 

ax=plt.figure() 

plt.plot(t1[0]/3600,Vpcb1[7], '%s' %color[0]) 

ax.legend(fontsize=24) 

plt.xlabel('Time [hrs]', fontsize=34) 

plt.rcParams['xtick.labelsize']=34 

plt.rcParams['ytick.labelsize']=34 

plt.ylabel('Voltage [mV]',fontsize=34) 

plt.show() 

 

#Plotting 

# Resistance Vs. Time 

ax=plt.figure() 

plt.plot(t1[0]/3600,Vpcb1[8], '%s' %color[0]) 

ax.legend(fontsize=24) 

plt.xlabel('Time [hrs]', fontsize=34) 

plt.rcParams['xtick.labelsize']=34 

plt.rcParams['ytick.labelsize']=34 

plt.ylabel('Voltage [mV]',fontsize=34) 

plt.show() 
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3) Current stressing code 

Filename: Hanmatek DC Power Supply Current Stressing.py 

Used to obtain data shown in Figure 4.3. 
 

# import TestModbusScript 

Credits go to sperim, who created the original code, found on sourceforge: 

https://sourceforge.net/projects/dc-power-supply-software/ 

 

from itertools import chain 

import visa 

import scipy.io 

import numpy as np 

from tkinter import * 

import tkinter.ttk as ttk 

from tkinter import messagebox 

from pymodbus.client.sync import ModbusSerialClient 

import time 

from time import sleep 

 

"""Window Definition""" 

 

device = [] 

connection = False 

 

 

class MyWindow(Frame): 

    unit_id = 1 

    method = "rtu" 

    baudrate = 9600 

    bytesize = 8 

    parity = "N" 

    stopbits = 1 

    timeout = 0.25 

 

    def __init__(self, parent): 

        self.parent = parent 

        Frame.__init__(self, parent) 

        """definitions""" 

 

        self.connectedText = StringVar() 

        self.connectedText.set("Not Connected") 

#        self.tkValueVoltageRead = StringVar() 

#        self.tkValueVoltageRead.set("0.0") 

#        self.tkValueCurrentRead = StringVar() 

#        self.tkValueCurrentRead.set("0.0") 

#        self.tkValuePowerRead = StringVar() 

#        self.tkValuePowerRead.set("0.0") 

        self.tkValueVoltageWrite = StringVar() 

        self.tkValueVoltageWrite.set("32.0") 

        self.tkValueCurrentWrite = StringVar() 

        self.tkValueCurrentWrite.set("0.1") 

        self.tkValuePowerWrite = StringVar() 

        self.tkValuePowerWrite.set("0.0") 
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        """COM Port Fields""" 

        comport_label = Label(self, bd=5, width=40, text="COM Port") 

        self.tkCOMPort = StringVar(self) 

        self.tkCOMPort.set("COM11") 

        comport_entry = OptionMenu(self, self.tkCOMPort, "COM1", "COM2", 

"COM3", "COM4", "COM5", "COM6", "COM7", "COM8", 

                                   "COM8", 

                                   "COM9", "COM10", "COM11", "COM12", 

"COM13", "COM14", "COM15", "COM16") 

        connect_button = Button(self, bd=5, text="Connect", 

command=self.connect_device) 

        disconnect_button = Button(self, bd=5, text="Disconnect", 

command=self.disconnect_device) 

        self.connectedText.set("Disconnected") 

        self.connected_label = Label(self, bd=5, width=40, bg="red", 

textvariable=self.connectedText) 

 

        """Controller""" 

        controlledValues_label = Label(self, bd=5, width=40, 

text="Controllable Values") 

        controlledVoltage_label = Label(self, bd=5, width=20, text="Voltage") 

        self.voltage_value_write = Entry(self, 

textvariable=self.tkValueVoltageWrite)           

        voltage_submit = Button(self, bd=5, text="Submit", 

command=self.submit_voltage) 

        controlledCurrent_label = Label(self, bd=5, width=20, text="Current") 

        self.current_value_write = Entry(self, 

textvariable=self.tkValueCurrentWrite) 

        current_submit = Button(self, bd=5, text="Submit", 

command=self.submit_current) 

        """Output Control""" 

        self.output_label = Label(self, bd=5, width=20, bg="red", 

text="Output") 

        output_button_on = Button(self, bd=5, text="On", 

command=self.output_on) 

        output_button_off = Button(self, bd=5, text="Off", 

command=self.output_off) 

        exit_button = Button(self, bd=5, text="Exit", 

command=self.quit_program) 

#        """Reader""" 

#        self.readValues_label = Label(self, bd=5, width=40, text="Read 

Values") 

#        readVoltage_label = Label(self, bd=5, width=20, text="Voltage") 

#        self.voltage_value_read = Entry(self, state="readonly", 

textvariable=self.tkValueVoltageRead) 

#        readCurrent_label = Label(self, bd=5, width=20, text="Current") 

#        self.current_value_read = Entry(self, state="readonly", 

textvariable=self.tkValueCurrentRead) 

#        power_label = Label(self, bd=5, width=20, text="Power") 

#        self.power_value_read = Entry(self, state="readonly", 

textvariable=self.tkValuePowerRead) 

 

        """Windows Format""" 

        """COM Port""" 

        comport_label.grid(row=0, column=0, columnspan=3, sticky="WE") 

        comport_entry.grid(row=1, column=0, sticky="WE") 
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        connect_button.grid(row=1, column=1, sticky="WE") 

        disconnect_button.grid(row=1, column=2, sticky="WE") 

        ttk.Separator(self, orient=HORIZONTAL).grid(row=2, column=0, 

columnspan=3, sticky="WE") 

        self.connected_label.grid(row=3, column=0, columnspan=3, sticky="WE") 

        ttk.Separator(self, orient=HORIZONTAL).grid(row=4, column=0, 

columnspan=3, sticky="WE") 

        """Controller""" 

        controlledValues_label.grid(row=5, column=0, columnspan=3, 

sticky="WE") 

        controlledVoltage_label.grid(row=6, column=0, sticky="WE") 

        self.voltage_value_write.grid(row=6, column=1, sticky="WE") 

        voltage_submit.grid(row=6, column=2, sticky="WE") 

        controlledCurrent_label.grid(row=7, column=0, sticky="WE") 

        self.current_value_write.grid(row=7, column=1, sticky="WE") 

        current_submit.grid(row=7, column=2, sticky="WE") 

        self.output_label.grid(row=8, column=0, sticky="WE") 

        output_button_on.grid(row=8, column=1, sticky="WE") 

        output_button_off.grid(row=8, column=2, sticky="WE") 

        ttk.Separator(self, orient=HORIZONTAL).grid(row=9, column=0, 

columnspan=3, sticky="WE") 

#        """Reader""" 

#        self.readValues_label.grid(row=10, column=0, columnspan=3, 

sticky="WE") 

#        readVoltage_label.grid(row=11, column=0, sticky="WE") 

#        self.voltage_value_read.grid(row=11, column=1, sticky="WE") 

#        readCurrent_label.grid(row=12, column=0, sticky="WE") 

#        self.current_value_read.grid(row=12, column=1, sticky="WE") 

#        power_label.grid(row=13, column=0, sticky="WE") 

#        self.power_value_read.grid(row=13, column=1, sticky="WE") 

#        ttk.Separator(self, orient=HORIZONTAL).grid(row=14, column=0, 

columnspan=3, sticky="WE") 

#        exit_button.grid(row=15, column=0, columnspan=3, sticky="WE") 

 

#    def shortIO(self): 

#        device.write_register(address=int('1', 16), count=1, value=1, 

unit=1) 

#        time.sleep(0.25) 

#        device.write_register(address=int('1', 16), count=1, value=0, 

unit=1) 

 

    def connect_device(self): 

        global device 

        global connection 

        device = ModbusSerialClient(method=self.method, 

port=self.tkCOMPort.get(), 

                                    stopbits=self.stopbits, 

bytesize=self.bytesize, 

                                    parity=self.parity, 

baudrate=self.baudrate, 

                                    timeout=self.timeout) 

        connection = device.connect() 

 

        if not connection: 

            messagebox.showerror("Error", "Problems connecting to COM port. 

\n" 
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                                          "Please check the port.") 

        else: 

            self.connectedText.set("Connected") 

            self.connected_label.config(bg="green") 

            device.write_register(address=int('1', 16), count=1, value=1, 

unit=1) 

 

    def disconnect_device(self): 

        global device 

        global connection 

        try: 

            self.output_off() 

            device.close() 

            device = [] 

            connection = False 

            self.connectedText.set("Disconnected") 

            self.connected_label.config(bg="red") 

        except AttributeError: 

            messagebox.showerror("Error", "COM Port is disconnected!!!") 

 

    def submit_voltage(self): 

        try: 

            voltageString4 = 3200 

            transferString = int(voltageString4) 

            device.write_register(address=int('30', 16), count=1, 

value=transferString, unit=1) 

        except AttributeError: 

            messagebox.showerror("Error", "COM Port is disconnected!!!") 

 

    def submit_current(self): 

        try: 

            Ilevels=[] 

            I=[] 

            Ilevelsetup = np.arange(0,10300,200)   

            for objects in range(len(Ilevelsetup)): 

                Ilevels.append((Ilevelsetup[objects])) 

            n = 1 

            ele = float(0) 

            list(chain(*[Ilevels[i:i+n] + [ele] if len(Ilevels[i:i+n]) == n 

else Ilevels[i:i+n] for i in range(0, len(Ilevels), n)]))         

            for x in range(51): 

                    device.write_register(address=int('31', 16), count=1, 

value=Ilevels[x], unit=1) 

                    time.sleep(10) 

                    #chnage to 5 

                    device.write_register(address=int('31', 16), count=1, 

value=int(0), unit=1) 

                    time.sleep(10) 

        except AttributeError: 

            messagebox.showerror("Error", "COM Port is disconnected!!!") 

 

    def output_on(self): 

        try: 

            device.write_register(address=int('1', 16), count=1, value=1, 

unit=1) 

            self.output_label.config(bg="green") 
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        except AttributeError: 

            messagebox.showerror("Error", "COM Port is disconnected!!!") 

 

    def output_off(self): 

        try: 

            device.write_register(address=int('1', 16), count=1, value=0, 

unit=1) 

            self.output_label.config(bg="red") 

        except AttributeError: 

            messagebox.showerror("Error", "COM Port is disconnected!!!") 

 

    def quit_program(self): 

        if connection: 

            self.disconnect_device() 

        self.quit() 

 

    def updateVoltage(self, voltage): 

        self.tkValueVoltageRead.set(voltage) 

 

    def updateCurrent(self, current): 

        self.tkValueCurrentRead.set(current) 

 

    def updatePower(self, power): 

        self.tkValuePowerRead.set(power) 

 

def read_data(my_label): 

    global device 

    resultU = [] 

    resultI = [] 

    resultP = [] 

    if hasattr(device, "read_holding_registers"): 

        result = device.read_holding_registers(address=16, count=4, unit=1) 

        if hasattr(result, "unit_id"): 

            voltageString1 = float(result.registers[0]) 

            voltageString2 = voltageString1 / 100.0 

            transferString = str(voltageString2) 

            my_label.updateVoltage(transferString) 

            currentString1 = float(result.registers[1]) 

            currentString2 = currentString1 / 1000.0 

            transferString = str(currentString2) 

            my_label.updateCurrent(transferString) 

            powerString1 = float(result.registers[2] + result.registers[3]) 

            powerString2 = powerString1 / 1000.0 

            transferString = str(powerString2) 

            my_label.updatePower(transferString) 

    my_label.after(500, read_data, my_label) 

 

def main(): 

    window = Tk() 

    my_label = MyWindow(window) 

    window.title("Power Supply Controller") 

    read_data(my_label) 

    my_label.pack(side=TOP) 

    window.mainloop() 

if __name__ == '__main__': 

    main() 
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4) Microscope position control using stepper motors 

 

Figure C-1: Microscope automation, showing (a) components used to develop system including 

microcontroller (Arduino), motor and stepper driver (b) NEMA 17 stepper motor connected to 

microscope mechanical stage 
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Table C-1: Bill of materials for microscope position control system 

Item Cost (CAD) 

Elegoo UNO R3 Board ATmega328P ATMEGA16U2 (Arduino)6 14.95 

Usongshine 4 Lead Nema 17 Stepper Motor Nema 17 Motor 

(17HS4401S)7 15.49 

TB6600 4A 9-42V Stepper Motor Driver8 19.99 

Jumper wires9 10.99 

Belker 12W Adjustable Voltage Universal AC/DC Adapter Power 

Supply10 18.9 

 

Arduino software was used to control the system 11: 

#define dirPin 2 

#define stepPin 3 

void setup()  

{ 

pinMode(stepPin, OUTPUT); 

pinMode(dirPin, OUTPUT); 

digitalWrite(dirPin, HIGH);} 

void loop() { 

digitalWrite(stepPin, HIGH); 

delayMicroseconds(500); 

digitalWrite(stepPin, LOW); 

delayMicroseconds(500); 

}  

                                                

6 https://www.amazon.ca/Elegoo-Board-ATmega328P-ATMEGA16U2-

Arduino/dp/B01EWOE0UU/ref=sr_1_8?dchild=1&keywords=arduino+uno&qid=1616074780&sr=8-8 

7 https://www.amazon.ca/Nema17-Stepper-42BYGH-17HS4401S-

Printer/dp/B0787BQ4WH/ref=sr_1_1?dchild=1&keywords=nema+17+stepper+motor&qid=1616075501&sr=8-1 

8 https://www.amazon.ca/TB6600-Stepper-Driver-Controller-

tb6600/dp/B07B9ZQF5D/ref=sr_1_9?dchild=1&keywords=TB6600+stepper+driver&qid=1616075582&sr=8-9 

9 https://www.amazon.ca/120pcs-Multicolored-Breadboard-Arduino-

raspberry/dp/B01LZF1ZSZ/ref=sr_1_8?dchild=1&keywords=jumper+wires&qid=1616075626&sr=8-8 

10 https://www.amazon.ca/Belker-Adjustable-Universal-Household-

Electronics/dp/B07NKZCWT1/ref=sr_1_6?dchild=1&keywords=adapter&qid=1616075723&sr=8-6 

11 https://www.makerguides.com/tb6600-stepper-motor-driver-arduino-tutorial/ 
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5) PID Temperature controller 

""" 

Created on Tue Jul 28 13:29:14 2020 

@author: m8abdela 

Temperature Controller using 34411A Multimeter (for temp. sensor), 2200-26-5 

Keithley Power Supply for  

Icstation 12V 12W Flexible Polyimide Heater Plate Adhesive PI Heating Film 

10mmx93mm (Pack of 4) 

Use "U3606 Multimeter DC Power Supply" manual from "Keysight Command Expert" 

to control the power supply/obtain commands 

""" 

from IPython import get_ipython;    

get_ipython().magic('reset -sf') 

 

import visa 

import time 

import matplotlib.pyplot as plt 

import scipy.io 

from math import sqrt 

from simple_pid import PID 

 

#Convert Pt1000 Resistance value to a temperature reading 

def roots(a,b,c): 

    disc = b**2 - 4*a*c 

    if disc >= 0: 

        if ((-b + sqrt(disc))/(2*a))<300 and ((-b + sqrt(disc))/(2*a))>0: 

            return (-b + sqrt(disc))/(2*a) 

        elif ((-b - sqrt(disc))/(2*a))<300 and ((-b - sqrt(disc))/(2*a))>0: 

            return (-b - sqrt(disc))/(2*a) 

    else: 

        return -10000000 

 

plt.close('all') 

sampleName = 'Temperature Controller'; 

failureflag = 0; 

A = 3.9083e-3; 

B = -5.775e-7; 

RTD0 = 1000; 

 

t = []  

T1 = [] 

Tread1 = [] 

V1 = [] 

 

fname=time.strftime("%y%m%d%H%M%S",time.localtime()) + sampleName #filename 

#GPIB INITIALIZATION WITH PYVISA 

rm = visa.ResourceManager() 

rm.list_resources() 

multimeter = rm.open_resource('USB0::0x0957::0x0A07::MY48005925::0::INSTR') 

DCsource = rm.open_resource('USB0::0x05E6::0x2200::9050135::0::INSTR') 

 

tic = time.perf_counter() 

DCsource.write('*RST') 

DCsource.write('*CLS') 
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DCsource.write('OUTPUT ON') 

DCsource.write('CURR 1') 

DCsource.write('VOLT 1') 

#DCsource.write('OUTPUT OFF') 

 

class FilmHeater: 

    def __init__(self): 

        self.film_temp = 40 

    def update(self, powersupply_voltage): 

        voltage_reading = DCsource.query_ascii_values('MEASure:VOLTage:DC?') 

        powersupply_voltage = voltage_reading   

        if powersupply_voltage > 0: 

            temp_values1 = 

multimeter.query_ascii_values(':MEASure:SCALar:FRESistance?') 

            opc1 = int(temp_values1[0]) 

            RR1 = roots(B*RTD0, A*RTD0, RTD0-float(opc1)); 

            Tread1.append(RR1)            

            self.film_temp = RR1 

            return self.film_temp 

  

while failureflag == 0: 

    vol = -10000; 

    cur = -10000; 

    while vol == -10000 or cur == -10000: 

        toc=time.perf_counter() 

        t.append(toc-tic) 

        try: 

            try: 

                temp_values1 = 

multimeter.query_ascii_values(':MEASure:SCALar:FRESistance?') 

                opc1 = int(temp_values1[0]) 

                RR1 = roots(B*RTD0, A*RTD0, RTD0-float(opc1)); 

                Tread1.append(RR1) 

                if (RR1) > 40: #50C=1194.00ohm, 60C=1232.40ohm, 

70C=1270.80ohm 

                    DCsource.write('VOLT 1.5') 

                elif (RR1) < 40: 

                    DCsource.write('VOLT 4') 

#                    DCsource.write('VOLT %s' % (voltage)) 

                voltage_readings = 

DCsource.query_ascii_values('MEASure:VOLTage:DC?') 

                voltage_V = voltage_readings[0] 

 

                boiler = FilmHeater() 

                film_temp = boiler.film_temp                    

                pid = PID(100, 10, 5, setpoint=film_temp) 

                pid.output_limits = (0, 100) 

                power = pid(film_temp) 

                film_temp = boiler.update(power) 

                #The problem is that I want my setpoint to be 40C, not to 

control the voltage, how do I make it clear that PID should act on voltage 

based on temperature 

#                v = FilmHeater.update(0) 

#                while True: 

#                    temp_values1 = 

multimeter.query_ascii_values(':MEASure:SCALar:FRESistance?') 
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#                    opc1 = int(temp_values1[0]) 

#                    RR1 = roots(B*RTD0, A*RTD0, RTD0-float(opc1)); 

#                    Tread1.append(RR1) 

#                    temperature = RR1    

#                    # compute new ouput from the PID according to the 

systems current value 

#                    control = pid(temperature) 

#                    # feed the PID output to the system and get its current 

value 

#                    v = FilmHeater.update(control)                    

##                    voltage_reading = 

DCsource.write('MEASure:CURRent[:DC]?') 

##                    voltage = voltage_reading            

##                    # compute new ouput from the PID according to the 

systems current value 

##                    control = pid(voltage) 

##                    # feed the PID output to the system and get its current 

value 

##                    v = FilmHeater.update(control) 

            except: 

                Tread = []; 

                #print("error") 

            T1.append(RR1) 

            V1.append(voltage_V) 

            data = {} 

            data['t'] = t 

            data['T1'] = T1 

            data['power'] = power 

            data['V1']= V1 

            saved = 0 

 

            while saved == 0: 

                try: 

                    scipy.io.savemat('%s.mat' % fname, data) 

                    saved = 1 

                except: 

                    saved = 0 

            time.sleep(5) 

            maxlength2save = 10000 

            if len(t) > maxlength2save: 

                fname=time.strftime("%y%m%d%H%M%S",time.localtime()) + 

sampleName #filename   

                t = [] 

                T1 = [] 

                V1 = [] 

        except: 

            vol = -10000; 

            cur = -10000; 

        plt.ion() 

        gg = plt.figure(1) 

        plt.cla() 

        plt.plot(t[max(0, len(t)-300):],T1[max(0, len(t)-300):]) 

        plt.xlabel('Time [s]') 

        plt.ylabel('Temperature [℃]') 

        plt.show() 

        gg.canvas.draw() 
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        gg.canvas.flush_events()   

 

        plt.ion() 

        gg = plt.figure(2) 

        plt.cla() 

        plt.plot(t[max(0, len(t)-300):],V1[max(0, len(t)-300):]) 

        plt.xlabel('Time [s]') 

        plt.ylabel('Voltage [V]') 

        plt.show() 

        gg.canvas.draw() 

        gg.canvas.flush_events()   

multimeter.close() 

DCsource.close() 

rm.close()     

 

 

Figure C-2: PID temperature controller block diagram, showing (a) typical diagram (b) diagram 

for EM testing including all equipment used 

 

 

Figure C-3: (a) Heating film used for PID controller (b) Power supply, multimeter and temperature 

sensor connections to the heating film 
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Table C-2: PID temperature controller results, showing examples from four tests aimed at 

stabilizing chamber at 40 °C 

Test # Min 

Voltage 

(V) 

Max 

Voltage 

(V) 

Time to 

reach SP 

(s) 

Temp. Range 

(°C)   
Std Dev 

(°C) 
Av. 

Temp. 

(°C) 

1 0 7 - 38.6 – 49.8 3.64 44.01 

2 1.5 4 31.4 38.6 – 43.3 1.0 40.35 

3 2.5 4 47.1 39.7 – 42.2 0.73 40.84 

4 2.5 3.5 62.6 39.7 – 41.5 0.46 40.45 
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