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Abstract

In the near future, socially intelligent robots that can learn new tasks from humans may
become widely available and gain an opportunity to help people more and more. In order
to successfully play a role, not only should intelligent robots be able to interact effectively
with humans while they are being taught, but also humans should have the assurance to
trust these robots after teaching them how to perform tasks.

When human students learn, they usually provide nonverbal cues to display their un-
derstanding of and interest in the material. For example, they sometimes nod, make eye
contact or show meaningful facial expressions. Likewise, a humanoid robot’s nonverbal
social cues may enhance the learning process, in case the provided cues are legible for
human teachers. To inform designing such nonverbal interaction techniques for intelli-
gent robots, our first work investigates humans’ interpretations of nonverbal cues provided
by a trainee robot. Through an online experiment (with 167 participants), we examine
how different gaze patterns and arm movements with various speeds and different kinds
of pauses, displayed by a student robot when practising a physical task, impact teachers’
understandings of the robot’s attributes. We show that a robot can appear differently in
terms of its confidence, proficiency, eagerness to learn, etc., by systematically adjusting
those nonverbal factors.

Human students sometimes make mistakes while practising a task, but teachers may
be forgiving about them. Intelligent robots are machines, and therefore, they may behave
erroneously in certain situations. Our second study examines if human teachers for a robot
overlook its small mistakes made when practising a recently taught task, in case the robot
has already shown significant improvements. By means of an online rating experiment
(with 173 participants), we first determine how severe a robot’s errors in a household task
(i.e., preparing food) are perceived. We then use that information to design and conduct
another experiment (with 139 participants) in which participants are given the experience
of teaching trainee robots. According to our results, perceptions of teachers improve as
the robots get better in performing the task. We also show that while bigger errors have a
greater negative impact on human teachers’ trust compared with the smaller ones, even a
small error can significantly destroy trust in a trainee robot. This effect is also correlated
with the personality traits of participants.

The present work contributes by extending HRI knowledge concerning human teach-
ers’ understandings of robots, in a specific teaching scenario when teachers are observing
behaviours that have the primary goal of accomplishing a physical task.
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Chapter 1

Introduction

In the modern world, socially intelligent robots are increasingly being developed to support
people in a variety of domains. These robots need to have effective and efficient commu-
nication abilities to collaborate and interact with humans in many situations. One major
aspect of the intelligent robots is that they have the capability to learn new tasks and ex-
tend their functionalities and skills, e.g., by receiving instructions from their owners [29].
Therefore, humans may sometimes act as teachers of robots. To facilitate the skill transfer
process and enable non-experts to teach robots, natural teaching mechanisms have been de-
veloped. As an example, we can refer to imitation learning, through which an agent learns
how to accomplish a task by watching or experiencing a sequence of actions [105, 13].

1.1 Motivation

Robots’ Nonverbal Behaviour

Followed by technological advancements, communication through body movements and
gesture has become an important avenue for successful Human-Robot Interaction (HRI) [92,
21, 81, 63, 106, 4, 62]. Head and arm movements, body gestures, and eye gaze are exam-
ples of nonverbal behaviours that can be powerful communicative tools to complement a
robot’s main functionality (e.g., carrying out a task). It has been found that activation
patterns in human brain interconnectivity networks differ at a global neuronal level when
people pay attention to how an action is performed compared with when thinking about
the goal of the action [33]. Nonverbal expressive behaviours of robots can shape humans’
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understanding of them or elicit different reactions [56]. Therefore, studying how those
behaviours affect humans’ perceptions is an important area of research in HRI.

Robots’ Errors

Intelligent robots may perform their tasks in dynamic and unexpected environments, using
imperfect sensors. This can lead to a reduction in their reliability [32]. In many cases,
robots are autonomous or semi-autonomous and need to make decisions on their own and
act accordingly. Hence, given the complexity of the environment and the task, even robots
with exceptional reliability may behave in an incorrect manner. It has been previously
found that robots’ errors can negatively impact several aspects of HRI. For instance, people
may react to these errors in real-time, by frowning or averted gaze [50]. Trust, as a
critical factor concerning acceptance and persuasiveness of robots [101], can also be highly
impacted after humans observe robots’ errors [47, 31]. People may become reluctant to
use robots in the future if they cannot trust them [94, 115].

1.2 Research Goal and Scope

This thesis aims to explore humans’ interpretations of trainee robots’ nonverbal behaviour
and errors, by conducting two separate studies (three experiments with human participants
in total).

Our first experimental study (presented in Chapter 3 [5, 6]) focuses mainly on nonver-
bal communication for a robot learner. We explore how people, in the imaginary role of
teachers, interpret multiple aspects of a trainee robot’s nonverbal behaviours while observing
it performing a learned physical task. The behavioural parameters manipulated here are
the gaze pattern of the robot, as well as the speed and smoothness of its arm movement
trajectories during task performance. We also examine a potential effect of priming (i.e.,
changes in perceptions or behaviour of participants caused by prior stimuli). Study of this
priming factor, which is regarding time passed since teaching, is exploratory in nature as
previous research has shown that when a robot gradually gains a new skill, its human
teachers’ behaviours might change too [39]. The studied topic is important because be-
fore any potential use of nonverbal communication in robot learning scenarios, we need
to ensure that the trainer (human) is able to interpret behaviours of the learner (robot)
accurately, according to its intent.

The next study, reported in Chapter 4, explores how robot errors happening during the
learning process may affect participants’ interpretations of its behaviours and impact their
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trust. While in a human-human teaching scenario mistakes may be expected to happen
sometimes, our general question is: When a “robot” is being taught a task by a human
teacher, will they simply ignore its errors? How can a small error affect the teacher? How
about a more severe mistake? The first experiment conducted in this study investigates
what is seen as a small error or a big error when a robot is performing a simple food
preparation task. In another experiment, which is built upon the insights gained from the
first one, participants make use of our virtual platform to remotely demonstrate how to
perform that task to a humanoid robot, and then the robot does so, unless there are errors.
Over multiple training and practising rounds, the robot appears to gradually improve. This
way, unlike Study 1, our participants were given the experience of teaching the robot and
rated the teaching scenario to be realistic. Depending on the experimental condition, the
robot might display faulty behaviours with different levels of severity while practising the
task for the last time. Our aim is to identify the consequences of those errors on teachers’
beliefs and their trust. Furthermore, we explore impact of a learner robot’s perceived
professionality, indicated by the way it is dressed, on teachers’ trust and attitudes. We
consider two cases when a robot has a tidy appearance or an untidy dress.

1.3 Summary of Contributions

The contributions of this research can be summarized as:

1. The first study identifies suitable behavioural adjustments for robots to influence
people, or convey information about their internal state as well as their learning
progress. This nonverbal communication can help to improve human teachers’ un-
derstanding of trainee robots and would ultimately enhance the learning outcomes
through improving the legibility of the observed behaviours.

2. We report the process of designing a virtual framework to simulate a human-robot
teaching interaction, using which trust is studied in an online teaching situation, by:

(a) Introducing an interactive method through which people can remotely demon-
strate a task for a robot. This enables participants to experience the act of
teaching, without the need to physically come to the lab.

(b) Showing how errors of a learner robot affect human teachers. We point out
that even a small error may largely impact trust, indicating the importance of
behaviours of a robot even while learning a new task.
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1.4 Thesis Overview

The following chapters make up the rest of this thesis. Chapter 2 presents a literature
review on the related topics, i.e., social learning, nonverbal communication, and trust,
and also briefly discusses the impact of robots’ appearance. In Chapter 3, we report
our first experimental study that investigates the impact of nonverbal robot behaviour on
human teachers’ perceptions of a learner robot. Then, Chapter 4 describes our second
work, including two experiments, explores trust in trainee robots with respect to various
erratic behaviours and multiple appearances. Finally, Chapter 5 concludes the thesis by
providing brief answers to the research questions, listing our contributions to knowledge,
and discussing limitations of the presented studies.

There are also four appendices in the end. Appendix A includes our ethics clearance
certificates. Screenshots from all the pages that were designed for conducting our experi-
ments are provided in Appendix B, C and D.
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Chapter 2

Background Literature

Throughout this chapter, we give an overview of the background literature related to the
topics discussed in this thesis. We start with introducing the concept of social learning
and describing its functionality in the life-time skill development process of infants and
primates. Then, we look at how mechanisms inspired by social learning, e.g., imitation
learning, might benefit intelligent robots.

Associated with Study 1, we list different nonverbal modalities used by robots for the
purpose of communication. After that, some previous work regarding the influence of those
behaviours on the human-robot interaction will be reviewed. Special attention is given to
the robot learning domain. We also describe some examples of how humans’ perception of
a robot can be altered when it adjusts its nonverbal behavioural factors.

Finally, to introduce the type of work done in Study 2 and mention our inspiration
source for the approach we followed, a series of experiments investigating the trust factor
in HRI will be briefly mentioned. Then, we point out how errors made by robots could
influence trust as well as the behaviours of their interaction partners. In the final section
of this chapter, we briefly discuss the impact of robot appearance on the interaction.

2.1 Social Learning

Social learning refers to a type of learning done through observation of or interaction with
other members of the same species. Social learning stands in contrast to “asocial learning”,
or “individual learning”, which describes learning without social interactions [53].
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2.1.1 Social Learning in Primates and Infants

Primates social learning takes place through a variety of processes including imitation,
emulation, local and stimulus enhancement, and teaching [120, 121], as described in the
following. Copying another individual is known as “imitation”, and can include mimicking
their body actions or even how they use tools and other objects. “Emulation” is a more
diverse term applied to processes including object movement re-enactment (copying how the
model makes objects move, if imitation is limited to body movements), end-state emulation
(replicating only the desired outcomes of the action, to reach using either the same method
as the model or their own method) and affordance learning (understanding properties of
the objects or other aspects of the environment to be able to utilize them with their own
strategies) [120]. Through “Local and Stimulus Enhancement”, the observer’s attention is
drawn towards a relevant location or object by the actions of another individual. Finally,
“teaching” can be defined as a behaviour performed by a teacher at a cost to benefit
developmental achievements of some students [121].

Social learning in primates occurs in three main stages (see Figure 2.1): (1) Learning
from the mother or another primary attachment figure, (2) Selective learning in an ex-
panding social world, and (3) Learning from residents after the migration [121]. In many
primates, mothers care for and carry their infants at first, with different levels of maternal
interaction that shape social learning opportunities. Therefore, from the beginning of the
lifetime of an infant, the mother is the main and often the only model for social learning.
Through the first stage, immature individuals attentively watch their mothers’ techniques,
by a focused and close-range visual attention called “peering” [107]. This involves the
learner facing the demonstrator and nodding his head as a sign that he has understood
the actions. Later, they practise those techniques rather than manipulating other objects,
which indicates that they are acquiring the skills through observation.

In the second phase, i.e., selective learning, individuals start to learn from those deemed
better models than their parents for expert tasks. Through studying a small-scale society
of Fijian villagers, Henrich and Broesch [52] observed some learning biases in this selec-
tive phase. “Perceived within-domain success and knowledge” turned out to be the most
important bias. In domains such as fishing where a potential model’s achievements could
be directly observed, success seemed far more important than knowledge. When there
was no direct evidence of success, “age” was used as an indirect predictor of the model to
learn from. Moreover, they noted a “cross-domain success” effect, meaning that perceived
success in one domain could affect learning in another domain, mostly when two domains
are related. It was also found that learners tend to pick models from particular sexes for
specific domains, for example, males as fishing models.
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Figure 2.1: The three-phase model of how social learning occurs in primates. Adapted
from “The pervasive role of social learning in primate lifetime development” by Andrew
Whiten and Erica van de Waal, 2018 [121]. Used with permission.

Other studies have suggested that primates hold even more biases for selective social
learning. For example, regarding some species of brown capuchin monkeys (Cebus apella),
it has been found that understanding the relative proficiency of group-mates and observing
the more skilled ones could help monkeys maximize their social learning opportunities [85].
Another study has shown that chimpanzees (Pan troglodytes) recognize and imitate their
group-mates who act faster [114]. In a different study about chimpanzees, Kendal et al. [65]
have found that species are also inclined to copy dominant and knowledgeable individuals,
who have been trained to succeed. Although these target models may be as successful
as the others, their confident and purposeful way of approaching the tasks is what leads
chimpanzees to prefer them. According to Perry [87], white-faced capuchin monkeys (Cebus
capucinus) are prone to copying a majority of their group. They are more likely to adopt
behavioural alternatives that they see most frequently among their peers.

Research on human children has also shown that infants also learn selectively from
different adults. Harris and Corriveau [49] have found that two major heuristics could
be used by children to identify which models are more trustworthy than others. First,
children exhibit a bias to endorse the claims and imitate the demonstrations of those that
they identify as attachment figures, and/or who have previously proven to be reliable
sources of information. To do this, children keep track of the history of potential models.
When no recorded experience with another person is available, the second heuristic is used
by children. In this case, they will be more likely to imitate those who seem to belong
to their cultural group. In another study, two- and three-years-old children’s preference
for imitation was examined by Birch et al. [15], when adult models showed nonverbal
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cues such as facial expressions and body postures for indicating their level of certainty. It
was observed that when both a confident and an uncertain model were available, children
selected to learn about objects from the confident one.

Lastly, the third stage of social learning occurs when migrants encounter different social
and ecological circumstances from their natal group [121]. During this stage, social learning
from residents may be helpful, especially for migrants who have little familiarity with the
local resources. In many cases, species quit their existing personal preferences or behaviours
and adapt to the new local norms. The reason can be that they are unsure about the
optimal local behaviours to employ in the new environment, and as a solution, they learn
what is offered by the existing residents. One other reason may be that newcomers are
more likely to be accepted in the new group if they behave similarly to the current members
of the new society.

2.1.2 Imitation and Social Learning in Robots

As discussed, under the behaviours considered as social learning, imitation happens when
one individual copies another individual’s behaviour that is novel to their behavioural
range. It is for a time that robots and software agents also benefit from this type of
learning. “Imitation learning” is a robot learning mechanism that makes the transfer
of skill more efficient [13]. This might also make socially intelligent robots more “like
us” and make them individuals [28]. By observing a demonstration or experiencing a
sequence of actions, imitation learning provides a quick and easy way for people without
any extensive knowledge of programming to teach a robot how to do complex actions. This
can be considered as an effective method of motor learning, especially for robots with many
degrees of freedom and when the state-action space is large. A review about robots that
imitate humans can be found in [20].

To let robots dynamically acquire new task skills, several imitation frameworks have
been developed, e.g. [60, 23, 24, 113, 26]. Demonstrations from humans can be conveyed
to robots using a variety of modalities. In many cases, a person can guide the movements
of a robot by grasping and moving its arms. This method is often called “Kinesthetic
teaching” and focuses on learning continuous motion trajectories and actions done on the
objects and the environment. In some other robotic systems, teachers’ behaviours can be
recognized by the robot remotely, e.g., using vision sensory inputs or motion capturing
devices.

Any form of imitation learning presumes a correspondence between two autonomous
agents [30]. Observers should be able to recognize that the learned tasks of the imitator
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correspond to the behaviours of the demonstrator. These relations exist if the embodi-
ments, sequences of actions, and goals meet a criterion. For instance, if both the teacher
and the learner have similar embodiments, this correspondence is just to map the equal
parts of the bodies. Nevertheless, it would be likely that the human teacher and the robot
differ in the number and/or types of joints, lengths of the links, the amount of force/torque
they can apply, and therefore, exact behaviours can not be copied.

As previously mentioned, research on how social learning contributes to the lifelong skill
development process in humans and several species of primates suggests that interacting
with others is a crucial component of any learning task [121]. This highlights the need for
designing mechanisms to support teaching process of robots through social feedback and
interaction [122, 68]. No matter what modality the instructor uses, it would be helpful
if the agent be able to interpret the teacher’s behaviours and also express itself in a way
that the instructor understands [71]. Through an interaction, the learner and the teacher
form mental models of one another that can be used to support their collaborative activity
during learning and teaching. It is likely that the two-way flow of information between
the teacher and the robot will improve the teaching process and help the teacher provide
more relevant inputs [19]. It has been demonstrated that by generating concise feedback
through social signals (e.g., gaze, head and arm gestures, etc.), a robot can control how
the teacher presents the instruction [89].

Conclusion: The concept of social learning is not directly studied in this
thesis. However, emphasizing the importance of the “interaction” element in
skill development of species and describing how robots may acquire new abil-
ities from humans can be helpful for understanding the contributions of our
work. Instead of designing robots to only learn by recording the inputs from
the teachers, a two-way stream of information between the trainee robot and
its human teacher may potentially benefit the learning process. For instance,
when some information is missing or teacher’s actions are unclear to the robot,
its behaviours can be adjusted immediately to convey signs of uncertainty or
confusion to the teacher. That may motivate them to provide more informative
instructions.

2.2 Nonverbal Communication in HRI

As reviewed in [91], several studies have examined the impact of a robot’s personality on
different aspects of HRI. In this regard, researchers have been especially interested in de-
tecting how the physical behaviours (e.g., gestures, movement patterns, facial expressions,
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and gaze) or verbal behaviours (e.g., audio and linguistic style, voice gender and speed,
and responsiveness) of a robot may affect people’s impressions and perception of it.

Communication by the nonverbal means is an essential component of modern social
robots. If a robot lacks the ability to express facial or vocal expressions, nonverbal com-
munication may be its only option. Saunderson and Nejat [106] have reviewed studies on
nonverbal communication modes of robots and categorized them into four main classes of
kinesics, proxemics, haptics, and chronemics.

The term “Kinesics” refers to the systematic studies of how human beings communi-
cate using body movements and gesture [16]. “Proxemics” is the knowledge of people’s
perception and use of space and refers to the conscious or subconscious setting of distances
between various items, agents, and the person [46]. “Haptics” is related to tactile com-
munication [40], through which signals would be transferred to people using their skin.
This investigates the impact of robots’ tactile behaviours (e.g., handshaking and gentle
touching). Finally, “Chronemics” is defined as studying the nonverbal communication
mode which is related to human time-experiencing [22]. In HRI, this is about how robots’
nonverbal timing, mainly hesitation gestures, influences humans. All these nonverbal com-
munication modes have been shown to impact the interaction in the domains of shaping
cognitive framing (i.e., people’s perspectives and orientations toward the robot), elicit-
ing different emotional responses, triggering behavioural reactions, and adjusting the task
performance.

2.2.1 Nonverbal Behaviours Influencing the Interaction

Robots’ nonverbal behaviours influencing the HRI and possibly conveying information
have been studied on a wide scale. Claret et al. [27] employed a robot’s body motions
to convey emotional information while it was simultaneously greeting as its main task,
by waving its right hand. They developed an approach for mapping emotions defined
as points in the Pleasure-Arousal-Dominance space to the Jerkiness-Activity (related to
the kinetic energy of the robot)-Gaze directness kinematic attributes, which eventually
shaped the continuous body movements of the robot. With an experimental study, they
examined whether a Pepper robot with the proposed approach could accurately convey
calmness, happiness, sadness, and fear. The results showed that the system was capable of
conveying happiness and sadness, but more work was needed on conveying calmness and,
more importantly, fear. As they pointed out, people seemed to not notice the jerkiness,
particularly when the robot was making energetic motions. This miscommunication of
the jerkiness attribute could explain why emotions such as fear sometimes interpreted as
happiness.
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In [27], the chosen set of attributes (i.e., Jerkiness, Activity, and Gaze directness) were
motivated by the work of Glowinski et al. [43], who proposed four dimensions for retaining a
majority of emotional information: (a) Activity, which indicates how energetic the motions
are, (b) Temporal and spatial excursion of movement, to show the distribution of energy
along with the physical motions, (c) Spatial extent and postural symmetry, which indicates
the degree of arms’ openness, and finally (d) Motion discontinuity and jerkiness, which
means having a trajectory with large values of high-order derivatives. In addition to that
work, we can also note the study of Dragan and Srinivasa [34]. They have discussed and
tested a method of generating motions to communicate a robot’s intent to the observer,
and to increase the predictability of its action, when the robot was attempting to reach for
one of the two goals objects.

In the domain of robot learning, nonverbal communication has also been found valuable.
Chao et al. [25] have equipped a humanoid platform with an active learning system that
provided nonverbal feedback to its teacher, containing information about the areas in
which it got confused, when humans taught it different Tangram symbols. Two kinds of
transparency mechanisms were included in that system: one for informing about the points
of confusion, and the other one for communicating the robot’s confidence. Nodding and
shaking of the head, changes in the colour of the ears and shrugging gestures were used as
the cues. It was found that people who understood the robot’s intentions could teach it
more accurately.

Lohan et al. [89] have investigated the effects of a robot’s online behavioural feedback
on the tutor’s behaviour. In that study, the participants were presenting the patterns and
the colours of some boxes to an iCub robot. When at the beginning of the teaching process,
the robot was closely monitoring and following the teachers’ presentation and responded to
their gaze behaviour and pointing gestures appropriately, the teachers appeared permissive
to the robot’s faults later. These results suggested that robots can tailor the tutor’s
actions by interacting with them and providing feedback. More recently, Huang et al. [58]
have utilized a robot’s eye gaze to signal the teachers how it expects them to perform
next, when teaching a decluttering task to it. The researchers examined how humans can
interpret the robot’s gaze feedback, which was related to its beliefs about the sorting rules,
and potentially benefit from that. Only 9 out of 17 participants were able to discover
this relationship, but for those who did, the feedback helped to better track the robot’s
understanding and therefore, increased the effectiveness of their teaching.

As an alternative to the scenario of participants teaching a robot, Peters et al. [88] had
an educational robot as a lecturer for a small group of students. By varying the pitch and
volume of its voice, body postures, and types of hand gestures (i.e., open or closed, and
semantic or syntactic), researchers made different nonverbal behaviour patterns. It was
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found that even a small change in the robot’s behaviour can alter the perception of its
warmth and competence.

2.2.2 Adjustments in Robots’ Nonverbal Behaviours

• Eye gaze: A robot’s gaze behaviour, meaning to where and for how long the robot
looks, is a natural way to express emotions. There is a large body of research indicat-
ing the importance of gaze behaviour in HRI. In this regard, an extensive review can
be found in [2]. To mention some examples about when humans taught the names
of some objects to a robot, Ito et al. [59] found that a robot looking mostly at the
moving objects and occasionally establishing a mutual gaze with the teacher could
promote the teacher’s attention and deliver a feeling of intentionality. Nevertheless,
this type of behaviour needed some gaze aversions that have been shown to convey
the feeling of distrust [84] and introversion [7].

• Arm movements: Another way to express feelings is through gestures. Studies
have indicated that by performing the actions with varying motion parameters, a
robot can convey emotions such as sadness and anger [36], alter people’s perceptions
of its liveliness and activity [102], express a feeling of kindness or rudeness [116],
and impact the perceived affect [100]. Kim et al. [67] have investigated the relation-
ship between basic motion factors, including the speed of the arm movements, and
some perceived personality aspects of an entertainment robot. They found that peo-
ple perceived higher dominance and greater friendliness when the robot showed fast
motions. Other researchers have examined both the subjective and the physiologi-
cal responses of people when observing a robotic arm that used multiple trajectory
generation approaches with different speeds [70]. They detected that higher speeds
resulted in higher perceived anxiety and surprise.

• Hesitations: If humans feel doubt and uncertainty before or while doing a task,
they often pause and think briefly to make a decision. A number of HRI studies
have explored hesitant robots’ behaviours. Such pauses have been found to be a
way of conveying uncertainty in human-robot shared tasks [79]. Moon et al. [80]
have focused on the use of hesitation gestures, as a nonverbal communication tool,
for the situations when both a robot and a human need to reach for one object at
the same time. By applying a smooth human-like motion profile for the hesitant
behaviour, the robot was perceived as less dominate, but more likeable, animate and
anthropomorphic in comparison to when there was no pause. However, they found
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no significant differences in those measures when the robot responded by stopping
immediately instead of acting smoothly.

In the context of robots learning new actions, a study has been done on the effects
of adding delays in initiating the actions of the robot after receiving the instructions
from the human teacher [64]. When the robot was uncertain about its actions, it
initiated them with hesitation, but when it was confident, it started immediately.
The delay improved people’s overall teaching experience and accelerated the learning
process. In that study, adding longer delays at the beginning of learning process and
shorter ones at the end made people perceive the robot as even more teachable.

Conclusion: As described, several works have been done concerning the im-
pact of nonverbal robot feedback on human teachers. These studies have mostly
investigated situations of learning abstract and theoretical tasks (e.g., puzzle-
solving [25, 58]) rather than learning how to perform a physical task, when
a series of actions is being done on some objects or the environment. Con-
text is highly important for determining a robot’s personality [91] as well as in
identifying the interpretations of motor activity, to infer intent [82]. Therefore,
studies presented in this thesis aim to fill the knowledge gap by focusing on the
interpretations of robot’ actions when learning physical actions in particular.

2.3 Trust in HRI

Trust, can be described as “the attitude that an agent will help achieve an individual’s
goals in a situation characterized by uncertainty and vulnerability” [72, p. 51], and is a
complex relationship that can be impacted, destroyed or recovered, depending on many
factors. Following is a summary of an HRI research project related to trust.

Rossi et al. have done a series of studies to investigate how humans can trust robots in
home environments [93]. The primary step of that research involved assessing the severity
of a set of potential mistakes that a domestic robot could commit. A group of participants
who were asked to imagine themselves living with a robot companion in their homes rated
those mistakes [95]. Researchers identified three big and three small errors by selecting
only the highest and lowest ratings from each participant. In the next step, they studied
how the timing and the severity of a robot’s mistakes may affect trust [94]. In a virtual
storytelling environment, an experiment was conducted with the following five conditions
of a robot doing successive tasks, as demonstrated in Figure 2.2: (C1) Performing them
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all correctly, (C2,C5) Making three big/small mistakes (determined by the previous step) at
the beginning and also at the end, (C3,C4) Exhibiting thee big/small errors at the beginning
and three small/big ones at the end. Participants were then asked if they would trust
the robot and follow its instructions in an emergency evacuation scenario. A majority of
participants did not trust the robot in case there were large errors at the beginning or at
the end of the scenario. With small errors instead, however, participants tended to trust
it in teamwork. It was also found that with making big mistakes at the beginning of the
interaction, rather than at the end, trust was impacted more negatively. The participants
who had a higher disposition for trusting in people’s benevolence trusted the robot more
according to the collected questionnaires [96]. In addition, people who were more open to
experience were seen to have a negative attitude toward having a robot as a companion.

In another study, Rossi et al. [98] investigated how the interaction history and people’s
knowledge about a robot’s capabilities could affect user’s trust. In an experiment, sec-
ondary school students first watched a commercial video about the Pepper robot. In the
next step, they freely interacted with the robot while its built-in awareness function was
running. Finally, students actually became involved in programming different behaviours
and emotions for it. According to questionnaires collected after each step, as students
learned more about the robot’s capabilities and limitations and also got hands-on experi-
ence in programming the robot, they could trust the robot more. Later, while repeating the
same experiment with a Kasper robot, the trust did not significantly change after different
interaction scenarios [99]. Compared with the Pepper robot, the Kasper robot may have
seemed totally different in those experiment, since its facial features were minimal, its size
was small and it was unable to walk. Lastly, the researchers discovered the relationship
between social behaviours of a robot and human’s trust. In an experiment [97], when a
Pepper robot guided the participants in a crowded environment and acted socially, it could
gain people’s trust which was not existed before cooperating with the robot. This robot
was perceived as more comfortable and was evaluated more as an assistant, rather than a
machine.

2.3.1 Consequences of Robots’ Errors

In order for the robots to operate in real environments that are unstructured and dynamic,
they should collect information with sensors that can sometimes be noisy and inaccurate.
The robots then need to make their own decisions and act accordingly. Because of all
these factors, robots may behave in an erroneous manner in some situations. Errors in the
behaviours of the robots have been shown to reduce their perceived trustworthiness [31,
103], the effect of which may be different depending on the severity and timing of the
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(A)

(B)

Figure 2.2: (A) Experimental conditions, and (B) Responses of participants from different
conditions to the emergency scenario in a study of trust in a virtual home environment.
Adapted from “How the Timing and Magnitude of Robot Errors Influence Peoples’ Trust
of Robots in an Emergency Scenario” by Alessandra Rossi, Kerstin Dautenhahn, Kheng
Lee Koay, and Michael L. Walters, 2017 [94]. Used with permission.

mistakes, as described in the previous section [94]. A taxonomy of failure types in HRI
and their impact on trust has been recently developed in [111]. In [55], there can be found
a review about how robots communicate failure and how failures affect people’s perception
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of robots and their feelings towards them. Other consequences of a robot’s mistakes have
been detected by behavioural analysis in several studies. The following provides a summary
of a few studies of this kind that are related specifically to learning interactions.

In [50], the participants taught a kind of dance to a humanoid robot that was designed
to repeat any recognized actions of its teacher. Throughout the interaction, there were in-
stances with both correct and intentionally incorrect robot behaviours, as response to the
presented material when the robot was mimicking participants’ actions. During the times
when the robot’s actions went right, the participants often smiled and nodded along. How-
ever, negative feedback such as frowning and averted gazing was generated after incorrect
robot’s behaviours.

Using the kinesthetic teaching method, participants in another study demonstrated a
manipulation task to a robotic arm [109]. Following teaching, the experimenters ran a
program with an error for them to observe, instead of running each participant’s flawless
trajectory. The errors were missing the object (low severity), placing it in an inaccurate
location (medium severity), or dropping it when moving (high severity). In assigning those
severity levels, the effect of each error on the immediate surroundings was considered.
Researchers analyzed the timing and the intensity of teacher’s behaviours, such as laughing
and smiling, and recorded their verbal reactions as well. Faster and more intense responses
were detected from the participants who experienced more severe robot errors.

In the opposite situation, Kontogiorgos et al. [69] have studied the effects of type
of embodiment and the severity of failures when a conversational agent was instructing
participants how to cook. High severity mistakes were simulated with introducing a time
constraint for completing the task. Researchers found that the participants responded
more intensely to the failures, using verbal and nonverbal signals, when they interacted
with a human-like embodiment compared with a smart speaker. However, there was no
big effect of failure severity on the detected behavioural signals in that study.

Concerning a manufacturing setup where a supervisor (the experimenter) was also
present near a robotic arm, Hedlund et a. [51] have recently conducted an experiment to
study human teachers’ response to robot failures after learning a manipulation task by
different kinds of demonstrations. Authors found that robot failures, simulated through
playing a pre-recorded faulty trajectory, affected participants’ trust of themselves and the
robot.

Conclusion: In most of the reviewed works about robots’ errors and their
impact on trust, participants were interacting with a robot that was supposed
to know how to perform a task and was expected to work properly. Teachers
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are often forgiving about errors made by their students. In HRI, there is also
evidence that lower expectation of a robot’s functionality can minimize the
negative effects of its errors on trust [119]. Therefore, in our study that is
related to trust, we follow an approach similar to previous literature to explore
a “learning” situation when errors are being made by a student robot.

2.4 Impact of Robot Appearance in HRI

The way in which humans dress has been shown to influence the formation of first impres-
sions [104]. In particular, the clothing styles of students in a school environment can affect
teachers’ perception of their intelligence and potential academic achievement [11]. In HRI,
the appearance of a robot may provide information on its abilities and competencies. Many
studies on the impact of robot appearance on different aspects of humans’ perceptions and
the interaction have focused on the level of machine-likeness as a design characteristic of the
robot (i.e., being anthropomorphic or zoomorphic vs. machinelike) [12, 117, 90, 110, 44].

The appearance of an agent can be related to the notion of perceived authority. People
in everyday life tend to comply with requests from those they perceive to have author-
ity. Haring et al. have studied this in HRI [48]. They explored whether the human-like
appearance of a teacher robot could prompt the participants to practise the task longer,
compared to a less human-like robot. In this context, however, no differences were found
between the higher and the lower human-like robots concerning compliance time.

Conclusion: Our work in study 2 aims to examine the use of the same robot
with two different clothing styles and is not directly related to the reviewed
literature. Therefore, the study of appearance factor would be exploratory.
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Chapter 3

Study 1: Effects of Robot Nonverbal
Behaviour

3.1 Research Question and Hypotheses

The research question in this study is as follows:

RQ How do nonverbal aspects of a humanoid robot’s behaviour (i.e., different types of
gaze and arm movements) influence the way human teachers perceive a trainee robot
in terms of confidence, calmness, proficiency in the task, attention, eagerness to learn,
being goal-driven, and liking the task?

Informed by the the background literature surveyed in Section 2.2, we hypothesize that:

H1 When the robot always looks at the manipulated objects (i.e., follows its moving
hand), teachers will perceive it as being more attentive to the task.

H2 It will also appear to like the task more in the previous case.

H3 If the robot never looks at the task and stares only towards the teacher, it will appear
more proficient.

H4 If the robot does not look at the task at all and stares only towards the teacher, it
will appear more attentive to the teacher.
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H5 By looking mostly at the actions and also checking the teacher occasionally, the robot
will appear to be more goal-driven (intentional), suggested by [59].

H6 The previous robot will appear to be more willing to learn as well.

H7 We expect a robot performing the actions faster to convey signs of proficiency.

H8 We expect a robot performing the actions faster to convey signs of confidence.

H9 We expect a robot performing the actions faster to convey also nervousness, as [70]
suggested.

H10 Performing the actions slowly will convey the impression of attention to the task.

H11 In the present study, it is likely that including hesitations (i.e., having long pauses
with low frequency) would convey signs of uncertainty, as discussed by [79].

H12 Jerky movements (i.e., including short delays with high frequency) would cause the
robot to appear more nervous.

H13 Regarding the effect of time passed since training (i.e., the priming factor), we can
anticipate teachers’ ratings in terms of some attributes such as perceived confidence
and calmness to be higher when the robot has learned the task longer ago in the
past, compared to a robot that is practising it for the first time. However, study of a
priming factor in our experiment is widely exploratory in nature, rather than testing
a previously identified hypothesis.

3.2 Methodology

To address the research question outlined above, an online experiment (Experiment 1) was
conducted on Amazon Mechanical Turk (MTurk) crowdsourcing platform1 in which we
systematically varied a set of nonverbal factors in the behaviour of a virtual humanoid robot
while it was performing an organizing (object manipulation) task with a fixed trajectory:
the robot put several objects inside a box located on a desk, and then slid the box to the
centre of the desk.

The experiment employed a 2×3×4 mixed factorial design, where we manipulated three
factors (i.e., priming based on time, robot’s gaze, and robot’s arm movements) and showed

1https://www.mturk.com
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different videos of the robot practising the task to the participants. The first factor, priming
regarding the time passed since teaching occurred, was a between-participants factor and
the other two were within-participants. Robot’s gaze had three levels of Looking only at
the teacher, Looking only at the task, and Combined. There were also four conditions of
arm movement: Low-speed Smooth, High-speed Smooth, Hesitant, and Jerky.

We showed a total of 12 videos including all forms of gaze and arm movements in
randomized order to two groups of participants. The participants received different priming
information about the amount of time passed since teaching, provided in the form of text
in the instructions. After watching each video, the participants were asked to rate how
they perceived different aspects of the robot, which will be discussed in the experimental
procedure section. Figure 3.1 shows snapshot images of the robot performing the task.

Figure 3.1: The virtual humanoid robot in the Gazebo simulation environment. The robot
is standing behind a table and tries to carry out the task of putting two objects inside a
box and then sliding it to the middle of the table, with different gaze and arm movements
conditions. Snapshots from three separate videos of performing the actions with different
gaze states are shown: (A) Picking the first object while gazing at the task entirely, (B)
Moving the second object to the box with a gaze fixed at the teacher (participant), (C)
Sliding the box while establishing a quick and temporary mutual gaze with the teacher.
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The chosen factors were derived from the literature and were found suitable for the
specific scenario we focused on. For instance, varying the speed and smoothness of the
motions was motivated by the work of [43], as described in Section 2.2.1.

The manipulated behavioural parameters of the robot (i.e, eye gaze and arms move-
ments) fell into the categories of kinesic and chronemic under different modalities of non-
verbal communication [106]. Proxemics and haptics were not considered in our learning
scenario (e.g., the robot did not move closer to the teacher) since parameters such as
distance may not be modifiable by the robot in such cases of task practice. Also, body
movements other than those relevant for implementing the study (e.g., idle movements or
affective facial expressions of the robot) were not manipulated in order to focus specifically
on the interpretation of the robot’s “physical actions” that were experimentally manipu-
lated, and to avoid possible confounds.

3.3 Experiment 1

3.3.1 Robotic Implementation

We used a virtual iCub 2 humanoid robot in a Gazebo simulation environment (See Fig-
ure 3.1) 3. iCub is a humanoid platform suitable for research in embodied cognition, and
for experiments in HRI and robot learning in particular [78]. iCub is capable of performing
the desired task by taking advantage of various Degrees of Freedom (DOFs) embedded in
its upper body, along with the sophisticated hands’ design. Each hand of iCub has 9 DOFs
with the ability to move thumb, index, and middle fingers independently. The two other
fingers move as a single degree of freedom for stability. The simulated iCub operates very
similarly to the real robot, using the YARP middleware [76].

As stated before, the designed task for the iCub to present in front of the teachers
was identical in all the variations of the videos. The task was to organize a desk. The
robot always stood behind a desk and first put two small spherical cylinders inside an open
box, one by one, and then slid the box to the centre of the desk. We made necessary
modifications to some physical properties of the objects in the simulated environment to
make the robot capable of safely picking up and moving the objects, without dropping
them. Also, we set all the colours to more washed-out blends within the same tone, to
avoid the pop-out effect [73] (i.e., directing participants’ attention to particular areas).

2Visit https://icub.iit.it for technical description.
3Available at: https://github.com/robotology/icub-gazebo

21

https://icub.iit.it
https://github.com/robotology/icub-gazebo


Two scripts written in C++ and running on the YARP were developed to control
iCub’s arm movements and gaze behaviour. Within the first script 4, we defined some way
points to generate fixed-trajectory task actions on objects of the environment, with the
capability of varying the speed and the type of pauses to reach the desired levels of the arm
movement factor. In our simulations, High-speed Smooth, without any pauses, were 2.5×
faster than Low-speed Smooth, for their difference to be easily noticeable by the viewers.
Hesitant motions were implemented by adding long, low frequency delays, with a duration
from 1 to 3 seconds, amid the defined way points on a random basis. Jerky movements
were also achieved by dividing the moving paths into multiple parts and adding short, high
frequency (0.2-second) delays between each part.

The second script 5 actively controlled the gaze behaviour of iCub through adjusting its
head and eyes positions. In order for the robot to follow its hands in the gaze mode that
required looking only at the task, we incorporated forward kinematics. The final target
positions were transferred to a spherical coordinate system positioned at its neck. This
required a shift in the z component of the position by about 50cm first, and then calculating
θ and φ angles. The position of neck yaw was set continuously according to the calculated
φ angle to make the vertical gaze adjustments. To have a more life-like gaze behaviour,
we incorporated adjustments in both neck pitch and eyes tilt DOFs to achieve the target
position horizontally in θ angle. We set a limit of ±20◦ for the neck pitch and the rest of
θ was set for the eyes tilt. In the looking only at the teacher gaze condition, the attention
target of the robot was fixed to the camera (viewer). In the combined gaze mode, while
mostly looking at the task-related objects, the robot looked at the camera at some random
moments and maintained this mutual gaze for 1 second. Then, it rapidly shifted its gaze
back to the task.

3.3.2 Procedure and Measures

The participants followed three steps in our designed online HTML interface, after read-
ing the information letter and providing consent as shown in Figure B.1 (Appendix B).
Figure 3.2 summarizes these steps.

Step 1 - Demographics questionnaire: First, a demographic information form
including questions about age, gender, level of education, and cultural background was
completed by each participant (Figure B.2). They had the choice to skip any of these

4Based on tutorial arm joint impedance.cpp available at: https://github.com/robotology/

icub-tutorials
5Using iKin library: https://github.com/robotology/icub-main
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Figure 3.2: Overview of the experimental procedure adopted in Experiment 1.

questions. For gender and cultural background questions, text entries were provided to
allow freely submitting different answers.

Step 2 - Robot teaching familiarization: We included a robot teaching familiar-
ization section in two stages, mainly to illustrate how people can teach real robots, and
how robots will perform the learned actions afterwards. In the first stage (demonstrated
in Figure B.3), we showed two videos with a brief explanation about intelligent robots
that are able to acquire new skills (pushing/pulling objects and cleaning a table) when
someone grabs their arms and demonstrates how they may perform the task [66, 3]. This
was to support the written instructions in the evaluation step to better convey some sense
of teaching.

The second stage of robot teaching familiarization was to present the participants with
some ideas on what they will experience in this study, again through a video and some texts
(Figure B.4). This video was created by merging short sections showing our simulated iCub
robot doing the designed task with different cases of behaviours and from various points
of view. This enabled participants to explore the simulated world to become more familiar
with it, with the goal of reducing the novelty effect. In addition, including different types
of robot behaviours in a single video indicated to the participants that there could be
variations in the performance of the robot. Finally, by seeing what the robot is going to
perform, we hoped that participants could understand the context more easily. This step
was similar for all the participants.

Step 3 - Robot evaluation task: After the robot teaching familiarization step, and
depending on the priming group each participant was randomly assigned to, instructions
appeared. We told both groups “assume yourself in the situation of being a teacher for
a robot”, similar to what they watched earlier. Participants in group 1 were further
asked to “assume you have just taught iCub how to organize a desk in the way you saw
earlier. Now, we will show you some videos of the step immediately after you have given
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your instructions, when the robot is practising the task in front of you for the first time”.
Whereas, participants in group 2 were told “assume you have previously taught iCub how
to organize a desk in the way you saw earlier. Now, teaching has been completed and we
will show you some videos of the robot executing the task two days later, to help you”. This
page is shown in Figure B.5.

After reading the instruction, there were a total of 12 consecutive videos showing the
robot performing the same task with various combinations of gaze and arm movement
conditions, as they were both within-participants factors and all the participants were
exposed to all the possible combinations. The videos were shown to people in a random
order to reduce the order effect. After each video was finished, a list of nine continuous
sliders appeared (see [112, 74, 41] for advantages of using continuous scales), to present
the questionnaire. Order of questions were counterbalanced. Participants were also given
the option of watching the video again. Figure B.6 shows an example image from what
participants experienced in this step, while seeing any of the videos.

In the questionnaire, Table 3.1, eight sliders were used for the rating of each dependant
measure and one for an attention check question. Although several standard questionnaires
exist for HRI studies, for our particular domain in which a robot is presenting physical
actions to a teacher, and for the specific role of the robot as a student, the list in Table 3.1
appeared to be relevant and efficient. Some of these items were adapted from previous
related studies [59, 70, 64, 79], as well as by looking at the Big Five personality traits
questionnaire [8]. These measures were used to explore how the perception of a student
robot beyond its teachability may be affected by the robot’s nonverbal behaviour.

We added attention checks in the questionnaire. The attention checks were selected
randomly from a set of questions listed in Table 3.2. Each question was used in two videos.
These were either one of the original questions repeated with a different wording (type 1,
for consistency check), or new questions with obvious answers (type 2, for attention check).
The directions of each label on the sides of sliders were randomly swapped. However, for
type 1 attention checks, the labels in the pair of the original question and the repeated one
were always in the opposite direction.

Note that all the videos embedded within this online interface were set to automatically
pause in case anyone switched to another window (indicating that they were not paying
attention).

After viewing and completing the rating of the 12 videos, an end page including a
unique code for submitting the task was shown to the participants (see Figure B.7)
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Table 3.1: List of dependant measures. The questionnaire shown in this table appeared
with a random order of the items each time after a different video was played. The
directions of the continuous scales were also inverted randomly. The attention check item
was randomly selected from those mentioned in Table 3.2.

How do you rate the behaviours of the robot?
1 Very confident ... Not confident at all
2 Relaxed ... Nervous
3 Likes the task ... Does not like the task
4 Very attentive to the task ... Not attentive to the task at all
5 Very proficient ... Not proficient at all
6 Eager to learn ... Unwilling to learn
7 Goal-driven ... Random
8 Very attentive to the teacher ... Not attentive to the teacher at all
9 (Attention check)

3.3.3 Participants

A total of 197 participants completed the experiment on MTurk. To acquire more reliable
responses, we limited the availability of our task only to people with greater than 97%
approval rate, who had been approved in at least 100 tasks before. Besides, we made the
study visible only to those in Canada and US, as the participants needed to understand
English. Participants were rewarded 2 USD for spending 25-30 minutes completing the
study. Three participants did not fully complete the study and their data was omitted.
The study received full ethics clearance from the University of Waterloo’s Research Ethics
Committee (See Appendix A, #42177).

After collecting all the answers, we discarded the data collected from the participants
who failed at least 3 of the 12 attention checks. This left 167 participants. 83 participants
(51 men, 32 women, Minage = 21,Maxage = 68,Mage = 37.39, SDage = 11.09) were
randomly assigned to group 1, and the other 84 participants (48 men, 36 women, Minage =
18,Maxage = 65,Mage = 36.31, SDage = 10.03) were assigned to group 2.
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Table 3.2: List of attention check scales. Each of the mentioned choices were selected
randomly for two videos.

Type 1:
Very self-assured ... Not self-assured at all
Similar to (Very confident / Not confident at all) question.
Calm ... Anxious
Similar to (Relaxed /Nervous) question.
Very skillful ... Not skillful at all
Similar to (Very proficient/Not proficient at all) question.
Type 2:
Does the task successfully ... Drops the objects several times
Animated ... Immobile
Moves the box ... Does not move the box

3.3.4 Statistical Analysis

For all the eight dependent measures, we used Linear Mixed-effects Model (LMM) to check
if significant effects of the manipulated factors exist [10], while taking possible confounding
factors into account. The independent variables were the two factors of gaze and arm
movements with repeated measures (within-participants factors) in addition to the group
that the participants were assigned to, as a between-participants factor. In all, a random
effect was fit based on participant, along with the three aforementioned fixed effects. We
also controlled for gender, age, educational level, and duration of the videos. Any of these
factors were kept in the final models if they improved model fit based on the Akaike’s
Information Criterion (AIC) criterion [18]. Furthermore, to ensure that randomizing the
order of videos worked well in reducing the order effect, we also included the order in
which the videos were seen (log-transferred due to the nonlinear nature of learning effect)
in the models. Except for two metrics of the robot’s eagerness to learn and attention to
the task, the order in which the videos were played had no significant effect on the ratings.
The p-values for assessing significance were adjusted using the Holm-Bonferroni method
to account for multiple hypotheses and avoid Type 1 error.
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3.3.5 Results

While conducting the statistical analysis using Linear Mixed-effect Models, we detected
no main effect of priming (i.e., the contextual clues based on time passed since teaching
occurred) on any of the eight measures. Among all the models, this factor only improved the
model fit for the model related to the perception of the robot being goal-driven. Although
including this factor improved the model, its effect was not significant (se = 27.037, t =
−1.848, p = .066). Thus, we pooled the data from these two priming groups.

The remainder of this section describes the findings related to each criterion, based on
the answers of 167 participants. The statistical modelling results for all the measures are
shown in Table 3.3 and 3.4. The estimates referred to in these tables are compared to
the defined baseline levels: (a) combined gaze and (b) low-speed smooth arm movements.
Empty cells for certain factors mean that they were not included in the model (i.e., the
best LMM that was found for predicting that measure).

Perceived Confidence of the Robot. Figure 3.3,(A) shows average ratings of partic-
ipants’ perception of the robot’s confidence. The only factor that was detected to signif-
icantly affect this measure was the arm movements. Confidence was rated significantly
higher for high-speed smooth movements compared to low-speed smooth movements (se =
12.39, t = 10.335, p < .001). This showed that fast motions conveyed a sign of confidence.
On the other hand, including hesitations and jerkiness decreased the average confidence
score of the robot (se = 12.39, t = −10.328, p < .001 and se = 12.39, t = −9.091, p < .001,
respectively). We did not find any significant difference between the effects of hesitation
and jerkiness on the robot’s perceived confidence (se = 12.39, t = −1.237, p = .219).

Perceived Calmness of the Robot. In this measure, similarly, significant differences
between the low-speed smooth arm movements and the other conditions of arm movements
(i.e., high-speed smooth, hesitant, and jerky) were observed. While increasing the speed led
to the robot to appear more relaxed to the participants (se = 13.08, t = 8.979, p < .001),
introducing hesitations and jerky motions reduced the perceived calmness (se = 13.08, t =
−11.237, p < .001 and se = 13.08, t = −13.635, p < .001, respectively), as Figure 3.3,(B)
illustrates. The difference between the hesitant and jerky levels was significant (se =
13.08, t = 2.398, p < .05) with jerkiness in the motions contributing the most in conveying
the impression of being nervous. However, the robot was perceived the most relaxed with
high-speed movements.

27



T
ab

le
3.

3:
L

in
ea

r
M

ix
ed

-e
ff

ec
ts

M
o
d
el

s
p
re

d
ic

ti
n
g

th
e

ro
b

ot
’s

at
tr

ib
u
te

s.
B

es
id

es
tw

o
fa

ct
or

s
of

ga
ze

an
d

ar
m

m
ov

em
en

ts
,

ge
n
d
er

,
ag

e,
ed

u
ca

ti
on

al
le

ve
l,

or
d
er

,
an

d
v
id

eo
d
u
ra

ti
on

w
er

e
en

te
re

d
an

d
ke

p
t

in
ca

se
th

ey
im

p
ro

ve
d

A
IC

in
so

m
e

ca
se

s.
B

la
n
k

ce
ll
s

m
ea

n
th

at
th

e
fa

ct
or

w
as

n
ot

in
cl

u
d
ed

in
th

e
m

o
d
el

.
A

ra
n
d
om

eff
ec

t
w

as
fi
t

b
as

ed
on

p
ar

ti
ci

p
an

t.

C
o
v
a
ri

a
te

C
o
n

fi
d

e
n

c
e

C
a
lm

n
e
ss

L
ik

in
g

th
e

ta
sk

A
tt

e
n
ti

o
n

to
th

e
ta

sk
E

st
im

a
te

S
E

t
E

st
im

at
e

S
E

t
E

st
im

at
e

S
E

t
E

st
im

at
e

S
E

t

G
a
z
e

C
o
m

b
in

ed
b

G
a
ze

a
t

T
ea

ch
er

-2
.0

2
10

.7
3

-0
.1

8
8

-3
.2

8
11

.3
3

-0
.2

90
-5

3.
65

8.
60

-6
.2

36
**

*
-1

25
.7

4
10

.1
6

-1
2.

37
4

**
*

G
a
ze

a
t

T
as

k
16

.2
8

10
.7

3
1.

51
7

29
.0

5
11

.3
3

2.
56

0
*

3.
11

8.
60

0.
36

1
23

.3
6

10
.1

6
2.

29
8

*

A
rm

m
o
v
e
m

e
n
ts

L
S

S
m

o
o
th

b

H
S

S
m

o
o
th

1
28

.0
7

12
.3

9
10

.3
35

**
*

11
7.

42
13

.0
8

8.
97

9
**

*
59

.4
9

9.
93

5.
98

9
**

*
41

.7
1

11
.7

3
3.

55
5

**
*

H
es

it
a
n
t

-1
27

.9
8

1
2.

39
-1

0
.3

28
**

*
-1

46
.9

6
13

.0
8

-1
1.

23
7

**
*

-7
2.

91
9.

93
-7

.3
40

**
*

-4
1.

85
11

.7
3

-3
.5

66
**

*
J
er

k
y

-1
12

.6
6

12
.3

9
-9

.0
9
1

**
*

-1
78

.3
2

13
.0

8
-1

3.
63

5
**

*
-6

8.
05

9.
93

-6
.8

51
**

*
-2

0.
55

11
.7

3
-1

.7
51

A
g
e

1
.7

1
1
.0

7
1.

59
4

2.
64

1.
05

2.
51

4
*

1.
98

0.
92

2.
16

5
*

O
rd

e
r

-2
9.

77
5.

74
-5

.1
87

**
*

*
=

si
g
n

ifi
ca

n
t

a
t
p
<

0
.0

5
;

*
*
*

=
si

g
n

ifi
ca

n
t

a
t
p
<

0
.0

0
1
;
b

=
b

a
se

li
n

e
le

v
el

L
S

S
m

o
o
th

=
L

o
w

-s
p

ee
d

S
m

o
o
th

;
H

S
S

m
o
o
th

=
H

ig
h

-s
p

ee
d

S
m

o
o
th

28



In terms of different gaze behaviours, by looking only at the task, the robot was per-
ceived significantly more relaxed than cases with the combined gaze (se = 11.33, t =
2.560, p < .05) and also significantly more relaxed than when the robot was gazing only at
the teacher (se = 11.33, t = −2.855, p < .05). Additionally, we detected a significant effect
of participant age on this perception (se = 1.05, t = 2.514, p < .05): as age increased, the
robot was perceived to be more relaxed.

Robot’s Perceived Liking the Task. We found significant main effects of gaze and arm
movements, according to the LMM used for predicting this measure. The robot looking
only at the teacher appeared to like the task less than a robot with a combined gaze
(se = 8.60, t = −6.236, p < .001). However, there was no significant difference between the
combined mode and the robot only looking at the workspace (se = 8.60, t = −0.361, p =
.718). Additionally, similar to the perceived confidence, the robot was perceived to like
the task significantly more when it showed high-speed smooth movements, as compared to
having low-speed smooth movements (se = 9.93, t = 5.989, p < .001), while hesitant (se =
9.93, t = −7.340, p < .001) and jerky (se = 9.93, t = −6.851, p < .001) movements reduced
the ratings without any detectable difference between them (se = 9.93, t = −0.489, p =
.625). Figure 3.3,(C) shows the discussed trends.

Perceived Robot’s Attention to the Task. According to the LMM fit on the data,
there is a significant effect of gaze on this attribute. When the robot was looking only
at the teacher, the attentiveness to the task significantly dropped compared to looking at
both the teacher and the task (se = 10.16, t = −12.374, p < .001). The highest average
score in this measure was for the gaze at the task condition when the robot’s attention was
rated significantly higher compared to both combined gaze (se = 10.16, t = 2.298, p < .05)
and gazing only at the teacher (se = 10.16, t = −12.374, p < .001). Figure 3.3,(G) shows
these differences.

Arm movements also had a significant effect on this measure; with high-speed smooth
motions, the robot was perceived significantly more attentive to the task, compared to the
low-speed smooth movements (se = 11.73, t = 3.555, p < .001). In the hesitant mode,
the robot was perceived significantly less attentive to the task than in the low speed
mode (se = 11.73, t = −3.566, p < .001). The age of the participants was another factor
that significantly affected this rating (se = 0.92, t = 2.165, p < .05). As participants’
age increased, the robot was rated to be more attentive to the task. Interestingly, here
we detected a significant order effect in the ratings (se = 5.74, t = −5.187, p < .001),
suggesting that as people proceeded with the study and watched more videos, they rated
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the robot as less attentive to the task.

Perceived Proficiency of the Robot. Figure 3.3,(D) shows participants’ average rat-
ings of the robot’s perceived proficiency. A significant effect of arm movements was iden-
tified. High-speed smooth motions improved this measure significantly in comparison to
low-speed smooth motions (se = 10.69, t = 8.423, p < .001). Having hesitant or jerky
movements led to a significantly lower perception of the robot’s proficiency (se = 10.69, t =
−9.930, p < .001 and se = 10.69, t = −7.098, p < .001, respectively). In contrast to the
perceived calmness, having hesitant movements led to the lowest proficiency ratings, which
rated significantly lower than the jerky motions condition (se = 10.69, t = −2.711, p < .01).
Perceived proficiency also increased significantly with participants’ age (se = 1.01, t =
2.098, p < .05).

Robot’s Perceived Eagerness to Learn. When the robot only gazed at the teacher,
the perceived eagerness to learn dropped significantly compared to the combined mode
(se = 8.15, t = −7.405, p < .001). It is also shown in Figure 3.3,(E) that the green points
denoting average participants’ perceptions of eagerness to learn for always at the teacher
gaze lay below the nearby red ones that show this average related to the combined gaze.
Looking only at the task also led to a rating of eagerness to learn that was lower than
in the combined mode, but the difference was only close to being statistically significant
(se = 8.15, t = −1.792, p = .073).

It also turned out that when the robot performed the motions with hesitation or jerk-
iness, it appeared significantly less eager to learn in comparison to performing the action
slowly but smoothly (se = 9.41, t = −3.832, p < .001 and se = 9.41, t = −3.395, p < .001,
respectively), with no statistically significant difference between hesitant and jerky move-
ment conditions (se = 9.41, t = −0.437, p = .662). On the other hand, shifting to faster
motions significantly improved the perception of being eager to learn (se = 9.41, t =
5.108, p < .001). Here, again, a significant effect of order was observed (se = −4.60, t =
−2.290, p < .001), such that participants rated the robot less eager to learn when they
watched the videos later in the experiment.

Robot Perceived as Goal-Driven. The results for this measure are presented in Fig-
ure 3.3,(F). The hesitant and jerky actions significantly reduced the score (se = 9.32, t =
−5.736, p < .001, and se = 9.32, t = −4.118, p < .001, respectively). Faster motions
significantly improved the score (se = 9.32, t = 4.960, p < .001) compared to the low-
speed movements. No significant difference was observed between the hesitant and jerky
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Figure 3.3: Averages of participants’ perceptions of the robot’s attributes. Error bars
represent 95% confidence intervals and the results are pooled regardless of the priming
condition. The dashed lines indicate the neutral choice at 500. * = significant at p < 0.05;
** = significant at p < 0.01; *** = significant at p < 0.001, across two groups.
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movements (se = 9.32, t = −1.618, p = .106). Also, gazing only at the teacher led
to a significantly lower rating for being goal-driven as compared to the combined mode
(se = 8.07, t = −3.544, p < .001).

Perceived Robot’s Attention to the Teacher. As can be also seen in Figure 3.3,(H),
the LMM suggested that the type of gaze was a determining factor for this measure.
The robot looking only at the teacher led to the highest attention to the teacher score
(se = 14.29, t = 4.469, p < .001, compared to the combined mode). Looking only at the
task was perceived the lowest in terms of attention to the teacher, with a notable difference
compared to the combined mode (se = 17.32, t = −6.090, p < .001). In this measure, a
trend, approaching significance, was observed regarding an effect of the video duration
(se = 17.50, t = −1.898, p = .058): as the length of the videos increased, people seemed to
have perceived the robot to be more attentive to the teacher.

3.3.6 Discussion

The goal of this research was to study how variations in nonverbal behaviours of a trainee
robot influence human teachers’ perception of it. We showed that gaze patterns along
with the speed, smoothness, and pauses in the robot’s arm movements can in fact affect
humans’ perception of the robot. Table 3.5 summarizes our hypotheses and findings as
will be discussed in the following.

Shaping human teachers’ perceptions

In general, people often successfully evaluate someone’s attention by their gaze direction,
and this has been generalized to HRI previously [1]. Thus, it is not surprising that the
robot in our study appeared to be more attentive to the task or to the teacher when it was
exclusively looking at one of them, which confirmed H1 and H4. However, the effects of
gaze on other measures, such as calmness, liking the task, eagerness to learn, and being
goal-driven are not as intuitive. While we hypothesized that the robot would appear to
like the task more when looking only at the task (H2), we only found that looking entirely
at the teacher can negatively affect this perception. Thus, we are unable to fully confirm
H2 as no statistically significant difference between combined gaze and gazing only at the
task was observed. Furthermore, we did not find an effect of gaze on perceptions of robot’s
proficiency (neither confirmed nor rejected H3). Also we did not find any statistically
significant difference between the combined gaze and gazing only at the task on perceiving
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Table 3.5: Summary of hypotheses and their degree of support

Impact of different types of eye gaze:

When the robot always looks at the manipulated objects, ...
H1 teachers will perceive it as being more attentive to the task. Supported
H2 it will also appear to like the task more. Not supported

If the robot never looks at the task and stares only towards the teacher, ...
H3 it will appear more proficient. Not supported
H4 it will appear more attentive to the teacher. Supported

By looking mostly at the actions and checking the teacher occasionally, ...
H5 the robot will appear to be more goal-driven. Not supported
H6 the robot will appear to be more eager to learn. Supported

Impact of different types of arm movements:

A robot performing the actions faster conveys signs of ...
H7 proficiency. Supported
H8 confidence. Supported
H9 nervousness. Rejected

H10 Performing the actions slowly will convey the impression of attention to the task. Rejected
H11 Including hesitations would convey signs of uncertainty. Supported
H12 Jerky movements would cause the robot to appear more nervous. Supported

Impact of priming about time passed since teaching:

H13
Ratings of some attributes would be higher when the robot has
learned the task longer ago in the past.

Not supported

the robot as eager to learn, while we hypothesized that combined gaze would contribute
to improving this perception (H5).

According to our results, for a robot to appear to be eager to learn, the most effective
gaze control strategy is to actively look at both the task and the teacher (confirmed H6).
Still, in the absence of a movable neck or eye, a robotic student which is fixed at the task
might be preferred, as it would appear to be more goal-oriented and enthusiastic about the
taught material, as compared to when it is positioned to look at the teacher. Therefore,
the gaze behaviour needs to be manipulated according to the capabilities of the robot, as
well as the particular behaviour that is the most preferred for the robot in a specific task.

We found that aspects of arm movements could systematically affect perception of mul-
tiple aspects of the robot (i.e., confidence, calmness, liking the task, attention, proficiency,
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eagerness to learn, and being goal-driven). Based on our results, it seems that if a robot
simply increases the speed of accomplishing its task, teachers would perceive it as more
proficient (confirming H7), confident (confirming H8), goal-driven, enthusiastic to learn
new things, and even more relaxed and attentive to the task. The last two were contrary to
H9 and H10, respectively, as we hypothesized that higher speeds in the movements would
convey a sign of nervousness and lower speeds would convey the perception of attention to
the task and being ‘careful’. These can be explained given the fact that people who are ex-
perts in routine tasks (after practising repeatedly) usually achieve high efficiency in terms
of completion time and experience less mental load while doing their actions. However,
depending on the type of the task, experts may do some actions slowly to be more careful
and precise, e.g., when threading a needle or manipulating fragile objects. An effect in line
with H9 was seen in the work of [70], but the type of the robot they used was an industrial
arm that is different in context from our study with a humanoid. We expect that if we
repeat our study with different objects (e.g., a fragile object) or using another type of task
(e.g., washing dishes), we may get different outcomes in terms of which speed can make
the robot appear more relaxed and attentive to the task.

On the other hand, when the robot included short or long pauses during its actions, it
received lower scores in terms of all the above-mentioned attributes. Both jerkiness and
hesitation in motions could successfully convey signs of uncertainty to the teachers (con-
firmed H11). With jerky motions, the robot was perceived to be more nervous (confirming
H12) and less skilled, the effect of which was stronger than when the movements were hes-
itant. All these findings emphasize the importance of paying attention to the details in
generating robots’ motions.

According to H13, we expected to see some differences in the perceptions of participants
between two groups. However, the manipulated priming conditions led to no statistically
significant differences in any of the robot’s attributes. This could be because the provided
contextual cues were not strong enough for effectively influencing participants’ perceptions
of the robot. While in the work of [39] people were actually training the robot in multiple
sessions, we only used written instructions and asked people to ‘envisage’ themselves in
the situation of having previously taught the robot. As a matter of fact, in both groups,
participants encountered the iCub executing the task for the first time, regardless of the
priming condition. In real-world interaction, the effect of time passed from giving the
instructions would be actually experienced, and therefore, its effect may become more
noticeable. To further explore this, in an in-person experiment, participants of one group
may come to the lab again a few days after teaching the robot in the first session, to
watch it performing the actions and reflect on the robot’s behaviours. However, it is still
possible that human teachers for the robots really hold a constant mental perception of
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their trainees, even after some time has passed. If this is true, we cannot expect to see any
differences between the two groups in future studies. Furthermore, participants on MTurk
might not have paid enough attention to the provided priming instruction, which is less
likely due to our data omission process based on multiple attention checks. Future study
is indeed required to examine the impact of time passed after the initial training on the
teachers’ perceptions of robot learners.

Another interesting effect that we observed was the effect of the video orders, which
affected the perception of robot’s attention to the task and its eagerness to learn. As
previously mentioned, both ratings decreased as participants watched more videos. One
explanation could be that it was due to the fatigue resulting from watching the robot
practising the same task repeatedly. Also, while we found a strong effect of order on the
perceived attention to the task, we did not find an order effect on the perceived attention
to the teacher. Studies have shown that observing direct and averted gaze cues stimulate
different neural responses [54, 35]. Human infants exhibit enhanced neural processing
of direct gaze from birth, e.g., they look longer at the direct gaze than at the averted
gaze [37]. Thus, we may consider the direct gaze at the teacher (camera, or in other
words, participants) to be a more salient cue than averted gaze to manipulated objects
(task) for noticing the attention target of the robot, even after the participants may get
tired. People seemed to have perceived the robot as more attentive to the teacher as the
length of videos increased, however, this was only approaching significance. This can be
also explained similarly: if we assume that the straight gaze to the viewer is a very strong
signal, it is reasonable to expect that teachers would be more successful in recognizing
that the robot is looking at them when the exposure is longer, regardless of whether the
robot’s attention to them is actually increasing or not. In addition, the order effect on the
perceived eagerness to learn could be because as people were watching the robot practising
the task frequently while they were unable to provide any input (to actually teach it), they
might have been discouraged by the robot’s teachability. Therefore, in the absence of real
teaching interactions, the participants gradually evaluated the robot as less eager to learn.

Furthermore, we noticed that the perceived calmness, proficiency, and attention to the
task were affected by participants’ age and were rated higher as age increased (see Figure 3.4
for the age distribution of all the participants in our study). This might be because younger
adults are more frequently exposed to new technologies, and accordingly, they might have
had higher expectations of the robot’s skills. Younger individuals may also have higher
expectations of robots’ cognitive abilities as they are more familiar with virtual characters
with sophisticated capabilities that exist in movies and computer games. This effect has
also been seen in similar works in which people evaluated empathy, trustworthiness [57]
and human-likeness [42] of virtual assistants. It has been shown that older adults have
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Figure 3.4: Histogram of the age of participants. This includes all the 167 people whose
answers to the questionnaires were analyzed. The bin width is 4 years.

a higher preference for having robots in their household, as a result of their home-based
lifestyle and other difficulties [17].

Interaction design implications

Our findings have implications for designers who want teachable humanoid robots to dis-
play specific behaviours and act in a manner that can be properly understood by human
teachers. As an example, if a robot wanted to motivate the teacher to move forward with
teaching more material, i.e., by appearing to be as more eager to learn, one effective be-
havioural strategy for the robot would be gazing mainly at the task objects and checking
the teacher occasionally while acting fast and with smooth motions. Otherwise, with using
a different behavioural strategy, a robot could appear to be less eager to learn, e.g. for cases
when it has more important tasks to do other than staying and being trained, or when its
battery is low. In another circumstance, if a robot needed to appear less confident, to en-
courage the teacher to provide more informative instructions, our results strongly suggest
that either short or long pauses in the robot’s movements would help.

Table 3.6 summarizes all the major findings of this work as a predictive model that
could potentially inform such design. The table specifies to what extent changes in the
nonverbal behaviours of the robot, participants age, and the number of times that the
scenario has occurred (order effect) affected the perceptions of the robot when the robot
was practising the task. This table, if empty cells were replaced by zeros, would constitute
a 9 × 8 matrix that can be multiplied from the left by a 9-D row vector containing the
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differences in design characteristics, to produce an 8-D vector predicting the differences in
each attribute. The 9-D row vector represents changes in the gaze and arm movements
with zeros and ones, and the amount of differences in age and order (interaction number).
Nevertheless, there are still some empty cells for which the current study cannot provide any
design recommendation (e.g., gaze manipulation to affect perceived confidence). Studying
these and testing the predictions of the resulting model could be a possible next step.

3.4 Limitations and Future Work

In this experiment, neither the human participants were teaching the robot, nor the robot
was showing signs of learning. As we had multiple conditions (12), including a teaching
phase before each case would have resulted in a very long experiment which could have
increased fatigue. Further, since we aimed to keep all other aspects of the scenarios the
same across the 12 videos to specifically investigate the effects of differences in gaze and
arm movements, we could not introduce training before each step (otherwise the robot had
to act according to the training and its behaviour might have been different across videos).
For the same reason, we were not able to make the robot exhibit signs of learning over
time.

A real teacher-student interaction with a robot would be richer in terms of both input
and output modalities available for the teachers to understand the robots. To give an
example, jerky motions in a real humanoid robot may cause its entire body to noticeably
shake. Pauses also may be followed by a silence in the noises from the robot’s actuators.
Moreover, in the case of robots with physical 3D eyes such as the iCub, their gaze direction
might be inferred by the viewers more easily in a real-world situation, i.e., with a physical
robot embodiment. Thus, gaze cues might be more salient in face to face HRI experiments.
Still, in our experiment, the control of the gaze behaviour of the robot was less subject to
errors as compared to in-person studies, since the teacher was observing the robot through
a fixed camera perspective while in a real scenario, the robot would be required to track
the teacher in real-time to establish a mutual gaze.

Also, in a real situation, different priming conditions can be implemented not only
using written cues, as in our study, but also using more tangible sources of information,
e.g., auditory cues describing the robot’s experience with the task, different appearances
of the robot, direct experience of the actual time passed from the teaching phase, etc.

Given those outlined limitations of this study and the expected differences between
virtual and real HRI conditions, some aspects can be further investigated by repeating the
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same study with a real robot, using different tasks, or even using another humanoid robot.
In an in-person study, an actual teaching scenario with learning by imitation frameworks
(e.g., the one used by [66]) may be included to make the user experience of being a robot
‘teacher’ more realistic. Furthermore, the range of communicative and interactional social
cues employed by the robot can be extended, e.g., by including more complex gaze be-
haviours. Finally, the effects of participant’s age and number and duration of interactions
need to be further investigated, and also it would be interesting and important to study
why these factors only affected perception of some of the aspects of the robot.
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Chapter 4

Study 2: Effects of Robot Errors

4.1 Research Questions and Hypotheses

This study has been led by the following Research Questions (RQs):

RQ1 Can the professional look of a trainee robot (indicated by its clothing style) affect
view of the teachers about the robot and their trust?

RQ2 How do the perceptions of teachers about behaviours of a trainee robot change over
time, while it is practising a task and appears to gradually improve?

RQ3 How does the last impression of a student robot affect trust? (i.e., if a robot is
generally improving but an error happens in the end, how does that single mistake
affect teachers’ trust in the robot? Do people expect the robot to work properly
afterwards and consider the faulty behaviour as an accident?)

RQ4 Do different personalities of human teachers and their disposition to trust other
people affect their perception of and their trust in a trainee robot?

The following hypotheses can be considered, although the study is exploratory in nature:

H1 We expect people to perceive higher levels of authority from a student robot and
trust in it more when it has a professional dressing type.
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H2 The perception of liking the task, proficiency and eagerness to learn would be higher
regarding the robot that has a professional clothing style.

H3 We expect as the robot makes smaller mistakes while learning, perceptions of its
behaviours improve. The robot would be perceived as more confident, proficient and
goal-driven as it progresses in learning.

H4 People may ignore a small error after they experience the robot improving in learning
a task.

H5 A big error after the learning process may cause a great loss of trust.

H6 We expect that there will be correlations between people’s personality and their trust
in the robot.

H7 We also anticipate that there will be some relationships between people’s disposition
of trust to other humans and their trust in the robot.

4.2 Methodology

We performed two virtual experiments to study the research questions. The main part
(Experiment 3) evaluated perceptions of the participants about their learner robots, and
investigated multiple aspects of their trust. To imply a scenario close to a teaching interac-
tion, the participants could virtually teach multiple food preparation tasks to a humanoid
robot according to their own preferences, using our online framework. The behaviours of
the robot were shown gradually improving over multiple rounds of teaching and practising.
The robot made a big mistake while executing the learned task for the first time. Then, in
its second performance, it made a small error. Afterwards, the robot’s actions became com-
pletely correct, conveying that learning has been completed. The final impression of the
learning process was examined under different conditions where either perfect behaviour or
a small/big mistake occurred in the end. The design of this experiment would be explained
in detail later in Section 4.4.

However, before using erroneous actions of a robot with different severities to simulate
progress in learning, we needed to investigate what errors are perceived as small or big
in our selected task. This motivated another online study that was conducted beforehand
(Experiment 2, presented in Section 4.3), just to ask people to rate the severity of a set of
robot mistakes in our context. Based on the results of Experiment 2, we selected two small
errors and two big errors to include in Experiment 3 to satisfy its design requirement.
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Table 4.1: List of the food items and the ingredients beside each of them used for the food
preparation task

Left side Food Right side

dishwashing
liquid

lemon juice balsamic vinegar salad parmesan cheese feta cheese
skim milk whole milk tea honey sugar
cooked noodles cooked rice soup mint basil

4.2.1 Robotic Task

For this study, i.e., both Experiment 2 and 3, we used basic situations in which a robot
needs to select two ingredients from the available options to add to specific food items.
The participants would be fairly experienced with this task since it is likely part of their
daily life.

Assume a humanoid robot is standing behind a table. There are three containers on
the left side and two containers on another side of a particular food on the table (observed
through a camera from the front). To complete preparing this food, the robot should add
exactly one item from each side of the food. On the side with three containers, one item
is a cleaning product that is not supposed to be used for cooking. Therefore, for each food
item that is being prepared, there are 2× 2 = 4 possibilities to reasonably select both the
ingredients.

To produce multiple versions of this task, three different kinds of food were used: a
bowl of salad, a cup of tea, or a bowl of soup. Table 4.1 specifies the ingredients placed on
the table for each of them. The options on the same side are alternatives, e.g., they are
two kinds of cheese or sweetener.

For Experiment 2, only written descriptions of this task were used, when they were said
to be already taught to a robot. Unlike Experiment 2, Experiment 3 asked the participants
to virtually teach the robot which items to add, by selecting the items that they prefer to
have added to the food, using the online interface that will be described in Section 4.4.2.
The robot actions while executing this task could be either completely according to the
instructions or faulty. For the faulty behaviours to exhibit, we considered three potential
classes of mistakes: (a) Forgetting to add one of the selected ingredients, (b) Replacing
a selected ingredient with its adjacent one (not the cleaning product), and (c) Adding a
cleaner 1 to the food instead of a selected ingredient. Further details of these mistakes

1In this thesis, ‘cleaner’ refers to a cleaning product such as dishwashing liquid or laundry detergent.
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(e.g., which ingredient to consider) were arranged based on the results from Experiment 2,
discussed in Section 4.3.4.

4.3 Experiment 2

In a virtual experiment, we presented the participants with six situations in which they
were said to have already taught the described cooking task to their robot, but particular
errors has occurred while it was performing the task. Only written questions were used for
this experiment. Following each error, there was a scale to rate the severity of the robot
mistake. Here, instead of asking the participants to select the ingredients according to their
preference (what we did in Experiment 3), we showed them multiple situations covering
every ingredient being indicated or not, and being included as a part of every mistake. This
was to ensure that ratings were collected for all of the possible combinations. Moreover,
food preparation preferences of participants were recorded at the end, to check if individual
differences affected the perceived severity of the mistakes.

4.3.1 Procedure and Measures

The study was conducted through multiple HTML pages running on a lab server. Figure 4.1
illustrates the steps of the experiment.

Step 1 - Demographics questionnaire: After giving consent by checking a box
(Figure C.1), we asked the participants about their gender and age in the demographic
information form (Figure C.2). They were free to skip any of these two questions.

Step 2 - Mistakes evaluation: In the main part of this experiment, six situations
in which a robot had been taught to prepare food were described, following a brief written
instruction (Figure C.3). There was one question per page. To explain the design of these
questions, assume for a specific food (f), one of the ingredients on its left side (according
to Table 4.1, excluding the cleaner) and one on its right side is already selected. These
are denoted by X1 and Y1, respectively, in this thesis. This means that the robot should
add X1 and Y1, but not add X2 and Y2. The question Q(f,X1, Y1, X2, Y2) was given with
the following description when all the parameters were substituted with the names of the
ingredients. Salad is the food in this example:

“Assume you have taught your robot how you prefer it to make a salad for you. Let’s
say you instructed it to add some X1 and Y1 in addition to your favourite vegetables.
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Figure 4.1: Overview of the experimental procedure adopted in Experiment 2.

Now, your robot is practising its task. How would you rate the severity of the following
mistakes?”

The robot errors (i.e., forgetting, replacing and adding a cleaner) with both X1 and
Y1 being part of them were listed after each question. We included the following set of
errors after the question Q(f,X1, Y1, X2, Y2), when all the parameters were replaced with
the name of the items:

1. Forgetting X1: The robot forgets to add X1.

2. Forgetting Y1: The robot forgets to add Y1.

3. Replacing X1: Instead of X1, the robot adds X2.

4. Replacing Y1: Instead of Y1, the robot adds Y2.

5. Adding cleaner: Instead of X1, the robot adds dishwashing liquid.

6. Adding cleaner: Instead of Y1, the robot adds laundry detergent.

7,8. (Attention check)

After each mistake, there was a continuous scale. The participants could click anywhere
on the bar to choose from “very small mistake” to “very big mistake”. The perceived
severities were recorded in a range between 0 to 1000. In three of the questions, the
attention checks were “The robot makes a very small/big error”, so the participants should
choose the correct side of the scale. In the remaining questions, items 7 and 8 were similar
to items 1 and 3, respectively, but stated differently: “X1 is not being added” and “X2 is
being added instead of X1”. The answer to these two pairs should not be much different.
Attention checks were not placed at the first or last position of the list, even though the
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order of the items in the list was randomized. Figure C.4 shows an example question and
robot errors.

This question was repeated two times for each food item, along with the entire list of 8
mistakes. The first time preparing each food item was questioned, X1 and Y1 were randomly
indicated. In the second question related to that food, the remaining items were considered.
This way, every participant answered both Q(f,X1, Y1, X2, Y2) and Q(f,X2, Y2, X1, Y1) for
every food (a total of 36 rating tasks per participant, excluding the attention checks).

Step 3 - Post-experimental questionnaire: After finishing the rating tasks, we
asked the participants to indicate their personal food preparation preferences, by selecting
one item per side from Table 4.1 (excluding the dishwashing liquid) for each food item.
This step is shown in Figure C.5. Also, participants were asked to write any other small/big
errors that they could think of in the context (Figure C.6). A code was given to submit
the task afterwards (Figure C.7).

4.3.2 Participants

In Experiment 2, a total of 217 participants were recruited from the MTurk platform. To
increase the reliability of responses, we made the study available only for users with a higher
than 97% approval rate, who at least had completed 100 tasks before. Furthermore, only
people in Canada or the US were able to see our task, to ensure everyone will understand
the English material. All participants received 1 USD for spending around 10 minutes.
The study received full ethics clearance from the University of Waterloo Ethics Committee
(See Appendix A, #42782).

After the collected data was reviewed, we decided to consider situations when people did
not provide meaningful answers to the open-ended questions asked them to mention other
potential mistakes as an additional attention check failure, e.g., a few people answered
those questions only with “yes” or “no”. We discarded data from those who failed in at
least 2 out of 13 attention checks. The sample size became 173 after that. This means, by
dropping about 20% of the collected responses, we achieved a data pool from people who
had paid attention almost all over the study. The shorter duration of this experiment was
important in causing lower data loss compared with Experiment 1.

While 6 participants did not specify their gender, we know that 100 males and 67 females
answered our questionnaire. For the entire sample, Minage = 21,Maxage = 72,Mage =
36.75, SDage = 10.36. Figure 4.2 demonstrates the distribution of their age.
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Figure 4.2: Histogram of participants’ age in Experiment 2. Bin width is 5.

4.3.3 Results

Figure 4.3,(A) presents the average perceived severity of each class of mistake for three
kinds of food. According to the figure, for all the food items, adding cleaner was rated
significantly more severe than forgetting or replacing mistakes. One-way repeated-measures
ANOVA with Greenhouse-Geisser correction for violation of the sphericity assumption did
not reveal any statistically significant difference between adding cleaning products to each
of the three kinds of food (F (1.8, 310.8) = 2.032, p = .138). A similar plot may also be
generated by considering only errors in the questions that contained the same ingredients
as each participant preferred. That results are shown in Figure 4.3,(B). Again, adding
cleaner was a much more severe mistake than other errors for all the food items.

Regarding two other types of mistakes, we grouped the results by the indicated ingre-
dients (i.e., what was shown as X1 and Y1 in questions) and preferred ingredients (i.e.,
what each participant selected at the end of the study as their personal preference for that
food). Figure 4.4 shows the perceived severity of the forgetting and replacing errors, with
respect to the items on each side of every food.

Since in Experiment 3 we will be going to ask the participants to teach their ‘own pref-
erence’ to a robot, the indicated items in every scenario would be the ones each participant
prefers to demonstrate for the robot. Accordingly, here the situations when an ‘indicated’
ingredient was also the ‘preferred’ item are of interest. These are the right-most and the
left-most points in any of the subplots in Figure 4.4. We tested if different food preparation
preferences for choosing the ingredients affected the evaluation of the errors (e.g., did the
participants who preferred balsamic vinegar rate the severity of forgetting that ingredient
different than those who preferred lemon juice and that item was forgotten?). We aimed
to avoid situations with such significant differences in Experiment 3, to help ensure all the
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Figure 4.3: Average rated severity for each mistake in every food. 95% confidence intervals
are shown. All the responses are included in (A). Only the responses when the items
indicated in the questions matched the preferred items for each persons are included in
(B).

participants would perceive a similar level of severity in the mistakes, regardless of their
personal preferences.

With considering only those who preferred a specific ingredient over another one, every
set of severity data included answers from a unique subset of participants. Therefore, we
used independent-samples t-tests for the analyses. Note that for any ingredient in our
study, there were at least 36 people who preferred that option over the other alternative.
Since we wanted to detect undesired situations, we did not correct for multiple comparisons.
This means that the reported p-values here are under-estimated.

We found that while preparing a salad, the difference in the severity of the mistake when
balsamic vinegar or lemon juice was preferred and indicated in the question and the robot
replaced one of those showed a trend approaching significance (T (167.8) = −1.814, p =
.071). The severity of forgetting parmesan cheese for people who preferred this item was
rated significantly higher than forgetting feta cheese for those who preferred feta cheese
(T (163.5) = −2.019, p < .05). For a cup of tea, people who preferred sugar rated its
forgetting mistake significantly higher than those who had preferred honey and honey was
forgotten (T (153.0) = −2.906, p < .01). These three findings are marked on Figure 4.4.
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Figure 4.4: Perceived severity of forgetting and replacing errors, grouped by the indicated
items in the questions and the preferred ones for each individual. 95% confidence intervals
are shown. The dashed lines denote the neutral choice. . = p < .1; * = p < .05; *** =
p < .001 49



4.3.4 Discussion

Experiment 2 was done to inform the design of the main part of this study. We picked
two small mistakes and two big mistakes for Experiment 3 (the reason why ‘two’ were
needed will be explained in Section 4.4). For doing this, we used two criteria. First, the
difference between the rated severity of big mistakes and small mistakes should have been
large enough so that participants in Experiment 3 distinguish them easily by observing
the behaviours of a robot. Second, and more importantly, the rated severity of the errors
should not have been significantly affected by the individual preferences in deciding the
ingredients.

By looking at Figure 4.4,(B), we can observe that the replacing error in preparing
tea was perceived lower in severity than other cases (rated mostly on the left side of the
continuous slider, less than 500), regardless of participants’ preferences. Therefore, for
two small mistakes, we used two variations of replacing one ingredient with another while
preparing tea (i.e., replacing sugar and honey, or skim milk and whole milk). Adding
cleaner was rated as a highly severe mistake in the preparation of every food. Accordingly,
we may consider it with any two kinds of food for the robot big errors.

4.4 Experiment 3

In the main part of this study, we carried out a 2×3 virtual experiment. Every participant
interacted in the same form (in terms of the taught tasks and robots’ behaviours) with two
Pepper humanoid robots that were different only in their clothing style. Therefore, the
appearance of the robot was a within-participants factor with two variations of “tidy” and
“untidy”, as shown in Figure 4.5. We named these two robots as “Robot 1” and “Robot
2”, according to the teaching order, randomly for every participant.

Throughout the study, participants trained each of these two robots in six rounds.
Every round consisted of a teaching step, in which participants (as teachers) presented
their preference in the food preparation task to the robot, and a practising step right
afterwards, in which the robot performed the learned task in front of the teacher. This
task was described in Section 4.2.1.

As noted before, the robots were improving in their behaviours to show progress in
learning. For all the participants, the robots made a big mistake during their first practice
(round 1). Then, they made a small error when they were practising for the second time.
From the third to the fifth round, the robots exhibited no error while performing the task.
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There were three conditions in the experiment which only differed in the behaviour that
robots exhibited in the sixth round. Depending on the condition, the robots either made no
mistake, or made a small or big mistake in round 6. This “final impression of learning” was
introduced as a between-participants factor with three variations. In Group 1, participants
experienced the robots performing the task correctly. Participants in Group 2 encountered
the robots making small mistakes. Finally, in Group 3, people observed robots making big
mistakes in the final rounds. Participants were then asked to answer a few questions to
reflect on their level of trust in the robot.

This experimental design required a maximum of two errors of the same type to be
made by the robots: one big and one small errors in rounds 1 and 2, for all the conditions,
and the second small or big error depending on the experimental condition in round 6.
Therefore, we used two small and two big errors decided based on Experiment 2.

In the teaching process, all the participants taught the same order of food items to
every robot across six rounds. This was 1- salad→ 2- tea→ 3- soup→ 4- salad→ 5- soup
→ 6- tea. As the two small errors selected in Experiment 2 were related to tea preparation,
the second and the last rounds of teaching were concerning tea. We distributed the rest of
the food items in such a manner that the participants did not teach the same preparation
task twice.

4.4.1 Robotic Implementation

We used pre-recorded videos of a Pepper humanoid robot (by SoftBank robotics 2) per-
forming the task in Experiment 3. This robot could stand behind a table and manipulate
light-weight objects, with some limitations.

To cover all the possibilities in the robot’s actions (practising) to play as a single
video after each teaching round, all the combinations of adding one item from each side
to the food items were filmed. Given two different clothing styles that the robot had and
three variations of the food items, we captured a total of 2× 3× 6 = 36 videos. All other
aspects of the videos (e.g., camera field of view and position, lighting, robot’s and objects’
positions) were held fixed. The robot was employing the same type of gaze behaviour and
arm movements over all the videos. We employed a combined gaze type with fast and
smooth arm motions, since the teachers were more positive towards this kind of behaviour
as determined in Study 1. This means, the robot was looking mostly at the manipulated
objects and occasionally at the camera (the teacher) while doing the task. Each video was
about 30-seconds long.

2Visit https://softbankrobotics.com/emea/en/pepper for technical description.
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The Pepper robot was dressed with the same type of apron and hat in both the tidy and
untidy conditions 3. While the tidy robot was wearing an ironed apron that was perfectly
aligned, in the untidy condition the apron had lots of visible wrinkles, its neck strap was
twisted and the excess length of it was not properly managed. Furthermore, the hat of
the tidy robot was supported from inside to have a rigid shape. Figure 4.5 compares two
appearances of the robot.

Figure 4.5: The Pepper robot with two different clothing styles in Experiment 3. (A) Tidy
and (B,C) untidy appearances based on the condition of the dress are shown. Two snap-
shots of the scenario are taken from videos before the robot starts preparing (A) salad and
(B) tea. One other snapshot, (C), shows the robot adding basil to the soup.

As described in Section 4.2.1, the designed task required the robot to pick some con-
tainers, pour some of their contents into another vessel, and then put them back to their
original place. Peppers’ hands had some limitations for grasping objects. To overcome
those, we used small plastic containers and some cans that were all empty to be light
enough for easy manipulation.

We put rounded papers with the textures printed on them inside the containers of

3Available on Amazon: https://amzn.to/3c5TnHr
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Figure 4.6: Experimental setup used for recording the videos for Experiment 3. (A) A
Pepper robot and the table that the containers were located on, (B) closer look into the
mint and basil containers with textured papers inside them.

cheese, dried herbs, honey, and sugar to make them appear full and more realistic. The
dishwashing liquid was in a clear bottle, so we kept some of its contents inside and blocked
the cap with hot glue. Note, the camera was mounted at an adequate level so that the
participants could not see what was inside the bowl or the cup. Furthermore, the containers
were selected to be deep enough to hide the fact that nothing was actually being added
(see Figure 4.5,(c)). Besides those considerations, we attached small metal weights to the
bottom of some containers to improve their stability (by lowering their centre of gravity)
and convey a more pleasant physical feeling when they were placed on the table. For the
same purpose, the bottom surfaces of the containers were coated with melted hot glue to
increase the traction. Figure 4.6 demonstrates the lab setup used for capturing the videos
as well as one example of the containers that were used.

4.4.2 Procedure and Measures

This experiment was also conducted on a lab server using multiple HTML pages. Figure 4.7
visualizes the experimental procedure that would be explained in this subsection.

Step 1 - Demographics questionnaire and initial check: By accepting the con-
sent form shown in Figure D.1 (i.e., checking a box to be able to continue), participants
responded to a demographic questionnaire. A form identical to Experiment 1 was used
(see Section 3.3.2: Step 1). Everyone was free to not disclose any information in this step
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Figure 4.7: Overview of the experimental procedure adopted in Experiment 3. The robots
started with making a big mistake (B) which led to exhibiting a small error (S) next. After
three consecutive correct behaviours (C), another mistake could happen. Group 2 is shown
in the diagram as an example, for which robots made a small mistake in the sixth rounds.

(Figure D.2). Next, before moving forward with collecting the data, we needed to make
sure that participants were able to see the texts in the pictures and videos. Therefore, we
included a snapshot of three containers placed on the table (in the same setting as with
the main part) and asked the participants to submit what is written on the labels attached
to the containers (see Figure D.3). In order to not reveal anything about the scenario
before the teaching interactions, we used alternative labels with the same font size while
the robot was not present. We asked the participants if the labels are too small and hard
to see, try to maximize their window, and if that did not solve the problem, stop there and
contact us. The labels that each participant indicated, as well as their display and browser
resolution, were recorded to review later.

Step 2 - Pre-experimental questionnaire: Next, in the pre-experimental question-
naire, we included two standard short surveys to examine whether participants’ personal-
ities and their degree of trusting other people influence aspects of the interaction. In the
first part, with the Ten Item Personality Inventory (TIPI) [45], we asked the participants
to rate how they consider themselves. Items shown in Table 4.2 were followed by 7-point
Likert scales [1=disagree strongly - 7=agree strongly]. We divided this questionnaire into
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two pages containing five questions each to minimize fatigue. We also asked people to rate
different aspects of their trust to other humans in the next part. The Disposition of Trust
questionnaire (DT) [75], also in Table 4.2, was utilized. Again, twelve items were split
into two lists to prevent fatigue, while the same type of Likert scale was used for each one.
We included an attention check item as a thirteenth question in the DT survey, asking the
participants how much they believe that the drinking water is liquid. Figures D.4, D.5, D.6
and D.7 show all the pre-experimental questionnaire forms.

Step 3 - Robot learning familiarization: Once the characteristics of participants
were collected, the familiarization step started. This part was very similar to Experiment 1
(see Section 3.3.2: Step 2), except the context here was robots learning from their human
teachers how to do cooking-related tasks. In the first video, someone was grabbing the
arms of an iCub robot and showing it a way of pouring something into another vessel,
and then, the robot was doing this on its own (related to [77]) 4. Another video showed a
robot that was able to learn how to cook a simple meal (related to [14, 23]) 5. Snapshots
of these two steps are included in Figures D.8 and D.9. Every video in the experiment
appeared with a small delay to let the participants first read the written descriptions. The
buttons used for proceeding to next steps were appearing after each video was finished,
to ensure they were thoroughly watched. Also, the videos automatically paused in case
anyone switched to another window. We included a progress bar below each video, except
in the main practising rounds to avoid distracting the viewers.

Step 4 - Instructions: Next was the instructions section. Step-by-step instructions
were provided to the participants on how to use our framework to teach their preferences
to the robot. To let the participants try the interface, a set of simplified videos of the
Pepper robot without any dress, in the same experimental setup as the main part, was
used. For simplicity, we kept only two bottles and two cans of the same size on either sides
of the bowl, labelled with A, B, C, and D. This way, the scenario would not be similar to
any of the actual scenarios. Written instructions along with visual signs indicated to the
participants that they must select exactly one item from each two alternative options on
every side of the bowl (see Figure D.10). Following that, participants watched a video that
demonstrated what happens when they click on the containers in the picture to select them
(Figure D.11). We let them try this operation afterwards as shown in Figure D.12. When
their mouse cursor was placed on any item, a light green ring appeared around it and when
they clicked, the ring became darker, meaning the item has already been selected. If they
wanted, they could change their choices by clicking again on the items before clicking on
the confirm button. Afterwards, the robot started adding the selected items to the bowl

4Full video is available at: https://www.youtube.com/watch?v=ZcTwO2dpX8A
5Full video is available at: https://www.youtube.com/watch?v=VvoJxmaoi8A
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Table 4.2: Items of the pre-experimental questionnaire

Part 1: Ten Item Personality Inventory (TIPI)

I see myself as:
1. Extraverted, enthusiastic.
2. Critical, quarrelsome.
3. Dependable, self-disciplined.
4. Anxious, easily upset.
5. Open to new experiences, complex.
6. Reserved, quiet.
7. Sympathetic, warm.
8. Disorganized, careless.
9. Calm, emotionally stable.
10. Conventional, uncreative.

Part 2: Disposition of Trust questionnaire (DT)

I. Faith in Humanity, Benevolence:
1. In general, people really do care about the well being of others.
2. A typical person is sincerely concerned about the problems of others.
3. Most of the time, people care enough to try to be helpful, rather than just
looking out for themselves.

II. Faith in Humanity, Integrity:
4. In general, most people keep their promises.
5. I think people generally try to back up their words with their actions.
6. Most people are honest in their dealing with others.

III. Faith in Humanity, Competence:
7. I believe that most professional people do a very good job at their work.
8. Most professionals are very knowledgeable in their chosen field.
9. A large majority of professional people are competent in their area of expertise.

IV. Trusting Stance:
10. I usually trust people until they give me a reason not to trust them.
11. I generally give people the benefit of the doubt when I first meet them.
12. My typical approach is to trust new acquaintances until they prove
I should not trust them.
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(Figure D.13). Finally, before beginning the main part, we described the situation to the
participants using text, as shown in Figure D.14: “There are two robots in this study. In
the following, you will teach each of them how you prefer to have a cup of tea, a bowl of
salad, and soup. In the teaching process, you will interact with each robot six times. After
every training round, you will watch the robot practising what it has learned. Then, you
will be asked to answer a few questions regarding its behaviour and your thoughts.”

Step 5 - Teaching, practising and behaviour evaluation: Participants were then
randomly assigned to a condition and started the main part. As described earlier, the main
part of this experiment consisted of teaching two robots, six rounds each. The participants
used the same interface as they experienced in Step 4 to teach their preferences. Half
of the participants taught the tidy robot first and the other half taught the untidy one
first. In every round, the participants first showed the robot how they prefered to have
the food, and after that, the robot started practising. This was done by letting them
select the preferred items in a snapshot of the task and then, playing the appropriate pre-
recorded video, showing the robot performing the pouring actions either according to the
instructions or faulty. This way, the participants experienced smooth transitions from the
teaching to the practising steps. Figure D.15 illustrates this process. When each video
was finished, a list of nine continuous scales appeared (see Figure D.16). Other than two
labels on the sides, there was no additional numerical scale on each bar. The first item
asked directly about the possible error in the exhibited behaviour to help us determine
whether participants have been paying enough attention or not. This was placed first so
that the participants were reminded that the task could have been performed erratically,
before moving on to the other measures. They could either choose anywhere between the
robot “made a very small mistake” to “made a very big mistake”, or check a box indicating
the robot “made no mistake”. A severity, ranging from 0 to 1000, or -1 if it seemed there
had been no error, was measured for every round.

The rest of the measures were derived from the attributes we used in Experiment 1 (see
Table 3.1). The only difference was that, since the robots’ gaze behaviour was fixed, we
were no longer interested in both “attention to the task” and “attention to the teacher”.
Therefore, only the first item was included. For the attention check items, we decided to
only make use of type 1 attention checks (i.e., repeated questions with different wording, in
the opposite direction of the original scale). We found this type of attention checks more
helpful that type 2 for removing noisy data in our previous study. Three items of type 1
listed in Table 3.2 were used, four times each, over the entire 12 teaching rounds. Same
as before, the attention checks did not have any consequence on the remuneration for the
participants. We just ignored the data captured from those who failed the attention checks
for use in our analyses. The details are described in Section 4.4.3.
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Step 6 - Trust and learning evaluation: After finishing all 6 rounds of teaching
with the first robot, participants were asked to answer a few questions regarding the robot
that they just taught. Thus, every participant completed this questionnaire twice. There
were seven items in this trust and learning evaluation form, with the picture of the robot
shown on top of the page. A snapshot is included in Figure D.17.

• “Assume you will have some guests tonight. You are very busy, and no one in
your household has time to help you. Would you allow this robot to prepare dinner
for tonight?” The choices were: “Yes, it can do it alone.”, “Yes, but together with
me.”,“No, I will order from a restaurant (e.g., with Uber Eats).”, or “No, I will
manage to do it myself.”

• “Assume you have a very busy week ahead. Would you allow this robot to do your
laundry?” This question was to examine the transfer of trust to another task. The
same options were offered again, with the third one replaced with “No, I will request
help from others or use a service.”

• Whether the robot “improved a lot” or “did not improve at all” was asked on a
continuous scale.

• Whether the teaching scenario “looked very realistic” or “not realistic at all” was
also questioned on a continuous slider.

• “What do you think the robot’s gender is?” This was to control for confounding
factors. The options were: “definitely male/female”, “maybe male/female”, “Could
be either male or female”, and “Neither male nor female” (6 in total)

• “How successful do you think this robot would be in teaching cooking tasks to another
robot?” (rated on a continuous scale)

• “If you had this robot in your home, how likely would you be to use it to assist you
with chores?” (rated on a continuous scale)

After submitting the trust and learning evaluation form, the experiment continued
with the second robot. Again, there were 6 rounds of teaching, practising and behaviour
evaluation, followed by asking the described questionnaire about the second robot.

Step 7 - Post-experimental questionnaire: In the end, the participants were asked
to complete a post-experimental questionnaire. This included some direct comparisons
between the two robots as well as a few more questions about the participants’ preferences
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in performing their regular activities, to further control for confounding factors. In multiple
steps, we showed pictures of two robots, side-by-side, and asked the participants which
robot appeared more professional, more skilled, more experienced with the tasks and had
more authority. An attention check item asking “Which robot had a tidier appearance?”
was included afterwards. Then in the last step, we directly asked “Which robot would you
trust more?”. All these had a third option to choose if the robots seemed “equal” in any of
those attributes (see Figure D.18). The order of these questions remained the same for all
the participants. Half of the participants saw the picture of the first robot placed on the
left side and the other half saw the picture of the second robot there. On a separate page
which is displayed in Figure D.19, the participants indicated how much they like cooking
and doing laundry and what proportion of their “weekly meals”/”monthly laundry” they
cook/do themselves, on continuous scales. In the end, a unique code was given to the
participants to submit the task (Figure D.20).

4.4.3 Participants

We used the MTurk framework to recruit participants. 252 complete responses were col-
lected from 263 people who participated in this experiment. Everyone was given a 1 USD
base payment, plus a 1 USD bonus pro-rated based on the portion of questions that were
answered. This experiment took around 25-30 minutes to complete. The same availability
criteria as Experiments 1 and 2 (people in Canada and the US holding a 97% life-time
approval rate, see Section 4.3.2 for more details) were used to attract more qualified par-
ticipants. The study received full ethics clearance from the University of Waterloo Ethics
Committee (See Appendix A, #42731).

We reviewed all the complete responses to check the participants’ attention. In addition
to 12 consistency checks that existed in the measures after each practising round, and also
one attention check item in the DT and post-experimental questionnaires, each of the
following were also considered as an attention check failure: (a) rating any big error lower
than 750/1000 in severity, (b) rating any faultless behaviour as an error more severe than
250/1000, (c) rating any big or small error as no error, and (d) having any small error
rated more severe than a big error. We then excluded those who failed at least three
times in the attention checks overall. Furthermore, to improve consistency within the
experiential conditions (i.e., to ensure that all the participants made almost the same
assumptions regarding the robots’ mistakes), we filtered data to only have individuals who
rated the small errors at least 25% less severe than the big errors on average. In light
of these considerations, 113 participants’ data were omitted. There could be two possible
reasons for this big data loss (44.8%) in comparison to our previous online experiments:
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(1) the experiment was longer than the previous ones, and (2) the consistency within
each condition was harder to maintain, since the experimental design required a specific
perception of mistakes.

The 46 participants in condition 1 had this specification: Minage = 20,Maxage =
64,Mage = 37.30, SDage = 10.00. Condition 2 (Minage = 22,Maxage = 65,Mage =
39.41, SDage = 11.57) and condition 3 (Minage = 20,Maxage = 70,Mage = 38.61, SDage =
11.52) had the population of 49 and 44 people, respectively. Figure 4.8 shows the age
distribution of the entire sample (139 participants).

Figure 4.8: Histogram of participants’ age in Experiment 3. The bin width is 5.

Table 4.3 specifies whether any correlations existed between our participants’ Big-Five
personality traits (TIPI questionnaire attributes) and scales of their disposition to trust
other people (DT questionnaire attributes). Pearson Rank-Order Correlation analysis re-
vealed that participants’ agreeableness was moderately correlated with all the scales of
their disposition of trust. Furthermore, people who were more open to experiences had a
moderately higher disposition for assuming people’s trusting stance.

4.4.4 Statistical Analysis

To study effects on the collected categorical data (e.g., some indicators of trust, including
the participants’ preferences for letting the robots cook for them or do their laundry asked
in Step 6) while considering possible confounding factors, we used Generalized Linear
Model (GLM) [83] with a binomial family. The factors listed in the following were initially
included in the models. We then kept only a subset of those to minimize the AIC [18].
After checking the interaction effects, we came up with the final models presented in the
next section. To analyze the qualitative data, collected using continues scales (e.g., the
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Table 4.3: Correlations between the aspects of the participants’ disposition of trust and
their Big-Five personality traits

Extroversion Agreeableness Conscientiousness
Emotionally
stability

Openness to
experience

Benevolence
p=.038
r=.176

p<.001
r=.411

p=.252
r=.097

p=.003
r=.252

p=.004
r=.244

Integrity
p=.023
r=.193

p<.001
r=.421

p=.247
r=.099

p=.001
r=.270

p=.044
r=.171

Competence
p=.799
r=.022

p<.001
r=.381

p=.058
r=.161

p=.004
r=.241

p=.237
r=.101

Trusting stance
p<.001
r=.298

p<.001
r=.361

p=.217
r=.105

p=.007
r=.228

p<.001
r=.335

behaviour evaluation measures asked in Step 5), LMM [10] was employed to check for the
significant effects. For that, we used the same approach as with Experiment 1, described
in Section 3.3.4. The considered factors were:

• The robot (i.e., robot appearance).

• The condition that each participant was assigned to, except for investigating the
changes in the participants’ perceptions over time (i.e., in six rounds). For that case,
the rated severity of the mistake in every round was included instead.

• Whether it was the first robot or the second robot that the participant saw. This
would be noted as “encounter” factor, with two levels of “first” and “second”,
throughout this thesis.

• Participants’ demographics, i.e., their age and gender as well as their characteristics
(based on TIPI and DT questionnaires).

• The gender they assigned to each robot.

• How much they like cooking/laundry, and the proportion of those tasks that they do
themselves (measured through the post-experimental questionnaire, Step 7).

In addition, binomial tests and t-tests were occasionally conducted for testing if signif-
icant differences between two categories existed. The p-values obtained from the pairwise
tests that were related to one of our hypotheses were adjusted for multiple testings using
Holm-Bonferroni method.
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4.4.5 Results

In this section, we first present some general findings regarding the robots and perceptions
of their errors. We then describe how participants’ understandings about the trainee robots
changed over time, as well as how trust was impacted, in two subsections.

Perceived severity of the errors: Figure 4.9 illustrates the average participants’
evaluation of the errors observed in the robots’ behaviours. In fact, this plot shows how
participants in each condition experienced throughout the study (two sets of teaching and
practising with two robots, 6 rounds each). As expected from the results of Experiment 1,
the big errors (i.e., adding a cleaning product in round 1 for all the conditions, plus round
6 for condition 3) were perceived much more severe than the other mistakes. All the small
errors (i.e., replacing one item with another when preparing tea in round 2 for all the
conditions, plus round 6 for condition 2) were in the same severity range, close to what
was previously found (see Figure 4.4,(B): Replacing). Here, same is before, small errors
were rated less severe than 500/1000 on average in every case. Independent-samples t-
tests did not show any statistical differences between replacing items from the right side
or the left side of the tea (t(373.9) = 1.009, p = .313). Furthermore, the difference between
replacing either of the two types of milk (t(324.0) = 0.253, p = .801) or either of the two
types of sweetener (t(325.0) = −0.026, p = .979) was not detected to be significant.

Figure 4.9: Average rated severity of robots’ errors for each condition. Three situations of
performing Correct actions (C), making a Small mistake (S), and making a Big error (B)
can be identified based on these ratings. 95% confidence intervals are shown.

Perceived gender of the robots: The gender assigned by the participants to the
robots in different conditions, and also based on two different appearance types and whether
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a particular robot was the first or the second one each participant taught (i.e., the encounter
factor) are shown in Figure 4.10. We fit a GLM with condition, appearance and encounter
as factors. According to the model (Table 4.4), there were no significant differences between
variations in appearance and encounter. However, people in condition 2 perceived the
gender of the robots significantly different than those in condition 1. As Figure 4.10
illustrates, more participants in condition 2 reflected that the robots are definitely male.

Table 4.4: Generalized Leaner Model predicting participants’ perception of robots’ gender

Covariate Estimate SE z
Condition2 -1.09 0.41 -2.678 **
Condition3 -0.35 0.45 -0.782
EncounterSecond 0.06 0.32 0.194
AppearanceUntidy -0.16 0.32 -0.492

Condition 1, First encounter and Tidy appearance are the baselines.
** = p < .01

Figure 4.10: The gender that each participant assigned to every robot, based on condition,
appearance and encounter factors.

Overall, participants mostly assumed that the gender of our robots was maybe male
(86 times over 139 × 2 = 248 ratings, as each participant chose a gender for each of the
two robots that were technically Pepper robots). Two options of either male or female
and neither male nor female also were selected frequently (76 and 58 times, respectively).
While 49 times robots were perceived as definitely male, only 2 times participants perceived
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Figure 4.11: Overall perception of gender for the robots in the experiment. Each partici-
pant rated the robots with both the tidy and the untidy appearances.

the robot as defiantly female. There were also 7 instances when people selected the gender
of the robot to be maybe female. Figure 4.11 presents these results.

Comparisons between two appearances: In the post-experimental questionnaire,
we asked each participant to compare the two robots in terms of multiple attributes, or
choose if they seemed equal. The results are shown in Figure 4.12. Regarding all five
measures, the majority of people believed that robots with different clothing styles were
equal. However, according to a binomial test with 68 trails, people significantly selected
the tidy robot to be more professional than the untidy one (p < .001). For the robot
that was more skilled (p = .354) or more experienced (p = .397), or had greater authority
(p = .500), or people could trust more (p = .256), there was no significant difference
between tidy or untidy appearances according to the tests.

Impact on the perceptions

Effects of appearance: Based on the measures that appeared after every teaching +
practising round, perceived attributes of the robots with two appearances are presented
in Figure 4.13. When the severity of mistakes decreased from round 1 to 3, all the scales
improved and remained high until the sixth rounds, and then, dropped when the errors
happened again. These measurements did not appear to be affected by the clothing style
of the robots (the statistical analysis would be presented later). Paired-samples t-tests
did not reveal any significant differences in the perception of severity of small (t(187) =
−0.910, p = .364) and big (t(182) = 0.907, p = .366) mistakes made the tidy or untidy
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Figure 4.12: Comparisons between the two robots with only difference being their clothing
style. * = p < .05; *** = p < .001, according to binomial tests.

robots.

Effects of encounter factor: Another factor that seemed important was the or-
der in which each participant taught the robots (i.e., the encounter factor). Figure 4.14
demonstrates the participants’ perceptions of the first and the second robot that they
observed. Same as Figure 4.13, here there was also a correlation between improvements
in the perceptions and enhancements in the behaviours of the robots. As will be shown
with the models, the encounter factor could significantly affect all the measures, except
the robots’ perceived calmness. Using paired-samples t-tests, we detected some significant
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Figure 4.13: Averages of participants’ perceptions of the robots’ attributes, grouped by
robot appearance. Error bars represent 95% confidence intervals and the results are pooled
regardless of the condition.

differences between the first and the second robots in certain rounds and for some of the
tested attributes. These are marked on Figure 4.14.

Even though the appearance of the robots was ineffective in the perceived severity of
mistakes, the small errors were perceived as less severe with the robot that was taught first
(t(187) = −2.098, p < .05). There was a same difference for the big errors, but was only
close to being statistically significant (t(182) = −1.643, p = .102).

Effects of condition : As participants experienced different behaviours of the robots
based on the conditions that they were assigned to, that factor was essential to investigate.
Figure 4.15 presents the averages of perceptions of the robots (note that each participant
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Figure 4.14: Averages of participants’ perceptions of the robots’ attributes, grouped by
the encounter factor. Error bars represent 95% confidence intervals and the results are
pooled regardless of the condition. * = p < .05; ** = p < .01; *** = p < .001, according
to paired-samples t-tests.

rated two robots) according to the condition. There were the same general trends as in
the previous two figures, with the exception that in the sixth rounds scores reduced in
proportion to the severity of the mistake (according to condition). Remark that rounds 1
to 5 were identical for all the groups and therefore, there was no experimental difference
among the three conditions on the left side of the dashed lines in Figure 4.15.

According to paired-samples t-tests that were adjusted using the Holm-Bonferroni
method for multiple testings, all the measured attributes significantly increased from round
1 to round 2, and from round 2 to round 3. This was correlated with the improvement in
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Figure 4.15: Averages of participants’ perceptions of the robots’ attributes, grouped by
condition. Error bars represent 95% confidence intervals and the results are pooled regard-
less of the robot appearance. * = p < .05; ** = p < .01; *** = p < .001, according to
t-tests. The comparisons marked on the left side of the dashed lines are about the entire
sample, while the other comparisons are concerning participants in a single condition.

the behaviour of the robots. By also comparing round 3 with round 4, as well as round 4
with round 5, three instances were noticed in which the perceptions of the robots improved
significantly, even though their behaviour was the same. The perception of confidence
(t(138) = 3.739, p < .001) and liking the task (t(138) = 3.997, p < .001) were higher in
round 5 compared with round 4. In addition, participants perceived higher eagerness to
learn in round 4 of teaching robots compared with round 3 (t(138) = 3.445, p < .05).

Further paired-samples t-tests revealed that within conditions, there were some statisti-
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cally significant differences in the perceptions when the same mistakes happened at the be-
ginning (either round 1 or 2) or at the end (round 6). For participants in condition 2 and re-
garding the small mistakes of the robots, perceptions of confidence (t(48) = 2.140, p < .05),
calmness (t(48) = 2.0545, p < .05) and being goal-driven (t(48) = 2.304, p < .05) were
significantly higher in round 6 compared with round 2. Concerning the big errors for peo-
ple in condition 3, the same effect in the opposite direction was detected; the robots
were perceived as less eager to learn (t(43) = −2.243, p < .05) and less goal-driven
(t(43) = −2.283, p < .05) after big mistakes in round 6 compared with round 1.

Predicting models: To further investigate changes in the perceptions of the partici-
pants regarding our trainee robots, the LMMs predicting the attributes are summarized in
Table 4.5 and 4.6. As can be seen, severity and encounter were two factors that affected ev-
ery measure (expect encounter did not affect robots’ calmness). However, the appearance
of the robot and participants’ age and gender did not affect any of the attributes.

All the aspects we measured (expect calmness) were generally perceived as higher re-
garding the first robot each participant taught. Moreover, all the ratings were found
to be negatively correlated with the severity of mistakes in each round. About the
TIPI scales, we found that more extroverted people perceived the robots as less confi-
dent (se = 5.99, t = −2.385, p < .05), calm (se = 6.76, t = −3.298, p < .01), attentive
(se = 5.24, t = −2.121, p < .05) and goal-driven (se = 5.60, t = −2.726, p < .01). Partici-
pants who had higher conscientiousness rated the robot to be more attentive (se = 7.96, t =
3.258, p < .01) and goal-driven (se = 8.52, t = 2.056, p < .05). The robots appeared to be
calmer to those with higher emotional stability (se = 7.67, t = 1.940, p = .054). Finally,
participants who were more open to experiences rated the robots as more liking the task
(se = 6.92, t = 2.439, p < .05), proficient (se = 5.56, t = 2.159, p < .05) and eager to
learn (se = 6.63, t = 2.158, p < .05). About the DT questionnaire items, people with a
higher disposition of trusting peoples’ competencies viewed the robot as more liking the
task (se = 8.54, t = 3.127, p < .05) and more eager to learn (se = 8.18, t = 3.002, p <
.01). The robot’s appeared to be more confident (se = 7.27, t = 3.121, p < .01), calm
(se = 7.79, t = 3.742, p < .001), attentive (se = 6.12, t = 2.610, p < .05), proficient
(se = 5.38, t = 2.758, p < .01) and goal-driven (se = 6.55, t = 2.045, p < .05) to those who
believed more in peoples’ trusting stance.

Impact on trust

In this part, findings from the trust and learning evaluation questionnaires (responded by
every participant after teaching each of the two robots, Step 6) are presented.
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Table 4.6: Linear Mixed-effects Models predicting the robots’ attributes: proficiency, ea-
gerness to learn, and being goal-driven, while learning.

Covariate
Proficiency Eagerness to Learn Being Goal-driven

Estimate SE t Estimate SE t Estimate SE t

Encounter
First (b)
Second -23.87 8.37 -2.852 ** -30.36 7.88 -3.854 *** -37.92 8.17 -4.642 ***

Severity -0.59 0.01 -54.544 *** -0.34 0.01 -33.569 *** -0.42 0.01 -39.911 ***

TIPI
Extraversion -15.27 5.60 -2.726 **
Agreeableness
Conscientiousness 17.52 8.52 2.056 *
Emotional Stability
Openness
to Experiences

12.00 5.56 2.159 * 14.32 6.63 2.158 *

DT
Benevolence
Integrity
Competence 24.57 8.18 3.002 **
Trusting Stance 14.83 5.38 2.758 ** 13.39 6.55 2.045 *

* = p < .05; ** = p < .05; *** = p < .001.
(b) = baseline level
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Preferences in cooking and laundry tasks: To investigate participants’ trust,
we asked them to specify whether they allow the robot to cook dinner for them alone or
collaboratively, or they would prefer to do that by themselves or buy food from a restaurant.
The results grouped by three different factors (i.e., appearance, encounter and condition)
are displayed in Figure 4.16. This figure also includes the same question with regards to
doing laundry, for studying the transfer of trust to other tasks. The first two choices that
allowed the robot to take part in any form, are grouped together as a sign of trusting. The
two other choices that totally excluded the robot are considered together as indicators of
not trusting it.

It can be noticed from Figure 4.16 that the percentage of people who did not trust the
robot was increasing when the final mistakes were becoming more severe from condition
1 to condition 3. According to the figure, the number of people who trusted the robots
based on their appearance or according to the order in which they taught them seems
constant. Utilizing GLMs, we further examined the effects of appearance, encounter and
condition on these two measures of trust, while considering the confounding factors. The
models presented in Table 4.7 confirmed the mentioned observations. Regarding both the
cooking and laundry scenarios, only a significant effect of the last impression of learning
(i.e., condition) was detected among those factors, in addition to some effects of items in
the TIPI and DT questionnaires.

Pairwise comparisons adjusted using the Holm-Bonferroni method showed that small
mistakes of the robots in the sixth practising rounds (condition 2) could significantly de-
crease the trust (se = 0.35, z = −3.184, p < .01). Big errors at the end (condition 3) could
break trust even more compared with small errors (se = 0.34, z = −3.826, p < .001). In
terms of confounding factors, we found that participants who had a higher disposition for
trusting peoples’ benevolence were significantly more tended to let the robots participate
in cooking dinner for them (se = 0.14, z = 2.334, p < .05). The same effect was also ob-
served with those who were more open to new experiences (se = 0.11, z = 2.136, p < .05).
We noticed a trend, approaching significance, suggesting those with higher dispositions for
trusting people’s competencies may rely more on the robots for cooking (se = 0.14, z =
1.811, p = .070). In contrast, people with higher conscientiousness had significantly less
tendency for allowing the robots to cook for them (se = 0.14, z = −2.130, p < .05).

While studying the transfer of trust to a laundry scenario, the adjusted pairwise tests
revealed that people in condition 2 had significantly lower faith in the robots helping with
that task compared with those in condition 1 (se = 0.374, z = −2.664, p < .05). People
lost more trust in robots doing their laundry when a huge mistake happened at the end
of learning the cooking task (condition 3), compared with when a small mistake was made
(se = 0.32, z = −2.558, p < .05). Participants with a higher level of deposition to trust

72



others’ competencies were more likely to trust robots to do their laundry (se = 0.12, z =
3.366, p < .001). It was also detected that those with greater openness to experience trusted
the robots more in this scenario (se = 0.10, z = 2.315, p < .05). However, participants who
were more emotionally stable trusted the robots less in the laundry task (se = 0.10, z =
−2.053, p < .05).

Figure 4.16: The preferences of participants for cooking and laundry tasks, grouped by
condition, encounter and appearance factors. * = p < .05; ** = p < .01; *** = p < .001.

Participants’ attitudes: The participants also responded to four questions on con-
tinuous scales regarding the teaching experience and their opinions towards the robots,
after finishing teaching each of them (Step 6). These items were the perceived realism
of the teaching scenarios, perceived improvement of robots over time, expected success of
robots in teaching cooking tasks to another robot, likelihood of using robots to assist with
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Table 4.7: Generalized Leaner Models predicting participants’ preferences in cooking and
laundry tasks

Covariate
Trust for cooking Trust for doing laundry
Estimate SE z Estimate SE z

Condition
1 (BSCCCC) (b)
2 (BSCCCS) -1.12 0.35 -3.184 ** -1.00 0.37 -2.664 **
3 (BSCCCB) -2.42 0.38 -6.336 *** -1.83 0.38 -4.858 ***

TIPI
Extraversion -14.29 5.99 -2.385 *
Agreeableness
Conscientiousness -0.29 0.14 -2.130 *
Emotional Stability -0.20 0.10 -2.053 *
Openness to Experiences 0.24 0.11 2.136 * 0.23 0.10 2.315 *

DT
Benevolence 0.31 0.14 2.334 *
Integrity
Competence 0.26 0.14 1.811 . 0.41 0.12 3.366 ***
Trusting Stance -0.19 0.12 -1.509

. = p < .1; * = p < .05; ** = p < .05; *** = p < .001.
B = Big error; S = Small error; C = Correct behaviour.
(b) = baseline level

chores in the future. The average ratings for each robot (i.e., appearance factor) and in
various conditions are plotted in Figure 4.17. LMMs presented in Table 4.8 were employed
to further investigate these measures.

About how realistic the teaching scenarios looked, although the ratings in condition 3
seem slightly lower than other conditions according to Figure 4.17, there was no significant
effect of condition detected by the model. The only effective factors were found to be some
items of the DT questionnaire. We noticed that participants with a higher disposition of
trusting people’s integrity (se = 25.06, t = 2.365, p < .01) and competence (se = 41.13, t =
2.601, p < .05) rated the scenarios as more realistic, but people with a higher disposition of
trusting people’s benevolence (se = 24.76, t = 6.430, p < .001) rated them as less realistic.

While the appearance of the robots could not affect any of those scales, the mistakes
(i.e., condition) affected the rest of the measures described here. Adjusted pairwise compar-
isons showed that people felt significantly less improvement in the performance of the robots
after the big mistake happened at the end, compared with after a small mistake happened
(se = 34.86, t = −3.265, p < .01), and no mistake (se = 35.49, t = −10.740, p < .001). The
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small errors could also decrease this perception compared with no error (se = 34.71, t =
−7.703, p < .001). In the measure, opposite to the realism of teaching scenario, those
with a higher perception of people’s benevolence perceived that robots improved more
(se = 10.49, t = 2.285, p =< .05).

The only factor that could affect the expected success of robots in teaching the cooking
tasks to another robot was condition. Small (se = 41.68, t = 6.004, p < .001) and big (se =
42.81, t = 7.207, p < .001) mistakes in the sixth rounds of practising could significantly
decrease this measure, with no difference detected between them (se = 42.17, t = 1.382, p =
.169). Finally, the likelihood that participants use the robots in future to assist them
was found to be affected by the last mistakes and their disposition of trusting people’s
competencies (se = 17.64, t = 3.102, p < .01). When big mistakes happened in the sixth
rounds, people appeared to less inclined to use the robots compared to when small mistakes
happened (se = 50.74, t = 2.303, p = .023) and the behaviour was fully correct there
(se = 51.39, t = 6.612, p < .001).
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Figure 4.17: Participants’ evaluation of (A) realism of the teaching scenarios, (B) improve-
ment of the robots over time, (C) success of the robots in teaching cooking tasks to another
robot, (D) likelihood of using the robots to assist with chores in the future. 95% confidence
intervals are shown. * = p < .05; ** = p < .01; *** = p < .001.
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Table 4.8: Linear Mixed-effects Models predicting participants’ teaching experience and
their opinions about the robots

Covariate
Realism of teaching scenarios Improvement of robots over time
Estimate SE z Estimate SE z

Condition
1 (BSCCCC)
2 (BSCCCS) -267.33 34.71 -7.703 ***
3 (BSCCCB) -381.16 35.49 -10.740 ***

DT
Benevolence -67.40 24.76 -2.722 ** 23.97 10.49 2.285 *
Integrity 71.78 25.06 2.865 **
Competence 41.13 15.81 2.601 *
Trusting Stance

Covariate
Success of robots in teaching
cooking tasks to another robot

Likelihood of using robots in
the future for assistance

Estimate SE z Estimate SE z

Condition
1 (BSCCCC)
2 (BSCCCS) -250.26 41.68 -6.004 *** -222.95 50.00 -7.703 ***
3 (BSCCCB) -308.52 42.81 -7.207 *** -339.80 51.39 -10.740 ***

DT
Benevolence
Integrity
Competence 54.72 17.64 3.102 **
Trusting Stance

. = p < .1; * = p < .05; ** = p < .01; *** = p < .001.
B = Big error; S = Small error; C = Correct behaviour.
(b) = baseline level
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4.4.6 Discussion

We examined how human teachers interpreted their trainee robots, as the training pro-
gressed and they observed improvements in the robot task performance. Furthermore, trust
in trainee robots under different conditions when no errors occurred in the last rounds ver-
sus when a small or a big error occurred was investigated. Our hypotheses are summarized
in Table 4.9.

Giving participants experience of teaching

After teaching each robot, we asked the participants whether “the teaching scenario” looked
very realistic or not at all, on a continuous scale. As observed in Figure 4.17 (A), the average
of participants’ evaluation of the teaching scenario was closer to being realistic, regardless
of the ending faulty behaviours of the robots (i.e., no difference between conditions was
detected). This implies that the designed virtual framework could successfully give the
participants the experience of teaching a robot in all the tested situations. The usefulness
of our framework for future virtual studies that need humans teach robots may also be
understood from this finding.

Although a physical teaching situation could be implemented completely different (as
will be noted in the Limitations section), the overall participants’ experience would be
the same if robots in this experiment were running a real learning system and interacting
with participants live. For example, with appropriate pre-training of robot motor actions
for object manipulations, instead of using pre-recorded videos, we could only leave it to
participants to teach the part in which the robot needs to select the items to add, rather
than asking them to demonstrate motion trajectories.

Clothing type of robots as a sign of professionality

With two different clothing styles for the robots (i.e., tidy or untidy), we aimed to investi-
gate any possible effect of a priming on the perceived authority, as well as trust (RQ1 6).
The robot with a tidy appearance appeared to be significantly more proficient compared
with the untidy one. People who are specialists usually dress properly and according to
their occupation, so participants could correlate the neat look of the robot with its profes-
sionality, and differentiate between the two robots at least to some extent. However, there

6Can the professional look of a trainee robot (indicated by its clothing style) affect view of the teachers
about the robot and their trust?
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Table 4.9: Summary of hypotheses and their degree of support

Impact of robot appearence:

H1
People perceive higher levels of authority from a student robot and
trust in it more when it has a professional dressing type.

Not supported

H2
Perception of liking the task, proficiency and eagerness to learn would
be higher regarding the robot that has a professional clothing style.

Not supported

Impact of robot errors:

H3
As the robot makes smaller mistakes while learning, perceptions
of its behaviours improve.

Supported

H4 People ignore a small error after they experience the robot improving in a task. Rejected
H5 A big error after the learning process may cause a great loss of trust. Supported
H6 There will be correlations between people’s personality and their trust in the robot. Supported

H7
There will be some relationships between people’s disposition of trust to other
humans and their trust in the robot.

Supported

were no other differences between the two appearance types, all over the experiment. In
our study, the tidy clothing style itself could not convey anything beyond professionality,
when the behaviours of two robots were the same. This suggests that the behaviours of a
student robot are much more important than its clothing style for shaping human teachers’
interpretations. Since we found neither the trust nor any items in the perceived attributes
were affected by the robot’s appearance, this study could not confirm H1 and H2. In
fact, both robots were perceived as equally professional, skilled, and experienced by the
majority of participants, and they also had equal authority and were equally trustworthy,
based on the direct comparisons.

Human teachers’ perceptions changing over time

With respect to RQ2 7, we observed that as the robots made smaller mistakes over the
first three training rounds, participants’ perceptions of their behaviours improved. This
was expected in H3 concerning the robots’ confidence, proficiency and being goal-driven.
However, the improvements were significant in perceptions of all the attributes measured
(i.e., calmness, liking the task, attentiveness and eagerness to learn as well as those in H3).
One noteworthy finding was that the perceptions of confidence and liking the task were

7How do the perceptions of teachers about behaviours of a trainee robot change over time, while it is
practising a task and appears to gradually improve?
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found to be higher in the fifth rounds compared with the fourth rounds. When participants
observed that the robots were capable of performing the task correctly for two consecutive
rounds (i.e., the third and the fourth rounds), they felt the robots have become slightly
more confident and they liked the task a bit more afterwards (the fifth rounds). More
interestingly, we detected that the perception of eagerness to learn continued to increase
in the fourth rounds, which was even one step after the behaviours of the robots stopped
improving and remained the same compared with the previous step. This may imply that
while a robot is progressing in a task, people strongly assume that the robot is becoming
more eager to learn, the effect of which remains in place even after when it seems the
learning has been completed.

There were also some exploratory findings regarding the changes in the perceptions
that deserve a discussion. Related to the encounter factor, some measures in some par-
ticular rounds were found to be rated significantly higher concerning the first robot that
each participant taught, compared with the second robot. Teachers may have had lower
expectations when teaching a robot for the first time, regardless of its appearance, and as
a result, rated its behaviour to be better. In line with that, we also detected that small
mistakes made by the first robot were perceived as less severe than those made by the
second robot.

While the behaviours of the robots were the same in the second rounds and in the
sixth rounds for participants in condition 2 (i.e., robots made small errors in both cases),
perceptions of confidence, calmness and being goal-driven were rated to be slightly higher
in the sixth rounds compared with the second rounds. The fact that people saw the
second faulty behaviour after three correct actions might be responsible for these findings;
after observing the robots performing correctly, they may have become more permissive to
final small faults of the robots in the mentioned form. However, when the same situation
concerning the big errors was explored (people in condition 3 observed big errors in both
the first and the sixth rounds), we detected that ratings of eagerness to learn and being
goal-driven were lower in the sixth rounds than in the first rounds. We may argue that
people were not expecting the robots to make those severe mistakes again (after they
observed that their behaviours improved a lot from the first rounds) and thus, the negative
impact of the big errors were quite more intense.
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Last impression of a student robot affecting trust

To answer RQ3 8, we had hypothesized that teachers may ignore small mistakes when they
detect that a robot is improving (H4). However, all the measures in the trust and learning
evaluation form were significantly affected by even a small mistake occurring in the sixth
training rounds. People felt a lesser overall improvement from robots and lost trust in
them for doing the cooking task or performing another task (i.e., their laundry), when the
robots made any errors after they seemed to have learned the tasks properly by making no
mistakes in three consecutive rounds. The robots that made mistakes after learning were
also deemed less successful in teaching cooking skills to another robot and less suited for
assistance in the future. All of these, again, indicate the importance of robots’ behaviours
during the learning phase for setting attitudes of their users and impacting their trust.

Furthermore, a big error led to even a more considerable loss of trust for helping with
the same or a new task, confirming H5. With such error, a larger drop in the participants’
overall perceived improvement and the likelihood of using the robots in the future was
detected. All those factors were more severely affected by big errors as compared with
small errors. Similar to our findings, the trust had been found to be correlated with the
magnitude of robot errors in [94]. We should again note that there was no difference in the
expected success of the robots to teach another robot when they made a small final error
of a big one. This may imply that people assume high qualification criteria for someone
(or another robot) to teach a robot.

Personalities of human teachers impacted trust and perceptions

GLMs and LMMs were employed to explore the impact of different characteristics of par-
ticipants on their perceptions about the robots, as well as on their trust (to study RQ4 9).
We had hypothesized that the personality traits of the participants (H6) and their dispo-
sition of trust in other people (H7) may affect some aspects of their trust in the robot. In
our experiment, trust was found to be positively correlated with participants’ belief in the
benevolence of other people (same as [96]) and their openness to experience. Participants
with higher conscientiousness were found to rely more on themselves/a restaurant instead
of robots to cook for them. The likelihood of using the robot for a task other than cooking,
when the participants were not familiar with robots’ capabilities in that, was positively
correlated with their level of trust in peoples’ competencies, and again, their openness to

8How does the last impression of a student robot affect trust?
9Do different personalities of human teachers and their disposition to trust other people affect their

perception of and their trust in a trainee robot?
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experience. All these confirmed H6 and H7 which predicted that trust in a robot may
vary based on individual differences. There were also some correlations between the above-
mentioned factors and changes in the perceptions of participants regarding trainee robots
while learning. Most notably, we found that more extroverted people perceived the robots
as being less confident, calm, attentive and goal-driven.

4.5 Limitations and Future Work

While the participants evaluated the scenarios to be realistic, the situation could be differ-
ent from a real-world study. In that case, teachers may have an opportunity to explore the
robot’s capabilities to better understand its limitations, using methods such as kinesthetic
teaching. As a result, they might form a more realistic mental model about the abilities of
the robot that can affect their trust. In a physical situation, the teaching could also involve
more subtle actions and gestures such as pointing and looking at, touching the ingredients,
and/or speech, whereas in our online platform this was replaced by mouse actions to do
the teaching.

Furthermore, the way we implied progress in learning could be different when using
a real mechanism that learns sequences of actions and trajectories. For instance, in a
manipulation task, learning may reflect on trajectories becoming more smooth or the robot
grasps more accurately. For the teachers, specially novice robot users, these attributes may
not be as visible as the errors we introduced in this work. Thus, the changes we detected
in the interpretation of the teachers from the beginning of the interaction are not easy to
generalize.

Finally, depending on the task, robots may exhibit various kinds of errors in different
stages of the task performance (e.g., in grasping, creating generalized trajectories and
etc.). In this study, we only concentrated on object recognition failures. Future studies
may consider the type of errors while learning as a factor to see how they could impact
trust.
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Chapter 5

Conclusion

5.1 Summary of Findings

In the following, we provide a list of the research questions studied in this thesis and a
brief answers to each of them based on what we found:

How do nonverbal aspects of a humanoid robot’s behaviour (different types of
gaze and arm movements) influence the way human teachers perceive a trainee
robot in terms of confidence, calmness, proficiency in the task, attention, ea-
gerness to learn, being goal-driven, and liking the task? The short answer is: in
several forms. We discovered that adjusting the way that a robot’s gaze is split between
the teacher and the task was effective in controlling perceived attention, calmness, liking
the task, eagerness to learn, and being goal-driven. Additionally, the speed of performing
the actions, along with the duration and frequency of the pauses, were effective in shaping
perceptions of all the aspects mentioned in the research question. In Table 3.6, we provided
guidelines on how each behavioural adjustment could be beneficial for a given purpose.

Can the professional look of a trainee robot (indicated by its clothing style)
affect view of the teachers about the robot and their trust? We did not find any
evidence suggesting that the way we changed the clothing style of a robot affected teachers’
attitudes and trust. However, a robot that was neatly dressed conveyed more impression
of being “professional” compared with the same robot that was dressed untidily.

How do the perceptions of teachers about behaviours of a trainee robot change
over time, while it is practising a task and appears to gradually improve? Every
aspect of teachers’ interpretations that we measured (e.g., perceived attention, proficiency,
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etc.) was found to be improving when the behaviours of the robots improved (i.e., they were
negatively correlated with the severity of robots’ errors throughout the teaching rounds).
We even detected some instances when robots appeared more confident, calm, and eager to
learn by just repeating their correct practice of the task, without showing any improvement
in their behaviour.

How does the last impression of a student robot affect trust? (i.e., if a robot
is generally improving but an error happens in the end, how does that single
mistake affect teachers’ trust in the robot? Do people expect the robot to work
properly afterwards and consider the faulty behaviour as an accident?) Human
teachers were found to be strict about the actions of their student robots. Even a small
error when practising a recently learned task had a significant negative effect on trust,
and negatively impacted participants’ general willingness to use the robots in the future.
Larger errors had more adverse effects.

Do different personalities of human teachers and their disposition to trust other
people affect their perception of and trust in a trainee robot? Yes. Similar to
previous studies, we found trust in the robots to be correlated with several personality
traits of participants as well as with their disposition to trust other people in a teaching
interaction. More details were presented in Section 4.4.5.

5.2 Contribution to Knowledge

Our key contributions to the HRI knowledge are outlined below:

• We demonstrated that a student robot can adjust its nonverbal behavioural param-
eters in certain manners to convey specific information to its human teacher, who
is observing its actions. Using the predictive model presented at the end of the dis-
cussion in Chapter 3, the robot designers would be informed to embed an ability
in robots to adjust their behavioural factors and motion parameters whenever they
need to imply something to their human teachers in a specific human-robot teaching
situation. For example, a robot may want to appear to be less eager to learn for
cases when it has more important tasks to do other than staying and being trained.
In this case, we found it is helpful if the robot looks only at the teacher and makes
long low-frequency pauses during its task performance. On the other hand, if a robot
wants to motivate the teacher to move forward with teaching more material, i.e., by
appearing to be as more eager to learn, one effective behavioural strategy for the
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robot was found to be gazing mainly at the task objects and checking the teacher
occasionally while acting fast and with smooth motions.

• A virtual platform has been created based on findings from an experimental study.
This allows a large group of participants to teach something (i.e., their own prefer-
ence) to a robot, and helps people feel that they are acting as a teacher, even though
the teaching process is virtual. Besides the experiment that was presented here, this
platform can be used by other researchers in order to remotely study human teachers’
attitude/behaviour/perception,etc. in situations when robots improve by learning or
make errors.

• We discovered that the behaviours of a robot, even in the training phase, are very
important for for shaping trust in teachers who have taught them the task. A small
error of a trainee robot was found to significantly affect trust and some other aspects
of the interaction. Results also suggested that the untidy clothing style of a robot may
not affect trust or any other attribute of the robot, except its perceived professionality.

These findings contribute to the HRI knowledge by informing the designers and re-
searchers about the different approaches that can be used to increase the efficiency and
success of trainee robots.

5.3 Limitations and Future Work

Conducting our three experiments virtually enabled us to have a larger scale of data us-
ing the MTurk crowdsourcing framework, which lowers the risk of experimenter bias that
can be caused due to direct face-to-face engagement of the participants with the experi-
menters [86]. Online experiments are also gaining popularity in HRI during the COVID-19
pandemic as a safe data collection method [38] and results obtained with this method
have been shown to be comparable with in-person studies [61, 9]. We designed our virtual
interfaces carefully to minimize the effects of confounding factors. Moreover, as discussed
previously, strict inclusion criteria were used when recruiting participants and attention
checks were put to identify those who were not paying enough attention to the task, which
helped in improving the quality of the collected responses.

Nevertheless, our results may be different from when people teach a real robot in a
live HRI scenario. As participants get involved in interacting with a physical robot, they
might pay attention to different aspects of it to assess its capabilities and feel higher levels
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of empathy [108], which may affect perceived attributes and trust. In a recent study,
researchers failed to replicate the results of their virtual study when conducting the same
experiment in a real-world environment, in the context of playing a game with a robot [118].
Unlike that case, since the evaluation steps in our studies took place after prior (envisaged)
teaching interactions, our participants were not distracted during the evaluation of the
robot by another task (e.g., thinking about a game). All three experiments presented in
this thesis, however, may possibly be conducted in the real world. Future studies should
aim to validate our findings, and can also be extended in the ways noted for each study in
Sections 3.4 and 4.5.
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Appendix B

Experiment 1 Online Interface

This appendix includes the screenshots form the designed online interface used for con-
ducting Experiment 1.
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Figure B.1: Information and Consent Form. You may need to zoom-in to read the text.
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Figure B.2: Demographic Information Form asking the participants’ about their gender,
age, education and culture.
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Figure B.3: Robot Learning Familiarization step, part 1, with a video showing how humans
can teach robots in real-world. The “next” button has not appeared yet.
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Figure B.4: Robot Learning Familiarization step, part 2, with a video showing our simu-
lated iCub robot doing the designed task from various points of view.
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Figure B.5: Instructions, where the situation was explained to the participants using text.
This example shows the description shown to people in group 2
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Figure B.6: Evaluation Task, when the measures appeared after the robot finished its
actions. The main part of the experiment was to ask participants to judge each variation
of the robot’s behaviours as shown in different videos. The measures appeared after the
end of each video in a random order with sliders. A brief instruction was displayed on top
of the page to remind participants of the current situation. They could also replay the
video in case anything was missed. This example shows what participants in group 1 saw.
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Figure B.7: Ending Message was containing a code to submit the task, for those who were
able to finish our study. All the participants were asked in the Information and Consent
form to contact us to receive a code in case they do not finish.
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Appendix C

Experiment 2 Online Interface

This appendix includes the screenshots form the designed online interface used for con-
ducting Experiment 2.
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Figure C.1: Information and Consent Form. You may need to zoom-in to read the text.
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Figure C.2: Demographic Information Form asking only about participants’ gender and
age.

Figure C.3: Instructions were shown before moving on to the Mistake Evaluation Task.
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Figure C.4: Mistake Evaluation Task. One question, related to making a tea, is shown as
an example.
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Figure C.5: Open-ended questions in the Post-experimental Questionnaire

121



Figure C.6: Post-experimental Questionnaire, where the participants also indicated their
own preferences in having the foods.
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Figure C.7: Ending Message was containing a code to submit the task, for those who were
able to finish our study. All the participants were asked in the Information and Consent
form to contact us to receive a code in case they do not finish.
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Appendix D

Experiment 3 Online Interface

This appendix includes the screenshots form the designed online interface used for con-
ducting Experiment 3.
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Figure D.1: Information and Consent Form used for obtaining participants’ informed con-
sent. You may need to zoom-in to be able to read the text.
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Figure D.2: Demographic Information Form asking the participants’ about their gender,
age, education and culture.
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Figure D.3: Initial Check Form used to make sure people are able to see the labels on the
items.
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Figure D.4: Pre-experimental Questionnaire containing the first half of the TIPI ques-
tionnaire
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Figure D.5: Pre-experimental Questionnaire containing the second half of the TIPI ques-
tionnaire
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Figure D.6: Pre-experimental Questionnaire containing the first half of the DT question-
naire
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Figure D.7: Pre-experimental Questionnaire containing the second half of the DT ques-
tionnaire
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Figure D.8: Robot Learning Familiarization Step, part 1, with a video showing how humans
can teach robots in real-world
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Figure D.9: Robot Learning Familiarization Step, part 2, with a video showing a robot
learning how to cook
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Figure D.10: Instructions, where written descriptions along with visual signs indicated to
the participants that they should select one item from each side of the bowl.

Figure D.11: Instructions, where a video demonstrated what happens when participants
click on the containers in the picture to select them.
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Figure D.12: Instructions, where the participants tried using our interface to select two
items.

Figure D.13: Instructions, where the robot started adding the selected items afterwards.
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Figure D.14: Instructions, where the situation was explained to the participants using text.
The “continue” button was appearing with short delay to let the participants fully read
the material.
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Figure D.15: One round of the main Evaluation Task consisted of a teaching and a prac-
tising step. Round 1 is shown with a big error in the robot’s performance (i.e., adding
cleaner to the food).
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Figure D.16: Evaluation Task, when the measures appeared after the robot finished its
actions. The robot has put the dishwashing liquid back in its place.
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Figure D.17: Trust and learning evaluation form that every participant filled after inter-
acting with each robot.
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Figure D.18: Direct comparisons between the two robots in the Post-experimental Ques-
tionnaire
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Figure D.19: Questions about the participants’ preferences in performing their regular
activities
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Figure D.20: Ending Message was containing a code to submit the task, for those who were
able to finish our study. All the participants were asked in the Information and Consent
form to contact us to receive a code in case they do not finish.
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