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Abstract

Symmetric patterns are used widely in clothing manufacture. However, the disconti-
nuity of patterns at seams can disrupt the visual appeal of clothing. While it is possible
to align patterns to conceal such pattern breaks, it is hard create a completely seamless
garment in terms of pattern continuity. In this thesis, we explore computational methods
to parameterize the clothing pieces relative to a pattern’s coordinate system to achieve
pattern continuity over garments. We review previous work related to pattern alignment
on clothing. We also review surface quadrangulation methods. With a suitable quadrangu-
lation, we can map any planar pattern with fourfold rotations into each quad, and achieve
a seamless design.

With an understanding of previous work, we approached the problems from three an-
gles. First, we mapped patterns with sixfold rotations onto clothing by triangulating the
clothing pieces and ensuring consistency of triangle vertices on both sides of a seam. We
also mapped patterns with fourfold rotations onto clothing by optimizing the shape of
each clothing piece in the texture domain. Lastly, we performed quadrangulation guided
by cross fields, and mapped fourfold pattern units into each quad. We assembled and
simulated the texture mapped clothing in Blender to visualize the results.
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Chapter 1

Introduction

(a) Herringbone (b) Plaid (c) Floral (d) Paisley

Figure 1.1: Some common fabric patterns

In clothing manufacture, garments are often assembled from patterned fabrics. Many
traditional patterns are geometric, such as polka dots, herringbone and plaid. There are
also more free-form patterns such as florals and paisleys. Some patterns are shown in
Figure 1.1.

One common feature of traditional patterns is that they are fairly repetitive. There
are several reasons for this repetition. First, the repetition reduces the complexity of the
pattern design process. The designer creates a relatively small fragment of the overall
pattern, which is then repeated to cover as much fabric as is needed. Repetition is also
an integral part of the manufacturing process for fabrics. Entire rolls of fabric are printed
from a few metal cylinders. The pattern must therefore repeat at a distance equal to
the circumference of the cylinders. Besides manufacturing limitations, repeated patterns
conform to what Gombrich called the “sense of order” in human aesthetics [11]: repetition
can produce visual interest without overwhelming the eye.
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Figure 1.2: A men’s dress shirt by Robert Graham
The fabric pieces are oriented so that the pattern is seamless across the placket. But no

choice of orientation can completely eliminate the discontinuities at the shoulder.

A garment is constructed by cutting a set of shapes out of fabric and sewing them
together. We will refer to a garment design as a collection of fabric pieces, each one a
planar topological disk. The boundary of each piece can be decomposed into a circular
sequence of boundary segments, which are a mixture of straight lines and curves. A subset
of these boundary segments are paired with segments elsewhere in the garment design
(possibly on the same fabric piece) and will be sewn together to create seams. We refer
to these segments as seam segments, and assume that they are labelled to indicate the
pairing relationships. Seam segments need not be congruent, but they must have the same
arclength.

When fabric pieces are printed with a repeating texture, it is difficult or impossible to
position and orient the pieces in texture space so that the texture passes continuously across
all seams. If two seam segments are congruent, then the texture can be made continuous
across that seam, as in the placket (the row of buttons) in Figure 1.2. But discontinuities
are rarely avoidable across the whole garment. In places where multiple pieces of fabric
meet in a loop, as in the shoulder in Figure 1.2, the fabric orientations can never be fully
reconciled with the pattern. In this case, the complexity of the paisley texture helps to
conceal the discontinuity. In general, the designer’s best option is to choose “natural”
orientations for the pieces. For example, a plaid pattern is typically oriented horizontally
and vertically on the front and back of a shirt, and flows along the sleeves from shoulder
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to wrist.

In computer graphics, research on geometry processing has yielded a number of al-
gorithms for seamless parameterization of surfaces [4], which might be used as a basis
for constructing continuous textures for garments. Furthermore, modern computer-aided
manufacturing, and web-based services like Spoonflower (spoonflower.com), make it easier
than ever to imagine designing a pattern that exactly matches the pieces of fabric that will
ultimately be assembled into a garment.

Given the pieces of fabric with the seams identified, and the repeating pattern, we want
to find textures that can be mapped to the fabric pieces that evoke the original pattern
and that flow continuously across all seams. In this thesis, we will demonstrate a few
different techniques for solving this problem, by manipulating the repeating pattern so
that it conforms to the shapes of the fabric pieces.

We will explore two main approaches to fitting patterns to fabric pieces. In the first,
we subdivide fabric pieces into small units, and warp fragments of the original pattern
into those units. Every periodic pattern can be decomposed into repeated copies of a
fundamental region. For certain pattern types, we can define a square or equilateral triangle
that is made up of a union of fundamental regions. By subdividing fabric pieces into shapes
similar to one of these, we can accommodate patterns of these types.

In the second approach, we imagine warping the fabric pieces in the mathematical
domain of the pattern, in such a way that the two sides of a seam are made to be equivalent
under the pattern’s symmetries. These new piece shapes are then used to define a warp of
the pattern back into the original pieces, producing a seamless garment.

Obviously, the pieces and seams that make up a garment are meant to be assembled
into a 3D shape. But the precise geometry of that shape is not uniquely defined from the
flat pieces. Algorithms exist for simulating a plausible 3D garment from its pieces [2], and
given a 3D model of a garment, we could turn immediately to standard parameterization
algorithms in order to decorate it with a regular pattern. However, in this thesis we adopt
the stance that such approaches are overkill. A sewing pattern is a natural representation
of a piecewise developable 3D surface. It should be possible to apply a pattern to a garment
without using any additional information (such as curvature) that is not already present
in the piece shapes and seams. The continuity of the pattern will emerge when the pieces
are sewn together, allowing the garment to assume whatever 3D shape it wants.

Throughout this work, we will use the fabric pieces of a shirt in Figure 1.3 and a
pair of pants in Figure 1.4 to test our procedures. We obtained the shirt pattern from
www.allfreesewing.com and the pants pattern is from www.siemachtsewingblog.com.
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Figure 1.3: Shirt pattern
The letters indicate the seams.

Figure 1.4: Pants pattern
The letters indicate the seams.

Our main contributions are the following.
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• We present a method based on Delaunay triangulation, which permits any Euclidean
pattern with sixfold rotational symmetries to be transferred to a garment.

• We present a method for patterns with fourfold rotational symmetries, which involves
deforming fabric pieces in pattern space in order to derive a warp of the pattern to
the garment.

• We present a method based on constructing a quadrangulation guided by a cross
field, which permits any Euclidean pattern with fourfold rotational symmetries to be
transferred to a garment.

1.1 Organization

Chapter 2 provides mathematical background on surface parameterization, cross fields and
wallpaper groups, as they are the foundation of our work. Chapter 3 provides an overview
of the relevant work about clothing pattern matching and mesh quadrangulation. Chapter
4 details our algorithm to map patterns with sixfold rotations onto clothing. Chapter 5
is about optimizing input pieces in pattern space for global parameterization. Chapter 6
describes our implementation of cross field guided quadrangulation.

5



Chapter 2

Mathematical background

This chapter provides an introduction to the mathematical concepts that are important
to our purpose. We begin with the fundamentals of surface parameterization. We then
introduce cross fields. Finally we briefly cover wallpaper groups.

2.1 Surface Parameterization

Viewed mathematically, a garment is a two-dimensional manifold surface S with one or
more boundary curves. We will further regard a repeating pattern as being defined in a
two-dimensional pattern space with axes u and v. A parameterization of the garment is a
bijective mapping between the points of S and a subset U of the uv plane. This definition
works equally well regardless of whether the garment is viewed as a single surface in 3D,
or as a collection of disjoint 2D fabric pieces with labelled seams.

Surface parameterization has a long history in computer graphics. Floater and Hor-
mann [10] offer an introduction and survey of techniques as of 2005; this section refers to
that work.

In general, a surface has many possible parameterizations. We are usually interested
in parameterizations that minimize some measure of distortion—the extent to which the
pattern is scaled, stretched, or warped when mapped to the surface. A few especially well
behaved types of parameterization can be understood via a function of a surface called the
first fundamental form [8].

Let S be a surface, and let x : U → S be a parameterization of S. Fix a point
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p = x(u0, v0) ∈ S, and let α(t) = x(u(t), v(t)), t ∈ (−ε, ε) be a curve on the surface, with
p = α(0).

The first fundamental form is a quadratic form defined at every point on the surface.
At each point p, it gives, for a vector ~w lying in the tangent plane Tp at p, the dot
product of w with itself. It can be defined as a function Ip : Tp(S) → R such that
Ip(~w) = 〈~w, ~w〉 = |~w|2 > 0.

Now let xu = ∂x
∂u

(p) and xv = ∂x
∂v

(p). The vectors xu and xv can be seen as the images of
unit vectors u and v on the surface. The following equation expresses the first fundamental
form in base xu, xv. Note that u′ and v′ indicate the derivative of u and v with respect to
t.

Ip(α
′(0)) = 〈α′(0), α′(0)〉p = 〈xuu′ + xvv

′, xuu
′ + xvv

′〉p
= 〈xu, xu〉p(u′)2 + 2〈xu, xv〉pu′v′ + 〈xv, xv〉p(v′)2

= E(u′)2 + 2Fu′v′ +G(v′)2
(2.1)

where

E = 〈xu, xu〉
F = 〈xu, xv〉
G = 〈xv, xv〉

(2.2)

are the coefficients of the first fundamental form.

The coefficients above lead naturally to the expression of this quadratic form in a 2× 2
symmetric matrix:

I =

(
E F
F G

)
(2.3)

An isometric mapping preserves lengths, a conformal mapping preserves angles, and
an equiareal mapping preserves areas. The following relations between I and the types of
mapping exist.

1. x is isometric ⇔ I =

(
1 0
0 1

)

2. x is conformal ⇔ I =

(
η 0
0 η

)
for some η > 0
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3. x is equiareal ⇔ det(I) = 1

If E = G = 1, then the lengths of u and v are not changed by the mapping x, and if
F = 0, the images of u and v are orthogonal to each other. Therefore, if I is an identity
matrix, the mapping is an isometry.

If I is the identity matrix multiplied by a constant η, then the angle between local
coordinates uv is still preserved, and the mapping is a conformal mapping.

For equiareal mappings, the relation between det(I) and the area is less intuitive. Let
Q be a subset of U , corresponding under x to a subset of the surface S. The area of this
subset of S is given by ∫

Q

|xu ∧ xv|dudv

where ∧ is the cross product operator.

And since

|xu ∧ xv|2 + |xu · xv|2 = |xu|2|xv|2,

|xu ∧ xv| =
√
EG− F 2

The element of the area is therefore the square root of the determinant of I, and having
det(I) = 1 means that the area is preserved under the mapping.

Most surfaces do not admit isometric planar parameterizations. Equiareal mapping
is not unique, and may exhibit rotational behavior, which is unsuitable for our purpose.
Conformal mapping is the most isometric mapping that one can get in practice. There are
various ways to compute discrete conformal mapping on triangle meshes. However, most
methods to compute conformal mapping do not take into account boundary conditions
[13, 23, 16]. In this thesis we would like to have the ability to fix the boundary. For this
reason, we find harmonic mapping more suitable in our case.

Harmonic mapping is a mapping that satisfies the Laplace equations

4u = 0,4v = 0 (2.4)
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One property of the harmonic mapping is that it minimizes the Dirichlet energy. Let
f(x, y, z) = (u(x, y, z), v(x, y, z)) be a surface parameterization function.

ED(f) =
1

2

∫
S

||gradf ||2 =
1

2

∫
S

||gradu||2 + ||gradv||2 (2.5)

Harmonic mapping is also convenient to compute. Once the boundary values are fixed,
the texture coordinates of the interior of the shape can be solved with the Laplace equation.

For a discretized surface, the harmonic mapping can be calculated with the finite el-
ement method. The function value inside a triangle element is linearly interpolated from
the function values at the vertices with barycentric coordinates.

Figure 2.1: A triangular finite element

f(x, y) = N1(x, y)f(v1) +N2(x, y)f(v2) +N3(x, y)f(v3) (2.6)

where the functions Ni(x, y) give the barycentric coordinates of the vertex inside the tri-
angle. These three functions are also sometimes known as the shape functions.

It can be shown that, with shape functions that equal to the barycentric weights of the
vertices, the gradient of a function in a triangle element T , gradTf , satisfies the following
equation:

2

∫
T

||gradTf ||2 = cotα3||f(v1)−f(v2)||2 + cotα2||f(v1)−f(v3)||2 + cotα1||f(v2)−f(v3)||2

(2.7)

9



The Laplacian equation for one vertex of the surface can then be written as∑
j∈Ni

wij(f(vj)− f(vi)) = 0 (2.8)

where Ni is the set of vertices that are neighbours of vi, and wij = cotαij + cot βij.

Figure 2.2: Weight of an edge

As long as the surface has at least one boundary vertex, the linear equations can be
expressed with a symmetric matrix that has a unique solution. The number of rows in
matrix M equals the number of internal vertices.

Mij = 1 if i = j

Mij = 0 if j /∈ Ni

Mij = wij = wij/
∑
k∈Ni

wik if j ∈ Ni

The known values at the boundaries go to the right hand side of the equation. The
matrix needs to be solved twice, once for u and once for v.

Methods that are similar to discrete harmonic mapping include shape-preserving meth-
ods and mean-value coordinates [10]. These methods produce similar-looking results, while
the latter two behave more robustly with thin triangles.

10



2.2 Cross Fields

Some of the work in this thesis will involve computing continuous direction fields on fabric
pieces in the uv plane. The literature on rotationally symmetric direction fields provides
abstractions and algorithms for these computations.

A cross is an arrangement of four equal-length vectors, arranged at multiples of 90
degrees around a point [4]. A cross field assigns a cross to every point on a surface or in
a 2D shape. Cross fields are special cases of n-fold rotationally symmetric direction fields,
with n = 4.

Palacios and Zhang [20] provide a detailed explanation of the cross field. A cross s can
be represented with

s =
{(R cos(θ + 2kπ

4
)

R sin(θ + 2kπ
4

)

)
|0 ≤ k ≤ 3

}
(2.9)

where R is the length of the arms of the cross, and θ is the angular component of one of
the member vectors. To avoid ambiguities in the cross field calculation, a representation
field can be used. A representation field is a vector field, where a representation vector is
written as (

R cos(4θ)
R sin(4θ)

)
. (2.10)

A representation field can be calculated and then converted to a cross field. To calculate
a representation field for a shape, we typically choose explicit field values for the boundary
of the shape and then interpolate a smooth field in the interior. Most interpolation schemes
aim to minimize an energy measure of the representation field. One such measurement is
the Ginzburg-Landau energy [1] which is the Dirichlet energy plus an adjustable penalty
term that aims to produce unit-length representation vectors:

Eε(f1, f2) =
1

2

∫
S

(|∇f1|2 + |∇f2|2)dS +
1

4ε2

∫
S

(f 2
1 + f 2

2 − 1)2dS (2.11)

Here, f1 and f2 correspond to the two components of the representation field.

A singularity of a cross field is a point whose cross vanishes. Hyperbolic sectors, which
categorize crosses with the same behavior, meet at singularities. We would like to find the
separatrices, which are boundaries of the hyperbolic sectors, and thus get the quadrangular
patches. We start with the singularity’s Jacobian:
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(
a b
c d

)
where a = ∂f1

∂x
(p0), b = ∂f1

∂y
(p0), c = ∂f2

∂x
(p0), d = ∂f2

∂y
(p0)

The local linearization at p0 is

LV (p) = Jacobian(p0)(p− p0) (2.12)

This gives the values of the representation field near a singularity. With local lineariza-
tion, the directions of the separatrices that emanate from a singularity can be calculated.
If p lies on a separatrix near a singularity p0, then the vector from p0 to p must align with
the representation vector at p.

sin(4θ)

cos(4θ)
=
c cos(θ) + d sin(θ)

a cos(θ) + b sin(θ)
(2.13)

This equation can be transformed into a fifth order polynomial, yielding at most five
separatrices at this singularity.

2.2.1 Wallpaper Groups

Although there are endless varieties of fabric patterns, they can be categorized into different
wallpaper groups based on their symmetric properties. Kaplan gave an explanation of
wallpaper groups [14]. A symmetry is a rigid motion that maps a figure onto itself. The
symmetries of a figure form a group called the figure’s symmetry group. A figure whose
symmetries include translations in two non-parallel directions is called a wallpaper pattern,
and its symmetry group is called a wallpaper group. There are precisely 17 wallpaper
groups, which are based on different combinations of rotation, reflection, and glide reflection
symmetries in addition to translations. A wallpaper pattern’s base repetition unit is called
a tile. The patterns in the same wallpaper group can be applied in the same way. We can
view a garment as a surface that needs to be tiled. Different approaches are needed to
tile the garment with patterns belonging to different wallpaper groups. In this thesis we
are interested in patterns that include fourfold rotations (namely, patterns belonging to
wallpaper groups p4, p4m, or p4g), and patterns that include sixfold rotations (and belong
to groups p6 or p6m). Figure 2.3 shows sample patterns for each of these groups, with
single tiles highlighted.

12



(a) p4 (b) p4m (c) p4g

(d) p6m (e) p6

Figure 2.3: Some patterns
Examples of wallpaper patterns belonging to the five symmetry groups we will consider

in this thesis. For each one, a tile is highlighted.
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Chapter 3

Literature Review

This chapter gives an overview of the previous work that inspired this thesis. There are
two major methods of mapping patterns onto clothing. The first one finds an optimal
way to place a large region of the pattern onto each piece of fabric. This approach will
be discussed in Section 3.1. The second option is to partition the clothing into cells that
approximate simple shapes like triangle and squares, and then map a unit of texture into
each cell. Section 3.2 surveys techniques for mesh quadrangulation, which can support
patterns that can be decomposed into square units.

Mesh processing algorithms might not seem directly related to our goal, since our input
is piecewise developable fabric pieces. However, most works on mesh quadrangulation
only use the mesh as a discretization of the given geometry. It is the attributes of the
underlying geometry that determine the result. As for us, we do not only have the freedom
to subdivide the input clothing pieces, we are also given the seams. The seams are the
only places where curvature is potentially nonzero. Therefore, we are able to use the ideas
from mesh quadrangulation work, and make simplifications.

3.1 Pattern Alignment via Optimization

Wolff et al. [31] developed an algorithm that improves the alignment of texture patterns
along clothing seams. The method uses the symmetries of patterns of different wallpaper
groups, and finds an optimal way to fit patterns onto the pieces of fabric. The shapes of
the clothing pieces are then adjusted to further improve the alignment. The input fabric
pieces are first triangulated and turned into a 3D clothing mesh using cloth simulation.
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All subsequent steps use the 3D clothing mesh directly. The optimization process involves
three steps. Only pairs of triangles that will be joined along an edge to make a seam are
involved in the first two pattern fitting steps. The first step is to find rotations of the
pattern on each piece of fabric. The total rotational energy is the sum of the squared angle
differences between orientations. The angle difference between pattern orientations is the
minimum angular amount that a pattern needs to rotate to coincide with the orientation
of the pattern on the adjacent fabric piece. To allow more freedom in aligning the pat-
terns, reflections are permitted. The reflection energy is defined in the same way, but in
reflection energy calculation, the angle is substituted with angle difference after performing
reflection. The second step is to calculate the translations of patterns. In the translation
energy calculation, the sum of distances between closest equivalent points on the patterns
is minimized. An iterative algorithm is performed to keep adjusting the rotations and
translations of fabric pieces within the pattern’s coordinate system until convergence. The
last step is to optimize the shapes of the fabric pieces in the world coordinates. According
to the established texture pattern on each clothing piece, the ideal shapes of fabric piece
boundaries are calculated, and moved to locations that are closest to their originals. This
adjustment changes the shape of the final garment, thus some fidelity to the original cloth-
ing design is sacrificed for a better fit of the pattern. The above optimization steps are
performed with multiple initial configurations of fabric piece rotations and translations,
and the best candidate that minimizes the shape adjustment is selected. Figure 3.1 shows
the intermediate results of the optimization process.

The authors also published another paper [30] which builds upon the initial work and
takes the symmetry of the human body into account in the optimization process.

3.2 Quadrangulation

Remeshing is any process for converting a provided discretized surface, usually represented
as a triangle mesh, into a new mesh that meets certain topological or geometric constraints.
Mesh quadrangulation is a sub category of remeshing.

If we focus on patterns containing fourfold rotations, we can benefit from a range of
mesh quadrangulation algorithms. With a quadrangulated mesh, we just need to map a
repeat unit from the pattern trivially onto each quad. Bommes et al. [4] give a survey of
the state of the art in mesh quadrangulation as of 2013. We adopt the terminology from
their paper as follows:

The valence of a vertex is the number of outgoing edges.
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Figure 3.1: Pattern optimization steps [31]
The pattern near the shoulder area becomes increasingly aligned after each step.

A regular vertex has valence 4 if it is an internal vertex, valence 3 if it is on the boundary
but not corner, valence 2 if it is on a corner.

A vertex is called extraordinary or irregular if it is not regular.

A regular mesh consists only of regular vertices.

A semi-regular mesh is created by refining a coarse base mesh made up of patches. The
vertices where patches meet include all extraordinary vertices in the mesh.

A valence semi-regular mesh is a mesh that consists mostly of regular vertices.

A unstructured mesh is a mesh that consists mostly of irregular vertices.

3.2.1 Direct Quadrangulation

One way to construct a quad mesh is to start with a triangle mesh, and convert triangles
directly into quads.

Owen et al. [19] create quadrilaterals from a triangular mesh by working inwards from
the initial boundaries of the mesh. Neighbouring triangles of a front edge are modified to
form a quad. The quad’s quality is improved with local smoothing. Blossom Quad [22]
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does the conversion using perfect matching, and optimizes the shapes of all quads globally.
Other methods [28, 27] identify a good matching and then process the leftover triangles
with methods such as deleting and flipping edges. The performance of this type of method
depends on the input mesh. They have limited range of resolution, since obtaining a good
triangulation with large triangles is hard. Also, the resulting mesh is usually unstructured.
In our work, we do not have any requirements for the regularity of the mesh, but we care
about the quality of the quads. We do not want the p4 pattern tile to deform too much
in terms of angles. Quadrilaterals constructed by joining pairs of triangles in a Delaunay
triangulation are usually not close enough to squares.

In our case, however, we start with the shapes of fabric pieces in a garment design. we
have the freedom to choose where to place the triangulation vertices in the input shapes.
We find the following work more suitable to our purpose.

Mitchell et al. [18] use Delaunay triangulation and the two-color theorem [25] to quad-
rangulate 2D shapes. First, red and blue points are distributed within a shape using either
Maximal Poisson Disk Sampling (MPS) or an advancing front method. A visualization of
the quadrangulation by the two methods is shown in Figure 3.2. Each point is associated
with a circle of the same colour and a circle of the other colour. Each circle indicates the
region where other points of that colour cannot be. For MPS, points are generated ran-
domly inside the region, while in advancing front, points are generated along the shape’s
boundary, then propagated inwards. The point generation process stops when no more
points can fit in the region. Delaunay triangulation is then performed on the points. Next,
the edges connecting points of the same color are removed. At this point, mostly quads are
left. For polygons that are left, they can be triangulated by adding a Steiner vertex to the
polygon. Quads with reflex angles can also be subdivided into smaller quads with smaller
angles. The paper proves why such operations can always be performed, but we will not
go into details. With a suitably chosen step size, the advancing front method of generating
the vertices guarantees that most vertices will be regular, yielding a valence semi-regular
mesh.

3.2.2 Patch-based Parameterization

A surface, typically represented by a triangle mesh, can be converted into a quad mesh
by first partitioning the surface into coarse quadrilateral patches, and then subdividing
each patch into a regular grid of quad faces. The resulting quad meshes are semiregular
according to the definitions presented earlier. Compared to direct quad generation, patch-
based quandrangulation offers more control over resolution. After obtaining the patches,
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Figure 3.2: Quadrangulation with points generated with MPS (left) and advancing front
(right) [18]

they can be subdivided and refined as desired by the user. The following works demonstrate
various ways of generating the patches over a mesh.

Boier-Martin et al. [3] generate patches by clustering the mesh faces. First, an initial
clustering is performed based on face normals, which gives an indication of flat regions.
The cluster centres are then used as seeds to generate more refined clusters, this time using
spatial distance. The new centers are calculated, and this process is repeated until con-
vergence. All clusters must be homeomorphic to discs, roughly convex, and representable
using an oriented height field. The second condition ensures the regions are well-shaped,
and the last condition ensures that the parameterization does not distort the region’s shape
by too much. Any clusters that do not satisfy all three conditions are split until all clusters
satisfy the conditions. Then cluster edges are cleaned up. The resulting cluster bound-
aries are polygons that can be split into quadrilateral patches without introducing Steiner
points. The resulting base complex can be re-sampled robustly with the height field of
the vertices. Catmull-Clark subdivision is applied to generate multiple resolution levels,
and each level is re-sampled to achieve better quality before the next level is generated.
Figure 3.3 shows an input mesh and the quadrangulated result.

Carr et al. [6] also use spatial clustering to obtain the patches. Instead of Euclidean
distance, Chebyshev distance is used as a metric, which encourages the formation of square
patches. Initial cluster centres (seeds) are placed on boundaries or at features with high
curvature. In the cluster expansion process, mesh faces in each cluster are parameterized,
and a potential new face’s parameterization is evaluated based on its distance to its clus-
ter’s centre, the distortion that it will introduce, its potential to flip, and its contribution
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Figure 3.3: Mesh quadrangulation by Boier-Martin et al. [3]

to the smoothness of the cluster’s boundary. Let us refer to the 2D space that the mesh
maps to as the parameterization space. After expansion, the cluster centers in parame-
terization coordinates are calculated by taking a weighted average. The orientations of
the parameterized clusters are also recalculated using principal component analysis. New
seeds are placed at the frontiers of the existing clusters, and the process repeats until a
satisfactory partition forms. Then the corners are identified for each patch, and the patch
is remeshed to avoid degenerate triangles in the parameterization coordinates. Finally all
patches are parameterized. Figure 3.4 shows the patches at each step.

Figure 3.4: Patch generation by Carr et al. [6]
The first two images show the iterative patch generation process. The third picture shows
the finalized patches. The last picture shows the parameterization of each patch with grid

textures.

Building upon earlier work by Lee et al. [15], Daniels et al. [7] use a coarsening technique
to obtain the patches. First, each triangle is subdivided using Catmull-Clark subdivision,
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resulting in an all-quad mesh. The mesh is then progressively coarsened with a simplifi-
cation operation that preserves feature edge loops. Let us call the mesh before coarsening
M , and let us call the coarsest mesh M0. The mesh’s forms at in-between steps are stored
as keyframe meshes. For each keyframe mesh, its vertices are projected onto the next
keyframe mesh using ray-casting. The mapping between two consecutive keyframe meshes
is then relaxed until all inverted elements (neighboring faces whose projections overlap) are
resolved. After all the projection functions are defined, they can be composed to yield a
projection M to M0. This mapping is bidirectional which allows backward projection. M0

is then refined so that each face becomes a regular patch. The sampling on M0 is guided
by the surface area of M so that when the vertices are projected back onto M , the area of
each face is similar. Figure 3.5 shows the quadrangulation process.

Figure 3.5: Semi-regular quadrangulation by Daniels et al. [7]
(a) is the input mesh. (b) is the mesh processed with Catmull-Clark subdivision. (c)

shows the coarsening process. (d) is the mapping from the the mesh at step (b) to the
base mesh. (e) the the refined base mesh. (f) shows the vertices on the refined base mesh
projected back onto the original surface, which is the final result. (g) shows a grid texture

mapped onto each patch.

PolyCube-Maps [26] are another technique that can yield patches for quadrangula-
tion. The original mesh is approximated by a polycube (a collection of face-connected unit
cubes). The faces making up the surface of the polycube are projected onto the model,
and every vertex of the mesh is assigned to the polycube face whose projection contains
it. Every vertex is then projected along its normal onto the polycube surface. The pa-
rameterization is optimized by minimizing the deformation energy. Figure 3.6 shows the
quadrangulation process with polycube maps.

Dong et al. [9] apply discrete Morse theory to create a base quadrangular complex for
a mesh. First, the discrete Laplacian operator L for the mesh is computed. The Laplacian
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Figure 3.6: Quadrangulation with polycube map [26].
The first image is the input mesh, the second image is the quadrangulated mesh with
each patch texture mapped with a square grid. The last image shows how the map is

projected onto the polycube surface.

operator takes the form of a symmetric matrix with number of rows equals to the number
of vertices in the mesh M .

Lij =


∑

k wik if i = j

−wik if edge(i, j) ∈M
0 otherwise

An eigenvector of the Laplacian matrix, called a Laplacian eigenfunction, is chosen
to be the surface function. The Laplacian eigenfunction assigns a value to each vertex,
and distributes its critical values (saddles, maxima, and minima) evenly across the mesh.
Let us call the vertices with the critical values nodes. The eigenfunction determines the
number of critical values for a mesh. The steepest ascending and descending paths are
traced starting from the saddles. The regions delineated by these paths are the patches.
The nodes, paths and patches form a Morse-Smale complex. A property of the Laplacian
eigenfunction is that all patches are quads. Topological noise can produce narrow patches,
which are removed with a cancellation technique. For each patch, its nodes are assigned
texture coordinates as the vertices of a unit length square. Mappings known as transfer
functions are then computed between patches, so the texture coordinate of a vertex inside a
patch can be expressed in terms of the reference frame of its neighbour patches. The texture
coordinates of the vertices are calculated with discrete harmonic mapping with the values
of the nodes as boundary values. In an iterative relaxation process, the boundaries of the
patches are adjusted and the nodes relocated so that all the vertices inside the patch have
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texture coordinates between 0 and 1, and patch boundaries do not overlap. The process is
repeated until no more adjustments can be made. With every patch parameterized, mesh
quadrangulation can be performed by resampling the new vertices regularly. Figure 3.7
shows the spectral surface quadrangulation process.

Figure 3.7: Spectral surface quadrangulation [9]
The first image shows the input mesh. The second image shows the initial complex. The
third image shows the refined complex. The last image shows the quadrangulated mesh.

3.2.3 Field guided quadrangulation

Several methods use cross fields to guide the construction of patches for semiregular quad-
rangulation. Three major steps are needed in such methods: generation of the orientation
field, specification of the sizing field, and construction of the quad mesh based on the two
fields. For uniform remeshing a constant sizing field should be used, making the definition
of the sizing field trivial. The steps are independent: different combinations of orientation
generation methods and patch creation methods can be used. Some works that we include
in this section are only about orientation field computation [12, 21], while others include
both [5, 20, 29].
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Hertzmann et al. [12] use cross fields to render 3D models with cross-hatching. A
discretized cross field is defined by assigning a cross to every mesh face. The cross field is
optimized to be as smooth as possible by defining an energy measure at each mesh edge,
and minimizing the energy over all edges. The energy at an edge is based on the difference
in cross orientations of the two faces that meet along that edge. Since each face has its own
2D coordinate system, two faces that share an edge need to be “flattened” (brought into
the same coordinate system) before taking the difference of cross orientations. The cross
is expressed as the angle of one arm plus 90k degrees where k is an integer. Let E(i, j)
denote the difference in cross orientations between neighbouring faces i and j. E(i, j) is
an expression that depends on k, but k can be eliminated by transforming E(i, j) into
E0(i, j) = −8E(i, j)4 + 8E(i, j)2 − 1. The energy of the cross field is expressed as the sum
of E0(i, j) over all edges. A cross field guided cross-hatching result is shown in Figure 3.8.

Figure 3.8: Cross hatching generated with cross field [12]

When a cross field is computed based only on mesh geometry and boundary conditions,
the results can be highly sensitive to small variations in mesh geometry, and the field can
contain many singularities. Ray et al. [21] provide a method to remove singularities by
filtering geometry influence. The index of a point in the direction field reflects that type of
singularity at that point. Zero index means that the point is not a singularity. The index is
an expression of the direction field curvature and the geometry’s curvature represented by
angle defect at the corresponding vertex. The paper shows that the index can be precisely
controlled by changing only the period jump of the direction field. With the target indices,
the optimal direction field that minimizes the field’s curvature can be calculated. Figure 3.9
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shows a comparison of a cross field generated with full geometry influence and a cross field
with partial geometry influence.

Figure 3.9: Direction field processing by Ray et al. [21].
The first image shows a crossfield generated with full geometry influence. The second

picture shows the crossfield generated with filtered geometry influence.

Mixed-integer quadrangulation by Bommes et al. [5] bypasses the representation field,
and calculates the cross field directly. The cross field in this work is represented by an
angle field which is defined on the faces, and a period jump field that is defined on the
edges. The energy is defined as the summation of the angle difference between all pairs of
neighboring faces, similar to the energy defined by Hertzmann and Zorin [12]. The angle
difference is calculated by translating the cross’s angle on one face into its neighbour’s
coordinate system. Some orientation values are predefined to preserve sharp features on
the mesh. A greedy heuristic is used to accelerate mixed-integer programming, which allows
the computation of a high quality cross field in linear time. The patches can be derived
from the cross field easily since period jump only happen on patch boundaries. Two steps
are needed to parameterize the mesh. First the mesh is cut out to be homeomorphic to a
disk to match the topology of the texture plane, and singularities are snapped to integer
locations in texture coordinates. Next, the uv values across the mesh are also calculated
by the solver to minimize the sum of the square of the difference between uv values and the
field’s gradient. Transfer functions identical to the ones in spectral surface quadrangulation
[9] are used for cross boundary compatibility. With each patch of the mesh parameterized,
quadrangulation can be performed like in spectral surface quadrangulation [9]. Figure 3.10
shows the intermediate results of mixed-integer quadrangulation.

Palacios and Zhang [20] provide a thorough explanation of fields with n-fold rotational
symmetry (n-RoSy fields) and proposed a field editing algorithm to cancel out pairs of
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Figure 3.10: mixed integer quadrangulation by Bommes et al [5]
The first picture shows the constraint orientations. The second picture shows the
computed cross field and the identified singularities. The third picture shows the

parameterized mesh. The last picture shows the quadrangulation.

singularities. Their technique has proven useful for finding cross-hatching directions and
quad remeshing.

Viertel and Osting [29] explain the concepts of cross fields, representation fields and
separatrices in the context of complex analysis. They also prove that the procedure of
first calculating a boundary-aligned cross field and then using separatrices to partition the
domain always yields four-sided regions. Also, they propose to minimize the Ginzburg-
Landau energy with the Merriman-Bence-Osher (MBO) algorithm [17], which initializes
a random representation field, then solves the diffusion equation until convergence. They
demonstrate the algorithm with 2D input shapes, where the cross field is defined to be
perpendicular to a shape’s boundary. Figure 3.11 shows their cross field generation and
quadrangulation process.
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Figure 3.11: 2D Shape quadrangulation by Viertel and Osting [29]
The first image shows the normal directions of boundary vertices. The second image
shows the solved representation field. The third image shows the cross field and the

traced streamlines. The last image shows the quadrangulated mesh.
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Chapter 4

Patterns with Sixfold Rotations

We came up with a simple way to map patterns with sixfold rotations onto garments. Any
pattern with sixfold rotations, i.e, any pattern with symmetry group p6 or p6m, has tiles
that take the shape of an equilateral triangle. If a tile is warped into any reasonably well
behaved triangulation, like a Delaunay triangulation, we can get an approximately contin-
uous representation of the pattern. Even though the pattern does not have a continuous
derivative at the edges where two triangles meet, because the generated triangles are small
compared to the scale of the fabric pieces, the distortion is spread out through the entire
garment. This chapter describes the details of this approach, and some of its limitations,
and solutions to overcome them.

4.1 Input

As discussed in section 1, the fabric pieces are given as input. The shapes of fabric pieces
are described with either straight lines, or cubic Bézier curves, which will be called boundary
segments. The connectivity between boundaries are identified in the input.

4.2 Procedure Description

The procedure is described as follows. First, we sample points on the boundaries of the
fabric pieces. We assume that the clothing cannot be stretched at the seams, meaning that
seam segments have the same length. For seam segments, we sample the same number of

27



Figure 4.1: Annotated triangle

points on both boundaries. Second, Delaunay triangulation is performed. We used CGAL’s
2D Conforming Triangulation library (https://www.cgal.org/), which is an implementation
of Shewchuk’s algorithm [24]. The triangulation library adds Steiner points inside the fabric
pieces to ensure the triangulation does not contain triangles with angles or sizes outside a
user specified range. Finally, the tile is mapped onto each triangle with affine mapping.

4.2.1 Continuity of Patterns

The patterns are C0 continuous across connecting triangles. Suppose that we are warping
the tile from the uv plane into a triangle with vertices v1, v2 and v3 in the xy plane as
indicated in Figure 4.1. Since u(x, y) and v(x, y) are continuous inside the triangles, we
just need to prove that u and v are continuous on the seam segments.

With barycentric interpolation, we have

f(v) =
||v − v2||
||v1 − v2||

f(v1) +
||v − v1||
||v1 − v2||

f(v2)

For the other triangle that shares edge v1v2, f(v) is calculated in the same way. There-
fore, the patterns are C0 continuous across neighbouring triangles.

With barycentric interpolation, the patterns are not C1 continuous. However, as long as
the two triangles that meet along an edge are reasonably close to equilateral, the derivative
discontinuity will be small and unobtrusive. Furthermore, as we triangulate more finely,
most triangles get closer to equilateral, which is good. Figure 4.2 shows two neighbouring
triangles of different shapes texture mapped with a tile.
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Figure 4.2: Two neighbouring triangles of different shapes mapped with a tile

(a) fabric piece with concave
boundary

(b) fabric piece with convex
boundary

Figure 4.3: Discrepancy between fabric piece boundary and triangulation

4.2.2 Conform Pattern to Shape Boundary

When a fabric piece has a curved boundary, the sampling used to create vertices for the
triangulation necessarily produces a discrete approximation of the piece’s shape. If the
goal is to simulate the appearance of a textured garment in a virtual environment, the
discrete triangulation is likely to be sufficient as long as the triangles are small. But if we
want to print and sew fabric pieces, the discrepancy may be visible: the texture might not
reach all the way to convex parts of the boundary, or it might bleed over concave parts.
Figure 4.3 shows examples of this behavior.

When a triangle contains two or more vertices from the boundary of the fabric piece,
we construct a new shape where pairs of boundary vertices are joined by the boundary
segment they delineate. We use harmonic mapping to warp the pattern non-linearly into
this new shape. We sample the boundary of the shape at a fine scale and apply Shewchuk’s
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triangulation algorithm again to generate a dense triangle mesh. With the fixed boundary
condition, we then warp the original triangular tile harmonically into the new shape. Fig-
ure 4.4 shows the generated finite elements. While this doesn’t completely eliminate the
problem, it can make the error as small as we like.

Figure 4.4: Creation of finite elements on a boundary element

The texture coordinates of the points on the straight boundaries of the original triangle
are held constant. The points are sampled at equal distances on the boundary segments.
For a point p on the curved boundary segment, let the fraction of the length of the path
from the start of the curve to the point p over the length of the curved boundary segment
be t, with t ∈ [0, 1]. Let the curve start at s and end at e, let s’s texture coordinate be
(u(s), v(s)), and let e’s texture coordinate be (u(e), v(e)). The point p’s texture coordinate
is interpolated linearly from (u(s), v(s)) and (u(e), v(e)) by t: u(p) = (1 − t)u(s) + tu(e),
and v(p) = (1− t)v(s) + tv(e).

After the creation of finite elements and boundary texture coordinate values we can
perform a harmonic mapping to get the texture coordinates of inner vertices. The result
is shown in Figure 4.5.

4.3 Results

We control the scale of the texture pattern by specifying the minimal number of vertices on
a shape boundary. For the shirt we experimented with a minimum of 4, 8, and 16 vertices
on the boundaries, while for the pants we used 2, 4, and 8. We used a tile of group p6m
and a tile of group p6. The results are shown respectively in Figures 4.6 and 4.7. Figure 4.8
shows a close up rendering of the patterns mapped onto the clothing.
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Figure 4.5: A triangle mapped harmonically to fill a patch of fabric that includes a bound-
ary segment.

In these renderings, the garments are modelled and simulated based on the same tri-
angulation used for texturing. This coupling imposes artificial upper and lower bounds
on the scale of the triangles. If the triangles are too large, the simulated garment will
not drape properly; if they are too small, the texture will be difficult to resolve. We have
implemented harmonic mapping as a proof-of-concept, but we did not integrate it into the
texturing pipeline for the production of real-world printed clothing.

For all the sizes of patterns that we experimented with, the pattern is seamlessly and
evenly mapped onto the clothing without obvious distortion. The pattern looks natural
within fabric pieces. One can notice some large-scale alignment of the pattern of pattern
due to the fact that vertices are sampled along the boundaries.

We managed to map patterns with sixfold rotations onto fabric pieces and align the
patterns along seams. Patterns with fourfold rotations are also common in clothing design.
The next two chapters detail our efforts to map patterns of fourfold rotations onto clothing.
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(a) shirt with large pattern (b) pants with large pattern

(c) shirt with medium pattern (d) pants with medium pattern

(e) shirt with small pattern (f) pants with small pattern

Figure 4.6: Clothing with seamless p6m patterns
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(a) shirt with large pattern (b) pants with large pattern

(c) shirt with medium pattern (d) pants with medium pattern

(e) shirt with small pattern (f) pants with small pattern

Figure 4.7: Clothing with seamless p6 patterns
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(a) clothing with p6m pattern

(b) clothing with p6 pattern

Figure 4.8: Close up rendering of clothing mapped with patterns of sixfold rotations
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Chapter 5

Regular Parameterization with
Shape Optimization

This chapter is inspired by the work of Wolff and Sorkine [31]. Given a fixed periodic texture
and a sewing pattern for a garment, they translate, rotate, and deform the shapes of the
fabric pieces to minimize the discontinuity in the texture across seams. This approach is
reasonable when a garment must be designed based on a given roll of pre-printed fabric—the
best we can do is to alter the garment to accommodate the texture.

If we are permitted to custom-print fabric pieces, it becomes possible to hold the gar-
ment design fixed and vary the texture instead. In this chapter we explore a variation on
the technique of Wolff and Sorkine where we view their translation, rotation, and defor-
mation as operating on the uv coordinates of the fabric pieces instead of on the geometry.
We compute a set of seamless fabric pieces in texture space, which then induces a warp of
the texture onto the original fabric pieces to produce a seamless garment. We demonstrate
this approach for textures with fourfold rotations.

5.1 Boundary Matching Conditions

Let C1 and C2 be boundary segments in a garment pattern that are intended to be joined
together at a seam. If we have no knowledge of the symmetries of a fabric texture, then
the only way to make the garment seamless is to transform the fabric pieces in texture
space so that C1 and C2 are made to coincide. If the texture is known to have periodic
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Figure 5.1: Equivalent matching boundaries

symmetry, though, then C1 and C2 need only be related by one of the texture’s symmetry
operations, and there will be infinitely many to choose from.

We focus here on textures with fourfold rotational symmetries, that is, textures be-
longing to wallpaper groups p4, p4g, or p4m. We know from symmetry theory that such
patterns must have minimal-length translational symmetries that are orthogonal to each
other. Scale and rotate the texture so that these translations are expressed using the vec-
tors (1, 0) and (0, 1), and so that a centre of fourfold rotation lies at the origin. In that
case, we can see that C1 and C2 can be joined without a visible seam if they are related
through a rotation by a multiple of 90 degrees composed with an integer translation. That
is, we seek integers i ∈ {0, 1, 2, 3}, j, and k such that

C2 = Tj,k(R90i(C1)) (5.1)

where Tx,y represents a translation by vector (x, y), and Rθ represents a rotation about the
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origin by θ degrees. In Figure 5.1, B1, B2, B3 and B4 all match A.

5.2 Shape Simplification

If C1 and C2 are two boundary segments that make up a seam, then they are required only
to have the same arclength. In general they can be arbitrary non-congruent curves. We
will resolve these differences in texture space: we will deform C1 and C2 into two copies of
the same curve C ′ that are equivalent under a symmetry of the texture. The deformation
of the curves will cause the texture to be warped back onto the original fabric pieces, but
the warped texture will be continuous across the seam.

For the purposes of optimization in texture space, we care only about the locations
of the endpoints of C ′ due to the fact that they can potentially lie on two boundary
segments. As long as two seam segments have endpoints that satisfy Equation 5.1, the
endpoints can be connected by two congruent copies of any curve in texture space, and the
resulting textured garment will be seamless. In our proof of concept approach, we simplify
all boundary segments corresponding to seams by replacing them with line segments, as
shown in Figure 5.2. A more general solution would further minimize texture distortion by
constructing a new curve that interpolates between the two connecting boundary segments.

Figure 5.2: Simplified boundaries
The grey curves are the boundary segments. The vectors that start at an boundary

segment’s endpoint and end at the next one are the simplified boundaries. The angles
that they make with the u axis are indicated.
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5.3 Shape Optimization

Our goal is to make all connecting boundaries match, while minimizing the distortion to
the original shapes. Let us refer to the whole process of adjusting the simplified shapes to
satisfy Equation 5.1 for all connecting boundaries as the shape optimization process.

Since we would like the optimized shapes to stay as similar to their initial forms as pos-
sible, it is intuitive to use the difference in the shapes’ angles before and after optimization
as an indication of distortion. However, to represent angle, the dot product of two vectors
is needed, and it would make the optimization problem too costly to compute. One way of
avoiding this complexity is to separate the computation of boundaries’ orientations from
the locations of endpoints, as in Wolff and Sorkine’s work [31].

5.4 Input Processing

Given a set of closed paths making up the boundaries of fabric pieces, we first compute
their signed areas to determine their orientations. We ensure that all paths have clockwise
orientation, reversing any paths that are oriented counter-clockwise. We then distribute
evenly spaced samples along every boundary curve. For a Bézier curve, this is accomplished
by the following steps. First we estimate the arclength of the curve by traversing it in small
time steps. Then the curve’s length is divided by a user defined minimum number of vertices
on a boundary segment to get dv. Finally, the curve is traversed one more time in small
time steps, and a vertex is sampled every time we reach a distance of dv. For connecting
boundaries, we make sure that the number of sampled vertices on both boundary segments
is the same. Because all boundary curves are oriented the same way, their sampled vertices
will match with each other in reverse order. Figure 5.3 shows matching vertices.

Figure 5.3: Matching boundary vertices

The shape’s initial texture coordinates are calculated by multiplying every vertex’s
world coordinates by a global sizing factor. The sizing factor can be decided by the user.
The larger the sizing factor, the smaller the texture appears on the garment.
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5.5 Algorithm Description

As in the previous chapter, we first discretize the input shapes by triangulating them with
Shewchuk’s triangulation algorithm. We then proceed to optimize the shapes’ boundaries,
and finally use the uv coordinates of the vertices on the boundary and perform harmonic
mapping to get the uv coordinates of the internal vertices.

5.5.1 Shape Boundary Optimization

The shape optimization process involves two major steps. First, the shapes rotate rigidly
around the origin in order to optimize orientation differences between seam segments.
Second, the endpoints of the boundary curve segments are modified so that they satisfy
Equation 5.1.

Let C1 and C2 be two boundary segments that will be joined together into a seam.
As discussed previously, we represent these two curves in terms of their endpoints. Let p1
and q1 be the start and end points of C1, and likewise for p2 and q2. We seek to make p1
equivalent to q2 and q1 equivalent to p2 under a symmetry of the texture. We begin by
optimizing the orientations of the fabric piece or pieces containing C1 and C2.

Let aC be the angle that the vector from the start to the end of the curve C makes
with the u axis. Let C1 belong to shape S1, and let C2 belong to shape S2.

We would like to rotate each shape such that the angle difference between boundary
segment pairs are close to integer multiples to 90 degrees. Let θs be the rotation amount of
a shape in degrees, where s is shape’s identifier. Let dP be an integer in {0, 1, 2, 3} where
P = (C1, C2) is the pair ID of connecting boundaries. We would like to minimize diffP ,
where

diffP = (θS1 + aC1)− (θS2 + aC2)− 90dP (5.2)

Figure 5.4 shows an example of diffP . The value diffP measures how much the orien-
tation difference between the simplified boundary segments deviates from their ideal ori-
entation difference, which is an integer multiple of 90 degrees. It suffices to allow dP ≤ 3
because other angles differ from these by multiples of 360 degrees. Let U be the set of
connecting boundaries in the input. The optimization’s goal is to find values of θS that
minimize the following sum:
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∑
P∈U

diff2
P

The optimization problem is a mixed-integer quadratic programming problem, which we
solve using Gurobi (www.gurobi.com).

Figure 5.4: Orientation optimization
The grey shapes are before the rotation, the green shapes are from after the rotation. v1

and v2 are two simplified boundary segments. Their orientation difference after shape
rotation is marked with diffv1v2 . The orientation difference has integer multiples of 90

degrees removed.

After the calculations of θS, the shapes are rotated accordingly about the origin. They
are then translated so that their new centres coincide with their old ones before rotation.
However this step does not affect the result.
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The second part of the optimization process is to modify the locations of the endpoints
of the boundary segments, such that for a pair of connecting boundaries, their simplified
forms satisfy Equation 5.1.

Even though the orientations of shapes are optimized, the orientation differences be-
tween pairs of connecting boundaries are not exactly integer multiples of 90 degrees. We
need to enforce this constraint. First, the angle difference between connecting boundaries
diffP = aC1 − aC2 is calculated, then the closest integer multiple of 90 degrees is chosen for
the pair of boundaries. Let diff ′

p be the final orientation difference between C1 and C2.

diff ′
P = round(|diffP |/90)× 90 (5.3)

For the pair of boundary segments C1 and C2 that has gone through orientation opti-
mization, let p′1, q

′
1, p

′
2, q

′
2 be the new locations of the endpoints. Let the transformation

from the final endpoints of C1 to the final endpoints of C2 be rot(u, v)+(tu, tv). Depending
on diff ′

P , we have


rot(u, v) = (u, v) if diff ′

p = 0

rot(u, v) = (−v, u) if diff ′
p = 90

rot(u, v) = (v,−u) if diff ′
p = −90

rot(u, v) = (−v,−u) if diff ′
p = 180

(5.4)

We would like to enforce Equation 5.1 while moving the boundary endpoints as little as
possible. Let diffu = u′−u and diffv = v′−v be the differences between the final locations
and the original locations in u and v dimension for an endpoint. We have:

{
rot(up1 + diffup1 , vp1 + diffvp1) + (tuP , tvP ) = (uq2 , vq2) + (diffuq2 , diffvq2)

rot(uq1 + diffuq1 , vq1 + diffvq1) + (tuP , tvP ) = (up2 , vp2) + (diffup2 , diffvp2)
(5.5)

Figure 5.5 shows the transformation from the endpoints of one boundary segment to its
mate. Let V be the set of endpoints belonging to boundary segments involved in seams.
The objective of the optimization is to minimize∑

pt∈V

diffu2pt + diffv2pt (5.6)
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with the constraint that tuP and tvP are integers. Again, we used Gurobi to solve this
mixed-integer optimization problem.

Figure 5.5: Vertices optimization
The red vectors show diffu and diffv, and the blue vectors should tuP and tvP . The

circular arcs indicate that the orientation difference is snapped to 90 degrees.

At this point, all endpoints of seam segments satisfy Equation 5.1. We can now deter-
mine the locations of the rest of the vertices on the boundaries. For connecting boundaries,
even though they can take on any shape in uv space, we let them assume their simplified
forms. The vertices’ locations are interpolated linearly from the two endpoints. For the
other boundaries, we interpolate the displacements instead of the locations of the vertices
to preserve the shapes of the boundaries. For a boundary, let p1, p

′
1, q1, q

′
1 be the locations

of the endpoints before and after location optimization. Let dp1 = p′1 − p1, dq1 = q′1 − q1
be the displacements of the endpoints. Let vnum be the total number of vertices on the
boundary. The location of the ith vertex on the boundary is calculated as follows:

t = i/vnum

d = (1− t)dp1 + tdq1
v = v + d
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5.5.2 Harmonic mapping with transfer functions

With the boundaries fixed, we calculate the uv coordinates of the interior vertices. We can
use all the uv locations of boundary vertices as boundary conditions. However, knowing
the connectivities among shapes, for a pair of connecting boundaries, we can represent one
in terms of the other. After all, when the pieces are sewn together, the vertices on the
seams appear only once. Dong et al. [9] use transfer functions to specify the relationship
between vertices of different patches on the same mesh. We can adapt this technique to
enforce continuity across seams. This section details the construction of the Laplacian
matrix with transfer functions.

For each pair of connecting boundaries (C1, C2), let v1 ∈ C1, let v2 ∈ C2 be the vertex
v1 connects with. Let f(v1) = v2, where f is the transformation that brings v1 to v2,
as determined in the previous section. We call f the transfer function in the context of
harmonic mapping. The endpoints of all boundaries are fixed, and are not part of the
linear system. Let us define all other vertices on C1 as explicit and the ones on C2 as
implicit. We only put explicit and interior vertices in the linear system. Let the number
of vertices in the system be N .

We need a Laplacian matrix of size 2N , with one row for each of the u and v components
of the explicit and interior vertices. This is because some transfer functions involve both
components. We let the first N entries in the matrix correspond to the u components, and
the last N entries to the v components. We have

Mx = b

where M is the coefficient matrix, x = [u0, u1, · · ·, un, v0, v1, · · ·, vn]T , and the constants
of the equations are stored in b. The constants are from the translation part of transfer
functions and the fixed uv values of the endpoints.

Every explicit vertex has two kinds of neighbours. The first are vertices belonging to
the same fabric piece. The others are vertices to which it is connected across a seam. In
Figure 5.6, the pink vertices are the neighbors that are in the same shape as the explicit
vertex. The blue ones are its neighbors across the seam. The neighbors of vim that are on
the implicit boundary are not included, as they are duplicates of the neighbors of vex on
the explicit boundary.

If a given vertex has an implicit neighbour, we replace that neighbour in the matrix
with the implicit vertex’s explicit twin. In Figure 5.7, the pink and aqua vertices are the
neighbors of the blue vertex.
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Figure 5.6: Neighbors of explicit vertex

To compute the harmonic mapping, for each vertex vi, let ui = (ui, vi) be its texture
coordinates. Let vertex vj be a neighbor of vi, and let vj belong to shape Sj, and let vi
belong to shape Si. Let wij be the normalized cotangent weight introduced in Section 2.1.
We have

∑
(j,Sj)∈Ni

wij(ui
Si − φSjSi

uj
Sj) = 0 (5.7)

For example, let the transfer function from shape Sj to shape Si across the correspond-
ing boundary be

φβα(u, v) = (−v + tu, u+ tv)

For vj, its u value corresponds to the jth row of M and its v value corresponds to the
j +Nth row of M. We have:

Mi(j+N) = wij

M(i+N)j = −wij
bi = wijtu

bi+N = wijtv
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Figure 5.7: Neighbors of implicit vertex

5.6 Results

We perform the parameterization with different scales of texture patterns on the garment
patterns for the shirt and pants.

Figure 5.8 shows the shirt’s shapes being optimized in the texture domain to permit the
warped texture to flow seamlessly across the fabric pieces. When the size of the pattern in
texture space is identical to its original size, we can perceive the most distortion. However,
with transfer functions, we still get continuous patterns. In Figure 5.10, we notice that
with transfer functions, we get C1 continuous texture under the right sleeve while the
discontinuity is obvious on the clothing parameterized with fixed boundary conditions.

An advantage of regular parameterization with shape warping is the flexibility of tex-
ture scale. Smaller texture scales usually give better results since the distortion can be
distributed to more texture units. We scale the original shapes by a factor of 1, 5 and
20 respectively. The results for the shirt are in Figure 5.10. The results for the pants
are in Figure 5.11. All results show patterns with balanced distortion. Figure 5.12 and
Figure 5.13 show close up renderings of the garments.
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(a) Original shapes (b) Simplified shapes

(c) Rotation optimization (d) Endpoint location optimization

Figure 5.8: Boundary optimization steps
The simplified boundary segments that belong to the same seam are coloured the same in

(d) to show the relation between each pair of simplified boundary segments.
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Figure 5.9: Shapes after harmonic mapping
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(a) Without transfer functions

(b) With transfer functions

Figure 5.10: Comparison of parameterizations
With transfer function, we see a major improvement on the smoothness of the pattern

near the seam under the right sleeve.
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(c) shirt with large p4m pat-
tern

(d) shirt with medium p4m
pattern

(e) shirt with small p4m pat-
tern

(f) shirt with large p4 pattern
(g) shirt with medium p4 pat-
tern

(h) shirt with small p4 pat-
tern

(i) shirt with large p4g pat-
tern

(j) shirt with medium p4g
pattern

(k) shirt with small p4g pat-
tern

Figure 5.10: Regular parameterization with shape optimization for shirt
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(a) pants with large p4m pat-
tern

(b) pants with medium p4m
pattern

(c) pants with small p4m pat-
tern

(d) pants with large p4 pat-
tern

(e) pants with medium p4
pattern

(f) pants with small p4 pat-
tern

(g) pants with large p4g pat-
tern

(h) pants with medium p4g
pattern

(i) pants with small p4g pat-
tern

Figure 5.11: Regular parameterization with shape optimization for pants
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Figure 5.12: Bottom view of pants mapped with p4 pattern with regular parameterization
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Figure 5.13: Close up rendering of shirt mapped with p4g pattern with regular parameter-
ization
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Chapter 6

Quadrangulation with Cross Fields

In Chapter 4, we explored the use of Delaunay triangulation as a means of applying textures
with sixfold rotations to clothing. We subdivided each fabric piece into approximately
equilateral triangles, into which we can map a unit taken from a wallpaper pattern. In this
chapter, we propose a similar idea based on quadrangulation. If we can subdivide fabric
pieces into approximately square regions, then we can map a unit taken from a pattern
with fourfold rotations into each region. This process is more complex than Delaunay
triangulation. We adapt ideas from the work of Palacios and Zhang [20] to construct cross
fields within each fabric piece, from which we create a quadrangulation. We must also
assume that the quads we create preserve the continuity of the texture across seams.

6.1 Cross field calculation

We use the algorithm of Palacios and Zhang [20] to compute the cross field. Because we
use the finite element method, the first step as always is to triangulate the shapes so that
we can use the triangulation as finite elements. Recall that a cross field is a function
of space whose value at each point is a cross, which consists of four directions, and the
angle difference between two consecutive direction is 90 degrees. We need to ensure that
the cross fields generated on the individual pieces of clothing are continuous across seams
when the pieces are sewn together. One straightforward way to do this is to orient crosses
on the shapes’ boundaries in such a way that two arms of the cross align with the tangent
of the boundary at the cross’s location. The only exception would be places where a set of
seams meet in a closed loop around a point, yielding a location in the final garment where
discrete curvature is potentially non-zero. At these singularities it may be impossible to
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choose a cross orientation that is continuous with the surrounding field. Instead, we set
the cross field to zero at these points.

After deciding the boundary values, we use harmonic mapping to calculate the rep-
resentation field in the interior of each shape. Recall that a representation field has the
form (

R cos(4θ)
R sin(4θ)

)
Let us define scalar fields F = R cos(4θ) and G = R sin(4θ) for the representation field.
Beaufort et al. state that the magnitude of the representation field will decrease quickly as
one moves away from the boundary [1]. But for the fabric patterns that we experimented
with, the input is small enough not to cause such instabilities.

Figure 6.1: Cross field on a fabric piece
The orientation of each cross varies smoothly across the shape. The vanishing size of the
cross indicates the presence of singularities. Note that crosses are oriented with tangents

at the boundary of the shape.
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6.2 Singularity and Separatrix Direction

A singularity point (x, y) has the representation vector (F (x, y), G(x, y)) = (0, 0). We
detect such singularities by calculating the barycentric coordinates of potential singularity
points in each triangle. Given a triangle in the fabric piece bounded by vertices v1, v2, and
v3, let (α, β, 1 − α − β) be the barycentric coordinates of a potential singularity within a
given triangle. Then we can solve Equation 6.1 for (α, β).{

αF (v1) + βF (v2) + (1− α− β)F (v3) = 0

αG(v1) + βG(v2) + (1− α− β)G(v3) = 0
(6.1)

If both barycentric coordinate components are within [0, 1], Then we can identify the
singularity point within this triangle. We omit all singularities on the corners since they
are already known.

For each singularity p0, there will be a set of separatrices that leave in evenly spaced
directions. We need to find those directions so that we can start tracing the separatrices.
We calculate the Jacobian of the singularity, DV (p0). For a triangular finite element, there
is a shape function associated with each vertex. A shape function Ni(x, y) determines
the influence of F (vi) at point (x, y). The output of a shape function is a scalar. Let
vi = (xi, yi). We have:

Ni(x, y) =
1

2∆
(ai + bix+ ciy), i = 1, 2, 3 (6.2)

where

a1 = x2y3 − x3y2, b1 = y2 − y3, c1 = x3 − x2
a2 = x3y1 − x1y3, b2 = y3 − y1, c2 = x1 − x3
a3 = x1y2 − x2y1, b3 = y1 − y2, c3 = x2 − x1

(6.3)

and ∆ = (x1b1 + x2b2 + x3b3)/2 is the area of the triangle.

To interpolate the discrete values of F stored at the vertices of the mesh for this fabric
piece, we use:

F (x, y) = N1(x, y)F (v1) +N2(x, y)F (v2) +N3(x, y)F (v3) (6.4)

Note that the gradient of F is constant within a triangle.
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∂F

∂x
(p0) = b1F (v1) + b2F (v2) + b3F (v3) (6.5)

∂F

∂y
(p0) = c1F (v1) + c2F (v2) + c3F (v3) (6.6)

The same equations apply for G.

Once we get the gradients of F and G at a singularity point, we have the linearization
and can solve the following equation introduced in Chapter 2 for the separatrices’ directions:

sin(4θ)

cos(4θ)
=
c cos(θ) + d sin(θ)

a cos(θ) + b sin(θ)
(6.7)

We also need to ensure that sin(4θ) and c cos(θ) + d sin(θ) have the same sign. Recall
that for a cross field, there can be at most five roots for this equation. We use numerical
methods to approximate the roots.

6.3 Streamline tracing

To get the separatrices, we trace the streamlines from the singularities. We used Heun’s
method with a step size that is much smaller than the triangle element’s side lengths
to do such tracing. The procedure can be summarized with the pseudocode shown in
Algorithm 1. This tracing process will produce a collection of piecewise linear paths within
each fabric piece, approximating the separatrices. Every path will begin at a singularity
and end at another singularity or on the boundary of the piece, since its continuation is in
another shape.

6.3.1 Aligning separatrices across shapes

Theoretically, the consistent boundary conditions should give us separatrices that meet
at shape boundaries. However, factors such as inaccurate input shapes where seam seg-
ments are of different lengths, and the numerical errors in streamline tracing, can cause
misalignment. To fix this problem, we manually snap connecting separatrices’ endpoints
together.
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Algorithm 1 StreamLineTracing

1: procedure getArmAngle(repV, srcAngle)
2: repAngle← arctan(repV.y, repV.x)
3: crossAngle← repAngle / 4
4: angleDiff←∞
5: for i ∈ {0, 1, 2, 3} do
6: angle← crossAngle+ iPI/2
7: if |angle− srcAngle| < angleDiff then
8: angleDiff← |angle− srcAngle|
9: closestAngle← [crossAngle+ iPI/2]

return closestAngle

10: procedure getArmV(v, Face, srcAngle)
11: coords← getBarycentricCoord(v, face)
12: repV← interpolate(F,G,face, coords)
13: armAngle← getArmAngle(repV, angle)
14: armV← norm(repV) * (cos(armAngle), sin(armAngle))

15: procedure Trace(singularityLoc, singularityAngle)
16: streamLine← []
17: v← singularityLoc
18: face← findFace(v)
19: armAngle← singularityAngle
20: while true do
21: armV← getArmV(v, face, armAngle)
22: vT← v + dt * armV
23: armVt← getArmV(vT, face, armAngle)
24: armVavg← (armV + armVt) / 2
25: armAngle← arcTan2(armVavg.y, armVavg.x)
26: v← v + dt * armVavg
27: face← findFace(v)
28: if face is None then
29: Create boundary node

Let C1 and C2 be a pair of boundary segments that will be sewn together. In general,
some number k ≥ 0 of separatrices will end at both C1 and C2. On each curve, we sort
these endpoints based on their positions as a fraction of the curve’s arclength. We then
identify corresponding pairs of endpoints (enumerating C2’s endpoints in reverse order),
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and snap the pair to the average of their respective arclength fractions, thereby ensuring
continuity of the separatrices across the seam. After adjusting the endpoints, we use
the displacement of the endpoints to interpolate the displacement of the vertices on the
streamline quadratically. Let e be the endpoint of a separatrix that is on the boundary of
the shape. Let e’s displacement be d. Let p be a point on a separatrix whose distance to e
is a fraction t of the arclength of that separatrix. The displacement at p is then (1− t)2d.
Figure 6.2 shows a visualization of the alignment step for two separatrices. steps.

Figure 6.2: Stream line aligning steps
First the pairs of endpoints that should match are identified, and their fraction along the
boundary segments are calculated. Second, the endpoints are snapped together. Last, the

points on the separatrices are translated an interpolated distance

6.4 Getting the patches

After computing the separatrices, we can subdivide each fabric piece into patches. We
always get quadrilateral patches from the separatrices of cross fields. Since separatrices
intersect each other and the shapes’ boundaries, the first step is to cut the shapes’ bound-
aries into segments. In the previous section, we omitted the default singularities at the
corners of the shapes. For a point in the vicinity of a singularity, if an arm of the cross
coincides with the direction from the singularity to that point, the point must be on a
separatrix. Therefore we know that the separatrices emanating from the singularities at
shapes’ corners follow the shapes boundaries, this will make all shape boundaries separa-
trices. Previously, we traced separatrices out from internal singularities, and recorded the
locations on the shape’s boundaries where these separatrices end. We refer to these points
as boundary nodes. We now traverse the boundary of the shape beginning at any boundary
node. Every time we encounter a corner of the shape or another boundary node, we store
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the segment we have traversed as a patch boundary. We continue this traversal until we
return to the starting node.

Separatrices might cross inside a shape, and so we must also compute all intersections
between separatrices as part of the subdivision into patches. We use a simple divide-and-
conquer heuristic to find intersections. Given two separatrices, we split them into halves,
and look for intersections between the line segments joining the endpoints of the halves. If
we find any intersections, we continue recursively on those halves until the locations of the
intersections have been fully determined. It is also possible to compute these intersections
using a library for planar arrangements, such as the one found in CGAL (cgal.org).

(a) Separatrices (b) Patch boundaries (c) Patches

Figure 6.3: Steps to getting the patches
(a) shows the separatrices emenating from singularities. the intersections are marked with
a red dot. (b) shows the patch boundaries identified by colors. (c) shows the final patches.

59



We now construct a half-edge data structure to represent the subdivision of the fabric
piece into patches. Each vertex of the subdivision is a corner of the shape, a singularity,
a point where a separatrix ends on the shape boundary, or a point in the shape’s interior
where two separatrices intersect. Vertices are connected to each other by piecewise linear
paths taken from segments of separatrices or the shape’s boundary. We can find the faces
of the subdivision by walking along edges of the subdivision; every time we arrive at a
vertex along an edge, we leave by the next edge in a counterclockwise enumeration of the
edges around that vertex. Figure 6.3 shows the steps towards getting the patches.

6.5 Parameterizing the patches

The subdivision produced above will consist in general of curvilinear quadrilateral patches.
For the purposes of covering these quadrilaterals with a texture with fourfold rotations, we
wish to subdivide them into shapes that approximate squares. We can then use standard
texture mapping to apply a tile from the original texture to each square. The process
of subdividing each patch into smaller quadrilaterals is equivalent to parameterizing the
patches so that each patch is a rectangle with width and length that are integers in texture
coordinates.

Since the two opposite boundaries of a patch need to be divided into the same number
of segments, we can group all the boundaries that have the same length in uv coordinates.
We do this by first iterating over all patches in the same shape, grouping the opposite
boundaries into the same set, and joining the set with the group that it intersects with.
Let us call the final sets line groups. Figure 6.4 shows the line groups within a shape. Next
we join line groups across different shapes. If patch boundary P1 is part of shape boundary
C1, patch boundary P2 is part of shape boundary C2, and C1 connects with C2, then the
line group that P1 belongs to and the line group that P2 belongs to are joined into one set.
The length in uv coordinates of the patch boundaries in the same line group must be the
same integer. We have many options when choosing a length for a line group. We can set
the length as the maximum or average of lengths of patch boundaries in the group divided
by a user defined length parameter. Figure 6.5 shows a parameterized shape.
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Figure 6.4: Line group
The patch boundaries are annotated with their line group indices.
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Figure 6.5: A parameterized piece of fabric

6.6 Results

We applied the quadrangulation procedure on the shirt and pants model. Due to the size
constraints on the quads, we cannot apply the texture more coarsely. It is possible to
subdivide the quads, which would quadruple the number of copies of the texture tile on
the clothing. These limitations will be further discussed in Section 7.1. Figure 6.6 shows
the results of garments mapped with pattern of fourfold rotational symmetry after cross
field guided quadrangulation. Figure 6.7 shows a close up rendering of the garments.
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(a) shirt with p4m pattern (b) pants with p4m pattern

(c) shirt with p4 pattern (d) pants with p4m pattern

(e) shirt with p4g pattern (f) pants with p4g pattern

Figure 6.6: Mapping p4 patterns with cross field assisted quadrangulation
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(a) shirt with p4 pattern

(b) pants with p4 pattern

Figure 6.7: Close up rendering of garments mapped with p4 patterns with cross-field
assisted quadrangulation
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Chapter 7

Conclusion

In this thesis we reviewed surface parameterization and cross field design as tools to map
textures seamlessly onto clothing. We explored the topic of seamless clothing textures
from two directions. First, we subdivided pieces of fabric into small units into which
texture tiles can be mapped. Second, we optimized the positions and shapes of fabric
pieces in texture space, inducing a warp of the texture onto the original fabric pieces.
We reviewed previous work about optimizing the placement of patterns, and the works
related to surface quadrangulation, allowing periodic textures with fourfold rotations to be
mapped seamlessly onto garments.

For textures with sixfold rotations (belonging to symmetry groups p6 or p6m), we used
Delaunay triangulation to subdivide fabric pieces into triangular regions that support tiles
from the texture. For textures with fourfold rotations (belonging to symmetry groups p4,
p4g, or p4m), we subdivided fabric pieces into quadrilaterals using an algorithm guided by
a smooth cross field, and mapped tiles from the original texture into these quadrilaterals.
We also experimented with a variation of work by Wolff and Sorkine [31], in which we
optimized the shapes of fabric pieces in texture space, and demonstrated its effectiveness
on textures with fourfold rotations.

We demonstrated all of our techniques using sewing patterns for a shirt and a pair
of pants. In all cases, the mapping of textures onto the pieces of fabric was carried out
entirely based on the two-dimensional geometry of the sewing pattern. We visualized our
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results by virtually assembling the fabric into a full garment and simulating the drape of
that garment on a mannequin model in Blender.

7.1 Limitations and Future Work

Triangulation produces seamless results for textures with sixfold rotations. However, ev-
ery seam is a connected sequence of triangle edges, and when textured these long runs
of aligned edges stand out against the overall irregularity of the triangulation. We might
further suppress the visibility of the seams by allowing edges of the triangulation to cross
seams. This change would require a new Delaunay triangulation algorithm that treats
seams as “permeable”, measuring distance continuously across them. Another limitation
of our approach is that because we couple the triangulation used for texturing with the
triangulation used for the 3D mesh representation of the garment, we are limited to a rel-
atively narrow range of triangle sizes that trades off between the scale of the texture and
the fidelity of the simulation. It would be straightforward to decouple these triangulations,
or even just to subdivide the Delaunay triangles to produce a finer mesh for simulation.
Section 4.2.2 accomplishes this goal to a degree, by subdividing individual triangular re-
gions along the boundary and harmonically mapping texture tiles into these regions. More
work is needed to ensure that these fine-scale triangles enforce continuity across seams.

For regular parameterization with shape optimization, we used two passes to optimize
the shapes in texture space. The first pass optimizes the orientation of each shape, and the
second pass fixes the endpoints of boundary segments that make up seams. It would be
interesting to explore options that optimize the shapes in a single pass. Better descriptions
of the shapes might be needed, so that the optimization process can be done in one pass
with acceptable time complexity. Another flaw that we noticed is that our constraints
do not enforce the shapes’ convexity. When an angle that was convex became concave in
texture coordinates, we noticed a high amount of the texture in that area. If we could
ensure that convex angles do not become concave and vice versa, we might be able to
improve our results.

Another area that might be interesting to explore is to apply image processing tech-
niques to the shapes’ texture coordinates. We used transfer functions to achieve C1 conti-
nuity of the pattern across shapes. It would be possible to use fixed boundary conditions
to map the internal texture coordinates of the shapes, and smooth the gradients of the
texture coordinates so that the pattern is C1 continuous near the seams.
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Finally, in our work on shape optimization we experimented only with textures that
have fourfold rotations. It is possible to apply the same technique to all N-RoSy patterns as
in Wolff and Sorkine’s work [31]. We would like to extend our technique to handle textures
with sixfold rotations, and possibly experiment with textures that have lower orders of
symmetry (i.e., where the highest degrees of rotation are 3, 2, or 1).

In our experimentation with cross fields in Section 6, we noticed that the main limitation
is the size of the quads. A quad’s length cannot exceed the shortest edge of any patch in
any fabric piece of the garment. It may be worth investigating more sophisticated methods
for creating and manipulating cross fields, in order to generate fields that support larger
quads. For example, it may be possible to edit the topology of a cross field in order to
remove unwanted singularities [21], leading to fewer, larger patches. Also, we traced the
streamlines explicitly. Parameterization techniques from mixed-integer quadrangulation [5]
might allow us to extract separatrices more reliably.
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[4] David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco
Tarini, and Denis Zorin. Quad-mesh generation and processing: A survey. In Com-
puter Graphics Forum, volume 32, pages 51–76. Wiley Online Library, 2013.

[5] David Bommes, Henrik Zimmer, and Leif Kobbelt. Mixed-integer quadrangulation.
ACM Transactions On Graphics (TOG), 28(3):1–10, 2009.

[6] Nathan. A Carr, Jared Hoberock, Keenan Crane, and John C. Hart. Rectangular
multi-chart geometry images. In Symposium on geometry processing, pages 181–190,
2006.

[7] Joel Daniels, Claudio T. Silva, and Elaine Cohen. Semi-regular quadrilateral-only
remeshing from simplified base domains. In Computer Graphics Forum, volume 28,
pages 1427–1435. Wiley Online Library, 2009.

68



[8] Manfredo P. do Carmo. Differential geometry of curves and surfaces: revised and
updated second edition. Courier Dover Publications, 2016.

[9] Shen Dong, Peer-Timo Bremer, Michael Garland, Valerio Pascucci, and John C. Hart.
Spectral surface quadrangulation. In ACM SIGGRAPH 2006 Papers, pages 1057–
1066. 2006.

[10] Michael S. Floater and Kai Hormann. Surface parameterization: a tutorial and survey.
In Advances in multiresolution for geometric modelling, pages 157–186. Springer, 2005.

[11] E. H. (Ernst Hans) Gombrich. The sense of order : a study in the psychology of
decorative art. Wrightsman lectures ; no. 9. Cornell University Press, Ithaca, N.Y,
1979.

[12] Aaron Hertzmann and Denis Zorin. Illustrating smooth surfaces. In Proceedings of
the 27th annual conference on Computer graphics and interactive techniques, pages
517–526, 2000.

[13] Kai Hormann, Ulf Labsik, and Günther Greiner. Remeshing triangulated surfaces
with optimal parameterizations. Computer-Aided Design, 33(11):779–788, 2001.

[14] Craig S. Kaplan. Semiregular patterns on surfaces. In Proceedings of the 7th Interna-
tional Symposium on Non-Photorealistic Animation and Rendering, NPAR ’09, page
35–39, New York, NY, USA, 2009. Association for Computing Machinery.

[15] Aaron W.F. Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar, and David
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