
Learning-free methods for Goal
Conditioned Reinforcement Learning

from Images

by

Alexander Van de Kleut

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2021

c� Alexander Van de Kleut 2021



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

Supervisor(s): Je↵ Orchard
Associate Professor, Dept. of Computer Science, University of Waterloo

Internal Member: Kate Larson
Professor, Dept. of Computer Science, University of Waterloo

Internal Member: Pascal Poupart
Professor, Dept. of Computer Science, University of Waterloo

ii



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Abstract

We are interested in training goal-conditioned reinforcement learning agents to reach ar-
bitrary goals specified as images. In order to make our agent fully general, we provide
the agent with only images of the environment and the goal image. Prior methods in
goal-conditioned reinforcement learning from images use a learned lower-dimensional rep-
resentation of images. These learned latent representations are not necessary to solve a
variety of goal-conditioned tasks from images. We show that a goal-conditioned reinforce-
ment learning policy can be successfully trained end-to-end from pixels by using simple
reward functions. In contrast to prior work, we demonstrate that using negative raw pixel
distance as a reward function is a strong baseline. We also show that using the negative
Euclidian distance between feature vectors produced by a random convolutional neural
network outperforms learned latent representations like convolutional variational autoen-
coders.
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Chapter 1

Introduction

Reinforcement learning (RL) is a general learning framework that has gained significant
popularity over the last decade. Recent successes include beating world champions at the
video game Dota 2 [22], beating the world champion at the game of Go [25], and surpassing
human baseline performance across a benchmark of 57 Atari games [2]. Reinforcement
learning is attractive because of its generality; an agent in an environment learns to choose
actions to maximize some cumulative reward. Any problem that can be framed this way
can be approached with reinforcement learning.

In its original formulation, the agent gets some information about the current state of
the environment, and it uses this to choose an action. The agent gets a reward indicating
how good that action was given the state of the environment, and it has to learn how
to choose actions that maximize the long-term cumulative reward. We can extend this
framework to multi-goal reinforcement learning. In multi-goal RL, the input to the agent
includes a specific goal to reach. The reward given to the agent by the environment reflects
how close the agent is to reaching the goal. The agent then has to learn what actions are
needed to reach the desired goal. Examples of problems that can be framed this way
include robotic object manipulation, where a robot arm must manipulate an object to a
desired goal configuration, and navigation problems, where the desired goal is some final
position.

A fully general RL agent should be able to operate in a variety of environments, without
learning from measurements specific to a particular task. This motivates learning directly
from images. For multi-goal tasks, we present the agent with only an image of the goal
and images of the environment as it acts. The di�culty of doing multi-goal reinforcement
learning solely from images is defining the reward function that reflects how close an image
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is to the goal image.

Prior work has approached this problem using learned representations that map images
to latent vectors. These approaches involve collecting data from the environment and solv-
ing some auxiliary task, like image reconstruction or predicting the number of timesteps
needed to reach the goal. This requires learning additional parameters and tuning addi-
tional hyperparameters.

In this thesis, we show that learned latent representations are not necessary to solve
some goal-conditioned tasks directly from images. We train an RL agent end-to-end di-
rectly from images, and define the reward to be the negative Euclidian distance between
latent representations of the goal and current image. We consider various learning-free la-
tent encodings, including raw pixel distance, random linear transformations, and random
convolutional neural networks.
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Chapter 2

Background

2.1 Reinforcement Learning

In reinforcement learning, we consider two entities: the agent and the environment. The
environment is the world in which the agent lives and learns. At each time step t, the
agent receives an observation of the state of the environment and uses this to choose an
action. The agent uses this action to act on the environment, causing the environment
to change. In response, the environment provides the agent with an updated observation
and a reward. The reward is a scalar indicating how good or bad the current state of the
environment is. The objective in reinforcement learning is to maximize the the cumulative
reward received from the environment, which we call the return R.

As a simple example, consider the task of moving an object to a particular position
using a robotic arm. The agent controls the robotic arm through actions, which change
the position of the robot’s end-e↵ector. The observations include the current position of
the robot’s end-e↵ector and the position of the object. The reward is the negative distance
from the object’s current position to the goal, so that being closer to the goal results in a
higher reward.

When an observation contains a complete description of the state of the environment,
we say the environment is fully observable and use the symbol s (for “state”). If the
observation is instead an incomplete description of the state of the environment, we say
the environment is partially observable and use the symbol o (for “observation”). In this
thesis, we focus on partially observable environments.

An agent chooses actions by sampling from a policy a ⇠ ⇡(a | o), which is a probability
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distribution over actions conditional on the current observation. We often represent policies
using neural networks with parameters ✓ and thus write ⇡✓ for the policy.

The agent repeatedly experiences observations o, chooses actions a, and receives the
next observation o

0 and reward r = r(o, a, o0). We call this a state transition and represent
it as a tuple (o, a, r, o0). A collection of state transitions experienced by the agent is called
a trajectory ⌧ . The goal of the agent is to learn parameters ✓ so that the agent maximizes
the expected return over all trajectories collected under the policy ⇡✓

E⌧⇠⇡ [R(⌧)] .

In general we assume that a policy may act forever in its environment, so the return R(⌧)
may be infinite. To account for this, we maximize the infinite-horizon discounted return

R(⌧) =
1X

t=0

�
t
rt, (2.1)

where � 2 (0, 1) is a discount factor that ensures the return is finite. Larger values of �
weigh future rewards more heavily than smaller values of �.

We can measure how good an action a is given an observation o using the action-value
function. Given some policy ⇡, the action-value function Q

⇡(o, a) is the expected return
assuming we start the trajectory with an observation o and initially choose an action a,
following the policy ⇡ every step thereafter. We define Q

⇡(o, a) as

Q
⇡(o, a) = E⌧⇠⇡ [R(⌧) | s0 = s, a0 = a]

= E⌧⇠⇡ [rt + �Ea0⇠⇡ [Q
⇡(o0, a0)] | s0 = s, a0 = a] ,

where the expansion inside the expectation can be derived from the definition of the infinite-
horizon discounted return (2.1). When ⇡ is the optimal policy ⇡⇤ that maximizes this return
over all trajectories, we call this the optimal action-value function Q

⇤(o, a), which we can
write as

Q
⇤(o, a) = max

⇡
E⌧⇠⇡ [R(⌧) | s0 = a, a0 = a] .

2.1.1 Soft Actor-Critic (SAC)

In this thesis, we use soft actor-critic (SAC), which interleaves learning an approximator
to Q

⇤ and an approximator to ⇡
⇤.
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The critic Q� is a neural network with parameters � that approximates Q⇤. It uses its
own predictions to improve itself and better approximate Q

⇤.

We can recursively expand the return R(⌧) in the optimal action-value function to
obtain

Q
⇤(o, a) = max

⇡
E⌧⇠⇡ [R(⌧) | s0 = a, a0 = a]

= max
⇡

E⌧⇠⇡

h
rt + �max

a0
Q

⇤(s0, a0) | s0 = a, a0 = a

i
.

This general form is known as the Bellman optimality equation. Given our approximator
Q�, we can measure how closely it satisfies Bellman optimality by measuring the squared-
error between the two definitions. Given some state transition (o, a, r, o0) we can define the
loss

L(�) = (Q�(o, a)� y)2

y =
⇣
r + �max

a0
Q�(o

0
, a

0)
⌘

where y is treated as a constant regression target. The max over a
0 is approximated

by sampling directly from the current policy a
0
⇠ ⇡✓(a0 | o0). By minimizing L(�), Q�

approaches Bellman optimality. We maintain a collection of state transitions in a replay
bu↵er D and compute L(�) over a minibatch of state transitions sampled randomly from
the replay bu↵er.

We optimize the policy by sampling observations o from the replay bu↵er, computing
actions a ⇠ ⇡✓(a | o), and plugging them into Q�. Since Q� approximates the expected
return that we want to maximize, we can treat Q�(o, a) as the quantity to maximize, while
keeping the parameters � constant:

J(✓) = Ea⇠⇡✓
o⇠D

[Q�(o, a)] .

For this to work, we assume that sampling an action a is di↵erentiable with respect to
the policy parameters ✓. When the environment expects actions that are real-valued vec-
tors, we typically represent a stochastic policy by a diagonal Gaussian distribution. Take
N (µ✓(o), �✓(o)) to be the diagonal Gaussian distribution produced by the policy ⇡✓. Di-
rectly sampling from this distribution is a nondi↵erentiable operation with respect to the
policy parameters ✓. However, we can reparametrize the sampling operation to make it
di↵erentiable by computing the action as

a = µ✓(o) + �✓(o)� ✏

✏ ⇠ N (0, I).
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We make the nondi↵erentiable sampling operation disconnected from the policy parameters
by sampling ✏ from a standard diagonal Gaussian distribution, and thus make Q�(o, a)
di↵erentiable with respect to ✓. See figure 2.1 for a simplified diagram of the architecture.
SAC encourages long-term exploration by adding an entropy bonus to the reward. The

Figure 2.1: Soft Actor-Critic computation graph.

entropy bonus H(⇡(a | o)) discourages the policy from converging to a suboptimal policy
too quickly and encourages a more diverse choice of actions. SAC uses two critics and
takes the minimum of their predictions to generate targets y. It also uses copies of the
critics to generate targets, whose weights are updated via exponential averaging to smooth
out targets.

We use SAC in this thesis because it is sample e�cient. SAC is an o↵-policy RL
algorithm, which means that it can learn from any valid state transition (o, a, r, o0). This
means that it can reuse data collected from an earlier version of the policy to optimize the
current policy. It also di↵ers from many other RL algorithms by performing a parameter
optimization step at every environment step. These two aspects combined mean that SAC
can learn a good policy from very little data. This is especially important in the robotics
regime, where environment interaction and data collection becomes the bottleneck.
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2.2 Goal-Conditioned Reinforcement Learning from
Images

2.2.1 Image Observations

Learning from images has been an important part of deep reinforcement learning since deep
Q-learning (DQN) was first described by Mnih et al. in 2015 [18]. Because learning policies
directly from pixels and rewards is a very general approach, DQN quickly popularized deep
reinforcement learning. However, learning directly from images can sometimes require
hundreds of millions of environment steps to learn a successful policy.

In simulated RL environments, it is possible to know the exact state of di↵erent entities
in the environment. However, in the real world, knowing the exact state of the environment
is impractical without extensive instrumentation. By learning from images, we provide the
agent with a single source of information which does not require additional instrumentation,
and which can be easily implemented in the real world using a camera.

Learning from images also avoids need for a combinatorial representation of the en-
vironment. For example, in an environment with one, two, or three objects, how would
we represent the state when some of the objects are missing? By using images, we have
fixed-size observations that can encode a variable number of objects [20, 29].

Learning from images can be di�cult because of partial observability. If an agent is only
getting images of the environment as inputs, these images may not contain the information
necessary to completely describe the environment. For example, an image does not contain
information about velocities or accelerations, which may be required to solve the task at
hand. Other parts of the environment may be occluded or concealed. Thus, the agent
needs to learn how to act with limited information.

2.2.2 Observations and Partially Observable Environments

Here we formalize the problem of learning from images. In fully observable environments,
the agent gets access to a complete description of the environment. We say that the agent
receives states s 2 S where S is the state space. On the other hand, in partially observable
environments, the agent instead gets some alternative impoverished representation of the
state, such as images. We say the agent receives observations o 2 O where O is the
observation space.
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In the case of images, O is the space of valid images of the environment. We imagine
there is some function fo : S ! O that generates an observation given a state o = fo(s).
See figure 2.2 for a visual representation of the di↵erence between an observation space and
a state space. Partial observability makes learning challenging because the agent cannot
necessarily know what the outcome o

0 of choosing an action a ⇠ ⇡(a | o) will be, since
environment dynamics are described in state space and not in observation space.

If we want to define a problem using reinforcement learning, we need to define both the
agent and the environment. To define a partially observable environment for reinforcement
learning, we need to define a reward function. Ideally we would just compute the reward
directly from observations as r(o, a, o0) (rather than r(s, a, s0) when we have access to the
underlying states). RL researchers typically “cheat” in simulation by computing the reward
based on the underlying state while only showing the observations to the agent. This still
requires knowing the state, even if the agent doesn’t get to know it. In the real world,
the state space S includes all of the physical parameters needed to model the environment
dynamics, which we may not know without extensive instrumentation. For example, an
agent learning to solve a maze may not know its true distance to the goal without some
way of measuring it. Truly learning from images requires computing a reward function
directly from images.

2.2.3 Goal-Conditioned RL

In the normal description of reinforcement learning, we specify a single reward function
r(s, a, s0) that represents how good a state transition (s, a, s0) is. Maximizing this reward
should correspond to solving the task at hand. One drawback to this is that the agent is
only capable of solving a single task specified via the reward function. What if we want the
agent to be able to solve multiple tasks? This motivates the definition of goal-conditioned
RL. In goal-conditioned RL, the reward function is additionally conditioned on a goal g,
which is sampled from some goal space G. The reward function now depends on the goal
r(s, a, s0, g) and should specify, in some sense, how close the agent is to reaching that goal.
This allows RL to scale to settings with multiple related tasks, such as navigating in a
room or manipulating objects [8].

We can think of the goal space G as being a representation of the state space S where
it is easy to specify how close we are to the goal. For example, consider the task of moving
a robotic arm so that the end-e↵ector reaches a certain (x, y, z) coordinate. It makes
sense to describe the goals in terms of those (x, y, z) coordinates. However, the actual
underlying state space S may instead only contain the angles and velocities of each of

8



Sample next state
from environment

dynamcs

state-based
rewards

observation-
based rewards

(requires knowing
underlying state)

(requires only
observations)

Figure 2.2: Generating a transition in a partially observable environment. In simulation, we

can compute the reward based on the underlying states s and s0. In the real world, we don’t have

access to the underlying state of the environment. To do RL in the real world, we would need a

reward function defined instead in terms of the corresponding observations o and o0, which may

represent pixels of an image.

9



the robot’s joints. The state space does not immediately contain information about the
(x, y, z) coordinates of the end-e↵ector. We imagine some function fg : S ! G that maps a
state s to its corresponding representation in goal space. This is exactly analogous to the
function fo that maps states to observations. Note that, like observations, there can be
many states s that map to the same goal g. See figure 2.3 for a schematic. Continuing the
example given above, there may be many robot configurations with a given end-e↵ector
position.

state-based
rewards

(requires knowing
underlying state and )

Figure 2.3: Generating a transition in the goal-conditioned context. The agent sees the current

state s and a goal g and chooses an action a, producing a state s0. We project s and s0 into
goal space to compute the reward with respect to the goal. It is common to take r(s, a, s0, g) =
�kfg(s0)� gk2.

When states and goals are continuous, reaching a state s such that fg(s) = g exactly
can be very hard. Instead, it is common practice to say that a goal has been “reached” if
a state s belongs to the preimage S

g of some ✏-ball around the goal g

S
g = {s 2 S : kfg(s)� gk2  ✏}.

For example, if a robot needs to navigate to a particular location, we may say the goal is
reached when it is within 0.5m of the goal.
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Given a transition (s, a, s0), one way to specify the reward r(s, a, s0, g) is to simply map
the next state s

0 to its corresponding goal and take the negative Euclidian distance to the
goal to be the reward

r(s, a, s0, g) = �kfg(s
0)� gk2.

This way, the reward is at a maximum of 0 when the goal is reached at s0.

2.2.4 Solving Goal-Conditioned Tasks from Images

This thesis focuses on environments that are both goal-conditioned and use image obser-
vations. The goal-conditioned aspect allows us to arbitrarily specify tasks to the agent at
evaluation time, and the image aspect allows us to specify these tasks by just showing the
agent an image of the desired environment configuration. For example, a navigation task
can be specified to the agent by just showing it where you want it to end up.

Normally the reward is computed using the underlying state of the environment. For
example, if the task involves manipulating objects with a robot, the reward may be com-
puted based on the position of the object and its desired goal. However, when using images
as observations, this information is not directly accessible, so we need to ensure our reward
function is computable directly from images. See figure 2.4, which builds upon figures 2.2
and 2.3 for a diagrammatic representation of goal-conditioned RL from images.

In the goal-conditioned context, computing rewards amounts to determining how close
o
0 is to og directly from raw pixels. It is not easy, in general, to determine how “close” an
image observation is to a goal image. Furthermore, it is possible that only some aspects
of the image correspond to the task at hand. Consider the task of moving an object to a
specified location using a robotic arm. Only the pixels corresponding to the object actually
matter for solving the task, but those pixels may only make up a small portion of the image.

One of the main focuses of this thesis is evaluating reward functions r(o, a, o0, og) that
work directly from image observations and image goals.

2.3 Related Work

2.3.1 Vision-based RL

In recent years, we have seen steady progress in state-of-the-art (SOTA) performance for
RL tasks from images. In particular, we have seen significant progress in sample e�ciency.
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state-based
rewards

observation-
based rewards

(requires knowing
underlying state and )

(requires only
observations)

Figure 2.4: Generating a transition in a partially observable goal-conditioned environment.

The environment is in a state s with a goal g. The agent sees the corresponding observation

and goal observation o and og and chooses an action a. The environment transitions to the

next state s0 and a corresponding observation o0 is generated. In simulation, we can compute a

reward r(s, a, s0, g) directly from the underlying states. In the real world we only have access to

(o, a, o0, og) and therefore need to be able to compute the reward directly from the observations

and goal observation.

Sample e�ciency can be thought of as agent performance per number of environment
interaction steps.

PlaNet [12], and its successor Dreamer [11], held SOTA on the DeepMind Control
Suite, a series of simulated continuous control problems from images [26]. PlaNet and
Dreamer are model-based methods. They convert an image observation ot at time step t

into a latent representation zt, and learn a forward dynamics model to predict the next
latent representation zt+1 given zt and the action at. These methods achieve good sample
e�ciency by generating artificial training data given a limited set of data collected from
the environment. While the agent may only collect 105 transitions from the environment,
it may simulate additional trajectories using the forward dynamics model, generating more
training data for the policy. PlaNet and Dreamer are very similar, di↵ering mostly in the
models used for encoding images and doing forward dynamics modelling. These methods

12



are complex and require expertise to understand and implement. Their sample e�ciency
comes from the learned dynamics model, which is used to generate additional training
data, and does not count towards the actual number of environment steps used to measure
sample e�ciency.

Srinivas et al. [15] also learn sample-e�cienct policies from images. However, instead
of using a model-based approach to gain sample e�ciency, they instead focus on learning
a suitable image representation. The authors use contrastive unsupervised representation
learning (CURL) to learn a representation of input images, and then use that learned
representation to train an RL algorithm. In their method, they randomly crop two portions
of the input image and generate two corresponding features vectors using a convolutional
neural network. Then, the network is trained to produce the same features for both
cropped inputs so that the output is invariant to random cropping. Once trained, this
convolutional neural network is used to convert all image observations o to latent vectors
z, and an RL agent is trained using SAC on top of these latent representations. At the
time of its publication, CURL outperformed Dreamer in terms of sample e�ciency and
final performance on the DeepMind Control Suite.

A key idea from CURL is to take an image, perform image transformations (random
crops), and train the network to produce the same output for both versions of the image.
This idea was distilled and then expanded upon by Kostrikov et al. [14]. Rather than
having the convolutional encoder trained using some auxiliary task (like in CURL), the
encoder is trained end-to-end with the critic. However, both targets y and predictions
Q�(o, a) are generated using transformed versions of o. They transform images using ran-
dom horizontal and vertical shifts by up to 4 pixels. This way, the critic is trained to make
the same predictions despite slight variations in the input image. The data transformation
technique both provides additional training data to the critic and makes predictions more
robust, quickly allowing the critic’s convolutional encoder to learn a good representation
of image observations. The policy shares the convolutional encoder with the critic, but
does not update its parameters. This method is called data-regularized Q-learning (DrQ)
and supersedes CURL in sample e�ciency and final performance.

Concurrently, Laskin et al. [16] used image transformation to achieve SOTA perfor-
mance on RL tasks from images. They examined many di↵erent kinds of image trans-
formation techniques, but came to the same conclusion as Kostrikov et al. that random
crop and random translation provide the best improvement in performance. They call this
method RL with transformed data (RAD). Like DrQ, RAD transforms image observations
before passing them to the critic during training. However, unlike DrQ, only a single
transformation is applied to generate targets and predictions. Both DrQ and RAD achieve
similar performance on the DeepMind Control Suite.
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We can see that parsimonious ideas like DrQ and RAD can outperform complex meth-
ods like Dreamer and PlaNet. These methods focus on perception by learning a good latent
representation of images such that doing RL on top of these latent representations is easy.
In this thesis, we adopt two ideas from DrQ and RAD. First, we use the same training
regime and architecture as DrQ, where the critic and encoder share a convolutional en-
coder and only the critic’s loss gradients pass through the convolutional encoder. Second,
we adopt the idea of using convolutional neural networks to generate latent vectors from
image observations. See figure 3.1 for a simplified diagram of the architecture.

2.3.2 Goal-Conditioned RL from Images

Visual Reinforcement Learning with Imagined Goals (RIG) was one of the first papers
that dealt directly with goal-conditioned RL from images [20]. RIG proposes learning a
low-dimensional latent representation from images using a variational autoencoder. The
RL agent is trained on top of this latent representation, and rewards are computed as
negative latent distance to the goal.

Briefly, a variational autoencoder is a neural network composed of an encoder e and
a decoder d. The encoder e maps an observation o to a latent representation z, and the
decoder maps the latent representation z back to an approximation of the input ô.

The encoder outputs the mean µ(o) and log-standard deviation log �(o) of a diagonal
Gaussian distribution. Then, a latent vector is generated by sampling from that distri-
bution z ⇠ N (µ(o), �(o)). The decoder is trained to minimize the reconstruction loss
E [ko� d(z)k] given a latent vector z.

We encourage the encoder to output µ(o) and log �(o) corresponding to a standard
diagonal Gaussian distribution to ensure a continuous latent space. This is accomplished
this by minimizing the KL-divergence between the output distribution N (µ(o), �(o)) and
N (0, I).

Given a collection D of image observations, we define the VAE loss as

L(D) = Eo⇠D

2

4 ko� d(z)k2| {z }
Reconstruction loss

+

KL Divergence lossz }| {
�KL [N (µ(o), �(o)) k N (0, I)]

3

5

Nair et al. [20] collect image observations to use for training the VAE by rolling out a
randomly acting policy for some number of time steps in the environment. They then train
a policy ⇡✓ and critic Q� entirely in the latent space Z using the encoder of the VAE. In
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their experiments, they show that RIG achieves good performance, sometimes on par with
an “oracle” method which uses the ground truth states as input instead of latent vectors.
In this thesis, we use the encoder from a VAE trained on images of the environment to
generate a reward function. We take the negative Euclidian distance between the latent
encoding of the observation and the latent encoding of the goal

r(o, a, o0, og) = �ke(o
0)� e(og)k2,

so that the reward reaches a maximum of 0 when o
0 = og.

Using VAEs as a method of encoding images into a low-dimensional latent space is
a very common technique [10, 20, 19, 21, 4]. Successors to RIG have modified the VAE
architecture to account for di↵erent types and numbers of objects to manipulate [19] and
to do model-based RL [21].

VAEs are generally trained on images obtained by a randomly-acting policy, which are
collected before training starts. The problem with this approach is that random actions
may be unable to su�ciently explore the environment, limiting the kinds of observations
the VAE is trained on. When the agent observes an image the VAE was not trained on,
the corresponding latent vector z may not be meaningful. This is especially detrimental to
methods like RIG that use these latent vectors as input to the policy and the critic. The
only attempt to limit this problem that is mentioned in the literature is to fine-tune the
VAE on additional training data from the replay bu↵er during training. However, this will
change the distribution of inputs to the policy and the critic, which might be challenging
for the agent to overcome.

The VAE latent space represents one family of approaches to goal-conditioned RL from
images in the literature. Another approach is to learn an encoding � such that the distance
between latent vectors corresponds to some measure. For example, Florensa et al. [7] learn
an encoding such that distance between latent vectors corresponds to the minimum number
of timesteps to go from one image observation to another in the environment.

Ghosh et al. [9] define the idea of actionable distance between two observations. From
any current observation o, they treat two observations o1 and o2 as goal observations for
some trained goal-conditioned policy. They define a symmetric distance function that
describes how di↵erent the policy outputs are with o1 as a goal and with o2 as a goal by
defining the actionable distance

DAct(o1, o2) = Eo

h
KL

⇥
⇡✓(a | o, o1)k⇡✓(a | o, o2)

⇤
+KL

⇥
⇡✓(a | o, o2)k⇡✓(a | o, o1)

⇤i
.

By this distance, two observations o1 and o2 are close if a goal-conditioned policy chooses
similar actions on average with o1 as the goal versus with o2 as the goal. Likewise, o1 and
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o2 are distant if a goal-conditioned policy chooses di↵erent actions on average with o1 as
the goal versus with o2 as the goal.

Given this distance function and a trained goal-conditioned policy, they train a neural
network � to produce latent vectors so that Euclidian distance corresponds to actional
distance

k�(o1)� �(o2)k2 = DAct(o1, o2)

This encoding � produces a latent space Z where Euclidian distance corresponds to func-
tional di↵erence between states. Euclidian distance in latent space here is optimized to
have a particular meaning, whereas the Euclidian distance in the latent space generated
by a VAE is not inherently meaningful.

Wulfmeier et al. [28] recently examined three types of learned representations used in
robotic manipulation tasks. They compared VAEs with two other models: Transporter and
MONet. These two models learn a representation from a series of images that focuses on
objects that can be manipulated. Transporter tries to decompose an image into a series of
coordinates along the image axes, with each set of coordinates representing an object in the
image. MONet is a modified VAE that tries to decompose an image into a predetermined
number of regions using a recurrent attention mechanism. They also use an automatic
colour thresholding technique to segment input images by colour. The authors find that
MONet and Transporter are capable of learning “disentangled” representations of image
observations such that each dimension in the latent representation corresponds to some
semantically meaningful element of the image observation. Such semantically meaningful
elements might include object colour, shape, size, or position.

These methods perform well on the given tasks, but require a significant amount of
manual hand-engineering to get good performance. Many hyperparameters for these rep-
resentation learning methods need to be chosen in advance, such as how many objects to
track for Transporter and how many regions to attend to when using MONet. Furthermore,
these representation learning methods are trained using o✏ine data collected by a trained
goal-conditioned policy. This is necessary to give these representation learning methods
su�ciently variable data to learn good representations. However, this is limiting, because
it requires that we already have an agent capable of solving the task in order to train
another agent capable of solving the task. Also, the authors decompose complex tasks like
lifting, stacking, and pushing into sequentially-presented sub-tasks. For example, to get an
agent to lift a block, they first present the “reaching” goal, then the “grasping” goal, and
finally, the “lift” goal, rather than just presenting the final goal position. As such, their
results are highly specific to their simulation environment and do not generalize well.
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2.3.3 Random Convolutional Neural Networks

In this thesis, we present randomly initialized convolutional neural networks as a viable
method of generating image encodings. This avenue of research appears to be relatively
unexplored, especially in the reinforcement learning setting.

Random Network Distillation (RND) [5] was a novel approach to exploration in re-
inforcement learning using image observations. It demonstrated the power of randomly
initialized convolutional neural networks for feature generation. The authors initialize two
convolutional neural networks with the same architecture and di↵erent random initializa-
tions. The first one has frozen parameters and is called the “target network” and the
second one has learnable parameters and is called the “predictor network”.

When the agent sees an image observation, the target network generates a latent en-
coding of that image by doing a forward pass. The predictor network does the same.
The predictor network is then trained to produce the same output as the target network
by minimizing the mean-squared-error (MSE) between the target and the prediction via
gradient descent.

For images that the agent has seen many times (and thus trained on many times), we
can expect the MSE to be low. However, for images that are new or rare for the agent to see,
we expect these images to be outside the training distribution for the predictor network,
and thus expect the MSE to be higher. Thus, the MSE for predicting random features of a
convolutional neural network can be used as a proxy for observation novelty. This novelty
can be used as a reward bonus to encourage the agent to explore. The importance of this
paper for our purposes is that it shows that random features from a convolutional neural
network contain su�cient features from the original image to solve a di�cult RL task.

Ulyanov et al. [17] experimented with using randomly initialized convolutional neural
networks as image priors for inverse problems like image denoising, super-resolution, and
image inpainting. The authors use a convolutional neural network f✓(z) to transform some
randomly initialized fixed vector z from an arbitrary latent space to image space using
a series of convolution operations, upsampling, and nonlinear activation functions. The
authors find that the sequential application of convolution, upsampling, and nonlinear
activation is su�cient to capture the kind of relationships between pixel neighbourhoods
that we also see in natural images. Randomly initialized convolutional neural networks
can also capture some of the low-level statistics of natural images, in particular local and
translation-invariant aspects of the image. Furthermore, the fact that the convolution filter
is applied across the entire visual field imposes a certain stationarity on the output of the
convolution layers.
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Traditional approaches to denoising, super-resolution and inpainting use regularization
on the generated image to encourage natural-looking images, such as the total-variation
norm. The authors find that convolutional architectures provide enough structure to the
output to encourage this kind of natural appearance. This work demonstrates that the
structure of a randomly initialized convolutional neural network is enough to extract mean-
ingful information about neighbourhoods of pixels in an image.
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Chapter 3

Methods

3.1 Experimental Approach and Baselines

We consider the problem of training a goal-conditioned policy using only image observa-
tions. Generally, previous work used a pre-trained encoding � : O ! Z that mapped all
images and goals to latent vectors, and then trained an RL agent entirely in the corre-
sponding latent space. Instead, we choose to train our agent end-to-end from raw pixels.
We only use the latent space Z for computing rewards as the latent distance between the
next observation and the goal

r(o, a, o0, og) = �k�(o
0)� �(og)k2.

We compare several methods for the form of �:

• Random Linear Features (LINEAR): We can use a random linear projection to
map from observations to latent vectors. This allows us to do random dimensionality
reduction without learning, and allows us to determine the overall importance of
simply reducing the dimensionality of observations.

• Random Convolutional Features (CONV): This method is the main approach
of this thesis. We use a small, randomly initialized convolutional neural network
followed by a single fully-connected layer to produce latent vectors. Like LINEAR,
CONV uses an untrained randomly initialized neural network to do dimensionality
reduction. However, unlike LINEAR, CONV uses a sequence of convolution opera-
tions which compute spatial information. In contrast, LINEAR does not use spatial
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information. We use the convolutional architecture from Kostrikov et al. [14]. This
is also the same architecture used for the convolutional encoder by all RL agents.

• �-Variational Autoencoder (VAE): The VAE is a popular model for embedding
images into a latent space. As discussed above, it is an unsupervised learning tech-
nique to learn a low-dimensional latent representation of image observations. The
VAE must be trained on data collected from the environment. Like other previous
approaches, we collect data using an agent that selects actions uniformly randomly
for a fixed number of timesteps. Then the VAE is trained on that data for a given
number of epochs, using some value for � and some learning rate. We use the archi-
tecture from Nair et al. [20]. The encoding is given by �(o) = e(o) where e is the
encoder of the VAE. Like in RIG, we first flatten image observations before using
them as inputs to the VAE, so the VAE uses only fully-connected layers [20].

• Convolutional Variational Autoencoder (CVAE): This is a variational autoen-
coder that makes use of convolutional layers for encoding, and transposed convolu-
tional layers for decoding. It is trained in the same way as a VAE, but uses a di↵erent
architecture.

• VGG: We use the convolutional layers of a VGG convolutional neural network
trained to classify images from the ImageNet dataset. The idea is that the con-
volution kernels learned by this network should be useful for image processing in
general.

• Raw Pixels (PIXEL): We compare against the baseline of performing no encoding
of images at all, except to flatten images into vectors and normalize pixel values to
be between 0 and 1. By using pixel distance as a reward, we evaluate the actual
di�culty of solving the task from pixels, and determine the necessity of having an
encoding scheme at all.

3.2 Architecture

Here we describe our model architecture, adapted from Kostrikov et al. [14] to work with
goals. Our model architecture is shown in figure 3.1.

The image observation o and the goal observation og are used to compute the latent
reward using some latent encoding �. The observation and goal are also passed to the
shared convolutional layers of the policy and the critic. We reuse the convolutional en-
coder on both the observation and the goal, and concatenate the resulting output. This

20



concatenated output is used as a combined representation for both the policy and the
critic.

To update the policy, we sample an observation and goal from the replay bu↵er D,
compute the concatenated output from the shared convolutional layers, and treat it as a
constant input to the policy so that gradients cannot flow back into the shared convolutional
layers. We then choose an action based on this input, and pass the concatenated output
and action to the critic, whose output is used to sample the objective J(✓) = Q�(o, a, o0).
We then maximize J(✓) via gradient ascent on only the policy parameters ✓, treating the
parameters � of Q� as constant. We use orange lines to represent the computation path
along which the policy objective gradients flow.

To update the critic, we sample an observation, goal, and action from the replay bu↵er.
We compute the concatenated output from the shared convolutional layers, and pass this
along with the sampled action to the critic. We then compute the target y for the critic to
regress onto using the latent reward. We then minimize L(�) via gradient descent on the
parameters � of Q� as well as on the parameters of the shared convolutional layers. We
use blue lines to represent the computation path along which critic loss gradients flow.

To simplify the diagram, we do not show the additional action and next state sampled
from the replay bu↵er, nor do we show the additional critic and target critics used by SAC
to improve performance.

3.3 Environments

We consider three robotics manipulation tasks that use the MuJoCo physics simulator [27].
These environments allow us to train and compare many agents in parallel while running
faster than real-time physics. In each environment, the robot is controlled via positional
control so that actions correspond to changes in (x, y, z) coordinates of the end-e↵ector.
This is easier than learning to control motor torques directly and avoids the need for
recurrent network architectures or using previous experience frames as additional inputs
to the agent to account for velocity and acceleration.

The agent only gets access to the current observation image and the goal image. The
agent gets up to 50 timesteps to solve the task before the environment is reset. We use
simulator states for evaluation. We generate goal images by setting the environment to
the goal state, rendering an image, and resetting the environment to its initial state. See
figure 3.2 for images of the environments.
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Figure 3.1: A simplified diagram of the model architecture, showing how observations and

goals are used to compute rewards, and showing the computation graph for the policy and critic

optimization. Policy optimization gradients flow through orange edges of the computation graph

and critic optimization gradients flow through blue edges. This diagram is not an exact reflection

of our architecture due to the complexity of the SAC learning algorithm.
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Two environments are released as part of the standard OpenAI gym package [23] and
one is part of the MultiWorld suite used by RIG and successors [20].

1. FetchReach-v1: The goal is to move the robot’s end-e↵ector to a specified (x, y, z)
coordinate. The goal position changes with each episode. When operating from
states, this task is easy, because the correct action is just the di↵erence between the
goal position and the current position. Images are 84⇥84 pixels, following standards
used by RAD and DrQ [16, 14]. Success in the task is defined as moving the end-
e↵ector to within 0.05 metres of the goal.

2. SawyerDoor-v1: The robot must learn to grasp a door handle and then move the
door to a desired angle. The agent is evaluated both in how close the door angle is
to the desired position, as well as how close the end-e↵ector of the robot is to the
desired position. Images are 48⇥48 pixels in accordance with prior work using these
environments, like RIG [20]. Success in the task has two components. Success for
the door position is defined as being within 0.02 radians (1.14 degrees) of the goal,
and success for the robot arm positions is defined as being within 0.03 metres of the
goal.

3. FetchPush-v1: The goal is to push an object to a desired goal position. The goal
position changes with each episode. This task is much harder than FetchReach-v1
because the agent needs to learn to move the arm to an appropriate position to be
able to push the object. This task is di�cult to solve directly from pixels, because
reaching the goal involves controlling only a small subset of pixels. Success in the
task is defined as moving the object to within 0.05 metres of the goal.

Since each of our environments are simulated, we can evaluate an agent based on the
ground truth states and goals. While the agent and reward function only ever get access
to images, we can compute, for example, the true distance of a robot’s end-e↵ector to the
goal position by querying the simulator. Such evaluation is di�cult or impossible in real
life without extensive instrumentation.

3.4 Hyperparameter Optimization

Every reinforcement learning algorithm makes use of several hyperparameters. There are
several ways that hyperparameters are chosen in reinforcement learning research:
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• Hyperparameters can be copied over from prior work. This is especially common
for neural network architectures, which are often chosen heuristically or tuned for
one paper, and then duplicated in subsequent papers. In this thesis, we use the
convolutional architecture defined by Kostrikov et al. [14].

• Hyperparameters can be chosen heuristically or left as default values. Certain algo-
rithms, like SAC, have tunable hyperparameters with default values. Often a good
algorithm will require little or no tuning of these hyperparameters to perform well.

• Hyperparameters can be tuned using some search algorithm. The majority of the
hyperparameters used in this thesis are tunable and interact to impact the perfor-
mance of the RL agent. A full list of hyperparameters and their ranges for searching
is available in appendix A.1.

Unfortunately, it is a common practice in the literature to not disclose how hyperpa-
rameters were chosen for a given method. It is possible that the authors tried hundreds
of hyperparameter configurations before finding a configuration that worked well on the
problem. Furthermore, it is a common practice to then assume that the hyperparameters
that were tuned for the proposed method will work equally well for the baseline comparison
methods. However, this is an unfair procedure, because it allocates the entire hyperparam-
eter optimization budget onto one method, while not a↵ording the same hyperparameter
optimization to the baselines. In this thesis, we aim to provide a fair evaluation of dif-
ferent encoding methods by using the same hyperparameter optimization budget for each
method.

Our hyperparameter search space can be divided into two parts: one part contains the
hyperparameters associated with the SAC learning algorithm, and the other part contains
the hyperparameters associated with the encoding method �. For each method, we sample
a fixed number of hyperparameter combinations from the hyperparameter search space
and use them to train our agent. This ensures that each method has the same oppor-
tunity to find hyperparameters that work well for the task. When the encoding method
has more hyperparameters, the total hyperparameter search space becomes exponentially
larger. This means we explore less of the search space associated with the SAC algorithm,
potentially missing a good combination of hyperparameters for the problem.

Methods like VAEs require tuning several hyperparameters, such as the number of
data points to train on, the learning rate, and the KL divergence weight �. In contrast,
randomly initialized neural networks with a fixed architecture chosen a priori require no
hyperparameter tuning. This allows us to allocate our entire hyperparameter optimization
budget to the hyperparameters associated with SAC.

24



Figure 3.2: Initial image observations and desired goal images for each of the three simulated

environments. The SawyerDoor-v1 environment is a top-down view of a cupboard and robot

arm.
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Chapter 4

Results

4.1 FetchReach-v1

The FetchReach-v1 environment is easy to solve, even directly using pixel distance. Given
any encoding � of image observations, we should have a maximum reward of 0 for �(o) =
�(og), which is satisfied when o = og. Thus, the agent can learn to solve the task by making
the observation image match the goal image. Since the agent controls the robot, and the
robot’s movement is the only way that pixel values change in this environment, the agent
can easily solve the task just by minimizing pixel distance. In fact, raw pixel distance is the
most competitive method for this environment. The learning curves for each method are
shown in figure 4.1. The variance in performance gives us an insight into the importance
of hyperparameter selection. Figure 4.2 compares each method by averaging performance
over all hyperparameters.

Figure 4.1: Learning curves for FetchReach-v1. Each point shows the success rate metric

averaged over ten evaluation episodes for each time step. Each line represents the learning curve

for a particular set of sampled hyperparameters. Lines are coloured according to the area under

the learning curve, which indicates learning speed and overall performance.
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Figure 4.2: Combined learning curves for FetchReach-v1. Each line shows the the evaluation

metric averaged over all sampled hyperparameters, with the area error bars corresponding to the

standard deviation over all sampled hyperparameters.

While the VAE method has some hyperparameters that can perform competitively, we
can see that over all sampled hyperparameters, many of them perform worse than the
other baselines. We hypothesize that this is because a portion of VAE’s hyperparameter
optimization budget was dedicated to hyperparameters associated with training the VAE,
such as � and the learning rate. Furthermore, the representation learned by the VAE may
be comparatively poor, since the VAE is only trained on 1000 images collected via an agent
with a randomly acting policy. These images may not represent the entire distribution of
observation images, leading to nonsense latent vectors for images outside of the training
distribution. In contrast, PIXEL and CONV do not rely on any learned representation,
and are not susceptible to this problem.

Interestingly, we show that raw pixel distance is su�cient to solve this task directly
from images, in contrast to notions suggested by prior work [20, 8, 28, 4, 21].

4.2 SawyerDoor-v1

The SawyerDoor-v1 environment has two metrics of success: how close the door angle
is to the goal door angle, and how close the robotic arm’s end e↵ector is to the goal
position. No method achieves 100% success, which is likely due to the fact that small
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perturbations in state result in no discernible di↵erence in pixel space. These perturbations
can be the di↵erence between success and failure according to the thresholds defined for
the environment. We therefore additionally report the final distance to the goal for both
the door and the robot arm, as shown in figure 4.4. This environment requires significantly
more environment steps to run than FetchReach-v1 (1,000,000 versus 20,000). It is also
very slow to run in terms of wall clock time, because SAC does a parameter update at
every time step. Therefore, we only sample 8 hyperparameters combinations from the
hyperparameter search space for each method.

Hyperparameter choice is very important for this problem, with some choices of hyper-
parameters barely progressing past the initial performance, and others performing quite
well. Even when averaged over all hyperparameter samples, CONV significantly outper-
forms other methods in terms of both success on the door angle and success on the robot
position, as shown in figure 4.5. CONV performs almost one standard deviation better
on average than the next-best method, CVAE. PIXEL and LINEAR methods perform
similarly, and both perform much better than VAE. Interestingly, CVAE performed much
better than VAE. Further investigation showed that the images sampled for VAE training
by the randomly acting policy did not introduce enough variability to learn a good latent
representation. The environment does not reset the door and robot arm positions when
a new episode begins, and the robot arm does not manage to open the door in the 1000
time steps used to collect data for VAE training. See figure 4.3 for an example of poor
reconstruction on this environment.

4.3 FetchPush-v1

We found that no method was able to solve this task using only images. To confirm the
correctness of our implementation of SAC, we removed the convolutional encoder and used
ground-truth states and goals as inputs to the agent. The agent learned to solve the task
from states within 500,000 time steps.

Examining the learned behaviour from each method, the agent always learned to move
the robot arm to the position shown in the goal image, and ignored the object. Once an
agent learns this behaviour, it becomes trapped in a local optimum and fails to discover
that moving the object can further increase the reward. We investigate the reasons for this
behaviour further in section 6.1.

This is an interesting finding. Prior work has managed to solve this task directly
from images using VAEs and CVAEs, but makes several additional modifications that we
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did not include in this work. Prior methods learn a policy directly on top of the latent
representations learned by the VAE, whereas we learn the policy end-to-end directly from
images. Prior methods also generate goals intrinsically by sampling from the Gaussian
prior learned by the VAE and using these latent representations as goals, whereas we use
the goals provided by the environment. This results in a kind of ablation study on prior
work showing that rewards based on learned latent representations are not su�cient to
solve the task directly from images.
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Figure 4.3: VAE reconstructions of initial observations. The data collected by the randomly

acting policy for SawyerDoor-v1 did not often include the initial state, so the initial state has

poor reconstruction.
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Figure 4.4: Learning curves for SawyerDoor-v1. Each point shows the evaluation metric aver-

aged over ten evaluation episodes for each time step. Each line represents the learning curve for

a particular set of sampled hyperparameters. Lines are coloured according to the area under the

learning curve, which indicates learning speed and overall performance.

Figure 4.5: Combined learning curves for SawyerDoor-v1. Each line shows the the evaluation

metric averaged over all sampled hyperparameters, with the area error bars corresponding to the

standard deviation over all sampled hyperparameters.
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Chapter 5

Discussion

5.1 Criterion for Success with Learning-Free Methods

In contrast to prior work, we show that simple methods that operate directly in pixel
space like PIXEL, or that use learning-free feature extraction like CONV and LINEAR,
are su�cient to solve FetchReach-v1 and SawyerDoor-v1. What properties do these
environments have that make them easy to solve? We propose the following criteria:

1. Easy exploration task: A task is an easy exploration task if a randomly acting
agent is able to find the goal with some significant probability. These environments
often have state spaces that can easily be controlled by the agent, so that the agent
can quickly cover a large region of state space using only random actions.

2. Matching reward gradients and latent reward gradients: The gradient of the
reward function with respect to the state vector points in approximately the same
direction as the gradient of the latent reward function. This means that the agent
can approximately optimize the reward function by optimizing the latent reward
function.

To evaluate the first criterion, we task a randomly acting agent with exploring the
environment until it either reaches the goal or reaches the 50 time step limit. For the
SawyerDoor-v1 task, we consider either door angle success or end-e↵ector position success
to be a success. We repeat this process for 100 episodes to estimate the proportion of
successes a randomly acting agent would find. We find that a randomly acting agent
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finds goals in SawyerDoor-v1 36% of the time, in FetchReach-v1 14% of the time, and
in FetchPush-v1 8% of the time. The agent does not have access to the underlying state
information and therefore cannot know whether it has actually reached the goal. The
purpose of this experiment is simply to verify that it possible to reach an arbitrary goal
without any advanced exploration techniques.

To verify the second criterion, we need to compute two gradients: the gradient of
the true reward function with respect to the state and the gradient of the latent reward
function with respect to the state. We know that the true reward function is r(s, a, s0, g) =
�ks

0
� gk2, and its gradient with respect to s

0 is �(s0 � g)/ks0 � gk2. This gives us the
direction in state space that most quickly maximizes the reward.

We want to compute the gradient of the latent reward function with respect to the
state s0, but must first pass through fo the function that maps states to observations. This
is a rendering operation that is nondi↵erentiable.1 Therefore, we need to approximate
the gradient of the latent reward function. We define our procedure for estimating this
gradient in algorithm 1. We use r and ` to di↵entiate between true reward and the latent
reward respectively.2

Here we justify the gradient estimation procedure used in algorithm 1. Consider a
multivariate function f : Rn

! R. The first-order Taylor series approximation of f around
x is given by

f(x+ h) ⇡ f(x) + h
|
rxf.

Rearranging we get,
f(x+ h)� f(x) ⇡ h

|
rxf.

The term on the right hand side is the directional derivative of f at x along h. Define our
approximation of rxf to be �. This gives

f(x+ h)� f(x) ⇡ h
|
�.

We can collect a number of examples of hi and f(x+ hi) to generate a system of linear

1
Rendering can be di↵erentiable in principle, but capturing light from a camera in real life is not.

2
The end-e↵ector position of the robot is controlled using a mocap (“motion capture”), and we do

positional control by setting the desired location of the mocap and performing inverse optimal control to

plan a path from the current mocap position to the desired mocap position. Because of limitations in the

design of the robot model as well as additional constraints on joint angles of the robot, it is not possible

to exactly set the end-e↵ector position to any arbitary desired location. This limitation is considered in

the description of algorithm 1.
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Algorithm 1 Approximate Gradient of Latent Reward Function

s0 ⇠ p(s0) . Sample an initial state
g ⇠ G . Sample goal
r  �ks� gk2 . Compute reward
` �k�(fo(s))� �(fo(g))k2 . Compute latent reward
�s  {} . To store changes in state
�`  {} . To store changes in latent reward
for n 1 . . . N do:

h ⇠ S
|S|

. Sample a vector from the unit sphere in state space
env.set state(s+ ↵h) . Attempt to move mocap to new location
s
0
 env.get state() . Compute actual new mocap position

`
0
 �k�(fo(s0))� �(fo(g))k2 . Compute new latent reward

�s  �s

S
{s

0
� s} . Store actual change in state

�`  �`

S
{`

0
� `} . Store change in latent reward

� = min� k�s� ��`k
2
2 . Solve for � by linear least-squares

return �

equations 2

6664

h
|
0

h
|
1
...
h
|
N

3

7775
� ⇡

2

6664

f(x+ h0)� f(x)
f(x+ h1)� f(x)

...
f(x+ hN)� f(x)

3

7775
.

By solving for � using least-squares regression we approximately recover the gradient rxf .

To validate algorithm 1, we compared the analytically derived gradient of the true
reward function r to an estimate computed by algorithm 1. Using this algorithm, we can
consistently approximate the gradient over large regions of state space in each environment.
We compare the approximate gradient to the true gradient using cosine distance

d(u, v) = 1�
hu, vi

kuk2kvk2
,

which is the cosine of the angle between two equal-length vectors u and v, shifted to have
a minimum of 0 when the vectors point in the same direction and to have a maximum of 2
when the vectors point in the opposite direction. The average cosine distance between the
true gradient and the estimated gradient over each environment is less than 0.01 when N

scales exponentially with the dimensionality of the state space S.
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We evaluate criterion 2 by computing the approximate gradient of the latent reward
function over many points in state space for each environment, and compare it to the
analytic gradient of the true reward function using the cosine distance. We denote by
d the average cosine distance over all sampled points. The average cosine distances are
summarized in table 5.1.

CONV CVAE VAE VGG LINEAR PIXEL
FetchReach-v1 0.26 0.25 0.42 0.31 0.28 0.23
SawyerDoor-v1 0.74 0.79 0.80 0.94 0.82 0.79
FetchPush-v1 0.68 0.66 0.77 0.71 0.73 0.67

Table 5.1: Average cosine distance d between true reward gradient and approximate latent

gradient.

We find that for all environments and all encoders, d is less than 1, so the gradients agree
at least somewhat. For FetchReach-v1 they point very strongly in the same direction. We
find that d is predictive of the performance of the corresponding encoding method on that
environment. For example, PIXEL has the lowest cosine distance for FetchReach-v1 and
has the highest performance. Similarly, VAE has the highest cosine distance and has the
lowest performance (see figure 4.2). For SawyerDoor-v1, CONV has the lowest cosine
distance and the highest performance (see figure 4.5). The relationship is less clear for
FetchPush-v1 which was not solved by any method.

We also tested other potential criteria for success. The results of these experiments
turned out to be insu�cient to explain our results, or did not support the hypotheses we
had formed. A selection of these experiments are detailed in the appendix.
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Chapter 6

Conclusions

6.1 Limitations and Future Work

Learning-free encodings of images are very general, since they can be applied to any image-
based scenario. Because of their generality, they are not specialized to work with particular
environments. In contrast prior methods use specialized representations that are tuned
to work with object manipulation tasks. Wulfmeier et al. [28] use tasks similar to the
FetchPush-v1 environment, but focus on object-centric representations that are well-suited
to these tasks. Similarly, successors to RIG use learned representations that are conditioned
on the initial observation [19] so that latent representations include information about the
object colour. Unlike this prior work, our method did not succeed on the FetchPush-v1
task. We hypothesize that two factors caused this failure.

First, the goals given to the agent are too di�cult for it to immediately succeed directly
from images. Methods like RIG and its successors, automatic goal generation methods like
those presented by Florensa et al. [8] and representation methods explored by Wulfmeier
et al. [28] gradually increase the di�culty of the goals presented to the agent. In contrast,
we use the goals sampled directly from the evaluation distribution of goals provided by the
environment, which may be initially too hard for the agent to solve. In fact, we found that
an agent trained directly on the ground truth state using the evaluation goal distribution
took up to 500,000 time steps to begin learning a successful policy.

The second reason for failure is because learning-free representations are more heav-
ily influenced by the robot arm movement than the object movement, even though the
object movement is the only part of the environment that determines success. We de-
termined that this was the case by manually moving the object while keeping the robot
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arm fixed, and also the opposite, keeping the object fixed while moving the robot arm.
We capture image observations of the environment in each of these scenarios and compute
the dimension-wise variance in latent representations for di↵erent encoding methods. For
learning-free representations, moving the robot arm results in much more variance in the
latent representations than moving the object (see figure 6.1). In contrast, the variance in
latent representations for VAE and CVAE are more balanced. Because the robot move-
ment dominates the latent representation, it also dominates the computation of the latent
distance to the goal, and so the agent minimizes the latent distance to the goal by greedily
moving the robot to the position in the goal image.

Figure 6.1: FetchPush-v1 object versus latent variance. Shows the variance over each dimension

of the latent representation when moving only the object versus moving only the robot arm.

Despite the VAE and CVAE latent representations being more balanced in terms of
object and robot arm influence, they are still unable to learn the FetchPush-v1 task.
All agents just learn to move the robot arm to the position shown in the goal image.
We therefore conclude that modifying the goal sampling distribution, as in other work,
is critical for success in these environments. In future work, we propose incorporating
methods for goal generation with these simple learning-free methods to determine the
importance of learned representations.

We also did not test these methods on environments where consecutive time steps share
very little overlapping pixels. In the robotics environments we tested, consecutive obser-
vations are quite similar, so raw pixel distance changes smoothly over time. This provides
a nicely shaped reward for our agent. However, there are other goal-conditioned environ-
ments from images, like point mass navigation tasks, where pixel distance is essentially
meaningless. Prior approaches to solving this kind of task involving learning a latent rep-
resentation where distance between latent vectors corresponds to the amount of time a
goal-conditioned policy would take to go from one to the other [7]. It is not clear whether
a learning-free method would be able to solve this kind of task.

This thesis focuses on the capabilities of learning-free representations. However, there
is a vast literature of methods for learned encodings of images that have largely not been
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considered for reinforcement learning. There are numerous dimensionality reduction tech-
niques like principal components analysis (PCA) and multidimensional scaling (MDS)
that can learn low-dimensional latent representations of images, while the literature seems
largely constrained to using VAEs and CVAEs for this purpose. Furthermore, there are
many self-supervised representation learning methods like momentum contrast (MoCo) [13]
and SimCLR (A Simple Framework for Contrastive Learning of Visual Representations)
[6] that have yet to be fully explored in reinforcement learning. In fact, CURL, which was
the state-of-the-art for continuous control from images for some time, was only recently
published in 2020, and used contrastive learning, a form of self-supervised learning, to help
guide a good image representation for the policy and critic to learn from [15]. Expanding
the way we transform images in RL beyond VAEs and basic convolutional neural networks
could provide a rich avenue for future work.

6.2 Conclusion

In this thesis we train an RL agent to reach arbitrary goals specified as images. The agent
only has access to image observations and the goal image, and must learn to match that
goal image. We train an agent to maximize the reward r = �k�(o) � �(og)k2 where � is
any method for transforming images into latent vectors. While prior work uses learned rep-
resentations for �, such as the encoder of a variational autoencoder, we show that certain
problems can be solved using learning-free representations. In particular, we show that us-
ing raw pixel distance outperforms all encoding methods for FetchReach-v1. We also show
that using features from a randomly initialized convolutional network can even outperform
learned latent representations on harder tasks like SawyerDoor-v1. We demonstrate the
importance of considering simple methods for goal-conditioned RL from images.
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Appendix A

APPENDICES

A.1 Hyperparameter Search Space

Table A.1 shows all hyperparameters for our experiments, as well as their possible val-
ues. When we say we sampled n hyperparameter combinations, we mean that, for each
hyperparameter that can take on multiple values, we samples a single value for that hy-
perparameter.

Latent dimensions of � {128, 256} or {8, 16} for VAE/CVAE
Hidden layer sizes of actor/critic networks {[256, 256], [512, 512], [1024, 1024]}

Discount factor � 0.95
Initial temperature for SAC {0.1, 1.}

Learning rate {0.001, 0.0005, 0.0001}
Actor update frequency {1, 2}

Critic ⌧ {0.005, 0.001}
Batch size 256

Gradient steps per environment step 2
Replay bu↵er capacity 1, 000, 000

Table A.1: Hyperparameters
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A.2 Additional Experiments

We were interested to know why certain methods performed better than others on various
environments. Here we briefly describe a selection of hypotheses and experiments, along
with what the results of those experiments show.

A.2.1 Correlation between Latent Reward and True Reward

We compute the true reward as r(s, a, s0, g) = �ks0 � gk2, using the underlying states and
goal state from the simulator. For each environment and encoding method, we can place
the agent in a random point in state space with a goal from the evaluation distribution, and
we can then compute both the true and latent rewards. Repeating this for many points in
state space allows us to determine how well latent reward corresponds with true reward.
See figure A.1.

We can see that for the FetchReach-v1 environment, we have strong correlation be-
tween latent and true reward for the PIXEL and LINEAR methods, and somewhat strong
correlation for the CONV and VGG methods. However, we don’t see strong correlation
for the VAE and CVAE methods. Interestingly, for the SawyerDoor-v1 environment, we
see the strongest correlation for the VGG method. There is almost no correlation for any
method for the FetchPush-v1 environment (in fact, a least-squares regression predicts a
negative relationship between the two rewards).

A.2.2 Preservation of State Space Topology in Latent Space

We wondered if the topology of the state space is somehow preserved in the latent space.
This means that the mapping S ! O ! Z from state space to observation space (render-
ing) and from observation space to latent space somehow preserves the connectedness and
distances between points.

To visualize this theory, we consider a 2D subset of state space for each environment.
For example, in the SawyerDoor-v1 environment, this 2D subset corresponds to the changes
in the door angle ✓ and the horizontal position of the robot arm x. We can manually set
the environment to points on a uniform grid over this 2D subspace. For each point in this
grid, we can capture an image and compute the latent representation. This gives us a set of
points in state space and their corresponding representations in latent space. We can then
find a 2D manifold inside the set of latent representations that preserves geodesic distances
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Figure A.1: Correlation between true reward and latent reward. True reward on x axis, latent

reward on y axis.

using the isomap algorithm. Finally, we can project our set of latent representations onto
the low-dimensional 2D manifold learned by isomap, giving us pairs of 2D coordinates: one
in state space and one in the projected latent space. We can then compare the topology
of these two sets of points by colouring each point according to its coordinates, with one
coordinate for hue and one coordinate for value.

In figure A.2 we choose the (x, y) plane with z fixed in midair to be the subspace of
state space to map. We can see that the PIXEL, LINEAR and CONV methods all have
similar latent space topologies. VGG has a similar topology to the state space, but is
more distorted than PIXEL, LINEAR, and CONV. Finally, VAE and CVAE are the most
distorted, which is to be expected, since their latent spaces are not learned to be “flat”
but rather to form a diagonal Gaussian distribution. There is no obvious mapping from
an n-dimensional ball to a flat 2D surface.

In figure A.3, we choose the door angle ✓ and the horizontal position of the robot’s
end-e↵ector x to be our 2D subspace of state space. Interestingly, PIXEL has the best
topology preservation, followed by LINEAR. Despite CONV performing best here, its
latent space seems to be more distorted than PIXEL and LINEAR. There seems to be no
clear relationship between the results of this experiment and the performance of di↵erent
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Figure A.2: FetchReach-v1 latent space visualization.

encoding methods.

Figure A.3: SawyerDoor-v1 latent space visualization.

Finally, in figure A.4, we choose our 2D subspace to be that with the robot arm and
object occupying the same (x, y) coordinates, restricting those coordinates to the surface of
the table. We see that PIXEL and CONV encode state space similarly. Since the robot arm
is moved in conjunction with the object, we can expect these encodings to be somewhat
similar to those for FetchReach-v1. Interestingly, the VAE and CVAE spaces seem to be
better represented here than in FetchReach-v1, perhaps because more of latent space is
dedicated to object position. Again, it is not clear that latent space topology relates to
final performance of di↵erent encoding methods.
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Figure A.4: FetchPush-v1 latent space visualization.
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