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Abstract

There is a large body of research on extracting models from code-related artifacts
to enable model-based analyses of large software systems. However, engineers do not
always have access to the entire code base of a system: some components may be procured
from third-party suppliers based on a model specification or their code may be generated
automatically from models. Additionally, the development of software systems does not
produce only source code as its output. Modern large software system have various artifacts
relevant to them, such as software models, build scripts, test scripts, version control history
data, and more. In order to produce a more complete view of a modern software system
heterogeneous fact extraction of various artifacts is necessary - not just of source code.

This thesis introduces mel— a model extraction language and interpreter for extracting
“facts” from models represented in XMI; these facts can be combined with facts extracted
from other system components to form a lightweight model of an entire software system.
We provide preliminary evidence that mel is sufficient to specify fact extraction from
models that have very different XMI representations. We also show that it can be easier
to use mel to create a fact extractor for a particular model representation than to develop
a specialized fact extractor for the model from scratch.
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Chapter 1

Introduction

As software systems grow increasingly large and complex, they are becoming harder to
analyze. Many program-analyses simply do not scale to the sizes of industrial software
systems. One strategy to combat this problem is to create a lightweight model of the
software system and then analyze the model. For example, compiler technologies and
static analyzers can be employed as model extractors (e.g., LSME [53], Doop [9], Rigi [52],
Frappé [16], eKNOWS Code Model Service [59], Rex [54]) that extract software models
(e.g., call graphs, data-flow graphs, dependency graphs) from software artifacts. More
generally, extracted models comprise collections of “facts” about a system’s software com-
ponents — entities (e.g., functions, classes, variables), relationships (function calls, variable
assignments), and attributes (e.g., a function is a callback) — that are amenable to analy-
ses expressed as algebraic manipulations [28], graph queries [16, 59], Datalog programs [9],
and so on.

The above techniques all assume that the system under analysis comprises various kinds
of software entities: source code, object code, build code, configuration files, and other
code-related artifacts. However, engineers do not always have access to all of the system’s
source artifacts. Some components, libraries, or subsystems may be procured from third
parties (e.g., based on a specification Model). Hereafter, we distinguish between prescrip-
tive and descriptive models (denoted as capitalized Models) that are artifacts produced
by engineers as part of the software-development process versus extracted models (de-
noted as lowercase models) that are generated from software, Models, and other artifacts.
Other components may be generated automatically from Models that are more descriptive
and semantically informative than the generated code. Moreover, software developers use
software models as an additional artifact when developing and comprehending software
systems, ranging from the deep end of Model-driven engineering (MDE) to simply using
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Models for communication between engineers or as documentation [30]. While Models may
not be completely ubiquitous they certainly are a common artifact of software engineering
products and are seemingly here to stay. As such, to create a single coherent model of the
entire system, we would need a means to extract facts from Models.

The construction of fact extractors for Models poses a major challenge. There is a
wide variety of Model representations: multiple types of Models may be employed, and
different types of Models may be expressed in different notations and representations. Even
when Models are expressed in eXtensible Markup Language (XML) [10] and Model editors
for the same Model types (e.g., UML Model editors) use the XML Metadata Interchange
(XMI) [18] standard for expressing metamodels and metadata, the Models’ XMI schema
vary considerably. A specialized extractor may need to be created for every pair of Model
editor and supported Model type.

This thesis introduces a model extractor language (mel) and mel interpreter (called
mint) to support rapid development of fact extractors for Models that are represented in
the XML Metadata Interchange (XMI) up to and including the version 2.5.1 standard [18].
mel is a domain-specific language (DSL) for succinctly expressing which facts (e.g., Model
elements, relationships, attributes) are to be extracted from a Model. The mel language
is designed to allow the user to concentrate on the essential complexity of deciding what
information to extract from a Model and leave to mel and mint the accidental complexity
of how to pluck that information from an XML/XMI representation.

1.1 Thesis Contributions

The contributions proposed by this thesis are:

• The development and presentation of a domain-specific language mel, and corre-
sponding interpreter mint, for specifying and extracting model-based information
from a Model represented in XML.

• An evaluation of the extent to which mel is expressive enough to apply to different
Model types, including UML class and state machine diagrams [19], Arcadia Logical
Architecture diagrams, [67], Feature Models [43], Simulink Block Diagrams [49].

• An evaluation of whether it is easier to write a mel program to create a fact extractor
for a particular Model representation than it is to develop the fact extractor from
scratch using existing XML querying tools.
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1.2 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 starts with a background on fact extraction, XMI and XML as model rep-
resentations, and works and tools related prior to the process of XML analysis and trans-
formation.

Chapter 3 introduces mel, specifies its input language, and describes its implementation.

Chapter 4 reports the results of studies that evaluate the effectiveness of mel in easing
the creation of new model extractors for Models and the extent of mel’s ability to gener-
alize to a variety of XML/XMI-based Models.

Lastly, Chapter 5 discusses conclusions drawn from the evaluation of mel.
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Chapter 2

Background

This chapter discusses the context necessary for understanding mel and its purpose. Mainly,
this chapter presents information on fact extraction, XML as a language, and existing tools
seeking to aid the transformation or distillation of XML data.

2.1 Fact Extraction

A fact extractor is a program built to analyze a structured software artifact and produce a
specific customized set of desired information about that artifact. The data set produced
by a fact extractor can be called a factbase - as it is a database of facts about the particular
software artifact. A produced factbase also represents a particular model of the software
artifact, defined by the software details that the extractor is designed to extract from the
artifact.

Most commonly, fact extractors are built to extract facts from source code or even
directly from a compiled binary file. Given that a fact extractor is a program built to
extract desired information from a software artifact, many commercial static-analysis tools
can be considered to contain within them a fact extractor that pulls from the source code
the information it requires for its analysis. For example, SciTools Understand [62], a
popular IDE that provides static-analysis features, includes an extractor.

As a factbase is just a collection of data about a software artifact, it can have any form.
In this thesis, a factbase is a collection of entities and relationships between entities, both
of which can be annotated with attributes without any particular formatting.
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2.1.1 Extraction of Lightweight Models

We will consider a lightweight model to be a model that abstracts a software system at
a high level, including only as much information as is exactly necessary for the desired
analyses. The purpose of extracting only exactly as much information as is necessary is to
both avoid information overload on the user, as well as to facilitate efficient analysis of very
large software systems. There is a rich history of extracting lightweight models from source-
code artifacts for a variety of purposes, including the construction of high-level architectural
views [8, 51] and the validation of developers’ mental models of a system’s design against
the code [53]. At their most basic, the models produced by such tools are based on facts
extracted from the source code; the models can be augmented with facts drawn from other
development information such as version control meta-data, process metrics, and data from
the dynamic instrumentation of the running system. Each extractor understands what
information to collect from its respective target, and there is a central model of the system
into which this extracted information is integrated. Extracting information from diverse
artifacts is important because it improves one’s existing knowledge about the system and
permits new kinds of analyses to be performed. In this thesis, we propose a tool to aid
in extracting information from software Models, such as UML Class and StateMachine
diagrams, Arcadia Logical Architecture diagrams, and Feature Models. The information
extracted from such Models can then be included with information extracted from source
code to provide a more holistic view of the software. To the best of our knowledge, this
has not been done before.

An architecture for a fact extraction tool pipeline might look like Fig. 2.1. To perform
extraction at scale, extractors typically first process individual development artifacts pro-
ducing a set of factbases, one for each source artifact. After the individual artifacts have
been processed, the results are typically merged together into a single factbase, where refer-
ences within one artifact to model elements in other artifacts are resolved. The structuring
of the facts — which come from a diverse set of artifacts — into a coherent system model
creates a common vocabulary that aids the end-user in phrasing queries and performing
analyses over the augmented system model.

Our factbases model information about program entities — such as global variables,
function, and files/classes — and the relationships between them, such as containmen-
t/ownership, function calls, and global variable accesses. Additionally, both entities and
relationships can have attributes, such as function parameter types, the line number within
a file where the entity/relationship is located, and if a variable access by a function is read
or write.
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Figure 2.1: Architecture of a fact-extraction tool pipeline

2.1.2 Heterogeneous Fact Extraction

Source code is not the only relevant artifact produced during software development. Soft-
ware artifacts can include source code, object code, build code, configuration files, various
system Models, version-control log data, and other code-related artifacts. It is not uncom-
mon for extractors of artifacts other than source code to be created in order to build a
fuller picture of a piece of software.

Heterogeneous fact extraction is the act of extracting facts from more than one type of
software artifact. The goal of heterogeneous fact extraction is to provide a more holistic
and complete view of a piece of software. For example Passos and Czarnecki [56] developed
an extractor to scrape the Linux kernel Git repository in order to extract data about feature
additions and removals [56]. This extractor was built specifically to extract information
that could not have been gleaned from source code alone and was used to form a fuller
understanding of the evolution of the Linux kernel from a feature-oriented perspective [57].

Creating an extractor requires the developer to both (1) identify the relevant informa-
tion from the artifact, and (2) write software to find and pluck that information from out
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of the artifact. One issue that arises is that the developer of an extractor may not know all
the information users of the extractor may desire from the artifact. The technical challenge
of locating and plucking information from the artifact depends on the type of artifact itself.
If the artifact is source code then the process likely involves walking the abstract syntax
tree of the source code to locate relevant pieces of information. In the case of Passos and
Czarnecki’s work, their extractor needed to execute API requests to obtain the relevant
git log information and then scrape those files for the information they were interested in.
In the case of Software Models represented in an XML format, the effort required is the
traversing of the XML tree to find relevant tags and relationships between them - often
traversing the tree multiple time to resolve references between entities.

This thesis supports heterogeneous fact extraction by providing a language and tool
for the rapid development of Model extractors. mel eases the task of extractor creation by
allowing the developer to focus only on identifying the information they are interested in
and not on the minutiae of how to find and pluck that information from the XML.

2.2 XML and XMI

Many Modelling languages have a graphical representation, but Modelling tools represent
this as a textual representation to ease the storing and sharing of Models. The most com-
mon textual representation for Models is the eXtensible Markup Language (XML) [10].
A further specialization of XML for representing Models has been created by the Object
Management Group (OMG): the XML Metadata Interchange (XMI) standard [18]. The
XMI standard is sufficiently expressive to represent Models belonging to any Model stan-
dard published by the OMG, including UML and SysML diagrams. The purpose of XMI
is to standardize the representation of OMG specified Models allowing for the exporting
and importing of models across compliant tools. Because XMI is a specialization of XML
they share many features/rules. The term XM* will be used when referring to both XML
and XMI.

An XM* representation is a tree of nested tagged nodes, with a single root node. Each
node comprises an opening tag, content, and matching closing tag :

<tagname> content </tagname>

A node’s content can contain text, nested nodes, or both. It is common for attribute values
to also be stored as attributes of a node which must be written in the node’s opening tag,
for example:
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<tagname attr1="Value1" attr2="Value2"> content </tagname>

When a node conveys all of its information as attributes, it is useful to express it as an
empty node that is simply a self-closing tag with attributes and no content. A node is
marked as self-closing by prepending its closing > with a forward slash to become />, for
example:

<tagname attr1="Value1" attr2="Value2"/>

Seen in Figure 2.2 is a tiny XMI Model that declares a UML Class named “C1", which has
a feature represented as a child node.

1 <xmi:XMI version="2.0" ...>
2 <UML:Class name="C1" xmi:type="uml:Class" xmi:id="_1">
3 <feature xmi:type="UML:Attribute" xmi:id="_2" name="a1" />
4 </UML:Class>
5 </xmi:XMI>

Figure 2.2: A simple Model expressed in XMI.

Relational information in XM* documents is often encoded in one of two ways. The
first common encoding is through an ancestor/descendant relationship as seen between the
feature and class nodes in Figure 2.2. The second common method is to encode relational
data through unique identifier attributes and through references to an identifier attribute of
another node. Figure 2.3 demonstrates this alternative method of using unique identifiers
to encode the same ancestor/descendant relationship between nodes class and feature that
appears in Figure 2.2.

1 <xmi:XMI version="2.0" ...>
2 <UML:Class name="C1" xmi:type="uml:Class" xmi:id="_1">
3 <feature xmi:type="UML:Attribute" xmi:id="_2"
4 name="a1" parentClass="_1"/>
5 </xmi:XMI>

Figure 2.3: A simple Model expressed in XMI representing relational data using unique
identifiers.
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2.2.1 Differences between XML and XMI

As XMI is a specialization of XML, any valid XMI document is also a valid XML document
whereas the converse is not always true. An XML document is an XMI document only if
it conforms to the specifications laid out in the XMI specification [18].

Since XMI is meant to standardize model representations, the primary difference be-
tween XMI and arbitrary XML are the restrictions on the tags that may be used. The
XMI standard also specifies how tags and their attributes must be used, and what they
represent. Effectively XMI is a smaller more controlled subset.

2.2.2 EMF Core (ECore)

The Eclipse Modelling Framework (EMF) is a framework built by the Eclipse Foundation
for the modelling of software and generation of code from Models. EMF Core (ECore) [63]
is the meta model for describing Models and serializing them to XMI. Many of the Models
that are publicly available through the Model database compiled by Hebig, Ho-Quang,
Chaudron, Robles, and Fernandez and [25] were created using one of the many Eclipse-
based modelling tools, and thus are represented in EMF ECore.

While ECore representation is XMI, ECore differs from most other common XMI repre-
sentations in one major way: References to existing tags, or declarations that would involve
a reference to an existing tag, are written in ECore as an absolute or relative path to the
node. Figure 2.4 illustrates this, showing how a bi-directional relationship with labels
inventory and store is encoded in the ECore XMI representation. The relationship that
class Product has with class ConvenienceStore is stored as an eStructuralFeatures tag.
The eType and eOpposite attributes of this eStructuralFeatures tag illustrate ECore’s
form of encoding references as paths. That is,

• The store relationship of class Product encodes its target as an eType Attribute,
which has value #//ConvenienceStore. The #// refers to the root of a document.
If a path to a Document appears on the left of the #, then it refers to the root of
that specified Document; if nothing appears on the left, then it the path starts at
the root of the current Document. So this particular eType attribute resolves to the
ConvenienceStore type defined in this document.

• Secondly, the eOpposite attribute encodes the corresponding relationship in a bi-
directional relationship. Here, the eOpposite attribute has the value
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1 <eClassifiers xsi:type="ecore:EClass" name="Product">
2 <eStructuralFeatures xsi:type="ecore:EReference" name="store"
3

4 lowerBound="1" eType="#//ConvenienceStore"
5 eOpposite="#//ConvenienceStore/inventory"/>
6 </eClassifiers>
7 <eClassifiers xsi:type="ecore:EClass" name="ConvenienceStore">
8 <eStructuralFeatures xsi:type="ecore:EReference"
9 name="inventory" upperBound="-1"

10 eType="#//Product" eOpposite="#//Product/store"/>
11 </eClassifiers>

Figure 2.4: A simple UML class diagram created with the EMF Core Diagram Editor and
a Snippet of the corresponding ECore representation. This shows the entirety of the repre-
sentation of the two classes and their relationships. The eType and eOpposite attributes
demonstrate how ECore encodes references to other data in the Model. (Produced with
Eclipse Modeling Tools version 4.19.0).

#//ConvenienceStore/inventory, which refers to the inventory relationship within
the ConvenienceStore class.

• The opposing relationship inventory has similar references to the Product class and
its store relationship.
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2.3 XML Analysis & Transformation Tools

A wide variety of tools exist to interpret and translate XML documents. Because XMI
is a specialization of the XML, these tools implicitly function on XMI documents as well.
The World Wide Web Consortium (W3C) defines the XML specification and it has also
produced a number of tools for working with XML documents.

This section discusses the W3C tools XQuery [61] and XPath [13] as well as several
academic tools for working with XML documents.

2.3.1 XPath and XQuery

XPath and XQuery are tools for querying and working with the contents of an XML file.
Because W3C defines the XML and its specification, XPath and XQuery belong to the
W3C recommended tool set for working with XML documents.

XPath

XPath is a query language in which the user can write queries to specify matching nodes
and attributes in an XML file based on expressions of paths in the XML tree. Simple
relationships can be represented in XPath through the use of XPath Axes which allow the
user to refer to nodes via their relationship to a current node.

Figure 2.5 provides a simple XML fragment with relational data between vegetables.
The figure shows two groups of vegetable types (Greens and Roots) each of which comprises
three individual “veggie” child nodes and an additional non-grouped vegetable “Tomato”.
Figure 2.6 demonstrates several XPath queries that could be applied to the XML frag-
ment in Figure 2.5 to extract particular pieces of information. The queries’ purposes and
behaviours are as follows:

Line 1 This query selects all <veggie> nodes in the XML document. The // syntax specifies
a descendant relationship. A query that starts with a // specifies any descendant of
the root of the document thereby effectively matching any node in the document. If
this query is applied to the XML fragment in Figure 2.5 the result set contains all
seven <veggie> nodes in the document.

Line 2 This query selects all <veggie> nodes that are direct children of a <vegetables>
node. The / syntax indicates a direct parent-child relationship. Thus the //vegetables
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1 <root>
2 <vegetables label="Greens">
3 <veggie id="1" label="Asparagus"/>
4 <veggie id="2" label="Broccoli"/>
5 <veggie id="3" label="Kale"/>
6 </vegetables>
7 <vegetables label="Roots">
8 <veggie id="4" label="Carrot"/>
9 <veggie id="5" label="Onion"/>

10 <veggie id="6" label="Turnip"/>
11 </vegetables>
12 <veggie id="7" label="Tomato"/>
13 </root>

Figure 2.5: An XML model with groups of siblings

1 //veggie
2 //vegetables/veggie
3 //vegetables/@label
4 //vegetables[@label="Greens"]/child::veggie
5 //vegetables[@label="Roots"]/child::veggie

Figure 2.6: Five simple XPath queries, one per line

portion of the query selects all <vegetables> nodes in the document, and subsequent
/veggie portion of the query selects all <veggie> nodes that are direct children of
the previously selected <vegetables> nodes. If this query is applied to the XML
fragment in Figure 2.5, the result set contains all <veggie> nodes in the document
except for the one with label “Tomato”.

Line 3 This query selects all the values of the label attributes of all <vegetables> nodes in
the document. If this query is applied to the XML fragment in Figure 2.5 the result
set contains the two strings “Greens” and “Roots”.

Line 4 This query selects all <veggie> nodes that are direct children of any <vegetables>
nodes that have a label attribute whose value is “Greens". If this query is applied
to the XML fragment in Figure 2.5, the result set contains the three <veggie> nodes
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found under the first <vegetables> node — that is those with labels “Asparagus”,
“Broccoli”, and “Kale”.

Line 5 This query behaves similarly to the query on Line 4 with the exception being that the
<vegetables> nodes selected in the first portion of the query have a label attribute
value of “Roots” instead of “Greens”. If this query is applied to the XML fragment in
Figure 2.5, the result set contains the three <veggie> nodes found under the second
<vegetables> nodes — that is those with labels “Carrot”, “Onion”, and “Turnip”.

Such queries are useful and effective for selecting elements in a factbase but not for
deriving new facts to include in the factbase. For example, one would not be able to write
an XPath query to generate a “sibling” relationship between <veggie> nodes in the XML
fragment shown in Figure 2.5. However using an XPath processor in conjunction with
a general purpose programming language, a programmer could combine query results to
generate such a sibling relationship for their factbase.

In conclusion, although XPath is a useful query language for extracting specific nodes
or groups of nodes from an XML document, it lacks the innate ability to generate relational
data between nodes. The more powerful XQuery can aid a developer in this regard.

XQuery

XQuery is a mature general-purpose XML query and transformation language that is
designed to transform XML into either other hierarchical representations or user-formatted
reports. XQuery was developed after and built on top of XPath. As such XQuery is a
superset of XPath and almost any valid XPath query is valid in XQuery as well1.

As a more general-purpose language, XQuery allows for much more complex data to
be produced than XPath allows and queries can be more complex. For example, the
sibling relationship between <veggie> nodes in Figure 2.5 can be derived with the XQuery
program shown in Figure 2.7. The constructs used in this example are a mix of XPath
selectors and common imperative programming concepts; their behaviour is as follows:

Line 1 defines a variable $veggies and assigns its value to the collection of tags returned
by the subsequent for loop.

1With small exceptions for old version compatibility modes and expansion of character entity references
(e.g. ’&amp;’ is & in XQuery and remains &amp; in XPath).
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1 let $veggies :=
2 for $veggie in //veggie
3 return <veg id="{ $veggie/@id }" name="{ $veggie/@label }" />
4

5 let $siblings :=
6 for $vegetable in //vegetables
7 for $veggie in $vegetable//veggie
8 for $v2 in $veggie/following-sibling::veggie
9 return <sibling s1="{ $veggie/@label }" s2="{ $v2/@label }" />

10 return <data>
11 { $veggies }
12 { $siblings }
13 </data>

Figure 2.7: XQuery program for generating a sibling relationship

Line 2 is a for loop where an iterator variable $veggie is used to iterate through the
nodes produced by the XPath selector //vegetables. That is, this for loop iterates
over each veggie node in the original document.

Line 3 has a return statement which constructs a new fact with the tag veg, whose id
attribute has the value of the veggie node’s id Attribute and name attribute has the
value of the veggie node’s label Attribute. As this return statement is within a for
loop it constructs one fact for each node iterated by the for loop.

Line 5 defines a variable siblings and assigns its value to the collection of tags returned
by the subsequent for loop.

Line 6 is a for loop that iterates over every vegetables node in the original document,
binding each to the iterator variable $vegetable.

Line 7 is a nested for loop that iterates over every veggie node that is underneath the
vegetables node currently selected by the enclosing for loop in Line 6.

Line 8 is another nested for loop that applies the following-sibling XPath axis to
the veggie node currently selected by the enclosing for loop in Line 7. The axis
application $veggie/following-sibling::veggie produces all of the subsequent
veggie node siblings of the selected node $veggie, and the collection is iterated over
by $v2.
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1 <data>
2 <veg name="Asparagus" id="1"/>
3 <veg name="Broccoli" id="2"/>
4 <veg name="Kale" id="3"/>
5 <veg name="Carrot" id="4"/>
6 <veg name="Onion" id="5"/>
7 <veg name="Turnip" id="6"/>
8 <veg name="Tomato" id="7"/>
9 <sibling s1="Asparagus" s2="Broccoli"/>

10 <sibling s1="Asparagus" s2="Kale"/>
11 <sibling s1="Broccoli" s2="Kale"/>
12 <sibling s1="Carrot" s2="Onion"/>
13 <sibling s1="Carrot" s2="Turnip"/>
14 <sibling s1="Onion" s2="Turnip"/>
15 </data>

Figure 2.8: The result of applying the XQuery program in Figure 2.7 to the XML fragment
in Figure 2.5.

Line 9 is a return statement constructs a new fact node with a sibling tag whose s1
attribute is the label of the veggie node currently selected in the for-loop on Line
7 and the s2 attribute is the label of the veggie node currently selected in the
for-loop on Line 8.

Lines 10-13 specify the ultimate return value of this XQuery program. As XQuery pro-
duces hierarchical data, the produced value is a single data node that encloses the
produced veg nodes stored in the variable $veggies and the sibling nodes stored
in the variable $siblings. The produced results can be seen in Figure 2.8.

Although XQuery is sufficient as a query language for XM* documents, and any mel
program can be approximated in XQuery, mel seeks to abstract the process of fact ex-
traction to a higher level than XQuery does. Particularly, XQuery is not focused on the
resolution of relational data. Rather, XQuery allows users to refer to collections of XM*
nodes, but also requires that the processing of those nodes be explicitly done by the user.
Commonly, this takes the form of writing multiple loops to resolve relationships the user is
interested in. The procedure of looping through potential nodes of interest and processing
the ones actually relevant to the user’s interests is exactly the type of accidental complex-
ity that mel seeks to relieve the programmer of. Where mel allows the user to state the
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relationship they are interested, XQuery requires the user defines programatically how that
relationship be resolved.

2.3.2 Academic Developed XML Tools

In addition to the W3C tools, there has been academic interest in developing tools for
processing XML documents. In this section several of these relevant works are discussed.

XTQ

XML Tree Query (XTQ) [45] is a declarative XML query language presented by Li, Liu,
Zhu, and Ghafoor. XTQ’s syntax is heavily influenced by both XQuery and SQL. XTQ
provides a powerful and expressive query language that expands on existing XML query
languages at the time of its writing, primarily:

1. XTQ allows one to write expressive patterns to explicitly specify conjunctive, dis-
junctive, and hierarchical relationships between matching data elements.

2. XTQ’s data filtering mechanism allows for easy filtering on composite data structures
(made of many elements from the XML). The claim is that such queries could not
be easily written in other languages without the use of multiple sub-queries.

In areas where XTQ succeeds, so too does mel. Additionally, mel seeks to further sup-
port extraction of relational data and is more focused on the production of user-defined
relationships than XTQ is.

XPathLog

XPathLog, presented by May [50], is a declarative language meant to be used as an exten-
sion to XPath. XPathLog focuses on querying and modifying an existing XML document,
whereas mel focuses on reasoning about XML in a relational context. Also, mel focuses
on operating on and outputting sets of tuples (that is, factbases) from an XML artifact,
rather than producing hierarchically structured XML.
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Model Transformation

Bhatti and Malik [6] propose a tool for bi-directional transformation between the XML
for one Model and the XML for another Model. This work relates to mel in that both
seek to transform an XML representation of a Model into a different representation. The
tools differ, however, in that mel seeks to extract from an existing Model only the facts
the user desires based on expressive queries the user can write, whereas the bi-directional
transformation tool translates an entire model from one XML schema to another. The
proposed bi-directional framework is preliminary, has been applied only to small examples,
and is limited to cases where the tool is provided with the metamodels for both the source
and target XML representations.

XML Translation to Databases

Somewhat analogous to mel is the work on translating an XML document into a database.
One example is the work on s-XML by Subramaniam, Haw, and Hoong [65], which is a
technique of mapping an XML document into a relational database. Although mel also
produces a database, mel seeks to produce a database comprising only the information the
user is interested in. This distinction is an important difference between mel and tools that
produce databases from XML documents. Firstly, these tools offer no actual user-defined
processing of the XML data, rather they produce a relational database and the user must
then write queries to that database to resolve the facts they are interested in. mel itself
functions as both a relational query language and a tool for translating XML documents
into databases. Furthermore, the language features of mel are specifically designed to aid in
the querying and specifying of relationships of interest as they appear in XML documents.
This is not true of general purpose relational databases, and once a translation tool has
produced a database for querying the user must write queries about their XML document
in a traditional query language with no concept of how data was structured in the XML
document. Additionally, the work on s-XML notes a common failure of XML mapping
methods to store all relationships between nodes of importance. This problem does not
exist in mel, as the important relationships are explicated in the program the user writes.
Additionally, the effort expended to write a mel program is not saved by using a tool like
s-XML, because the mel program reflects the relational queries the user will write once a
mapping tool produces a database for them.
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Chapter 3

Model Extractor Language (mel)

In this chapter we introduce mel, which is a small declarative language for specifying fact
extraction from Model artifacts, and the mel interpreter called mint. mel is a domain-
specific language that allows the user to specify the facts that they want to extract from a
Model. Such a specification will vary not only according to the type of Model under study
(e.g., class facts from Class diagrams versus state facts from StateMachine diagrams) but
also the representation of the Model (i.e., how classes or states are represented textually
in a Model) and the user’s needs (not all extractable facts will be relevant to the user’s
purpose). The intended scope of applicability of mel is any Model represented in XM*.

One of the challenges is that, although there exists a standard for rendering textual
representations of Models, different Modelling tools may employ radically different XMI
schema, even for the same notation.

This chapter is organized as follows: Section 3.1 defines the core required features mel
must provide in order to satisfy extracting facts from various XM* documents, Section 3.2
introduces the general structure of a mel program and major language features, Section 3.3
displays the full mel grammar and discusses the specific organization of a mel program,
and Section 3.4 introduces the mel interpreter mint and explains its usage.

3.1 Requirements of mel

mel was developed using the research methodology of design science [27]. As part of the
design science methodology, the required features were identified as part of an iterative
development process in which mel programs were developed to extract information from a
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variety of Model types. This iterative process led to the identification of several ways that
essential information is encoded in the XML representation of Models. These identified
encoding methods dictate the requirements of mel, as the language must allow the user
to specify the extraction of facts encoded in those ways. Each of these requirements
corresponds to a relationship between the XM* document and some desired facts that the
developer of a Model extractor would need to identify. Nine requirements for mel are listed
in Table 3.1. The satisfaction of these nine requirements is sufficient for mel to extract all
the Model information identified in the Models considered in this thesis.

Table 3.1: A summary of the language requirements for mel.

No. Name Description
1 Refer to XM*

nodes by tag
The language must provide a method of referring to
nodes in the XM* document by tag type. A reference
to an XM* tag type should resolve to all the nodes in
the XM* document that have that tag.

2 Extract values
of Attributes of
XM* nodes

The language must provide a method to specify which
Attributes of an XM* node should represent identifiers
or attributes in the factbase.

3 Refer to pairs of
XM* nodes that
are related by
Attribute values

The language must provide a method to relate two XM*
nodes when their specified Attributes have matching val-
ues. The reference should resolve to all pairs of such
nodes in the XM* document whose Attribute values are
equal.

4 Refer to pairs of
XM* nodes that
are related by a
parent/child re-
lationship

The language must provide a method to relate two XM*
nodes (with specified tags) when one node is a child of
the other. The reference should resolve to one pair of
nodes for each node in the XM* document of (with the
specified child tag) that has a parent node (with the
specified parent tag).

5 Refer to pairs
of XM* nodes
that are related
by an ances-
tor/descendant
relationship

The language must provide a method to relate two XM*
nodes when one node is a descendant of the other. The
reference should resolve to one pair of nodes for each
node in the XM* document (with the specified descen-
dant tag) that has an ancestor node (with the specified
ancestor tag)
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Table 3.1: A summary of the language requirements for mel.

No. Name Description
6 Constrain re-

sults based on
the values of
Attributes/at-
tributes

The language must provide a method to write con-
straints on the allowed values for Attributes of ref-
erenced XM* nodes or attributes of extracted facts.
Specifically, it must allow constraints on the equali-
ty/inequality of string values.

7 Refer to tu-
ples of XM*
nodes that are
children/descen-
dants of the
same XM* node

The language must provide a method to refer to a col-
lection of XM* nodes (with specified tags) that are all
children of the same parent node (with a specified tag);
or are all descendants (with specified tags) of the same
ancestor node (with a specified ancestor tag).

8 Refer to hier-
archies of XM*
nodes in the
XM* document

The language must provide a method to refer to a series
of XM* nodes (with specified tags) that appear in a
specified structural hierarchy in the XM* document.

9 Refer to sub-
strings of XM*
Attributes

The language must provide a method to refer to a spec-
ified substring of an XM* Attribute value.

It is also worth noting that while the design science methodology used focused on
XM* representations of Models, these requirements mean that mel is capable of extracting
information from a wide range of XM* documents - not just those that represent software
Models. However, mel has been specialized to focus on the types of XM* documents that
represent Models, as these were the documents considered in the iterative development
process of the language.

3.2 Usage of mel

A mel program is a sequence of declarations of fact types: each declaration starts with
the name of a fact type to be extracted and the name(s) of its parameter(s) followed by the
clauses that specify how facts of that type are constructed from information in the Model.
The left-hand side and right-hand side of a declaration are separated by the token “|-”.

Consider the declarations provided in Figure 3.2. A fact type with one parameter is an
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1 <SWModel>
2 <compFeatNode id="F1" userName="Feature 1" component="CompA"/>
3 <compFeatNode id="F2" component="CompB"/>
4 <compFeatNode id="F3" userName="Feature 3" component="CompA"/>
5 </SWModel>

Figure 3.1: A simple Model expressed in XML.

1 component(C) |- compFeatNode{component:C};
2 feature(X) |- compFeatNode{id:X, userName:label};
3 featParent(C,F) |- compFeatNode{component:C, id:F};
4 ^sibling(F,G) |- featParent(C,F), featParent(C,G), F!=G;

Figure 3.2: A sample mel program.

entity fact; its parameter is the unique identifier for an extracted entity of that type. A
fact type with two parameters is a relationship fact; its parameters refer to the two entities
that are being related. On the right-hand side, each clause is one of the following types:

XM* reference clause: a reference to XM* nodes in the input Model, as in the first
three rules in Figure 3.2.

Declaration reference clause: a reference to a declaration previously made in the mel
program, as in the fourth rule in Figure 3.2 (discussed further in Section 3.2.1).

XM* path reference clause: a reference to specified patterns of XM* nodes that appear
in the input Model (discussed further in Section 3.2.10).

Constraint: a restriction on the value of of bound identifiers (discussed further in Sec-
tion 3.2.2).

An XM* reference clause starts with the name of an XM* tag followed by a property list.
A property list is a comma-separated list of properties enclosed in curly braces, where each
property is an attribute binding or a requirement1. An attribute binding is the binding of
some value to a named identifier in the resultant fact. Specifically, the binding operator,
“:”, is a binary operator that binds the value of its left-hand operand to the name provided

1Requirements and their syntax are discussed fully in Section 3.2.8
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Table 3.2: Results of applying the mel Program in Figure 3.2 to the XML fragment in
Figure 3.1

Row No. Fact Type First Param Second Param Attributes
1 component CompA
2 component CompB
3 component CompC
4 feature F1 { label="Feature 1" }
5 feature F2
6 feature F3 { label="Feature 3" }
7 featParent CompA F1
8 featParent CompB F2
9 featParent CompA F3
10 sibling F1 F2 { C="CompA" }

as the right-hand operand. Thus, a binding takes the form X:Y, where X is most commonly
the name of an XM* Attribute2 inside of an XM* node in the Model, and Y is the name
of one of a fact type’s parameters or is a declaration/reference to an attribute of the fact
type.

To understand how mel declarations extract facts from a Model, consider the small
pedagogical Model given in Figure 3.1, in which component CompA contains features F1
and F3, and component CompB contains feature F2. Suppose that the mel user would like
to extract from the Model (1) the set of components, (2) the set of features, (3) information
about which components the features belong to, and (4) information about which features
reside in the same component. The mel program in Figure 3.2 comprises four definitions
that correspond to the four types of facts to be extracted.

Line 1 is one of the most simple declarations that can be written in a mel program.

component(C) declares that the factbase should have entity facts of type component.
The identifier of each entity is bound to the parameter C, so that the identifier
can be referred to by name in the clauses of this declaration.

compFeatNode{component:C} matches instances of the XM* tag compFeatNode.
The value of the XM* Attribute component of each such node is bound to pa-
rameter C (i.e., the identifier of the extracted entity fact). This declaration

2As with Model vs. model, we distinguish between XM* Attributes in the input Model from attributes
in the extracted model by capitalizing all references to the former.
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requires an identifier so if the Model contained a compFeatNode node without
a component Attribute, it would not be extracted.

The results of applying this declaration to the Model shown in Figure 3.1 are shown
in the first three rows of Table 3.2.

Line 2 is similar to the declaration in Line 1, but it includes an additional binding that
extracts an attribute associated with feature.

feature(X) declares that the factbase should have entity facts of type feature. The
identifier of each entity is bound to the parameter X.

compFeatNode{id:X, userName:label} matches instances of the XM* tag
compFeatNode. The value of the XM* Attribute named id of each such node
is bound to parameter X (i.e., the identity of the extracted entity). Addition-
ally, the value of the nodes XM* Attribute userName is bound to the attribute
label associated with the extracted entity. By default, declared attributes are
optional. Thus, although a compFeatNode node requires an id Attribute in or-
der to be matched by this clause, it does not require a userName Attribute. It is
also possible to require that node possess an XM* Attribute in order to satisfy
a clause, as shown in Section 3.2.8.

The results of applying this declaration to the Model shown in Figure 3.1 are shown
in the fourth to sixth and last two rows of Table 3.2. It should be noted that all
feature entities F1, F2, and F3 are extracted, but only F1 and F3 have label
attributes (because the XML node for F2 does not have a userName Attribute);
thus entity F2 is still extracted despite not having a userName Attribute.

Line 3 declares a relationship as opposed to an entity.

featParent(C, F) declares that the factbase should have relationship facts of type
featParent. The first entity in each relationship is bound to the parameter C
and the second entity is bound to the parameter F.

compFeatNode{component:C, id:F} matches instances of the XM* tag
compFeatNode, as before. The component and id Attributes of each node are
bound respectively to the parameters C and F for each extracted relationship.
Because C and F are parameters of the relationship, only compFeatNode nodes
that have both component and id Attributes are matched.

The results of applying this declaration to the Model shown in Figure 3.1 are shown
in rows 7-9 of Table 3.2.
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Line 4 declares another relationship and is the first declaration to use a declaration modi-
fier, refer to previously extracted facts, include a constraint clause, and have multiple
clauses. The exact semantics of declarations with multiple clauses (called compound
clauses) will be discussed in Section 3.2.3.

ˆsibling(F, G) declares that the factbase should have relationship facts of type
sibling. The first entity in each relationship is bound to the parameter F and
the second entity is bound to the parameter F. The prefix ˆ is a declaration
modifier that specifies that this declaration should not be commutative. That
is, facts of the form sibling A B and sibling B A should not both appear in
the factbase. The commutative nature of the relationship may be undesirable
by the user, as the cycle formed by it may have negative effects on future
analyses depending on the analysis method. As such the ˆ modifier is provided
to allow users to specify extraction of only one edge in an otherwise commutative
relationship. The prefix ˆ should be used whenever a relationship is non-directed
but the clauses do not disallow both facts to be produced; mel will extract
whichever relationship it sees first while scanning the XM* document and will
ignore the second relationship.

featParent(C, F) matches instances of the previously extracted relationship featParent
and binds the first entity in the relationship to attribute C and the second entity
to parameter F.

featParent(C, G) matches instances of the previously extracted relationship featParent
and binds the first entity in the relationship to attribute C and the second en-
tity to parameter G. If an identifier is used multiple times in the same decla-
ration, it refers to the same value in all instances. Thus, the C in the first
featParent(C,F) clause must match the C in this featParent(C,G) clause,
generates a relationship between entities F and G.

F!=G is a constraint clause which restricts this declaration to only facts where the
parameter F is not the same as the parameter G. That is, the sibling rela-
tionship should be non-reflexive and include any relationship instances between
a feature and itself. The exact semantics of constraint clauses is discussed
further in Section 3.2.2.

The result of applying this declaration to the Model shown in Figure 3.1 is row 10
of Table 3.2.

This example illustrates the basic usage of mel. At its core, mel is meant to facilitate the
rapid development of queries to extract data from Models, so that the user can concentrate
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on the essential complexity of deciding what information to extract from a Model and leave
to mel and mint the accidental complexity of how to pluck that information from the XM*
representation.

When extracting facts from a textual representation of a Model, the important ques-
tions for the user to answer are: “What parts of the model do I care about?” and “What
relationships in the model are important?”. Each declaration of a mel program is an answer
to one of these two questions and nothing more. A mel user need not write any cumber-
some code to parse a model’s textual representation, pluck out the information they care
about, and constrain the result set to facts that satisfy certain conditions. Instead the mel
user declares facts they are interested in and the clauses necessary for deriving those facts
from the Model.

This concludes our introduction to basic mel. Many additional features and intricacies
to the language are discussed in the following subsections.

3.2.1 Declaration Reference Clauses

A declaration reference clause is a clause that refers to fact type previously defined in the
mel program. The two featParent clauses that appear in the sibling declaration (line
4 in Figure 3.2) are examples of declaration reference clauses (referring to the fact type
defined in line 3).

1 featParent(C, F) |- compFeatNode{component:C, id:F,
2 userName:fLabel};
3 feature(X) |- featParent(owningComponent, X){fLabel:label};

Figure 3.3: A mel program that demonstrates the use and semantics of declaration reference
clauses.

Specifically, a declaration reference clause binds its parameters to the parameters of
the referenced definition.

To exemplify the concept of declaration reference clauses, consider the mel program
shown in Figure 3.3, which provides an alternative definition of the feature entity shown
in Figure 3.2. In this program, a feature entity is produced for each extracted instance of
the featParent relationship, rather than being based on instances of the compFeatNode
XM* nodes in the Model. The results of applying this program to the XML fragment
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Table 3.3: Results of applying the mel Program in Figure 3.3 to the XML fragment in
Figure 3.1

Fact Type First Param Second Param Attributes
featParent CompA F1 { fLabel="Feature 1" }
featParent CompB F2
featParent CompA F3 { fLabel="Feature 3" }

feature F1 { label="Feature 1"
owningComponent="CompA" }

feature F2 { owningComponent="CompB" }

feature F3 { label="Feature 3"
owningComponent="CompA" }

shown in Figure 3.1 are shown in Table 3.3. This table demonstrates how the binding of
parameters of declaration reference clauses works.

In this example the featParent relationship is declared with the parameter names “C”
and “F” and the clause that references this declaration names the parameters “owningComp-
onent” and “X”.

Each produced feature fact has its identifier, named X, bound to the value of the second pa-
rameter of the corresponding featParent fact, as shown in Table 3.3. Additionally, because
the first parameter in the declaration reference clause is named owningComponent, each
produced feature fact has an attribute named owningComponent whose value matches
the value of the first parameter of the corresponding featParent fact that was used to
produce it.

Lastly, the feature facts generated by the original program (in Figure 3.2) had a
label attribute which corresponds to the userName Attribute of the corresponding XM*
node. Because the feature facts in this program are generated by references to extracted
featParent relationships (rather than from references to XM* data), the featParent
relationship must extract this label information if we want to include it in our feature
facts. This is why the featParent relationship definition extracts the userName Attribute
of compFeatNode nodes and binds it to an attribute fLabel of the relation. Then, the
declaration of feature facts needs a means to access the attributes of referenced facts.

To this end, declaration reference clauses can have property lists; the snytax is iden-
tical to that of property lists in XM* reference clauses, except that the properties refer
to attributes of the referenced fact rather than to XM* Attributes. Consider, for exam-
ple, the property list {fLabel:label} in the featParent declaration reference clause in
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the feature declaration. Because this property list belongs to a featParent declaration
reference clause, the identifier fLabel on the left-hand side of the binding operator refers
to attributes of previously declared featParent facts. Thus, this property list specifies
that the fLabel attribute of each featParent fact, if present, should be used as the label
attribute of the corresponding feature fact.

In the subsequent subsections, any newly discussed feature that applies to a property
list of XM* reference clauses also applies similarly to a property list of declaration reference
clauses. For the sake of brevity, each feature is discussed only with respect to XM* reference
clauses, but the reader should recognize that the same feature applies also to the property
list of a declaration reference clause (where references to XM* Attributes are replaced with
references to attributes of the corresponding facts).

3.2.2 Constraint Clauses

A constraint clause restricts the value of a bound identifier, using one of three operators:
equality (=), inequality (! =), or the like operator (∼=). At least one operand is the name
of an attribute of a produced fact, and the other operand is either another attribute of a
produced fact or a string literal. String literals are discussed in more detail in Section 3.2.5.

The detailed behaviour of the three operators is as follows.

= An equality constraint evaluates to true if and only if its two operands have exactly the
same value; it evaluates to false otherwise.

! = An inequality constraint evaluates to true if and only if its two operands have different
values; it evaluates to false otherwise.

∼= A like constraint evaluates to true if and only if its right-hand operand is a string literal
that expresses a regular expression pattern and that pattern matches the constraint’s
left hand operand.

When a constraint clause is included in a mel declaration, the constraint is applied
to each potential fact that could be produced as part of the declaration; if the constraint
evaluates to true, then that fact remains in the result set, whereas if the constraint evaluates
to false then that fact is removed from the result set. Figure 3.4 demonstrates a Model of
a library’s contents. The mel program shown in Figure 3.5 demonstrates use of each of the
three constraint operators. The declaration of entities of type SKing includes a constraint
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1 <library>
2 <book title="Spin" author="Robert Charles Wilson" genre="Sci-Fi"/>
3 <book title="It" author="Stephen King" genre="Horror"/>
4 <book title="GEB" author="Douglas Hofstadter" genre="Non-Fiction"/>
5 <book title="Misery" author="Stephen King" genre="Horror"/>
6 <book title="Great Expectations" author="Charles Dickens"/>
7 </library>

Figure 3.4: A Model of a library of books with a variety of authors and genres.

1 SKing(X) |- book{title:X, author:A, genre:G}, A="Stephen King";
2 GNovels(X) |- book{title:X, author:A, genre:G}, X~="[gG].*";
3 NotHorror(X) |- book{title:X, author:A, genre:G}, G!="Horror";

Figure 3.5: A mel program demonstrating the use of constraint clauses.

clause specifying that the A attribute of each result (ie.e. the author Attribute) must be
equal to the string “Stephen King”. The GNovels fact declaration includes the constraint
clause specifying that the X parameter (the title Attribute of the book) must be like
the string “[gG].*”. That is the GNovels fact set should only include books whose title
matches at least one string specified by the regular expression pattern “[gG].*”. Lastly,
the NotHorror declaration includes a constraint clause specifying that the G attribute of
each result (i.e. the genre Attribute) does not equal the string “Horror”.

3.2.3 Compound Productive Clauses

Each mel declaration is defined after the turnstile symbol ‘|-’ by one ore more clauses
separated by commas. Each clause is either a productive clause (that adds facts to the result
set) or a reductive clause (that removes facts from the result sets). Constraints are the
most common type of reductive clause. As they are discussed above, in Section 3.2.2, this
section focuses on the compounding of productive clauses. There are two well-formedness
conditions that must be met by productive clauses in rules that have compound productive
clauses:

1. Each productive clause must have at least one bound identifier (parameter or at-
tribute) in common with another productive clause in the declaration.
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1 <nodes>
2 <Entity id="ABC" mayExist="GAR" name="Hello"/>
3 <Entity id="GAR" mustExist="HET"/>
4 <Entity id="XYZ" mustExist="GAR" mayExist="ABC"/>
5 <Entity id="TAB" mustExist="XYZ" mayExist="GAR"/>
6 <Entity id="BOO" mustExist="ABC"/>
7 <Entity id="KEL" mustExist="ABC" mayExist="HET"/>
8 </nodes>

Figure 3.6: An XML fragment with several Entity tags that do not each contain all the
attributes other Entity tags do.

1 Decl(X) |- Entity{id:X, mustExist:necessary, mayExist:optional},
2 Entity{id:necessary};

Figure 3.7: A mel program that demonstrates the behaviour of compound clauses.

2. It must be possible to form a connected graph, whose vertices represent the produc-
tive clauses of the declaration and whose edges join vertices whose corresponding
productive clauses share bound identifiers.

A

B

C

D

Y Q

Figure 3.8: The disconnected graph formed by the productive clauses A{id:X, att:Y},
B{id:Y}, C{id:P, att:Q}, D{id:Q}, where each clause is given a vertex, and edges are
drawn between vertices whose productive clauses share a bound identifier. The vertices
have been labeled with the XM* tag of their corresponding clause, and the edges have been
labeled with the bound identifier shared between the productive clauses.

Each productive clause in a mel generates potential facts; but in order to match the full
declaration (1) the value of any attribute which occurs more than once in the set of clauses
must match the value of all other occurrences of that attribute in the other clauses, and (2)
the connectivity between productive clauses (through common attributes) must cover all of
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Table 3.4: Results of applying the first clause of the declaration in Figure 3.7 to the XML
fragment shown in Figure 3.6. Each row represents one fact that would be extracted and
the columns are the values the identifiers would be bound to.

X optional necessary
ABC GAR
GAR HET
XYZ ABC GAR
TAB GAR XYZ
BOO ABC
KEL HET ABC

Table 3.5: Results of applying the second clause of the declaration in Figure 3.7 to the
XML fragment shown in Figure 3.6. Each row represents one fact that would be extracted.
As only one attribute, necessary, is extracted, there is only that value associated with
each fact.

necessary
ABC
GAR
XYZ
TAB
BOO
KEL

the productive clauses in the declaration. As a negative example the set of clauses A{id:X,
att:Y}, B{id:Y}, C{id:P, att:Q}, D{id:Q} is invalid because the clauses referring to
XML tags A and B have no connection to the other two clauses; the clauses referring
to XML tags C and D are similarly disconnected from the other two clauses. That is,
the graph that would be formed by these productive clauses is disconnected, as shown in
Figure 3.8. The facts generated by compound clauses are effectively the result of computing
the intersection over the matching attributes of the facts that would be generated by each
productive clause individually if it were the lone clause of a declaration, and then filtering
this fact set as per the reductive clauses. Each fact generated has attributes for all the
attributes that were bound in any of the productive clauses of the definition.

Consider the result of applying the mel program in Figure 3.7 to the XML fragment
shown in Figure 3.6. The resultant facts should be one Decl fact for each Entity XML
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Table 3.6: Results of applying the mel program in Figure 3.7 to the XML fragment shown
in Figure 3.6. This is the result of joining the two potential-fact sets shown in Tables 3.4
and 3.5.

Fact Type Entity necessary optional
Decl XYZ ABC GAR
Decl TAB GAR XYZ
Decl BOO ABC
Decl KEL ABC HET

node that has a mustExist Attribute whose value is the same as an id Attribute of any
Entity XML node in the Model.

To understand the behaviour of compound clauses, it helps to consider the potential facts
that each clause would extract if it were the sole clause in the declaration. The potential
facts that would be extracted by the first clause are shown in Table 3.4: there is one fact
for each Entity node in the XML fragment, however not all entries have values for the
attributes named optional and necessary.

The potential facts extracted by the second clause are shown in Table 3.5: again there is
one fact for each Entity node in the XML fragment. However, the second clause binds the
id Attribute to the mustExist attribute in its result, as opposed to the first clause which
binds the mustExist Attribute to the attribute necessary in the result.

The resulting set is produced by computing the equivalent of an inner join of the two
collections of potential facts, using the shared attribute’s name as the key to join on.
Because the shared attribute is necessary, and because necessary is bound in the first
and second clause to the XM* Attributes mustExist and id respectively, it follows that the
program generates only facts from Entity nodes in the XM* whose mustExist Attribute
corresponds to the id of any arbitrary Entity node in the XML. As a result there is no fact
for the Entity nodes with id values of ABC or GAR. The Entity with the id value ABC has
no mustExist Attribute and thus cannot be joined with any potential facts generated by
the second clause. The Entity with the id value of GAR does have a mustExist Attribute,
however the value of the attribute is HET which does not correspond to the id Attribute of
any Entity node in the XML fragment, and thus cannot be joined with any of the potential
results generated by the second clause. This generalizes to compound clauses with more
two productive clauses by applying this process across all productive clauses computing
the inner join on each of the shared attributes.
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3.2.4 Optional Clauses

As discussed in Section 3.2.3, if a mel declaration contains multiple clauses then only
facts that satisfy all of the clauses will be produced. Optional clauses allow for extracting
specified information only when it is available. An optional clause in mel is a clause that is
prefixed with a @ symbol. Optional clauses are particularly useful when trying to extract
information about optional attributes related to entities or relationships introduced in
another XM* node.

Consider the XML snippet in Figure 3.9, in which some component nodes have an associ-
ated owningTeam node that specifies the software team responsible for the component. In
this example, the CompA node has an associated owningTeam node while the CompB node
does not. Suppose that the user desires to extract all component nodes including the
owning team as an attribute when available.

1 <SWModel>
2 <component id="CompA"/>
3 <component id="CompB"/>
4 <owningTeam name="DevGroup1" ownedComponent="CompA"/>
5 </SWModel>

Figure 3.9: A Model expressed in XML where Attributes are sometimes present. An
owningTeam tag may exist associated with any given component tag, but is not required.

1 component(C) |- component{id:C},
2 @owningTeam{name:team, ownedComponent:C};

Figure 3.10: A mel program using an optional clause, specified by a prefixed @ symbol.

The sample mel program in Figure 3.10 includes both a normal clause (the first clause)
and an optional clause (the second rule prefaced by ‘@’). The program extracts all entities
and attribute bindings that match all the constraints in all normal clauses (in this case
component nodes with Attribute id). The program’s optional rules specify additional
component attributes to be extracted from owningTeam nodes whose ownedComponent
Attribute value matches the component fact’s id value. The results of apply the mel
program in Figure 3.10 to the Model in Figure 3.9 are shown in Table 3.7.
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Table 3.7: Results of applying the mel Program in Figure 3.10 to the XML fragment in
Figure 3.9.

Fact Type Entity Attributes
entity1 CompA { team="DevGroup1" }
entity1 CompB

3.2.5 XM* Non-Basic Identifiers and String Literals

In some cases, an XM* Attribute might have a name containing non-alphanumeric char-
acters which violates the grammar for mel identifiers, which are strictly alphanumeric
strings. One common example seen in many Models is for an XM* Attribute name to
include colon characters, which also happens to be the mel binding operator. In order to
extract Attributes with such names, mel allows the left-hand side of a binding operator to
be a string. However, mel prescribes different meanings to double-quote and single-quote
enclosed strings, which is important to note. A double-quote enclosed string in mel is a
string that represents either an identifier or a string literal, depending on the context. A
single-quote enclosed string in mel always represents a string literal and never represents
the value of an Attribute or attribute. A double-quote string has the following rules for its
usage:

• If a double-quoted string appears as the left-hand operand of a binding operator, it
refers to an XM* Attribute with the given name.

• If a double-quoted string appears as the right-hand operand of a binding operator,
it refers to the name of an attribute of each produced fact.

• If a double-quoted string appears as either operand in a constraint, then it refers to
the name of an attribute of each produced fact if an attribute with the given name
exists, otherwise it is the string literal.

The results shown in Table 3.8 illustrate the difference between single-quote and double-
quote strings, as well as the semantics of double-quote strings. To clarify, the results we
consider each declaration in Figure 3.12 and the corresponding results it produces when
applied to the XML fragment shown in Figure 3.11:

Line 1 In this declaration, the double-quoted string "e:type", which is used as the left-
hand operand of a binding operator, is a reference to the XM* Attribute with the
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1 <nodes>
2 <entity id="X1" e:type="string" />
3 <entity id="x2" e:type="int" />
4 </nodes>

Figure 3.11: A simple XML fragment with entity tags with complex Attribute names
(e.g., e:type) in XML.

1 entity1(X) |- entity{id:X, "e:type":type};
2 entity2(X) |- entity{id:X, 'e:type':type};
3 entity3(X) |- entity{id:X, "e:type":type}, "type"!="int";
4 entity4(X) |- entity{id:X, "e:type":type}, 'type'!="int";
5 entity5(X) |- entity{id:X, "e:type":type}, "int"!="int";
6 entity6(X) |- entity{id:X, "e:type":"Fun Type"};

Figure 3.12: A toy mel program illustrating the behaviour of double-quote and single-quote
enclosed strings.

same name. As such, this usage binds the value of the XM* Attribute e:type to the
attribute type of each produced entity. The result of this is shown in the first two
rows of Table 3.8, where both entity1 facts X1 and X2 were extracted with their
corresponding type.

Line 2 Because a single-quoted string always resolves to a literal value, the string ‘e:type’
binds the literal value e:type as the value of the type attribute in the result set.
The result of this is shown in the third and fourth rows of Table 3.8, where both
entity2 facts X1 and X2 have type attributes with value e:type.

Line 3 This declaration is similar to the one on Line 1, except it includes the constraint
"type"!="int". In this scenario double-quoted strings are used as the operands to a
constraint. As per the semantics of double-quoted strings in a constraint, the string
"type" refers to the type attribute of the extracted entity because that attribute
exists, and the string "int" refers to the literal string value "int" because no such
attribute exists in the extracted entity. Note that this constraint could have equiva-
lently been written as type!=‘int’, which more explicitly specifies that type is an
attribute in the result and ‘int’ is a literal value. This constraint disallows any
results where the type attribute has the value "int". The result of this is shown
in the fifth row of Table 3.8, where only one entity3 fact is extracted: that of X1
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Table 3.8: Results of applying the mel Program in Figure 3.12 to the XML fragment in
Figure 3.11

Fact Type Entity Attributes
entity1 X1 { type="string" }
entity1 X2 { type="int" }
entity2 X1 { type="e:type" }
entity2 X2 { type="e:type" }
entity3 X1 { type="string" }
entity4 X1 { type="string" }
entity4 X2 { type="int" }
entity6 X1 { Fun Type="string" }
entity6 X2 { Fun Type="int" }

whose type attribute has the value "string" not "int".

Line 4 This declaration is similar to the one on Line 1, except it includes a constraint
‘type’!="int". A single-quoted string always refers to a string literal. Moreover, the
double-quoted string "int" resolves to the literal string value because no attribute in
each produced entity is bound to the name int. Thus, this constraint is trivially true
constraint, stating that the string ‘type’ must not equal the string ‘int’. Because
the constraint evaluates to this declaration is equivalent to the one on Line 1. The
result of this is shown in the sixth and seventh rows of Table 3.8, where both X1 and
X2 are extracted as entity4 facts, despite what one might confuse for a constraint
on the type attribute.

Line 5 This declaration is similar to the one on Line 1, except it includes a constraint
"int"!="int". In this case, both double-quoted strings refer to their literal string
values because there is no attribute with the name int in each produced entity.
Thus, this constraint is trivially false, stating that the string ‘int’ must not equal
the string ‘int’. Because the constraint is false, no entity5 facts may be extracted
as they all violate the clause. The result of this is shown in Table 3.8 through the
absence of any entity5 facts.

Line 6 This declaration is similar to the one on Line 1, except instead of binding the
e:type Attribute to the attribute "type" it binds it to the attribute "Fun Type".
The result of this is shown in rows eight and nine of Table 3.8, where the attribute
of each entity6 fact has the name Fun Type.
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Table 3.9: Results of applying the mel Program in Figure 3.14 to the XML fragment in
Figure 3.13

Fact Type Entity Attributes
function foo { retType="int" prototype="int foo(int, int);" }

The dual roles that double-quoted strings can play lead to the seemingly unintuitive
semantics described above. As such, the suggested best practice is that double-quoted
strings be used only as the left-hand operand of a binding operator when made necessary
by the XM* document that the program is applied to. Any other time strings are used,
they should be restricted to mean literal values and thus be delimited by single quotes.
However, if a mel programmer desires that an attribute in the factbase have a name that
is not a valid mel identifier (i.e. any identifier that is not strictly alphanumeric), then they
can use a double-quoted string in as the right-hand operand of a binding operator (e.g., as
in line 6 of Figure 3.12 to bind an attribute to name "Fun Type" which includes a space).
If an attribute’s name is non-alphanumeric, then it must be referred to in constraints using
strings delimited with double quotes.

Additionally, one may question the benefit of having the ability to bind attributes to
string literals as is done in line 2 of Figure 3.12. While the ability to bind attributes
to string literals may not appear very useful on its own, it has some limited uses and in
Section 3.2.9 we discuss an additional feature of mel that makes effective use of this ability.

3.2.6 Contents of an XM* Node

An XM* node can have content that comprises either nested XM* nodes or string data.
Because an XM* node’s content can be string data, which may be pertinent to a user’s
needs, mel provides a feature mel.contents that refers to the string-data contents of
an XM* node. mel.contents is used as the left-hand operand of a binding operator (as
shown in Figure 3.14) to bind the value of the string contents of the given XM* node to the
attribute being bound. Effectively mel.contents can be considered the pseudo-Attribute
name of the contents of an XM* node. Table 3.9 shows that the extracted prototype
attribute of the extract Func has the value of the string contents of the function node
shown in Figure 3.13.

3.2.7 Extracting a Substring of an XM* Attribute
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1 <function id="foo" return="int">
2 int foo(int, int);
3 </function>

Figure 3.13: A sample XML node that contains string data.

1 Func(X) |- function{id:X, return:retType, mel.contents:prototype};

Figure 3.14: A simple mel program that makes use of the mel.contents pseudo-Attribute
for accessing the string contents of an XM* node.

1 <SWModel>
2 <component id="CompA"/>
3 <component id="CompB"/>
4 <component id="CompC"/>
5 <compFeatNode id="F1" userName="Feature 1"
6 component="#CompA"/>
7 <compFeatNode id="F2" userName="Feature 2"
8 component="#CompB"/>
9 <compFeatNode id="F3" userName="Feature 3"

10 component="#CompA"/>
11 </SWModel>

Figure 3.15: A sample XML fragment that shows reference Attributes that have the refer-
enced identifier prefixed with a # character.

1 featParent(C,F) |- compFeatNode{id:F, component["#(.*)"]:C};

Figure 3.16: A mel program that makes use of Attribute modifiers to specify a substring
of an XM* Attribute to extract.
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Table 3.10: Results of applying the mel Program in Figure 3.16 to the XML fragment in
Figure 3.15

.

Fact Type First Param Second Param
featParent CompA F1
featParent CompB F2
featParent CompA F3

Sometimes the value of an XM* Attribute contains extraneous characters. A common
example are Attributes prefixed with additional characters. Figure 3.15 shows an XML
fragment where compFeatNode nodes reference their owning component through the At-
tribute component, however the values of the Attributes are prefixed with a character #.
Ideally, the values of extracted identifiers strip away these extra characters. mel provides
a feature called an Attribute modifier which is a regular expression pattern with at least
one capturing group. A capturing group in a regular expression pattern is any portion
of the string enclosed in parentheses. The value the first capturing group produces when
the regular expression is applied to a string is the value that is bound to the attribute.
An Attribute modifier is applied to an Attribute by suffixing the Attribute name with
an Attribute modifier, in which the regular expression pattern is specified as a string en-
closed in square brackets on the left-hand side of a binding operator: X[Regex]:Y. The
string Regex represents a regular expression pattern with at least one capturing group.
For example, if a binding is X["abc([123]*)(.*)"]:Y and the Attribute X has a value of
"12abc323671xyz", then the attribute Y will be bound to the value "323", because the
first capturing group used in the Attribute modifier matches any string that comprises only
the digits 1, 2, and 3 that immediately follows the string abc.

The syntax and meta-characters of regular expressions that mel supports are those as
defined by the ISO C++ 2017 standard [34] and implemented by the the compiler g++ as
part of the GNU compiler collection [21].

The featParent declaration in Figure 3.16 includes a compFeatNode clause that mod-
ifies the component Attribute with the Attribute modifier "#(.*)" and binds the result to
the parameter C. The regular expression pattern "#(.*)" matches a string that begins with
the character # and is then followed by any string, denoted by ".*", which is enclosed in
a capturing group. As such, it is the value of the arbitrary string that follows the charcter
# in the Attribute string that is bound to the parameter C.
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1 SKing(X) |- book{title:X, author="Stephen King"};
2 GNovels(X) |- book{title:X, title~="[gG].*"};
3 NotHorror(X) |- book{title:X, genre!="Horror"};

Figure 3.17: A transformation of the mel program shown in Figure 3.5 which includes the
same restrictions on result sets without extracting the author and genre as attributes in
the result set.

3.2.8 Constraints on XM* Attributes.

A user may want to extract a subset of the matching XM* nodes in a Model. Constraints
on result attributes are discussed in Section 3.2.2, however these constraints are written
on extracted attributes. It is possible a user may instead want to constrain matching XM*
node instances based on their Attribute values without necessarily binding those values to
attributes in the result. mel supports this concept via Attribute requirements, which specify
constraints on an XM* tags’s Attribute values that must be met in order for an instance of
the tag to match the fact type declaration. To differentiate between constraint clauses and
constraints placed on XM* Attributes, the term constraint is used for constraint clauses
and the term requirement is used for requirements placed on XM* Attributes included
within an XM* reference clause. For example, the declarations in the program shown in
Figure 3.5 can be modified so as not to extract the author and genre of books while still
extracting facts related to only the desired subset of XM* nodes.

Requirements can make use of any of the constraint operators introduced in Sec-
tion 3.2.2. However, when these operators are used within a requirement, the left-hand
operand always represents the name of an Attribute in the XM* node and the right-hand
operand must always be a string literal. Thus, the semantics of each operator needs to
account for the possibility that its left-hand operand refers to an Attribute that does not
exist in the XML node:

= Used in a requirement, an equality operation evaluates to true if and only if the value
its left-hand operand is exactly equal to the value of its right-hand operand. If
the XM* Attribute referred to by the left-hand operand does not exist in the node,
the operation evaluates to false, as no string (even the empty string) is equal to a
non-existent string.

! = Used in a requirement, an inequality operation evaluates to true if and only if the value
its left-hand operand is not exactly equal to the value of its right-hand operand. If
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the XM* Attribute referred to by the left-hand operand does not exist in the node,
then the operation evaluates to true, as a non-existent string is trivially not equal to
any existing string.

∼= Used in a requirement, a “like” operation evaluates to true if and only if the value of its
left-hand operand matches the regular expression pattern of its right-hand operand.
If the XM* Attribute referred to by the left-hand operand does not exist in the node,
then the operation evaluates to false, as no string (even the empty string) exists
within a non-existent string.

In addition to the equality, inequality, and like operators, requirements may also specify
Attributes that must or must not appear in the given XM* node in order for it to be a valid
fact. These requirements are written using the two unary mel functions named mel.exists
and mel.nexists. Such a requirement takes the form of mel.exists(attrName) or
mel.nexists(attrName), where the former evaluates to true if and only if the XM*
Attribute named attrName exists in the XM* node, whereas the latter has the inverse
semantics.

component(C) |- compFeatNode{component:C};
feature(X) |- compFeatNode{id:X, mel.exists(userName),

userName:label};
featParent(C,F) |- compFeatNode{component:C, id:F}, feature(F);
^sibling(F,G) |- featParent(C,F), featParent(C,G), F!=G;

Figure 3.18: An alternative to the mel program shown in Figure 3.2 that uses a requirement
in the feature declaration to specify that matching compFeatNode XM* nodes must have
a userName Attribute.

As an example, the program shown in Figure 3.18 uses the mel.exists function. This
program behaves very similarly to the mel program presented in Figure 3.2, with the excep-
tion that it extracts feature facts only from compFeatNode nodes that have a userName
Attribute. That is, if this program were applied to the XML fragment shown in Figure 3.1
it would not extract the feature fact F2 because the compFeatNode node that defines
it does not have a userName Attribute. Additionally, the clause feature(F) is added to
the featParent declaration to ensure that featParent relationships are extracted only
between feature and component facts that already exist in the produced factbase.
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An alternative solution, to ensure that featParent relationships are formed only with
feature facts that exist would be to include the mel.exists(userName) requirement
within compFeatNode clause of the featParent declaration.

3.2.9 The Ternary Operator

The beginning of Section 3.2 specified that property lists may contain attribute bindings
or requirements. So far. the attribute bindings shown have only been of the form X:Y
where X is either a reference to an Attribute or a string literal. It has not been discussed
yet how a user may conditionally bind an attribute to different values.

1 <animals>
2 <animal id="Cat" sound="meow"/>
3 <animal id="Fox"/>
4 <animal id="Dog" sound="bark"/>
5 </animals>

Figure 3.19: A Model representing animals, optionally containing the sound that animal
makes as an Attribute.

Consider the Model shown in Figure 3.19. Suppose that the user desires to extract from
this Model an entity for each animal that includes as an attribute the sound the animal
makes. If there is not a sound Attribute in the XM* for a given animal XM* node, the
user would like the sound attribute of the corresponding produced fact to have the value
“Who knows?”.

mel provides a ternary operator with the following form

requirement ? valIfTrue > valIfFalse

where requirement is any valid requirement as described in Section 3.2.8, and valIfTrue
and valIfFalse must each be one of:

• A string literal, in single quotes, which evaluates to the exact value of the string
literal.

• An identifier corresponding to an XM* Attribute, evaluating to the value of that
Attribute. We will see that a ternary always appears as a left-hand operand of a
binding operator; thus double-quoted strings appearing in a ternary operator are
always interpreted as the name of an Attribute, as discussed in Section 3.2.5.
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• A nested ternary, which evaluates as per the semantics defined below.

A ternary expression may appear only as the left-hand operand of a binding operator,
or nested within another ternary operation. The value of a ternary operation is the value of
its valIfTrue expression if the given requirement is true and is the value of its valIfFalse
expression otherwise.

1 Animal(X) |- animal{id:X,
2 mel.exists(sound) ? sound > 'Who knows?':noise};

Figure 3.20: A mel program that demonstrates the use of the ternary operator.

The mel program shown in Figure 3.20 shows the use of a ternary operator to con-
ditionally bind the noise attribute of each Animal fact to either the string literal ‘Who
knows?’ or to the value of the sound Attribute of the corresponding animal XM* node.
The result set of applying this program to the XML fragment shown in Figure 3.19 is three
Animal facts each with a noise attribute. The Cat fact has a noise attribute of "meow",
the Dog fact has a noise attribute of "bark", and the Fox fact has a noise attribute of
"Who knows?". The value of the noise attribute of the Fox fact is a result of the ternary
operator producing the string "Who Knows?" because the XML node for Fox has no sound
Attribute, making the requirement mel.exists(sound) evalaute to false.

1 Animal(X) |- animal{id:X, mel.exists(sound) ?
2 sound='bark' ? 'ruff' > sound
3 > 'Who knows?':noise};

Figure 3.21: A mel program that demonstrates the use of nested ternary operators.

An example of nested ternary operators is shown in Figure 3.21. In this program, the
noise attribute of each extracted Animal fact depends not only on whether the sound
Attribute exists, but also on its value if it does exist. If the sound Attribute exists, then
it is then compared to the string literal "bark"; if the values are equal then the expression
produces value "ruff"; if the values are not equal then the expression produces the value
of the Attribute. Alternatively, if the sound Attribute does not exist at all, then the
expression produces value "Who knows?". Thus, the difference in the values produced by
the programs shown in Figures 3.20 and 3.21 when applied to the XML fragment shown
in Figure 3.19 is that the former extracts the noise attribute of the Dog fact as "bark",
whereas the latter extracts the same attribute as "ruff".
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3.2.10 XM* Trees of Elements

So far, the clauses specifying what information to extract from the XM* input document
have been limited to XM* reference clauses, which match all corresponding nodes regardless
of their locations in the XM* input. However, the tree structure of an XM* document is
commonly used to encode meaningful information about the Model it represents Thus,
it is necessary to be able to specify not only individual nodes but patterns of nodes to
consider for extraction. mel provides operators for specifying parental (->) or ancestral
(=>) relationships between XM* nodes. These operators define paths through the XM*
node structure, thus they are collectively referred to as path operators. The path operators
can be used to write clauses to specify hierarchical patterns of nodes which must appear
in the XM* for a fact to be generated.

Parent Operator

The most common relationship among XM* nodes is the parent relationship, in which a
child XM* node is nested within a parent node. Figure 3.22 shows an XML fragment for a
Model that comprises features, components, and an ownership relationship between com-
ponents and features. A feature’s owning component is represented in the XML fragment
by containing each feature node within its owning component node. Thus, this XML
fragment represents a Model in which features F1 and F3 belong to component CompA, and
feature F2 that belongs to component CompB.

1 <SWModel>
2 <component id="CompA">
3 <feature id="F1" userName="Feature 1"/>
4 <feature id="F3" userName="Feature 3"/>
5 </component>
6 <component id="CompB">
7 <feature id="F2" userName="Feature 2"/>
8 </component>
9 </SWModel>

Figure 3.22: An XML fragment that encodes relevant Model information as parental rela-
tionships between nodes.
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Given the XML fragment in Figure 3.22, a mel declaration to extract a parental re-
lationship featParent between components and their owned features could be written
as:

1 featParent(C,F) |- component{id:C}->compFeatNode{id:F};

This declaration matches only instances of XM* component tags that have an XM* At-
tribute id and have a child tag compFeatNode with its own XM* Attribute id. The
right-hand operand of a path operator may also be a collection of descendants that each
must exist, rather than a single descendant.

1 sibling(F,G) |- component{}->[compFeatNode{id:F},
2 compFeatNode{id:G}], F!=G;

Figure 3.23: Example use of the mel parent operator.

The sibling relationship between feature facts could be written using path operators
as shown in Figure 3.23. The right-hand operand of the parent operator in this example
demonstrates how square brackets can be used specify a collection of descendants that each
must exist underneath the left-hand operand of the operator. Thus, the XM* path clause
in the above declaration specifies to look for component tags that have multiple distinct
compFeatNode tags as child nodes. When this clause is applied to the XML fragment in
Figure 3.22, only combinations of features F1 and F3 are considered because feature F2
does not reside underneath the same component node as F1 and F3 and the constraint
F!=G disallows reflexive results that relate features F1, F2, or F3 to themselves. Thus, the
only produced relationships are shown in Table 3.11.

Table 3.11: Results of applying the mel Program in Figure 3.23 to the XML fragment in
Figure 3.22

Relationship Type First Parameter Secdon Parameter
sibling F1 F3
sibling F3 F1

An important observation of this sibling declaration is that the reference to tags of
type component has an empty property list. This example demonstrates how the sibling
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1 <component id="CompA">
2 <compFeatNode id="F1" userName="Feature 1"/>
3 <ownedFeatureSet>
4 <featureCollection label="Display Features">
5 <compFeatNode id="F2" userName="Feature 2"/>
6 </featureCollection>
7 <compFeatNode id="F3" userName="Feature 3"/>
8 </ownedFeatureSet>
9 </component>

Figure 3.24: An XML fragment that acts as an exemplar for nested relationships.

relationship could be extracted even if the component tags have no unique identifier At-
tributes.

Ancestor Operator

Sometimes a relationship of interest may not be a direct parental relationship but rather
an ancestral relationship. The ancestor operator specifies descendent nodes that are nested
arbitrarily deep. Consider the XML snippet of nested nodes shown in Figure 3.24.

In this example, we have three features all contained within component CompA but at
different levels of nesting in the XML structure:

• Feature 1 is a directly child of CompA.

• Feature 2 is nested in a featureCollection tag, which itself is nested underneath
an ownedFeatureSet tag, which is finally a child of the component CompA.

• Feature 3 is nested only underneath a featureSet tag.

Because the ancestor operator matches XM* nodes of arbitrary depth of nesting, the
relationship between components and their respective features can be extracted with a
single mel declaration:

1 featureOf(C,F) |- component{id:C}=>compFeatNode{id:F};
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Specifying Paths

The path operators are so-named because they can be combined to specify more compli-
cated paths in the XM* structure, than just parent-child or ancestor-descendent relation-
ships.

Given the XML snippet shown in Figure 3.24, consider the case that one wants to
extract only features that are contained within an ownedFeatureSet node that itself is a
child of a component node:

1 featureOf(C,F) |- component{id:C}
2 ->ownedFeatureSet{}
3 =>compFeatNode{id:F};

The above declaration of featureOf combines the use of a parent operator with an ancestor
operator to specify a path expression. Specifically the clause looks for component nodes
that have a child node with an ownedFeatureSet tag, then searches for any compFeatNode
nodes that are descendants (at any depth) of that ownedFeatureSet node.

3.2.11 Elide Results of Intermediate Rules.

The mel user may want to declare and extract facts that are not output to the result set.
For example, some facts may be extracted for the sole purpose of easing the definition of
more complicated facts. mel supports intermediate declarations, which are distinguished
with the prefix “.”, whose results are elided from the result set. As an example, suppose
that the mel user would like to extract information about sibling features that lie in
the same component, but not have intermediate facts about features and their parent
relations appear in the final result set. If the featParent declaration in Figure 3.2 were
replaced by the following declaration

1 .featParent(C,F) |- compFeatNode{component:C, id:F};

then the results of applying this modified mel program to the XML Model from Figure 3.1
would be the results in Table 3.2, but without the contents of rows 7-9.
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program ::= decl+
decl ::= [mods ] name ‘(’params ‘)’ ‘|-’ clauses ‘;’

mods ::= ( ‘.’ | ‘^’ | ‘$’ )∗
params ::= name [ ‘,’ name ]
clauses ::= clause ( ‘,’ clause )∗
clause ::= [‘@’] xmlRef | [‘@’] declRef | [‘@’] path | constraint | [‘@’] fnCall
xmlRef ::= id ‘{’ propList ‘}’
declRef ::= name ‘(’params ‘)’ ‘{’propList ‘}’

path ::= [‘@’] xmlRef (‘−>’ | ‘=>’) paths
constraint ::= (id [strMod ] | literal) op (id [strMod ] | literal)

fnCall ::= (‘mel.parent’|‘mel.ancestor’) ‘(’ xmlRef ‘,’ xmlRef ‘)’
propList ::= binding | attreq | propList ‘,’ (binding | attreq)

attreq ::= lvalue [strMod ] op literal | eReq ‘(’ lvalue ‘)’
eReq ::= ‘mel.exists’ | ‘mel.nexists’

binding ::= lvalue [strMod ] ‘:’ id | ternary ‘:’ id
ternary ::= attreq ‘?’ ternOption ‘>’ ternOption

ternOption ::= ternary | lvalue [strMod ] | literalStr
op ::= ‘=’ | ‘ !=’ | ‘∼ =’

paths ::= [‘@’] xmlRef | path | ‘[’ listofPaths ‘]’
listofPaths ::= ([‘@’] xmlRef | path) (‘,’ [‘@’] xmlRef | path)*

lvalue ::= id | ‘mel.contents’
strMod ::= ‘[’ literal ‘]’

id ::= name | string
name ::= ALPHA (ALPHA | DIGIT | ‘_’)∗
literal ::= string | literalStr
string ::= ‘"’ CHAR∗ ‘"’

literalStr ::= ‘′’ CHAR* ‘′’

Figure 3.25: Grammar for mel programs: Non-terminal symbols are italicized and TER-
MINAL symbols are in uppercase. Literals are enclosed in single quotes. “|" denotes
alternation, "["..."]" encloses optional symbols, and "("...")" encloses a grouping of sym-
bols. "∗" denotes zero or more repetitions of the previous symbol or grouping, and "+"
denotes one or more repetitions of the previous symbol or grouping.
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3.3 Grammar of mel

The full grammar for mel is provided in Figure 3.25. A program is a sequence of declarations.
Each declaration defines either an entity type (with one parameter) or a relationship type
(with two parameters). Declarations can be prefaced with mod ifiers which modify their
behaviour. A declaration prefaced with mod ifier ‘.’ denotes an elided fact type whose
instances will not be part of the output; but the instances can be used to identify other
extracted facts that are part of the output. Prefacing a declaration with the mod ifier ‘^’
declares that the relationship type cannot be commutative (i.e., cannot relate an entity X
to entity Y as well as relate Y to X). In such cases, mel removes the second of the com-
mutative instances from the result set. Lastly, prefacing a declaraton with the mod ifier ‘$’
specifies that duplicate facts (i.e. facts with the same values for their parameters) should
not be extracted, in this case mel selects the first such found fact.

Each declaration is followed by a series of clauses that correspond to the four types of
clauses discussed earlier in Section 3.2.

3.4 mint the mel Interpreter

As with any programming language there needs to be a method of executing programs
written in the language. The solution to executing mel programs is the mel interpreter
mint. mint is implemented in C++ using GNU Bison [44] for parsing, Fast Lexical Ana-
lyzer Generator (Flex ) [44] for tokenizing, and the RapidXML library [36] for parsing XML
text. C++ was chosen for its highly efficient code, access to the aforementioned parsing
libraries, and because it is more architecture-independent than assembly.

3.4.1 Usage of mint

mel programs are executed by providing them as input to the mel interpreter (mint) along
with the additional input(s) of the XM* file(s) to process. A mel program and the XM*
file are respectively analogous to the intensional database (IDB) and extensional database
(EDB) of a Datalog program. mint is used as a simple command-line interface tool whose
usage is of the form

$ mint <melProgram> <XM*File> [XM*Files]... [-n] [-o output]
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where the first argument is the mel program the user has written, the second argument
is an XM* file to be extracted from, and the user can optionally provide additional XM*
files if the Model they are extracting from comprises several files. The optional flag (-n)
denotes that the output format is comma-separated value (CSV) files, one for all the nodes
and one for all the relationships, by default nodes.csv and edges.csv in the current
working directory respectively. The other optional (-o) argument specifies the name of
the file to which the resultant factbase is output. If -n and -o fileName are used in
conjunction then the two output CSV files corresponding to edges and nodes respectively
will be fileNameEdges.csv and fileNameNodes.csv. If neither of the flags are used then
mint outputs the resultant factbase to the standard output stream.
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Chapter 4

Evaluation of mel

In this chapter, we discuss the evaluations performed on mel and the methods of the
experiments performed. The evaluation of mel focuses on two criteria:

1. The extent to which mel generalizes to XM*-based representations of Models and to
desired extractions

2. The effectiveness of mel in easing the creation of new fact extractors for Models

In order to test mel against a wide variety of Model types, we looked for publicly available
Models that exercise complex features in their respective Modelling languages; that were
generated by Modelling tools commonly used in education, research, or industry [1, 31,
37, 42]; and whose XM* representations varied from each other. Finding suitable Models
for the study was a challenge because of the dearth of publicly available sophisticated
Models for a majority of the Model types. Researchers Hebig, Ho-Quang, Chaudron,
Robles and Fernandez [25] provide a solid database for UML diagrams, although the vast
majority of the Models available from, the database are UML Class Diagrams. In the end,
we sourced Models from sample Models provided with Modelling tools and from public
GitHub repositories.

The Model types considered in this evaluation are UML StateMachine and Class di-
agrams [19], Simulink Block diagrams [49], Arcadia Logical Architecture diagrams [67],
and Feature Models [43]. With the exception of a particularly structured feature con-
straints in Feature Models, we found that mel was sufficiently expressive to generalize
to all five Model types. The data sets used for these studies are available in the repos-
itory https://github.com/Roshack/ModelsUsedWithmel which includes for each Model
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an image of at least one diagram from the Model, the XM* representation of the Model,
and the factbase produced when the corresponding mel-generated extractor was applied
to it. Additionally, our studies on the effectiveness of mel in easing the creation of new
fact extractors produced generally favourable results in terms of development time and
succinctness of the programs developed.

4.1 Scope of Applicability of mel

Our first study evaluated whether mel is expressive enough to extract facts of interest from
different Model types with varying XM* representations. For each Model type we discuss
the types of facts extracted, the different editors and representations that were considered,
and the correctness tests of the extractors written in mel when applied to the Models of
that type.

In order to test the correctness of both the mel-generated extractors, and the interpreter
mint itself, we sampled facts for each Model considered:

1. Twenty facts (or all facts, if there were fewer than twenty in the Model) were randomly
selected from the visual depiction of each Model of the Model type being assessed.
These 20 facts were then confirmed to exist in the factbase produced by applying the
mel-generated extractor to the XM* representation of the Model.

2. Twenty facts were randomly selected from the factbase produced by applying the
mel-generated extractor to the XM* representation of a Model. These facts were
then confirmed to exist in the XM* of the Model and in the visual depiction of the
Model.

The above process was applied to all the Models of each type considered. The remainder of
this subsection will discuss the different Model types considered. For each Model type, we
discuss (1) the information that must be extracted from the Model to produce a factbase
that represents a complete model of a Model of that type; (2) the number of Models
considered, the editors we used to produce them and an overview of the differences in the
textual representations between the editors; (3) the mel-generated extractors written for
each Model/editor pair; and lastly (4) the results of applying the mel-generated extractors
to the Models.
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Table 4.1: Necessary facts for extraction from UML StateMachine diagrams.

Entities attributes
State Machines name

States name; entry, exit, and internal actions/guards
Regions types name

Relationships attributes
Sub state

Containment of state by region
Containment of region by state

Concurrent regions
Transitions triggers, guards, and actions

4.1.1 UML StateMachine Diagrams & Statechart Diagrams

UML StateMachine diagrams are adaptations of the statechart formalism proposed in 1987
by Harel [23]. Statecharts extend traditional state machines with hierarchical states, typed
variables, concurrent submachines, and the communication of events between concurrent
submachines. We differentiate between the mathematical concept of a state machine and
the class of UML StateMachine diagrams through the capitalization of the latter. StateMa-
chine diagrams were selected for this study because (1) the data they model is distinct from
other Model types considered, and (2) they feature prominently in academic works across
a wide variety of applications [14, 39, 66].

Information to be Extracted

For this study, we identified several key pieces of information to extract as facts from UML
StateMachine diagrams, shown in Table 4.1 This set of facts is our attempt at extracting a
comprehensive model of a UML StateMachine diagram without omitting any details. Thus,
an extractor would need to be able to extract all of the information listed in Table 4.1 to
be considered successful.

Models & Tools Considered

As subject StateMachine diagrams, we considered Models generated by either IBM Rhap-
sody (version 8.4) [32] or YAKINDU Statechart Tools (SCT) [35]. Rhapsody was selected
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because it is used in industry and studied in research on Model-driven engineering [37].
YAKINDU was selected because it serializes its Model representations quite differently
from how Rhapsody serializes Models; also Yakindu provides a plethora of thirty sample
Models.

Figure 4.1: UML StateMachine diagram of an embedded home alarm system (Rhapsody).

The UML StateMachine shown in Figure 4.1 is for a component of a hypothetical home
alarm system written in C++. It comes from a sample Rhapsody project provided as
part of the IBM Rhapsody version 8.4. A YAKINDU produced model is also shown in
Figure 4.2 which includes much more detail. For example, the YAKINDU Model includes
examples of actions that occur while residing in, entering, or exiting a state.

Snippets of XML from these two Models are shown in Figures 4.3 and 4.4 respectively.
While the two Model representations share similarities, as do most representations of the
same Model type, they also have some important differences. One major difference is in
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Figure 4.2: UML StateMachine diagram of Harel’s statechart for a digital watch [23],
produced using YAKINDU SCT.

how the two editors serialize data about transition triggers, guards, and actions as well as
state actions and their corresponding guards. Figure 4.3 shows how Rhapsody encodes the
transition’s triggers, guards, and actions through a particular set of relationships:

Triggers are represented by a trigger node that is nested underneath its corresponding
transition node. The trigger node contains the identifier of a packagedElement
node. The corresponding packagedElement node has an xsi:type of
uml:SignalEvent that isfound elsewhere in the XML hierarchy. The uml:SignalEvent
has a signal Attribute whose value corresponds to the identifier of a different
packagedElement whose xsi:type is uml:Signal. Within that second
packagedElement, the value of the trigger is stored within the name Attribute.

Guards are represented as the value Attribute of a specification node, which resides
underneath a ownedRule node, which in turn resides underneath the node for the
transition in question.
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1 <region xmi:id="_mapNhJ" name="armingDisarmingReprogramming">
2 . . .
3 <subvertex xmi:id="161" name="idle"/>
4 . . .
5 <transition xmi:id="170" target="161" guard="175" source="161">
6 <ownedRule xmi:id="175" context="OLDID+1424988+170">
7 <specification xmi:id="_mapNqp" value="IS_IN(correct)"/>
8 </ownedRule>
9 <effect xmi:id="_mapNq5">

10 <body>&#xD;\nitsController->GEN(evDisarm);</body>
11 </effect>
12 <trigger xmi:id="174" event="1d0f6"/>
13 </transition>
14 . . .
15 </region>
16 . . .
17 <packagedElement xmi:type="uml:SignalEvent" xmi:id="1d0f6" signal="_marCdp"/>
18 <packagedElement xmi:type="uml:Signal" xmi:id="_marCdp" name="evKeyOff"/>

Figure 4.3: Snippet of the XMI representation of the Rhapsody StateMachine Model shown
in Figure 4.1. Identifiers have been abbreviated and non-referenced Attributes have been
omitted.

Effects are represented as the contents of a body node, which resides underneath an
effect node, which in turn resides underneath the node for the transition in
question.

As shown in Figure 4.4, YAKINDU instead chooses to represent a transition’s trig-
ger, guard, and action all together as a single string. Each transition is stored as a
outgoingTransition node whose specification Attribute contains all the information
about that transition other than its source and target states. The specification Attribute
takes the form of the literal value displayed in the Model including line feed characters.
This XML snippet also shows how all of a state’s actions are also encoded as one large
string.

Rhapsody’s and YAKINDU’s representations place different requirements on the re-
spective extractors that can analyze them. An extractor for Rhapsody diagrams must be
able to sufficiently specify and resolve relational connections to pluck out a transition’s
trigger, guard, and action. Conversely, an extractor for YAKINDU Models need not re-
solve any relation to find a trigger’s information, but be able to parse relevant substrings
from a string Attribute.
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1 <sgraph:Statechart xmi:id="YX1">
2 . . .
3 <vertices xsi:type="sgraph:State" xmi:id="q1B" name="Alarm 1"
4 specification='entry [time_set > 0] / alarm_1_time = time_set
5 always /
6 display.first = (alarm_1_time / 36000) \% 24;
7 display.second = (alarm_1_time / 600) \% 60;
8 display.third = (alarm_1_time / 10) \% 60;
9 display.text = (alarm_1_enabled)

10 ? "Alarm 1" : "Alarm 1 OFF"
11 button.onoff / alarm_1_enabled = ! alarm_1_enabled'>
12 <outgoingTransitions xmi:id="eZW" target="fW1"
13 specification="button.set
14 / time_set = alarm_1_time"/>
15 <outgoingTransitions xmi:id="S5V" specification="button.mode" target="BTI"/>
16 </vertices>
17 . . .
18 <vertices xsi:type="sgraph:State" xmi:id="BTI" name="Alarm 2"
19 specification='entry [time_set > 0] / alarm_2_time = time_set
20 always /
21 display.first = (alarm_2_time / 36000) \% 24;
22 display.second = (alarm_2_time / 600) \% 60;
23 display.third = (alarm_2_time / 10) \% 60;
24 display.text = (alarm_2_enabled)
25 ? "Alarm 2 ON" : "Alarm 2 OFF"
26 button.onoff / alarm_2_enabled = !alarm_2_enabled'>
27 . . .
28 </vertices>
29 . . .
30 <vertices xsi:type="sgraph:Exit" xmi:id="fW1" name="set_time"/>
31 . . .
32 </sgraph:Statechart>

Figure 4.4: Snippet of the XMI representation of the YAKINDU StateMachine Model
shown in Figure 4.2. Identifiers have been abbreviated, non-referenced Attributes have
been omitted, and white space has been adjusted to improve readability. YAKINDU stores
all of a transition or state’s triggers, guards, and actions as one contiguous string.
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Overall, a total of eleven StateMachine diagrams were used in evaluating mel. Ten
of these were generated using YAKINDU and the remaining one was generated using
Rhapsody.

mel Extractors for Rhapsody and YAKINDU Models

The mel extractors written for StateMachine diagrams produced by Rhapsody and
YAKINDU can be seen in Figures 4.5 and 4.6, respectively. The structures of these two
programs further illustrates the differences in how Rhapsody and YAKINDU encode their
Models. Examining the Transition declaration in Figure 4.5 reveals that extracting all the
relevant information takes eight compound clauses, five of which involve parent operators
- meaning that at least thirteen nodes need to be resolved and connected to generate
each Transition fact. The Transition declaration of Figure 4.6 represents the other
extreme: it is defined using a single clause involving a parent operator, meaning that only
two nodes need to be resolved and connected to generate each Transition fact. However,
this Transition declaration makes use of several non-trivial regular expressions to resolve
the attributes it would like to produce for each fact.

The two extremes of Rhapsody and YAKINDUModel representations demonstrate that
the expressiveness of mel is sufficient both to resolve complex interconnected relationships
as well as resolve complex mappings of XML Attributes to fact attributes.
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1 StateMachine(X) |- ownedBehavior{"xmi:type"="uml:StateMachine",
2 "xmi:id":X, name:name};
3

4 Region(R) |- region{"xmi:id":R, name:name};
5

6 State(X) |- subvertex{"xmi:id":X, name:label, "xmi:type"[":(.*)"]:type};
7

8 SubState(P, C) |- subvertex{"xmi:id":parent}->region{}->
9 subvertex{"xmi:id":child};

10

11 ^Concurrent(R1, R2) |- subvertex{}->[region{"xmi:id":R1},
12 region{"xmi:id":R2}],
13 R1 != R2;
14

15 RegionOf(S, R) |- subvertex{"xmi:id":S}->region{"xmi:id":R};
16

17 Transition(source, target) |-
18 transition{"xmi:type"="uml:Transition", "xmi:id":transitionId,
19 source:source, target:target},
20 # trigger
21 @transition{"xmi:id":transitionId}->trigger{event:eventId},
22 @packagedElement{"xmi:type"="uml:SignalEvent",
23 "xmi:id":eventId, signal:signalId},
24 @packagedElement{"xmi:type"="uml:Signal", "xmi:id":signalId, name:trigger},
25 # guard
26 @transition{"xmi:id":transitionId}->@ownedRule{"xmi:id":ownedRuleId},
27 @ownedRule{"xmi:id":ownedRuleId}->@specification {value:guard},
28 # effect
29 @transition{"xmi:id":transitionId}->effect{"xmi:id":effectId},
30 @effect{"xmi:id":effectId}->body{mel.contents["[ \\t\\r\\n]*([^]*)"]:effect};

Figure 4.5: mel program for extracting facts from a UML StateMachine diagram created
with Rhapsody.
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1 StateMachine(X) |- "sgraph:Statechart"{"xmi:id":X, name:name};
2

3 Region(R) |- vertices{}=>regions{"xmi:id":R, name:label};
4

5 State(X) |-
6 vertices{"xmi:id":X, name:label,
7 "xsi:type"='sgraph:State' ? 'State'
8 > "xsi:type"='sgraph:Entry' ? 'Entry'
9 > "xsi:type"='sgraph:Exit' ? 'Exit'

10 > "xsi:type"='sgraph:Synchronization' ? 'Sync'
11 > '':type,
12 specification["entry[^/]*/[ \\t\\r\\n]*([^]*?)[ \\t\\r\\n]*(always|exit|$)"]
13 :entryEvent,
14 specification["entry[^/]*\\[([^\\]]*)\\][^]*"]
15 :entryGuard,
16 specification["always[^/]*/[ \\t\\r\\n]*([^]*?)[ \\t\\r\\n]*(exit|$)"]
17 :alwaysEvent,
18 specification["always[^/]*\\[([^\\]]*)\\][^]*"]
19 :alwaysGuard,
20 specification["exit[^/]*/[ \\t\\r\\n]*([^]*?)[ \\t\\r\\n]*$"]
21 :exitEvent,
22 specification["exit[^/]*\\[([^\\]]*)\\][^]*"]
23 :exitGuard};
24

25 SubState(P, C) |- vertices{"xsi:type"="sgraph:State", "xmi:id":P}
26 ->regions{}->vertices{"xsi:type"="sgraph:State", "xmi:id":C};
27

28 ^Concurrent(R1, R2) |-
29 vertices{}->[regions{"xmi:id":R1, name:L1},
30 regions{"xmi:id":R2, name:L2}], R1!=R2;
31

32 RegionOf(S, R) |-
33 vertices{"xsi:type"="sgraph:State", "xmi:id":S, name:sLabel}
34 ->regions{"xmi:id":R, name:"rLabel"};
35

36 Transition(Src,Targ) |-
37 vertices{"xmi:id":Src}
38 ->outgoingTransitions{target:Targ,
39 specification[".*\\[([^\\[\\]]*)\\].*"]:guard,
40 specification["([^/\\[\\]]*)(\\[.*\\])?/?.*"]:trigger,
41 specification[".*/([^]*)"]:event};

Figure 4.6: mel program for extracting facts from a UML StateMachine diagram created
with YAKINDU.
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YAKINDU SCT

Arduino HMI 26 34 33 55
Arduino Polling 4 4 5 4

Arduino Blinky LED 4 4 5 4
Coffee Machine 21 22 26 35

Motion Detection Camera 12 14 16 23
Music Player 81 119 102 163
Smart Home 49 71 59 103

Traffic Light Control 21 22 27 39
Digital Watch 39 42 47 69
Arduino Zowi 16 17 20 28

Rational Rhapsody Home Alarm With Ports 52 56 76 75

Table 4.2: Summary of the StateMachine Models considered in this study, including the
number of states and transitions in each Model and the total number of entity and rela-
tionship facts extracted in the factbase.

Results of StateMachine Diagram Extraction

Table 4.2 summarizes the Rhapsody-generated StateMachine Model and the ten YAKINDU-
generated StateMachine Models that we considered. For each of the eleven StateMachine
Models used in this study Graphical representations of diagrams from the Models and their
XMI representations can be found in the online repository1. Additionally, the graphical
representations of the diagrams are included in Appendix B.

Using the process described at the beginning of Section 4.1, we applied our two mel-
generated extractors to the eleven StateMachine Models in our evaluation set produced
result sets without error. We manually examined the generated facts and found that there
were no sampled Model facts that did not exist in the generated factbase, plus the facts’
attributes all had appropriate values. Similarly, none of the extracted facts sampled were
found to be extraneous to the Model.

1https://github.com/Roshack/ModelsUsedWithmel
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4.1.2 UML Class Diagrams

UML Class diagrams are perhaps the most well-known type of software Model and have
found to be the diagram most commonly reported to be used in industry [31]. It is for
this reason that mel’s applicability to UML Class diagrams is considered. Additionally,
due to the popularity of UML Class diagrams, there exists an incredibly large number
of distinct tools for generating them, each supporting different Modelling constructs and
employing their own XM* representations. Thus, UML Class diagrams and tools provide
good evidence of the potential need for specialized extractors for every distinct tool.

Information to be Extracted

The full set of information to be extracted from UML Class diagrams is reported in Ta-
ble 4.3. It is important to note that each tool may support only a subset of the facts and
attributes listed in Table 4.3. For example, UML Class diagrams created with the Eclipse
Modelling Tools cannot denote a class as being final, meaning that no such attribute can
be extracted. For each of the facts and attributes listed, if it is supported by the Modelling
tool, then it should be extracted from the Model.

Models & Tools Considered

UML Class diagrams are the most easily available Model type and we consider diagrams
from each of several tools:

Tool Number of Models
UMLDesigner [55] 3
MagicDraw [33] 4

Eclipse Modelling Tools [63] 6
ArgoUML [60] 2

UMLDesigner, MagicDraw, and ArgoUML all store their diagrams in a representation ap-
proximating a OMG UML 2.X standard [19], thus their representations are all fairly similar
to one another. Consider the UMLDesigner and Eclipse Modelling Tools diagrams shown in
Figures 4.7 and 4.8, respectively. The UMLDesigner Model is for a fictional Travel Agency
system, which is a sample UML Class diagram project provided with the UMLDesigner
version 9.0 [55]. The Model generated with the Eclipse Modelling Tools is sourced from
the UML model database [25] and is a recreation of a pedagogical example from Warmer
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Table 4.3: Necessary facts for extraction from UML Class diagrams.

Entities attributes
Classes name, abstract, final, and interfacea

Interfaces
Enumeration types name
Enumeration values

Fields name, visibility, constness, type,
multiplicities, and concreteness

Methods name, visibility, return type, and
concreteness

Parameters name and type

Relationships attributes
Ownership of enumeration values

Ownership of fields
Ownership of methods

Ownership of parameters
Associations between classes role names and multiplicities

Composition of classes role names and multiplicities
Aggregation of classes role names and multiplicities
Specialization of classes

aDepending on the language interfaces may be their own entity, or a class may define an
interface

and Kleppe’s book on the Object Constraint Language [68]. The two Models have differ-
ent XMI representations: UMLDesigner serializes its Models according to the OMG UML
standard version 2.1, and the Eclipse Modelling Tools serialize Models according to the
EMF ECore specification and file format.

The most notable difference between the OMG XMI and the ECore representations of
UML Class diagrams is in their methods of referencing other nodes. Documents adhering
to the OMG XMI specification refer to other nodes through unique identifier Attributes.
ECore documents, as discussed earlier in Section 2.2.2, refer to other nodes through strings
that represent paths in the XMI structure.

Figures 4.9 and 4.10 demonstrate the two distinct methods of resolving references. The
association relationship in OMG representation is determined by considering the type
Attribute of the two ownedEnd nodes that are children of the packagedElement whose
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Figure 4.7: UML Class Model of a travel agency (UMLDesigner).

xmi:type is uml:Association. In ECore representation, the association relationship is
perhaps more intuitive to read, because the two-way relationship is defined as an embedded
XML node in both of the two eStructuralFeatures nodes. The first node defines the
relationship from class ServiceLevel to the class Membership (resolved by the value of
the eType Attribute). The opposing relationship is both mentioned by path in the first
eStructuralFeatures node, but also defined itself as an eStructuralFeatures child node
of the Membership class node.

mel Extractors for UML Class Diagrams

The mel extractors for UMLDesigner class diagrams and Eclipse Modelling Tools class
diagrams comprise mostly simple mel declarations, so we do not discuss them in detail.
The full programs for each are located in the Appendix in Figures A.3 and A.4 respectively.

Instead we will consider just the extraction of Association facts expressed as two
mel declarations, shown in Figures 4.11 and 4.12. The interesting detail about these two
declarations is that the bindings of the target attribute of each association are not all
that different despite the distinct methods of referencing entities. One might expect that
the extractor for ECore Models would need to resolve the entire path to determine the
target of an association, however it can be resolved with a single attribute binding. This
is because the regular expression selectors that mel supplies allow the user to easily extract
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Figure 4.8: UML Class Model of a loyalty program of a fictional company. The Model
is a recreation, using the Eclipse Modelling Tools, of the Royal and Loyal example from
Warmer and Kleppe’s book on the Object Constraint Language [68].

the identifier, which is needed to find the target class (the targ binding in Line 4 of
Figure 4.12). Thus, we do not need to use the path operators to extract the target and
are able to resolve it with a single binding similar to the resolution of the target for
UMLDesigner Models. The similarity to the declaration for extraction associations from
UMLDesigner Models can be seen in Figure 4.11, in which type Attributes in the ownedEnd
nodes are used to resolve the bindings of S and E (Lines 6 and 8 of Figure 4.11).

Results of UML Class Diagram Extraction

Each mel-generated extractor was able to extract all the relevant facts from each UML
Class diagram that we produced using each of the four tools: UMLDesigner, MagicDraw,
Eclipse Modelling Tools, and ArgoUML. It is also worth noting the differences between the
mel programs for UMLDesigner, MagicDraw, and ArgoUML are relatively small leading
to very rapid development for the second-, third-, and fourth-developed extractors because
we were being able to reuse most of the facts already defined.

Using the process described at the beginning of Section 4.1, we applied our mel-
generated extractors to fifteen subject models, summarized in Table 4.4. For each of
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1 . . .
2 <packagedElement xmi:type="uml:Class" xmi:id="F8K" name="Travel">
3 . . .
4 </packagedElement>
5 . . .
6 <packagedElement xmi:type="uml:Class" xmi:id="2k8" name="Agency">
7 . . .
8 </packagedElement>
9 . . .

10 <packagedElement xmi:type="uml:Association" xmi:id="C4M"
11 name="offers" memberEnd="NYM 4P0" navigableOwnedEnd="4P0">
12 <ownedEnd xmi:id="NYM" name="agencys" type="2K8" association="C4M">
13 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="C4O"/>
14 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="KMF" value="*"/>
15 </ownedEnd>
16 <ownedEnd xmi:id="4P0" name="offers" type="F8k" association="C4M">
17 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="CWM"/>
18 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="EeC" value="*"/>
19 </ownedEnd>
20 </packagedElement>
21 . . .

Figure 4.9: Snippet of the XMI representation of the UMLDesigner Class diagram shown
in Figure 4.7, representing an association relationship. Identifiers have been abbreviated
and non-referenced Attributes have been omitted.

1 . . .
2 <eClassifiers xsi:type="ecore:EClass" name="ServiceLevel">
3 . . .
4 <eStructuralFeatures xsi:type="ecore:EReference" name="Membership"
5 ordered="false" upperBound="-1" eType="#//Membership"
6 eOpposite="#//Membership/currentLevel"/>
7 </eClassifiers>
8 . . .
9 <eClassifiers xsi:type="ecore:EClass" name="Membership">

10 . . .
11 <eStructuralFeatures xsi:type="ecore:EReference" name="currentLevel"
12 eType="#//ServiceLevel" eOpposite="#//ServiceLevel/Membership"/>
13 </eClassifiers>
14 . . .

Figure 4.10: Snippet of the ECore representation of the Eclipse Modelling Tools Class dia-
gram shown in Figure 4.8. Identifiers have been abbreviated and non-referenced Attributes
have been omitted.
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1 ^Association(S,E) |-
2 Class(S), Class(E),
3 packagedElement{"xmi:id"["_(.*)"]:associationID,
4 "xmi:type"="uml:Association", name:label}
5 ->[ownedEnd{type["_(.*)"]:S, aggregation!="composite"}
6 ->[@lowerValue{mel.nexists(value) ? '0' > value:ownerLowerMult},
7 @upperValue{mel.nexists(value) ? '*' > value:ownerUpperMult}],
8 ownedEnd{type["_(.*)"]:E, aggregation!="composite"}
9 ->[@lowerValue{mel.nexists(value) ? '0' > value:owneeLowerMult},

10 @upperValue{mel.nexists(value) ? '*' > value:owneeUpperMult}]];

Figure 4.11: mel declaration for extracting association facts from a UML Class diagram
generated with UMLDesigner.

1 Association(src, targ) |-
2 eClassifiers{"xsi:type"="ecore:EClass", name:src}
3 ->eStructuralFeatures{"xsi:type"="ecore:EReference",
4 containment!="true", name:srcLabel, eType[".*/(.*)"]:targ,
5 eOpposite[".*/(.*)"]:destLabel,
6 mel.nexists(lowerBound) ? '0' > lowerBound:lowerBound,
7 mel.nexists(upperBound) ? '1' >
8 upperBound = "-1" ? '*' > upperBound:upperBound };

Figure 4.12: The mel declaration for extracting association facts from a UML Class
diagram generated with the Eclipse Modelling Tools.
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ArgoUML Advent 45 42 177 218
Zork 10 90 52 163

Eclipse Modelling Tools

Coffee Machine 11 7 14 35
Java Language 9 25 10 63
MakeItHappen 3 4 6 31
Royal and Loyal 15 54 38 139

Store 55 73 65 305
XUml Compiler 61 118 70 214

MagicDraw

Alarmas 6 3 124 111
MediaTeka 4 4 50 60
Parking Lot 14 10 41 72
Library 5 6 32 43

UMLDesigner
CLAY Engine 27 26 32 102
Rennspur 17 17 94 123

Travel Agency 8 16 43 55

Table 4.4: Summary of the UML Class diagrams considered in this study, showing the
number of classes and associations (general associations, aggregations, and compositions)
in each Model and the total number of entity and relationship facts extracted in the
factbase.
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the 15 Class diagrams used in this study Graphical representations of diagrams from the
Models and their XMI representations can be found in the online repository2. Additionally,
the graphical representations of the diagrams are included in the Appendix B.

We manually examined 20 Model elements randomly selected from each subject Model
and verified that each element was correctly extracted in the factbase with the proper
details and that none of the facts randomly selected from each extracted factbase were
determined to be extraneous or incorrect in their details.

4.1.3 Simulink Block Diagrams

Simulink was considered due to its popularity as a modelling and code-generation tool that
sees wide use in industry particularly in safety-critical systems and industries requiring
strict adherence to specified standards [29]. Additionally, the inclusion of Simulink Block
diagrams in the study improves its analysis of scope of applicability, because Simulink
Models have the most distinct textual representation in that XML tags typically have no
Attributes for referencing related nodes, instead referencing related nodes by its location
in the XML tree structure.

Information to be Extracted

The information to be extracted from Simulink Block diagrams is shown in Table 4.5.
We extract blocks which have many different types for example gain, signal generator, or
subsystem blocks which contain nested diagrams. The two relationships we are interested
in extracting are the flow of signals between blocks and the containment hierarchy of blocks
that occurs when subsystem blocks comprise nested blocks.

Models Considered

The only tool considered for these diagrams is the MATLAB Simulink tool [48], as Simulink
modelling notation is proprietary. Ten Simulink Models were used in the experiment. A
single system of one of the Models considered is shown in Figure 4.13.

Analgous to how state chart diagrams allow for nested state machines, Simulink Block
diagrams allow for nested subsystem blocks. An example of a subsystem block is the block
labeled “Aircraft Dynamics Model” in Figure 4.13; the details of this subsystem block are

2https://github.com/Roshack/ModelsUsedWithmel
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Table 4.5: Necessary facts for extraction from Simulink Block diagrams.

Entities attributes
Blocks name and type

Relationships attributes
Block/port ownership port name

Signal flow signal label
Subsystem block/block ownership

depicted in a separate Block diagram. A sample of the XML representation of the diagram
shown in Figure 4.13 is shown in Figure 4.14. This XML snippet shows the signal flow
from the q, rad/sec port in the Aircraft Dynamics Model subsystem to the Controller
subsystem. To detect such signal flows mel must be able to refer to two children of a parent
node that has no Attributes with which refer to it.

mel Extractor for Simulink Block diagram

The mel extractor for Simulink Block diagrams shown in Figure 4.15 demonstrates how
the mel path operators can be used to denote relationships through a parent node with
no Attributes. This is simply a result of the inherent meaning of the path when the right
hand operand is a list, which denotes a collection of XML nodes that are all underneath the
same ancestor/parent node. For example, the signal relationship on Line 6 of Figure 4.15
specifies that a signal relationship’s parameters are bound to the string contents of two
P nodes which have Name Attributes of Src and Dest. There exist many such tags in the
XML document, so it is important that the parent operator can be used to specify that
these two tags are underneath the same Line node. If applied to the XML fragment shown
in Figure 4.14 this would extract the relationship between block 3 and 33, but would not
combine the values extracted from these P nodes with those extracted from other P nodes
in the document, as they do not reside under the same (Attribute-free) Line tag.

Results of Simulink Block Diagram Extraction

A summary of the Simulink Models that we considered in this study can be seen in Ta-
ble 4.6. For each of the 10 Block diagrams used in this study Graphical representations
of diagrams from the Models and their XMI representations can be found in the online
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ADC Quantization Algorithm 7 4 7 7
Air-Fuel Intake Dynamics 8 7 8 8

Aircraft Longitudinal Flight Control 64 54 64 69
Anti-Windup PID Control Example 9 6 9 12

Bouncing Ball Model 8 6 8 9
Component Based Modelling 14 8 14 14

Fault-Tolerant Fuel Control System 21 20 21 29
Intake Airflow Estimation and Closed-Loop Correction 24 25 24 32

Modeling an Anti-Lock Braking System (ABS) 14 14 14 24
PID Controller Tuning 41 33 41 67

Table 4.6: Summary of the Simulink block diagrams considered in this study, showsing the
number of blocks and signals in each Model and the total number of entity and relationship
facts extracted in the factbase.
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Figure 4.13: A system of a Simulink Model for a longitudinal flight control algorithm. The
blocks with titles beneath them are subsystems for which an entire sub-Model is defined.

repository3. Additionally, the graphical representations of the diagrams are included in the
Appendix B. Using the process described at the beginning of Section 4.1, we applied our
mel-generated extractor to each Simulink Model and produced result sets without error.
No facts considered from the Models were missing in the generated factbases, and the
generated factbases did not include extraneous facts.

4.1.4 Arcadia Logical Architecture Diagrams

Arcadia Logical Architectures diagrams from Thales’ Capella modelling tool were chosen
for another distinct textual representation. Capella saves its Models in an XMI file that

3https://github.com/Roshack/ModelsUsedWithmel
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1 . . .
2 <Block BlockType="SubSystem" Name="Controller" SID="33">
3 . . .
4 </Block
5 . . .
6 <Block BlockType="SubSystem" Name="Aircraft Dynamics Model" SID="3">
7 . . .
8 </Block>
9 . . .

10 <Line>
11 <P Name="Name">q, rad/sec</P>
12 <P Name="Src">3#out:3</P>
13 <P Name="Dst">33#in:2</P>
14 . . .
15 </Line>
16 . . .

Figure 4.14: Snippet of the XML representation of the Simulink Block diagram shown in
Figure 4.13. Non-referenced Attributes have been omitted.

1 block(X) |- Block{BlockType:type, Name:name, SID:X}
2 ->P{Name="Gain", mel.contents:gainLabel};
3 parent(P,C) |- Block{SID:P}->System{}->Block{SID:C};
4 port(B,P) |- Block{SID:B}->Port{}->[P{Name="Name", mel.contents:name},
5 P{Name="PortNumber", mel.contents:P}];
6 signal(Src,Targ) |- Line{}->[P{Name="Src", mel.contents["(.*)#"]:Src},
7 P{Name="Dst", mel.contents["(.*)#"]:Targ},
8 @P{Name="Name", mel.contents:label}];
9 signal(Src,Targ) |- Line{}->[P{Name="Src", mel.contents["(.*)#"]:Src},

10 Branch{}->P{Name="Dst", mel.contents["(.*)#"]:Targ},
11 @P{Name="Name", mel.contents:label}];

Figure 4.15: mel extractor for Simulink Block diagrams.
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Table 4.7: Necessary facts for extraction from Arcadia Logical Architecture diagrams.

Entities attributes
Functions name

Components name, is actor, is human

Relationships attributes
Data flow between functions data label

Data flow between components data label
Functions containing functions

Components containing functions

adheres to the OMG XMI standard 2.0 but is written using a custom metamodel defined
for the tool.

Information to be Extracted

Arcadia Logical Architecture diagrams specify abstract components, functions, and data
they communicate between them. As the Logical Architecture diagrams create an entire
view of the logical behaviour of a system, they include actors in the system as components.
Because of this, Component facts include attributes to specify whether or not they are an
actor and if they are human, as shown in Table 4.7.

Models Considered

Four Arcadia Logical Architecture diagrams were considered for this part of the evaluation.
One of the subject Models used is shown in Figure 4.16. In Arcadia Models, the entity
types are mostly denoted by colour:

• The darker blue boxes are components

• The lighter blue boxes represent actors

– If an actor has a stick figure symbol then it is also represents a human

• The green boxes represent functions

– Function ownership is shown in other diagrams of the Architecture
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Figure 4.16: Arcadia Logical Architecture diagram for an in-flight entertainment system
(Capella).

• The lines between functions and functions, and components and components, repre-
sents the flow of data

– The green text beside a line is the data being sent

A sample of the XML representation of Arcadia diagrams can be found in Figure 4.17

mel Extractor for Arcadia Logical Architecture diagram

The mel-generated extractor for Arcadia Logical Architecture diagrams is shown in Fig-
ure 4.18 This program contains relatively short and small declarations, because Arcadia
Models have a simple XMI representation and noes have identifying tag Attributes —
calling for the type of identifier references and relational reference that mel excels at.

Results of Arcadia Logical Architecture Diagram Extraction

Due to the smaller number of subject Models for evaluating mel on Arcadia Logical Archi-
tecture diagrams, the correctness-testing process described at the beginning of Section 4.1

74



1 . . .
2 <ownedLogicalComponents
3 xsi:type="capella.core.data.la:LogicalComponent"
4 id="_JNwHUJY7Ed6rH5SGn-UjSg" name="Media Server">
5 <ownedFunctionalAllocation
6 id="9744f85d-326f-43fd-8b47-6a63de1d52c6"
7 targetElement="#be9b5663-23ea-4413-abeb-3d5df84c93b8"
8 sourceElement="#_JNwHUJY7Ed6rH5SGn-UjSg"/>
9 . . .

10 </ownedLogicalComponents>
11 . . .
12 <ownedFunctions
13 xsi:type="capella.core.data.la:LogicalFunction"
14 id="be9b5663-23ea-4413-abeb-3d5df84c93b8"
15 name="Store Digital Media">
16 . . .
17 </ownedFunctions>
18 . . .

Figure 4.17: XML Fragment of the Model shown in Figure 4.16. Type Attributes have had
their values truncated to fit the page.
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Level Crossing Traffic Control 18 274 323 615 391
OCP Security Project 1 92 92 175 92

In-Flight Entertainment System 23 219 262 504 310
Zorro 1 41 29 71 29

Table 4.8: Summary of the Arcadia diagrams considered in this study, showing the number
of components, functions, and data flows in each Model and the total number of entity and
relationship facts extracted in the factbase.
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1 absFunction(X) |- ownedFunctions{id:X, name:label};
2

3 absComponent(X) |- ownedLogicalComponents{id:X, name:label, actor:isActor,
4 human:isHuman};
5

6 dataFlow(Out,In) |- ownedFunctionalExchanges{mel.nexists(exchangedItems) ? name
7 > exchangedItems["#(.*)"]:dID,
8 source["#(.*)"]:Out, target["#(.*)"]:In},
9 @ownedExchangeItems{id:dID, name:data};

10

11 dataFlow(Out,In) |- ownedLogicalComponents{id:Out}
12 ->ownedFeatures{id:ox, orientation="OUT"},
13 ownedLogicalComponents{id:In}
14 ->ownedFeatures{id:ix, orientation="IN"},
15 ownedComponentExchanges{name:data, source["#(.*)"]:ox,
16 target["#(.*)"]:ix};
17

18 subFunction(P,C) |- ownedFunctions{id:P}->ownedFunctions{id:C};
19 compFunction(C,F) |- ownedFunctionalAllocation{sourceElement["#(.*)"]:C,
20 targetElement["#(.*)"]:F};

Figure 4.18: mel program for extracting facts from an Arcadia Logical Architecture dia-
gram.
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was modified to select forty, instead of twenty, Model elements or facts for assessing cor-
rectness. This means that we randomly selected 40 elements (or all, if fewer than 40 were
present) from each Model and checked for their existence in the factbase. We also then se-
lected 40 random facts from the factbase and verified they were present in the Model with
the appropriate Attributes. This process found the elements sampled from each Model
were present in their corresponding factbases, and the facts sampled from each factbase
were present in their corresponding Model. For each of the 4 Arcadia diagrams used in
this study Graphical representations of diagrams from the Models and their XMI represen-
tations can be found in the online repository4. Additionally, the graphical representations
of the diagrams are included in the Appendix B.

4.1.5 Feature Models

Feature Models were included in our assessment of mel because they are considerably
different from the types of Models considered so far. The tool FeatureIDE version 3.6.2 [43,
40] is a well supported tool produced by FOSD researchers. FeatureIDE serializes Models
according to its own XML format that does not adhere to any XMI standard, offering
another unique XML representation for our assessments.

Information to be Extracted

The information to be extracted was the information about the features and the relation-
ships between them. As such, the only entities extracted were features themselves, as
shown in Table 4.9. Relationships between facts are either implicit in the Model (e.g., two
features being alternative sub-features of the same parent feature are implicitly mutually
exclusive) or explicit in the Model (e.g., a declared global constraint involving features that
are not siblings).

it’s a secret to everybody

Models Considered

Ten Feature Models were considered, one of which is shown in Figure 4.19. It is important
to note the distinction between an Or group and an Alternative of group, where the
former is an inclusive or and the latter is exclusive or of the parent node’s child nodes. As

4https://github.com/Roshack/ModelsUsedWithmel
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Table 4.9: Necessary facts for extraction from Feature Models.

Entities attributes
Feature is abstract, is mandatory, name

Relationships attributes
Feature containment

Mutual exclusion of features
Mutual inclusion of features

Implication
Disjunction
Conjunction

Figure 4.19: Feature Model diagram for an elevator system (FeatureIDE).

such, when extracting facts from a Feature Model, any features that are underneath the
same Alternative must be considered to be mutually exclusive. Similarly, any features
that are mandatory children of a group must be considered to be required together.

The XML representation that FeatureIDE uses mimics the tree-structure of the Feature
Model exactly. This can be seen in Figure 4.20, which shows the top level Elevator feature
and its five children. Because children nodes can be any of feature, or and, or alt, mel
extractors can be verbose. However, the real cause for concern is the implementation of
the cross-tree constraints.

Figure 4.21 demonstrates how cross-tree constraints are encoded in FeatureIDE’s tex-
tual representation. This XML snippet represents two logical expressions:

DirectedCall =⇒ ShortestPath

Behaviour =⇒ (CallButtons ∧DirectedCall) ∨ (Elevator ∧ FIFO)
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1 . . .
2 <and abstract="true" mandatory="true" name="Elevator">
3 <and abstract="true" mandatory="true" name="Behavior">
4 . . .
5 </>
6 <feature abstract="true" name="VoiceOutput"/>
7 <alt name="CallButtons">
8 . . .
9 </alt>

10 <and abstract="true" name="Security">
11 . . .
12 </and>
13 <and abstract="true" name="Safety">
14 . . .
15 </and>
16 . . .

Figure 4.20: Snippet of the XML representation of the Feature Model diagram shown in
Figure 4.19. Non-referenced Attributes have been omitted.

The way these expressions are represented poses a problem for mel. Although mel can
handle expressions with a finite depth of nesting, it is unable to effectively handle arbitrarily
nested expressions. In order to handle expressions of this type, which effectively define
the grammar for logical expressions, a mel program would need to implement a logical
expression parser - of which mel is not capable as it is not intended to be a Turing-complete
language. Because mel seeks to abstract the accidental complexity of Model extraction, it
is just meant to be a language that allows the user to declare the relevant relationships
between an XM* document and a corresponding desired factbase; mel is not meant to be
a language for arbitrary computation. However, as all of the Models considered had no
degree of nesting deeper than three we were able to write a mel extractor which could
extract all of the constraints in the sample Models.

mel Extractor for Feature Model diagrams

The extractor that was written for Feature Models is quite long, due to requiring many
alternative rules for resolving children features. As such the program is displayed in the
Appendix as Figure A.5. The set of declarations that defines the relationship between and
nodes and their children is shown in Figure 4.22. This declaration demonstrates how the
presence of many alternative XML tag types to denote the same abstract meaning can
potentially lead to a combinatorial explosion of declarations.
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1 <rule>
2 <imp>
3 <var>DirectedCall</var>
4 <var>ShortestPath</var>
5 </imp>
6 </rule>
7 <rule>
8 <imp>
9 <var>Behavior</var>

10 <disj>
11 <conj>
12 <var>CallButtons</var>
13 <var>DirectedCall</var>
14 </conj>
15 <conj>
16 <var>Elevator</var>
17 <var>FIFO</var>
18 </conj>
19 </disj>
20 </imp>
21 </rule>

Figure 4.21: Snippet of the XML representation of cross-tree constraints written in Fea-
tureIDE.

Results of Feature Model Extracton

We applied mel to the ten Feature Models summarized in Table 4.10. While our mel-
generated extractor was fully capable of extracting information from the Feature Tree, the
extractor could only extract nested constraint expressions of finite depth. As our sampled
Models had no constraints nested deeper than three levels, our mel-generated extractor
that extracts constraints up to three levels deep was able to extract all of the facts from
the sampled Models. Additionally, each of the facts randomly selected from each extracted
factbase were present in the Model itself.

1 FeatureOf(A,B) |- and{name:A}->and{name:B};
2 FeatureOf(A,B) |- and{name:A}->alt{name:B};
3 FeatureOf(A,B) |- and{name:A}->or{name:B};
4 FeatureOf(A,B) |- and{name:A}->feature{name:B};

Figure 4.22: mel declarations for extracting children of and nodes in a FeatureModel.
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Bike Configurator 54 12 55 154
Car 16 6 16 30

Desktop Searcher 16 8 22 32
EPL-AHEAD 12 4 23 43

Elevator 8 8 21 30
Hello World 4 2 6 8
Landing Gear 7 6 8 8

Poker 10 4 11 16
TankWar 31 11 37 62

Variable Characters 9 7 15 19

Table 4.10: Summary of the Feature Model diagrams considered in this study, showing the
number of features and groups (alternative, or, or general groups) in each Mode, and
the total number of entity and relationship facts extracted in the factbase.
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4.2 Ease of Using mel

The second criterion of our evaluation of mel involved assessing our hypothesis that it is
easier to create a fact extractor for a Model using mel than using other technologies. Our
assessment comprises two studies. The first study compares a mel-generated extractor
to an existing specialized extractor for Arcadia Logical Architecture Models built using
Python, which was created previously for a separate project; the comparison criterion is
succinctness of the code (as a proxy for ease of programming)5. The second study compares
the time it takes for a user to create a fact extractor using mel versus the time it takes
using the XQuery programming language [61]; the comparison criteria are succinctness
of the code and the development time (both as proxies for ease of programming). The
execution times of the programs was not considered as a criterion because it is in the
order of milliseconds on all examples, and is not relevant to how a language eases the
programmers task. In each case, the outputs of both programs were compared against
each other to verify that they extracted the same facts. Additionally, we examined the
output of the extractors developed by the subjects against their target Models to verify the
correctness of their extractors. We sampled twenty random facts from each target Model
and verified that they existed in the extracted factbase. We also examined twenty random
facts in each extracted factbase and compared them to the corresponding Model to verify
their existence and the values of their attributes.

4.2.1 mel Comparison to Custom Extractor.

This study assessed the brevity of a mel program compared to that of an existing special-
purpose fact extractor for Capella Models that was developed for a previous project. We
use the brevity of a programming language as a proxy for measuring a language’s support
for a programming task and the effort of programming. The latter extractor was developed
using Python, which was chosen for the previous project because of its built-in library for
parsing XML and its strong support for string processing. Both extractors were developed
by the author of mel and this thesis. While times were not recorded, the development time
of the mel extractor was considerably shorter; however, this comparison is entirely facile
as the initial design of mel was built around generalizing the writing of this particular
extractor - so by the time that mel was defined the extractor had already been conceived.

5We could not use development time as a comparison criterion because the Python extractor was
pre-existing and the time taken to develop it had not been recorded.
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Both extractors take as input an Arcadia Logical Architecture diagram generated by
Capella [20] and output the set of facts detailed in Table 4.7.

The sizes of the resulting programs are provided in Table 4.12. The size of the mel program
is an order of magnitude smaller than the Python program, even when we control for mel’s
automatic formatting of results by removing from the Python program the code responsible
for formatting the output. This result is unsurprising: brevity is a natural side effect of
most domain-specific languages. Still, the result is reported because a negative result was
possible and would imply a failure in the design of the language.

4.2.2 Testing the Development Time of mel Programs.

This study evaluated mel with respect to the time it takes to create a fact extractor. Two
user subjects were used, both of whom are experts in programming language theory. The
user subjects shall henceforth be referred to as Subject A and Subject B. Neither subject
was involved with the development of mel. We chose XQuery [61] to be the competing
technology in this study because of its facilities for parsing XML and manipulating ex-
tracted values and its ease of use. Prior to the writing of this thesis, a conference paper
on mel was published [22] which includes some evaluation by Subject A on two prior ver-
sions of mel. The three versions of mel (and corresponding mint) are version 1.0, version
1.1, and version 1.2 (which is the current version). We summarize the additions made by
versions 1.1 and 1.2 in Table 4.11. The development of new versions of mel based on the
results of prior studies is indicative of the design science research methodology [27] which
was employed as part of this thesis.

Each evaluation was a set of tasks given to the subject. Each task was to create
an extractor in both mel and XQuery for a specified Model. The subjects were given
instructions to time their development of both extractors, as well as steps to follow to
minimize favourable bias for either language. There were three steps to each experiment:

1. Examine the specified Model to determine the tags, relationships, and Attributes in
the XML that were relevant to the facts they were asked to extract for the task.

2. Write their first extractor, timing their development time.

3. Write their second extractor, timing their development time.

In order to mitigate the likely bias that the second extractor for each Model type would
be easier to write, the subjects were primarily asked to write their mel-generated extractor
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first. Of the five tasks assigned to Subject A they were asked to write the XQuery extractor
first in only one task. Similarly, of the four tasks given to Subject B they were asked to
write the XQuery extractor first in only one task. This was so that if a favourable bias did
exist it would be in XQuery’s favour.

We first discuss the experimental setup and then discuss the results of the experiments
in Sections 4.2.3 and 4.2.4.

Experiment Set One (mel 1.0)

The first set of experiments was performed by Subject A for the inclusion in a conference
paper [22]. The subject was asked to create mel and XQuery fact extractors for relevant
facts from two Model representations:

Task1: Arcadia Logical Architecture diagram (Capella) - Figure 4.16

• Entities: functions, components, data entities

• Relationships: data flows between functions

Task2: UML Class diagram (UMLDesigner) Figure 4.7

• Entities: classes, attributes

• Relationships: classes’ attributes, associations, compositions

• Attributes: attributes’ type, visibility, constness, multiplicity

For each Task, the subject first analyzed the XML to determine which tags were relevant
to the extraction. Additionally for each of these tasks, the subject wrote the mel program
first and the XQuery program second. It is possible, for any Task, creating and debugging
the first program helped the subject gain a better understanding of the XML, easing the
development of the second program.

Experiment Set Two (mel 1.1)

In the second set of experiments, Subject A was provided with a third Model and a new
version of mel (version 1.1) to test.

Task3: UML StateMachine diagram (Rhapsody) Figure 4.1:
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• Entities: state machines, regions, states

• Relationships: state hierarchy, transitions between states

• Attributes: transitions’ trigger, guard condition, effects

In this task Subject, A was asked to write their XQuery program first and mel program
second.

Experiment Set Three (mel 1.2)

In the third set of experiments Subject A wrote extractors for two additional Models and
a second subject, Subject B, wrote extractors for those same two Models, as well as for the
Models originally provided to Subject A in Tasks 1 and 3.

The two new models were a UML Class diagram in ECore format, produced with the
Eclipse Modelling Tools, and a Simulink Block diagram. Due to the length of time that
had passed since Subject A had used mel or XQuery, and the fact that Subject B had not
used either language, both subjects were given a set of facts to first extract from a UML
Class diagram as a warm-up for both languages. Once they had completed that task, they
were given an additional Model that included more details and were asked to time how long
it took them to modify their extractors to extract the two additional facts. The reasons
for the warm-up and subsequent followup task were two-fold: first to help the Subjects to
familiarize themselves with each language, and secondly to provide some cursory insight
into how extensible programs of each language were. The Simulink Block diagram test was
completed the same as the tests from the first three experiments with Subject A.

Warm-up: UML Class diagram (ECore) Figure B.14

• Entities: classes, attributes

• Relationships: classes’ attributes, associations, compositions

• Attributes: attributes’ type, visibility, constness, multiplicity, classes’ being abstract
or final

Task4: UML Class diagram (ECore) Figure 4.8

• Entities: methods

85



• Relationships: classes’ methods

• Attributes: isDerived attribute for methods and isDerived attribute for fields

Task5: Simulink Block diagram Figure 4.13

• Entities: blocks, ports

• Relationships: signal flow between blocks

• Attributes: names of signals

Both subjects performed their warm-up task followed by Task 4 and then Task 5, at
which point Subject A was finished. Subject B then completed a task with the same setup
as Task 1 (Arcadia) above, and finished by completing Task 3 (StateMachine) from above.
In each of these tasks, both subjects properly separated XML analysis time from extractor
development. All tasks were performed with the creation of the mel program first, except
for when Subject B completed Task 3 in which they wrote their XQuery extractor first as
Subject A was originally asked to write their XQuery extractor first for the same Model
in the second experiment.

4.2.3 Succinctness of mel

In general, mel saw favourable performance over XQuery with respect to succinctness. The
results shown in Table 4.12 demonstrate this.
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Table 4.12: Program Sizes of Extractors, where numbers with a single underline are sizes
of mel 1.1 programs and numbers with a double underline are sizes of mel 1.0 programs.
All other numbers are sizes of mel 1.2 programs.
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Subject A

Lines mel 6 38 36 31 52 172
XQuery 33 47 36 39 38 193

Words mel 58 143 208 204 223 836
XQuery 115 207 277 178 312 1089

Chars mel 434 1482 1709 1630 1618 6873
XQuery 1122 2016 2515 1763 2623 10039

Subject B

Lines mel 9 N/A 23 26 11 69
XQuery 38 N/A 83 77 45 243

Words mel 22 N/A 70 60 35 187
XQuery 97 N/A 282 208 119 706

Chars mel 493 N/A 1358 1348 616 3815
XQuery 1175 N/A 3061 2547 1056 7839

For each program written by Subject B, the mel-generated extractor was considerably
shorter than the XQuery program in terms of numbers of lines, words, and characters. The
results for Subject A are slightly more mixed in terms of numbers of lines and words; but
in total character count (including whitespace characters), Subject A’s mel programs are
each more succinct than their XQuery counterparts.

Inspection of Subject A’s programs suggests that the main reason their mel programs
had similar or even larger number of lines and words is due to stylistic spacing choices
taken by Subject A. For their own reasons of readability, Subject A chose to separate most
tokens by spaces, increasing total word and character count. Additionally, Subject A chose
to place most clauses on their own line and also placed closing square brackets on their
own line when they closed a collection of tags that served as the right-hand operand to
a path operator. These stylistic choices are important considerations in evaluating the
succinctness of mel as the Subject was not instructed to do this, suggesting that they did
it to improve readability for themselves. Because readability directly affects the usability
of a programming language, the increased length due to Subject A’s style choices should
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not be ignored as inconsequential to program length, as without them the programs may
have been harder to write for the Subject.

Even with the stylistic choices made by Subject A, each mel program still has fewer
total lines than their XQuery counterparts other than Subject A’s ECore programs, which
have equal number of lines, and Subject A’s Simulink programs, in which the mel program
is larger than the XQuery program. Totalling the line counts for each Subject shows
that Subject A’s mel programs were an average of 11% lines fewer than their XQuery
counterparts, while Subject B’s mel programs were an average of 71% lines fewer than
their XQuery counterparts.

The word counts of the Subjects’ programs show similar results, with each mel program
having fewer total words than its corresponding XQuery program, except for Subject A’s
StateChart programs. Totalling the word counts for each Subject shows that Subject
A’s mel programs were an average of 23% words fewer than their XQuery counterparts,
while Subject B’s mel programs were an average of 73% words fewer than their XQuery
counterparts.

Lastly, the character counts weigh heavily in favour of mel, with not a single XQuery
program taking fewer characters than its mel counterpart. Totalling the character counts
for each Subject shows that Subject A’s mel programs were an average of 31% characters
fewer than their XQuery counterparts, while Subject B’s mel programs were an average of
51% characters fewer than their XQuery counterparts.

There are a few potential reasons for the differences in program sizes. The most likely
reason is that there are several cases where mel hides the accidental complexity of searching
and retrieving data from the XM* document that matches relational declarations, where
XQuery does not. One example of this, seen repeatedly in both Subjects’ programs, is
in the resolutions of hierarchical structures of nodes. Processing relationships between
specified nodes in a hierarchical structure typically required at least one for loop, if not
nested for loops in the corresponding XQuery program. This repetitive search and retrieval
of desired nodes from the XM* document is the type of accidental complexity that mel
seeks to hide from the user. In a mel program, the user need not worry about how to
resolve the relationships they are interested in, but simply state what those relationships
are. In fact, resolving any relationship between two nodes in XQuery demonstrates this
accidental complexity. In order to search for pairs of nodes that share common Attribute
values the user must again write explicit for loops that iterate over the possible nodes and
produce results for those that match the desired relationship. Once again, mel resolves
these relationships implicitly for the user, who needs only state the relationship itself.
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4.2.4 Development Time of mel Extractors

Table 4.13: Development Time of Extractors. Time in bold denotes the extractor which
was written first by the given subject for the Model type.

Model Subject A Subject B
mel Time XQuery Time mel Time XQuery Time

Arcadia 46m 75m 22m 12m
UMLDesigner Class Diagram† 53m 43m N/A N/A

ECore Class Diagram‡ 6m 15s 8m 3s 7m 11m
StateChart 30m 54m 22m 58m
Simulink 29m 33s 30m 54s 45m 41m
Total 164m 48s 210m 57s 96m 122m

† For this task Subject A forgot to analyze the XML before writing extractors, as such the
mel time is conflated with the XML deduction time.
‡ The task involving ECore Class diagrams was not the development of the entire extractor,
but rather the addition of two fact declarations to the extractors that the Subjects had
previously developed.

Table 4.13 shows the development time taken by each Subject to create each extractor.
Subject A spent less time writing their extractors in mel than in XQuery for four of the
five tasks given to them. Of the four tasks that Subject B completed, they spent less time
on their mel programs than their XQuery programs in two tasks, and vice versa on the
other two. However, there are some details of note about the tasks in which Subjects took
longer to write their mel programs than their XQuery programs.

Subject A forgot to spend time analyzing the XML structure before beginning develop-
ment for their mel-generated extractor for UML Class diagrams produced with UMLDe-
signer. Given that Subject A recorded their XML deduction time for Arcadia Logical
Architecture diagrams and StateChart diagrams as 26 minutes and 33 minutes respec-
tively, it is reasonable to assume that the fact that it took 10 minutes longer for them to
develop their mel extractor for UMLDesigner Models than their XQuery program was at
least partly due to time spent interpreting the XML.

Subject B provided their thoughts on why their mel program for Arcadia Logical Ar-
chitecture diagrams took much longer to develop than their XQuery program: (1) they
forgot the semantics of compound clauses and had to go review the documentation they
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were provided, and (2) they misspelled an XML reference in their program. Two possible
causes of Subject B’s first suggested slowdown could be due to the learning curve with
a new language or it could indicate that the behaviour of compound clauses in mel are
unintuitive or difficult to work with. In the case of Subject B’s second suggested slow-
down, mint actually includes a feature to help debug misspelled XML references, however
the Subject was unaware of this feature and missed it entirely. The feature in question
produces a colourful warning when an XML reference clause produces zero results, sug-
gesting that the programmer may have misspelled something. The warnings mint produce
are printed to the standard error stream, but are printed before the program output is
printed to standard output. Because the warnings were printed before the output of the
program Subject B never noticed them. Had Subject B been aware of mint’s warning
features, they could have deliberately checked for any warnings, which they believe would
have saved them time.

Overall, both subjects spent less total time developing their mel programs than their
XQuery programs. Subject A spent just under 165 minutes developing all of their mel
programs and just under 211 minutes developing all of their XQuery programs. Thus, on
average Subject A spent roughly 21% less time on developing their mel programs. Similarly,
Subject B spent 96 minutes developing their mel programs and 122 minutes developing
their XQuery programs for an average of 21% less time spent developing their mel programs.
Also, it is not insignificant that users spent less time on average developing mel programs
than time on developing XQuery programs, despite the fact that the majority of the tasks
were biased in favour of XQuery because the Subjects wrote their mel programs first.
However, we must also consider the possibility that the learning effort exerted in the first
task left each Subject with less energy to expend on the second task, potentially leading
to slower development of the second extractor.

There are a few potential reasons for the differences in development times. Once again,
we believe that efficiencies in development time offered by mel are primarily the result of
the way mel hides accidental complexities from the user. Additionally, both of our Subjects
described particular issues in debugging mistakes in XQuery programs in contrast to mel.
Subject A specifically mentioned that the optional-clauses feature of mel were particularly
useful in debugging, as they could toggle clauses on/off easily to find the mistake that
was causing their declaration to produce incorrect results. In contrast, while debugging
XQuery programs Subject A had a more difficult time factoring out their for loops into
let bindings to isolate errors. Subject A also mentioned that mel excels over XQuery at
resolving relationships between cross-tree nodes: that is, resolving relationships between
nodes with matching Attribute values regardless of their location in the XM* document —
due to how mel hides the accidental complexity of walking the tree from the user. Subject
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B also expressed the same belief, however they characterized this as mel being easier at
expressing joins. Again, a join in XQuery would take the form of a for loop wherein
the programmer resolves the join’s relationships themselves, an explicit resolution of the
accidental complexity of extracting relational data from an XM* document.
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Table 4.11: A summary of the features added in versions 1.1 and 1.2 (current) of mel (and
mint).

Version Number Features Added
Version 1.1 Added warning messages to mint when:

1. a declaration reference refers to an undeclared
name

2. no instances of an Attribute name referenced in
an XML reference are found in the corresponding
XML document

3. a declaration produced zero facts.
Version 1.2 • Introduced the path operators, deprecating the

mel.parent and mel.ancestor functions†

• Introduced constraint clauses

• Introduced regular-expressions for use with At-
tribute modifiers, which previously matched only
strings between a user-defined prefix and suffix

• Introduced the like operator (∼=)

• Introduced single-quote string literals and the abil-
ity to bind attributes to string literals

• Introduced the ternary operator

† — These functions are still present in the mel grammar shown in Figure 3.25, but not
discussed in Chapter 3. This is because these functions are deprecated in favour of the
path operators. An application of mel.parent or mel.ancestor behave the same as a
single use of the parent or ancestor operators respectively.
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Chapter 5

Conclusions

This chapter discusses the contributions made in this thesis, as well as the limitations of
the work, and finally the possibilities of future work.

5.1 Contributions

This thesis provides as its primary contributions the development of the Model Extraction
Language mel and its corresponding interpreter mint. As a language mel has been used to
extract facts from UML Class and StateMachine diagrams, Arcadia Logical Architecture
diagrams, Simulink Block diagrams, and Feature Models. Additionally, the Models ana-
lyzed came from a wide variety of tools with varying XM* schemata which demonstrates a
wider applicability of mel. Evaluations show promising results with respect to the applica-
bility of mel to Models represented in XM*; and to mel’s ability to ease the development of
fact extractors. Experimental results found that mel was at least as effective as a language
for extracting information from XML documents as the W3C recommended tool XQuery.
Additionally, on average, the written mel programs were shorter and took less development
time than their XQuery counterparts.

5.2 Threats and Limitations

Although evaluations of mel produced generally positive results, there are some limitations
to the language worth noting and threats to the validity of the experimental results to
discuss.
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The one notable limitation of mel as a language was found when writing an extractor
for Feature Models. While the facts represented within the feature tree did not pose a
problem to mel, the arbitrary cross-tree constraints did. Due to the fact that the cross-
tree constraints took the form of arbitrarily nested logical expressions, mel was unable to
resolve any constraint to a fact. The mel extractor written was able to resolve constraints
so long as they were limited to a depth of one. Although this is a limitation of mel, it is
outside of the scope of the language. The arbitrarily nested constraints are written in a
way that would require the extractor to simulate a recursive parser for logical expressions.
Since mel, much like Datalog which it is influenced by, is not a Turing-complete language
it cannot achieve such behaviour.

The most notable threat to the evaluation is that the evaluation of mel’s ability to ease
extractor development time was performed by only two subjects on a combined total of Five
Models. This small sample size could mean that mel’s performance can be explained by
statistical noise rather than by the features of the language. Additionally, both subjects are
personal acquaintances of the author of this thesis which may have subconsciously biased
their evaluation. It is worth noting, however, that both subjects are academics and would
not intentionally bias the results of the experiment.

5.3 Future Work

Future work extending this thesis could include, but is not limited to, (1) extending the
features of mel to support more Model representations: more XML representations, as
in the constraints of Feature Models, or generalizing the back-end of mel so that XML
reference and path reference clauses can be dispatched to other representations as well. (2)
Extending the evaluations of mel through applying it to additional Model types, Model
examples, industrial case studies, and the performing of a full user study.
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Appendix A

Extra mel Programs

A.1 mel-Generated Extractors for UML Class diagrams

1 Class(X) |- packagedElement{"xmi:type"="uml:Class", name:label, "xmi:id":X,
2 mel.nexists(ID)};
3

4 Enum(X) |- packagedElement{"xmi:type"="uml:Enumeration", name:label, "xmi:id":X,
5 mel.nexists(ID)};
6

7 EnumValues(E,V) |- packagedElement{"xmi:type"="uml:Enumeration", name:enum, "xmi:id":E}
8 ->ownedLiteral{"xmi:id":V, name:enumValue, value:value};
9

10 InheritsFrom(Parent,Child) |- packagedElement{"xmi:id":Child}
11 ->generalization{general:Parent};
12

13 Interface(X) |- packagedElement{"xmi:type"="uml:Interface", name:name, "xmi:id":X,
14 mel.nexists(ID)};
15

16 Field(X) |- packagedElement{"xmi:type"="uml:Class"}
17 ->ownedAttribute{"xmi:type"="uml:Property", "xmi:id":X, name:label,
18 visibility:visiblity, isReadOnly:const, isStatic:static,
19 type:typeID, mel.exists(type), mel.nexists(association),
20 mel.nexists(ID)},
21 @packagedElement{"xmi:id":typeID, name:type};
22

23 Field(X) |- packagedElement{"xmi:type"="uml:Class"}
24 ->ownedAttribute{"xmi:type"="uml:Property", "xmi:id":X, name:label,
25 visibility:visiblity, isReadOnly:const,
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26 mel.nexists(type), mel.nexists(association),
27 mel.nexists(ID)}
28 ->type{href["#%"]:typeID},
29 packagedElement{"xsi:type"="uml:DataType", "xmi:id":typeID, name:type};
30

31 Field(X) |- packagedElement{"xmi:type"="uml:Class"}
32 ->ownedAttribute{"xmi:type"="uml:Property", "xmi:id":X, name:label,
33 visibility:visiblity, isReadOnly:const,
34 mel.nexists(type), mel.nexists(association),
35 mel.nexists(ID)}
36 ->type{}=>referenceExtension{referentPath[".*::([^:]*)$"]:type};
37

38 FieldOf(C,A) |- packagedElement{"xmi:type"="uml:Class", "xmi:id":C, mel.nexists(ID)}
39 ->ownedAttribute{"xmi:id":A, mel.nexists(association)};
40

41 Method(X) |- ownedOperation{"xmi:id":X, name:name, visibility:visibility,
42 mel.nexists(ID)}
43 ->@ownedParameter{"xmi:type"="uml:Parameter", direction="return",
44 name:returnName, type:TID},
45 @packagedElement{"xmi:type"="uml:Class", name:returnType, "xmi:id":TID};
46

47 MethodOf(Class, Method) |- packagedElement{"xmi:id":Class, mel.nexists(ID)}
48 ->ownedOperation{"xmi:id":Method},
49 Class(Class), Method(Method);
50

51

52 Parameter(X) |- ownedParameter{"xmi:type"="uml:Parameter", "xmi:id":X, name:name,
53 type:TID, direction!="return", mel.nexists(ID)},
54 @packagedElement{"xmi:type"="uml:Class", name:type, "xmi:id":TID};
55

56 ParameterOf(Fn,P) |- ownedOperation{"xmi:id":Fn}->ownedParameter{"xmi:id":P},
57 Method(Fn), Parameter(P);
58

59 Composition(Owner,Ownee) |-
60 packagedElement{"xmi:id":Owner}
61 ->ownedAttribute{"xmi:id":ownerRelID, "xmi:type"="uml:Property", name:ownerLabel,
62 association:AID, aggregation="composite"}
63 =>[@lowerValue{value:ownerLowerMult}, @upperValue{value:ownerUpperMult}],
64 packagedElement{"xmi:id":Ownee}
65 ->ownedAttribute{"xmi:id":owneeRelID, "xmi:type"="uml:Property",
66 name:owneeLabel, association:AID}
67 =>[@lowerValue{value:owneeLowerMult}, @upperValue{value:owneeUpperMult}],
68 packagedElement{"xmi:type"="uml:Association", "xmi:id":AID, name:compLabel},
69 ownerRelID!=owneeRelID;
70
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71

72 ^Composition(Owner,Ownee) |-
73 Class(Owner){label:ownerClass},
74 Class(Ownee){label:owneeClass},
75 packagedElement{"xmi:type"="uml:Class", "xmi:id":Owner}
76 ->ownedAttribute{"xmi:type"="uml:Property", name:owneeLabel, type:Ownee,
77 aggregation="composite", association:AID}
78 =>[@lowerValue{value:owneeLowerMult}, @upperValue{value:owneeUpperMult}],
79 packagedElement{"xmi:type"="uml:Association", "xmi:id":AID}
80 =>[@lowerValue{value:ownerLowerMult}, @upperValue{value:ownerUpperMult}];
81

82 ^Association(Owner,Ownee) |-
83 packagedElement{"xmi:id":Owner}
84 ->ownedAttribute{"xmi:id":ownerRelID, "xmi:type"="uml:Property", name:ownerLabel,
85 association:AID, aggregation!="composite"}
86 =>[@lowerValue{value:ownerLowerMult}, @upperValue{value:ownerUpperMult}],
87 packagedElement{"xmi:id":Ownee}
88 ->ownedAttribute{"xmi:id":owneeRelID, "xmi:type"="uml:Property",
89 name:owneeLabel, association:AID}
90 =>[@lowerValue{value:owneeLowerMult}, @upperValue{value:owneeUpperMult}],
91 Class(Owner), Class(Ownee),
92 packagedElement{"xmi:type"="uml:Association", "xmi:id":AID, name:assocLabel},
93 ownerRelID!=owneeRelID;
94

95

96 ^Association(Owner,Ownee) |-
97 packagedElement{"xmi:type"="uml:Class", "xmi:id":Owner}
98 ->ownedAttribute{"xmi:type"="uml:Property", name:owneeLabel, type:Ownee,
99 aggregation!="composite", association:AID}

100 =>[@lowerValue{value:owneeLowerMult}, @upperValue{value:owneeUpperMult}],
101 packagedElement{"xmi:type"="uml:Association", "xmi:id":AID}
102 =>[@lowerValue{value:ownerLowerMult}, @upperValue{value:ownerUpperMult}];

Figure A.1: mel program for extracting facts from UML Class diagrams generated with
the MagicDraw tool.
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1 Class(X) |- "UML:Class"{"xmi.id":X, name:label, visibility:vis, isAbstract:abstract};
2

3 Field(X) |- "UML:Attribute"{"xmi.id":X, name:label, visibility:vis}
4 =>@"UML:MultiplicityRange"{lower:lowerMultr, upper:upperMult};
5

6 FieldOf(C,F) |- "UML:Class"{"xmi.id":C}=>"UML:Attribute"{"xmi.id":F};
7

8 Method(X) |- "UML:Operation"{"xmi.id":X, name:label, visibility:vis,
9 isAbstract:abstract};

10

11 MethodOf(C,M) |- "UML:Class"{"xmi.id":C}=>"UML:Operation"{"xmi.id":M};
12

13 Param(X) |- "UML:Parameter"{"xmi.id":X, name:label, kind!="return"}
14 ->"UML:Parameter.type"{}
15 ->"UML:Class"{"xmi.idref":classType},
16 Class(classType){label:type};
17

18 ParamOf(M,P) |- "UML:Operation"{"xmi.id":M}=>"UML:Parameter"{"xmi.id":P};
19

20 SuperClass(Parent,Child) |-
21 "UML:Generalization"{}
22 ->["UML:Generalization.child"{}->"UML:Class"{"xmi.idref":Child},
23 "UML:Generalization.parent"{}->"UML:Class"{"xmi.idref":Parent}];
24

25

26 Association(A,B) |-
27 "UML:Association"{name:label}
28 =>["UML:AssociationEnd"{"xmi.id":aEndID, name:aMult, aggregation!="composite"}
29 =>"UML:Class"{"xmi.idref":A},
30 "UML:AssociationEnd"{"xmi.id":bEndID, name:bMult, aggregation!="composite"}
31 =>"UML:Class"{"xmi.idref":B}],
32 aEndID!=bEndID;
33

34 $Composition(Owner,Ownee) |-
35 "UML:Association"{name:label}
36 =>["UML:AssociationEnd"{name:ownerMult, aggregation="composite"}
37 =>"UML:Class"{"xmi.idref":Owner},
38 "UML:AssociationEnd"{name:owneeMult, aggregation!="composite"}
39 =>"UML:Class"{"xmi.idref":Ownee}];

Figure A.2: mel program for extracting facts from UML Class diagrams generated with
the ArgoUML tool.
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1 Class(X) |- packagedElement{"xmi:type"="uml:Class", name:label, "xmi:id"["_(.*)"]:X};
2

3 Field(X) |- ownedAttribute{name:label,"xmi:id"["_(.*)"]:X}
4 ->[lowerValue{mel.nexists(value) ? '0' > value:multLower},
5 upperValue{value:multUpper},
6 type{href["#(.*)"]:type}];
7

8 enum(X) |- packagedElement{"xmi:type"="uml:Enumeration", "xmi:id":X, name:name};
9

10 enumValues(E,V) |- packagedElement{"xmi:type"="uml:Enumeration", "xmi:id":E}
11 ->ownedLiteral{"xmi:id":V, name:label}
12 ->specification{"xmi:type"[".*:(.*)"]:type, value:value};
13

14 .typeOf(A,B) |- ownedAttribute{type:conn, name:label,"xmi:id"["_(.*)"]:B},
15 packagedElement{"xmi:id":conn, name:A};
16

17 Field(X) |- ownedAttribute{name:label,"xmi:id"["_(.*)"]:X}
18 ->[lowerValue{value:multLower}, upperValue{value:multUpper}],
19 typeOf(type,X);
20

21 FieldOf(C,A) |- packagedElement{"xmi:type"="uml:Class", "xmi:id"["_(.*)"]:C}
22 ->ownedAttribute{"xmi:id"["_(.*)"]:A};
23

24 ^Association(S,E) |- Class(S), Class(E),
25 packagedElement{"xmi:id"["_(.*)"]:associationID,
26 "xmi:type"="uml:Association", name:label}
27 ->[ownedEnd{type["_(.*)"]:S, aggregation!="composite"}
28 ->[@lowerValue{mel.nexists(value) ? '0' > value:ownerLowerMult},
29 @upperValue{mel.nexists(value) ? '*' > value:ownerUpperMult}],
30 ownedEnd{type["_(.*)"]:E, aggregation!="composite"}
31 ->[@lowerValue{mel.nexists(value) ? '0' > value:owneeLowerMult},
32 @upperValue{mel.nexists(value) ? '*' > value:owneeUpperMult}]];
33

34 ^Composition(S,E) |- Class(S), Class(E),
35 ownedEnd{"xmi:id":SID, type["_(.*)"]:S, name:ownerRoleName},
36 ownedEnd{"xmi:id":EID, type["_(.*)"]:E, name:owneeRoleName,
37 aggregation="composite"},
38 packagedElement{"xmi:id"["_(.*)"]:compositionID,
39 "xmi:type"="uml:Association", name:label}
40 ->[ownedEnd{type["_(.*)"]:S}, ownedEnd{type["_(.*)"]:E,
41 aggregation="composite"}],
42 @ownedEnd{"xmi:ID":SID}
43 ->[lowerValue{value:ownerLowerMult}, upperValue{value:ownerUpperMult},
44 lowerValue{value:owneeLowerMult}, upperValue{value:owneeUpperMult}];

Figure A.3: mel program for extracting facts from UML Class diagrams generated with
UMLDesigner.
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1 class(X) |-
2 eClassifiers{"xsi:type"="ecore:EClass", name:X,
3 mel.exists(abstract) ? abstract > 'false':isAbstract,
4 mel.exists(interface) ? abstract > 'false':isInterface};
5

6 memberOf(C,A) |- eClassifiers{"xsi:type"="ecore:EClass", name:C}->
7 eStructuralFeatures{"xsi:type"="ecore:EAttribute",
8 name:A, eType[".*/(.*)"]:type};
9

10 method(M) |- eOperations{name:M, eType[".*/(.*)"]:type};
11

12 enum(X) |- eClassifiers{"xsi:type"="ecore:EEnum", name:X};
13

14 enumValues(E,V) |- eClassifiers{"xsi:type"="ecore:EEnum", name:E}
15 ->eLiterals{name:V, mel.exists(value) ? value > '0':value};
16

17 parameterOf(M,P) |- eOperations{name:M}->
18 eParameters{name:P, eType[".*/(.*)"]:paramType};
19

20 methodOf(C,M) |- eClassifiers{"xsi:type"="ecore:EClass", name:C}->
21 eOperations{name:M, eType[".*/(.*)"]:type};
22

23 superClass(Parent,Child) |- eClassifiers{"xsi:type"="ecore:EClass", name:Child,
24 eSuperTypes[".*/(.*)"]:Parent},
25 class(Parent);
26

27 association(src, targ) |-
28 eClassifiers{"xsi:type"="ecore:EClass", name:src}
29 ->eStructuralFeatures{"xsi:type"="ecore:EReference",
30 containment!="true", name:srcLabel,
31 eType[".*/(.*)"]:targ, eOpposite[".*/(.*)"]:destLabel,
32 mel.nexists(lowerBound) ? '0' > lowerBound:lowerBound,
33 mel.nexists(upperBound) ? '1' >
34 upperBound = "-1" ? '*' > upperBound:upperBound };
35

36 composition(src, targ) |-
37 eClassifiers{"xsi:type"="ecore:EClass", name:src}
38 ->eStructuralFeatures{"xsi:type"="ecore:EReference",
39 containment="true", name:srcLabel,
40 eOpposite[".*/(.*)"]:destLabel, eType[".*/(.*)"]:targ,
41 mel.nexists(lowerBound) ? '0' > lowerBound:lowerBound,
42 mel.nexists(upperBound) ? '1'
43 > upperBound = "-1" ? '*' > upperBound:upperBound };

Figure A.4: mel program for extracting facts from UML Class diagrams generated with
the Eclipse Modelling Tools.
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A.2 mel-Generated Extractor for Feature Models

1 Feature(X) |- struct{}=>feature{abstract:isAbstract, mandatory:isMandatory, name:X};
2 Feature(X) |- and{abstract:isAbstract, mandatory:isMandatory, name:X};
3 Feature(X) |- or{abstract:isAbstract, mandatory:isMandatory, name:X};
4 Feature(X) |- alt{abstract:isAbstract, mandatory:isMandatory, name:X};
5

6 FeatureOf(A,B) |- and{name:A}->and{name:B};
7 FeatureOf(A,B) |- and{name:A}->alt{name:B};
8 FeatureOf(A,B) |- and{name:A}->or{name:B};
9 FeatureOf(A,B) |- and{name:A}->feature{name:B};

10

11 FeatureOf(A,B) |- alt{name:A}->and{name:B};
12 FeatureOf(A,B) |- alt{name:A}->alt{name:B};
13 FeatureOf(A,B) |- alt{name:A}->or{name:B};
14 FeatureOf(A,B) |- alt{name:A}->feature{name:B};
15

16 FeatureOf(A,B) |- or{name:A}->and{name:B};
17 FeatureOf(A,B) |- or{name:A}->alt{name:B};
18 FeatureOf(A,B) |- or{name:A}->or{name:B};
19 FeatureOf(A,B) |- or{name:A}->feature{name:B};
20

21 ^MutuallyExclusive(A,B) |- Feature(A), Feature(B), A!=B,
22 alt{name:parent},
23 FeatureOf(parent,A), FeatureOf(parent,B);
24

25 ^RequiredTogether(A,B) |- Feature(A){isMandatory:M}, Feature(B){isMandatory:M},
26 M='true', A!=B, and{name:parent},
27 FeatureOf(parent,A), FeatureOf(parent,B);
28

29 Implies(A,B) |- imp{}->[var{mel.contents:A}, var{mel.contents:B}], A!=B;
30 Disjoint(A,B) |- disj{}->[var{mel.contents:A}, var{mel.contents:B}], A!=B;
31 Conjoint(A,B) |- conj{}->[var{mel.contents:A}, var{mel.contents:B}], A!=B;

Figure A.5: mel program for extracting facts from Feature Model diagram generated with
FeatureIDE.
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A.3 mel and XQuery programs written by Subject A

1 function(id) |- ownedFunctions { id: id, name: name };
2 component(id) |- ownedSystemComponents { id: id, name: name };
3 dataFlow(from, to) |-
4 ownedFunctionalExchanges { source["#%"]: source, target["#%"]: target,
5 name: name },
6 parent(inputs { id: target, name: inputName },
7 ownedFunctions { id: from, name: inputFunction }),
8 parent(outputs { id: source, name: outputName },
9 ownedFunctions { id: to, name: outputFunction });

Figure A.6: mel program written by Subject A for completion of Task 1 as described in
Section 4.2.2. Some additional line breaks have been added to allow the program to fit on
the page.
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1 xquery version "3.1";
2

3 for $doc in doc("db/inflight.melodymodeller")
4 let $functions :=
5 for $fn in $doc//ownedFunctions
6 return <function id="{ $fn/@id }" name="{ $fn/@name }" />
7 let $components :=
8 for $component in $doc//ownedSystemComponents
9 return <component id="{ $component/@id }" name="{ $component/@name }" />

10 let $functionDataflow :=
11 for $xchg in $doc//ownedFunctionalExchanges
12 let $targetId := substring($xchg/@target, 2)
13 let $sourceId := substring($xchg/@source, 2)
14 for $fromOwner in $doc//ownedFunctions
15 where $fromOwner/inputs/@id = $targetId
16 order by $fromOwner/@id
17 for $toOwner in $doc//ownedFunctions
18 where $toOwner/outputs/@id = $sourceId
19 order by $toOwner/@id
20 for $result in (<functionDataflow
21 id="{ $xchg/@id }"
22 name="{ $xchg/@name }"
23 from="{ $fromOwner/@id }"
24 fromName="{ $fromOwner/@name }"
25 to="{ $toOwner/@id }"
26 toName="{ $toOwner/@name }" />)
27 return $result[not(.=preceding-sibling::functionDataflow)]
28

29 return <data>
30 { $functions }
31 { $components }
32 { $functionDataflow }
33 </data>

Figure A.7: XQuery program written by Subject A for completion of Task 1 as described
in Section 4.2.2.

110



1 class(id) |- packagedElement { "xmi:id": id, name: name, "xmi:type" = "uml:Class" };
2

3 classContains(class, attr) |-
4 class(class),
5 mel.parent(packagedElement { "xmi:id": class }, ownedAttribute { "xmi:id": attr });
6

7 attribute(id) |-
8 mel.parent(ownedAttribute { "xmi:id": id, name: label },
9 type { href ["pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml#%"]: type }),

10 mel.parent(ownedAttribute { "xmi:id": id }, lowerValue { value: lowerBound }),
11 mel.parent(ownedAttribute { "xmi:id": id }, upperValue { value: upperBound });
12

13 association(from, to) |-
14 mel.parent(
15 packagedElement { "xmi:id": associationId },
16 ownedEnd { type: from, name: fromName, aggregation != "composite" }),
17 mel.parent(
18 packagedElement {
19 "xmi:type" = "uml:Association",
20 "xmi:id": associationId,
21 name: associationName,
22 navigableOwnedEnd: navigableOwnedEnd
23 },
24 ownedEnd { type: to, name: toName, "xmi:id": navigableOwnedEnd });
25

26 composition(from, to) |-
27 mel.parent(
28 packagedElement { "xmi:id": associationId },
29 ownedEnd { type: from, name: fromName, aggregation = "composite" }),
30 mel.parent(
31 packagedElement {
32 "xmi:type" = "uml:Association",
33 "xmi:id": associationId,
34 name: associationName,
35 navigableOwnedEnd: navigableOwnedEnd
36 },
37 ownedEnd { type: to, name: toName, "xmi:id": navigableOwnedEnd });

Figure A.8: mel program written by Subject A for completion of Task 2 as described in
Section 4.2.2. Some additional line breaks have been added to allow the program to fit on
the page.
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1 xquery version "3.1";
2

3 declare namespace xmi = "http://schema.omg.org/spec/XMI/2.1";
4

5 for $doc in doc("db/agency.uml")
6 let $classes :=
7 for $class in $doc//packagedElement[@xmi:type = "uml:Class"]
8 return <class id="{ $class/@xmi:id }" name="{ $class/@name }" />
9 let $attributes :=

10 for $attr in $doc//ownedAttribute
11 let $type := replace($attr/type/@href, "^.*#", "")
12 let $lowerBound := $attr/lowerValue/@value
13 let $upperBound := $attr/upperValue/@value
14 return <attribute id="{ $attr/@xmi:id }" name="{ $attr/@name }" type="{ $type }"
15 lowerBound="{ $lowerBound }" upperBound="{ $upperBound }" />
16 let $classAttrs :=
17 for $class in $doc//packagedElement[@xmi:type = "uml:Class"]
18 for $attr in $class/ownedAttribute
19 return <classAttr classId="{ $class/@xmi:id }" attrId="{ $attr/@xmi:id }" />
20 let $associations :=
21 for $assoc in $doc//packagedElement[@xmi:type = "uml:Association"]
22 let $fromEnd := $assoc/ownedEnd[@xmi:id = tokenize($assoc/@memberEnd, "\s")[1]]
23 let $toEnd := $assoc/ownedEnd[@xmi:id =
24 tokenize($assoc/@navigableOwnedEnd, "\s")[last()]]
25 where not(exists($fromEnd/@aggregation)) or $fromEnd/@aggregation != "composite"
26 return <association
27 id="{ $assoc/@xmi:id }"
28 name="{ $assoc/@name }"
29 from="{ $fromEnd/@type }"
30 to="{$toEnd/@type }" />
31

32 let $compositions :=
33 for $assoc in $doc//packagedElement[@xmi:type = "uml:Association"]
34 let $fromEnd := $assoc/ownedEnd[@xmi:id = tokenize($assoc/@memberEnd, "\s")[1]]
35 let $toEnd := $assoc/ownedEnd[@xmi:id =
36 tokenize($assoc/@navigableOwnedEnd, "\s")[last()]]
37 where $fromEnd/@aggregation = "composite"
38 return <composition id="{ $assoc/@xmi:id }" name="{ $assoc/@name }"
39 from="{ $fromEnd/@type }" to="{$toEnd/@type }" />
40

41 return <data> { $classes } { $attributes } { $classAttrs }
42 { $associations }{ $compositions }
43 </data>

Figure A.9: XQuery program written by Subject A for completion of Task 2 as described
in Section 4.2.2. Line breaks have been removed in some places and added in others to
accommodate formatting for this thesis.
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1 stateMachine(id) |-
2 ownedBehavior { "xmi:type" = "uml:StateMachine", name: name, "xmi:id": id };
3

4 region(id) |-
5 region { "xmi:type"= "uml:Region", "xmi:id": id, name: name },
6 mel.ancestor(region {"xmi:type" = "uml:Region",
7 stateMachine: stateMachine }, region { "xmi:id": id });
8 region(id) |-
9 region { "xmi:type" = "uml:Region", "xmi:id": id, name: name,

10 stateMachine: stateMachine };
11

12 state(id) |-
13 subvertex { "xmi:type" = "uml:State", "xmi:id": id, name: name },
14 mel.parent(region { "xmi:type" = "uml:Region", "xmi:id": region },
15 subvertex { "xmi:id": id });
16

17 stateContains(parent, child) |-
18 subvertex { "xmi:type" = "uml:State", "xmi:id": parent },
19 mel.parent(subvertex { "xmi:id": parent },
20 region { "xmi:type" = "uml:Region", "xmi:id": regionBetween }),
21 mel.parent(region { "xmi:id": regionBetween },
22 subvertex { "xmi:type" = "uml:State", "xmi:id": child });
23

24 transition(source, target) |-
25 transition { "xmi:type" = "uml:Transition", "xmi:id": transitionId,
26 source: source, target: target },
27 # trigger
28 @mel.parent(transition { "xmi:id": transitionId },
29 trigger { event: eventId }),
30 @packagedElement { "xmi:type" = "uml:SignalEvent",
31 "xmi:id": eventId, signal: signalId },
32 @packagedElement { "xmi:type" = "uml:Signal", "xmi:id":
33 signalId, name: trigger },
34 # guard
35 @mel.parent(transition { "xmi:id": transitionId },
36 ownedRule { "xmi:id": ownedRuleId }),
37 @mel.parent(ownedRule { "xmi:id": ownedRuleId },
38 specification { value: guard }),
39 # effect
40 @mel.parent(transition { "xmi:id": transitionId },
41 effect { "xmi:id": effectId }),
42 @mel.parent(effect { "xmi:id": effectId },
43 body { mel.contents: effect });

Figure A.10: mel program written by Subject A for completion of Task 3 as described in
Section 4.2.2. Some additional line breaks have been added to allow the program to fit on
the page.
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1 xquery version "3.1";
2

3 declare namespace xmi = "http://schema.omg.org/spec/XMI/2.1";
4

5 for $doc in doc("homealarm.xmi")
6 let $stateMachines :=
7 for $stm in $doc//ownedBehavior[@xmi:type = "uml:StateMachine"]
8 return <statemachine id="{ $stm/@xmi:id }" name="{ $stm/@name }" />
9 let $regions :=

10 for $region in $doc//region[@xmi:type = "uml:Region"]
11 let $stateMachine := if( exists($region/@stateMachine) )
12 then $region/@stateMachine else
13 $region/ancestor::region[exists(./@stateMachine)]
14 /@stateMachine
15 return <region id="{ $region/@xmi:id }" name="{ $region/@name }"
16 stateMachine="{ $stateMachine }" />
17 let $states :=
18 for $state in $doc//subvertex[@xmi:type = "uml:State"]
19 return <state id="{ $state/@xmi:id }" name="{ $state/@name }"
20 region="{ $state/parent::region/@xmi:id }" />
21 let $stateContainss :=
22 for $state in $doc//subvertex[@xmi:type = "uml:State"]
23 for $child in $state/region/subvertex[@xmi:type = "uml:State"]
24 return <stateContains outer="{ $state/@xmi:id }" inner="{ $child/@xmi:id }" />
25 let $transitions :=
26 for $trans in $doc//transition[@xmi:type = "uml:Transition"]
27 let $eventId := $trans/trigger/@event
28 let $signalEvent := $doc//packagedElement[@xmi:type = "uml:SignalEvent"
29 and @xmi:id = $eventId]
30 let $signal := $doc//packagedElement[@xmi:type = "uml:Signal"
31 and @xmi:id = $signalEvent/@signal]
32 return <transition id="{ $trans/@xmi:id }" source="{ $trans/@source }"
33 target="{ $trans/@target }" trigger="{ $signal/@name }"
34 guard="{ $trans/ownedRule/specification/@value }"
35 effect="{ $trans/effect/body/text() }" />
36 return <data>
37 { $stateMachines } { $regions }
38 { $states } { $stateContainss } { $transitions }
39 </data>

Figure A.11: XQuery program written by Subject A for completion of Task 3 as described
in Section 4.2.2. Line breaks have been removed in some places and added in others to
accommodate formatting for this thesis.
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1 class(name) |-
2 eClassifiers { name: name, "xsi:type" = "ecore:EClass",
3 abstract: abstract };
4

5 member(className, member) |-
6 eClassifiers { name: className, "xsi:type" = "ecore:EClass" }
7 -> [eStructuralFeatures { "xsi:type" = "ecore:EAttribute",
8 name: member, eType: type }];
9

10 method(className, method) |-
11 eClassifiers { name: className, "xsi:type" = "ecore:EClass" }
12 -> [eOperations { name: method, eType["#//(\\w+)"]: returnType }];
13

14 methodParam(method, param) |-
15 eClassifiers { } -> eOperations { name: method } -> [
16 eParameters { name: param, eType["#//(\\w+)"]: type }
17 ];
18

19 superClass(class, super) |-
20 eClassifiers { name: class, "xsi:type" = "ecore:EClass",
21 eSuperTypes["#//(\\w+)"]: super };
22

23 association(classA, classB) |-
24 class(classA), class(classB),
25 eClassifiers { name: classA, "xsi:type" = "ecore:EClass" } -> [
26 eStructuralFeatures { "xsi:type" = "ecore:EReference",
27 name: label, eType["#//(\\w+)"]: classB,
28 upperBound = '-1' ? '*' > upperBound : upperMult,
29 mel.exists(lowerBound) ? lowerBound > '0' : lowerMult,
30 containment != "true", mel.exists(derived) ?
31 derived = 'true' ? 'true' >
32 'false' > 'false' : derived }];
33 composition(classA, classB) |-
34 class(classA), class(classB),
35 eClassifiers { name: classA, "xsi:type" = "ecore:EClass" } -> [
36 eStructuralFeatures { "xsi:type" = "ecore:EReference", name: label,
37 eType["#//(\\w+)"]: classB,
38 upperBound = '-1' ? '*' > upperBound : upperMult,
39 mel.exists(lowerBound) ? lowerBound > '0' : lowerMult,
40 containment = "true", mel.exists(derived) ?
41 derived = 'true' ? 'true' > 'false' > 'false' : derived }];

Figure A.12: mel program written by Subject A for completion of Task 4 as described in
Section 4.2.2. Some additional line breaks have been added to allow the program to fit on
the page.
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1 xquery version "3.1";
2 let $doc := doc("royal.xml")
3 let $class :=
4 for $class in $doc // eClassifiers [ @xsi:type = "ecore:EClass" ]
5 return <class name="{$class/@name}" abstract="{if($class/@abstract = "true")
6 then "true" else "false"}" />
7 let $memberOf :=
8 for $class in $doc // eClassifiers [ @xsi:type = "ecore:EClass" ]
9 for $member in $class / eStructuralFeatures [ @xsi:type = "ecore:EAttribute" ]

10 return <memberOf className="{$class/@name}" name="{$member/@name}"
11 type="{$member/@eType}" />
12 let $superClassOf :=
13 for $class in $doc // eClassifiers [ @xsi:type = "ecore:EClass" and @eSuperTypes ]
14 let $superClassName := analyze-string($class/@eSuperTypes, "#//(\w+)") /
15 fn:match / fn:group [@nr = "1"] / text()
16 return <superClassOf className="{$class/@name}"
17 superClassName="{$superClassName}" />
18 let $associationOrComposition :=
19 for $class in $doc // eClassifiers [ @xsi:type = "ecore:EClass" ]
20 for $assoc in $class / eStructuralFeatures [ @xsi:type = "ecore:EReference" ]
21 let $targetName := analyze-string($assoc/@eType, "#//(\w+)") / fn:match /
22 fn:group [@nr = "1"] / text()
23 let $lowerMult := if(exists($assoc/@lowerBound)) then $assoc/@lowerBound else "0"
24 let $upperMult := if($assoc/@upperBound = "-1") then "*" else $assoc/@upperBound
25 let $derived := if($assoc/@derived = "true") then "true" else "false"
26 return
27 if($assoc/@containment = "true")
28 then <composition from="{$class/@name}" to="{$targetName}"
29 label="{$assoc/@name}" lowerMult="{$lowerMult}"
30 upperMult="{$upperMult}" derived="{$derived}" />
31 else <association from="{$class/@name}" to="{$targetName}"
32 label="{$assoc/@name}" lowerMult="{$lowerMult}"
33 upperMult="{$upperMult}" derived="{$derived}" />
34 let $methodOf :=
35 for $class in $doc // eClassifiers [ @xsi:type = "ecore:EClass" ]
36 for $method in $class / eOperations
37 let $returnType := analyze-string($method/@eType, "#//(\w+)") / fn:match /
38 fn:group [@nr = "1"] / text()
39 return <methodOf class="{$class/@name}" name="{$method/@name}"
40 returnType="{$returnType}" />
41 let $paramOf :=
42 for $method in $doc // eClassifiers [ @xsi:type = "ecore:EClass" ] / eOperations
43 for $param in $method / eParameters
44 let $type := analyze-string($param/@eType, "#//(\w+)") / fn:match /
45 fn:group [@nr = "1"] / text()
46 return <paramOf method="{$method/@name}" name="{$param/@name}" type="{$type}" />
47 return <results> {$class} {$memberOf} {$superClassOf}
48 {$associationOrComposition} {$methodOf} </results>

Figure A.13: XQuery program written by Subject A for completion of Task 4 as described
in Section 4.2.2. Some line breaks have been added to allow for formatting of this thesis.
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1 signalGenerator(id) |-
2 Block { BlockType = "SignalGenerator", SID: id, Name: name };
3

4 sum(id) |- Block { BlockType = "Sum", SID: id, Name: name };
5

6 gain(id) |- Block { BlockType = "Gain", SID: id, Name: name };
7

8 subSystem(id) |- Block { BlockType = "SubSystem", SID: id, Name: name };
9

10 .block(id) |- signalGenerator(id);
11 .block(id) |- sum(id);
12 .block(id) |- gain(id);
13 .block(id) |- subSystem(id);
14

15 port(blockId, portIdx) |-
16 Block { SID: blockId } -> [
17 Port { } -> [
18 P { Name = "PortNumber", mel.contents: portIdx },
19 P { Name = "Name", mel.contents: name }]
20 ];
21

22 portRel(from, to) |-
23 Block { SID: fromBlockId } -> [
24 Port { } -> [
25 P { Name = "PortNumber", mel.contents: fromIdx },
26 P { Name = "Name", mel.contents: from }]
27 ],
28 Block { SID: toBlockId } -> [
29 Port { } -> [
30 P { Name = "PortNumber", mel.contents: toIdx },
31 P { Name = "Name", mel.contents: to }]
32 ],
33 port(fromBlockId, fromIdx), port(toBlockID, toIdx),
34 from != to,
35 Line { } -> [
36 P { Name = "Src", mel.contents["(\\d+)#.*"]:
37 fromBlockID, mel.contents[".*:(\\d+)"]: fromIdx },
38 P { Name = "Dst", mel.contents["(\\d+)#.*"]:
39 toBlockID, mel.contents[".*:(\\d+)"]: toIdx }];
40

41 blockRel(fromId, toId) |-
42 block(fromId), block(toId),
43 fromId != toId,
44 Line { } -> [
45 P { Name = "Src", mel.contents["(\\d+)#.*"]: fromId,
46 mel.contents[".*:(\\d+)"]: fromPort },
47 P { Name = "Dst", mel.contents["(\\d+)#.*"]: toId,
48 mel.contents[".*:(\\d+)"]: toPort }];

Figure A.14: mel program written by Subject A for completion of Task 5 as described
in Section 4.2.2. Line breaks have been removed in some places and added in others to
accommodate formatting for this thesis.
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1 xquery version "3.1";
2

3 let $doc := doc("simulink.xml")
4 let $signalGenerator :=
5 for $block in $doc // Block [ @BlockType = "SignalGenerator" ]
6 return <signalGenerator id="{$block/@SID}" name="{$block/@Name}" />
7 let $sum :=
8 for $block in $doc // Block [ @BlockType = "Sum" ]
9 return <sum id="{$block/@SID}" name="{$block/@Name}" />

10 let $gain :=
11 for $block in $doc // Block [ @BlockType = "Gain" ]
12 return <gain id="{$block/@SID}" name="{$block/@Name}" />
13 let $subSystem :=
14 for $block in $doc // Block [ @BlockType = "SubSystem" ]
15 return <subSystem id="{$block/@SID}" name="{$block/@Name}" />
16 let $block := ($signalGenerator,$sum,$gain,$subSystem)
17 let $port :=
18 for $block in $doc // Block
19 for $port in $block / Port
20 return <port blockId="{$block/@SID}" name="{$port/P[@Name="Name"]/text()}"
21 number="{$port/P[@Name="PortNumber"]/text()}" />
22 let $portRel :=
23 for $line in $doc // Line
24 let $fromBlockId := analyze-string($line/P[@Name="Src"]/text(), "(\d+)#")
25 / fn:match / fn:group [@nr = "1"] / text()
26 let $toBlockId := analyze-string($line/P[@Name="Dst"]/text(), "(\d+)#")
27 / fn:match / fn:group [@nr = "1"] / text()
28 let $fromPortIdx := analyze-string($line/P[@Name="Src"]/text(), ".*:(\d+)")
29 / fn:match / fn:group [@nr = "1"] / text()
30 let $toPortIdx := analyze-string($line/P[@Name="Dst"]/text(), ".*:(\d+)")
31 / fn:match / fn:group [@nr = "1"] / text()
32 for $p1 in $port[@blockId = $fromBlockId and @number = $fromPortIdx]
33 for $p2 in $port[@blockId = $toBlockId and @number = $toPortIdx]
34 return <portRel fromBlockId="{$fromBlockId}" toBlockId="{$toBlockId}"
35 fromPortIdx="{$fromPortIdx}" toPortIdx="{$toPortIdx}" />
36 let $blockRel :=
37 for $line in $doc // Line
38 let $fromBlockId := analyze-string($line/P[@Name="Src"]/text(), "(\d+)#")
39 / fn:match / fn:group [@nr = "1"] / text()
40 let $toBlockId := analyze-string($line/P[@Name="Dst"]/text(), "(\d+)#")
41 / fn:match / fn:group [@nr = "1"] / text()
42 let $fromPortIdx := analyze-string($line/P[@Name="Src"]/text(), ".*:(\d+)")
43 / fn:match / fn:group [@nr = "1"] / text()
44 let $toPortIdx := analyze-string($line/P[@Name="Dst"]/text(), ".*:(\d+)")
45 / fn:match / fn:group [@nr = "1"] / text()
46 for $b1 in $block[@id = $fromBlockId], $b2 in $block[@id = $toBlockId]
47 return <blockRel fromBlockId="{$fromBlockId}" toBlockId="{$toBlockId}"
48 fromPort="{$fromPortIdx}" toPort="{$toPortIdx}" />
49 return <results> {$signalGenerator} {$sum} {$gain} {$subSystem}
50 {$port} {$portRel} {$blockRel} </results>

Figure A.15: XQuery program written by Subject A for completion of Task 5 as described
in Section 4.2.2. Some additional line breaks have been added to allow the program to fit
on the page.
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A.4 mel and XQuery programs written by Subject B

1 Function(X) |- ownedArchitectures{name="Logical Architecture"}
2 =>ownedFunctions{"xsi:type"[".*:(.*)"]="LogicalFunction", name:X};
3

4 Component(X) |- ownedArchitectures{name="Logical Architecture"}
5 =>ownedLogicalComponents{"xsi:type"[".*:(.*)"]="LogicalComponent",
6 name:X};
7

8 Flow(X, Y) |- ownedFunctionalExchanges{source["#(.*)"]:SOURCE, target["#(.*)"]:TARGET,
9 name:name},

10 ownedFunctions{id:SOURCE, name:X},
11 ownedFunctions{id:TARGET, name:Y};

Figure A.16: mel program written by Subject B for completion of Task 1 as described in
Section 4.2.2. Some additional line breaks have been added to allow the program to fit on
the page.
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1 let $part1 :=
2 <part1>{
3 for $x in doc("in-flight-ent-system")//ownedArchitectures
4 where $x/@name="Logical Architecture"
5 for $y in $x//ownedFunctions
6 where analyze-string($y/@xsi:type, "[-a-zA-Z0-9_]+$")/fn:match = "LogicalFunction"
7 return <function name="{$y/@name}"/>
8 }
9 </part1>

10

11 let $part2 :=
12 <part2>{
13 for $x in doc("in-flight-ent-system")//ownedArchitectures
14 where $x/@name="Logical Architecture"
15 for $y in $x//ownedLogicalComponents
16 where analyze-string($y/@xsi:type, "[-a-zA-Z0-9_]+$")/fn:match = "LogicalComponent"
17 return <component name="{$y/@name}"/>
18

19 }
20 </part2>
21

22 let $part3 :=
23 <part3>{
24 for $x in doc("in-flight-ent-system")//ownedFunctionalExchanges
25 let $src := analyze-string($x/@source, "[-a-zA-Z0-9_]+$")/fn:match
26 let $tgt := analyze-string($x/@target, "[-a-zA-Z0-9_]+$")/fn:match
27 for $y in doc("in-flight-ent-system")//ownedFunctions
28 where $y/@id = $src
29 for $z in doc("in-flight-ent-system")//ownedFunctions
30 where $z/@id = $tgt
31 return <flow source="{$y/@name}" target="{$z/@name}" name="{$x/@name}"/>
32 }
33 </part3>
34 return <ans>
35 {$part1}
36 {$part2}
37 {$part3}
38 </ans>

Figure A.17: XQuery program written by Subject B for completion of Task 1 as described
in Section 4.2.2.
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1 StateMachine(X) |- ownedBehavior{"xmi:type"="uml:StateMachine", name:X};
2

3 Region(X, Y) |- ownedBehavior{"xmi:type"="uml:StateMachine", name:X}
4 =>region{"xmi:type"="uml:Region", name:Y};
5

6 Owns(X, Y) |- ownedBehavior{"xmi:type"="uml:StateMachine", name:X}
7 =>region{"xmi:type"="uml:Region", name:Y};
8 Owns(X, Y) |- subvertex{name:X}
9 =>region{"xmi:type"="uml:Region", name:Y};

10 State(X, Y) |- ownedBehavior{"xmi:type"="uml:StateMachine", name:X}
11 =>subvertex{"xmi:type"="uml:State", name:Y};
12 Contains(X, Y) |- ownedBehavior{"xmi:type"="uml:StateMachine"}
13 =>subvertex{"xmi:type"="uml:State", name:X}
14 =>subvertex{"xmi:type"="uml:State", name:Y};
15

16 Transition(X) |- transition{"xmi:type"="uml:Transition", name:X, target:TARGET,
17 source:SOURCE}
18 ->[
19 @trigger{event:EVENT},
20 @ownedRule{}->specification{value:guard},
21 @effect{}->body{mel.contents:effect}
22 ],
23 @packagedElement{"xmi:type"="uml:SignalEvent", "xmi:id":EVENT,
24 signal:SIGNAL},
25 @packagedElement{"xmi:type"="uml:Signal", "xmi:id":SIGNAL,
26 name:trigger},
27 subvertex{"xmi:type"="uml:State", "xmi:id":SOURCE},
28 subvertex{"xmi:type"="uml:State", "xmi:id":TARGET};

Figure A.18: mel program written by Subject B for completion of Task 3 as described in
Section 4.2.2. Some additional line breaks have been added to allow the program to fit on
the page.
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1 xquery version "3.1";
2 declare namespace xmi="http://schema.omg.org/spec/XMI/2.1";
3 let $part1 :=
4 <part1>{
5 for $x in doc("HomeAlarmWithPorts.xmi")//ownedBehavior
6 where $x/@xmi:type="uml:StateMachine"
7 return <StateMachine name = "{$x/@name}"/>
8 }</part1>
9

10 let $part2 :=
11 <part2>{
12 for $x in doc("HomeAlarmWithPorts.xmi")//ownedBehavior
13 where $x/@xmi:type="uml:StateMachine"
14 for $y in $x//region
15 return <Region machine ="{$x/@name}" name="{$y/@name}"/>
16 }
17 </part2>
18

19 let $part3 :=
20 <part3>{
21 for $x in doc("HomeAlarmWithPorts.xmi")//(ownedBehavior | subvertex)
22 for $y in $x/region
23 return <Owns state="{$x/@name}" region="{$y/@name}"/>
24 }
25 </part3>
26

27 let $part4 :=
28 <part4> {
29 for $x in doc("HomeAlarmWithPorts.xmi")//ownedBehavior
30 where $x/@xmi:type="uml:StateMachine"
31 for $y in $x//subvertex
32 where $y/@xmi:type="uml:State"
33 return <State machine="{$x/@name}" name="{$y/@name}"/>
34 }
35 </part4>
36

37 let $part5 :=
38 <part5>{
39 for $x in doc("HomeAlarmWithPorts.xmi")//ownedBehavior
40 where $x/@xmi:type="uml:StateMachine"
41 for $y in $x//subvertex
42 where $y/@xmi:type="uml:State"
43 for $z in $y//subvertex
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44 where $z/@xmi:type="uml:State"
45 return <Contains outer="{$y/@name}" inner="{$z/@name}"/>
46 }
47 </part5>
48

49 let $part6 :=
50 <part6> {
51 for $x in doc("HomeAlarmWithPorts.xmi")//transition
52 where $x/@xmi:type="uml:Transition"
53 for $u in doc("HomeAlarmWithPorts.xmi")//subvertex
54 where $u/@xmi:type="uml:State" and $u/@xmi:id = $x/@source
55 for $w in doc("HomeAlarmWithPorts.xmi")//subvertex
56 where $w/@xmi:type="uml:State" and $w/@xmi:id = $x/@target
57 let $guard := $x/ownedRule/specification/@value
58 let $effect := data($x/effect/body)
59 let $trigger := if (exists ($x/trigger/@event)) then
60 let $event := $x/trigger/@event
61 for $y in doc("HomeAlarmWithPorts.xmi")//packagedElement
62 where $y/@xmi:type="uml:SignalEvent" and $y/@xmi:id = $event
63 let $signal := $y/@signal
64 for $z in doc("HomeAlarmWithPorts.xmi")//packagedElement
65 where $z/@xmi:type="uml:Signal" and $z/@xmi:id = $signal
66 return $z/@name
67 else ""
68 return <Transition name="{$x/@name}" trigger="{$trigger}" guard="{$guard}"
69 effect="{$effect}"/>
70 }</part6>
71 return <ans>
72 {$part1}
73 {$part2}
74 {$part3}
75 {$part4}
76 {$part5}
77 {$part6}
78 </ans>

Figure A.19: XQuery program written by Subject B for completion of Task 3 as described
in Section 4.2.2. Some additional line breaks have been added to allow the program to fit
on the page.
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1 Class(X) |- eClassifiers{"xsi:type"="ecore:EClass", name:X, abstract:abstract,
2 interface:interface};
3 hasMember(X, Y) |- eClassifiers{"xsi:type"="ecore:EClass", name:X}
4 ->eStructuralFeatures{"xsi:type"="ecore:EAttribute", name:Y,
5 eType[".*\#//(.*)"]:type,
6 mel.exists(derived)?derived>'false':derived};
7 hasSuper(X, Y) |- eClassifiers{"xsi:type"="ecore:EClass", name:X,
8 mel.exists(eSuperTypes), eSuperTypes["\#//(.*)"]:Y};
9 Associated(X, Y) |-

10 eClassifiers{"xsi:type"="ecore:EClass", name:X}->
11 eStructuralFeatures{"xsi:type"="ecore:EReference", name:Y,
12 mel.nexists(containment),
13 mel.exists(lowerBound)?lowerBound>'0':lowerBound,
14 mel.exists(upperBound)?upperBound = '-1' ? '*' > upperBound > '1':upperBound};
15 Composed(X, Y) |-
16 eClassifiers{"xsi:type"="ecore:EClass", name:X}->
17 eStructuralFeatures{"xsi:type"="ecore:EReference", name:Y,
18 containment='true',
19 mel.exists(lowerBound)?lowerBound>'0':lowerBound,
20 mel.exists(upperBound)?upperBound = '-1' ? '*' > upperBound > '1':upperBound,
21 mel.exists(derived)?derived>'false':derived};
22 Method(X) |- eOperations{name:X, eType[".*\#//(.*)"]:returnType};
23 HasParam(X, Y) |- eOperations{name:X}->
24 eParameters{name:Y, eType[".*\#//(.*)"]:type,
25 mel.exists(derived)?derived>'false':derived};

Figure A.20: mel program written by Subject B for completion of Task 4 as described in
Section 4.2.2. Some additional line breaks have been added to allow the program to fit on
the page.
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1 xquery version "3.1";
2 let $part1 :=
3 <part1>
4 {
5 for $x in doc("royalandloyal")//eClassifiers
6 where $x/@xsi:type = "ecore:EClass"
7 let $abstract := if (exists($x/@abstract)) then data($x/@abstract) else "false"
8 let $interface := if (exists($x/@interface)) then data($x/@interface) else "false"
9 return <class name="{data($x/@name)}" abstract="{$abstract}" interface="{$interface}"/>

10 }
11 </part1>
12 let $part2 :=
13 <part2>
14 {
15 for $x in doc("royalandloyal")//eClassifiers
16 where $x/@xsi:type="ecore:EClass"
17 for $y in $x/eStructuralFeatures
18 where $y/@xsi:type="ecore:EAttribute"
19 let $type := analyze-string(data($y/@eType), "[-a-zA-Z0-9_]+$")
20 let $derived := if (exists($y/@derived)) then data($y/@derived) else "false"
21 return <membership class="{data($x/@name)}" member="{data($y/@name)}"
22 type="{data($type/fn:match)}" derived="{$derived}"/>
23 }
24 </part2>
25 let $part3 :=
26 <part3>{
27 for $x in doc("royalandloyal")//eClassifiers
28 where $x/@xsi:type="ecore:EClass"
29 let $st := analyze-string(data($x/@eSuperTypes), "[-a-zA-Z0-9_]+$")
30 return if (exists($x/@eSuperTypes)) then<superclass sub="{data($x/@name)}"
31 super="{data($st/fn:match)}"/> else ()
32 }
33 </part3>
34

35 let $part4 :=
36 <part4>{
37 for $x in doc("royalandloyal")//eClassifiers
38 where $x/@xsi:type="ecore:EClass"
39 for $y in $x/eStructuralFeatures
40 where $y/@xsi:type="ecore:EReference"
41 where not(exists($y/@containment))
42 let $upper := if (exists($y/@upperBound)) then if (data($y/@upperBound) = "-1")
43 then "*" else data($y/@upperBound) else "1"

125



44 let $lower := if (exists($y/@lowerBound)) then data($y/@lowerBound) else "0"
45 let $derived := if (exists($y/@derived)) then data($y/@derived) else "false"
46 return <association class="{data($x/@name)}" other="{data($y/@name)}" lower="{$lower}"
47 upper="{$upper}" derived="{$derived}"/>
48 }
49

50 </part4>
51 let $part5 :=
52 <part5>{
53 for $x in doc("royalandloyal")//eClassifiers
54 where $x/@xsi:type="ecore:EClass"
55 for $y in $x/eStructuralFeatures
56 where $y/@xsi:type="ecore:EReference"
57 where $y/@containment = "true"
58 let $upper := if (exists($y/@upperBound)) then if (data($y/@upperBound) = "-1")
59 then "*" else data($y/@upperBound) else "1"
60 let $lower := if (exists($y/@lowerBound)) then data($y/@lowerBound) else "0"
61 let $derived := if (exists($y/@derived)) then data($y/@derived) else "false"
62 return <containment class="{data($x/@name)}" other="{data($y/@name)}" lower="{$lower}"
63 upper="{$upper}" derived="{$derived}"/>
64 }
65

66 </part5>
67 let $part6 :=
68 <part6>{
69 for $x in doc("royalandloyal")//eOperations
70 let $type := analyze-string(data($x/@eType), "[-a-zA-Z0-9_]+$")
71 return <method name="{$x/@name}" returnType="{$type/fn:match}"/>
72 }
73 </part6>
74 let $part7 :=
75 <part7> {
76 for $x in doc("royalandloyal")//eOperations
77 for $y in $x/eParameters
78 let $type := analyze-string(data($y/@eType), "[-a-zA-Z0-9_]+$")
79 return <hasParam methodName="{$x/@name}" paramName="{$y/@name}"
80 type="{$type/fn:match}"/>
81 }
82 </part7>
83 return <ans>{$part1}
84 {$part2}
85 {$part3}
86 {$part4}
87 {$part5}
88 {$part6}
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89 {$part7}
90 </ans>

Figure A.21: XQuery program written by Subject B for completion of Task 4 as described
in Section 4.2.2. Some additional line breaks have been added to allow the program to fit
on the page.
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1 BlockType(X) |- Block{BlockType:X, Name:Name};
2 Port(X) |- Block{}->Port{}->P{Name='Name', mel.contents:X};
3 Owns(X, Y) |- Block{Name:X}->Port{}->P{Name='Name', mel.contents:Y};
4 Flow(X, Y) |- Block{Name:X, SID:XSID},
5 Line{}->[P{Name='Src', mel.contents["(.*)#.*"]:XSID},
6 P{Name='Dst', mel.contents["(.*)#.*"]:YSID}],
7 Block{Name:Y, SID:YSID};
8 Flow(X, Y) |- Block{Name:X, SID:XSID},
9 Line{}->[P{Name='Src', mel.contents["(.*)#.*"]:XSID},

10 Branch{}->P{Name='Dst', mel.contents["(.*)#.*"]:YSID}],
11 Block{Name:Y, SID:YSID};

Figure A.22: mel program written by Subject B for completion of Task 5 as described in
Section 4.2.2. Some additional line breaks have been added to allow the program to fit on
the page.
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1 let $part1 :=
2 <part1>
3 {
4 for $x in doc("system_root")//Block
5 return <Block type="{$x/@BlockType}" name="{$x/@Name}"/>
6 }
7 </part1>
8

9 let $part2 :=
10 <part2>{
11 for $x in doc("system_root")//Block//Port/P
12 where $x/@Name = "Name"
13 return <Port name="{data($x)}"/>
14 }
15 </part2>
16

17 let $part3 :=
18 <part3> {
19 for $x in doc("system_root")//Block
20 for $y in $x//Port/P
21 where $y/@Name = "Name"
22 return <Owns Block="{$x/@Name}" Port="{data($y)}"/>
23 }
24 </part3>
25

26 let $part4 :=
27 <part4>{
28 for $x in doc("system_root")//Block
29 for $y in doc("system_root")//Line
30 for $z in $y/P
31 where $z/@Name = "Src" and analyze-string(data($z),"^[0-9]+")/fn:match = $x/@SID
32 for $w in $y/(if (Branch) then Branch/P else P)
33 (:for $w in $y/P:)
34 where $w/@Name = "Dst"
35 for $u in doc("system_root")//Block
36 where analyze-string(data($w),"^[0-9]+")/fn:match = $u/@SID
37 return <Flow Src = "{$x/@Name}" Dst="{$u/@Name}"/>
38 }
39 </part4>
40 return <ans>
41 {$part1}
42 {$part2}
43 {$part3}
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44 {$part4}
45 </ans>

Figure A.23: XQuery program written by Subject B for completion of Task 5 as described
in Section 4.2.2. Some additional line breaks have been added to allow the program to fit
on the page.
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Appendix B

Diagrams of Models Used in Studies
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B.1 UML StateMachine Diagrams

Figure B.1: StateMachine diagram for an Arduino stopwatch system (YAKINDU).
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Figure B.2: StateMachine diagram for a polling system meant to be implemented directly
on hardware (YAKINDU).
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Figure B.3: StateMachine diagram for a blinking LED (YAKINDU).
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Figure B.4: StateMachine diagram for a Coffee Machine (YAKINDU).
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Figure B.5: StateMachine diagram for a motion detector (YAKINDU).
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Figure B.6: StateMachine diagram for a music player (YAKINDU).
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Figure B.7: StateMachine diagram for a smart home system (YAKINDU).
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Figure B.8: StateMachine diagram for a traffic light controller (YAKINDU).
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Figure B.9: StateMachine diagram for an autonomous robot (YAKINDU).
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B.2 UML Class Diagrams

B.2.1 ArgoUML Class Diagrams

Figure B.10: UML Class diagram for a video game named Advent (ArgoUML).
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Figure B.11: UML Class diagram for a rotary button system (ArgoUML).
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Figure B.12: UML Class diagram for a dungeon crawler video game (ArgoUML).
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B.2.2 Eclispe Modelling Tools UML Class Diagrams

Figure B.13: UML Class diagram for a coffee brewing system (Eclipse Modelling Tools).
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Figure B.14: UML Class diagram for a Java compiler (Eclipse Modelling Tools).

Figure B.15: UML Class diagram for a task management system (Eclipse Modelling Tools).
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Figure B.16: UML Class diagram for a retail store system (Eclipse Modelling Tools).

Figure B.17: UML Class diagram for Model to code compilation software (Eclipse Mod-
elling Tools).
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B.2.3 MagicDraw UML Class Diagrams

Figure B.18: UML Class diagram for an alarm system (MagicDraw).
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Figure B.19: UML Class diagram for a library booking system (MagicDraw).
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Figure B.20: UML Class diagram for a music management system (MagicDraw).
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Figure B.21: UML Class diagram for a parking lot gate system (MagicDraw).
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B.2.4 UMLDesigner UML Class Diagrams
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Figure B.22: UML Class diagram for a custom video game engine (UMLDesigner).
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Figure B.23: UML Class diagram for a race management system (UMLDesigner).
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B.3 Simulink Block Diagrams

Figure B.24: Simulink Block diagram for an analog to digital converter quantization algo-
rithm (Simulink).
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Figure B.25: Simulink Block diagram for the dynamics of air-fuel intake (Simulink).

Figure B.26: Simulink Block diagram for an anti-lock brake system (Simulink).
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Figure B.27: Simulink Block diagram for a sample anti-windup PID control system
(Simulink).

Figure B.28: Simulink Block diagram for a bouncing ball (Simulink).
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Figure B.29: Simulink Block sample diagram for component-based Modelling (Simulink).

Figure B.30: Simulink Block diagram for a fault-tolerant fuel control system (Simulink).
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Figure B.31: Simulink Block diagram for intake airflow estimation and closed loop correc-
tion (Simulink).

Figure B.32: Simulink Block diagram for a PID tuning system, with Figures B.33 and
B.34 (Simulink).
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Figure B.33: Simulink Block diagram for a PID tuning system, with Figures B.32 and
B.34 (Simulink).

Figure B.34: Simulink Block diagram for a PID tuning system, with Figures B.33 and
B.32 (Simulink).
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B.4 Arcadia Diagrams

Figure B.35: Arcadia diagram for a train crossing system.
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Figure B.36: A second Arcadia diagram from a train crossing system.
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Figure B.37: Arcadia diagram for a security system.
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Figure B.38: Arcadia diagram for an unknown system.
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B.5 Feature Models

Figure B.39: Feature Model diagram for a bicycle configurator system (FeatureIDE).

Figure B.40: Feature Model diagram for a simple car Model (FeatureIDE).
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Figure B.41: Feature Model diagram for a desktop searching system (FeatureIDE).

Figure B.42: Feature Model diagram for an elevator system (FeatureIDE).

Figure B.43: Feature Model diagram for programming expressions expressed as a product
line (FeatureIDE).
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Figure B.44: Feature Model diagram for a simple Hello World program (FeatureIDE).
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Figure B.45: Feature Model diagram for the landing gear of a plane (FeatureIDE).

Figure B.46: Feature Model diagram for a game of Poker (FeatureIDE).
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Figure B.47: Feature Model diagram for a game called TankWar (FeatureIDE).

Figure B.48: Feature Model diagram for fictional characters (FeatureIDE).
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