PUPy: A Generalized, Optimistic
Context Detection Framework

by

Matthew Rafuse

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Masters of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2021

© Matthew Rafuse 2021

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

In modern life, the usage of smart devices like smartphones and laptops that allow for
access to information, communication with friends and colleagues and other indispensable
services has become ubiquitous. People have gradually taken to performing more and more
of their daily tasks on and through these devices. Therefore, all modern smart devices
employ some form of authentication to ensure that access to this confidential data by the
wrong person is avoided. This authentication method is usually some form of explicit
authentication, which can be detrimental to the user’s experience, often leading to users
forgoing authentication entirely.

Implicit authentication aims to limit the amount of explicit authentications that are
necessary for the user, using passive approaches to authenticate the user instead. Context
detection frameworks aim to reduce explicit authentications by disabling explicit authenti-
cation entirely when appropriate. Since these two approaches are not mutually exclusive,
there exist frameworks that will use the context around them to make decisions when au-
thenticating on which approach to use. This combination of context detection with implicit
authentication is the approach taken in this work, though we focus mainly on the context
detection part of this hybrid approach.

We aim to build upon existing works through wider applicability, better accuracy
through numerous data sources, and most importantly, an optimistic approach to con-
text detection. We build a framework based on the assumption that the absence of data
can, in some cases, be taken as a sign the context is safe. This optimistic approach provides
a less secure method of determining the context of the device, but simultaneously provides
a significantly improved user experience.

In this thesis, we outline a theoretical context detection framework that is based on
a novel set of values. These values are called privacy, unfamiliarity and proximity, each
describing a different aspect of the current context. Privacy tracks the privacy of the cur-
rent context, while unfamiliarity tracks how many unfamiliar people are around. Finally,
proximity estimates the distance between the device and the user. These values are cal-
culated using a method we devise that better adapts to different contexts. We provide an
Android implementation of the framework, including an API that allows other developers
to contribute modules to the system. These modules can provide additional input data
for PUPy, or build functionality that uses the calculated values. Finally, we evaluate the
theoretical framework, using two datasets - Cambridge/Haggle and the MDC dataset. We
conduct visual and statistical analysis of how the system functions using data from the
datasets. Through this analysis, we find that PUPy compares favourably to existing works,
permitting a 77% reduction on average in the number of explicit authentications.

111

Acknowledgements

I would like to thank my supervisor, Urs Hengartner, for all the support through the
duration of my program - their help was instrumental in getting here. I'd also like to
thank my committee members Yousra Aafer and N. Asokan for all feedback provided on
this thesis. Additionally, I'd like to thank everyone in the CrySP lab for helping all the way
through my research program, be it academic support or just hanging out. Also, thank
you for not kicking me out despite me being a constant distraction. I'd specifically like to
thank Connor, Thomas, Lindsey, Miti, Simon, John and Rasoul for being great colleagues
and even better friends. You guys rock. This work benefitted from the use of the CrySP
RIPPLE Facility at the University of Waterloo. (Portions of) the research in this paper
used the MDC Database made available by Idiap Research Institute, Switzerland and
owned by Nokia. We gratefully acknowledge the support of the Waterloo-Huawei Joint
Innovation Laboratory for funding this research.

v

Dedication

This is dedicated to my parents, for enabling me to undertake this endeavor in the first
place, and for always being there for me, regardless of any mistake. Also, my cat Freida,
for existing.

Table of Contents

List of Figures
List of Tables

1 Introduction

1.1 Structure and Contributions

2 Background
2.1 Device Sensors
2.2 Context Detection
2.3 Implicit Authentication

3 Motivation
3.1 Motivating Exampleso Lo
3.1.1 Context Detection and Implicit Authentication
3.1.2 Context Detection and Other Applications
3.1.3 Optimistic Context Detection
3.1.4 Failing Examples oo

4 Related Work
4.1 Implicit Authentication
4.2 Context Detection

vi

ix

xi

N o ot G w

Qo

10
11
12
13

4.3 Implicit Authentication and Context Detection. 20

4.4 Device Identification Lo 21
4.5 SUMMATY .« . . o v v v et e e 22
System Design 24
5.1 Adversary Model 24
5.2 Design Principleso o 25
5.3 Theoretical Framework oo 26
5.3.1 Privacy 27
5.3.2 Unfamiliarity o 28
5.3.3 Proximity 30
5.3.4 Context Familiarity L. 32
5.3.5 Interfacing with Functionality Modules 34
5.4 Justification 34
5.4.1 Privacyo 34
5.4.2 Unfamiliarity 35
5.4.3 Proximity 36
Implementation 37
6.1 Input Modules. 39
6.1.1 Bluetooth Application 39
6.1.2 Activity Application 41
6.1.3 Location Application 42
6.1.4 Proximity Application 42
6.2 Context Engine 42
6.2.1 Aggregator Modules 46
6.2.2 Context Familiarity Module 48
6.2.3 Rules Module o 49

vii

6.3 Functionality Modules
6.3.1 Authentication
6.3.2 Device Theft
6.3.3 Device Loss
6.4 Changes from CORMORANT . .

7 Evaluation
7.1 Datasets
7.1.1 Cambridge/Haggle Dataset
7.1.2 MDC Dataset
7.2 Qualitative Analysis

7.2.1 Visual Analysis Based on the Cambridge/Haggle Dataset
7.2.2 Visual Analysis Based on the MDC Dataset

7.2.3 Visual Analysis of Familiarity Improvements

7.2.4 Comparison with Gupta et
7.3 Quantitative Analysis
7.3.1 How Performance Changes
7.3.2 Overall Performance . . .

7.3.3 Comparison with Gupta et
8 Conclusion and Future Work

References

al. ..
Over Time

al. ..o

viil

56
56
57
57
60
60
62
65
66
69
70
72
74

83

85

List of Figures

5.1

5.2

2.3

0.4

6.1
6.2
6.3

7.1

7.2

7.3
7.4

Examples illustrating the effect of different values of ac on the decay of the
value for P(Cr). . - o o o o o o

Examples illustrating the effect of different values of ac on the growth of the
value for U(Cy). . o o o o o o

Examples illustrating the effect of different values of ap and ay on the decay
of the value for D(C,,). The highlighted line plots the values selected for ap
and ag in our Implementation.

A synthetic example, showing how changing ac changes the resulting values
for privacy and unfamiliarity. Light blue denotes the number of people over-
all (L(C},)), orange denotes the number of unfamiliar people U(C,,). Purple
denotes the context familiarity (a¢) for values ae = 3,25,100,200. Dark
blue denotes the privacy value (P(C,)), and green denotes unfamiliarity

UC)). e

System diagram of PUPy.
Screenshot of the LocationConfigurationActivity.

Example of the context engine’s user interface, using three placeholder input
modules. e

An example of the sort of graph generated using the Cambridge/Haggle
dataset. L

A selection of graphs from some users in the MDC dataset. Depicts the
entire duration of the user data.

An example of learning behaviour of the context familiarity module.

A closer look at some highlighted scenarios.

X

43

7.5

7.6
7.7

7.8
7.9

The cumulative success rate of the system in allowing authentications over
the total number of authentications.

The success ratio for different users, with different total usage time.

The relationship between the total usage time and the amount of time each
module is enabled.o Lo

Security mapping for familiarity used by Guptaetal.
Example comparison graph between PUPy and the Gupta et al. system.

75
7

List of Tables

6.1
6.2

6.3

6.4

7.1

7.2
7.3
7.4
7.5

7.6

The mapping for activity to distance estimate used by the activity application. 41

Module rules and justification for the authentication module. They are
based on experimentation conducted using the Cambridge/Haggle dataset,
discussed in Chapter 7, and are meant as proof of concept. 50

Module rules and justification for the device theft module. They are based
on experimentation conducted using the Cambridge/Haggle dataset, dis-
cussed in Chapter 7, and are meant as proof of concept. 52

Module rules and justification for the device loss module. They are based on
experimentation conducted using the Cambridge/Haggle dataset, discussed
in Chapter 7, and are meant as proof of concept. 53

The type and quantity of records in the MDC dataset that were used in the

experiments. L 58
Statistics on the MDC dataset. 58
How different contexts were mapped to safe or unsafe contexts. 59
Additional statistics outlining the performance of PUPy. 73

Various statistics on the performance of PUPy and the Gupta et al. system.
The Original Familiarity numbers are results directly from Gupta et al. [I5] 79

Additional comparison statistics between PUPy and our custom familiarity

el

It’s a dangerous business, Frodo, going out your door. You step onto the road, and if you
don’t keep your feet, there’s no knowing where you might be swept off to.

— J.R.R. Tolkien, The Lord of the Rings

xii

Chapter 1

Introduction

In modern life, the usage of smart devices like smartphones and laptops that allow for access
to information, communication with friends and colleagues and other indispensible services
has become ubiquitous. Due to the massive utility and convenience of such devices, people
have gradually taken to performing more and more of their daily tasks on and through
these devices. This increase in usage has led to these devices containing vast quantities of
confidential user data, from private correspondence to banking statements. Therefore, all
modern smart devices employ some form of authentication to ensure that access to this
confidential data by the wrong person is avoided.

Modern authentication methods are generally knowledge-based in the form of PINs,
pattern locks or typed passwords, or biometric in the form of face recognition, fingerprint
sensors or iris sensors. These authentication methods can be an annoyance to users, as
they impede immediate use of the device while authenticating. Instead, users will often
forgo any authentication for the sake of convenience [1, 11, 16, 17].

In response to this trend, the field of implicit authentication has arisen. Implicit au-
thentication aims to limit the amount of explicit authentications that are necessary for the
user, using passive approaches to authenticate the user instead. These approaches take
many forms but generally revolve around authenticating the user passively through the
use of context data. To learn about the context the device is in, it can employ the wide
range of sensors available on the device. The context information collected can take many
forms - accelerometer data, network and Bluetooth scans, ambient temperature, proximity
readings, GPS locations and location estimates, and many others, depending on the sensor
suite built into the device in question.

Implicit authentication frameworks generally aim to use this sensor data to identify the

user of the device. Existing frameworks exist that authenticate the user based on breath [3],
gait [9], voice [38, 20, 21], and many others [28, 16, 13]. Often, these implicit authentication
frameworks fall back on active authentication if they cannot satisfactorily authenticate the
user. Another approach to limiting explicit authentications through the use of the device
context has more recently arisen in the form of context detection frameworks.

In contrast to implicit authentication, context detection frameworks aim to reduce
explicit authentications by disabling explicit authentication entirely (or offering an easier
or implicit alternative form) when appropriate in contexts deemed “safe” [10, 15]. These
frameworks often make the argument that in contexts that are designated “safe”, it is
significantly less likely that an unauthorized user will attempt to use the device, and
therefore authentication is redundant. The key difference between these approaches is that
implicit authentication will use context data to examine the user, while context detection
frameworks use it to examine the environment or device. Some frameworks, however, do

both.

Since these two approaches are not mutually exclusive, there exist frameworks [20, 10]
that will use the context around them to make decisions when authenticating on which
approach to use. In low risk, trusted contexts, implicit authentication provides some
security while allowing for a more convenient user experience. In less trustworthy, high
risk contexts, the framework can enable explicit authentication providing the user with
security when it is most needed [I18, 20]. This combination of context detection with
implicit authentication is the approach taken in this work.

In this thesis, we introduce a new context detection framework, PUPy. PUPy generates
a large amount of context information through a simple interface, by taking in sensor data
and condensing it into three values - privacy, unfamiliarity, and proximity, which each
describe a different aspect of the context. Privacy tracks the privacy of the current context,
while unfamiliarity tracks how many unfamiliar people are around. Finally, proximity
estimates the distance between the device and the user. The first letters of these values
form the basis of the name, PUPy. With the introduction of PUPy, we aim to improve on
existing approaches in the following key ways:

Wider Applicability Most existing context detection frameworks [36, 15, 32, 18] do
not provide a more general and extensible approach to context detection, and often aim
only to achieve specific goals, most frequently deciding on which authentication method
best fits the current context. We aim to provide a system that provides a more generalized
description of the context, which can be harnessed both for authentication and other
applications.

To this end, the approach taken in this work aims to be modular in nature, and aims
to provide context information that is widely applicable to many functions. The resulting
context parameters can be propagated through a subscription system to many different
functionality modules. In addition, input will also be made modular, to allow for input
modules, so that later advancements in context detection can be easily retrofitted. This
modular approach will ensure long-term compatibility with future works.

Better Accuracy By allowing many different input modules to provide data to the
framework, we can draw from many different sources for context data. By combining
many different sources, the description of the current context can be made more accurate
than if we rely on a single source.

Additionally, we also aim to allow functionality modules to more accurately respond to
contexts by expanding the number of data points made available to them. While existing
works tend to condense context data into a single value [38] (or occasionally two [20, 15]), we
will expose three variables to describe the context, allowing for a fuller picture of the various
facets of the user context. Furthermore, calculation of these values is further adapted to
fit the context, so the framework can react more accurately to different situations.

Optimistic Context Detection The fundamental belief espoused in existing works is
a pessimistic one [15, 32]. They tend to take the absence of data as a sign that the context
is unsafe. This work builds on the opposite assumption - that the absence of data can, in
some cases, be taken as a sign the context is safe. For example, an empty street will have
no nearby people to classify as trusted or familiar, and no data to process, leading to some
frameworks marking the context as unsafe. In fact, the lack of people can tell us that it
is perfectly safe to disable authentication, as there is no one around that could attempt
to access the device. This optimistic approach provides a slightly less secure method of
determining the context of the device, but simultaneously provides a significantly improved
user experience, a tradeoff often made in implicit authentication.

1.1 Structure and Contributions

In Chapter 2, we look at some of the prerequisite concepts and context for the contributions
later on. In Chapter 3, we discuss the fundamental motivation for our contributions, and
what drives our differences to existing works. In Chapter 4, we discuss some existing works

and how they differ from our system. Chapter 5, Chapter 6 and Chapter 7 examine our
main contributions.

Contribution 1: Chapter 5 outlines a novel theoretical framework that improves on ex-
isting works through wider applicability, better accuracy and optimistic context detection.
These improvements are based on a novel system of values describing a context, calculated
using a novel method that better adapts to different contexts.

Contribution 2: Chapter 6 discusses our Android implementation. This application
implements the theoretical framework for use on modern Android devices, including an
API that allows other users to contribute modules to the system.

Contribution 3: Chapter 7 evaluates PUPy. We evaluate these contributions against
existing works, finding that PUPy allows for a 77% reduction in user authentications,
comparing favourably to existing works. This evaluation is done using two datasets - the
first is a set of Bluetooth sightings collected over a few weeks in Cambridge [39], and the
second is a large database of sensor data detected by devices over several years [25, 27].

This work concludes with conclusion and future work in Chapter 8.

Chapter 2

Background

In this chapter, we will discuss some concepts and definitions vital to properly understand-
ing this work. We will focus on high level definitions, leaving more narrow and complex
information to be introduced when it is used instead.

2.1 Device Sensors

Modern mobile devices have a large suite of sensors at their disposal for learning about the
world around them and to provide functionality. We will quickly enumerate and describe
some of the most important sensors for our purposes.

GPS GPS-enabled devices permit users to use the device to get a highly accurate estimate
of their current location. For our purposes, this is useful when identifying the context the
device is in. At a high level, simply knowing if the device is moving or not gives us important
clues. Additionally, if the device is stationary, location data could be cross-referenced with
data describing what is at that location, be it whether the area is commercial or residential,
in a dense city or empty country.

WiFi Network All modern smartphones can connect to nearby WiFi networks in order
to access the Internet. However, of interest to us is the ability (particularly on Android
devices) to discern a rough location of a WiFi network through third-party services. This
allows a significantly more power-efficient method of determining where the device is lo-
cated.

Mobile Networks Similarly to WiFi networks, mobile networks allow devices to connect
to the wider Internet, but from much further away, covering more area. Similarly to WiFi,
the current tower connected to can give a very rough idea of where on earth the device
is located, albeit in a much less accurate manner than other approaches. The absence of
a strong mobile signal can also give context clues as to where the device is. Since most
dense areas have strong mobile reception, the lack thereof can be seen as a hint the device
is either underground or in a very rural area.

Bluetooth Network Scanning for nearby Bluetooth devices allows the device to find
other Bluetooth devices to connect to, or to get a sense of what type and how many devices
there are. This is useful when getting a sense of how crowded the context is, by assuming
most Bluetooth devices are attached to a unique user. At a high level, contexts with no
other Bluetooth devices are more likely to be less crowded and more private than a context
chock full of devices. In this work, we operate on the assumption that everyone carries at
least one detectable device, so that we can assume a context with no bluetooth devices is
a context without any other people.

Proximity Sensor Many modern smartphones have a proximity sensor installed. This
allows the device to sense if it is close (within roughly ten centimetres) of another object.
It is often used for sensing if the device is in a pocket or bag, which can be useful contextual
information.

Microphone The microphone built into smartphones primarily allow users to place voice
calls or talk through video chat, but are often used for other purposes as well. In our use
case, the microphone can be used to sample the ambient noise level of a context, giving us
an idea as to the crowdedness of the context. Additionally, microphones can be used as
implicit authentication through the user of voice recognition or other approaches [3].

2.2 Context Detection

Before discussing context detection, first let us define what is meant by context. The
device context is a shorthand for the situation the device is in. This includes any number
of factors - how many people are around, how close it is to the owner, where the device is
physically located, is the location private or public, is the device mobile or stationary, et
cetera. The context of the device is primarily determined through device sensors such as

the microphone or GPS, but could also be inferred through past user behaviour or general
user statistics. Examples of contexts would include at home on the coffee table, in the
owner’s backpack, or on the seat next to the owner on public transportation.

Context detection can have many applications, such as sensing the crowdedness of
public transportation [35], or in implicit authentication and improving the user experience.
In our case, we will be focusing mainly on using context detection in order to adapt the
behaviour of various applications the user interacts with. Chief among these usages will be
authentication - namely, on adapting the behaviour of implicit authentication frameworks.

2.3 Implicit Authentication

Implicit authentication is a fairly mature field of research. It focuses on the use of device
sensors and biometrics to authenticate users passively, without the use of explicit modes of
authentication like a PIN or pattern lock. It is aimed at everyday users, who are generally
more concerned with ease of use over security. As a compromise, implicit authentication
makes the process as seamless as possible, at the cost of accuracy and overall security.
The argument put forward is that some security is better than an alternative of no secu-
rity. While the proposed framework is not specific to authentication by design, it is one
application we examine in depth in our evaluation, and one we aim to improve upon.

In this work, we use a slightly broader definition of implicit authentication. While tra-
ditional implicit authentication is limited to exploiting biometric or behavioural differences
between users, we take implicit authentication to mean any method through which context
information is used to reduce the number of explicit authentications a user must perform.

In this thesis, we reconsider the fundamental compromise implicit authentication makes
between security and usability, and we examine how we can further push the envelope. We
aim to make a further trade between security and usability through the use of an optimistic
approach to context detection.

Chapter 3

Motivation

In general, the motivation for PUPy is threefold. Our first aim is to provide a context
detection and authentication system that, in contrast to existing works, is fundamentally
optimistic instead of pessimistic. In existing works, authors discuss how the point of these
systems is to provide a more user-friendly approach to authentication. As a whole, existing
works aim to provide some measure of protection against device misuse or theft without
compromising the user experience. This comes at the cost of effectiveness, though. By
making a system more user friendly, it often reduces the effectiveness of the protection,
leading to situations where devices can be accessed by malicious actors.

However, since some protection is better than no protection, this tradeoff makes sense.
If a module foils 90% of adversaries with a small impact on user experience, it is more
likely the user will use it. In contrast, a 100% effective form of authentication that ruins
the user experience may be rejected, leading to the user using no protection at all, allowing
100% of attacks through. The correct choice in this tradeoff is obvious.

Despite this logic, though, existing approaches all tend to stick to a pessimistic threat
model - assume the device is always in danger, unless there is evidence to the contrary.
Conversely, this work aims to provide the opposite approach - assume the device is safe,
unless there is evidence to the contrary. This allows for a far better user experience, and
one that better matches a user’s own perception of the situation than a fundamentally
pessimistic model.

To expand on this, consider how people react to various contexts. In general, we do not
constantly assume we are in danger all the time. Instead, we tend to assume we are safe,
unless we are convinced otherwise through our perception of the context. For example,
when walking alone in the woods, we are not constantly on edge, ready to respond to any

threat. That response is only triggered when we sense there may be a threat - perhaps
the sighting of a bear, or the discovery of wolf tracks. The approach taken by existing
works is exactly opposite this - the device is constantly locked, unless the given system
decides it is safe to relax protections. Our approach better aligns device behaviour with
user behaviour.

The second aim of this work is to allow a more modular approach to context detection.
Existing context detection systems tend to be monolithic - they collect, process and act on
the data alone, without making the data known for the use of other applications, making
extensibility of the system difficult. PUPy attempts to take a more distributed approach
to context detection, allowing extension of the system through a modular structure.

This modular structure allows developers to incorporate the latest advancements in
context detection. Coupled with the abstract nature of the values the system creates, any
new advancements can easily be adapted to work with the system. This structure also
allows us to draw from multiple data points when learning about the context.

The third aim of this work is to bring a more nuanced approach to context detection.
Many existing works tend to operate in binary - instead of providing a description of the
context, they collect and process the data, make a decision, and act on it. Instead of
allowing applications to react to the context themselves, the judgement is done by the
system. This often comes in the form of locking the device, or a binary safe/unsafe result.

This work aims to expose more information about the context that will allow for a
more nuanced approach to various situations (see next section), as well as allowing a better
description of the sort of context the device is in. However, this must be done carefully.
We cannot allow the raw data to be provided to untrusted custom modules, as they can
learn too much about the user this way. Instead, the data provided must describe the
context accurately, but in general terms so as to not allow privacy leakage.

3.1 Motivating Examples

In this section, we will outline and discuss some different example scenarios, which will
hopefully help further reinforce the motivation for this work. We will first discuss how
implicit authentication and context detection can be used in unison. We will then ex-
plore examples of how optimistic context detection can provide a better user experience
than pessimistic detection. Finally, we will discuss some failing examples, which will help
elucidate the limits or drawbacks of our approach.

3.1.1 Context Detection and Implicit Authentication

First we will look at some examples of how context detection and implicit authentication
are complementary.

Backpack To start off, let us consider a really basic example of how context can com-
plement implicit authentication, without stepping on its toes. Imagine a scenario in which
an existing implicit authentication method is being employed - say, proximity sensor based
authentication. If the owner is authenticated, uses the phone, and then places the phone
in their backpack, we can assume that as long as the backpack stays with the owner, the
next person to use the phone will also be the owner.

If our module can report to the authentication module how close the device is to the
user, the module can use that information to refine its approach to authentication. When
the distance between the user and the device (and thus backpack) increases, it becomes
increasingly unlikely that the next user will be the owner. This is an example where
providing some sense of the device’s context can improve the user experience. Instead
of replacing the authentication module entirely, we provide it with additional contextual
data, allowing it to adapt. This is what we aim to accomplish with the context engine.

Taxi vs. Personal Car Consider a case where the owner gets into some sort of vehicle,
while the owner is authenticated. Authentication in a vehicle is fairly difficult, and there
may not be an authentication method that can continue to authenticate the user. However,
consider the difference in contexts where the user is in their personal vehicle, and in a Taxi
or Uber. The likelihood of the device falling into the hands of a malicious actor is far higher
in a Taxi or Uber, and we should modulate our approach to authentication accordingly.

If the device is able to detect when the owner is entering a taxi versus their personal
vehicle, the authentication module can adapt to that particular environment when de-
termining what authentication method is necessary. In the taxi, we should continue to
authenticate the users to a high degree of certainty due to the high threat level. Con-
versely, consider the owner’s personal vehicle. If they are the only person in the vehicle, it
is unnecessary to waste time or energy on strong authentication methods.

The trick, of course, is deciding what type of vehicle is being entered. This could be
done through tracking user behaviour, ambient noise, or perhaps recent application usage
- use of Uber/Lyft prior to entering the vehicle can give us important clues about the
context the device is in. Currently, this example is not something we aim to do, but PUPy
is certainly built in a way that would make it quite possible to implement without issues.

10

Continuous Changes in Context Imagine if the owner of the device works a normal
desk job, and frequently leaves their desk to talk to coworkers nearby and in other parts
of the building about various subjects. When they do this, they often leave their device at
their desk.

Without the use of context, we can still implement a fairly compelling authentication
module. If the user is nearby, turn off explicit authentication. If the user has left their
desk, enable it. But bringing context into the equation allows us to construct a far richer
system. To illustrate this, let us consider a normal day and how context can interact with
authentication.

Let us start in the morning. Perhaps the owner is a bit of an early bird, and often
arrives before many of their coworkers. In this case, we can use the low level of crowding
to modulate the strength of authentication required - perhaps, if the owner leaves for a
short amount of time (getting coffee, a quick chat, etc.) the device can stay unlocked
without further authentication methods being activated, conserving battery life. As more
coworkers file in, the device registers the increased crowding and requires a higher standard
of authentication to be met in order for the device to bypass active authentication methods.

Conversely, if the owner often works late into the night, the opposite may happen. As
workers file out and the building empties, the device can require less and less rigorous
authentication.

3.1.2 Context Detection and Other Applications

Context is useful beyond simply extending authentication or deauthenticating users. Since
context is, at its core, interested in tracking the relationship between the device and the
owner with regards to the environment they are in, it can be used for scenarios other than
authentication.

Public Transport Public transport is another interesting case where context detection
could be stretched to its absolute limit. Imagine the owner is on a commuter train, headed
from the end of the line into downtown. When the owner first boards, the train is essentially
completely empty - their car has no other person on it. However, at each stop, the train
picks up more and more passengers, until the train is eventually standing room only as it
arrives downtown.

Existing methods of authentication would treat the entire train ride exactly the same
way. The framework may consider this a public area, and require strong authentication

11

methods to be used, limiting the usability of the framework. However, the context does
not remain the same throughout the trip, and we could adapt the authentication method
used throughout.

At the beginning, the context is functionally identical to the owner’s personal vehicle -
the owner is alone, with no other people in the immediate area. The device can safely be
left alone. However, as the train continues along the line, the context becomes more and
more dangerous, with device intrusion and theft attempts more and more likely. Unlike
a trip in the owner’s vehicle or a taxi, throughout the duration of the trip the context
changes. Is it possible for the device to recognize this change in context, considering how
gradually it occurs?

This type of slow increase in threat level is pervasive throughout our lives. Imagine if
a party is being hosted at the owner’s apartment - the chance of intrusion would increase
as guests arrive, and decrease as guests depart. When the owner is out on the town, as the
night progresses they may be more and more likely to forget their device as they become
more inebriated. This sort of continuous change in context is a difficult problem to solve,
and this project aims to address this problem in some fashion.

Backpack - Device Loss Consider again the case where the device is in the backpack
of the user. However, this time, let us imagine the user has a smartwatch, and sits down
at a park bench.

Using the Bluetooth connection to the smartwatch, the device can roughly estimate the
proximity of the device to the owner. If the owner were to get up and leave without the
backpack, the connection would get weaker. When the device senses this, a notification
on the smartwatch could let the owner know the backpack is being left behind, prompting
them to retrieve their belongings.

However, this behaviour is also contextual. If the owner leaves their backpack in their
apartment when heading out for a run, a notification is unnecessary. We can harness
the same context functionality to disable the notification if the device is left in a trusted
context.

3.1.3 Optimistic Context Detection

In general, improvements in user experience can be expressed in a single example, which
we will name the “empty streets” scenario. By understanding the difference in reaction
between various systems, one can gain a better understanding of how optimistic context
detection can improvement upon existing works.

12

Empty Streets Consider an example in which the owner is walking down an empty
street. There is no one around, and thus no devices are around. If we consider how
conventional (pessimistic) works will react, they will often decide the device must be kept
locked, due to a variety of reasons - not in a well known location, in public, no familiar
people or devices nearby. This will continue to be the case whenever the user walks along
this street, since many of the factors leading to it being called unsafe persist and cannot
be ameliorated.

Conversely, consider an optimistic system. The absence of devices and noise suggests
there are few people around, which tells us that the user is likely alone, accurately reflecting
the situation. However, if there are a group of people walking along the street, the system
can detect these people, and accurately reflect the situation. This approach provides a
much better reflection of the reality of the situation, simply by making the default safe
instead of unsafe.

3.1.4 Failing Examples

There are some cases where context information can be useless, harmful or just out of
scope. In this thesis, there are some cases we do not aim to cover. However, due to the
modularity of the system, it is entirely possible many of these cases may eventually be
covered, as future contributions are made.

Snooping Partner In this scenario, an owner has been in a long-term relationship with
their partner, and through some means (user input, past behaviour, etc.) the device is
familiar with them and considers them safe around to be around. However, the owner has
not given their partner permission to access the device.

Now, imagine the partner has some reason to believe the owner is cheating on them.
They could take advantage of the trust the device has in them to open the device and read
private information about the owner.

The issue here stems from an inability from the device to determine a sudden breakdown
in trust between the owner and the partner. Not even the owner is aware of such a drastic
change, and thus cannot account for it. The only solution is to not trust the partner at all,
which is not feasible as the partner would likely spend a large amount of time in proximity
with the device, often without any malicious intentions. On a more general level, PUPy
cannot easily deal with interpersonal relationships or social context clues.

13

Coercion In the example of context given here, detecting the owner being coerced by a
malicious actor is not helped by the context the device is in. Since coercion comes in many
different shapes and sizes, detecting coerced behaviour is not something PUPYy is built for.
However, a module could be built that does detect it or provides methods for the owner
to signal they are being coerced - but such functionality is not augmented by the use of

PUPy.

Device Loss in Abnormally Empty Locations One context in which PUPy might
break down in is locations that are traditionally crowded, but are currently empty for
one reason or another. Since the device loss system will be enabled based mainly on the
privacy on the situation, any context that appears to be a private context when, in reality,
is generally a public context will cause a failure. For example, an empty coffee shop. If we
are in a coffee shop and no one is detected, the device loss module may not engage, which
is not the intended behaviour.

There are certainly workarounds - the device loss module could use location alongside
the context information to further improve how it works, but this will not be built into the
context system.

14

Chapter 4

Related Work

This chapter consists of an overview and discussion of a number of existing works and
systems that have been devised to achieve similar goals as ours. We will discuss similar-
ities and differences between these works and ours in order to get a sense of where our
contributions sit among existing literature. We will begin with a discussion of existing
implicit authentication techniques. Next will be an exploration of context detection frame-
works and the contrasting approaches taken to context detection. The following section
will discuss frameworks that have combined context detection and implicit authentication
in similar manners to our work, and what conclusions and insights can be drawn from their
approaches. Finally, we will discuss approaches to device identification.

4.1 Implicit Authentication

Implicit authentication forms an important use case for our system, and many existing
works hold important insights and concepts for understanding context detection. In this
section, we will look at a number of existing works in the field of implicit authentication,
and discuss their relevance to PUPy.

Implicit authentication was first coined by Shi et al. [11], who investigate using user
behaviour as a way to reduce the number of explicit authentications. They generate an
authentication score by comparing a user’s recent actions with their previous behaviour
- behaviour matching previous behaviour (habitual behaviour) increases the score, while
behaviour unlike past behaviour reduces the score. This approach is limited in that it

15

only halts usage of the device by the adversary after repeated uses (minimum 2, maxi-
mum 16). Follow-up approaches would build upon the concept of implicit authentication,
incorporating new advancements that improved performance.

One of the first fully realized implicit authentication frameworks to combine data from
multiple sensors into a single framework was progressive authentication by Riva et al [33].
While prior works were mainly about individual implicit authentication schemes, Riva et
al. looked at how one could combine multiple implicit authentication methods to provide a
better user experience. Their framework used several methods, which included voice and
face recognition and proximity to trusted devices in order to authenticate the user. These
methods are used to calculate a confidence level that the current user is the owner of the
device. Depending on that confidence level, certain functionality of the device would be
permitted, while other functions would be limited pending explicit authentication. The
basic concept of combining many inputs to get a better sense of the context the framework
is after can be seen in many following works, be it in the realm of implicit authentication
or context detection. In fact, this concept is central to PUPy, as discussed in Chapters 5
and 6. While we use it for context detection as opposed to authentication, many of the
works we build upon can trace their approach back to Riva et al.

However, Riva et al. do not generally concern themselves with the wider context the
device is in. For example, while their framework used device sensors to learn about the
device and where it is (i.e. on a table, in a pocket, etc.) it did not seek to learn anything
about the context it resides in - it did not attempt to find any other information about
the context, such as crowding, macro location, etc. This led to the framework looking at
context in a very narrow manner.

This is in contrast with our system, which aims to allow implicit authentication modules
to adapt based on the wider device context, through detection of how many people are
nearby, and what sort of relationship those people have with the device owner. This focus
on learning about the context itself and not just the device’s place in it allows for a far
more dynamic approach to authentication and our other applications.

While not exactly implicit authentication, SnapApp by Buschek et al. [(] investigates
ways of lowering the barrier to entry for users by using an optimistic approach to authen-
tication - use a swipe lock on the lock screen to allow users to access the device for some
short amount of time (e.g. 30 seconds). This swipe lock could be used up to a certain
(user specified) limit, at which point the user must enter their PIN. This is an optimistic
approach as it is assuming this will mainly help the owner. SnapApp does not respond to
any of the main motivations we lay out for our system, since it is not an implicit authenti-
cation system nor does it rely on device context in any way. However this application does

16

dovetail nicely with our approach, which aims to provide an optimistic approach to context
detection. Combining the two applications could allow a far better approach to deciding
when SnapApp can be used, without substantially impacting the goals of SnapApp.

In addition, both approaches can complement the use of implicit authentication along-
side it. The approach taken in SnapApp can be permitted only when implicit authentica-
tion has a certain level of confidence in the user being the owner of the device. Similarly,
our approach can allow an authentication module to decide if implicit authentication is
sufficient given the context the device is in.

To conclude this section, we will look at various authentication schemes that have
been proposed, that are either implicit authentication frameworks or closely related to
it. While none of these approaches attempt to solve any of the issues our system aims
to resolve, a general survey of these can provide an idea of what sort of methods can
be used alongside our system. SilentSense by Bo et al. [5] and Touchalytics by Frank
et al. [13] both investigate using user interaction (typing, swiping, gestures, etc.) with
the device to authenticate the user. Such approaches show high accuracy, but have the
drawback of only being applicable after the device is unlocked and is being used. Chauhan
et al. [8] investigate to authenticate users based on aspects of the breathing, through
the corresponding audio signature. While not implicit authentication, of note is Pico
by Stajano [11], which investigates the use of external hardware tokens for authenticating
users. This approach is useful due to the fact that accidental authentication is only possible
in the case where the token is stolen, but requires the use of such a token. Similarly, Cola
et al. [9] investigate using gait-based authentication via a wrist worn device (such as a
smartwatch). Such an approach also requires an external device, but one that, unlike in
Pico, has other uses. MULE by Studer et al. [15] investigated using location as a method on
authentication, which many other implicit authentication schemes later investigated, such
as Google’s Smart Lock [11], which allows Android users to leave their devices unlocked
in locations they know well, such as their home. While location plays an important part
in how PUPy calculates the context values, it is not directly used for authentication. This
approach of identifying contexts that are frequently visited is not a form of authentication
in itself, and thus using location as a method of authentication is orthogonal to our work.

4.2 Context Detection

Context detection as a whole is an extremely wide field, not limited to mobile devices or
standard sensors. In this section, we will look at a number of existing works in context

17

detection that focus on context detection using standard mobile phone sensors, focusing
mainly on the security of the context.

Rajput et al. [35] investigate using the device accelerometer and GPS to detect crowd-
ing of public transit by detecting if the user is able to find a seat. Their aim of detecting
the crowdedness of a context is similar to the interest our system takes in the privacy of
the context. Sadly, the nature of their approach means it cannot be generalized to other
contexts, as it is geared specifically toward detecting crowding on public transportation
by sensing if the owner of the device found a seat, or was forced to stand. It also requires
dedicated server hardware and functionality added to the busses. This means that their
approach could not be used directly in our work. Solutions such as this, however, reinforce
how gathering privacy data from a large assortment of methods can improve overall esti-
mates. While their approach was not integrated into our system, it could be adapted fairly
easily alongside our devised approach, if their approach was more widely implemented. As
mentioned, though, it would only be relevant when on public transit properly equipped for
this approach.

Ramakrishnan et al. [36] aim to provide a context-based approach to locking the device,
based on the use of a policy-driven framework in their PRISM framework. This focus on
using policies to guide unlocking is similar to they approach taken in our system, where
rules are used to govern the actions taken by listening applications when changes in context
are taken. However, their approach puts these policies at its core. This makes extensibility
impossible, as their policies, once set, are not added to and exposed only internally to the
system. There is no method of extending these policies, either. In contrast, our approach
uses rules to interpret the core values of the framework. It allows developers of functionality
modules (authentication, device theft, etc.) to define the rules to fit the behaviour of
the application, and does not rely on the rules being built into the framework, unlike in
PRISM. Another similarity between PRISM and our system is that they aim mainly to
enable or disable authentication based on context, instead of directly choosing what type of
authentication to do. However, unlike PRISM, our approach allows our system to interface
with implicit authentication methods, improving the overall user experience.

Gupta et al. [15] form an important part of the literature built off of in this work. Their
approach of detecting nearby devices and developing a sense of familiarity with them is
integral to the calculation of our context values, and therefore in determining context.
Indeed, our work is so closely related, we build upon future work mentioned in their paper
- that of marking unclassified contexts as safe, instead of unsafe. Due to the close nature
of the two frameworks, a further comparison between PUPy and the system proposed by
Gupta et al. will be discussed in Section 7.2.4, instead of here.

18

Another framework to build off the concepts developed by Gupta et al. is ConXSense,
developed by Miettinen et al. [32] They have a similar approach in that they categorize
contexts (location and WiFi based) into private, work or public contexts, either safe or
unsafe. To evaluate the efficacy of their approach, they use a data collection app, into
which subject input their own read of the context. The result from the framework’s context
profiler is then compared against the user’s own feedback for the given context to obtain
metrics of efficacy.

On a high level, ConXSense’s aims to provide two use cases - a usable device lock, and
resisting sensory malware. We will focus on the first use case, as the second is out of scope
for our work. In order to meet this use case, ConXSense aims to modulate the use of a lock
screen based on the context the device and owner find themselves in. It accomplishes this
through collection of context data using device sensors, and through this data detecting
the location and social context of the user. This, on its surface, is very similar to PUPy -
however, it is how this data is used where the approaches sharply differ.

In order to make a decision about a given context, ConXSense extracts context features
from the data, and feeds this data into a classifier, which decides whether protections can
be relaxed. Crucially, this approach is seen as binary - either a context is safe or unsafe,
without any grey areas. In contrast, PUPy allows some latitude in what sort of approach is
taken. By exposing three values that simply report aspects of the current context, PUPy
can allow for a more measured response to various contexts. This descriptive approach
allows the context data collected through PUPy to be used in varying use cases. Instead of
focusing only on safe versus unsafe, providing more information to the various functionality
modules allows them to adapt their behaviour, providing more nuance in a given situation.

ConXSense shows some interest in considering the level of privacy exposure a context
allows. Privacy exposure is used to delineate whether device usage in a given context is
likely to contain information that the user wants to keep private. There are two types
- private and confidential. These are defined as information about the user themselves,
and information not directly related to the user. However, this is not further considered
when classifying contexts - the classifier simply falls back on enabling or disabling the lock
screen. In contrast, the approach taken in PUPy would allow applications that fall into
these various exposure categories to react differently to the given context, allowing for a
better user experience.

Overall, the approach taken by ConXSense does not allow the same level of granularity
when dealing with contexts as PUPy. Instead of allowing for different reactions to varying
contexts, the data collected and features extracted are used only to decide whether to relax
protections, instead of allowing a more nuanced approach to the current context.

19

4.3 Implicit Authentication and Context Detection

While context detection and implicit authentication alone are interesting fields, combining
the two can lead to extremely interesting results. While we do not fully investigate using
various types of implicit authentication depending on context in this thesis, on of the
primary goals of PUPy is to allow that sort of functionality.

Wijtowicz and Joachimiak [10] investigate combining context detection and biometric
authentication in order to provide a more accurate authentication system. Since various
approaches to authentication are effective only in a particular context (e.g., gait analysis),
using the context the device is in to determine the most effective method of authentication
allows for a better user experience.

To this end, their work describes a framework that takes in a wide range of information
from device sensors, and uses that data to decide which authentication methods to exclude,
allowing it to choose the most accurate method. Their work tends to focus on aspects of
the device and user to extrapolate context information, instead of using sensors to directly
learn about the context. As an example, having sound enabled or disabled leads them to
believe the context is one where silence is necessary, as opposed to using the microphone
to measure ambient noise. This user and device focused approach to context detection is
contrasted by PUPy, which focuses on learning about the context by collecting information
on the environment the device is in, rather than the settings of the device itself.

Mostly closely related functionally to our system is the CORMORANT framework
devised by Hintze et al. [20] Indeed, the Android implementation of CORMORANT formed
the basis on which our implementation was built. The modular approach used by Hintze
et al. translates well to the theoretical approach we use in this work. However, while the
application is structurally similar, the aims and results are very different.

Hintze et al. aim to combine three existing fields into a single authentication system -
transparent biometrics, risk estimation and extension of the authentication scope (expand-
ing authentication to be shared across many devices, instead of being limited to a single
device). These first two goals closely mirror our own approach, though execution varies sig-
nificantly. CORMORANT focuses on that third point of using cross-device authentication
to achieve their goals, and focuses less on determining the context the device is in. They
aim to provide continuous authentication across all devices by providing different methods
of authentication across many devices, and sharing authentication results between them.

For example, they consider the scenario of a user with a laptop and a phone. Depending
on the context, the type of authentication used varies. If the user is walking down the street,
gait analysis is used. When the user is sitting at a table using a laptop, then keystroke

20

authentication via the laptop is used. In both cases, these authentication methods are used
for the unlocking of both devices, providing continuous authentication.

While we are also interested in different methods of authentication through our func-
tionality modules, our focus is mainly in the area of context detection for authentication.
Instead of authenticating the user, we aim to determine if authentication is necessary at
all. Hintze et al. start to investigate this idea through their risk estimation plugin, but use
extremely coarse statistics (such as the national crime rate or time of day) to determine
risk. We take a far more advanced approach to risk estimation, using realtime data of the
context to determine risk.

As mentioned, our Android implementation discussed in Chapter 6 is a heavily modified
version of the CORMORANT Android framework, modified to better fit our needs. While
the details of these differences will be discussed in Section 6.4, at a high level, three
large changes were made. First, we removed the cross-device aspect of CORMORANT,
and focused solely on the mobile device. Second, we made fundamental changes to the
calculations done in the core of the CORMORANT system, adapting their confidence /risk
values to the values outlined in Section 5.3. Finally, we built into the system a location-
based context identification system, to track the current location-based context the owner
is in.

4.4 Device Identification

An important part of PUPy is the method through which we decide what devices are
familiar, and which are not. Our work builds upon that of Gupta et al. [15] in this respect,
where Bluetooth addresses are used to identify and track devices. However, there has been
an increasing push to make tracking devices across long periods of time in various locations
more difficult. This poses an issue to our framework, both technically and ethically. While
further discussion of these problems takes place in Section 6.1.1, some investigation has
been done into identifying devices using various methods, and some of those works are
discussed here.

There are a number of WiFi-based device identification approaches. Xu et al. [17]
examine identification of wireless devices using potentially identifying variations across
several layers of the network stack. For example, they note that miniscule imperfections
in the device hardware can lead to variations in communications that can be used as
an identifier for devices. However, this approach is not well suited to the sort of device
identification we are interested in for our case, as some identifying features are only collected

21

by the wireless AP. Similarly, Miettinen et al. [33] aim to classify IoT device types using
an AP-based approach, in order to limit the damage compromised loT devices can do to
other uncompromised, non-IoT devices on the network.

Redondi et al. [37] aim to rectify the AP requirement by providing passive classification
of network devices through packet sniffing. This approach does not require any information
that is only available to the AP and device, but does require packet sniffing techniques,
which cannot be done on Android devices without rooting the device. Yu et al. [18] also
fingerprint devices using packet sniffing techniques, though only on packets they were the
legitimate receivers of. Matte [31] provides a wide-ranging survey of fingerprinting attacks
and countermeasures, and most approaches described are either far too intrusive to justify
or have effective countermeasures. It also shines light on the ongoing push to randomize
MAC addresses, making the easiest approaches to device identification more difficult.

A more promising avenue for mobile-based device identification are methods based on
Bluetooth Low Energy (BLE) data. Several such approaches have been devised. Celosia
et al. [7] take an approach of reading the Generic Attribute Profile, data widely available
to any listening device, to fingerprint mobile devices. Similarly, Zuo et al. [19] look at ToT
devices that advertise themselves over BLE, identifying devices vulnerable to a number
of attacks. This approach is less directly applicable to our use case, as they are mostly
concerned in identifying vulnerable devices, instead of all devices.

As we have seen, device identification remains an active area of research. However,
existing approaches are either not ethically justifiable for our uses, or not applicable due
either to the use of external hardware or take approaches that cannot be implemented on
smartphones. For this work, we will take the approach of tracking Bluetooth addresses -
when a device changes their address for privacy reasons, we will simply treat it as a new,
unfamiliar device. This approach is not particularly satisfactory, but the focus of this work
is not on device identification but a novel context detection framework. In testing, we use a
dataset that was collected prior to the proliferation of such privacy-preserving approaches,
allowing us to determine how the framework would preform assuming device identification
was not an issue, or a satisfactory workaround was discovered.

4.5 Summary

In summary, we surveyed many existing works and categorized them into four groups -
implicit authentication, context detection, a combination of the two, and finally device
identification. While there exists a large body of existing works in these fields, and there

22

are some works that address one or two motivations, none adequately account for all of
the motivations simultaneously. However, we will build upon the works discussed here in
order to address all motivations, combining new and existing approaches to address all of
our concerns.

23

Chapter 5

System Design

In this chapter, we will discuss the theoretical design of our new context detection system.
We will first outline the threat model we operate under, and some basic requirements for
PUPy based on our goals. We then get into building the theoretical framework.

5.1 Adversary Model

In this section, we will present the adversary model under which our framework functions.
There are three main variants, corresponding to each of the three functionality modules
we outline. However, before discussing these variants, there are a number of similarities
between the models we will enumerate first.

Generally, our adversary models do not aim to protect against adversaries that are
aware of the system. This includes adversaries using strategies to confuse the system
into reporting falsified results, such as tampering with Bluetooth, voice or similar signals
sensed by the device. Some existing works investigate such attacks, showing they are
possible and can often be counteracted [12, 21]. We consider this out of scope for our
adversary models. We also assume there is no malware or other applications installed on
the device that, accidentally or purposefully, impact the performance of the system, or
provide falsified data. We assume that Bluetooth is always enabled (though this is specific
to our implementation - it is quite possible other approaches that do not require Bluetooth
could be integrated).

24

Authentication For authentication, the adversary takes the form of a person unknown
to the owner (i.e. not a sibling, friend, etc.) that can physically access the device, but does
not know about our framework. Their aim is to unlock the device and either interact with
the device applications, access sensitive data, or otherwise tamper with the device. The
adversary can be malicious, honest-but-curious or clueless, though we focus mainly on the
malicious case. The goal of the authentication module is to refuse access to the adversary,
while providing a convenient user experience for the owner. This adversary model will be
the main model we use to evaluate the system in Chapter 7.

Theft For theft, the adversary takes the form of a person unknown to the owner who
can physically access the device. The adversary is malicious, aiming to remove the device
from the care of the owner permanently (that is, to steal it). They are unconcerned with
accessing the device data. The goal of the system is to either alert the owner to a theft
that is in progress, or stop the theft (via an alarm or other deterrent).

Loss For loss, there is no adversary. At least, there is no adversary other than the owner’s
own memory. The goal of the system in this approach is to alert the owner to potential
loss of their device.

With these adversary models outlined, we will now outline some requirements for PUPy.

5.2 Design Principles

Using the motivating examples from Chapter 3, we can begin to specify some desired
features of our application.

Less Focus on Authentication Since this will not be used to authenticate users, we
do not have to worry about whether data can be used to authenticate a user. This will
widen the types of data we can use, which makes PUPy more useful in more cases.

Strong Focus on Contextual Awareness There should be a focus on using the context
of the device and its relationship to the owner at a given time. This includes adapting the
current context based on both user actions and changes in the environment.

25

Numerous Data Sources There should be functionality permitting the combination of
many different data sources to determine the context of the device, and its impact on how
the device should react. These data sources could be of varying reliability (data may vary
from very accurate to wildly inaccurate) and availability (a source may only be applicable
in specific scenarios e.g. gait analysis).

Extensible API An API that can easily be built on is crucial for allowing a wider
application of the system, and allowing for a wide number of data sources. In particular,
it should be easy to allow applications to read and react to changes in the context.

5.3 Theoretical Framework

This section will outline what aspects of the device context we will track in PUPy, and
how we track these aspects based on input module data. We introduce the three values
that track our chosen aspects. Finally, we will outline the equations for calculating these
values, and how they interact.

We will use C' to represent a particular real-world context, and C,, to represent the nth
occurrence of that real-world context. The context will consist of a feature vector, where
each value is a value between 0 and 1, representing some part of the context. This feature
vector will consist of three values, as described next.

Privacy The measure of how private the context is, based on the number of people
detected. In this case, by privacy we refer solely to how crowded the context is. A value
of 0 is very public (very crowded), while 1 is very private (not crowded). We denote the
privacy of C,, by P(C,,).

Unfamiliarity The measure of how unfamiliar the context is, based on the number of
unfamiliar people detected. A value of 0 is very familiar, while 1 is unfamiliar. We denote
the unfamiliarity of C,, by U(C,,).

Proximity The measure of how close the device is to the owner. A value of 0 is being
very far, while 1 is very close. We denote the proximity at C,, by D(C,,).

The use of these three values, and the functionality they allow for, fulfills our first
and second requirements. These values are widely applicable instead of being specific

26

to authentication, and provide crucial contextual information to functionality modules.
There will be three stages to the calculation and usage of these values, with each stage
being completed by a particular type of module. The first step in this process is gathering
information about the context the device is in, and providing some information about a
particular part of the context. This step will be completed by Input Modules.

Input modules are modules built into the system by default, or contributed by external
developers. An example of an input module is a module that uses Bluetooth scans to
estimate the number of people in the context, and uses that estimate to provide a value
for use when calculating P(C,,). This approach of using input modules fulfills our third
requirement, allowing us to take inputs from numerous data sources.

The second step will be the aggregation step, which will form the majority of this
section. This step will be completed by the context engine. The context engine will take
the estimates provided by the range of input modules installed and aggregate them into a
small number of values that can be provided to modules in the final stage to adapt their
behaviour, these modules are called functionality modules.

Functionality modules will take the values as calculated by the context engine and use
them in some way. In the case of authentication, this may result in enabling or disabling ex-
plicit authentication based on the context, or changing the type of authentication required
to use the device.

5.3.1 Privacy

We will now examine the procedure for calculating privacy based on input module data.
The set P will denote the set of values returned by the input modules reflecting the number
of people in the current context.

Each p;(C,) € P is an estimate of the number of people nearby, which is weighted
based on the confidence the module has in its estimate (in order to account for accuracy,
etc.), denoted by w; € Wp. This gives us the following equation for the number of people,
estimated across all applicable input modules:

i(Chn)w;
L(C,) = ie;P % (5.1)

We then convert this unbounded number of people into the instantaneous privacy value,

P(C,): 1
aé—m

P(C,) =1— (5.2)

Qe

27

1.0+ _ = —_— a=2
a=4
— a=10
— a=20
0.8 — a=50
— a =100
a =150

o
o
L

Privacy Value

o
S

0.2 4

0.0+

T T
[} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of People

Figure 5.1: Examples illustrating the effect of different values of ac on the decay of the
value for P(C,,).

ae controls how quickly the value decays - if a¢ is small, the value falls below .75 if more
than one non-owner interaction is possible, falling to .25 by 10 interactions. The effects on
values can be seen in Figure 5.1. a¢ can be set to different values in different locations,
allowing us to use it to express different levels of trust in different areas. a¢ is discussed
more thoroughly in Section 5.3.4. Wp is currently not used (i.e., all modules have w; = 1)
in our implementation or evaluation, due to either relying on a single module, or having
similar accuracy across modules.

This formulation means that P(C,,) starts at 1 when the device owner is alone, and
decays as the number of people increases. This fact is part of what makes the system
optimistic - as long as the input modules cannot detect anyone nearby, we assume the
owner is alone, rather than that we are in an unsafe context.

5.3.2 Unfamiliarity

We will now examine the procedure for calculating the unfamiliarity of a context. In order
to calculate this, we will need to use a measure of familiarity. For this, we will build upon
the work of Gupta et al., using their method of instantaneous familiarity [15].

We first define device familiarity, as follows:

Fy(d,Cy) = ap *xoce(d,Cp) + (1 — ap) x Fy(d, C—q) (5.3)

28

where
if d is observed in C,,

0 if d is not observed in C),, and
(n - Nlast) < NO
Fy(d,C,_1) otherwise

oce(d, Cy) =

where Ny controls how many observations pass before they are disregarded, and Ny,
(defaulting to 0) is the ordinal number representing the last sample of C' in which d was
seen. That is, if d was last seen in C2 (the 12th time the device has been in this context),
then N, = 12. ap is a suitably chosen constant, controlling how quickly the system
learns. In our implementation and evaluation, a value of ar = .05 is used. The structure
of this method ensures that F,;(d,C,,) is a value between 0 and 1.

Using this definition of device familiarity, we go on to define instantaneous familiarity:

|D10 D Fud,C,) (5.4)

n | dEDcn

F(Cy) =

where D¢, is the set of devices in the context C),. This defines instantaneous familiarity
as the average familiarity of all devices in C),. Since this is the average of values between
0 and 1, the overall average will be between 0 and 1.

We will now build upon the existing theoretical work we have described so far, and
expand on this concept in a novel method that converts this previously pessimistic measure
to an optimistic approach. To accomplish this, we calculate the novel value we name device
unfamiliarity, denoted as U(C,,). First, we define the following equation:

U(C,) = L(Cy,) x (1 = F(Cy)) (5.5)

This equation takes the number of people detected (L(C,,), from Equation 5.1), and mul-
tiplies this by the inverse of the instantaneous familiarity of the context (since F(C,) €
[0,1]). This gives us an estimate for the number of unfamiliar people nearby. We then
use the similar conversion as in Equation 5.2 to convert this unbounded number to a value

between 0 and 1:

0 (1)
U(Cn
C

UC,) = B (5.6)

thus giving us our final equation for calculating unfamiliarity. As mentioned, we can

modify a¢ to control the rate at which U(C,,) increases. The effects on values can be seen
in Figure 5.2. a¢ can be set to different values in different locations, allowing us to use

29

1.0
— a=2

a=6
— a=10

0gq —— a=15
— a=20
— a=50
a=100
1 — a=150
@ =500
—— @=1000
—— &= 1000000000

o
o

Unfamiliarity Value
=]
s

0.2 4

0.0

T T
[} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Unfamiliar People

Figure 5.2: Examples illustrating the effect of different values of a¢ on the growth of the
value for U(C,,).

it to express different levels of trust in different areas. ac is discussed more thoroughly in
Section 5.3.4.

In a similar manner to P(C,,), U(C,,) is a value between 0 and 1. However, unlike
P(C,), U(C,) starts at 0 when the device owner is alone, and grows as the number of
unfamiliar people increases. So unlike P(C,,), unfamiliarity starts at 0 and increases.

The reason for this discrepancy is that changes in privacy and unfamiliarity mean
different things. As privacy changes from its default, we move from high privacy (i.e. a
very private context) to low privacy. In contrast, as unfamiliarity changes, we move from
low unfamiliarity (there are no unfamiliar people around) to high unfamiliarity. So it does
not really make sense for these values to both decrease when they mean opposite things.

5.3.3 Proximity

We will now examine the procedure for calculating the strength of the relationship between
the owner and the device based on input module data. Each r;(C,) € R is an estimate
of the distance, which is weighted based on the confidence the module has in its estimate
(in order to account for accuracy, etc.), denoted by w; € Wxr. This gives us the following

30

1.0 A —— ap=11 a3=3

— ap=11a9=2

— ap=11 a3=1
ap=2,04=3
ap=2,03=2

0.8 4

—gp =2, 0y=1
ap=3,a3=3

o
o
|

— ap=3,a3=2
— ap=3,03=1

Proximity Value

I
S

0.2 4

0.0+

Distance (m)

Figure 5.3: Examples illustrating the effect of different values of ap and a,; on the decay
of the value for D(C,,). The highlighted line plots the values selected for ap and a4 in our
Implementation.

equation for the distance, estimated across all applicable input modules:

. Ti(Cn)wz'
d(C,) = i%:R TS T (5.7)

We then convert this unbounded distance value into proximity, D(C,,):

1 d(Cn) S Qq
D(Cy) = L aonag (5.8)
1- 22— d(Cn) >y

ap

This allows the relationship to be strong while the device is within ay of the owner, and we
can use ap to decide how quickly the relationship decays as distance increases. The effects
on values can be seen in Figure 5.3. Unlike the previous two, we do not want proximity to
change in different contexts, so these two values will be set based on experimentation and
will not change after being set. Wpx is currently not used (i.e., all modules have w; = 1)
in our implementation or evaluation, due to either relying on a single module, or having
similar accuracy across modules.

Similarly to P(C,,), D(C,,) starts at 1 when the device is close to the owner, and decays
as distance increases. This is due to the same logic that governs the changes in P(C),). As

31

privacy changes from its default, we move from high privacy to low privacy. In the case of
proximity, we move from high proximity to low proximity.

5.3.4 Context Familiarity

Both of the equations for privacy and unfamiliarity have a value governing how quickly the
value changes based on changes to the environment, denoted as ac. We call this value the
Context Familiarity value, which will track the familiarity of the context we are in rather
than the people or devices in it. The context will currently be limited to location, but can
easily be expanded to other contexts through functionality modules with a small amount
of work.

There is the potential to use this value as a way to incorporate functionality similar to
that of the familiarity system into the context engine. There are a few attributes context
familiarity should exhibit:

1. Slow growth
2. Trivial to calculate

3. High value in familiar contexts, low value in unfamiliar contexts

We use device sensor data we collect to change context familiarity. This allows context
familiarity to be higher in more familiar areas. This causes privacy to decay slower, and
unfamiliarity to grow slower. This approach allows us to build in some tolerance for a
certain number of unfamiliar devices in historically familiar locations, such as your home
and apartment, or a frequent coffee shop.

In order to gather historical data on a context, it is necessary to track instances of this
context. Using the number of times a given context has been detected, we can change
context familiarity to be more forgiving. For example, the first time a context is entered,
context familiarity defaults to 3. From there, every subsequent detection of this context
causes the value for context familiarity to increase by some amount (potentially .1, or 1).
As the user is in that context more and more frequently, context familiarity grows larger,
causing the device to feel more “comfortable” in that context.

Certain contexts will never be safe, and so we want to stop context familiarity from
increasing. This could potentially be handled through user interaction, or perhaps using
only static contexts by disabling learning and setting a specific value for each context that

32

220

200

=
I
Sy

o
S

Context Familiarity

u
)

o

1.00
0.75
>
9
Sos0
<
0.25
0.00

1.00
2075
8

Z 0.50

&
5025

0.00

Figure 5.4: A synthetic example, showing how changing ac changes the resulting values for
privacy and unfamiliarity. Light blue denotes the number of people overall (L(C,,)), orange
denotes the number of unfamiliar people U(C,,). Purple denotes the context familiarity
(ag) for values ae = 3,25,100,200. Dark blue denotes the privacy value (P(C,)), and
green denotes unfamiliarity (U(C,,)).

does not change. Barring this, the value of context familiarity for the context C,, could be

calculated as:
ac=2+n (5.9)

ac¢ has pathological behaviour when set to 1, and below 3 decays too rapidly for real-
istic scenarios. Therefore, a¢ has a default value of 3 for all contexts. As contexts are
encountered more and more frequently, this value will continue to increase - however, we
cannot increase this value forever, since sufficiently large values of ar completely disable
the system (as can be seen in Figures 5.1 and 5.2, when a¢ = 1le+9), which is undesirable.
In order to maintain functionality in frequently visited contexts, ae will be capped at 200.

For an idea of how increasing values for context familiarity changes the behaviour of
P(C,) and U(C,,), we look to Figure 5.4. Depending on the different values for ac, the
decay of P(C,) and growth U(C,,) changes - the larger the value for a¢, the slower the
values change.

33

Some user interaction can also be built into the system. For example, we could allow the
user to set their home. When the user sets their home, we will set ¢ for the corresponding
context to the maximum - it is assumed the home is always frequently visited. This could
be implemented through an input module that reports high alpha when the user is at their
home, and is massively weighted by the context engine. This has not been implemented,
as the framework seems to adapt quickly without the need of user interaction.

5.3.5 Interfacing with Functionality Modules

In order for these values to actually interface with functionality modules, we will use
a system of rules provided by the installed functionality modules to decide when these
modules should be notified. If the functionality module wants to allow the user to tweak
these rules, that is entirely up to them, but is not necessary. This allows the context engine
to function entirely without user interaction if need be. For the purposes of evaluation
and experimentation, three functionality modules have been implemented as outlined in
Section 6. The rules governing them are outlined in Tables 6.2, 6.3 and 6.4.

5.4 Justification

The aim of this section is to justify why each of these three values are necessary, and
why their combination is sufficient to support a variety or novel scenarios not covered
by previous work. To that end, we will discuss the importance of each value, and how
combinations of these values lead to a more effective approach than any of the values alone
can provide.

5.4.1 Privacy

Privacy allows modules to adapt their behaviour based on the privacy of a given context.
Due to the simplicity of calculating the value (how many devices are nearby?), this value
will likely frequently be one of the more accurate. By itself, it can be used by modules to
respond to contexts where the owner is in a crowded location, or those where the owner
is alone. A potential use case for this is device loss, where we want to notify the user if
they are leaving their device behind. In this case, we make the assumption that in private
contexts, the owner can safely leave their device behind, and therefore this choice may be

34

intentional. Conversely, in public contexts, it is unlikely the owner intentionally leaves the
device behind.

In addition to the standalone case, the combination of privacy and unfamiliarity can
provide helpful insights into the current context, which is covered in Section 5.4.2. In
general, using the values together vastly improves usefulness and the amount of information
one can gather about the context.

5.4.2 Unfamiliarity

Unfamiliarity allows functionality modules to adapt their behaviour based on the number
of unfamiliar devices nearby. The clearest use case is when determining how threatening
the current context is. It is a fair assumption that a large number of unfamiliar devices
nearby is a more threatening context than one without any unfamiliar devices.

This translates to helping us enable and disable functionality modules based on the
threat level of the context. In more threatening contexts - say, a crowded coffee shop
- authentication methods demanding a stronger level of certainty can be enabled, and a
device theft module can be prepared for potential theft.

Unfamiliarity can be made more useful through the use of privacy alongside it. For
example, imagine two scenarios. In both, unfamiliarity is hovering around .25. In the first
scenario, privacy is relatively high, at .75, while in the second scenario, it is very low.

In the first scenario, the context is significantly more private, implying that it is likely
the owner is surrounded with a few unfamiliar people - perhaps they are meeting for the
first time. Since there are only a few people around, perhaps we can continue to use weaker
forms of authentication, despite there being some unfamiliar devices nearby. It is fairly
easy for the owner to keep track of the few unfamiliar people nearby, without many other
people to track.

In the second scenario, the owner is in a public setting. But the low value of unfamiliar-
ity implies that most of the people in the context are familiar - perhaps this is a workplace.
In this case, the combination of some small number of unfamiliar devices with a fairly
public setting may prompt the use of stronger authentication methods, or activation of a
device theft module.

35

5.4.3 Proximity

The use case for this value is fairly obvious - giving the various functionality modules access
to the proximity of the device allows them to adapt their behaviour based on this value.
This is most useful for device theft and device loss, since both by definition require the
device to be a certain distance from the owner, but can also be used for authentication -
methods such as voice recognition can function from a fair distance, but we would only
want them functional in close proximity to the user.

Combining proximity with privacy and unfamiliarity allows us to get a sense of whether
it is a problem when proximity decreases. By itself, proximity cannot distinguish between
the case where the owner leaves their device behind in their home, and in a crowded coffee
shop. By using privacy and unfamiliarity, such a difference can be determined. Addition-
ally, by comparing privacy and unfamiliarity, we can determine if decreasing proximity
between the owner and device is more likely a case of theft, or loss. In a context with low
unfamiliarity, regardless of privacy, it is more likely device loss. However, if unfamiliarity
is high, theft becomes more likely. Distinguishing behind these approaches allows us to
react differently to each case.

36

Chapter 6

Implementation

In this chapter, we will describe the Android implementation of PUPy, including the im-
plemented structure and the specific purpose of each module. Figure 6.1 shows a general
outline of the structure of the system. There are four main parts - the hardware sensors
and OS that handles interfacing with the hardware, the input modules that produce es-
timates for any combination of privacy, unfamiliarity and proximity based on that sensor
data, the context engine which aggregates the estimates and tracks the familiarity of a
given context, and the functionality modules, that actually act upon the resulting values.

The overall structure of the system leans heavily on the work completed by Hintze et
al. in CORMORANT [20, 21], a cross-device authentication system that is built upon a
modular system well suited to our needs. The source code for CORMORANT formed the
starting point for this implementation. In the course of implementing PUPy, many parts
of the framework were fundamentally rewritten, or just removed wholesale. Despite this,
many similarities remain.

CORMORANT was built with robust compatibility for plugins using a fairly simple
service interface, allowing the structure to be adapted easily with limited modifications
necessary. It also has facilities for querying the backend for the current confidence of the
user’s identity based on the active authentication plugins, which was adapted into the rules
module, used as an interface between the context engine and functionality modules.

In Section 6.1, we will outline the currently implemented input modules, including
what data they use and which values they provide estimates for. In Section 6.2, we will
examine the core of the system, the context engine, that implements most of the theoretical
underpinnings of the system previously discussed. In Section 6.3, we will discuss the

37

N

N

Functionality Modules

i 4
a .)
Context Engine
Context Familiarity [Rules Module]
ontext Familiari >
Module = -

Privacy Aggregator] [Unfamiliarity Aggregator] [Proximity Aggregator]
_ l [[W,
(" A)

Input Modules

\----)

Figure 6.1: System diagram of PUPy.

38

current implementation of the functionality modules, and due to their fairly basic existing
implementations, the resulting envisioned functionality.

6.1 Input Modules

The first step of the system is to collect sensor data from the device, and use it to calculate
an estimate for one or more of the values. We will look at the implemented modules - how
they work, and what estimates they provide to the context engine.

An important similarity all input modules share is the use of a persistent notification.
This notification is required to maintain access to device sensors when an application is in
the background on the latest versions of Android. These notifications can be minimized or
hidden by the user, but by default this leads to a large number of persistent notifications
in the device’s notification bar.

6.1.1 Bluetooth Application

The Bluetooth application is the main module for estimating privacy and unfamiliarity.
It conducts periodic Bluetooth scans, using this information to generate an estimate for
L(C,,) (estimate of the total number of people in the context) and U(C,) (estimate of
the total number of unfamiliar people in the context) from Equations 5.1 and 5.5 from
Section 5.3. This means there are two main purposes of the application:

Estimating the Number of People When reporting a value for L(C),), that value
is obtained by counting the number of nearby Bluetooth devices, filtering out Bluetooth
devices not tied to a particular user (mainly IoT devices). This approach means that users
can be counted more than once, if they have multiple devices on their person (e.g. a phone
and smartwatch). We also make the assumption that every person carries at least one
device we can detect.

Estimating the Number of Unfamiliar People In order to track the number of
unfamiliar people (U(C,,)), we must calculate F(C,,) from Equation 5.4. We do this using
the same basic approach as Gupta et al. [I5], by storing previous scans, and calculating
a device familiarity value for each device seen. The average of this gives us F(C,,), from
which we can calculate U(C,,) as in Equation 5.5.

39

Implementation Details

The application registers two services with the context engine: PrivacyPluginService
and UnfamiliarityPluginService. They rely on using the

BluetoothAdapter built into Android to interface with the Bluetooth application. They
register a BroadcastReceiver to receive BluetoothDevice.ACTION_FOUND broadcasts, al-
lowing them to listen for when Bluetooth devices are detected. When an address is dis-
covered, they each take different actions:

Privacy The privacy service maintains a list in memory of recently seen Bluetooth de-
vices, and reports this value to the context engine as an estimate of the number of peo-
ple around when polled by the context engine via the MSG_POLL_DATA message, using the
Message class sent to the Handler implementation used by the context engine’s plugin
manager.

Unfamiliarity The unfamiliarity system is obviously a bit more complex, as it must track
devices over a much longer period of time, and calculate the number of unfamiliar devices
as outlined in Section 5.3.2. This requires also keeping track of recent devices, functionality
that is shared with the privacy service. To store the familiarity value for devices that have
not detected recently, a basic SQL database is used, using the built-in Android database
libraries. The database simply tracks all sightings of all Bluetooth devices, and this data is
used to compute the device familiarity for the current context. Combining this data allows
us to obtain an estimate of the number of unfamiliar people nearby, which is published
when polled by the context engine via the MSG_POLL_DATA message.

Device Identification

Device identification forms a significant challenge to deciding what devices to trust - if one
does not know if they have seen the device before, they must assume they are strangers.
Due to growing interests in privacy among device users, manufacturers are more frequently
implementing measures that make tracking devices across time and space more difficult.

This poses a significant ethical question for our framework - given that these devices do
not want to be tracked, should we be tracking them? While we do not use the identification
information for any nefarious purposes, the question remains. For now we have decided to
leave this an open question, focusing instead on testing the framework assuming devices
can be tracked.

40

Activity Distance Estimate
Walking 0 metres
Running 0 metres
On Foot 0 metres
On Bicycle 0 metres
In Vehicle 2 metres
Still (Not on person) 5 metres

Table 6.1: The mapping for activity to distance estimate used by the activity application.

In the meantime, we simply keep track of Bluetooth addresses without any attempt
to counter changes in these addresses. So, this would mean that when the MAC Address
resets, we would lose all familiarity with the device. Under our current implementation
with a learning rate of 0.05, it takes 200 observations to obtain a familiarity of roughly .85.
Using 10 minute intervals, that is approximately 33 hours of time spent with a device.

It is important to note that the sort of privacy-preserving behaviour we see is not
uniform across all manufacturers, and exact ramifications will vary on the devices encoun-
tered. Additionally, it is possible other methods of identifying people can be used or will
be developed, such as voice recognition.

6.1.2 Activity Application

The activity application is the primary method of estimating proximity. It relies mainly on
accelerometer data and Google’s ActivityRecognitionClient. Depending on the type of
activity the user is engaged in, a different value is reported to the context engine. In this
case, the estimate is the value for d(C,,) (estimate of the distance in metres between the
owner and device) in Equation 5.7.

In Table 6.1, we show the mapping between the current activity the user is engaging
in and the corresponding distance estimate. This is obviously a fairly inaccurate manner
of estimating distance, but the point of the application was not to provide an extremely
accurate proximity estimation, but an estimation to test with.

41

6.1.3 Location Application

The location application is similar to the Bluetooth application, in that it also estimates
L(C,) and U(C,), and thus shares the same two purposes. However, it obtains that
estimate another way. The location application keeps track of specific locations the user
visits frequently, and reports a higher value for L(C,) and U(C,) when not in proximity
to those specified locations.

The location application works in two steps - firstly, the user configures their desired
locations through the LocationConfigurationActivity shown in Figure 6.2, which as
the name implies, allows the user to set and remove locations they deem sufficiently safe.
The activity uses a Google map to display the safe locations, and allows the user to select
on the map where to place safe locations.

Using the locations dictated through the LocationConfigurationActivity, the ap-
plication uses the LocationManager to get the last known location of the user, preferring
GPS location over network estimates. The application then calculates the distance between
all defined safe locations and the user’s current location - it finds the minimum distance
and calculates the estimates p;(Cy) for P(C,) and u;(Cy) for U(C,,) via the following
equations:

pi(C,,) = distance (m)/50

u;(C,,) = distance (m)/75

These values are then reported back to the context engine whenever the engine requests
data (through a MSG_POLL_DATA message).

6.1.4 Proximity Application

The final input module is another proximity application, which is built around the device’s
proximity sensor. It uses the proximity sensor to detect if the device is currently in the
user’s pocket, and reports a low distance (0 metres) if it is. If it is not, it reports a higher
distance (5 metres), since it is likely not on person. It reports one of these two values as
d(C,) to the context engine.

6.2 Context Engine

The context engine is what will combine the estimates obtained from the input modules,
using the processes outlined in Section 5.3 . It then provides the aggregated values to the

42

LocationPlugin

MT HOPE
HURON PARK @®
Hospital
e CIVIC CENTRE
Kitchener
=]
L] @ fg Yere |t
K & Service Canada Centre y
Google. gy Port o CEDARHILL
SET SAFE LOCATION

REMOVE ALL LOCATIONS

Figure 6.2: Screenshot of the LocationConfigurationActivity.

43

functionality modules. The context engine forms the core of PUPy. It is what aggregates
estimates, calculates the context values, and compares these values to rules set by the
functionality modules. Alongside the main modules located in Figure 6.1, there is a fair
amount of supporting code as well. Overall, the structure of the code can be broken down
as follows:

1. User interface

2. Plugin manager

3. Aggregator modules

4. Context familiarity module

5. Rule module

In order to give context for when the higher level modules are discussed, we will first
discuss how the supporting code is implemented. We will then proceed to review the
implementation of the higher level modules.

User Interface

The user interface, as shown in Figure 6.3 is fairly simple - it is mainly used to list active
plugins, and give the user a way of seeing the estimate provided by each module. None of
the modules interact with the user interface - instead, the data presented is obtained from
the plugin manager, which in turn receives it directly from the input modules.

The user interface also allows the user to access the configuration activities (if they exist)
for these input modules. If the user taps on any of the entries for the input modules, and
these input modules have defined a configuration activity, that activity will be launched,
allowing the user to tweak user preferences through the application.

The user interface is also the method through which the context engine asks for its
required permissions - namely, ACCESS_FINE LOCATION and ACCESS_COARSE_LOCATION.

Plugin Manager
The plugin manager is the part of the context engine through which the engine communi-

cates with the input and functionality modules. To that end, it handles all inter-app com-
munication and the adding and removing of active input/functionality modules. The core

44

PUPy (0

e

Proximity Sensor Plugin
Q Proximity

Unfamiliarity Location Plugin

@ Unfamiliarity Location Plugin Description

nsor Plugin Description

i: 10-3-2021 07:49:57
RATIOMNAL

Privacy Location Plugin

@ Privacy Location Plugin Description
F Privacy: 0

Last updated: 10-3-2021 01:4%:57
State: OPFRATIOMAL

Figure 6.3: Example of the context engine’s user interface, using three placeholder input
modules.

45

of this inter-app communication is implemented using the Message and Handler classes
provided by Android. The Handler listens for four specific types of messages:

1. MSG_ADD_PLUGIN: Register new input and functionality modules
2. MSG_PRIVACY: Handle privacy data updates
3. MSG_UNFAMILTIARITY: Handle unfamiliarity data updates

4. MSG_PROXIMITY: Handle proximity data updates

These messages are parsed and processed by the plugin manager. When a new module is
registered, it provides to the plugin manager information that allows the context engine to
interface with the new module. This data, which is stored in a PluginInfo object, includes
(but is not limited to) the type of plugin (privacy, unfamiliarity, or proximity) along with
the title and description of the module to show in the module list. It also initializes a
default value for the estimate of the value, which will later be updated through a data
update. It is important to note that there may be multiple entries in the plugin manager
for each input module installed, if the module reports estimates for multiple values.

In the case of a data update, the value corresponding to the type of the plugin is
updated in the PluginInfo. The process for responding to requests for data is easy for
the input modules to implement, partially fulfilling the final requirement from Section 5.2.
These values are accessed by the corresponding aggregator module, which processes the
data. We will discuss these aggregator modules next.

6.2.1 Aggregator Modules

The aggregator modules aggregate the estimates from the input modules. Essentially,
they take in the different estimates that are used to calculate L(C,,), U(C,) and d(C,,).
These estimates are retrieved from the the list of PluginInfo objects maintained by the
plugin manager by filtering for the corresponding type of module. From there, each of the
aggregators perform the calculations for each of the values:

Privacy For calculating privacy, the module takes all estimates p;(C,,) from the privacy
input modules and combines them as per Equation 5.1. It then takes the estimate for
context familiarity a¢ from the context familiarity module, and calculates P(C,,) as defined
in Equation 5.2.

46

Unfamiliarity For calculating unfamiliarity, the module takes all estimates u;(C,,) that
are combined to obtain the number of unfamiliar people U(C,) from Equation 5.5, and
aggregates them in a manner similar to that of Equation 5.1, by computing a weighted
average. Combining this estimate with the context familiarity module’s estimate o and
proceeding to calculate U(C,,) via Equation 5.6.

It is important to note that the practical implementation of the context engine does
not match the theoretical basis as outlined in Section 5.3.2. To be precise, the aggregation
step is performed differently. Instead of reusing the value L(C,) and multiplying it by
(1-F(C,)) as shown in Equation 5.5, we instead aggregate individual estimates u;(C,,) € V'
and use them to calculate U(C,,):

Uz’(Cn)wi
Uc,) = =
2 s

Wiy, is currently not used (i.e., all modules have w; = 1) in our implementation. The
theoretical approach is not completely removed - recall it is used by the Bluetooth module
as described in Section 6.1.1. This method allows for alternate means of estimating the
number of unfamiliar people, making the context engine more adaptable. Instead of relying
specifically on estimating the number of familiar devices, input modules can use whatever
means they choose to decide upon the number of unfamiliar people nearby. Perhaps they
track voices, or use face recognition. By decoupling the theoretical approach and relegating
it to a particular input module, we gain flexibility in the implementation.

Proximity For calculating proximity, the module takes all estimates r;(C),) for the dis-
tance between the device and user and aggregate them into the value d(C,,) as in Equa-
tion 5.7.

The proximity module deviates from the other two approaches, in that it does not take
any data from the context familiarity module. Instead, ap (which handles the decay rate
of D(C,,)) is static, set to 2. In addition, the proximity cutoff ay is also static, set to 1.
These static values and the aggregate are used as in Equation 5.8 to obtain the calculated
value D(C,,).

Each of these results is then passed to the rule module, which handles applying these
values to the rules provided by functionality modules. Before discussing the rule module,
however, we will move on to the context familiarity module.

47

6.2.2 Context Familiarity Module

The context familiarity module is the module that tracks the device’s familiarity with
a particular context. Currently only locational contexts are supported, but eventually
this could be expanded. This module keeps track of the context familiarity value a¢ for
every context visited, and increments that value on repeated visits to track as the device’s
familiarity with the context increases. This value is provided to the aggregation modules
when calculating P(C,,) and U(C,,).

The context familiarity module is implemented as a part of the AggregatorModule
class, which is mainly responsible for aggregating the values from the input modules via
plugin manager. Since the aggregator module is the only location context familiarity is
used, it is sensible to include the context familiarity module here.

The module functions by periodically querying the Android OS for the last known
location of the device. When the location is returned, the location is converted to a unique
key through the following function:
fun createKey(lat: Double, lng: Double): String {

val acc = 10000.0

val latitude = ((lat * acc).roundToInt ().toDouble() / acc)
val longitude = ((1lng * acc).roundTolInt ().toDouble() / acc)

return ‘‘$latitude,$longitude"
}

This approach simply reduces the accuracy of the latitude and longitude to a roughly 100
metre area. If the location has been seen before, the corresponding familiarity value is
updated, as in Equation 5.9. If not, the location is added to the database, with a default
value of 3. This default value is explained in Section 5.3.4. However, this rather basic
method of calculating context familiarity was not the only proposal.

Proposed Alternate Approach

An alternate approach that may be more useful would be to allow input modules to provide
an estimate for the current context familiarity, allowing a synthesis of many different
approaches, and allow extension of the system without necessitating any rewriting of the
context engine. In this approach, estimates for ar would be provided by some input
modules, and aggregated in a method similar to Equation 5.1:

B ai(Cp)w;

48

Where each a-(C,) € ac is an estimate for context familiarity, which is weighted based on
the confidence the engine has in that module, denoted by w; € W,,.

The final decision was to keep calculation of context familiarity within the context
engine, as it is more sensitive than the other approaches and requires permissions (i.e.
Location) that users are less likely to provide to every individual module. Modifying the
framework to support an aggregated approach to estimating context familiarity could be
interesting future work, however.

6.2.3 Rules Module

The rules module forms the interface between the aggregators and the functionality mod-
ules. Each functionality module defines a set of rules, taking the form of a rule that takes
up to three inputs - P(C,,), U(C,,) and D(C,,). These rules allow the functionality module
to react to changes in the context as necessary. At fixed intervals, the rules module sends
a message of type MSG_PUBLISH DATA with the new values of P(C,,), U(C,,) and D(C,,) to
all registered functionality modules, so it may check these values against the rules they set,
and adapt accordingly. The API for receiving context updates is easy to use allowing for
easy extension of the system, fulfilling the rest of the final requirement from Section 5.2.

6.3 Functionality Modules

In order to give a sense of how the context values could be used, three basic modules were
implemented - authentication, device loss, and device theft. While the implementations
are mainly stubs designed to showcase use cases of the values, we will describe how they
function, and what steps can be taken to improve the implementation. As explained, these
modules interface with the context engine via rules. In this section, we will describe these
rules for each module, and their justification.

Before continuing to the individual functionality modules, we will first discuss how
each functionality module works. Since they are all mainly stubs used mainly as a proof
of concept, their structure is extremely similar. They all consist of a single service. When
the service starts, the service registers with the context engine. When running, the service
listens for messages from the context engine of type MSG_PUBLISH DATA. These messages
are handled by their handler, and contain the final three aggregated values generated by
the aggregator modules and propagated by the rules module. When the values match a

49

Rule Action Justification
P(C,) —UC,) < .1 Enable Authentication Presence of unfamiliar
Module devices should trigger the

module - in more private

locations, the number of

unfamiliar devices can be
higher.

Disable Authentication
Module
Start Auth High Alert

P(C,) —UC,) > 1

P(Cn) —U(C,) < -4 If a large fraction of people
in the current context are
unfamiliar, we want to be
very careful. This may
mean using explicit
authentication.

P(C,) —U(C,) > —.4 End Auth High Alert

Table 6.2: Module rules and justification for the authentication module. They are based on
experimentation conducted using the Cambridge/Haggle dataset, discussed in Chapter 7,
and are meant as proof of concept.

rule set by the functionality module, a message is sent to that corresponding functionality
module.

The functionality modules function mainly through notifications - generally, they have
a persistent notification display what their current state is (e.g. unlocked, locked) and
occasionally post notifications when a certain change in context is detected (e.g. the device
is being left behind). They do not currently do much beyond acting upon the context data
compiled by the framework - this is left to future work, since it is not really the core of the
project.

6.3.1 Authentication

The authentication module aims to enable or disable authentication of the device based on
the reported values for P(C,,) and U(C,,). The module allows us to test how the additional
context data could influence the behaviour of an authentication module, and see when and
how the module would enable and disable explicit authentication. Currently, this module

20

is fairly simple, and does not perform any additional implicit authentication. Instead, the
authentication module performs two actions, following rules as outlined in Table 6.2:

1. Changes the state of a persistent notification stating whether the module is engaged
or disengaged, depending on the variation between P(C,,) and U(C,,).

2. Sends a notification declaring the start and end of Auth high alert.

This is a fairly rudimentary implementation, as actual methods of implicit authentication
are out of scope for the project. However, we will discuss how a more thoroughly imple-
mented authentication module could behave next. In general, there are three main ways
that an authentication module could use the device context to improve the user experience:

Disabling in “Safe” Contexts In this use case, the authentication module can recog-
nize when a context is “safe” by noting when P(C,,) is high, and U(C,,) is low. In this
case, the authentication module does not need to authenticate the user at all, or use an
extremely basic authentication method. However, when these values change, the module
can re-enable authentication.

Extending Existing Authentications When extending an authentication, context is
used to establish continuity between the device and the owner. For as long as possible, an
existing authentication is stretched until continuity cannot be confirmed with a satisfactory
confidence level, leading to deauthentication. Consider a user that uses trusted Bluetooth
devices to authenticate. However, they leave the house, forgetting their smartwatch, mak-
ing the authentication no longer apply. However, they carry the phone around in their
pocket (which the module uses to extend the authentication). Eventually, they place the
device on a table, which finally breaks the authentication.

Deauthentication in Context Changes In the previous case, the authentication mod-
ule recognizes that a certain authentication method is no longer applicable, and instead
switches to relying on continuity to extend the authentication. In this case, the authentica-
tion module uses a particular change in the context to recognize that current authentication
methods are not sufficient, and deauthenticates itself. For an example of this case, con-
sider a context where the authentication module uses a specific location (e.g. their home)
to authenticate the user. This continues to work until the device detects the presence
of multiple unfamiliar people in this context, meaning that simply being at a particular

ol

Rule Action Justification
U, > 5ADIC,) < .9 Enable Device Theft If there are unfamiliar
Module people around, and the
device is not on person,
enable the device theft

module.
UG, <.1vD(C,) >1 Disable Device Theft
Module
U, >5NDC,) < .2 Start Audio Alarm It is likely the device is

being stolen.

Table 6.3: Module rules and justification for the device theft module. They are based on
experimentation conducted using the Cambridge/Haggle dataset, discussed in Chapter 7,
and are meant as proof of concept.

location is no longer sufficient to authenticate the user. The authentication module deter-
mines that in the current context, location is an insufficient method of authentication, and
deauthenticates the user, forcing them to scan their fingerprint to unlock the device.

6.3.2 Device Theft

The purpose of the device theft module is to detect when the device is being stolen by an
adversary, and prevent the theft - either by notifying the owner or sounding an alarm to
discourage the thief. This is specific to contexts where theft is more likely, so the system
should only enable when unfamiliar people are nearby. To this end, it relies on the context
engine’s estimates of U(C,,) and D(C,,).

Currently, the device theft module simply enables or disables itself (via persistent notifi-
cations), and starts an audible alarm if the device is too distant, following rules as outlined
in Table 6.3. In the future, device theft modules would likely use the device sensors and
collect data specific to device theft in order to raise the alarm, instead of simply relying
on the context data (which is better suited to enabling and disabling the module, rather
than performing the act of detecting device theft).

o2

Rule Action Justification
D(C,) < .75 Enable Device Loss Module Enable the device loss
module if the device is not

near the owner.

D(C,) > .85 Disable Device Loss
Module
D(C,) < 3ANP(C,) < .5 Send Lost Device If the device is too far,
Notification attempt to notify the

owner.

Table 6.4: Module rules and justification for the device loss module. They are based on
experimentation conducted using the Cambridge/Haggle dataset, discussed in Chapter 7,
and are meant as proof of concept.

6.3.3 Device Loss

The device loss module aims to notify the owner when they are likely unintentionally leaving
the device behind when leaving a context. Device loss is more likely in public, since if the
user leaves the phone behind on purpose, it is not device loss. Since purposefully leaving
the device behind is more likely in private contexts, the module limits itself to more public
contexts. It thus relies on estimates for P(C,,) and D(C,,) from the context engine to make
decisions.

Currently, the device theft module simply enables or disables itself (via persistent no-
tifications), and sends a priority notification if the device is too distant, following rules as
outlined in Table 6.4. Similarly to the device theft module, a more fleshed out approach
would likely gather its own data and rely on the context engine only for deciding when to
enable and disable itself. However, unlike the device theft module, a rudimentary device
loss module could be implemented using only the context data - all the necessary ingre-
dients are there. This basic module does implement a fairly usable module as is. One
method of improving on this could be to monitor the rate of change of proximity, allowing
for a clearer picture of when a device is potentially being stolen.

23

6.4 Changes from CORMORANT

As mentioned before, the codebase for CORMORANT [20] formed the basis of our im-
plementation. However, due to the different use cases of our system when compared to
CORMORANT, there were many changes to be made. In this section, we will outline
the largest changes made to the codebase. Instead of introducing the overall structure of
the CORMORANT framework here, please refer to the work outlining their implementa-
tion [21].

Unnecessary Code Removal The CORMORANT codebase has a number of sections
irrelevant to our approach. Namely, since the system was built around cross-device au-
thentication, there are a number of different implementations across various platforms. To
start, we limited ourselves to working only with the Android applications making up COR-
MORANT. In addition, there is a large section of the codebase dedicated to inter-device
communication using the Signal protocol. All of this code is also unnecessary, as PUPy
is confined to a single device. Therefore, all Signal code and inter-device communication
was also removed. The next section of the existing codebase removed was the gait authen-
tication plugin, which was one of the authentication plugins used by the system. Since
an implicit authentication application was secondary to our system, and the gait analysis
application was fairly complex, removing the application was a fairly easy choice.

At this point, all code not necessary for forming the basis of our implementation was
gone. What remained was a number of example input plugins CORMORANT has, the
central CORMORANT framework, and the CORMORANT API that is used by plugins
to interface with the CORMORANT framework.

Conversion to Kotlin The next step was to convert the codebase to Kotlin. Kotlin is
the new default for application development on Android, and our past projects that were
implemented on Android used Kotlin. Since Android Studio includes a tool for automati-
cally converting Java files to Kotlin, the conversion was fairly easy - manual cleanup took
only a few days. The Kotlin conversion made further work on the codebase significantly
easier, as Kotlin is now the primary supported language for Android development, and the
author is better acquainted with the language.

Framework Overhaul The next step was to overhaul the central framework COR-
MORANT uses. Since the framework is built around predicting two values, risk and

o4

confidence, we needed to modify the code to accept three values instead - privacy, unfamil-
iarity and proximity estimates. The plugin manager was updated to accept three values,
and the fusion and decision modules were overhauled to accept the three values and better
fit our theoretical framework. The fusion module was converted to the aggregator mod-
ules, and the decision module became the rules module. Finally, while the CORMORANT
framework has limited functionality allowing the propagation of the confidence level to
other applications, this needed to be nearly entirely overhauled to match our functionality
module approach.

95

Chapter 7

Evaluation

In order to properly evaluate the efficacy of the system we have implemented, we would
normally test the Android implementation outlined in Section 6 through a user study.
However, due to the COVID-19 pandemic, going to a large number of public places over
many months is entirely out of the question, as public health orders restricted such activi-
ties. Instead, we take an approach shared by many previous works [15, 20], instead turning
to existing datasets we can use to evaluate our system. This chapter will outline the
evaluation of the system we performed using these datasets, and is structured as follows:
Section 7.1 will outline the two datasets we used for evaluations. Section 7.2 will examine
a number of specific scenarios in depth, and perform qualitative comparisons between our
system and existing works. In Section 7.3, we will perform a more high level, quantitative
analysis of our system and how it varies from existing works.

7.1 Datasets

For running evaluations of the system, we rely on two main datasets. For a high level,
day-in-the-life look at how the system would react, we rely on the Cambridge/Haggle
dataset [10]. For a more low level simulation of how the system would work when fed raw
data, the MDC dataset [25, 27] is used. A description of the two datasets follows.

o6

7.1.1 Cambridge/Haggle Dataset

The Cambridge/Haggle dataset [10] is a dataset containing a number of experiments. Each
experiment is the compilation of Bluetooth sightings by a group of users carrying small
Bluetooth devices (iMotes) for some period of time. For our testing, we use a single one of
these experiments. This particular experiment was a deployment of iMotes among students
for roughly a week in Cambridge. The resulting data outlines all sightings of Bluetooth
devices, both those known as familiar (other students/participants) and those considered
unfamiliar (anyone not in the experiment). This allows us to fairly easily adapt their
dataset for our own uses.

For our use, we consider any other participant as familiar, and any non-participant as
unfamiliar. These sightings are then used to calculate our values for privacy and unfa-
miliarity as outlined in Section 5.3. In addition, some stationary iMotes included in the
dataset are set up in the shared laboratory, which was adapted as a location of high context
familiarity for the purposes of our evaluation of the system using this dataset. To augment
this, the top three Bluetooth addresses were also added as frequently visited (and thus high
context familiarity) locations as well, giving us a sufficient amount of sightings to draw
from for calculating context familiarity. Finally, proximity data was randomly generated
as there was no reasonable way to derive it from the dataset, which is only tracking times
of sightings, not proximity to the user or anything else.

The point of evaluation using this dataset is not to evaluate the ability of the system
to learn over time, or provide a dense graph to look at, but to serve as a simple proof-of-
concept for the system. The lightweight nature of the dataset allowed rapid iteration and
testing of the system, and tweaking of the logic and equations.

7.1.2 MDC Dataset

The MDC Dataset [27] is a large dataset based on the Lausanne Data Collection Cam-
paign [25]. It is composed of a massive amount of data collected mainly through sensors
and logs of mobile devices used by the participants, for periods as short as a few weeks to
more than a year. The vast quantities of data collected allows extremely in-depth analysis
of how PUPy would function in the real world, and it or similar datasets have been used
by similar projects in the past to simulate long-term usage of such systems [15, 20].

However, there are many datasets such as this one. The reason this dataset in particular
was chosen is twofold - it is used by Gupta et al. to test their familiarity system, a work
whose contributions formed an important part of the theoretical framework in Section 5.3,

57

Type Quantity
Bluetooth Addresses 587 000
Bluetooth Sightings 34 000 000
Location (GPS) 12 000 000
Location Inferences (based on network addresses) 12 000 000
Visited Places 493
Wireless Network Sightings 57 000 000

Table 7.1: The type and quantity of records in the MDC dataset that were used in the
experiments.

Mean Standard Deviation Median

Overall Time 358 days 149 days 374 days

Proximity Time 194 days 94 days 206 days

Safe Visit Time 171 days 91 days 159 days
Authentications 11882 8523 10025

Table 7.2: Statistics on the MDC dataset.

and it used a viral marketing approach to recruit participants. This approach ensured that
many of the participants regularly interacted with each other, ensuring we would have a
solid basis for learning what devices are familiar.

The dataset is comprised of data collected from nearly 200 participants. The dataset
crucially includes location, network and Bluetooth data, all data points that are extremely
helpful in calculating values for alpha, privacy and unfamiliarity. Acceleration data and
inferences on user behaviour based on said acceleration data is also available, which is
used to estimate proximity as well. Table 7.1 outlines the quantity and type of the various
records we used when calculating the values.

In order to gain a better understanding of the sort of quantity of data the dataset
contains, we can look to Table 7.2. This table shows some statistics on the average timespan
of each user in the dataset. On average, the user data recorded spans roughly a year, with
standard deviation of roughly half a year. This gives us plenty of time to analyze how the
framework learns and reacts. However, in order for the proximity calculations to work, it
is necessary that proximity data is also included - often, that data does not span the entire
length of a user’s timespan. On average, there is roughly 190 days of proximity data, with
a standard deviation of 94 days. This is generally the section of the dataset our graphs

o8

Safe Context Unsafe Context Unclassified Context
My home Holiday resort or vacation Home of a friend
spot
My free time home Shop or shopping center My other workplace
My main workplace Location related to My main school or college
transportation
Place for indoor sports Other
Place for outdoor sports I do not know

Table 7.3: How different contexts were mapped to safe or unsafe contexts.

focus on, instead of the entire timespan.

A subset of the users in the dataset also collected data pertaining to their current
context periodically throughout the experiment. This data is what we use to extrapolate
the ground truth data for evaluation later on. On average, there is around 170 days
of context data from “safe” contexts as determined by the mapping in Table 7.3, which
matches the mapping used by Gupta et al. in their evaluation [15]. In general, there was
very little “unsafe” context data, and not every user collected unsafe ground truth data.
Those who did had around two to three days of unsafe context to evaluate on.

The final statistic of interest is the number of detected authentications. To calculate
the number of detected authentications, application usage logs from the MDC dataset
were used, which log any interaction between the user and any application. We assume
that an authentication happens when application usage takes place 310 seconds after the
last usage. This number is based on the work of Harbach et al. [10], which shows that on
average, users use their device for 70 seconds, with a standard deviation of 240 seconds. We
assume the device must reauthenticate if it has not been used for more than one standard
deviation from this average. On average, there are just under 12 000 authentications per
user, with a standard deviation of 8 523 authentications. These authentications are what
form the backbone of our evaluations.

By comparing the classification of a given authentication to the ground truth con-
text, we can get a sense of if the system is properly classifying contexts. That is, if our
ground truth data tells us a given context is usually considered safe, we would expect a
higher proportion of the authentications in that context to be skipped, or marked as safe.
Conversely, we would expect a higher proportion of authentications in unsafe contexts to
require authentication, or be marked as unsafe.

29

7.2 Qualitative Analysis

In this section, we will perform a qualitative analysis of the framework, as well as outline
steps taken to test the framework and investigate its efficacy. This section will focus
mainly on examples and less on statistical analysis, which we will leave for Section 7.3.
We will begin with outlining the first steps taken in evaluating the framework via the
Cambridge/Haggle dataset, then discuss the bulk of the evaluation, completed using the
MDC dataset.

7.2.1 Visual Analysis Based on the Cambridge/Haggle Dataset

In order to get a sense of if PUPy would actually function as expected, before working with
the far more complex MDC dataset, we first created graphs based on the Cambridge/Haggle
dataset, which is significantly simpler and smaller, allowing for rapid iteration and testing.
In contrast with the MDC Dataset, the Cambridge/Haggle dataset spans only a few weeks
at most. This means that we could not really allow the framework to learn over time -
instead, we used the Cambridge/Haggle dataset as a simulation of how the system would
function after several months of use.

In order to accomplish this, we broke up the Bluetooth sightings used into a number of
categories. The Cambridge/Haggle dataset assigns a numeric id to each unique Bluetooth
address - we harnessed this by using the numeric ids linked to other students as familiar
devices, and most other devices as unfamiliar. This allowed us to obtain estimates for
P(C,) and U(C,,) by counting the number of familiar and unfamiliar devices in a given
context. However, since the Cambridge/Haggle dataset is only Bluetooth sightings, we
did not have any data through which to calculate D(C,,),. To get around this, we simply
generated random estimates for proximity.

With these measures complete, the only value we did not yet have any data for was con-
text familiarity. To obtain estimates for context familiarity, we combined two approaches:

1. Using stationary iMotes scattered around Cambridge. Depending on where the iMote
was located, it was matched to a particular context familiarity value. For example,
iMotes in public spaces mapped to low values for context familiarity, while the iMotes
at the entrance to the computer lab were marked as locations with high context
familiarity. There were 18 iMotes scattered across the city.

2. Using the most seen numeric ids by each user as highly familiar locations. This does
not reflect reality (as we have no guarantee these addresses were actually stationary),

60

o ;
20051028 06:11:00 2005-10.29 12:49:00 2005-10-30 18:27:00 2005-11.01 01:05:00 2005-11.02 07:42:00 2005-11.03 14:20:00 2005-11.04 20:58:00 2005-11.06 03:36:00 2005-11.07 10:14:00 2005-11.08 16:51:00

= o02s
oco

100
zors
Zos0
£ozs

0.00

2005-10-28 06:11:00 2005-10-29 12:49:00 2005-10-30 18:27:00 2005-11-01 01:05:00 2005-11-02 07:42:00 2005-11-03 14:20:00 2005-11-04 20:58:00 2005-11-06 03:36:00 2005-11-07 10:14:00 2005-11-08 16:51:00

<025

0.00

2005-10.28 06:11:00 2005-10-29 12:49:00 2005-10-30 18:27:00 2005-11-01 01:05:00 2005-11.02 07:42:00 2005-11.03 14:20:00 2005-11.04 20:58:00 2005-11.06 03:36:00 2005-11.07 10:14:00 2005-11.08 16:51:00

Device Auth

Device Theft

Modules.

Device Loss

2005-10.28 06:11:00 2005-10-29 12:49:00 2005-10-30 18:27:00 20051101 01:05:00 2005-11.02 07:42:00 2005-11.03 14:20:00 20051104 20:58:00 2005-11.06 03:36:00 2005-11.07 10:14:00 2005-11.08 16:51:00

Figure 7.1: An example of the sort of graph generated using the Cambridge/Haggle dataset.

but allows us to have different contexts with high context familiarity across different
users, adding additional variation to each user’s graph.

The combination of these two measures allows us to simulate context familiarity. With all
four values now accounted for, we can create graphs of them. An example graph is shown
in Figure 7.1. The graph contains five sections:

1. The context familiarity section. This section marks the context familiarity value ac
for each location, and how it fluctuates over time in purple.

2. The privacy section. This section shows the privacy value, P(C,,), over time in blue.

3. The unfamiliarity section. This section shows the unfamiliarity value, U(C,,), over
time in green.

4. The proximity section. This section shows the proximity value, D(C,,), over time in
yellow.

5. The actions section. This section shows when each of the three functionality modules
we simulate are enabled. The top row, in cyan, is the authentication module. The
middle row, in purple, is the device theft module. The bottom row, in lime, is the
device loss module. If the above values for P(C,,), U(C,), and D(C,,) match the
rule that enables a functionality module, that section of the row is highlighted in its

61

corresponding colour. On the other hand, if the values match the rule that disables
any of the modules, that part of the row is left empty.

Looking at the resulting graphs, it was clear that PUPy works as expected, with mod-
ules getting enabled and disabled depending on the values P(C,), U(C,) and D(C,).
Heartened by this rudimentary implementation, we moved on to the MDC dataset, and
creating graphs from it.

7.2.2 Visual Analysis Based on the MDC Dataset

In order to get a good sense of how PUPy reacts to device sensor data, we created a script
that builds graphs of the values resulting for each user’s data, and showed how those values
affected the enabling and disabling of the modules. We will look at a few specific users in
this section, investigating how the system reacts in various situations.

To start off, we will take a bird’s eye view of what the system looks like over the total
lifetime of a given user’s data. Some example graphs have been included in Figure 7.2.
These examples were included instead of others due to a number of factors. Many users in
the dataset did not regularly collect data, so there are only three or four data points for
any given day. Others participated only for a few days or weeks. The examples selected
here span a large amount of time, and have a consistently dense amount of data to draw
from.

We will break down these graphs and explain what they represent. In each graph, there
are six sections:

1. The scenario section. This is split into two parts - the top shows the ground truth
data (if available for the given user), and the bottom shows each authentication
of the device, as described in Section 7.1.2. If the ground truth data tells us the
current context is safe, it is shown as green. If it is unsafe, it is shown in red.
For authentication attempts, if the authentication module was disabled when the
authentication takes place, the authentication is marked as a green line. If the
module is enabled, the authentication is marked as a red line.

2. The context familiarity section. This section marks the context familiarity value o
for each location in purple, and tracks how it fluctuates over time.

3. The privacy section. This section shows the privacy value, P(C,,), over time in blue.
If there is a significant gap between the values of P(C,,) and U(C,,) at a particular
time, that time is highlighted in gold.

62

"BYRD I9SN
91} JO uoIyeINp SI1US YY) $1da(] “jeseyep DN Y} Ul siosn awios wolj sydeid Jo WOI9[es y g) 9INJI]

[1A0A 1 TRRCAARARHARRY Rt Dt) R ION (AN RN 1 T Ifi%

Al AR AT A 5?

Al
i Ol

fégggfgﬁsLé;xé DLW WL 0]

QAT ARG T A

.:_— Eéﬁé%_ e ——f_.‘__j CTRETTITITTETTTY

(I Y RN ARARRRP RN RO NCRARRLEL L AR

_ (YT FVAO PR 1A ::_:mm

THWTTTIE d_ ii <‘,h VT ;_4__‘: TV T .v;.:._,;; .;_:.*:«:_,_,;,;_, T ‘ﬂ T f\ % ;;_ I

1 N RRRTRRRCR AR feeRRTLRRNDT) ML EREARCERRRRAARHL | R ateARrAR RRRRIATRRR 0 A

AETCNR AR ARCRC AR NELRRR AN S AOETON 1

4. The unfamiliarity section. This section shows the unfamiliarity value, U(C,), over
time in green. If there is a significant gap between the values of P(C,,) and U(C,,)
at a particular time, that time is highlighted in gold.

5. The proximity section. This section shows the proximity value, D(C,,), over time in
yellow.

6. The actions section. This section shows when each of the three functionality modules
we simulate are enabled. The top row, in cyan, is the authentication module. The
middle row, in purple, is the device theft module. The bottom row, in lime, is the
device loss module. If the above values for P(C,,), U(C,), and D(C,,) match the
rule that enables a functionality module, that section of the row is highlighted in its
corresponding colour. On the other hand, if the values match the rule that disables
any of the modules, that part of the row is left empty.

The gold highlights in the third and fourth sections are based on a large gap between P(C,,)
and U(C,,). If a context has entirely unfamiliar devices, we would expect that P(C,,) would
be equal to 1 —U(C,,). This is because, per Equation 5.5:

o]
!
uc,) =-<*-——
(€)= 2
and since U(C,,) = L(C,,) * (1 — F(C,,)), when F(C,,) = 0, we have that U(C,) = L(C,,).
This makes intuitive sense - if there is no one around you who is familiar, then the number
of unfamiliar people is exactly equal to the total number of people. Substituting, we get:

=z
U, =-=< — F(C,) =0
874
Finally, recall that, by Equation 5.2:
P<Cn) =1--¢
ac

and we can see that:
P(C,) =1-U(C,) <= F(C,)=0.

Why is this of interest? Because if P(C,,) # 1-U(C,,), it tells us that F(C,) > 0. When
there is a large gap, that means F(C,,) is likely very high, and thus we are surrounded

64

by a large number of familiar people. This sort of event, when privacy is very low but
unfamiliarity is also low, is where the additional context data our system provides allows
for functionality modules to better adapt to the context. For example, there is clearly a
very big difference in a context when you are at a dinner party and everyone is a stranger,
and when you host a dinner party with your ten closest friends. Therefore, we keep an eye
out in our calculations for such situations. If such situations are widespread, it means that
there are many contexts in which our additional context data is particularly useful over
other existing works.

7.2.3 Visual Analysis of Familiarity Improvements

One of the important parts of the framework is the improvements made to how it adapts
over time, through its use of familiarity. The usage comes in two types - context familiarity
and unfamiliarity. The latter of these two types aims to improve on the familiarity system
devised by Gupta et al. [I5]. In order to get a better idea of how the system is adapting,
we examined narrow slices of the previous graphs. Since they often span hundreds of
days, zooming in and looking at particular points in time along during the length of the
experiment allows us to look, in a more fine grained manner, how the devices respond to
specific scenarios. In this section, we will look at a few of these particular scenarios, and
discuss how the system reacted.

Adaptation through Context Familiarity

One area of particular interest was how the context familiarity system learned over time.
To examine how quickly it learns about new contexts, we examine the start of the graph.
As seen in Figure 7.3 the familiarity value for a particular context is incremented once every
visit. So as time goes on, and the number of visits to a particular context increases, so does
context familiarity. In the case of our example user, it took a particular location (likely
their home, or office) about a month and a half of consistent visits to hit the maximum
value of 200. While this could be improved through the use of user feedback, there is not
a reason to - the system functions perfectly well without immediately setting the home to
200. It may be a bit too sensitive, but otherwise works well. This is due to the role context
familiarity plays in calculating privacy and unfamiliarity - it influences only how quickly or
slowly the value changes, and does not provide input data. This approach is key to being
able to limit the need for user feedback.

65

Scenario
o v
0 o

°
o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

AL e Lo L L

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

AR U TR LR AN MCEAALURRARAARURR KA

1 2 3 4 5 6 7 8 910111213141516171‘81920212223242526272829303132333435363738394041424344454647484950

N
=3
S

o

Context Familiarity

g
=3

Privacy
=]
I

°
5

=
=)

Unfamiliarity
(=]
0

o
o

n
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Proximity
o v
n o

o
o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

g
o

«

2 &

gos{ /Il | LA (W0 (s [] 1 | 1R A A R I |1

=

0‘01234567891011121314151617131920212223242526272829303132333435363738394041424344454647484950
Time (Days)

Figure 7.3: An example of learning behaviour of the context familiarity module.

Adaptation through Privacy and Unfamiliarity

The gold highlights (as discussed earlier) single out contexts where there is a large gap
between privacy and unfamiliarity, which are of particular interest to us. As will be dis-
cussed more thoroughly in Section 7.2.4, these are contexts where our system provides
better detail and nuance than the original familiarity system. To understand what gives
rise to these contexts, we will examine a close up of one such example. In Figure 7.4, we
see the graphs from before, focused on a 6 day timespan. As can be seen in this closer
view, the highlights occur mainly when privacy is somewhat low (i.e., P(C,) =~ .5), but
unfamiliarity is even lower. This tells us that these sorts of contexts occur mainly when
the user is in a group of people, some or all of which are familiar to them.

7.2.4 Comparison with Gupta et al.
The approach taken in PUPy carries a number of strong similarities to the work of Gupta

et al., who consider the metrics instantaneous familiarity and aggregate familiarity [15].
Indeed, the method for calculating instantaneous familiarity has an important influence

66

Scenario
e o~
o U o

N
o
S

o

Context Familiarity

g
=3

Privacy

o o
o

Unfamiliarity
o o =
o U o

Proximity
o o =
o U o

=
o

Modules
e o
o

Time(Da‘;S)
Figure 7.4: A closer look at some highlighted scenarios.

on how unfamiliarity is calculated. However, the approach taken by Gupta et al. and the
approach taken by PUPy have some key differences, which allows it to better reflect a
wider set of circumstances.

Before continuing, let us outline the definitions of instantaneous and aggregate famil-
iarity. For instantaneous familiarity, we already defined it in Section 5.3, in Equation 5.4:

1

F(C,) = — Fy(d, C,
(Cn) ’D0n|de%£n a(d, Cy)

where Fy(d,C,,) is device familiarity (Equation 5.3), and D¢, is the set of devices in the
context C,. Aggregate familiarity is the aggregate of all previous values of instantaneous
familiarity for the current context:

aggFam(C,) = acF(Cy) + (1 — ac) F(Ch1y)

where a¢ is a suitably chosen constant. We have adapted the notation from their paper
to better match ours.

Gupta et al.’s system is based on geolocational contexts and the devices therein. Re-
moving this requirement and focusing instead merely on the people in a given context frees

67

us from the location-based restrictions of their system. As long as we can obtain an esti-
mate for how many people are around, PUPy can remain functional - moving or otherwise.
Since the only value that relies on location is context familiarity, simply using the default
while moving allows PUPy to continue to provide estimates while moving between various
stationary contexts.

Consider the method of calculating privacy. At its root, the only value it depends on is
the number of people around, L(C,,). This can be detected through any number of methods
- detecting the number of distinct voices, the number of nearby phones, etc. Calculating
this value does not necessarily depend on there being Bluetooth devices nearby that we
can categorize as familiar or unfamiliar, and is not hampered by linking the context to a
particular location. This stands in contrast to the Gupta et al. system, which relies on
calculating the familiarity of devices seen in a given location.

To highlight the issues caused in non-static contexts by the Gupta et al. system’s
dependence on detecting similar devices, imagine a context where the owner is walking
down a quiet street. There is no one around, and thus no devices are around. How do the
actions of the Gupta et al. system and PUPy diverge? In the case of the Gupta et al. system,
the framework reports low instantaneous familiarity, since it requires the presence of devices
to increase this value. This locks the phone down, requiring an authentication. This
will persist, no matter how frequently the owner walks down this street - instantaneous
familiarity will always be low.

Conversely, consider privacy. The absence of devices and noise suggests there are few
people around, meaning that P(C,,) is likely fairly high, accurately reflecting the situation.
However, if there are a group of people walking along the street, the device can detect
these Bluetooth devices, and perhaps the conversation happening in the group, and de-
crease P(C,) to accurately reflect the situation. Using these different values for P(C,,),
we can modulate how we authenticate more effectively in this scenario than the Gupta et
al. system.

In a similar vein, imagine a context in which there are no devices to be found. In the
case of privacy, this can be used as evidence that P(C),) is high, using the logic that few
devices means there are few people. The Gupta et al. system, however, run into trouble.
Since the whole system is based on detected familiar devices, no devices to detect means
instantaneous familiarity cannot be ascertained. The Gupta et al. system is built to work
only when there are plenty of devices around to learn about. PUPy (and in particular
P(C,)), with its focus on the number of people, does not have this issue.

Similarly to P(C,,), U(C,) responds well to cases where there are few people/devices
around. Since it is also rooted in counting the number of unfamiliar people, if there is

68

no one around it also reports a more accurate value. Since there is no one around, there
are necessarily no unfamiliar people around, either. But because the value is based on the
same familiarity definition used by Gupta et al., it responds similarly in contexts where
there are plenty of people around, familiar or unfamiliar.

Taking a broader angle, the system described in this paper is fundamentally optimistic
- it assumes the context is private and safe, until evidence to the contrary is provided. This
allows it to function in more contexts than the Gupta et al. system, which is fundamentally
pessimistic - it assumes all locations are unsafe, over time building up a sense of trust for
particular locations. This can cause trouble when used in many contexts. Our optimistic
approach goes against common practice in security - a pessimistic approach is far more
safe. The tradeoff being made here is one of security and usability - while the system
described in this paper is less secure, it is more usable, a tradeoff that makes sense for
many.

There are, of course, still examples where such a system is less secure - one particular
example is when there is a change in context too rapid for the device to detect. Due to
hardware limitations, we can only collect sensor data at a certain frequency. If the system is
in a private location with no unfamiliar devices when sensor data is polled, and the context
rapidly changes to a more unsafe context, there is a window where the device incorrectly
identifies this high threat context as a low threat one. For a practical example, a carefully
planned (or particularly unlucky) mugging may be a vulnerability of the system. This
can be mitigated with high frequency polling, which naturally would have an effect on the
device’s battery. It is an interesting challenge to balance these issues, one that has not
been addressed in this work. The Gupta et al. system, however, does not have this issue.
Since it defaults to a location being unsafe, unless the mugging took place in a familiar
location (i.e., your home), the device will be locked, since that is the default.

7.3 Quantitative Analysis

In this section, we will look at various metrics and statistics, to see how the amount of
data and length of use impacts the result of our system. We will then look at a number of
performance statistics, which will allow us to evaluate the efficacy of PUPy.

69

100

80+
X —
2 60 -
(o]
o
(V)]
O 40
)
(@)
3
20 -
01—

0 10000 20000 30000 40000 50000
Total Number of Authentications

Figure 7.5: The cumulative success rate of the system in allowing authentications over the
total number of authentications.

7.3.1 How Performance Changes Over Time

There are two sections of PUPy that can benefit from having a large amount of time
and data to learn from when determining the context. The first of these two sections is
the calculations we perform for unfamiliarity, which learns what devices are familiar and
which are not over time. The second is the value of context familiarity, which increases as
contexts are routinely visited. To examine the impact time has on the performance of the
system, we will look at a number of metrics.

Figure 7.5 plots the cumulative success ratio over time. The success ratio is defined as
follows:

number of authentications when the authentication module was disabled so far
total number of authentications so far

x 100

As the system learns, we would expect this ratio to increase, as more and more unlocks
do not require an explicit authentication. That is exactly what we see - as the number
of authentications increases, the success ratio also increases, eventually stabilizing around
80% success.

70

100

80 A

60

40 -

Success Ratio (%)

20 A

0 2000 4000 6000 8000 10000 12000 14000
Total Usage Time (Hours)

Figure 7.6: The success ratio for different users, with different total usage time.

14000 8000 8000
7000 4 7000
12000 4

? £ 6000 B 6000
3 10000 2 3

= = 5000 Z 5000
° 2 °
£ 8000 - 2 2

2 ® 4000 - ‘8 4000
[=4 < [=4
‘s 6000 9 . u

2 £ 3000 2 3000
[= = IS

£ 40001 £ 2000 2 2000
< & S

20001 10001 oo O’F ' x‘ 1000

ol 0 ”“ *q‘ z' 0

0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
Total Usage Time (Hours) Total Proximity Time (Hours) Total Proximity Time (Hours)

Figure 7.7: The relationship between the total usage time and the amount of time each
module is enabled.

71

Figure 7.6 shows the overall success ratio for each user, depending on the total amount
of time spent with the device. The red line represents the best fit line, which shows
us that while there is a weak correlation between the total time a user uses the device
and the success ratio, the system is able to learn fairly quickly. If the device is used for
any reasonable length of time, there is a success ratio above 50%, meaning half of all
authentications are implicit using PUPy.

Figure 7.7 shows the relationship between the total time the device is used and the
amount of time each of the three modules are enabled. The graphs are square, so if the
module was enabled 100% of the time, the dot would lie on the diagonal. If the system did
not learn over the life of the device, we would expect to the see the amount of time enabled
grow roughly linearly. Instead, barring a few outliers, the amount of time enabled grows
slower for authentication and theft, the two modules that rely on data that adapts over
time. Proximity, however, does not have any inputs that learn over time, hence the steeper
growth pattern. This behaviour is expected. While both device theft and device loss rely
on proximity to detect when the owner and device are growing further apart, device theft
also relies on unfamiliarity, which adapts over time.

7.3.2 Overall Performance

In this section, we will break down some overall performance statistics of how PUPy per-
forms. Firstly, we will discuss the success ratio. As discussed previously, the success ratio is
the ratio of the number of authentications that happened when the authentication module
was disabled, over the total number of unlocks. Essentially, it tells us how frequently the
user does not need to authenticate at all. In Table 7.4, the ratio is expressed as a value in
the range [0, 1]. On average, the ratio was 0.77, or a 77% reduction. This means that only
around 23% of authentications occurred while the authentication module was enabled. It
is important to note that, with a fully featured authentication module building on this,
this ratio could likely be even higher, as some authentications will take place implicitly.

Despite PUPy being mainly a context detection framework and not directly authenti-
cating the user, PUPy compares nicely to a number of existing works - Progressive authen-
tication [38] saw a reduction of 42%. CORMORANT [20] was able to achieve a reduction
of 97.82%, but requires a much larger framework overall - it combines authentication
data from multiple devices, and requires the application to be installed on all devices.
ConXSense [32] achieves similar performance to us, relaxing security in roughly 70% of
contexts.

The next statistic of interest is the total number of highlighted contexts, as discussed in

72

Mean Standard Deviation Median
Success Ratio 0.77 0.09 0.8
Total Highlighted Contexts 25 44 8
Auth Time 52 days 44 days 46 days
Theft Time 29 days 25 days 23 days
Loss Time 69 days 51 days 56 days
Auth Ratio 0.1 0.1 0.1
Theft Ratio 0.2 0.2 0.1
Loss Ratio 0.4 0.3 0.4
High Context Familiarity 28 16 25
Medium Context Familiarity 44 29 36

Table 7.4: Additional statistics outlining the performance of PUPy.

Section 7.2, that the user encounters on average. The users encountered 25 such contexts on
average (with standard deviation 44) where the privacy and unfamiliarity values diverged,
showing us that our system provided better context information at these points. As we can
see with the high standard deviation, some users benefitted far more from this approach,
so it seems to be a feature only a smaller subset of users will use.

The next set of metrics is the total amount of time each of the three modules were
enabled (to be compared against Overall Time and Proximity Time from Table 7.2), and
their corresponding ratios. Comparing these, we see that the device loss module was by
far the most active module, activated roughly 40% of the time. This makes sense, as it
has the most general rules governing it. On the other hand, the authentication and theft
modules were only enabled roughly 10% and 20% of the time, respectively.

The final two metrics of interest are the number of locations that, by the end of the
timespan, had high and medium context familiarity values, as discussed in Section 5.3.
This denotes the number of places the user visited over their timespan with enough fre-
quency to increase context familiarity beyond 175 for high familiarity locations, and 100 for
medium familiarity locations. The high context familiarity value is somewhat surprising
- on average, 28 locations had a context familiarity value greater than 175. This seems
high, though it is important to note this is generally spanning nearly a year of data. If we
account for the fact each location is a roughly 100m area, simply working in a large work-
place or occasional GPS inaccuracy could artificially inflate this number. However, if this
value is, in fact, too high, a simple fix is to decrease the rate at which context familiarity
grows. Another approach could be to slow down the growth of context familiarity as it

73

approaches the maximum. The value for medium context familiarity is more in line with
what one would expect. On average, 44 contexts are marked as medium familiarity.

7.3.3 Comparison with Gupta et al.

While qualitative arguments comparing PUPy to other works can be useful, it is equally
if not more convincing to see how frameworks react to similar inputs. To that end, an
attempt has been made to simulate related works in a similar manner to how PUPy is
simulated, and compare the results.

The most obvious existing work to compare PUPy against is that of Gupta et al. [15].
Portions of the system outlined by Gupta et al. form the basis for the unfamiliarity calcula-
tion in PUPy. However, the implementation of the familiarity system varies with regard to
our system, along with what metrics are used for evaluation. In order to compare the two,
we will re-implement their theoretical framework, using the computations and statistics
generated through this project.

Before continuing, it is best to define a number of terms we will use in our evaluation.
Firstly, precision, which is defined as:

|Gsafe N C1GREEN|

Precision =
|Careen]

where Ggqpc is the number of safe contexts in the ground truth dataset, and Corppn is the
number of contexts classified as safe/green by the system. Precision essentially tracks how
often a context we classify as safe/green is also safe in the ground truth data. Another
important metric is recall, defined as:

|Gsafe N CarEEN]

|Garel
Recall is used to track how often we classify a safe context from the ground truth dataset
as safe/green. The final metric of interest is fallout:

Recall =

|Gunsafe N CGREEN’

’Gunsafe’

Fallout tracks what proportion of a given set (in this case, ground truth unsafe contexts) are
classified as safe/green. We use this to track how likely a system is to misclassify various
types of contexts. Similar metrics for precision, recall and fallout can be calculated by
using Gynsafe and Crpp as well, to measure the performance of the system when classifying
unsafe contexts and other cases. We will now move on to discussing the new evaluation
method.

74

I
5

-
-

LT : Low threshold
HT : High threshold

Instantaneous Familiarity

(=]

LT HT

Aggregate Familiarity

Figure 7.8: Security mapping for familiarity used by Gupta et al.

Gupta et al.’s Evaluation Method

The Gupta et al. system is evaluated in their paper using ground truth, which is created
from the place data included in MDC dataset. This dataset is generated through a subset
of the MDC dataset, which categorizes various contexts the participants visit via labels -
home, friend’s house, restaurant, et cetera. Gupta et al. categorize these labels into safe,
risky or uncategorized, and compares the result from the familiarity system to this ground
truth.

Their system is mainly interested in classifying various locations into one of three modes
- red, yellow or green, denoting the predicted safety of the location as shown in Figure 7.8.
The aim of their evaluation is for the system to evaluate ”safe” contexts from the ground
truth dataset as green, and ”"unsafe” contexts as red. In order to do this, they define two
thresholds, delineating the boundaries between the three modes. These thresholds are 0.4
(marks the boundary between red and yellow), and 0.85 (marks the boundary between
yellow and green). They calculate a number of different metrics based on this evaluation,
including precision, recall and fallout.

Unfortunately, their ground truth dataset cannot be directly used for our system. While
there is a number of different potential metrics for PUPy, none of them overlap with this
context profiling evaluation done in the Gupta et al. paper. The metrics currently used to
evaluate PUPy are mainly concerned with the amount of time a module is engaged, the
number of authentications successfully bypassed. These are all far more applicable to the
stated goal of our system than the context profiling done by Gupta et al.

Due to these differences, a direct quantitative comparison of the two is not feasible.
However, a hybrid approach where the theoretical framework underpinning the context

75

profiling system used by Gupta et al. could be tested against our framework. We will
outline such a hybrid approach next.

Our Evaluation Method

In order to compare the two theoretical frameworks on metrics better suited to describing
the performance of PUPy, we will examine a new evaluation method. We begin by lim-
iting PUPy to just enabling the authentication module, through comparing privacy and
unfamiliarity only. These values are drawn from the same data as is used to calculate
instantaneous and aggregate familiarity in the Gupta et al. system, and so provides a com-
parison between the different results obtained from the underlying location and Bluetooth
data.

To fairly compare the Gupta et al. system, it is repurposed to enabling and disabling
the authentication module, based on rules adapted from their work. This allows the two
system to be compared based on the total time each enables the authentication module
for. The logical basis for these rules comes from the low and high thresholds from earlier
(0.4 and 0.85, respectively). The module can be enabled when the low threshold is met,
and anything above the high threshold can put it into high alert/require a PIN unlock.

While this approach does not really compare the full Gupta et al. system to our full pro-
posed system as we have implemented it, it allows us to compare the relative performance
of the theoretical framework underpinning the Gupta et al. system versus the theoretical
framework underpinning PUPy.

Results

Across every case tested, the authentication module spent significantly more time enabled
using the familiarity system compared to our system. A representative example of this
can be seen in Figure 7.9. This figure shows the values calculated from the sensor data for
PUPy and our custom implementation of the Gupta et al. system, which we will refer to
as the custom familiarity system. There are six graphs:

1. The context familiarity over time is shown in purple.
2. The value for P(C,,) over time is shown in blue.

3. The value for U(C,,) over time is shown in green.

76

"WRISAS ‘e 30 vydny) o) pue AJNd usemiaq yders uosuredurod sydwrexy :6°), 2Indig

T TR

i

o

— :,;_.«_,___,_v e

7

4. The value for D(C,,) over time is shown in yellow.

5. The two values calculated for the familiarity implementation over time are shown.
In orange we plot instantaneous familiarity, and in red we plot aggregate familiarity.

6. When the authentication module was enabled under our system and under the fa-
miliarity system - PUPy on top, the custom familiarity system on the bottom.

As can be seen, the authentication module is enabled significantly more using the custom
familiarity system.

In addition to these graphs, we calculated a wide array of statistics used in the original
Gupta et al. paper, for both PUPy and our custom familiarity system. These results can
be reviewed in Table 7.5. There are four groups of interest - PUPy, PUPy (Strict), Custom
Familiarity and Original Familiarity. We will quickly discuss the differences between each
before continuing to the results.

The first two groups are evaluations of our system. In the first, we consider any time
the authentication module is enabled, whether it is in low or high alert mode, to be an
“unsafe” classification. On the other hand, in the strict version, we consider a classification
to be unsafe only if the authentication module was in high alert. This better matches the
original familiarity evaluation by Gupta et al., which disregarded yellow classifications
during evaluation.

For the familiarity system, the custom familiarity system evaluation is simply the results
we get when we compare our custom familiarity system to PUPy using our evaluation
framework. So instead of ignoring yellow classifications, we instead look at whether it
enabled or disabled the authentication module at all. This is very different from the
original evaluation completed by Gupta et al., and should be treated as such. In general,
for a fair comparison it is best to compare PUPy (Strict) and Original Familiarity, and to
compare PUPy and Custom Familiarity. We will now continue to the results.

The main metric of interest for comparison is that of precision with regard to safe
contexts, as defined earlier. One of our primary goals was to take an optimistic approach
to context detection, under the assumption that such an approach would result in a sig-
nificantly improved user experience. If this worked as expected, we would expect to see a
higher proportion of safe contexts correctly identified as safe. Indeed, this is exactly what
we see in the calculated statistics. Precision regarding safe contexts is 0.978, a roughly
15% increase in correct classifications over the Gupta et al. system. While this seems like
a fairly small increase, this means that in safe contexts, only 15% of the explicit authenti-
cations performed under the Gupta et al. system would be explicit authentications under
our system, a significant improvement in the user experience.

78

Safe Contexts Formula PUPy PUPy (Strict)
Precision Lo Lo 0.978 0.978
GREEN]|
Recall Eaese Conzen] 0.900 0.964
Unsafe Fallout 'GunsgmﬁE”' 0.677 0.780
Unclassified Fallout W 0.658 0.798
Unsafe Contexts
Precision (o f o] 0.048 0.070
RED]|
Recall renseseMhen] 0.323 0.220
Safe Fallout W 0.100 0.036
Unclassified Fallout % 0.342 0.202
Safe Contexts Formula Custom Familiarity Original Familiarity
Precision Lop oty 1.000 0.854
GREEN]|
Recall Conye-onpen] 0.003 0.917
Unsafe Fallout 'Gumfge“ﬁ”m 0.000 0.152
Unclassified Fallout W 0.001 0.755
Unsafe Contexts
Precision [amep T 0.000 0.311
RED|
Recall Eunsasc o] 0.003 0.341
Safe Fallout W 0.997 0.019
Unclassified Fallout % 0.999 0.096

Table 7.5: Various statistics on the performance of PUPy and the Gupta et al. system.

The Original Familiarity numbers are results directly from Gupta et al. [17]

79

PUPy Mean Standard Deviation Median
Auth Time 52 days 44 days 46 days
Auth Ratio 0.2 0.1 0.1
Auth Time Overlap 10 days 10 days 7 days
Auth Overlap Ratio 0.06 0.06 0.05
Custom Familiarity Mean Standard Deviation Median
System
Auth Time 352 days 150 days 372 days
Auth Ratio 0.99 0.02 1.00
Auth Time Overlap 168 days 90 days 158 days
Auth Overlap Ratio 0.99 0.04 1.00

Table 7.6: Additional comparison statistics between PUPy and our custom familiarity
system.

In addition, a larger proportion of unsafe contexts are marked as safe (unsafe fallout is
677 vs .152), and a smaller proportion are marked as unsafe (unsafe context precision is
.048 vs .311). This could mean one of two things - either our system is significantly better
at detecting when a purported unsafe context is actually safe, or it is significantly worse at
detecting actually unsafe contexts. This will depend heavily on how dangerous the context
actually was, which is not covered by ground truth data. In general, we would believe we
are doing a better job of detecting when a purportedly unsafe context is safe, but there is
no way to verify this using this dataset.

Comparing their implementation to ours, the statistics are essentially entirely different.
While on the surface, precision of 1 seems to point to the fact that their system performs
even better in our evaluation, there are a number of important caveats. Firstly, recall is
extremely low, telling us that the system is only correctly identifying a small fraction of
the number of safe contexts. For example, on average the familiarity system implemen-
tation only marks 29 authentications as safe, out of 11 881 average user authentications.
Comparing this to our system, there are on average 9 440 green authentications. What is
happening here is that the familiarity system is being extremely cautious in what it marks
as safe, to the point that the system almost never unlocks the device.

This is made more apparent when we look at how often each framework has the au-
thentication module enabled. In Table 7.6, we have outlined a number of statistics relating
to the amount of time the authentication module was enabled, and when. There are four
metrics of interest:

30

1. Auth Time measures the absolute amount of time the authentication module was
enabled across the life of the experiment. In this case, on average the familiarity
system enabled the authentication module for almost exactly 300 more days than
PUPy. Keeping in mind that in Table 7.2 we show that the average length of the
experiment data is roughly 358 days, and we discover that authentication is disabled
for only six days total out of the year, on average.

2. Auth Ratio just provides a ratio for the above. In this case, we can see that PUPy en-
abled the authentication module for only 20% of the life of the experiment, compared
to 99% for the familiarity system.

3. Auth Time Overlap looks at the intersection between Auth Time, and the amount of
time the user spent in a safe context (Safe Visit Time from Table 7.2). It is not just
one over the other, it looks at the overlap between the two - that is, a period of time
is only added to this amount if the user is in a safe context, and the authentication
module is on. In general, we want this to be as low as possible. Under PUPy, the
authentication module is enabled in a safe context for only 9 days, out of the 170

days on average a user spends in safe contexts. The familiarity system is enabled for
168 days.

4. Auth Overlap Ratio is similar to the Auth Ratio, in that it just provides a ratio for
the above - in this case, the amount of time the authentication module was enabled,
over the total safe visit time.

Overall, our custom implementation of the familiarity system significantly underper-
forms both our system, and the results obtained by Gupta et al. in their work. We theorize
there are two main reasons for this discrepancy:

Implementation Differences It is likely that our implementation of the familiarity
system varies from the implementation they use. Their approach uses significantly different
metrics, and so attempting to perfectly imitate it is difficult. In addition, there is a total
absence of user feedback for our custom familiarity system, which is not the case for the
actual Gupta et al. system.

Evaluation Criteria While Gupta et al. classify contexts into three types, Corpen,
Cygerrow and Crgp that each correspond to a specific expected safety, they consider only
Crep and Cgreen, not Cygrrow, when evaluating. Conversely, we consider any case
where the authentication module is enabled as an “unsafe” classification. This means that

81

for our evaluation (both for PUPy and our implementation of the familiarity system), all
Cy errow classifications essentially count as Crgp. Our implementation of the familiarity
system has a much smaller number of Corppy classifications, and a significantly larger
proportion of Cygrrow classifications.

It is likely these two differences explain the sharply different results we see between
our implementation and their reported values. It is best to see our implementation of
familiarity as an adapted evaluation of their approach, and not a stand-in. Both sets of
metrics give us interesting insight into how the familiarity system compares to our system
- one is their best case evaluation, the other their worst case.

82

Chapter 8

Conclusion and Future Work

Throughout this work, we propose, implement and evaluate a novel context detection
framework called PUPy that breaks with existing works in several ways. We aimed to
provide a context detection framework with a wider applicability than existing approaches,
better accuracy through aggregating multiple data sources, and taking a fundamentally
optimistic approach to context detection to improve the user experience.

First, we outlined the theoretical framework underpinning PUPy. We discussed the
three values used to describe the context, outlining how they are calculated and what they
could be used for. The proposed framework works without necessitating user input, and
is extensible by other works, allowing it to adapt to advances in the field. Second, we
created an implementation of the theoretical framework on Android, showing how such
an application could realistically function. Finally, we devised a method of evaluating
the framework based on existing datasets, and analyzed its performance, comparing it to
existing works in the field. The framework showed significant promise in improving the
user experience, albeit at the cost of easier access for adversaries, a tradeoff common in
implicit authentication frameworks.

There are plenty of potential avenues to continue work on this project. In particular, the
functionality modules implemented to interface with the context engine are rudimentary,
and could be further expanded. Additionally, due to the constraints caused by the COVID-
19 pandemic, performing a user study and soliciting feedback was not possible. Modifying
the framework to better cater to user needs based on feedback and real-world experience
could improve the system further.

The question of access control and security of the system is also one not considered.
While some rudimentary attempts are made to secure the system from malicious appli-

83

cations, these protections are not sufficient and should be expanded to ensure malicious
applications cannot impede the performance or accuracy of the framework. This may
include tightening the requirements for new input modules, and ensuring functionality
modules cannot misuse the values generated by the context engine.

Additionally, one large issue mostly set aside in this work is the question of device iden-
tification. While it forms an important part of our system, we did not find an adequate
solution that balances performance with protecting the privacy of others. Finding a solu-
tion or workaround for this approach is crucial for the long term viability of the system,
as privacy-preserving measures spread to all major phone manufacturers.

Finally, adding additional input modules to further expand the types of inputs used to
calculate the three values will allow for even better system performance. Potential avenues
include using voice or face recognition, or implementing a large number of context-specific
approaches to improve accuracy in specific contexts. Also in this vein is changing the
method through which context familiarity is calculated, from being location-based and
done in the context engine, to an aggregated approach similar to the other three estimates.

Overall, we hope that the proposed framework furthers interest in context detection
and implicit authentication, and perhaps stimulates more research into optimistic context
detection to improve the user experience.

84

References

[1] Yusuf Albayram, Mohammad Maifi Hasan Khan, Theodore Jensen, and Nhan Nguyen.

“...better to use a lock screen than to worry about saving a few seconds of time”: Effect
of fear appeal in the context of smartphone locking behavior. In Thirteenth Symposium
on Usable Privacy and Security (SOUPS 2017), pages 49-63, 2017.

Noah Apthorpe, Danny Yuxing Huang, Dillon Reisman, Arvind Narayanan, and Nick
Feamster. Keeping the smart home private with smart(er) IoT traffic shaping. Privacy
Enhancing Technologies, 2019(3):128-148, 2019.

Noah Apthorpe, Dillon Reisman, and Nick Feamster. Closing the blinds: Four
strategies for protecting smart home privacy from network observers. arXiv preprint
arXiw:1705.06809, page 6, 2017.

Patricia Arias-Cabarcos, Christian Krupitzer, and Christian Becker. A survey on
adaptive authentication. ACM Computing Surveys, 52(4):1-30, 2019.

Cheng Bo, Lan Zhang, Xiang-Yang Li, Qiuyuan Huang, and Yu Wang. Silentsense:
silent user identification via touch and movement behavioral biometrics. In 19th annual
international conference on Mobile computing & networking, pages 187-190, 2013.

Daniel Buschek, Fabian Hartmann, Emanuel Von Zezschwitz, Alexander De Luca, and
Florian Alt. Snapapp: Reducing authentication overhead with a time-constrained fast
unlock option. In 2016 CHI Conference on Human Factors in Computing Systems,
pages 3736-3747, 2016.

Guillaume Celosia and Mathieu Cunche. Fingerprinting Bluetooth-low-energy devices
based on the generic attribute profile. In 2nd International ACM Workshop on Secu-
rity and Privacy for the Internet-of-Things - IoT S6P’19, pages 24-31. ACM Press,
2019.

85

8]

[16]

Jagmohan Chauhan, Yining Hu, Suranga Seneviratne, Archan Misra, Aruna Senevi-
ratne, and Youngki Lee. BreathPrint: Breathing acoustics-based user authentication.

In 15th Annual International Conference on Mobile Systems, Applications, and Ser-
vices, MobiSys 17, pages 278-291. ACM, 2017.

Guglielmo Cola, Marco Avvenuti, Fabio Musso, and Alessio Vecchio. Gait-based
authentication using a wrist-worn device. In Proceedings of the 13th International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services,
MOBIQUITOUS 2016, pages 208-217. ACM, 2016.

Mauro Conti and Chhagan Lal. Context-based co-presence detection techniques: A
survey. Computers € Security, 88:101652, 2020.

Serge Egelman, Sakshi Jain, Rebecca S. Portnoff, Kerwell Liao, Sunny Consolvo,
and David Wagner. Are you ready to lock? In 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 750-761. ACM, 2014.

Alain Forget, Sonia Chiasson, and Robert Biddle. Choose your own authentication.
In Proceedings of the 2015 New Security Paradigms Workshop, NSPW 15, page 1-15,
New York, NY, USA, 2015. Association for Computing Machinery.

Mario Frank, Ralf Biedert, Eugene Ma, Ivan Martinovic, and Dawn Song. Touchalyt-
ics: On the applicability of touchscreen input as a behavioral biometric for continuous
authentication. IEEE Transactions on Information Forensics and Security, 8(1):136—
148, 2013.

Google. Smart lock. https://get.google.com/smartlock/. Accessed on 2021-02-05.

Aditi Gupta, Markus Miettinen, N. Asokan, and Marcin Nagy. Intuitive security
policy configuration in mobile devices using context profiling. In 2012 International
Conference on Privacy, Security, Risk and Trust and 2012 International Confernece
on Social Computing, pages 471-480, 2012.

Marian Harbach, Alexander De Luca, Nathan Malkin, and Serge Egelman. Keep on
lockin’ in the free world: A multi-national comparison of smartphone locking. In 2016
CHI Conference on Human Factors in Computing Systems, pages 4823-4827. ACM,
2016.

Marian Harbach, Alexander De Luca, and Matthew Smith. It’s a hard lock life: A field
study of smartphone (un)locking behavior and risk perception. In 10th Symposium
On Usable Privacy and Security (SOUPS 2014), pages 213-230, 2014.

86

https://get.google.com/smartlock/

[18]

[19]

[20]

[21]

[25]

[26]

Eiji Hayashi, Sauvik Das, Shahriyar Amini, Jason Hong, and Ian Oakley. CASA:
context-aware scalable authentication. In Proceedings of the Ninth Symposium on
Usable Privacy and Security, pages 1-10, 2013.

Alexander Heinrich, Milan Stute, and Matthias Hollick. BTLEmap: Nmap for blue-
tooth low energy. In 13th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, pages 331-333. ACM, 2020.

Daniel Hintze, Matthias Fiiller, Sebastian Scholz, Rainhard D. Findling, Muhammad
Muaaz, Philipp Kapfer, Eckhard Koch, and René Mayrhofer. CORMORANT: Ubiq-
uitous risk-aware multi-modal biometric authentication across mobile devices. ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(3):85:1-85:23, 2019.

Daniel Hintze, Matthias Fiiller, Sebastian Scholz, Rainhard D. Findling, Muhammad
Muaaz, Philipp Kapfer, Wilhelm Nifler, and René Mayrhofer. CORMORANT: On im-
plementing risk-aware multi-modal biometric cross-device authentication for android.

In 17th International Conference on Advances in Mobile Computing € Multimedia,
pages 117-126. ACM, 2019.

Hassan Khan, Aaron Atwater, and Urs Hengartner. A comparative evaluation of
implicit authentication schemes. In Angelos Stavrou, Herbert Bos, and Georgios Por-
tokalidis, editors, Research in Attacks, Intrusions and Defenses, volume 8688, pages
255-275. Springer International Publishing, 2014.

Hassan Khan, Aaron Atwater, and Urs Hengartner. Itus: an implicit authentication
framework for android. In 20th annual international conference on Mobile computing
and networking - MobiCom 14, pages 507-518. ACM Press, 2014.

Hassan Khan, Urs Hengartner, and Daniel Vogel. Targeted mimicry attacks on touch
input based implicit authentication schemes. In 14th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys '16, pages 387-398. ACM,
2016.

Niko Kiukkonen, Jan Blom, Olivier Dousse, Daniel Gatica-Perez, and Juha Laurila.

Towards rich mobile phone datasets: Lausanne data collection campaign. Proc. ICPS,
Berlin, 68:7, 2010.

Aleksandra Korolova and Vinod Sharma. Cross-app tracking via nearby bluetooth
low energy devices. In Eighth ACM Conference on Data and Application Security and
Privacy, pages 43-52. ACM, 2018.

87

[27]

[30]

[31]

32]

33]

[34]

Juha K Laurila, Daniel Gatica-Perez, Imad Aad, Jan Blom, Olivier Bornet, Trinh
Minh Tri Do, Olivier Dousse, Julien Eberle, and Markus Miettinen. From big smart-
phone data to worldwide research: The mobile data challenge. Pervasive and Mobile
Computing, 9(6):752-771, 2012.

Wei-Han Lee and Ruby Lee. Implicit sensor-based authentication of smartphone users
with smartwatch. arXiv:1703.03523 [cs], 2017.

Tao Li, Yimin Chen, Jingchao Sun, Xiaocong Jin, and Yanchao Zhang. iLock: Im-
mediate and automatic locking of mobile devices against data theft. In 2016 ACM
SIGSAC Conference on Computer and Communications Security - CCS’16, pages
933-944. ACM Press, 2016.

Xinyu Liu, David Wagner, and Serge Egelman. Detecting phone theft using machine
learning. In 2018 International Conference on Information Science and System -
ICISS 18, pages 30-36. ACM Press, 2018.

Célestin Matte. Wi-Fi Tracking: Fingerprinting Attacks and Counter-Measures. The-
ses, Université de Lyon, 2017.

Markus Miettinen, Stephan Heuser, Wiebke Kronz, Ahmad-Reza Sadeghi, and
N. Asokan. ConXsense - automated context classification for context-aware access

control. 9th ACM symposium on Information, computer and communications security
- ASIA CCS 14, pages 293-304, 2014.

Markus Miettinen, Samuel Marchal, Ibbad Hafeez, N. Asokan, Ahmad-Reza Sadeghi,
and Sasu Tarkoma. [oT sentinel: Automated device-type identification for security en-
forcement in loT. 2017 IEEFE 37th International Conference on Distributed Computing
Systems (ICDCS), pages 2177-2184, 2017.

Oyindamola Oluwatimi and Elisa Bertino. A multi-enterprise containerization ap-
proach with an interoperable position-based system. In Proceedings of the Fighth
ACM Conference on Data and Application Security and Privacy, CODASPY 18,
pages 256—266. Association for Computing Machinery, 2018.

Pruthvish Rajput, Manish Chaturvedi, and Vivek Patel. Opportunistic sensing based
detection of crowdedness in public transport buses. Pervasive and Mobile Computing,
68:101246, 2020.

Arun Ramakrishnan, Jochen Tombal, Davy Preuveneers, and Yolande Berbers.
PRISM: Policy-driven risk-based implicit locking for improving the security of mobile

38

[37]

[38]

[39]

[41]

[42]

end-user devices. In 15th International Conference on Advances in Mobile Computing
and Multimedia - MoMM 2015, pages 365—-374. ACM Press, 2015.

Alessandro Enrico Cesare Redondi, Davide Sanvito, and Matteo Cesana. Passive clas-
sification of wi-fi enabled devices. In 19th ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, pages 51-58. ACM, 2016.

Oriana Riva, Chuan Qin, Karin Strauss, and Dimitrios Lymberopoulos. Progressive
authentication: deciding when to authenticate on mobile phones. In 21st USENIX
Security Symposium. USENIX, 2012.

James Scott, Richard Gass, Jon Crowcroft, Pan Hui, Christophe
Diot, and Augustin Chaintreau. CRAWDAD dataset Cambridge/Hag-
gle (v. 2009-05-29). CRAWDAD, 2009. Published: =~ Downloaded from
https://crawdad.org/Cambridge /Haggle/20090529.

James Scott, Richard Gass, Jon Crowcroft, Pan Hui, Christophe Diot, and Augustin
Chaintreau. CRAWDAD dataset cambridge /haggle (v. 2009-05-29). Downloaded from
https://crawdad.org/cambridge/haggle/20090529, May 2009.

Elaine Shi, Yuan Niu, Markus Jakobsson, and Richard Chow. Implicit authentication
through learning user behavior. In International Conference on Information Security,
pages 99-113. Springer, 2010.

B. Shrestha, N. Saxena, H. T. T. Truong, and N. Asokan. Sensor-based proximity
detection in the face of active adversaries. IEEE Transactions on Mobile Computing,
18(2):444-457, 2019.

Frank Stajano. One user, many hats; and, sometimes, no hat: Towards a secure yet
usable PDA. In Bruce Christianson, Bruno Crispo, James A. Malcolm, and Michael
Roe, editors, Security Protocols, volume 3957, pages 51-64. Springer Berlin Heidelberg,
2006.

Frank Stajano. Pico: No more passwords! In Bruce Christianson, Bruno Crispo,
James Malcolm, and Frank Stajano, editors, Security Protocols XIX, volume 7114,
pages 49-81. Springer Berlin Heidelberg, 2011.

Ahren Studer and Adrian Perrig. Mobile user location-specific encryption (MULE):
Using your office as your password. In Third ACM conference on Wireless network
security, pages 151-162, 2010.

89

https://crawdad.org/cambridge/haggle/20090529

[46]

[47]

[48]

[49]

Adam Woéjtowicz and Krzysztof Joachimiak. Model for adaptable context-based

biometric authentication for mobile devices. Personal and Ubiquitous Computing,
20(2):195-207, 2016.

Qiang Xu, Rong Zheng, Walid Saad, and Zhu Han. Device fingerprinting in wireless
networks: Challenges and opportunities. arXiv:1501.01367 [cs], 2015.

Lingjing Yu, Bo Luo, Jun Ma, Zhaoyu Zhou, and Qingyun Liu. You are what you
broadcast: Identification of mobile and iot devices from (public) wifi. In 29th USENIX
Security Symposium (USENIX Security 20), pages 55-72, 2020.

Chaoshun Zuo, Haohuang Wen, Zhiqgiang Lin, and Yingian Zhang. Automatic fin-
gerprinting of vulnerable BLE IoT devices with static UUIDs from mobile apps. In
2019 ACM SIGSAC Conference on Computer and Communications Security, pages
1469-1483. ACM, 2019.

90

	List of Figures
	List of Tables
	Introduction
	Structure and Contributions

	Background
	Device Sensors
	Context Detection
	Implicit Authentication

	Motivation
	Motivating Examples
	Context Detection and Implicit Authentication
	Context Detection and Other Applications
	Optimistic Context Detection
	Failing Examples

	Related Work
	Implicit Authentication
	Context Detection
	Implicit Authentication and Context Detection
	Device Identification
	Summary

	System Design
	Adversary Model
	Design Principles
	Theoretical Framework
	Privacy
	Unfamiliarity
	Proximity
	Context Familiarity
	Interfacing with Functionality Modules

	Justification
	Privacy
	Unfamiliarity
	Proximity

	Implementation
	Input Modules
	Bluetooth Application
	Activity Application
	Location Application
	Proximity Application

	Context Engine
	Aggregator Modules
	Context Familiarity Module
	Rules Module

	Functionality Modules
	Authentication
	Device Theft
	Device Loss

	Changes from CORMORANT

	Evaluation
	Datasets
	Cambridge/Haggle Dataset
	MDC Dataset

	Qualitative Analysis
	Visual Analysis Based on the Cambridge/Haggle Dataset
	Visual Analysis Based on the MDC Dataset
	Visual Analysis of Familiarity Improvements
	Comparison with Gupta et al.

	Quantitative Analysis
	How Performance Changes Over Time
	Overall Performance
	Comparison with Gupta et al.

	Conclusion and Future Work
	References

