
Class Incremental Learning in Deep
Neural Networks

by

JunYong Tong

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2021

c© JunYong Tong 2021



Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners

I understand that my thesis may be made electronically available to the public.

ii



Statement of Contributions

The content from one future publication is included in this thesis with contributions from
others. The contributions for the work are listed below. I performed the majority of the
design, background review, experimentation and writing.

The group of work presented in Chapter 3.3 and 3.4, with the accompany results in
Chapter 4 are drafted in a manuscript submitted to IEEE CVPR2021 conference proceeding
(rejected). The paper’s authors, excluding myself, include Dr. Javad Shafie and Dr. Paul
Fieguth. All the authors supported with problem conceptualization and editing. Dr.
Javad Shafie and Dr. Paul Fieguth provided useful advice on the structure of the report
and experiments design. The revised manuscript was submitted and accepted to IEEE
CVPR2021 Continual Learning Workshop under ”Findings”.

iii



Abstract

With the advancement of computation capability, in particular the use of graphical
processing units, deep learning systems have shown tremendous potential in achieving
super-human performance in many computer vision tasks. However, deep learning models
are not able to learn continuously in scenarios where the data distribution is non-stationary
or imbalanced, because the models suffer from catastrophic forgetting. In this thesis, we
propose an Incremental Generative Replay Embedding (IGRE) framework which employs
a conditional generator for generative replay at the image embedding level, thus combining
the superior performance of replay and reducing the memory complexities for replay at
the same time. Alternating backpropagation with Langevin’s dynamics was used for effi-
cient and effective training of the conditional generator. We evaluate the proposed IGRE
framework on common benchmarks using CIFAR10/100, CUB and ImageNet datasets.
Results show that the proposed IGRE framework outperforms state-of-the-art methods
on CIFAR-10, CIFAR-100, and the CUB datasets with 6-9% improvement in accuracy
and achieves comparable performance in large-scale ImageNet experiments, while at the
same time reducing the memory requirements significantly when compared to conventional
replay techniques.
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Chapter 1

Introduction

This chapter aims to introduce the importance of continual learning in deep neural network
models as these models find themselves in more and more engineering applications ranging
from computer vision [72, 88] to biomedical science [77]. There are three sections in this
chapter. The first section aims to motivate the problem of continual learning through the
phenomena that deep neural networks are able to outperform human in many tasks, yet
unable to learn continuously. The second section aims to narrow the scope and objective
of continual learning for this thesis. The third section outlines the contributions and the
thesis structure for the reader.

1.1 Motivation

In this section we motivate the problem of continual learning in deep neural networks.

In recent years, machine learning with deep neural networks gave rise to significant
improvement to solving many research and industrial problems. Many tasks in computer
vision have achieved state of the art performance surpassing human level performance.
For example, deep convolutional neural network models can surpassed human level classi-
fication performance [72]. In natural language domain, deep neural network technologies
are being used in search engine [88] or text analysis [99]. Deep learning techniques are
also used in physical sciences to solve previously unsolve problems, for example AlphaFold
technique in [77] is used to solve protein folding problem in biology. Deep neural networks
are able to achieve performance far exceeding human level in many tasks and at a faster
speed [72, 99].
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Figure 1.1: This figure illustrates the batched learning process where the learning algorithm
samples mini-batches from a dataset. Ideally, each mini-batch is representative of the
dataset distribution which the learning algorithm is set up to learn.

Two of the most important components to the success of deep neural networks (DNN)
are the abundance of labelled data and the use of automatic differentiation [20, 63] for
stochastic mini-batch gradient descent [71]. Training a deep neural network relies on the
assumption that the data that we use are independent and identically distributed (i.i.d)
within the dataset [18, 71]. The stochastic gradient descent of [71] is designed based on
the i.i.d assumption and required to loop through the dataset for many epochs. Ideally,
each mini-batch sample will be representative of the dataset distribution. The algorithm
will adjust the weights of the DNN based on the mini-batches sampled from the dataset as
shown in Figure 1.1. Without the i.i.d assumption, there is no reason to believe the model
trained with stochastic gradient descent would generalize to the test data.

Despite DNNs’ superhuman performance in many tasks, a hall-mark of human intel-
ligence is that human is able to learn continuously from experience. The term continual
learning [62, 70] is used in the machine learning literature to describe the scenario where
the model is required to learn from data stream continuously. Learning continuously from
data poses a particular challenge for machine learning models as the i.i.d assumption is
violated because we cannot sample representative mini-batches. As such the models fail
to learn the data distribution. Enabling deep neural networks to be continual learners is
made more challenging as the models can easily overfit to the latest available data.

The catastrophic forgetting or catastrophic interference [15, 16, 55] problem describes
the phenomenon whereby a DNN loses information about previously learned tasks during
the learning of a new task [7, 73, 80]. The issue occurs because important network weights,
trained on some previous tasks, are modified in the process of learning a new task. This
problem plagues DNNs and is the main bottleneck toward continual learning of DNN
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models in different domains and for different applications. As a result, a continual learning
framework to address these issues is highly desirable.

1.2 Continual Learner Objectives and Evaluation

The objectives of a continual learner/learning agent are to be able to learn from current
data and continue learning later without forgetting previously learned information. In
particular, this thesis focuses on the class incremental learning scenario where a model is
require to distinguish between all classes from all tasks. More precisely, the ideal class
incremental learner should possess the following three properties:

1. It should perform well on previously learned tasks.

2. It learns new tasks, building on the knowledge of previous tasks.

3. It has the ability to improve or maintain performance on the previously learned tasks.

Objectives 1 and 2 are directly related to the stability-plasticity dilemma [5, 56] of a
learning agent. In the context of continual learning, the agent needs to trade-off its ability
to learn new information (plasticity) without forgetting previously learned information
(stability) [33, 97]. Objective 3 describes the ability of the learning agent to have the
ability to consolidate previous knowledge with new information.

Although many existing continual learning algorithms are designed based on the three
objectives, the algorithms are often evaluated on different scenarios. Broadly, there are
three main evaluation scenarios in the literature [26, 80, 97], namely domain incremental
learning, task incremental learning and class incremental learning. Each scenario provides
the learning agent different compute resources during the course of learning and evaluation.
The variability in evaluation scenarios makes choosing and classifying existing algorithms
particularly difficult, and inspired large scale survey research papers like [12, 26].

The three scenarios are of different difficulty. The availability of task labels affects
the difficulty of a continual learning scenario significantly. Task incremental and domain
incremental are given task labels during evaluation but class incremental is not. The results
in [12, 26] suggest that having task labels during evaluation allows a model to choose
the correct prediction head and hence outperforming scenario without task labels. More
importantly, it is unrealistic to have task labels in real-life applications like self-driving
cars.
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Figure 1.2: This figure illustrates the class incremental learning process where data are
presented to the model incrementally. Different colours represent different task data. The
task data are only accessible at one time point. (Best viewed in colour)

This thesis focuses on the particular continual learning scenario of Class Incremental
Learning (CIL) for image classification. Each task in CIL introduces new disjoint classes
into the learning and past classes will no longer be accessible. This process can be seen
in Figure 1.2. This means the model will not be able to see past examples again when
proceeding to a new task. In CIL, we aim to learn a single classifier, also called a single-
headed classifier, to classify new classes without forgetting previously-seen classes [67]. In
this setting, we can evaluate whether the algorithm is able to differentiate classes from
different tasks which is a more realistic setting compared to when task labels are given
during evaluation.

1.3 Contributions and Thesis Structure

As will be discussed in Chapter 2, a continual learning strategy can be divided into three
categories: I) regularization, II) dynamic architecture and III) replay. This thesis focuses
on generative replay — a type of replay strategy where a generative model is utilized to
generate memory for replay purposes. In particular, this thesis presents an incremental
generative replay embedding (IGRE) framework, a simple generative replay technique for
incremental supervised learning.
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In summary, the contributions of this thesis are:

1. A simple and efficient generative replay framework to mitigate catastrophic forget-
ting in class incremental learning scenario with modest computation and memory
requirements.

2. A method to train a generative model for supervised incremental learning without
task labels during the training and evaluation phases.

3. An effective generative model for long learning sequences compared to equivalent
state of the art methods.

The thesis is structured as follows:

• Chapter 2 will provide necessary background information to understand the CIL
problem and terminologies used in the other chapters.

• Chapter 3 will provide intuition and visualize the changes of feature embedding under
the CIL problem. The intuition will be developed into the IGRE framework.

• Chapter 4 will present the experimental results in various CIL scenarios on three
popular datasets and the comparison results with related state of the art methods.
We also provide analysis on the limitations of the proposed framework.

• Chapter 5 will summarize and conclude the thesis. Three future research directions
are suggested in this chapter.
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Chapter 2

Background and Literature Review

This chapter formally introduces the necessary notation and background knowledge re-
quired for the rest of the thesis. We assume that readers have some basic knowledge of
deep neural networks (DNN), in particular the basic training procedure using stochastic
gradient descent. We point the reader to the deep learning journal paper [41], online deep
learning book [18] or Coursera’s online resource for the basic knowledge, and recap only
the concepts necessary to make this thesis self contained.

In Section 2.1, DNNs will be presented as discriminative models for image classification
[41, 42]. In Section 2.2, we present generative models as an alternative to discriminative
models for data distribution learning. Finally, in Section 2.3, we present our definition of
class incremental learning and review some literature related to continual learning.

2.1 Discriminative Models

In this section we present our model of a deep neural network [18, 40, 41] as a discriminative
model for classification problems. In particular, we present deep convolutional neural
network designs and training paradigms as discriminative models.

2.1.1 Feature Extraction

An image classification problem refers to the task of assigning a class label to an image
based on extracted information/features from the image. A DNN usually consists of stacks
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of different neural layers that learn to detect essential features in the data and classify the
data according to the extracted features [18, 41]. Given a DNN, any stack of layers before
the final output layer can be considered as a feature extractor, as a series of transformations
[18, 53]. Ideally, the feature extractor transforms the input to a feature representation that
can be classified easily. This representation is called a feature embedding.

The feature extractor is designed based on the task or problem at hand. A feature ex-
tractor for image-based tasks usually consists of convolutional layers, normalization layers
and non-linear activation layers [18, 23, 40]. Mathematically, given an input x, we denote
the feature extractor as f , then the extracted feature map f is given by,

f = f(x). (2.1)

The feature extractor f is a function mapping RD → Rd, a mapping from the image space
to a lower dimensional space, that is d� D and so f ∈ Rd, such that classification can be
done at much lower dimension which is an easier problem to solve. The composition of L
layers for f is then expressed as,

f = fL ◦ fL−1 ◦ · · · ◦ f1, (2.2)

where fi, i ∈ {1, . . . , L}, denotes a layer.

The convolutional layers consist of filters which are convolved with the layer input
to extract certain patterns, and stacking the layers allows the DNN to detect complex
features [23, 82]. The deep convolutional neural networks are shown to have inductive bias
at learning spatial information [4, 10] and efficient at learning functions for image-based
tasks [10]. The filters are able to capture local dependencies and able to learn features
that are invariant to certain transformations, like rotation and shift [53]. The non-linear
activation, normalization and pooling layers [18, 23, 82] are included in the network so
that complex transformations can be learned from the data and improve the training
dynamics. In addition to its inductive bias, convolution filters have significantly fewer
parameters compared to fully connected layers, thus making convolution filters a desirable
architectural design choice.

The DNN is trained to learn the right combination of filters to discriminate and classify
the classes within a given data set. Although the convolutional network may achieve great
classification performance within the data set, it is susceptible to adversarial examples [39]
and it is not robust to examples in different coordinate frames [74]. As such, it requires a
large database to be able to train a deep convolutional neural network.
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2.1.2 Classification Module

Recall that an image classification problem refers to the task of assigning a class label to
an image. As such we need a function to map the extracted features, f from Equation
(2.1), to a class label. In this section, we describe the classification modules which convert
the detected features into a class label.

The classification modules are tasked with classifying the data based on the extracted
feature embedding. Thus, the classification modules should be flexible at learning a wide
variety of functions. Fortunately, the combination of fully connected (FC) layers and
non-linear activation has been shown to be a universal function approximator in previous
seminal works [11, 18, 48]. This means that the FC layers possess the capability to ap-
proximate the ideal classification function for a given dataset. Therefore, FC layers and
non-linear activation functions are often good architectural design choices for classification.

In general, the FC layers apply a linear transformation to their input, then non-linear
activation functions will introduce non-linearity to the transformation. Without loss of
generality1, let x be an input to a FC layer, then the transformation that x undergoes can
be described as,

h = σ(W ∗ x + b), (2.3)

where W is a matrix of learnable weights, b is a learnable bias vector, and σ(·) is an
element-wise non-linear activation function. Examples of such activation functions include
sigmoid, tanh and Rectifier Linear Unit (ReLU ) [18, 43]. The output h is usually called
a hidden output or, if the output is the last output of the network, then it is also called
logits.

For K-class classification, the logits h ∈ RK are usually normalized with the softmax
function into a probability vector,

softmax(h)i =
exp(hi)∑K
j exp(hj)

, h = (h1, . . . , hK). (2.4)

Then the index with highest value is chosen to be predicted class label, that is, the pre-
diction pi for the i-th sample will be given as,

pi = arg max
i∈{1,...,K}

softmax(h)i. (2.5)

1If we stack the FC layers on top of the feature extractor, then we have f as the input.
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Since the index with the highest probability is chosen as the predicted class, the softmax
normalized logits are often interpreted as a probability.

Feature extractors and classification modules stacked together are often called an end-
to-end model. Together with a differentiable loss function, the end-to-end model can be
trained through stochastic gradient descent (or its variant) [30, 71], with the gradients of
the hidden layers calculated with automatic differentiation algorithm [18, 20]. For example,
a popular loss function for multi-class classification is cross-entropy loss [18, 41],

Lcls(h, y) = − log
( exp(hy)∑K

j exp(hj)

)
, (2.6)

where h is the logits of a sample and y is the class label. Cross-entropy loss takes the log
of softmax thus having numerical stability as the additional benefit. Since the softmax
function is differentiable and numerically stable it is an ideal function for normalizing the
logits, and ensuring the gradients can be back propagated to the feature extractor of the
network.

Since this end-to-end model is able to discriminate between classes, it is also called
a discriminative model in literature [18, 28]. In the next section, we will introduce a
different class of models, generative models, where their main goal is to model a given data
distribution.

2.2 Generative Models

In addition to the discriminative models, introduced in Section 2.1, we now introduce a
different class of model called generative models [28, 31]. Generative models focus on
learning the data generation process, also called data distribution [28]. A generative model
learns to represent the data in a space with fewer dimensions than the original data space.
The space with fewer dimensions is called latent space. The goal of generative models is
not to discriminate between classes, but to learn a mapping between a smooth latent space
and the data space.

In the generative model literature there are four main generative model frameworks:

1. Generative moment matching networks [17, 46, 68],

2. Variational Autoencoders (VAE) [31, 32],
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3. Generative Adversarial Networks (GAN) [19, 44],

4. Normalizing flow networks [35, 69].

Despite the nice theoretical properties of normalizing flow networks, this framework has
yet to achieve comparable performance against the other generative methods [36], hence
we do not consider them in this thesis. We will describe the generative moment matching
networks, VAE, and GAN frameworks in order for the reader to have a more comprehensive
understanding of the proposed method as compared with the state of the art methods in
Chapter 4.

2.2.1 Generative Moment Matching Networks

The first family of generative models is the generative moment matching network [46]. The
models in this family are similar to statistical models learned through maximum likelihood
estimation. This framework aims to train a generative model that matches a smooth latent
space to the data observations, hence learning the distribution induced by the data.

In this thesis we only consider the d-dimensional multivariate Normal distribution with
diagonal unit variance, denoted N (0, Id), as the smooth latent space. Note that it is
possible to use any arbitrary distribution for the latent space, we choose multivariate
Normal for its computational efficiency. We can then formulate our generative model
explicitly as

z ∼ N (0, Id) (2.7)

x = Gθ(z) + ε, ε ∼ N (0, σ2In). (2.8)

Here the latent variable z is sampled from a multivariate unit variance Normal distribution.
Gθ denotes a generator neural network, with θ as the parameters in the generator. Gθ maps
a latent vector from N (0, Id) to match x with some noise error ε, with tunable σ. Thus,
the complete log joint-likelihood of Equation (2.8) is given by

logPθ(x, z) = −‖z‖
2
2

2
−
∥∥x−Gθ

(
z
)∥∥2

2

2σ2
+ c, (2.9)

where c is a constant independent from z, and σ is the pre-specified standard deviation of
the model. Thus the observed data log-likelihood is obtained by integrating out the latent
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variable

L(θ) =
m∑
i=1

log

∫
z

Pθ(xi, z) dz (2.10)

=
m∑
i=1

logPθ(xi), (2.11)

where m is the number of data samples. The goal then is to maximize (2.11), for which
we can adopt gradient ascent. The gradient of observed data log-likelihood with respect
to parameter θ is

∂

∂θ
logPθ(x) = Epθ(z|x)

[
∂

∂θ
logPθ(x, z)

]
. (2.12)

However the expectation in (2.12) is usually intractable, since the set of training data is
discrete and sparse, and as such the model cannot see adequate variations of samples to
model the space effectively. In order to partially alleviate the problem, we model x at
reduced dimensionality instead of at full dimensionality. The details will be described in
Section 3.2.

2.2.2 Variational Autoencoder

The second framework for learning a data distribution is through the Variational Auto-
Encoder (VAE) introduced in [31]. In this framework, we aim to train an encoder to
map/compress an input to a latent vector and a decoder to reconstruct the input from a
latent vector.

The main idea behind VAE is that we use a variational distribution that is easy to
sample and compute to approximate the data distribution through Kullback-Leibler (DKL)
divergence [38]. The Gaussian distribution is usually chosen to be the variational distribu-
tion for its sampling efficiency and its easily computed likelihood. The encoder, denoted
as qθ, maps the input to the variational distribution, N (µ, σ), by mapping the input to
a latent representation/vector. The decoder, denoted as gθ, is trained to reconstruct an
input from its latent representation. The variational distribution in VAE is regularized
with a unit Normal, N (0, 1), as a prior distribution to prevent distribution collapse [9].

Formally, given an input x, VAE aims to find the optimal latent representation in
N (µ, σ) such that the reconstruction error for gθ(z) is minimized. In particular, the loss
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of VAE can be written in the form

L = Lrecon + Lprior (2.13)

= ‖x− gθ(z)‖2 +DKL(qθ(x),N (0, 1)). (2.14)

The DKL(qθ(x),N (0, 1)) term regularizes the VAE, preventing the decoder from memoriz-
ing the input’s latent representation. Similar to generator moment matching network, this
framework allows user to sample from a closed-form distribution to generate samples that
approximates the underlying data distribution.

Noticed that the VAE loss in Equation (2.14), is quite similar to the generative mo-
ment match network loss in Equation (2.9). The difference is that the VAE framework is
dependent on a good quality inference network qθ(x) to map x to a latent vector z which
would then be used as input for the decoder gθ, whereas the generator moment matching
networks from Section 2.2.1 learn the mapping from z to x directly, which is more straight
forward and computationally efficient.

2.2.3 Generative Adversarial Networks

The third generative modelling framework which we will describe is the Generative Ad-
versarial Network (GAN) of [19]. In this framework, a discriminator network, D, and a
generator network, G, are trained together such that the generator learns the data distri-
bution. The generator learns to generate realistic inputs whereas the discriminator learns
to differentiate between the real and generated inputs. In other words, the generator learns
to fool the discriminator and the discriminator learns to not be fooled.

In this framework, the generator learns to map a latent space to the data manifold.
The generator takes a latent vector, z ∈ Rd, and generates x̂ ∈ RD that is in the same
space as x ∈ RD. The discriminator will differentiate between x and x̂. The discriminator
acts as a regularizer and guides the generator to produce realistic x̂. Both the generator
and discriminator have the same loss function given by,

L = Ex∼p(x) [log(D(x))] + Ez∼p(z) [log(1−D(G(z)))] . (2.15)

The discriminator learns to maximize the loss, while the generator learns to minimize
the loss. Note that the first expectation is taken over x ∼ p(x) for D(x), this can be
interpreted as the average probability that the discriminator can correctly identifies a real
image. The second expectation is taken over z ∼ p(z) for D(G(z)), in other words the
discriminator maximizes this quantity by correctly identifying generated images. As such,
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the discriminator guides the generator to learn a mapping from smooth latent space to
data space and to generate realistic inputs.

This class of generative model is able to produce visually realistic images, but the model
suffers from training dynamics instability. Many methods [3, 21, 27] have been proposed
to stabilize the training dynamics. In particular, conditional GAN [27] uses conditional
information for training the model. In the next subsection, we will introduce conditional
generators, which allow the user to generate specific conditions from the data distribution,
making conditional generators particularly useful for class incremental learning.

2.2.4 Conditional Generative Models

All generative models described previously can be extended into conditional generative
models. Conditional generative models are trained with conditional variables such that
the models are able to generate specific conditions of interest. For example, using class
labels as conditional variables enables the models to generate images from specific classes
[27, 83]. We will introduce some of the known benefits of using conditional variables in
generative models in this subsection.

The conditional VAE in [83] models the data distribution through latent variables and
class labels as conditional variables. The conditional model is obtained through slight
modification to Equation (2.14), by simply including the conditional variable c into the
encoder and decoder:

‖x− gθ(z)‖2 +DKL(qθ(x),N (0, 1))

→‖x− gθ(z, c)‖2 +DKL(qθ(x, c),N (0, 1)). (2.16)

This way, the conditional information enables the VAE to learn the styles and features of
different classes, and generate images of specific classes.

Conditional GANs (cGAN) [27, 57] are the extension of GANs with conditional vari-
ables. Similar to conditional VAE, we simply include the conditional variables to the
discriminator and generator. The loss function for training GANs from Equation (2.15)
becomes

Ex∼p(x) [log(D(x))] + Ez∼p(z) [log(1−D(G(z)))]

→Ex∼p(x) [log(D(x, c))] + Ez∼p(z) [log(1−D(G(z, c), c))] . (2.17)

In addition to being able to generate specific conditions, cGANs are observed to have more
stable training dynamics [21, 27].
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Lastly, conditional Generative moment-matching networks [68] are the conditional vari-
ant of generative moment-matching networks, where the generators are trained with con-
ditional variables. Similar to cVAE and cGAN, we simply include the conditional variables
as input to the generator, hence Equation (2.9) becomes

− ‖z‖
2
2

2
−
∥∥x−Gθ

(
z
)∥∥2

2

2σ2

→− ‖z‖
2
2

2
−
∥∥x−Gθ

(
z, c
)∥∥2

2

2σ2
. (2.18)

The feature-to-feature generator in [100] uses class attribute information as conditional
variables for the generator network to learn class specific style. The conditional generator
in [100] was able to generate images of comparable quality to cGAN, while having fewer
parameters in the network. In this thesis, the features-to-features method is extended to
continual learning scenario.

2.3 Class Incremental Learning

In this section, we formally introduce the class incremental learning (CIL) problem [26, 67,
86].

The class incremental learning scenario refers to the requirement of learning classifi-
cation tasks on data incrementally [26, 67] with a single classifier. Each task in the CIL
scenario introduces new disjoint classes into the learning and past classes will no longer
be accessible, as illustrated in Figure 1.2. In other words, once the data for a class are
presented, the presented labelled class data will not be accessible again for learning in the
future, unless the data are selected for memory replay.

In order to simulate the CIL scenario with a dataset, the dataset will be split into τ
groups with each group containing disjoint sets of labels from the dataset. The groups will
be presented individually to the model sequentially as a task to be learned. The stability
and plasticity trade-off of the model, recall the stability-plasticity dilemma [5, 56] from
Section 1.2, will be evaluated with all previously seen class labels.

The DNN model is presented with a group of data at task t, where t ∈ {1, . . . , τ}. We
let

X t =
{

(xi, yi) | xi ∈ RD, yi ∈ Yt
}
i=1,...,mt

(2.19)
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denotes the set of labelled images for task t, xi denotes image with a class label yi, Yt
denotes the set of class labels for task t, and mt denotes the number of labelled pairs in
X t. In the CIL scenario, the model is presented with X t at task t for learning. At task s,
where t < s, the model will not be able to access the entire X t for learning, in particular
we have Yt ∩ Ys = ∅. The model is required to learn the information for X s at task s
without forgetting information for X t.

Without continual learning strategies, the model will catastrophically forget [15, 16, 33]
information of task t after learning task s. That is because the data distribution in task
t is not identical to the data distribution in task s. In this case, as we train the model
for task s, the weights in the model will shift towards the set of weights that is optimal
for task s without consideration for task t. As the weights shift for task s, the model’s
performance for the previous tasks will deteriorate.

2.4 Regularization

The simplest non-trivial approach to continual learning is via weight regularization [2, 33,
97]. Weight regularization can be separated into two streams, namely weight importance
computation and knowledge distillation.

Weight Importance

Weight importance regularization methods, such as Elastic Weights Consolidation (EWC)
[33], Memory Aware Synapses (MAS) [2] and Synaptic Intelligence [97], include a penalty
term in addition to the classification loss function of the discriminative model to regularize
individual weights from being updated significantly during the training of a new task.
The weight importance regularization methods are simple and conceptually attractive,
however these methods were shown to be inefficient at class incremental learning [8, 26],
as regularization requires the network to be highly over-parameterized to prevent task
interference during training. However, weight regularization approaches are often combined
with other approaches to improve performance because of their simplicity.

A regularization term Lreg is added to the model’s classification loss function Lcls from
Equation (2.6) as

L(θ) = Lcls(θ) + λLreg(θ), (2.20)
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where λ is the regularization coefficient. For weight regularization, Lreg is parameterized
as

Lreg(θ) =
P∑
i=1

Ωi(θi − θ∗i )2, (2.21)

where Ωi is a function that calculates the parameter importance for the i-th parameter, θ∗i
is the i-th weight learned from the previously seen tasks, and P is the number of weights
(parameters) in the neural network model.

Ωi quantifies the importance of the θ∗i parameter, and it may be calculated in a variety
of different ways. Parameter freezing (Ω→∞) can be considered as one extreme in regu-
larization. In EWC, Ωi is calculated as the diagonal of the Fisher information matrix [33],
Calculating the importance requires storage of a diagonal matrix and an additional loop
through all the parameters, which could be constrained by memory since a typical feature
extractor contains millions or billions parameters. On the other hand, Ωi in MAS[2] is
calculated as the l2 gradient of the neural network output given the inputs. MAS reduces
the need for storing the Fisher information matrix but requires an additional backward
pass to calculate the l2 gradients.

Distillation

The idea of using knowledge distillation [24, 47, 81] for continual learning originates from
transfer learning [47, 79, 96]. Knowledge distillation is a technique for transfer learning,
where knowledge gained from solving one task is applied to a different but related problem.
In other words, the knowledge of model A is transferred/distilled to model B by imposing
model B to have the same output as model A, given the same input. Thus, implicitly
regularizing the weights of model B and enabling model B to learn new tasks faster.

Similarly knowledge distillation can be used for continual learning. After model A
is trained for a task, the knowledge is distilled to model B while model B is learning
a new task. In [81], the authors use mean-squared error to distill the knowledge of an
object detector in the incremental learning setting in an effort to minimize catastrophic
forgetting. In [47], the authors regularize the divergence between logits of models A and
B for incremental learning. A common drawback in distillation is the need to preserve a
teacher model for the student to learn.
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2.5 Architecture Expansion

The architectural approach to continual learning involves changing the DNN’s architecture
dynamically to enable the model to learn new data [12, 45, 66, 73]. These approaches can
be separated into explicit expansion and implicit expansion.

Explicit Expansion

The learning algorithm for explicit expansion methods [45, 73, 95] will modify the DNN
architecture explicitly to combat catastrophic forgetting. In this family, the algorithm
expands the model as the model encounters more data or as the learning proceeds to
successive tasks.

One such example is Progressive Neural Networks [73] (PNN), where for each new task
a new model is created and connected to the previously learned model. The idea is to use
the previously learned representation while training the new model on a new task. In PNN,
the number of weights grows at a quadratic rate with respect to number of tasks. Thus,
PNN is only limited to short task sequences. Another example that explicitly modifies the
DNN’s architecture is the Dynamically Expandable Networks (DEN) in [95], where neurons
are added or pruned dynamically for the new tasks. DEN tackles the parameter growth
problem by pruning unimportant parameters. The Neural Dirichlet Process Mixture Model
in [45] attempts to reduce the quadratic rate of increasing parameters by modelling the
model’s capacity through a probabilistic model.

These methods often require well-defined task boundaries during training and inference
in order to select the right model output. Further, these methods cannot be easily scaled
to scenarios having long learning sequences [8]; for both reasons we do not consider these
approaches further.

Implicit Expansion

A continual learning algorithm is considered an implicit expansion method when it adapts
the model without explicitly changing the architecture. This is usually achieved through
freezing a subset of the weights [78] in the DNN during learning and changing the forward
pass path [65].

Freezing weights consists of choosing some weights at the end of a task that will not
change in the future. The backward pass will not be able to tune them anymore; however,
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they can still be used in the forward pass. For example in Hard Attention to Task [78]
and Piggyback [54], the authors define a mask for each task to prevent the weights from
changing when learning new tasks and using the masks to choose the weights that will be
used for forward pass during inference. In Random Path Selection (RPS) [65], weights were
regularized with distillation techniques instead of freezing and the method dynamically
selects the optimal forward paths within the DNN.

This family of methods ensures that the frozen weights will not be modified, and tries
to keep enough free parameters to learn in the future. The difficulty lies in freezing enough
weights so that catastrophic forgetting is minimized, but not so much that the model is
not able to learn from new tasks.

2.6 Replay-based Approaches

Replay-based methods [50, 67, 85] aim to enable continual learning by repeatedly “rehears-
ing” memories of past tasks; the memories can either be raw input or processed input. To
be specific, a replay-based approach either requires an external data buffer for sample
storage or an addition model to reconstruct past information.

The approach of using a data buffer is termed a rehearsal approach [12, 67, 70]; this
approach aims to model the past with only few examples. The examples are stored in a
data buffer called a coreset. The coreset data are carried forward to the next task to serve
as a memory for the model. Although randomly choosing samples will work for rehearsal,
it is sub-optimal, and ideally the samples are chosen carefully in order to maximize their
representation capability of past memory.

An alternative approach to using a coreset is generative replay [61, 80], where a gen-
erative model is trained on the data distribution and used to sample the past data in
the future task. Samples from past data distributions are mixed into the current train-
ing data, enabling the model to rehearse from previous data distributions and minimizing
catastrophic forgetting.

Rehearsal

In rehearsal approaches [50, 67], the algorithms aim to find examples that are representative
of the current task and store the representative examples into a coreset. The data in the
coreset will be mixed into the training data in future tasks. In addition, the coreset data
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can be used for regularization as to prevent the model from forgetting the previous task
information. As such, rehearsal approaches enable the models to continually learn new
tasks without explicitly freezing weights, giving the model more plasticity.

A prominent example is incremental classifier and representation learning (iCaRL) [67],
which uses a greedy algorithm to choose which raw-input images will be stored in a coreset,
and the coreset is then included in training subsequent tasks. In addition, iCaRL also uses
the coreset data for distillation when learning new tasks. The LUCIR algorithm in [25],
uses cosine normalization, a less-forgetting constraint, and inter-class separation constraint
with a coreset to rebalance the class incremental training process. The algorithm in [50]
trains a model on top of LUCIR to pick the examples that are most representative of the
current task to be included into the coreset. The TPCIL in [85] models the topology of
the feature embedding and selects the raw-input images to the coreset for replay.

Replay methods generally outperform other methods, and even näıve replay yields
a strong baseline performance in comparison to other approaches, as shown in [26]. A
challenge with rehearsal approaches is the management of an additional buffer requirement
for storing examples. Storage of raw input data is not efficient, as often raw input contains
more information than necessary. In addition, having a fixed buffer size could limit the
quality of replay as the buffer may not be sufficient to represent previous tasks as more
data are received over time and that class imbalance problems could occur.

Generative Replay

Generative (pseudo)-replay approaches train a generative model to construct past images
or to approximate their distributions. By learning on current data and generating past
data, the algorithm ensures that the knowledge and skills from the past is not forgotten.
The generative model is usually implemented through GAN [61, 93] or auto-encoder [29].

In this framework, the classification model and generative model are usually trained
alternately, in a dual-model framework. In other words, the generative model will be
frozen when the classification model is being trained with past experience sampled from
generative model. After the classifier is trained, the generative model will then be updated.
In this thesis we focus on conditional generators where the generator is required to learn
and generate specific conditions. A potential application of generative replay methods is in
situation where there is privacy constrains [14, 80] making raw-input replay not possible.

The idea of using generative models for incremental learning has been explored in deep
generative replay (DGR) [80] and deep generative memory (DGM) [61] where the authors
focus their effort at generating images for for replay. However, both DGR and DGM
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are limited to small images and to small datasets. Later, conditional adversarial network
(CAN) [93], Generative Features Replay (GFR) [49], and FearNet [29] employed generative
models at the image embedding level, enabling the methods to be scaled to larger images
for incremental learning. Further, this allows them to achieve state of the art performance
in several benchmark scenarios. In this thesis, we will focus on the comparison against
CAN, GFR and FearNet as the proposed method in this thesis is a generator moment
matching model for incremental learning.
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Chapter 3

Method Development

In this chapter, we develop the Incremental Generative Replay Embedding (IGRE) frame-
work for the Class Incremental Learning (CIL) scenario. In Section 3.1, we will visualize
the feature embedding and provide intuition to understand the dynamics of catastrophic
forgetting in the CIL scenario. In Section 3.2, we describe the use of feature extractors to
reduce the dimensionality of the input. In Section 3.3, the alternating back-propagation
method is employed as a method to train the generative model. Finally in Section 3.4, the
incremental learning framework will be presented.

3.1 Problem Understanding

In this section, we aim to develop the intuition to understand the CIL problem [26] in-
troduced in Section 2.3. We will visualize the feature embedding extracted from a deep
neural network (DNN) trained in a relatively simple two-task CIL scenario without con-
tinual learning strategies. We aim to provide the intuition from which we develop our
continual learning strategy from the visualization of feature embedding.

As introduced in Section 2.1, the feature extractor of DNNs is able to extract features
from an image to solve a classification task. The work of [91] suggests that adjusting the
bias at the classification layer is a simple way to combat catastrophic forgetting because
the feature extractor remains stable under the CIL scenario. Inspired by [91], we visualize
the feature embedding in order to have an idea about how task progression in CIL scenario
impacts DNNs. We trained LeNet-5 [40], a DNN for classification, on the entire MNIST
dataset [42] using cross-entropy (CE) loss from Equation (2.6), and extracted the feature
embedding of the test data.
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(a) Feature embedding from CE loss (b) Feature embedding from triplet loss

Figure 3.1: Feature embedding of the MNIST test data when the model is trained with
two different loss functions. (a) shows the feature embedding of data where the model is
trained with cross-entropy loss. (b) shows the feature embedding of data where the model
is trained with triplet loss.

The first obstacle is that the feature embedding is 128-dimensional which is difficult to
visualize. We used t-SNE [87], an unsupervised learning dimensional reduction technique,
to reduce the 128-dimensional feature embedding to 2-dimensional for visualization1. The
dimensionality reduced feature embedding for subset of data can be seen in Figure 3.1-(a).
Although the feature embedding trained with CE loss looks separable, many of the feature
embeddings are overlapping at the center. Further, given that the validation accuracy
on the test data point is 99%, the feature embeddings of the data are not well separated
into clusters as is desirable. At this point there are two issues preventing us from further
understanding the behaviour of DNN: the cross-entropy loss function and use of t-SNE for
dimensionality reduction.

First, notice that although the CE loss from Equation (2.6) is good at training models
for classification, it does not explicitly regularize the feature embedding of the same classes
to be clustered together [76, 90]. A DNN trained with CE focuses on separating the logits
of the model and implicitly regularize the feature embedding. Second, the use of t-SNE
adds an additional layer of abstraction that may have caused the visualization to present
more overlapping than there is. These two issues are solved with the use of the triplet loss
[76, 90] from metric learning, where the loss encourages the model to learn image clusters

1The idea of using t-SNE to visualize feature embedding is reproduced by many open-sourced project.
Similar visualization of feature embedding through t-SNE can also be found at this github page.
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semantically in the feature embedding space. The use of triplet loss is to train the model
is purely for visualization.

The triplet loss in [90] tries to bring the example, called the anchor, close to the positive
images (images of the same label), and away from negative images (images of different
label). The loss is given by

L =
N∑
i=1

[
‖fai − fpi ‖ − ‖f

a
i − fni ‖+ α

]
+
, (3.1)

where fai is the feature embedding of the anchor i, fpi and fni is the feature embedding of
the positive and negative pair for anchor i, and α > 0 is a margin hyperprameter. As can
be seen from Equation (3.1), the loss directly regularizes the feature embedding f . More
importantly, if we assume f ∈ R2, we can directly visualize the learned feature embedding;
no dimensionality reduction is needed after the training for visualization. We assert the
assumption that f ∈ R2 purely for visualization purpose.

The feature embedding of training data from the model trained with triplet loss are
shown in Figure 3.1-(b). We can see the cluster formations are more prominent in the
feature embedding space in Figure 3.1-(b) compared to Figure 3.1-(a). This verifies our
intuition that the images are projected into the feature embedding space as clusters by the
feature extractor of a DNN.

In order to visualize how the clusters change under the CIL scenario, we created two
tasks from the MNIST digits dataset [42] by splitting the 10 classes into two groups, each
group containing same number of disjoint classes. That is, task 1 consists of digits in
{0, 1, 2, 3, 4}, and task 2 consists of digits in {5, 6, 7, 8, 9}. We present the groups sepa-
rately to a LeNet-5 [40] model for learning. To maintain the interpretability of the feature
embedding, the DNN is trained with triplet loss with 2-dimensional feature embedding.

We keep track of the test data from task 1 and analyse how the learned clusters evolve
from task to task. In Figure 3.2-(a), we see each class has their own cluster embedding
after task 1 training. The model is then presented with task 2 data for learning without
any continual learning algorithm. We see in Figure 3.2-(b) that the clusters are grouped
closer together. In particular, the clusters corresponding to digit 1 and digit 2 overlap; this
suggests that the model suffers from catastrophic forgetting.

Intuitively, figures 3.1 and 3.2 showed that a DNN learns to group images from the
same class together into the same cluster. When a new task is introduced in the CIL
scenario, the DNN model suffers from catastrophic forgetting as indicated by the merging
of clusters. An ideal continual learning algorithm is able to organize the clusters at feature
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(a) Feature embedding after task 1. (b) Feature embedding after task 2.

Figure 3.2: Feature embedding of the MNIST test data in the CIL scenario. (a) shows the
feature embedding after the model is trained on task 1. (b) shows the feature embedding
after the model is trained on task 2. This suggests that the model suffers from catastrophic
forgetting of task 1 as the model fails to project task 1 test data back to the original cluster
location.

embedding space such that inter-cluster interference is minimized when new clusters are
added.

Next, we develop our intuition on how DNNs change under the CIL scenario into
continual learning algorithm.

Problem Breakdown

Continuing from the intuition that the feature extractor of a DNN loses its ability to project
images of previously seen classes to previously identified cluster locations, we develop two
requirements. First, we need a model to describe the clusters in feature embedding space.
Second, we need the cluster model to be able to generate the data distribution. Here,
we will present the IGRE framework at a high-level, setting the stage for the detailed
descriptions later.

The first requirement is that we need a model to describe the clusters. We satisfy
this requirement by training a generator neural network to learn a map from a smooth
latent space to the feature embedding space. That is, as introduced in Section 2.2, given
an element from the smooth latent space, the generator neural network should be able to
reconstruct the feature embedding in the feature embedding space. Therefore, we model
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the clusters in the feature embedding space through the latent space and generator neural
network.

Second, we also require the generator to be able to model the data distribution in the
CIL scenario. This requirement is satisfied through the conditioning the generator neural
network with class labels. Using conditional generator, we can generate feature embedding
of all classes as a generative replay mechanism for the classifier. As a result, we have a
generative model that models the feature embedding data distribution.

3.2 Learning Feature Embedding

In this section, we describe our generative model for learning feature embedding of a single
task in the CIL scenario. There are two main benefits for training a generative model for
feature embedding instead of raw input. The first benefit is that the feature embedding has
significantly fewer dimensions compared to raw input, which facilitates efficient generative
model training. The second benefit is that it is (intuitively) easier to learn to separate the
classes at feature embedding space as illustrated in Figure 3.1.

Recall in Section 2.3, in particular Equation (2.19), the training samples associated
with the classes seen in task t in the CIL scenario:

X t =
{

(xi, yi) | xi ∈ RD, yi ∈ Yt
}
i=1,...,mt

. (3.2)

The class label yi is encoded in the class characteristic ρ ∈ RK , and that we define the
conditional generative model G as

G : Rd × RK → RD, (3.3)

such that G takes in latent variable z ∈ Rd with d� D and ρ ∈ RK and generates a new
realistic sample x̃ belonging to the set of samples X t.

The use of a generator neural network [46] to learn the data distribution through
Equation (2.9) was introduced in Subsection 2.2.1. Here, we extend the moment matching
framework to a conditional generator, thus the log joint likelihood becomes

logPθ(x, z | ρ) = −‖z‖
2
2

2
−
∥∥x−Gθ

(
z, ρ
)∥∥2

2

2σ2
+ c. (3.4)
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Infer Update

Figure 3.3: The proposed IGRE framework: The associated representation of each input
sample is calculated by the feature extractor f(·). The generator model G(·) learns the
feature embedding conditioned on class labels.

We can train a conditional generator, Gθ, by integrating out the latent variables and maxi-
mizing Equation (3.4) through gradient ascent with respect to θ, hence learning the condi-
tional observed data distribution Pθ (x | ρ). However, training Gθ is still computationally
intensive because the gradient,

∂

∂θ
logPθ(x | ρ) = Epθ(z|x,ρ)

[
∂

∂θ
logPθ(x, z | ρ)

]
, (3.5)

is intractable in real-world applications due to the high dimensionality of x. That is, we
require the training data to contain enough variations to describe the space spans by X .

The difficulty in learning Gθ associated with the high dimensionality of x can be miti-
gated through the use of a dimensionality reduction function,

f : X → Rn. (3.6)

Here f projects high-dimensional x ∈ X ⊆ RD into a modest n-dimensional embedding
space, such that n � D. This f is realized in practice through the feature extractor of
a DNN, and we call the space f(X ) ⊆ Rn the embedding space. The process can be seen
in Figure 3.3, where f projects input images to embedding space. Thus, the difficulty in
learning Gθ is reduced and Gθ can be learned efficiently.

The ideal f(·) is a many-to-few function which maps all samples belonging to a given
class/task to a unique neighbourhood location in Rn. However, this idealization is not
possible, given the continual learning setup where all data are not seen simultaneously,
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making it difficult to partition the space properly [34]. As such the realization of clusters
illustrated in Figure 3.1 is not feasible. Hence, we use a generator neural network to
support the feature extractor by learning the data distribution at the embedding space
incrementally through generative replay.

The key is that the replay step takes place in the embedding space, and not in the much
larger original space. Thus the generator generates feature embedding for replay in the
subspace of Rn which is far simpler than RD. As a result, the joint conditional probability
density which we aim to learn is approximated by

P (x, z | ρ) ≈ P (f(x), z | ρ) , (3.7)

where f(x) is essentially a generic feature extractor that encodes the feature embedding
associated with sample x. Following the approximation in Equation (3.7), the conditional
log joint likelihood for the model becomes

logPθ(f(x), z | ρ) = −‖z‖
2
2

2
−
∥∥f(x)−Gθ

(
z, ρ
)∥∥2

2

2σ2
+ c, (3.8)

where c is independent of x, z and θ. This means the conditional generator, Gθ, now learns
to generate the feature embedding f(x). In practice, we integrate out the latent variables z
as they are not directly observed. Similar to the marginalization done at Equation (2.11),
we integrate out the latent variables in Equation (3.8),

L(θ) =
m∑
i=1

log

∫
z

Pθ(f(xi), z | ρi) dz (3.9)

=
m∑
i=1

logPθ(f(xi) | ρi), (3.10)

where m is the number of data samples. Equation (3.10) is interpreted as the condi-
tional observed data likelihood function which we want to maximize with respect to the
generator’s parameters θ, that is,

arg max
θ

m∑
i=1

logPθ(f(xi) | ρi). (3.11)

In summary, we simplified the learning problem from RD to Rn and adapted the gen-
erator for the lower dimension through Equation (3.8). The next section describes the
learning algorithm to solve Equation (3.11).

27



3.3 Alternating Back Propagation

In this subsection, we describe the learning algorithm for the maximizing Equation (3.11).
The algorithm is a simple alternating back propagation scheme [22] where the generative
model is trained through the conditional sampling of latent variables, z, and gradient ascent
on θ. The gradients for learning the generator and inferential backpropagation are first
derived, then we will describe the procedure to update the generator and latent variables
iteratively.

Recall the conditional observed data log-likelihood, Equation (3.10), is obtained by
integrating out the latent variables in Equation (3.8), that is,

L(θ) =
m∑
i=1

log

∫
z

Pθ(f(xi), z | ρi)P (z) dz

=
m∑
i=1

logPθ(f(xi) | ρi). (3.12)

In other words, maximizing L(θ) with respect to θ is maximizing the likelihood of observing
the data under θ. The maximization is done through alternating back propagation in a
manner similar to expectation-maximization algorithm [58].

Generator Parameters θ

First, we describe the gradient calculation and update step for the generator parameters
θ. The parameters are learned through gradient ascent. The gradient of Equation (3.12)
with respect to θ, for a single observed pair2 (x, ρ), is,

∂

∂θ
logPθ(f(x) | ρ) = Epθ(z|f(x),ρ)

[
∂

∂θ
logPθ(f(x), z | ρ)

]
. (3.13)

To see Equation (3.13) holds, we observe that,

Epθ(z|f(x),ρ)
[
∂

∂θ
logPθ(f(x), z | ρ)

]
=Epθ(z|f(x),ρ)

[
∂

∂θ
logPθ(z | f(x), ρ) +

∂

∂θ
logPθ(f(x) | ρ)

]
=Epθ(z|f(x),ρ)

[
∂

∂θ
logPθ(z | f(x), ρ)

]
+ Epθ(z|f(x),ρ)

[
∂

∂θ
logPθ(f(x) | ρ)

]
. (3.14)

2We omit the subscript i without loss of generality.

28



The first quantity in Equation (3.14) is zero because,

Epθ(z|f(x),ρ)
[
∂

∂θ
logPθ(z | f(x), ρ)

]
=

∫
pθ(z | f(x), ρ)

[
∂

∂θ
logPθ(z | f(x), ρ)

]
dz

=

∫
∂

∂θ
Pθ(z | f(x), ρ) dz

=
∂

∂θ

∫
Pθ(z | f(x), ρ) dz =

∂

∂θ
1 = 0.

Further notice that the function in the second quantity in Equation (3.14) is independent
of z thus we have,

Epθ(z|f(x),ρ)
[
∂

∂θ
logPθ(f(x) | ρ)

]
=

∂

∂θ
logPθ(f(x) | ρ), (3.15)

which proves Equation (3.13) holds.

Since the expectation in (3.13) is analytically intractable, Monte-Carlo approximation
is used to estimate the expectation [22, 100] with respect to current z,

∂L(θ)

∂θ
≈ 1

m

m∑
i=1

∂

∂θ

[
logPθ

(
f(xi), zi | ρi

)]
(3.16)

=
1

m

[
−

m∑
i=1

[
∂

∂θ

1

2σ2

∥∥∥f(xi)−Gθ

(
zi, ρi

)∥∥∥2
2

]]
, (3.17)

where Equation (3.8) is used to go from (3.16) to (3.17). The correctness of Equation
(3.13) is guaranteed from the expectation-maximization algorithm [58]. It is important to
note here that Equation (3.17) is formulated for batched learning with m examples, hence
not scalable to large datasets with millions of examples as it is slow and costly for the
algorithm to scan through the entire training set before taking a single step. Therefore, we
use stochastic gradient with mini-batches [71] to estimate the gradient in Equation (3.17)
as alternative optimization procedure so we can scale the method to large-scale datasets.

Once the gradient in Equation (3.17) is obtained, the parameters are updated by per-
forming gradient ascent,

θt+1 = θt + ηt
∂L(θt)

∂θ
, (3.18)
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where ηt is the learning rate at step t. Repeating (3.18) multiple times will guide the
generator to generate a set of features that maximizes Equation (3.11) with a fixed set of
latent variables z. Since this is a Monte-Carlo approximation, the latent variables have to
be inferred to prevent the algorithm from getting stuck at a local minima/maxima. We
will describe how to infer the optimal z next.

Inferential Back Propogation

In addition to the generator, we need to also infer the latent variables to maximize (3.11).
The continuous latent variable z is sampled based on Langevin dynamics [59], and updated
iteratively:

zj+1 = zj +
s2

2

∂

∂z
logPθ

(
f(x), z | ρ

)
+ sNj, (3.19)

where s is the Langevin’s step size and j is the time step for Langevin inference. Nj ∼
N(0, Id) is the random noise projected in each step preventing the chain from being trapped.

Note that generating independent high-dimensional z from scratch for the Monte-Carlo
approximation of Equation (3.17) is computationally expensive [59, 100]. In practice, we
take L Langevin’s steps for each data point at each iteration in order for the algorithm to
search for an optimal latent variable representation given a fixed generator. That is, take
L-steps according to Equation (3.19) to update z, then at the next iteration, we do a warm
restart for the sampling of z from previously updated z. After inferential back-propagation
for latent variable z, the generator’s parameters θ are then updated with the inferred latent
variable with Equation (3.18).

The generator Gθ

(
z, ρ
)

generates a new feature embedding given the latent variable
z and class characteristic ρ. The ultimate goal is that the generated feature embeddings
that follow the same distribution as f(·). The learning algorithm alternates between (3.19)
and (3.18) for the model to learn the log joint likelihood in Equation (3.8). It has been
shown [59] that the proposal step in (3.19) guides the latent variable z to a stationary
distribution of our target, Pθ(f(x), z | ρ).

Having described the alternating back-propagation and gradient calculation to maxi-
mize (3.11), the next section summarizes the steps for class incremental learning.
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3.4 Continual Learning Model

The alternating back propagation scheme described in Section 3.3 maximizes Equation
(3.11). However, the maximization problem shown in Equation (3.11) is only applicable
for X t where t is fixed. In this section, we describe the IGRE framework, in which we
adapt the alternating back propagation algorithm for the Class Incremental Learning (CIL)
scenario. We will describe the steps of IGRE to combat catastrophic forgetting, that is,
extending to X t where t ∈ {1, . . . , τ}.

As described in Section 2.3, X t is presented to a continual learning algorithm sequen-
tially. More importantly, a model in the CIL scenario is allowed access to X t as many times
as it needs at task t for learning, but then never again thereafter. That means the training
set X t will not be accessible at future tasks s > t unless the algorithm decides to store a
subset of X t for replay, as such the model will suffer catastrophic forgetting. The IGRE
framework consists of a class conditional generator neural network and a single-headed
classifier. The generator neural network generates class feature embedding for replay to
combat catastrophic forgetting, while the classifier is trained with the generated feature
embedding for classification. The steps are summarized in Algorithm 1.

At task t, the raw inputs in X t are first projected into the embedding space via feature
extractor f(·) which is fixed (e.g., an ImageNet pre-trained model) for all tasks/classes. We
denote the resulting projected embedding as Dt. The previously trained generator, Gt−1,
will be used to generate features from previously seen tasks, that is D1,...,t−1. The new
feature embedding dataset, the combination of Dt and D1,...,t−1, is used to train the gener-
ator at task t via the alternating back-propagation, switching between (3.19) and (3.18).
In other words, we incrementally maximize

arg max
θ

logPθ(f(x) | ρ), (3.20)

where x ∈ X t, t ∈ 1, . . . , τ , and the X t’s are presented sequentially.

In the final step, the classifier is updated by the generated feature embedding condi-
tioned on different class characteristics ρ’s through Gt. This is achieved through formulat-
ing the generator as a class conditional generator. In Section 4.5, we show experimentally
that the classifier can be a linear model (e.g., linear-SVM or logistics regressor) since the
embedding space of the learned generator is sufficiently separable and efficient.
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Algorithm 1: Alternating back-propagation within the IGRE framework.

Input : Training set at task t X t = {(xti, ρ), i = 1, . . . ,m}
Langevin’s step size, s
Model’s standard deviation, σ
Number of Langevin’s step, L
Number of training epochs, I

Output : The parameters θ in generator Gt(·)
Inferred latent variable z

if t == 1 then
Generate embedding train set Dt via f(·).
for i← 1 to I do

for j ← 1 to L do
Update the latent variable z via (3.19).

end
Update θ via (3.18).

end

end
for t← 2 to . . . do

Generate embedding train set Dt via f(·).
Create train set D1,...,t−1 by generating embedding for tasks/classes
{1, . . . , t− 1} via the learnt generator Gt−1(·).

Combine the train sets
{
D1,...,t−1 ∪Dt

}
.

for i← 1 to I do
for j ← 1 to L do

Update latent variable z via (3.19).
end
Update θ via (3.18).

end

end
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Chapter 4

Experimental Results

In this chapter, we will present our analysis of the proposed Incremental Generative Replay
Embedding (IGRE) framework. IGRE was evaluated with common benchmark datasets in
machine learning literature, and ablation studies were conducted on different components
of the IGRE framework.

4.1 Datasets and Evaluation

In this section, we describe the datasets and the evaluation metrics we used for the ex-
periments. As mentioned in Section 2.3, we split a dataset into disjoint groups of classes
and present the groups sequentially to the model to simulate the class incremental learning
scenario.

Datasets

Three different publicly available datasets are used to evaluate the proposed method.
The datasets are CIFAR-10/100 [37], Caltech-UCSD Birds-200-2011 (CUB) [89], and Ima-
geNet2012 [13, 72]. These datasets are common benchmarks within the continual learning
community, thus allowing us to compare our proposed method against other methods.

CIFAR-10/100 [37] is a small scale dataset consisting of 60, 000 32× 32 RGB-images
over 10 or 100 classes. The data are separated into 50, 000 training samples (5, 000 per
class label) and 10, 000 test samples for the 10-class variant, whereas the 100-class variant
has only 500 training samples per class label.

33



CUB [89] is a medium scale fine-grained dataset consisting of 224 × 224 images of
200 bird species with 312 class-level attributes. This dataset is included to evaluate the
proposed IGRE framework when class attributes are used as the conditional variables,
ρ, rather than the class labels. In addition to having more class attributes, this dataset
also contains imbalanced numbers of examples per-class, allowing us to evaluate IGRE’s
robustness in the imbalanced class situation.

ImageNet2012 [13] is a popular large scale dataset within the computer vision com-
munity, consisting of 13 million natural images with 1000 classes. The large number of
classes in this dataset allows us to evaluate IGRE in large-scale long learning sequences. In
addition to using all of the classes, we also used a subset of the classes to form SubImageNet
[49, 85] which is used to compared against other CIL algorithms.

Evaluation

All algorithms are evaluated in the class incremental learning scenario for image classifi-
cation. Half of the classes in a dataset1 are randomly selected as the base task, task 0, for
model initialization, and the remaining half is split into τ disjoint groups. The groups are
then presented to the model sequentially for the model to learn incrementally. Two evalu-
ation metrics are used to measure the performance of the proposed method and competing
algorithms:

1. Average accuracy across all tasks, denoted as At, and

2. Knowledge retention of the base task (task 0) at task t, denoted as Bt.

These two metrics are similar to those used in [29, 93]. Let at,j denotes the accuracy of
the model for task j, evaluated when the model is trained for task t, where j ≤ t ≤ τ :

• The average accuracy at task t is calculated as

At =
1

t

t∑
j=1

at,j , (4.1)

which measures how effective a continual learning method is at classification across
a sequence of tasks. The reason the calculation for at,j starts at task 1 is that the
learning sequence actually starts at t = 1 and not t = 0.

1This base task initialization is used for all datasets except CIFAR10.
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Table 4.1: A hypothetical scenario with two models and two tasks. Model A and B both
achieved A2 = 0.5 but Model B has less forgetting than Model A as Model B has higher
a2,1.

Model a2,1 a2,2 A2

A 0 1 0.5
B 0.5 0.5 0.5

• The knowledge retention of base task is calculated as

Bt =
1

t

t∑
j=1

aj,0 , (4.2)

measuring the model’s knowledge retention of the base or initialization task over the
next t further learning sessions.

SinceAt is an averaged value, we are not able to evaluate how well the learning algorithm
is retaining knowledge from earlier tasks. For example, consider a hypothetical scenario
with two models with t = 2, and the models performance listed in Table 4.1. We see both
models achieved A2 = 0.5. Since model A obtained a score of a2,1 = 0 due to catastrophic
forgetting of task 1, we can infer that model A also obtained a2,0 = 0. In this case, model
A is not retaining any knowledge from previous task yet achieving the same score as model
B. Therefore, we use one additional metric Bt to give us an indication how well the learning
algorithm is able to retain knowledge from the base initialization task.

All experiments are repeated 5 times to get the mean and variance of the performance
metrics. Note that the numbers reported for IGRE is always the average over 5 runs. All
results from competing methods are obtained from the original publications.

4.2 Class Incremental Learning

We will first present the results for split-CIFAR-10, split-CIFAR-100, SubImageNet and
split-ImageNet where class labels are used as conditional variables. These four benchmark
scenarios for class incremental learning evaluation are listed in increasing difficulty.
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Split-CIFAR-10

In split-CIFAR-10, the 10 classes are split into groups containing equal numbers of disjoint
classes and presented to the model; there is no base task in this scenario because there are
many examples per class. We compared the proposed method to conditional channel-gated
network (CGN) [1] and dynamic generative memory (DGM) [61] in Split-CIFAR-10. We
will briefly describe CGN and DGM and then present the comparison in Table 4.2.

The CGN of [1] is a replay method where the algorithm jointly optimizes for class and
task predictions, that is,

max
θ

Et∼T
[
E(x,y)∼Tt logPθ(y, t | x)

]
= (4.3)

Et∼T
[
E(x,y)∼Tt (logPθ(y | x, t) + logPθ(t | x))

]
. (4.4)

The term logPθ(t | x) computes the log-probability that an image is from task t. The
predicted task t is then used to compute logPθ(y | x, t), the log-probability of the class
label of input image x.

In this joint objective, the term Pθ(t | x) represents a task classifier which predicts the
task from observations. As such, the model is able to choose the class prediction from the
appropriate task head, thus reducing the prediction difficulty. A replay mechanism with
coreset is used to rehearse the task classifier. However, CGN requires well-defined task
information during training to learn the appropriate classification head.

In DGM [61], the authors proposed two masking mechanisms for the training of gen-
erative models in the CIL setup. The first mechanism is called layer activation masking
(DGMa), where an activation mask is learned to find a subset of parameters optimal for
the task. The second mechanism is a binary mask imposed on the weights of the generator
(DGMw). In both variants of DGM, a GAN was used to generate images from past tasks
to combat catastrophic forgetting and consolidate the model’s past knowledge.

In Table 4.2, we see that the proposed IGRE framework outperforms the other al-
gorithms in both A5 and A10 scenarios. IGRE outperforms CGN despite CGN being a
task-aware method; this suggests that IGRE is able to utilize the class information in a
more efficient manner compared to CGN. DGMa and DGMw use a GAN with an encoder
to generate past image examples; this requires DGM to need a wide variety of images in
order to learn the data distribution. That is DGM learns to generate replay examples at
X which has much larger dimensionality than f(X ), hence needing more examples in X
to learn better. Thus, it is challenging to scale both CGN and DGM to the more difficult
scenario of split-CIFAR-100.
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Table 4.2: Comparisons for split-CIFAR-10: The proposed IGRE is compared with
DGM [61], a generative replay method, and CGN [1], a task-aware replay method. Our
proposed IGRE outperforms these state-of-the-art methods in both 5-task (A5) and 10-
task (A10) scenarios. Assessments of competing methods are extracted directly from their
original papers.

Method A5 A10

DGMw [61] 0.725 0.562
DGMa [61] 0.719 0.518
CGN [1] - 0.701
IGRE 0.829 0.816

Table 4.3: Comparisons for split-CIFAR-100: The proposed IGRE framework significantly
outperforms competing methods in longer sequences of tasks, while providing comparable
results for shorter sequences.

Method B25 A25 B10 A10 B5 A5

EWC [33] 0.102 0.154 0.144 0.179 0.163 0.187
iCARL [67] 0.506 0.528 0.554 0.572 0.571 0.595
FearNet [29] 0.547 0.569 0.613 0.625 0.648 0.662
CAN [93] 0.562 0.580 0.619 0.631 0.644 0.671
IGRE 0.662 0.643 0.675 0.653 0.688 0.659

On the other hand, IGRE generates past features with only a class conditional generator
showing the benefits of not having an encoder and replaying at the feature embedding space.
This allows IGRE to be more data efficient and scale to more difficult scenarios.

Split-CIFAR-100

In split-CIFAR-100, we split the classes evenly into groups of 2, 5 and 10 to simulate longer
learning sequences while keeping the first 50 classes as a base task, as described in [93].
The same pre-trained ResNet-50 network architecture is used as the feature extractor f(·).
At test time, we generate 300 samples from each class and train a single-layer classifier for
all classes.

The split-CIFAR-100 scenario is a more difficult scenario compared to split-CIFAR-
10 because there are longer task sequences and fewer training samples per class, thus all
methods generally achieve lower accuracy. The proposed IGRE framework is compared
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against EWC [33], iCARL [67], FearNet [29], and CAN [93], with a particular interest in
FearNet and CAN, as they similarly replay on an image embedding, but with a different
mechanism.

As seen in Table 4.3, despite using only feature descriptors, IGRE is able to produce
results comparable to other state-of-the-art features generative replay methods with an
average accuracy of 64.3% for a longer (25-task) sequence. While IGRE and CAN [93] both
perform modeling at the embedding space, the proposed IGRE framework outperforms
CAN in longer learning sequences. The main advantage of IGRE is that it employs a
generative model without an encoder, thus lessening the catastrophic forgetting of the
entire system and enabling the system to learn longer task sequences.

In addition, IGRE shows better knowledge retention rate compared to other methods.
This is seen from IGRE having higher Bτ compared to all other methods; IGRE is able to
achieve B25 of 66.2% while the next highest is 56.2% from CAN. However, IGRE is not as
plastic for the shorter learning sequence as IGRE achieved only 65.9% for A5 while CAN
and FearNet achieved 67.1% and 66.2% respectively.

We also compare IGRE with SOTA exemplar based methods and with a different
backbone architecture (ResNet-18). Topological Preserving Class Incremental Learning
(TPCIL) [85] is an algorithm which models the topology of feature embedding for class
incremental learning. Learning Unified Classifier Incrementally via Rebalancing (LUCIR)
[25] and LUCIR-M [50] are both exemplar based algorithms with LUCIR-M optimized on
the exemplar selection. Similarly, we see in the split-CIFAR-100 column of Table 4.4 that
IGRE is able to consistently outperform the exemplar CIL methods in longer task sequence
scenarios, A25 and A10, because the generator is able to generate feature embeddings that
are highly discriminative.

In addition to examplar methods, we compared IGRE to Generative Features Replay
(GFR) [49] designed for class incremental learning. GFR uses a GAN model for feature
replay with a smaller backbone compared to CAN. We see IGRE consistently outperforms
GFR in all scenarios suggesting IGRE is more resilient to data distribution shift compared
to GFR, hence able to achieve higher overall average accuracy.

ImageNet

In this section, we present results using the ImageNet2012 [13] dataset. The first scenario
is SubImageNet [50, 85], where only a subset of the classes in ImageNet is used for the
experiment. The SubImageNet scenario is gaining popularity in the continual learning
community [49, 50, 91] because it poses the challenge of learning from images of different
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Table 4.4: Comparison with exemplar based methods using a ResNet18 backbone. iCARL,
TPCIL, LUCIR and LUCIR-M are exemplar based CIL methods, and GFR is generative
feature replay method. All competing results are extracted from respective original papers.

Method
Split-CIFAR-100 SubImageNet ImageNet

A25 A10 A5 A25 A10 A5 A25 A10 A5

iCARL [67] 0.482 0.527 0.571 0.529 0.599 0.654 0.431 0.469 0.515
TPCIL [85] - 0.636 0.653 - 0.748 0.763 - 0.629 0.649
LUCIR [25] 0.575 0.602 0.632 0.614 0.683 0.708 0.566 0.613 0.643
LUCIR-M [50] 0.610 0.623 0.633 0.697 0.714 0.726 0.610 0.630 0.645
GFR [49] 0.400 0.520 0.530 0.581 0.623 0.656 0.535 0.546 0.553
IGRE-ResNet18 0.621 0.625 0.629 0.650 0.675 0.681 0.538 0.550 0.559

resolutions yet not as many classes as full ImageNet. In both SubImageNet and full Ima-
geNet, we trained a ResNet-18 from scratch with base task data to have a fair comparison
with other methods.

In the SubImageNet scenario, we select 100 classes from the ImageNet [13] dataset and
split these 100 classes to simulate CIL scenario with 5, 10 and 25 learning sessions. Half of
the selected 100 classes were used as the base task where we train our feature extractor with
these 50 classes, and the remaining 50 were split up into groups for incremental learning.
The results are summarized in Table 4.4.

Using ResNet-18 as the feature encoder in IGRE framework, we were able to achieve
A25 of 65.0%, which is 6.9% higher than GFR which also uses generative features replay.
We see that IGRE outperforms GFR in all learning sequence lengths given similar amount
of computing resources. This shows that IGRE is capable of learning feature embedding
of higher resolution images and able to outperform similar generative features replay algo-
rithms.

We also included comparison with state-of-the-art CIL algorithms [25, 50, 67, 85] which
use raw input images for coreset replay for comparison. These raw input replay algorithms
are listed above the solid line in Table 4.4. It is important to note that the IGRE framework
achieved higher A25 than some raw input replay methods (LUCIR and iCARL) while using
less memory resources. Although the raw input algorithms are able to achieve much higher
Aτ , they require much larger disc memory for the coreset.

The results for large scale experiments with full ImageNet are listed at the right most
column of Table 4.4. We see that the IGRE framework is able to achieve comparable
performance to GFR in all learning sequence length, yet having simpler training complexity
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Table 4.5: Average accuracy on the CUB dataset: The proposed method outperforms the
state-of-the-art algorithms in all task sequence lengths.

Method B50 A50 B20 A20 B10 A10

iCARL [67] 0.400 0.443 0.473 0.496 0.495 0.505
FearNet [29] 0.440 0.478 0.504 0.527 0.553 0.533
CAN [93] 0.468 0.497 0.527 0.549 0.562 0.576
IGRE 0.664 0.583 0.665 0.600 0.657 0.611

compared to GFR. This shows the effectiveness of the framework for generative replay. On
the other hand, through using more memory for data buffer, raw inputs replay methods can
outperform generative replay methods in all scenarios when using full ImageNet. Detailed
analysis on the memory footprint of IGRE can be found in Section 4.6.

4.3 Class Attribute Learning

The conditional variables in the IGRE framework are able to be extended beyond class
labels. In this section we present experimental results using class attributes as conditional
variables instead of class labels. We use the CUB dataset and simulate the split-CUB
scenario for class attribute learning, demonstrating that the IGRE framework can also be
used with class attributes as the conditional variables.

The features are extracted from ResNet101 pre-trained on ImageNet and class attributes
are obtained as described in [92]. There are 312 attributes in the CUB dataset, with the
attributes annotated by human experts [89]. Some examples of the attributes are bird size,
bird crown colour, and bird head pattern. Similar to split-CIFAR, we simulate split-CUB
by creating 10, 20 and 50 tasks with 10, 5 and 2 disjoint classes in each task, respectively,
with the first 100 classes as the base task. IGRE then learns the classes incrementally
without any task boundary knowledge. All results are obtained as an average over 5
experimental runs.

We observe that At is generally decreasing in Figure 4.1 as classes are added, but
IGRE consistently outperforms both CAN and FearNet. The results for the split-CUB
class incremental learning scenarios can be seen in Table 4.5. The results suggest that
IGRE is able to effectively use class attributes for continual learning, which we believe
stems from the class attributes allowing IGRE to generalize to unseen examples of the
same classes better than competing methods.
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Figure 4.1: Average accuracy for all seen classes (At) comparing the proposed IGRE frame-
work and competing methods CAN [93] and FearNet [29] on the split-CUB dataset. The
proposed IGRE framework better maintains accuracy over tasks, and one benefit of IGRE
is to reinforce knowledge and even improve the average accuracy while seeing more tasks.
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Table 4.6: The hyper-parameters used for CIFAR10/100 and CUB learning scenarios.

CIFAR-10 CIFAR-100 CUB
A5 A10 A5 A10 A25 A5 A10 A25

Epoch I 30 30 70 110 110 70 70 70
Optimizer Adam Adam Adam

Learning Rate for θ 0.0002 0.0002 0.0002
Learning Rate for z 0.0001 0.0001 0.0001

σ 0.1 0.1 0.1
s 0.3 0.3 0.3
L 10 10 10 15 20 20 20 20

4.4 Implementation Details

To allow for reproducibility of results, in this section we list all the hyperparameters that
were used to produce the results in Tables 4.2, 4.3, 4.4 and 4.5. The hyperparameters in
the IGRE framework are the number of epochs I for each incremental task, learning rates
for θ and z, σ from Equation (3.8), Langevin’s step size s from Equation (3.19) and the
number of Langevin steps L. All experiments are conducted in the PyTorch [63] framework
with the gradients calculated through their automatic differentiation implementation [63],
and the Adam [30] optimizer was used for the optimization procedure.

We present the hyperparameters based on complexity of the dataset. The hyperparam-
eters for experiments based on CIFAR10/100 and CUB are presented together as a group
in Table 4.6. Images were resized to 224× 224 before extracting feature embedding to en-
sure consistent usage of the feature extractor. The feature embedding is 2048-dimensional
and we designed the generator neural network to be a three layers fully connected network
with 2048 neurons in the hidden layer. Leaky ReLU [94] with parameter 0.2 was used as
the non-linear activation function for the outputs of each layer.

In SubImageNet and ImageNet experiments, we trained a ResNet-18 [23] from scratch
using half the total number of classes in the experiment as base task. In addition to
the standard ImageNet training augmentation of random resized crop and horizontal flip
[13, 23, 82], we also use Mix-up [98] augmentation, starting learning rate of 0.001 with cosine
annealing with warm restart [52] and Adam optimizer were used to train the ResNet-18
from scratch. The trained feature extractor is then used for the IGRE framework.

Similarly, the images from ImageNet dataset were resized to 224×224 before extracting
feature embedding to ensure consistency with the training procedure. The generator neural
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Table 4.7: The hyper-parameters used for different ImageNet learning scenarios.

SubImageNet ImageNet
A5 A10 A25 A5 A10 A25

Base task epoch 80 80 80 120 120 120
Epoch I 80 80 80 90 100 100

Optimizer Adam Adam
Learning Rate for θ 0.0002 0.0005
Learning Rate for z 0.0001 0.0002

σ 0.1 0.1
s 0.3 0.3
L 40 40 40 30 25 30

network in this case is a four layers fully connected network with 1024 neurons in the hidden
layers. Leaky ReLU [94] with parameter 0.2 was used as the non-linear activation function
for the outputs of each layer. In order for the generator to converge faster we start off the
learning rate for θ at 0.0005 and reduce it to 0.0003 and to 0.0002 after 20% and 60% of
total iterations, respectively.

Table 4.7 shows the hyperparameters used in different scenarios to train the generator
through the IGRE framework. Due to the large number of classes in task 0 for ImageNet,
we needed to train the generator for more epochs for the generator to learn the feature
embedding, this is reflected as one additional row for base task epoch in Table 4.7. It
is important to note that although fewer Langevin steps L were taken for ImageNet ex-
periments, there are more epochs I for each incremental step compared to SubImageNet
experiments. The main reason for taking less L is that we want to reduce the run time per
experiment to within five days.

4.5 Classifier Module

All experiments presented up to this section were conducted via a linear classifier trained
end-to-end with stochastic gradient descent [71]. Recall from Section 2.6 that the generator
is trained separately in the dual-model framework, we show that the generated feature
embedding can be used with other kind of classifiers such as logistic regression and Support
Vector Machine (SVM). This section aims to show that the generated features are highly
transferable.
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Table 4.8: A test on different choices of classifier applied to the IGRE framework on split-
CIFAR-100 with 10 learning sequence scenario. The performance of the IGRE framework
is not particularly dependent on the choice of classifier, demonstrating the effectiveness of
the embedding space learned by the generator model.

Classifier A10

Linear Classifier 0.653 ± (0.007)
Linear-SVM 0.656 ± (0.002)
Logistic 0.652 ± (0.002)
MLP (single hidden layer) 0.646 ± (0.003)

Here we investigate the impact of the choice of classifier on IGRE’s performance. To this
end, we evaluate different linear and non-linear classifiers in the split-CIFAR-100 scenario
with a learning sequence of 10 tasks. Similar to the split-CIFAR-100 experiments (Table
4.3), a pre-trained ResNet50 is used as the feature extractor f(·) for all classifiers.

We see in Table 4.8 that the linear classifier, SVM with a linear kernel, and logistic
regression all achieve similar performance. This demonstrates the flexibility of the learned
embedding space as it is not constrained to one type of linear classifier.

In addition, we trained a single hidden layer multi-layer perceptron (MLP) with ReLU
as non-linear activation function to demonstrate that a non-linear classifier can also be used
for the task. We do see a slight performance drop for the non-linear classifier as it overfits
to the training data during cross-validation. Despite overfitting, the non-linear classifier
was able to achieve similar performance (∼65%) for A10. This implies that the embedding
space learned by the generator model is highly effective and sufficiently discriminating such
that a linear classifier can categorize the test samples with accuracy better than using a
non-linear classifier.

4.6 Computational Resources

One of the motivations for using the IGRE framework for CIL is that this framework is
less memory intensive compared to the other raw input replay methods. We will compare
IGRE’s memory requirements to typical raw input replay methods, which store around 20
to 30 images per class [49, 50, 85] for replay.

It is important to recall from Chapter 3 that training a generator to generate a feature
embedding in R2048 is significantly easier compared to generating an image in R3×224×224.
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Table 4.9: Memory and computation resources requirements for various state-of-the-art
methods. Epochs for replay methods are used to train a model end-to-end, but epochs for
generative replay methods are used only for training the generative model.

Method Dataset Coreset Backbone Generative Model Epochs

Replay
SubImageNet 2000 (400 Mb) 44 Mb - 90

ImageNet 20000 (3.8 Gb) 44 Mb - 90
CAN [93] Small - 90 Mb 8.0 Mb 90
FearNet [29] Small - 90 Mb 8.0 Mb 80
GFR [49] All - 44 Mb 4.5 Mb 201
IGRE SubImageNet - 44 Mb 8.0 Mb 80
IGRE ImageNet - 44 Mb 14 Mb 90

Further, a feature vector with 2048-dimensions takes up approximately 8 kilobytes of mem-
ory, whereas a 224× 224 RGB-image (having 150k pixels) takes up approximately 80-150
kilobytes, approximately an order of magnitude more than a feature vector. As such, a
given system capable of storing a few thousand images (via conventional replay), would
require around 400 megabytes of disc space storage whereas the generator we use requires
a maximum of 18 megabytes.

In the large scale ImageNet and SubImageNet experiments, TPCIL [85], LUCIR [25]
and LUCIR-M [50] outperformed IGRE in A10 and A5 as seen in Table 4.4, but they require
approximately 2-4 gigabytes of memory for their data buffer alone. On the other hand,
IGRE requires around 14 megabytes for the generator neural network, 1 megabyte for the
latent vectors, and 44 megabytes for the ResNet-18 feature encoder, a total of 59 megabytes
of memory, which is significantly less than a replay method requires. The breakdown of
memory usage of different methods2 can be seen from Table 4.9. The small dataset in Table
4.9 refers to CIFAR-10/100 and CUB, and the 90 megabyte backbone refers to ResNet-50.
In addition to using less memory, IGRE was able to produce comparable performance in
the longer learning sequences of A25.

On the other hand, the downside of using generative replay methods is the long training
time needed for the generative model to converge. This is a general characteristic of deep
generative models as introduced in Section 2.2. All generative replay methods investigated
in this thesis, IGRE, CAN [93], FearNet [29] and GFR [49], reported significantly higher
number of epoch compared to conventional replay. We see in Table 4.9 that generative

2The numbers are estimated through PyTorch, the actually memory usage may vary for different
systems.
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Table 4.10: Average accuracy of the proposed IGRE on split-CIFAR-10 (A5) and split-
CIFAR-100 (A10) when different numbers of generator replay samples are used in training.
Increasing the number of samples can improve the performance of the model in both
datasets.

Number of Samples CIFAR-10 CIFAR-100
50 0.786± (0.004) 0.550± (0.012)
100 0.803± (0.003) 0.621± (0.004)
300 0.829± (0.001) 0.653± (0.007)
500 0.835± (0.003) 0.661± (0.003)
600 0.837± (0.002) 0.662± (0.005)

replay methods used 80-201 epochs to train the generative model alone, whereas replay-
based methods used around 90 epochs to train the model end-to-end. We observed the
trade-off between generative replay methods and replay methods being the memory usage
and compute time.

Number of Replay Examples

In this section, we show our results on the number of generated replay examples. Since gen-
erative replay methods use less memory, we investigate whether the performance of IGRE
will improve along with more generated replay examples. We conducted the experiment in
the split-CIFAR-10 and split-CIFAR-100 scenarios.

We see from Table 4.10 that the more samples we generate for replay, the better the
performance. However, the performance saturates beyond 500 examples. We speculate
that is the upper limit which IGRE can achieve for the given scenario and setup. Even
with 600 generated replay examples, IGRE is still using less memory than a conventional
replay method as seen in Table 4.9. This shows IGRE has the capacity to reconstruct the
data distribution at the image embedding level and be a competitive CIL method.

4.7 Dependency on Feature Extractor

In the IGRE framework, generative replay is performed at the feature embedding space,
where ResNet50 was used to produce the results presented in Table 4.2 and 4.3. We now
investigate the effect of feature extractor f(·) on IGRE performance. We use VGG [82],
ResNet [23] and EfficientNet [84] as a basis of comparison.
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Table 4.11: Average accuracy of the proposed IGRE as a function of architecture for the
generator G. The use of a pre-trained network architecture with better performance on
the original task (i.e., pre-trained on ImageNet) can improve the performance.

Feature Extractor f(·) ImageNet
Top-1 Acc

CIFAR-10
A5

CIFAR-100
A10

VGG16 (4096D) 0.704 0.69 0.46
ResNet18 (512D) 0.718 0.80 0.63
ResNet50 (2048D) 0.771 0.83 0.65
ResNet101 (2048D) 0.789 0.87 0.69
EfficientNet-b7 (2560D) 0.840 0.89 0.70

We simulate the split-CIFAR-10 and split-CIFAR-100 scenarios, leading to A5 and A10,
respectively. Table 4.11 shows the results, from which it is worth noting that larger / more
generalized networks used as feature extractors can significantly improve the IGRE perfor-
mance. Despite the increase in Top-1 accuracy from ResNet101’s 79% to EfficientNet-b7’s
84%, IGRE’s performance in split-CIFAR-100 yielded only marginal improvement. This
suggests IGRE becomes invariant to the choice of feature extractor as the feature extractor
becomes specialized in the pre-train task.

Table 4.11 also shows a strength of the proposed IGRE, that it is capable of using a
variety of different feature extractors and feature embeddings to mitigate the catastrophic
forgetting problem. The framework is able to learn the feature embedding space imposed
by different feature extractors.

In addition to the ablation study on the feature extractor, we also investigate how
the dimensionality of the feature descriptor from a feature extractor affects IGRE’s per-
formance. We conducted an experiment using the split-CIFAR-100 scenario and feature
embedding from ResNet50. We calculate the principal components of the training features
and run ten tests, keeping features in 10% increments from 10% through 100%.

The results for A10 are reported as a function of the percentage of features in Figure 4.2.
The results are monotonic, as expected, and we observe that A10 starts to plateau after
70− 80% of the components, suggesting that, with care, an appropriately selected dimen-
sionality reduction may be able to maintain our current results in a lower dimensional
feature embedding space. This is further supported by the observation that the feature
embedding from ResNet50 is 2048 dimensional, and the feature embedding from ResNet18
is 512 dimensional, yet IGRE achieved A10 of 62.5% using ResNet18’s feature descriptor,
while 30% of ResNet50’s feature descriptor only achieve A10 of 33% as seen in Figure 4.2.
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Figure 4.2: The effect of feature embedding dimensionality: The average accuracy (A10)
is plotted as a function of the percentage of principal components of the feature extractor.
The number of features used to represent each sample is varied by applying PCA on the
output of the feature extractor and is passed to the generator model.

48



Chapter 5

Conclusions

In this chapter, we summarize the thesis, review the contributions and list some potential
areas for future work.

5.1 Thesis Summary and Contributions

In this thesis we explored the Class Incremental Learning (CIL) scenario in deep neural
networks. We introduced the limitation of batched learning and motivated the need for
continual learning algorithm in Chapter 1.

In Chapter 2, we reviewed two kinds of deep learning models and introduced the class
incremental learning problem. First of the two deep learning models are discriminative
models. These models are used to differentiate data from different classes. We also de-
scribed the training methodology for discriminative models in a batched learning setting
through cross-entropy loss function. The second kind of deep learning models are gener-
ative models, where they are used for learning data distributions. We introduced three
different frameworks for using deep neural networks as generative models, one of which
IGRE is based on. Then we described formally the class incremental learning problem
for deep neural networks and reviewed three main approaches which were used to combat
catastrophic forgetting.

In Chapter 3, we develop our proposed methodology by presenting our intuition on
CIL through visualizing the feature embedding. We then gave a detailed description of
alternating back propagation for training a generator neural network. The alternating
back propagation algorithm is then adapted to the CIL problem for the IGRE framework.
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This thesis presented the Incremental Generative Replay Embedding (IGRE) framework
for Class Incremental Learning. The IGRE framework is a generative replay framework
which does not store data, thus can be used for privacy constrained applications.

Chapter 4 of the thesis compared IGRE against wide variety of CIL methods. In
particular, we focused on CAN and FearNet, which used GAN and VAE, respectively, to
model the feature embedding space. We presented the benefits of using IGRE in CIL as
the framework has fewer parameters so it is less susceptible to catastrophic forgetting and
distribution shift. In addition, IGRE is able to perform at a level comparable to raw input
replay methods despite using less memory. Although IGRE shows superior performance, we
discussed the limitation of IGRE that is its dependency on the pretrained feature encoder.

Through generative feature embedding replay the framework enabled a simple and ef-
ficient way for CIL scenario. Experimental results show that this framework outperforms
similar generative replay methods in longer learning sequences and IGRE has fewer pa-
rameters in the system.

5.2 Future Work

This thesis opens up a variety of future research directions, of which we will discuss three.

5.2.1 Training Feature Encoder

The feature encoder in the IGRE framework is pre-trained and assumed to be able to
extract useful feature embeddings for a task. The generator is trained to do generative
replay on the extracted feature embedding. Thus, if the extracted feature descriptor is not
suitable for a particular task, then incremental learning on that task with IGRE may not
be optimal.

Although pre-trained feature encoders are publicly available, pre-trained encoders are
not guaranteed to be optimal for solving every task. For example, feature encoders pre-
trained on ImageNet may not be suitable to be used with biomedical images as the colour
space of natural images and biomedical images is very different. The experimental results
in Section 4.7 also suggest that the performance of IGRE is dependent on how specialized
the feature encoder is on the pre-trained task. That is, the more specialized the feature
encoder, the better the transfer learning capability. This dependency on a pre-trained
feature encoder is a limitation of the IGRE framework. Thus, it is the natural next step
for us to consider incorporating the training of the feature encoder into the framework.
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5.2.2 Unsupervised Continual Learning

The second future work direction is aimed at extending the IGRE framework to unsuper-
vised continual learning. The IGRE framework is considered as a supervised classification
model because it requires class labels for the conditional generator. The conditional gener-
ator then generates the appropriate features to train the classifier. Generative models can
be adapted for unsupervised learning [75] where the models infer class labels, this includes
the generative model in the IGRE framework. For example the Continual Unsupervised
Representation Learning (CURL) method in [66], applied a variational autoencoder frame-
work to infer the class labels for unsupervised continual learning. The generator in the
IGRE framework can similarly be adapted for unsupervised learning. In addition to not
needing labelled data, designing an algorithm for unsupervised continual learning can easily
be used in streaming settings which has far broader engineering applications.

5.2.3 Computation Matter

The third future work direction is on improving the computational resources requirement
of the IGRE framework. In Section 4.6 we seen that training generative models requires
significantly more training time for each incremental task. Further research in ways to
reduce training complexity for generative models is necessary to reduce the training time
gap between generative replay methods and raw input replay methods. The significant
training time may be a hindrance for deploying the model into production scenarios where
near real-time prediction is necessary.

51



References

[1] Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone Calderara, Rita Cuc-
chiara, and Babak Ehteshami Bejnordi. Conditional channel gated networks for task-
aware continual learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3931–3940, 2020.

[2] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and
Tinne Tuytelaars. Memory aware synapses: Learning what (not) to forget. In Pro-
ceedings of the European Conference on Computer Vision (ECCV), pages 139–154,
2018.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative ad-
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