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Abstract

Most real-world data come with explicitly defined domain orders; e.g., lexicographic
order for strings, numeric for integers, and chronological for time. Our goal is to discover
implicit domain orders that we do not already know; for instance, that the order of months
in the Chinese Lunar calendar is Corner < Apricot < Peach. To do so, we enhance data
profiling methods by discovering implicit domain orders in data through order dependen-
cies. We enumerate tractable special cases and proceed towards the most general case,
which we prove is NP-complete. We then consider discovering approximate implicit or-
ders; i.e., those that exist with some exceptions. We propose definitions of approximate
implicit orders and prove that all non-trivial cases are NP-complete. We show that the
NP-complete cases nevertheless can be effectively handled by a SAT solver. We also devise
an interestingness measure to rank the discovered implicit domain orders. Based on an
extensive suite of experiments with real-world data, we establish the efficacy of our algo-
rithms, and the utility of the domain orders discovered by demonstrating significant added
value in two applications (data profiling and data mining).
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Chapter 1

Introduction

Most real-world data come with explicitly defined orders; e.g., lexicographic for strings,
numeric for integers and floats, and chronological for time. Our goal is to go a step further
to discover potential domain orders that are not already known. We call these implicit
orders. Consider the first 10 tuples in Table 1.1, ! describing festivals in various countries.
The timestamp column has an explicit chronological order. Given this explicit order, we
show how to discover the implicit order of months in the Gregorian calendar, monthGreg
(January < February < March, etc). Moreover, we will show how to find implicit orders
based on other implicit orders. For instance, given the implicit order on monthGreg, we can
find the implicit order of months in the traditional Chinese (Lunar) calendar, monthLun
(Corner < Apricot < Peach < Plum < Pomegranate < Lotus < Orchid < Osmanthus <
Chrysanthemum < Dew < Winter < Ice). Finally, we discover approzimate implicit
orders that hold with some exceptions in the data. For instance, given the explicit order
over count, we can discover the implicit order over size (Small < Medium < Large < X-
Large) over all 11 tuples in Table 1.1, even though one pair of tuples (ty and tj;) is an
exception to this order.

Domain orders are useful in a number of important applications:

e Implicit orders can enhance data profiling methods to identify new data quality rules,
such as order dependencies over implicitly ordered attributes. (See Section 8.3, Exp-7
and Exp-8.)

e Implicit orders can improve the performance of machine learning techniques by turning
categorical features into ordinal ones. One case of this is the splitting condition in
decision trees. Similarly, implicit orders can produce concise data summaries, with

1Unless mentioned otherwise, ignore tuple t;; in this table.
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Table 1.1: A dataset with festival information in various countries.

festival country timestamp week yearGreg monthGreg yearLun monthLun count  size  ribbon profit tax
New Year Eve Shanghai| China |20200125 |4 2020 January 4718 Corner 10M | X-Large | Blue |[30M |2.7M
Tomb Sweeping Day Xi | China |20200404 |14 | 2020 April 4718 Peach 750K | Medium | Red |1.3M | 117K
Buddha B day Liuzhou |China |20200430 |18 |2020 April 4718 Plum 450K | Medium | White | 900K | 81K
Dragon Boat Hangzhou | China |20200625 |26 |2020 June 4718 Pomegranate | 2M | X-Large |[Red |3M [270K
Dongzhi Festival China |20201221 |52 |2020 December | 4718 Winter 950K | Large Red |[3.5M |315K
New Year Quebec Canada | 20210101 |1 2021 January 4718 Winter 800K | Large Red |3M |390K
TD Toronto Jazz Canada | 20210618 |25 |2021 June 4719 Pomegranate | 500K | Medium | Blue |1.5M | 195K
Rogers Tennis Cup Canada | 20210807 |32 |2021 August 4719 Lotus 600K | Medium |Red | 1.2M | 156K
Steam Era Ontario Canada | 20210830 [36 |2021 August 4719 Osmanthus | 125K | Small Blue |IM |130K
Octoberfest Waterloo Canada| 20211009 [41 |2021 October 4719 Chrys. 50K |Small | White | 150K | 19.5K

ranges over ordered attributes instead of individual categories. We demonstrate this
by enhancing a recent data summarization method [32] with newly discovered implicit
orders. (See Section 8.3, Exp-9.)

1.1 Methodology

Manual specification does not scale as it requires domain experts [13, 10, 17, 24]. This
motivates the need to discover implicit orders automatically. Integrity constraints (ICs)
specify relationships between attributes in databases [1]. To discover implicit orders, we
use order dependencies (ODs), a class of 1Cs, which capture relationships between orders
[9, 21]. Intuitively, an order dependency asserts that sorting a table according to some
attribute(s) implies that the table is also sorted according to some other attribute(s). For
instance, in Table 1.1, timestamp orders yearGreg. If the tax per country is a fixed or a
progressive percentage of the profit, then sorting the table by country, profit results in
the table also being sorted by country, tax. Hence, “country, profit orders country, tax.”
Functional dependencies (FDs) are another class of ICs. An FD asserts that the the values
of one set of attributes uniquely determine the values of another set of attributes. For
example, count functionally determines size.  The order of attributes on the left- and
right-hand sides in an OD matters, as in the SQL order-by clause, while the order of
attributes in a functional dependency (FD) [3] does not, as in the SQL group-by clause.

An OD implies the corresponding FD, modulo lists and sets of attributes but, not
vice versa; e.g., country, profit orders country, tax implies that country, profit functionally
determines country, tax. Order compatibility (OC) [27] is a weaker version of an OD,
without the implied FD. Two lists of attributes in a table are said to be order compatible



if there exists an arrangement for the tuples in the database in which the tuples are sorted
according to both of the lists of attributes. For instance, yearGreg, monthNum is order
compatible with yearGreg, week, where the attribute monthNum (not included in Table 1.1)
denotes the Gregorian month of the year in numeric format and week represents the week
of the year. A corresponding FD does not hold: yearGreg, monthNum does not functionally
determine yearGreg, week (there are multiple weeks in a month) and yearGreg, week does
not functionally determine yearGreg, monthNum (a week may span two months).

When an OD or OC has a common prefix on its left- and right-side, we can “factor out”
the common prefix to increase understandability and refer to it as the context. Intuitively,
this means that the respective OD or OC holds within each partition group of data by the
context. For instance, if country, profit orders country, tax, then given a partitioning
of the data by country (i.e., the context), profit orders tax within each group (that is, for
any given country). When an OD or OC has no common prefix, we say it has an empty
context; e.g., the OD of timestamp orders yearGreg has no common prefix, and thus an
empty context.

Algorithms for OD and OC discovery from data [17, 24, 25, 31] use explicit domain
orders. Let us say that they discover ezplicit-to-explicit (E/E) ODs. We discover implicit
orders by extending the machinery of OD discovery. We first leverage explicitly known
domain orders, where, say, the left-hand-side of a “candidate” OC is an explicit domain
order and the right-hand side is a learned, implicit domain order. Call this an E/I OC. For
instance, in the context of yearGreg, timestamp is order compatible with monthGreg*, where
the star denotes implicit domain order over an attribute. Astonishingly, implicit domain
orders can be also discovered from a “candidate” OC for both the left- and right-hand sides
of the OC! Call this an I/l OC. E/I ODs and I/l ODs simply are E/I OCs and 1/l OCs,
respectively, for which there is also an FD from the lefthand side to the right. For example,
in the context of yearGreg and yearLun, monthGreg™ is order compatible with monthLun™.

Due to errors and anomalies, which are prevalent in real-world data, many dependencies
do not hold perfectly in the data, even though they are semantically valid. Approzrimate
dependencies are introduced to combat this issue, allowing us to discover more general
rules and avoid overfitting. Therefore, in this work, we also consider approximate implicit
OCs and ODs, which can be valid even if some exceptions exist in the data. For instance,
over tuples t; — t;; in Table 1.1, count is approzimately order compatible with size®, despite
the exception between tuples ty and tq;.



1.2 Overview and Contributions

Our goal is to discover implicit domain orders. To do this, we define candidate classes
for E/I OCs and I/l OCs, and we extend the discovery methods for these. To the best of
our knowledge, this is the first attempt to discover implicit domain orders through ICs.
The problem space can be factored by the following dimensions.

e Whether there is a corresponding FD (thus, finding ODs rather than OCs).

e Whether the context is empty.

e When the context is non-empty, whether the discovered domain orders across different
partition groups with respect to the context are to be considered as independent of each
other, and so can be different (conditional), or they are to be considered the same across
partition groups, and must be consistent (unconditional). In Table 1.1, the implicit
order monthGreg® is unconditional; however, the implicit order ribbon* is conditional in
the relative context of the country with respect to the size of the festival, with White <
Blue < Red in Canada and White < Red < Blue in China.?

e Whether we are considering E/I OCs or I/l OCs.

e Whether the candidate holds exactly or approrimately, i.e., with some exceptions.

Our key contributions are as follows.

1. Implicit Domain Orders (Chapter 2).
We formulate a novel data profiling problem of discovering implicit domain orders
through a significant broadening of OD / OC discovery, and we parameterize the problem
space.

We divide the problem space between explicit-to-implicit and tmplicit-to-implicit, which
we present in Chapters 3 and 4, respectively. We identify tractable cases, and then proceed
towards the general case of |/l OC discovery, which we prove is NP-complete. In Chapter 5,
we introduce approximate implicit order compatibilities and prove that all nontrivial cases
are NP-complete.

2. E/I Discovery (Chapter 3).
For implicit domain order discovery through E/I ODs and E/I OCs, we present efficient
algorithms, taking polynomial time in the number of tuples to verify a given OD or OC
candidate.

3. I/I Discovery (Chapter /).
For implicit domain order discovery through I/l OCs,

2This example is inspired by equine competitions, for which the colors of awarded ribbons differ by
country in their meanings of first, second, third place and so forth (https://en.wikipedia.org/wiki/
Horse_show#Awards).
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(a) we present a polynomial candidate verification algorithm when the context is empty,

(b) we present a polynomial candidate verification algorithm when the context is non-
empty but taken as conditional,

(c¢) we show why the candidate set of conditional 1/l ODs is always empty, although it
is not necessarily empty for unconditional |/l ODs, and

(d) we prove that, for non-empty contexts taken as unconditional, the problem is NP-
complete.

4. Approximate Implicit Orders (Chapter 5).
For approzimate implicit domain order discovery,

(a) we present a formal definition of approximate implicit orders for E/I OCs as well
as 1/1 OCs,

(b) we prove, through two different reductions, that except for the trivial case of condi-
tional approximate |/l ODs, even the simplest forms of approximate implicit order
discovery, i.e., conditional E/l ODs and I/l OCs, are NP-complete.

5. Using a SAT Solver and Interestingness (Chapters 6 € 7).

(a) While the general case of implicit order discovery through I/l OCs and the nontrivial
approximate cases are NP-hard, we show that these problems can be effectively
handled by a SAT solver (Chapter 6). We implement our methods in a lattice-
based framework that has been used to mine FDs and ODs from data [25, 17, 24].

(b) We propose an interestingness measure to rank the discovered orders and simplify
manual validation (Chapter 7).

6. Experiments (Chapter 8).
We mirror the sub-classes and approaches to discover implicit domain orders defined
in Chapters 3, 4, and 5 and the algorithms in Chapters 6 and 7 via experiments over
real-world datasets.

(a) Scalability: In Section 8.1, we demonstrate scalability in the number of tuples and
attributes, and the effectiveness of our method for handling NP-complete instances.

(b) Effectiveness: In Section 8.2, we validate the utility of the discovered orders.

(c) Applications: In Section 8.3, we demonstrate the usefulness of implicit orders in
data profiling (by finding more than double the number of data quality rules by
involving orders not found in existing knowledge bases) and data summarization
(by increasing the information contained in the summaries by an average of 60%).

We review related work in Chapter 9 and conclude in Chapter 10. Proofs of all theorems
can be found in Appendix A.

This work builds on a recent thesis on the discovery of semantic order compatibilities
[20], where here, the term implicit is used instead of semantic. While the focus of [20] is
on the discovery of order compatibilities over attributes with implicit orders, in this work,



we shift the focus to the discovery of implicit orders themselves. In this work, we extend
the ideas presented in [20] by dividing the search space into more fine-grained categories,
formalizing the existing ideas and algorithms, and finally, presenting new definitions and
solutions for the new cases. The following ideas and algorithms have been first proposed
in [20] and are only reformulated here with a focus on implicit orders:

1. E/I Discovery.
the definition of a valid E/I OC (Section 3.1) and the algorithms for discovering E/I OCs
with an empty or non-empty context (Sections 3.3 and 3.4, respectively); and

2. I/1 Discovery.
the definition of valid /1 OCs (Section 4.1), the algorithm for discovering |/l OCs with an
empty context (Section 4.2), and the definition of “chain polarity problem” (Section 4.4).

The rest of this work (including the definitions of strongest derivable orders in Sections
3.1 and 4.1) presents new ideas not explored in [20].



Chapter 2

Preliminaries

2.1 Domain Orders and Partitions

We first review definitions of order, as introduced in [12]. A glossary of relevant notation
is provided in Table 2.1. If we can write down a sequence of a domain’s values to represent
how they are ordered, this defines a strong total order over the values. For two distinct
dates, for example, one always precedes the other in time.

Definition 1. (strong total order) Given a domain of values D, a strong total order is a
relation “<” which, Vx,y,z € D, 1is

e transitive. if x <y and y < z, then x < z,
e connex. r <y ory <z and
o irreflexive z 4 x.

One may name a strong total order over D as T5. Then x < y € T3 asks whether
x precedes y in the order. We may refer to strong total orders simply as total orders, to
reduce verbosity.

We might know how groups of values are ordered, but not how the values within each
group are ordered. This is a weak total order.

Definition 2. (weak total order) Given a domain of values D, a weak total order is a
relation “<” defined over D, W3, iff there is a partition over D’s values, D = {Dy, ..., Dy}
and a strong total order T over D such that

WE={a<blacDAbeD AD <D cT5}.

7



Table 2.1: Notation

Notation Description

D, D Domain of ordered values, a partition

T35, W3, P3| Strong total, weak total, and strong partial order
R, r, A Relational schema, table instance, and one attribute
X, XY, {} Set of attributes, set union, and the empty set

X, X List of attributes and arbitrary permutation

XY, [| List concatenation and empty list

t, ta, tx Tuple and projections over attributes (cast to set)
E(ty), mx, 7x | Partition group, partition, and sorted partition
X:-A~B Canonical OC

X:[]—A Canonical OFD

Tae, A Derived and strongest derivable orders over A

BGag, BG'ap | Initial and simplified bipartite graphs over A and B

A strong partial order defines order precedence for some pairs of items in the domain,
but not all.

Definition 3. (strong partial order) Given a domain of values D, a strong partial order
15 a relation “<7 which Vr,y,z € D is

e antisymmetric. if x <y, then y £ x,
e transitive. if x <y and y < z, then v <y, and
o irreflexive. x £ .

One may name a strong partial order over D as P3. Then x <y € PS asks whether x
precedes y in the order.

For any strong partial order P35, there exists a strong total order T3 such that P73 C T3.
A nested order (lexicographic ordering) with respect to a list of attributes X corresponds
to the semantics of SQL’s order by, shown as s <x t or t <x s between tuples s and t. An
attribute set can define a partition of a table’s tuples into groups, as by SQL’s group by.

Definition 4. (partition) The partition group of a tuple t € r over an attribute set X C R
is defined as E(ty) = {s € r|syx =tx}.

The partition of r over X is the set of partition groups mx = {E(tx)|t € r}. The
sorted partition 7x of r over X is the list of partition groups from my sorted with respect to



X and the domain orders of the attributes in X; e.g., partition groups in map.cy are sorted
in Tag,c as per SQL’s “order by A, B, C”[15, 2/].

Example 1. In Table 1.1, E(tiyearcreg) = {t1,-- 15}, Tyearcreg = {{t1,---»t5}, {te, .-, two}},
and TyearGreg — [{th o 7t5}7 {t67 s >t10}]~

2.2 Order Dependencies and Order Compatibilities

List-based notation. A natural way to describe an order dependency is via two lists of
attributes. An order dependency X orders Y means that Y’s values are lexicographically,
monotonically non-decreasing with respect to X’s values [17, 22, 24, 25, 27].

Definition 5. (order dependency) Let XY C R. X — Y denotes an order dependency
(OD), read as X orders Y. X —= Y (r =X —Y) iff, for all r;s € r, r Ix s implies r <y s.
X and Y are order equivalent, denoted as X < Y, iff X — Y and Y — X.

Example 2. The following ODs hold in Table 1.1:
[timestamp] — [year| and [country, profit] — [country, tax].

Definition 6. (order compatibility) Two lists X and Y are order compatible (OC), denoted
as X ~ Y, iff XY < YX.

Example 3. Assume that we add an attribute monthNum as a numeric version of Grego-
rian month in Table 1.1. Then, the OC [yearGreg, monthNum]| ~ [yearGreg, week] is valid
with respect to the table as sorting by year, month and breaking ties by week is equivalent
to sorting by year, week and breaking ties by month.

There is a strong relationship between ODs and FDs. Any OD implies an FD, modulo

lists and sets, but not vice versa [27, 30]. f R = X +— Y, then R = X — ) (FD). There
also exists a correspondence between FDs and ODs [27, 30]. R = X — Y (FD) iff R =
X' — XY

ODs can be violated in two ways [27, 30]. REX+— Yif R =X~ XY (FD)and R |=

X ~ Y (OC). This offers two sources of OD violations, called splits and swaps, respectively

[24, 27].

Definition 7. (split) A split with respect to the OD of X — XY (which represents the FD
of X = Y) and table r is a pair of tuples s,t € v such that sy = tx but sy # ty.



Definition 8. (swap) A swap with respect to the OC of X ~ Y and table r is a pair of
tuples s,t € r such that s <x t but t <y s.

Example 4. In Table 1.1, there is a split for the OD of [yearGreg] — [yearGreg, timestamp]
(an FD) with tuples t; and ta, and a swap for the OC of [count] ~ [profit] with tuples t; and
ts, ‘nvalidating these candidates.

Set-based notation (and mapping). Expressing ODs in a natural way relies on lists
of attributes, as in SQL order-by. However, lists are not inherently necessary to express
ODs as we can express them in a set-based canonical form. The set-based form enables
more efficient OD discovery, and there exists a polynomial mapping of list-based ODs into
equivalent set-based canonical ODs [21, 25].

Definition 9. (canonical form) The FD that states that attribute A is constant within each
partition group over the set of attributes X can be written as X:[] — A. This is equivalent
to the OD X' +— X'A in list notation. Call this an order functional dependency (OFD). The
canonical OC that states that A and B are order compatible within each partition group over
the set of attributes X is denoted as X: A ~ B. This is equivalent to the OC X'A ~ X'B.

The set X in this notation is called the OFD’s or OC’s context. OFDs and canonical
OCs constitute the canonical ODs, which we express using the notation X: A — B.

We are interested in ODs of the form X'A +— X'B as written in the canonical form as X’
A — B. To discover such ODs, we limit the search to find canonical OCs and OFDs. This
generalizes: X — Y iff X — XY and X ~ Y. These can be encoded into an equivalent set
of OCs and OFDs [21, 25]. In the context of X, all attributes in ) are constants. In the
context of all prefixes of X and of Y, the trailing attributes are order compatible. Thus,
we can encode X — Y based on the following polynomial mapping.

REX—XYifVAcY.REX:[]— Aand
R ):XNY ZﬁVZ,] R ): [Xl,...,Xi,l][Yl,...,Yj,l]:Xi NYJ'.

This establishes a mapping of list-based ODs into equivalent set-based canonical ODs; i.e.,
the OD X'A — X'B is logically equivalent to the pair of the OC X: A ~ B and OFD XA: ]
— B. This is because X', which is a common prefix for both the left and right side of this
OD, can be factored out, making X': A ~ B the only non-trivial OC that needs to hold.
Thus, OD = OC + OFD.

10



Example 5. In Table 1.1, {country, profit}: [| — tax (OFD) and {country}: profit ~ tax
(OC). Hence, {country}: profit — tax (OD), as tax rates vary in different countries.

Problem Statement. We want to find implicit domain orders over a dataset through
exact and approximate E/l OCs and I/l OCs of the form X': A ~ B* and X': A* ~ B*,
respectively.

2.3 Discovering ODs and OCs

Since manual specification of dependencies does not scale, being able to discover them
automatically from data becomes important. Two main categories of dependency discovery
algorithms are known as schema-driven and data-driven approaches. In schema-driven
discovery algorithms, a lattice of all possible sets of attributes is traversed in a level-wise
manner (i.e., from smaller to larger sets) and for every set of attributes in the lattice,
potential dependency candidates derived from it are validated [13, 24]. Since the time
complexity of these algorithms largely depends on the number of attributes (as it affects
the lattice size), these algorithms are suitable for large datasets with fewer attributes.
Data-driven algorithms, on the other hand, consider pairs of tuples and the dependencies
that each pair violates. Dependencies that are not violated by any such pair of tuples
must therefore be valid [33]. Since the runtime of these algorithms is mainly affected by
the number of tuples, they are generally more suitable for smaller datasets with many
attributes. In this work, we extend the schema-driven approach proposed in [21] and
implement our algorithm on top of their discovery framework.

The algorithm from [241] starts with single attributes and proceeds to larger attribute
sets through the set-containment lattice, level by level, with the 7th level containing sets
of ¢ attributes. Since single attributes are sorted in the first level of the lattice, larger
attribute sets can be easily sorted afterward. When processing an attribute set X', the
algorithm verifies (O)FDs of the form X \ A:[] — A for which A € X', and OCs of the form
X\ {A,B}: A ~ B for which A,B € X and A # B. This guarantees that only non-trivial
ODs are considered. (Trivial ODs are those which must always hold; e.g., A — A). For
instance, Figure 2.1 illustrates the lattice space over the attributes country, profit, and tax
from Table 1.1. On the second level of the lattice and when considering the attribute
set {country, profit}, we discover the (O)FD profit — country. On the third level and with
respect to the attribute set {country, profit, tax}, we discover the OC {country}: profit ~ tax.
After discovering ODs on each level, inference rules (axioms) are used to prune the search
space by removing redundant ODs which follow from others.

11
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Figure 2.1: Lattice space over three attributes.

That the canonical ODs described in Section 2.2 have a set-based representation rather
than list-based means that the search lattice for them is set-based, not list-based, which is
significantly smaller. This leads to an OD discovery algorithm that traverses the much
smaller set-containment lattice of candidate dependencies [21, 25], rather than a list-
containment lattice [17]. This OD-discovery algorithm has exponential worst-time com-
plexity in the number of attributes (to generate the candidate ODs), but linear complexity
in the number of tuples (to verify each OD candidate). In practice, this is orders of mag-
nitude faster than the list-based discovery framework in [17] with factorial worst-case time
complexity in the number of attributes.

We now describe the framework of our discovery algorithm (IORDER), illustrated in
Figure 2.2. First, potential OC candidates are generated for one level of the lattice. These
candidates are then pruned using the dependencies found in the previous levels of the
lattice and the OC axioms. Next, the existence of an FD is checked for each candidate, and
depending on whether an FD holds or not, different types of implicit OCs are examined
using the algorithms described in Chapters 3 through 6. Next, valid candidates and the
strongest implicit OC types that were validated are stored (e.g., unconditional E/l OCs are
preferred over conditional E/I OCs and unconditional /1 OCs). The candidates for the next
level of the lattice are then generated, until the search for candidates is finished. In the
final step, the discovered implicit orders are ranked based on their interestingness scores
(Chapter 7) and can then be manually validated by experts.
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Chapter 3

E /I Discovery

We begin with explicit-to-implicit (E/I) domain order discovery through ODs and OCs in
which an attribute with an explicit order is used to find an implicit domain order over
another attribute.

o We first define an implicit domain order with respect to the table and an explicit domain
order on another attribute (Section 3.1).
e We then subdivide the problem of domain-order discovery via E/I OCs and ODs as
follows:
— with FDs, thus effectively via ODs (Section 3.2);
— without corresponding FDs, thus effectively via OCs
« with empty contexts (Section 3.3) and
* with non-empty contexts (Section 3.4).

Thus, in Section 3.1, we define when two attributes can be co-ordered, given an explicit
order on one, and define what the strongest derived order is. We then provide algorithms
to determine when X': A ~ B*, and to compute the strongest order B* when it does.

3.1 Implicit Domain Orders

For explicit-explicit OC discovery, say, for columns A and B, it suffices to check that the
tuples of r can be ordered in some way that is consistent both with ordering the tuples of r
with respect to column A’s explicit domain order and with respect to column B’s explicit
domain order. That way of ordering the tuples of r is a witness that A and B can be
“co-ordered”; it justifies that A ~ B.

14



To define explicit-implicit order compatibility, we want to maintain this same concept:
there is a way to order the tuples of r with respect to column A’s explicit domain order
and for which the projection on B provides a walid order over B’s values. For E/I OCs
with a non-empty context, X': A ~ B*, there must be a witness total order over r that is,
within each partition group of X', compatible with the explicit order of A and the order
over B dictated by this is valid. This definition is compatible with the one proposed in
[20]. Based on the definition from [20], an explicit-implicit OC X': A ~ B* is valid if there
exists a total order over the values of B such that within each partition group, no swaps
exist with respect to the explicit order over the values of A and the new total order over
the values of B. This answers one of our two questions: whether the candidate OC of A ~
B* holds over r. The second question in this case, which is not answered in [20], is, what
is that order B*?

Such a witness order over r derives a total order (perhaps weak) over B. There may
be more than one witness order over r. Consider the OC monthNum ~ monthLun®™ over
the first five tuples in Table 1.1. While the ordering [t;, ta, t3, t4, t5] is a valid witness that
gives the order C'orner < Peach < Plum < Pomegranate < Winter over monthLun, so is
the ordering [ty, ts, to, ty, t5], where the order of month values Peach and Plum is swapped.
This indicates that we can only derive a weak total order Corner < {Peach, Plum} <
Pomegranate < Winter.

If X: A ~ B* holds over r, what then is the “strongest” B*? We define it as the
intersection of all the derived strong total orders over B corresponding to the possible
witness total orders of r that justify X': A ~ B*. This is a “model-theoretic” definition.
Of course, it would be impractical to find B* this way. We will present an algorithm, a
“proof-theoretic” definition, for discovering B*.

Definition 10. (strongest derived order via an E/I OC) The E/I OC of X: A ~ B* holds
over t iff there exists a witness strong total order T such that, fors,t €r, ifs<te T,
and sy = ty, then sp < ta € TZ, and the deriwed “order” relation over B,

Tg*:{SB-<tB‘S-<t€T:/\SB7£tB/\SX:tx},

1S a strong partial order.

Let X: A ~ B* hold over r, and B be the collection of derived order relations over B
with respect to the witness orders over r. The strongest derivable (strong partial) order

over B is defined as
B = (] Ts.

T5eB
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Example 6. The E/1 OC of yearLun ~ monthLun®™ holds over the first five tuples in Ta-
ble 1.1. There is a single value for yearLun. That there exists a total order over the tuples
with no cycle over the values of monthLun (“B”) means then that there is a valid witness.
Howewver, since all such total orders do not cause cycles, we have no information regarding
the order between month values. Thus, monthLun® = {}, the empty partial order.

3.2 E/I ODs, Empty Context

We first consider E/I ODs with an empty context; i.e., we are looking to establish whether
there is a B* with respect to A over the whole table r when there is a functional dependency
from one side to the other of a candidate. When we have an explicit order over one side, we
might discover an implicit order over the other side by finding an E/I OD between them.

Let our pair of attributes be A and B, assume we have an explicit order over A, and we
want to discover an implicit order over B (i.e., B*). We have three cases for FDs between
the pair: (1) A— Band B— A; (2) A— Bbut B4 A;or (3) B— Abut A4 B. We

devise efficient algorithms for each case.

The first case above is trivial. There exists exactly one implicit order over B, which is
a strong total order. To discover this order over B, sort the table over A, and project out
B. (If A is not a key of the table and may have duplicates, then B would too; eliminate
these duplicates, which must be adjacent.) This is B*. This is unique with respect to A
and is a strong total order.

Example 7. Let the attribute monthNum be added to Table 1.1 to denote the Gregorian
month of the year in the numeric format. Then the FDs monthNum — monthGreg and
monthGreg — monthNum hold. Thus, the E/1 OC of monthNum ~ monthGreg” is valid with

the implied domain order P2, creer 0f Jan < Apr < Jun < Aug < Oct < Dec.

For the second case, since B /4 A, this means some B values are associated with more
than one A value. We can partition the tuples of r by B. This can be done in O(]r|) via a
hash. Scanning the partition, we find the minimum and mazimum values of A within each
B-value group. Then the B-value partition groups are sorted by their associated min-A’s.
If |B] < |A| (= |r|), this is less expensive than sorting by A. If the intervals of the values
of A co-occurring with each value of B do not overlap, then this is B*. To formalize this,
let us define the notion of an interval partitioning.

Definition 11. Let (mg)a = {&1(tg)a, E2(ts)a, - ., Ek(te)a} be the partitioning of an at-
tribute A by an attribute B. Call the partitioning an interval partitioning iff there does not
exist i,7 € [1,..., k] such that i < j and min(&;(tg)a) < min(E;(tg)a) < maz(&;(tg)a).
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An interval partitioning allows us to separate the ranges of A values w. r. t. the B values
such that the ranges do not overlap.

Theorem 1. Assume the FD of A — B holds in r. Then A ~ B* holds iff (mg)a is an
interval partitioning; Tg. is the unique order of B’s values corresponding to their order in
r as sorted by A.

Algorithm 1 validates an E/I OD candidate A ~ B* when the corresponding FD A — B
holds. In Lines 1 and 2, the smallest and largest values of A co-occurring with each b; € B
are found; this can be done in a single iteration over the database using a hash table. In
Line 3, the values of B are sorted according to the smallest value of A with which they
co-occur, and placed in the array B. Lines 4 to 8 check consecutive values in B. If the
ranges of co-occurring A values for any two consecutive values in B overlap, this E/I OD
candidate is invalid and the algorithm returns “INVALID”. Otherwise, the order of values
in B is the valid implicit total order B* and is returned.

Algorithm 1 EIOD-FD-LeftToRight
Input: Attributes A and B.
Output: A total order over the values of B or “INVALID”.

1: set mina(b;) as the smallest value of A co-occurring with b;
2: set mazxa(b;) as the largest value of A co-occurring with b;
3: B = order b; € B by mina(b;) ASC

4: for each i in {1,...,size(B)} do

5. if mina(B[i 4+ 1]) < maza(Bli]) then

6: return “INVALID”

7. end if

8: end for

9: return B

Example 8. Consider attributes count and size in Table 1.1. The FD count — size holds;
(Tsize)count S am interval partitioning with Teount = [t10, to, ts, tr, ts, to, te, ts, ta, t1]. Thus, the
implied domain order T .. is Small < Medium < Large < X-Large, as per the OC count

~ size*; i.e, the OD of count — size® holds.

The third case looks like the second case, except the explicit order known over A is
now on the right-hand side of our FD, B — A. We can take a similar interval-partitioning
approach as before. Sort the table r by A. If |A| < |r|, this is more efficient than fully
sorting r. This computes the sorted partition 7. The A values partition the B values, since
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B — A and 7 orders these groups of B values. Since there are multiple B values in some
of the partition groups of 7a, given that A 4 B, this does not determine an order over B
values within the same group. Thus the B* implied by 7a is not a strong total order, but
it is a weak total order.

Example 9. Let the attribute quarter be added to Table 1.1 to denote the year quarter;
i.e., Ql, Q2, Q3, and Q4. The FD of monthGreg — quarter holds as the Gregorian
months perfectly align with the quarters. Thus, the E/l OC quarter ~ monthGreg"® holds;
monthGreg™="* is a weak total order with {January} < {April, June} < {August} <
{October, December}. Between months within each quarter, we cannot infer any order.

Let the FD be A — B, m = |B| (the number of distinct values of B), and n = |r| (the
number of tuples). In practice, it is common that m < n.

Lemma 1. The runtime of discovering E/1 ODs with empty context is O(mlnm + n).

3.3 E/I OCs, Empty Context

We next consider E/I OCs with an empty context in the form of A ~ B*. Similar to
the previous section, the goal is to verify whether there is an order over the values of B
with respect to the order over the values of A. Using the sorted partitions of 74, we infer
the order b; < b; for every two distinct values of B which co-occur with two consecutive
partition groups of A. Let B™ denote the set of these inferred relations over B. We next
check whether B™ is a valid weak total order; if it is so, A ~ B* is a valid E/I OC and
B* = B™. Note that this case has been covered in [20], and the algorithm for it has only
been reformulated here.

Theorem 2. A ~ B* is valid iff B™ is a weak total order.

Example 10. The E/I OC monthNum ~ monthLun™ does not hold in Table 1.1 since the
lunar month Winter co-occurs both with December and January, which have numerical
ranks of 6 and 1 in the table, resulting in monthLun™ethNum heing invalid.

In the following, n, m, and p denote the number of tuples, the number of distinct values
of the candidate attribute(s) with implicit order, and the number of partition groups of
the context, respectively.

Lemma 2. The runtime of discovering E/I OCs with empty context is O(n + m?), given
an initial sorting of the values in the first level of the lattice.
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Figure 3.1: Partial and union orders.

3.4 E/I ODs and E/I OCs, Non-empty Context

When the context is non-empty, say X', we first consider each partition group in wy inde-
pendently. This is equivalent, with respect to each partition group, to the empty-context
E/I OD and E/I OC discoveries above. For a candidate X': A ~ B*, if either of the FDs
XA — B or XB — A hold, we can use the algorithms in Section 3.2. Otherwise, we use the
approach in Section 3.3. If an implicit order is discovered within each partition group,
then the conditional E/I OC (or E/I OD) holds. To verify the unconditional case, we take
the union of those orders—each of which represents a weak total order—by including the
edge (a,b) in the union graph iff this edge exists in at least one of the individual orders,
and test whether this union graph represents a strong partial order (i.e., is cycle free). If
so, we have established an unconditional B* in the context of X. Similar to the previous
section, this case is also covered in [20]. However, if an FD holds, i.e., we have an E/I OD
candidate, we can first use the more efficient algorithms presented in Section 3.2 within
each partition group with respect to the context.

Theorem 3. There exists an implicit domain order Pg. such that the E/I OC X: A ~ B*
holds ift the union graph is cycle free.

Example 11. The E/I OC {yearGreg, yearLunar}: monthNum ~ monthLun™Num holds
unconditionally in Table 1.1 since the union graph is cycle free. Figure 3.1a shows the
partial orders corresponding to this E/I OC for years (2020, 4718) and (2021, 4719) , each
derived from one partition group using the algorithm described in Section 3.3. (Note that the
partition group for years (2021, 4718) is ignored since it only has one tuple.) Figure 3.1b
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shows the union order. Note that in the resulting union order, an edge is included iff it
belongs to at least one of the order graphs in Figure 3.1a; e.g., the edge (Pomeg., Lotus)
is included while (Lotus, Osman) is not.

Example 12. In Table 1.1, the FD country,count — ribbon holds. Given the E/I OD
candidate {country}: count ~ ribbon™, (Tibbon)count 2 an interval partitioning within each
partition group with respect to the context. However, the candidate implicit orders over
ribbon—White < Red < Blue within China and White < Blue < Red within Canada
—are not consistent, as the Blue and Red values are flipped, making this candidate hold
only conditionally.

Building the graph data-structure for the union of the group orders (DAGs) is simple.
This can be done by traversing the order from each partition group and adding each of
their edges to the final graph if they have not been added yet. We then walk the resulting
graph by depth-first search (DFS) to determine whether it is cycle free.

Lemma 3. The time complexity of discovering E/1 OCs with non-empty context is O(nInn+
2
pm?).
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Chapter 4

I/T Discovery

A surprising result is that domain orders can also be discovered even when no explicit
domain orders are known!

e We first must extend what is meant by an implicit domain order as defined in Section 3.1:
now it is two implicit domain orders that we seek to discover (Section 4.1).
e We then subdivide the problem of domain-order discovery via |/l OCs and ODs as follows:
— candidates that have an empty context or that have a non-empty context that is
treated as conditional (Section 4.2);
— candidates that have a corresponding FD (Section 4.3); and
— candidates that have a non-empty context that is treated as wunconditional (Sec-
tion 4.4).

Thus, in Section 4.1, we define when two attributes, A and B, with a context X can
be co-ordered. We also define what strongest orders can be derived; i.e., A* and B*. The
following sections then provide algorithms to determine when X': A* ~ B*, and to compute
the strongest orders A* and B* when it does.

4.1 Pairs of Implicit Domain Orders

As in the explicit-implicit case, we have two questions to address: when does X': A* ~ B*
hold over r; and, if it does, what are strongest partial orders that we can derive for A*
and B*. Our criterion for whether X': A* ~ B* holds over r is the same as before: there
exists some strong total order T over the tuples in r, a witness, such that A and B’s
values projected into lists from r ordered thusly represent strong total orders over A and
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B’s values, respectively. Similar to E/I OCs in Section 3.1, this definition is compatible
with the one proposed in [20], where an I/I OC candidate is valid if there exist total orders
over the values of A and B such that there are no swaps with respect to them within each
partition group of the data.

Definition 12. (1/I OC witness) The 1/l OC of X': A* ~ B* holds over r iff there exists a
witness strong total order T such that, for s,t € v, ifs <t € TS and sy = tx, then the
derived “order” relation over A,

TZ* :{SA-<tA|S-<tET:/\SA7étA/\SX:tx},
1s a strong partial order and the derived “order” relation over B,
Tg* :{SB -<tB|S-<tET:/\SB7étB/\SX:tx},

1S a strong partial order.

To determine the strongest derivable orders for A* and B* is not the same as before,
however. We cannot define it as simply, as the intersection of all the projected orders.
The reason is that there is never a single witness; witnesses come in pairs. Since we
have no explicit order to anchor the choice, if we have a strong total order on r that is a
witness, then the reversal of that order is also a witness. Which direction, “ascending” or
“descending”, is the right one to choose? The choice is arbitrary. We call this polarization.

Example 13. Consider the 1/1 OC candidate size ~ ribbon and the first five rows of Ta-
ble 1.1. The total order T: of t3 <ty < t5 < ty < t1 is a valid witness order, and results in
the derived orders Medium < Large < X-Large and White < Red < Blue over the values
of size and ribbon, respectively. However, the reverse of T with the opposite polarization
(i.e., t1 < tg < t5 <ty < t3) is also a valid witness, resulting in reversed derived orders
over size and ribbon as well. Through 1/1 OCs, it is not possible to assert which one of these
polarizations 1s the correct one.

To circumvent that a witness order over r and the reversal of that order which is also
a witness “cancel” each other out (that is, their intersection is the empty order), we define
a witness class, which consists of all the witnesses that are reachable from one another via
transpositions. That a transposition leads to another order which is also a witness means
that the forced order between tuples in the two transposed blocks is immaterial to how A
and B can be co-ordered.
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Definition 13. (transposition) A strong total order can be represented uniquely by a se-
quence of the elements. Let T be a sequence of the values of D and T3 be the associated
strong total order. A transposition S35 of T3 is the associated total order of S equiva-
lent to T in which a non-empty contiguous sub-sequence has been shifted to a new loca-
tion; i.e., given T = [t1, ..., t;,S1, .-+, Sk, tig1, .-+, tn], then S = [ti, ..., t;,s1, ..., Sk,
tist, -, bl

Definition 14. (witness class) Let the strong total order T be a witness of X: A* ~ B*,
We define the witness class T over T, a collection of orders, inductively as follows:

base case. T; = {T }.
induction step. Q7 is added to T if S € TZ, QF is equivalent to a transposition of
S, and QF is a witness of X: A* ~ B*.

r’

Definition 15. (strongest derivable order pairs via an |/I OC) Let T be a witness that
X:A* ~ B* holds over r. Let A be the collection of derived order relations over A with
respect to the witness orders in the witness class TS over TS, and B the same but with

respect to B. The strongest derivable orders for A* and for B* via X: A* ~ B* with respect

to witness T2 are
A= () TR and B*= () T5.

=<
TReA T €B

4.2 1I/1 OCs, Empty Context

We first consider the cases of |/l OCs with an empty context and when the context is not
empty but for which we treat the partition groups as independent (conditional). This case
has first been studied in [20], and the conditions and algorithms for it are reformulated
here. For the I/1 OC candidate X': A* ~ B*, our goal is to discover whether, within each
partition group, there exist A* and B* such that they can be co-ordered. To do so, we
build a bipartite graph, BGa g over r. In this, the nodes on the left represent the partition
groups by A’s values in r, mya, and those on the right represent the partition groups by
B’s values in r, myg. For each tuple t € r, there is an edge between ta (left) and tg (right).

Definition 16. (3-fan-out) A bipartite graph has a 3-fan-out iff it has a node that is
connected to at least three other nodes.

It does not suffice to consider directly BGag to determine whether A* ~ B*. This is
because a node of degree one in the BG over r can never invalidate the 1/ OC. E.g., White
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Figure 4.1: BGs or BG's for |/1 OC.

has just degree one in both of the BGs in Figures 4.1a and 4.1b. These have to be excluded
before we check the 3-fan-out property.

Definition 17. (Singletons and BG') Call a node in a BG with degree one a singleton. Let
BG' be the BG in which the singletons and their associated edges have been removed.

With BG'a g, we can test whether A* ~ B*.

Theorem 4. A* ~ B* is valid over r iff both of the following two conditions are true for
BG'ap overr:

1. it contains no 3-fan-out; and
2. it is acyclic.

The intuition behind the requirement of no 3-fan-outs is that there has to be a way to
order the left values in an attribute on the left to order the right values in an attribute
on the right such that none of the edges of BG' cross. Also, there is no order if there is a
cycle.

Example 14. The BGlsize,ribbon over Table 1.1 and shown in Figure 4.1c has 3-fan-out:
Medium connects to White, Blue, and Red. Thus, the candidate 1/I OC of {}: size* ~

ribbon™ is not valid.

Even though the I/1 OC candidate {}: size® ~ ribbon® over Table 1.1 does not hold, it
does not mean that X': size* ~ ribbon™ does not hold with respect to some context X'. The
latter is a weaker statement.

Example 15. Consider Table 1.1 and the 1/1 OC of {country}:size* ~ ribbon*. Figures 4.1a
and 4.1b show the two BGs for China and Canada (the values of our context, country),
respectively. Thus, there exists a co-order between size and ribbon over £(ticountry) (that is,
for country = ‘China’) and a co-order between size and ribbon over & (tgeountry) (that is, for
country = ‘Canada’).
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We next need to show how to extract a co-order once we know one exists. As with
Sections 3.3 and 3.4, we may discover a partial order, this time both for left and right,
within each partition group with respect to the context. The partial order is of a specific
type: we find a disjoint collection of chains. Each chain is a strong total order over its
values. Note that the singleton elements (which were initially ignored in BG') will be
inserted into this order, creating the final order. Again, there is no specified direction in
which to read each chain; i.e., what its polarity is.

If, for each partition group with respect to X over r, BG'ag over the partition group
satisfies the conditions in Theorem 4, then the conditional I/l OC of X: A* ~ B* holds over
r. BG'ap over each partition group yields a strong partial order—a disjoint collection of
chains—for each of A and B. A walk of BG’AB suffices to enumerate the chains, for both
A and B.

Example 16. Consider the BG in Figure 4.1b over the |/l OC of {country}:size* ~ ribbon™,
over values in Table 1.1. By iteratively zig-zagging from left to right in this bipartite graph,
we obtain the chains [Small, Medium, Large| and [White, Blue, Red] over size and ribbon,
respectively, over partition group £ (tﬁcountry).

As in Section 3.4, an 1/1 OC with a non-empty context can be treated either as con-
ditional or unconditional. Our discovered domain orders between partition groups with
respect to the context may differ. For the conditional case, this is considered fine; e.g., in
Table 1.1, the order of ribbon colors w. r. t. the festival size differs per country: in China,
White < Red < Blue; in Canada, White < Blue < Red.

Example 17. In Table 1.1, the conditional 1/1 OC of {country}: size* ~ ribbon™ holds as
& (ticountry) [= Size™ ~ ribbon™ and &(tscountry) = size™ ~ ribbon™.

Lemma 4. The runtime of validating a conditional | /| OC with empty or non-empty context

is O(n).

4.3 1/I ODs, Empty Context

Discovery of domain orders via | /| ODs with an empty context (or with a non-empty context
but considered conditionally) is essentially impossible. While we can discover 1/l ODs that
hold over the data, we can only infer the empty order for the domains. The FD essentially
masks any information that could be derived about the orders.
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Table 4.1: Valid [/l OD.  Table42: CPPtoT/1OD. 12Ple 435 T/TOC to SAT.

# | year month version# # | C A B f cC c? bB
t; | 2018  Jan v99 tiy |1 b b t1 cl al bl
ty | 2018 Feb v100 thilcar a b t2 cl a2 bz
t3 | 2019 Jan v99 tiy |Cl2 a1 b t3 Cl a3 b3
ty | 2019 March  v100 tho | 12 b1 B t4 Cz al b4
ts | 2020 Feb v99 tiz |3 b b t5 2 Q2 b5
ts | 2020 March v100 ths|cs fi b 6 | co ag bs

tr | co as bg

Theorem 5. If YA — B, then the conditional 1/l OD candidate X: A* ~ B* must be valid.
Furthermore, there is a unique partial order that can be derived for A* and for B*: the
empty order.

Example 18. Consider the |/1 OC festival® ~ monthGreg* and Table 1.1. Since the FD of
festival — monthGreg holds, the empty partial order is the implicit order over monthGreg.

However, in the case of a candidate I/I OC with a non-empty context considered un-
conditionally paired with an FD that holds also “only within a non-empty context”, it is
possible for us to discover meaningful domain orders. In fact, as is shown in Section 4.4,
validating these candidates is NP-complete.

Example 19. Consider Table 4.1, which shows different versions of a software released in
each year and month, and the unconditional | /| OD of {year}:month +— version#*. The only
valid strong partial orders over the values of month and version# are Jan < Feb < March
and v99 < v100, or the reversals of these, respectively.

4.4 1I/I ODs and I/T OCs, Non-empty context

To validate an 1/l OD or 1/l OC candidate with a non-empty context unconditionally and
find implicit orders A* and B* that hold over the entire dataset is significantly harder. The
implicit orders for left and for right discovered per partition group must be consistent and
polarity choices must be made for them.

For example, the months in the Gregorian and lunar calendars are dependent in the
context of the year types with respect to the I/l OC of {yearGreg,yearLun}: monthGreg”
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Table 4.4: A NAE-3SAT instance and the reduced CPP instance.

Clauses Lists
(p1 V2V —ps) | [ty a1,b1, fi], [ta, by, cu, fo], [f3,c1, a0, 1]
(mp1 Vp2 V =ps) | [fr,a2,ba, 1], [ta, b2, co, fo], [f3 Cay an, 3]
(=p1 vV p2 Vps) | [f1sas,b3, 1], [f2, 03, c3. L2, [t3, ¢35 a3, f3]

~ monthLun®. In the lunar calendar, there are twelve months (sometimes, thirteen), with
the new year starting a bit later than in the Gregorian calendar, with the lunar months
overlapping the Gregorian months.

This is proved to be computationally hard in [20]. To do this, the chain polarity problem
(CPP) is introduced and proved to be NP-complete. In CPP, the structure of the problem
is a set of lists of values. The order of values within each list defines a total order over its
values; e.g., list [a,b, ] infers a < b < ¢. A polarization is a new collection of these lists
of elements, where each list is included in its original order or after being reversed; e.g.,
[a, b, c] or [¢,b,a]. The decision question for CPP is whether there exists a polarization such
that the union of all total orders inferred from each list is a strong partial order. CPP is
proved to be NP-complete in [20] using a reduction from not-all-equal 3SAT (NAE-3SAT),
which is a variation of 3SAT that requires that the three literals in each clause are not all
equal to each other.

Example 20. Table 4./ illustrates a NAE-3SAT instance with three clauses and its equiv-
alent CPP instance with nine lists. In the CPP instance, t; < f; in the partial order is
interpreted as assigning proposition p; as true, and f; < t; as assigning it false. Also, the
variables a;, b; and c; ensure that there exists at least one true and one false assignment for
the literals in each clause. This condition is satisfied as among the three lists generated for
each clause, exactly one or two of them have to be reversed in order to avoid a cycle among
a;, b; and c;. This translates to the corresponding literals having false assignment and the
rest true assignments. Hence, any valid polarization for the lists in the CPP instance can
be translated to a valid solution for the NAE-3SAT instance.

Lemma 5. The Chain Polarization Problem is NP-Complete.

Using the NP-completeness results for CPP, it is shown that unconditional 1/l OCs are
NP-complete in [20]. Here, we extend this result and prove that even in the simpler case
and in the presence of an FD, i.e., for an I/1 OD candidate, validating the unconditional
case is still NP-complete. We do so by establishing a mapping from CPP instances to
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Unconditional |/1 OD instances which takes polynomial time to compute and for which
the decision questions are synonymous. Let vy, vs,..., v be the elements involved in the
CPP instance and let L; = [Vi1, Vi, ..., Vj 1, denote the i-th list of values in the CPP
instance, where V; ; is a placeholder representing the corresponding value in a list. Without
loss of generality, assume the length of all lists in the CPP instance is greater than one,
as lists of length one do not affect the answer to the decision problem. To construct an
unconditional I/ OD instance, consider a database r with attributes A, B, and C and the
unconditional 1/l OD candidate {C}: A* ~ B*. For each pair of consecutive values V; ; and
V;,j—&—l in each Li7 add the fOHOWiIlg tuples to r: tz‘,j = (C@j, ‘/Yi,jy bz> and té,j = (Ci,ja V;,j—&—l’ b;)
Note that this is an 1/1 OD candidate since the FD CA — B holds. The unconditional
|/1 OD candidate {C}: A* ~ B* is valid iff there is a polarization of the CPP instance that
admits a strong partial order.

Example 21. Consider the CPP instance in Table 4.4 with Ly = [t1,a1,bq, f1]. Table 4.2
represents the rows corresponding to Ly in the 1/l OD instance. Note that {C}: A* ~ B*
is an 1/I OD instance since the FD {C,A} — B holds. In the 1/1 OD instance, the implicit
order over the values by and by can be established as either by < by or by < by, which
correspond to different polarizations of Ly, respectively. Similar correspondences applies to
other lists in the CPP instance and other values of b;.

Theorem 6. The problem of validating a given unconditional 1/1 OD with non-empty con-
text is NP-complete.

We illustrate our approach for validating I/1 OD and I/l OC candidates by employing a
high quality SAT solver in Chapter 6.

28



Chapter 5

Approximate Implicit Orders

In practice, many constraints do not hold perfectly. Dirty data, which are prevalent in the
real world, contain many erroneous values which invalidate semantically valid dependencies.
Furthermore, even when facing clean data, there are exceptions to general rules that prevent
discovering exact dependencies. Implicit OCs are also subject to such inconsistencies in
the data, and as a result, the discovery of implicit orders through them is affected by this
issue. For instance, consider all tuples in Table 1.1, and the E/I OD count ~ size*. This
E/I OD and the implicit order over size (i.e., Small < Medium < Large < X-Large) are
semantically valid since the values of size generally increase as count increases. However,
due to the exception between tuples t; and ty;, i.e., one tuple having a larger count but
smaller size, this exact E/1 OD is invalid.

Approximate dependencies are introduced to address this issue. Approximate depen-
dencies are resistant to a small number of exceptions in the data and allow us to avoid
overfitting by discovering more meaningful and general dependencies, even in the presence
of data errors and exceptions. In this chapter, we leverage the same ideas to introduce
approximate classes of implicit OCs, and consequently, approximate implicit orders. In
Section 5.1, we provide a formal definition of approximate A E/I OCs and the strongest
derivable orders through them. Next, in Section 5.2, we prove that the problem of val-
idating approximate A E/l OC candidates is NP-complete, even in the simplest case of
conditional A E/l ODs. In Section 5.3, we extend the definition of approximate implicit
OCs to I/1 OCs and provide a definition of strongest derivable orders in this case. Finally,
in Section 5.4, we show that except for the trivial case of conditional A I/l ODs, all cases
of approximate |/l OCs are NP-complete.
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5.1 Approximate Implicit Domain Order

Similar to the exact cases for E/I OCs and I/l OCs, we need to answer two questions: first,
whether an A E/I OC candidate holds, and second, if it does, what the approximate implicit
order is.

To answer the first question, we again refer to explicit-explicit OC discovery. Given
relational schema r and attributes A and B, an exact E/E OC holds if there exists some
ordering of tuples of r that is consistent with both the ordering of tuples with respect to
A’s explicit order, and with respect to B’s explicit order; i.e., there are no swaps in r with
respect to the explicit orders over the values of A and B. However, for an inexact E/E OC,
i.e., an approximate one, there is no such consistent ordering of the tuples as there always
exists a number of swaps with respect to the orders over A and B. Therefore, there are
some exceptions, i.e., pairs of tuples that do not agree to the orders over the values of A
and B. A natural fix to this issue, then, is to count the number of these exceptions, as
a measure of how far off the candidate is from an exact OD. This idea has been used for
other types of dependencies, e.g., for FDs in [16]. To normalize this measure, we can divide
it over the total number of pairs of tuples in r. Given some swap threshold, an E/E OC
candidate is considered valid if its number of swaps is less than or equal to the provided
threshold.

For implicit OC candidate A ~ B*, however, we cannot immediately use this definition,
as we do not yet know the implicit order over the values of B. To resolve this, we first
need to establish an implicit total order over the values of B. For a total order Ty over the
values of B, we use S(Tg) to denote the total number of swaps in r with respect to the
explicit order over the values of A and Tg. Given a threshold s for the number of swaps, we
consider an A E/I OC candidate valid iff there exists some order Tg such that S(Tg) < s.
With this definition, exact E/I OCs become a special case of A E/l OCs, where there exists
some order Tg that makes the number of swaps in r zero. For an unconditional candidate
X: A ~ B* with a non-empty context, the number of swaps with respect to Tg and the
total number of swaps are counted within each partition group with respect to the context.
If the candidate is to be taken conditionally, it should be valid within each partition group
independent of the others.

Definition 18. Consider an unconditional A E/I OC candidate X : A ~ B* and an approz-
imation threshold 0 < e < 1. This A E/I OC candidate is valid iff there exists a total order

Tg over the values of B such that S(Tg) < s, where s = La D ey (l‘%‘)J denotes the swap
threshold.
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The second question still remains unanswered: what is the implicit order over the values
of B? For a valid A E/I OC candidate with swap a threshold s, there may be different total
orders Tg that satisfy S(Tg) < s with different values of S(Tg). We define a best derived
implicit order over the values of B as a total order Tz, that minimizes the number of swaps;
ie., S(Tg.) = min ({S(Tg) | Tg is a total order over B}). This is again an extension of
the exact case, in which Tg. is derived from some witness total order over the tuples and
makes the number of swaps zero. In the exact case, we define the strongest derivable order
as the intersection of derived orders from all witness total orders. Here, however, we cannot
directly apply this definition, as there are no witness orders over the tuples, because of the
exceptions in r with respect to the order over A and Tg.. Therefore, we first need to resolve
all exceptions with respect to the explicit order over the values of A and Tz.. To do so,
we first remove the smallest number of tuples such that at least one tuple is removed from
each exception with respect to the order over the values of A and B*, effectively making
the number of swaps with respect to these orders zero, as in the exact case.

With the repaired data, we can now employ the definition of a strongest derivable order
from Chapter 3. We define the strongest derivable order, denoted by B*, as the intersection
of orders derived from all witness permutations of this repaired dataset, as is for the exact
case. This is a subset partial order of the derived best total order.

Example 22. In Table 1.1, consider the A E/1 OD candidate count ~ size* over all tuples,
with an approximation threshold of 0.1. Therefore, the swap threshold is computed as
0.1 (121” = 5. The order T, = Small < Medium < Large < X-Large is a best derived
order over the values of size, with S(TZ,..) = 1 < 5 (corresponding to tuples ty and ti1),
making the candidate valid. To find the strongest derivable order, we first remove one of
the tuples involved in the swap and then use the definition of strongest derivable order from
Chapter 3. The strongest derivable order in this case is the same as the best derived order;

i.e., size* = Small < Medium < Large < X-Large.

5.2 Hardness of Validating Approximate E/I OCs

We now consider the problem of validating A E/I OC and A E/I OD candidates. We show
that even in the simplest form, i.e., for conditional A E/I OD candidates, the validation
problem is NP-complete. This is unlike the exact case, where validation is possible in
polynomial time for all cases.

To prove the NP-completeness of the problem of validating conditional A E/I ODs, we
offer a polynomial mapping from instances of the decision variant of minimum feedback
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arc set (MFAS) problem, in which the the MFAS instance holds iff A E/I OD candidate is
valid.

The definition of MFAS is as follows: given a simple directed graph G, find the smallest
set of edges (arcs) such that when removed, the graph will become acyclic. Here, we use
an equivalent definition: given a simple directed graph G with vertices vy, ..., v, € V, find
a total order Ty over the vertices such that the number of back-edges in G is minimized. A
back edge is defined as an edge (v;, v;) where v; < v; € Ty, The decision variant of MFAS,
here referred to as MFAS for simplicity, is to answer whether there exists a total order Ty
with at most t back-edges for a given ¢, and is known to be NP-complete [3].

Assume G is the graph in the MFAS instance. Let vy, vg, ..., v, € V and ey, ...,
em € E denote the vertices and edges in G, respectively. Let ¢;[0] and e;[1] denote the
beginning and end of e;, respectively, i.e., e; = (e;[0], e;[1]). Finally, let ¢ be the threshold
for the number of back-edges; i.e., the MFAS instance holds iff there exists a total order
over its vertices with at most ¢ back-edges.

To construct the approximate E/lI OD instance, let r be the relational instance with
attributes A and B and let A ~ B* be the approximate E/I OD instance. Let Z and
{v1,v9,...,v,} be the domains of A and B, respectively. For each edge e;, add the follow-
ing four tuples to r: t_o; = (—2i,¢;[0]), togir1 = (—2i + 1,e;[1)), taim1 = (20 — 1,¢;]0]),
and ty; = (2¢,¢;[1]). This is an A E/lI OD since the values of A are unique and an
FD holds. Call a pair of tuples t; and t;1; in r adjacent if 1+ = —2k or i = 2k — 1
for some 1 < k < m, and all other pairs of tuples non-adjacent. Finally, let s =
C/2 + 2t be the threshold for the number of swaps in the A E/I OD instance, where
C = |{{s,t} | s and t are non-adjacent A sc # tc Asp # tp}|. Intuitively, C' denotes the
number of non-adjacent pairs of tuples that can be swapped; i.e., have different A- and
B-values.

Example 23. Consider the simple graph in Figure 5.1 as the input to the MFAS problem.
Table 5.1 corresponds to the A E/I OD instance after the reduction. (Note that this instance
holds exactly as well, but is chosen to avoid a large table size.) For edge (a,b), we create
pairs of adjacent tuplest_o and t_y as well as t; and ty, and similarly the remaining pairs
of tuples for the edge (b,c). Here, one best derived order in the A E/I OD instance is
Tg. = a < b < ¢, which corresponds to the order Ty = a < b < ¢ over the vertices in the
MFAS instance. Note that there are no swaps between adjacent pairs of tuples in the A E/I
OD instance with respect to Tgs, which is consistent with there being no back-edges in the
MFAS instance with respect to Ty.

Theorem 7. Validating conditional A E/I ODs is NP-complete.
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Table 5.1: A E/I OD instance.
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Figure 5.1: MFAS instance. ts 30
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5.3 Pairs of Approximate Implicit Domain Orders

Here, again, we have two questions regarding pairs of implicit orders: first, defining when an
A 1/1 OC candidate is valid, and second, defining the implicit orders that can be discovered
if the candidate is valid. Similar to A E/l OCs, we cannot directly apply the definition of
valid 1/I OCs to A /I OCs since there are no witness total orders over the tuples. However,
we can still define the validity of a candidate based on the number of exceptions, i.e.,
swaps, that exist in the data with respect to implicit orders.

Unlike A E/I OCs, where we only need to establish an implicit order over the values
of one of the attributes, for an A I/l OC candidate, a pair of implicit orders have to be
established over the values of the attributes. For an A I/l OC candidate A* ~ B* in
relational schema r and total orders Ty and Tg over the values of A and B, respectively,
let S(TX,Tg) denote the number of swaps in r with respect to TR and Tg. Given a swap
threshold s, the validation problem for A I/l OCs then becomes determining if there exist
total orders Tx and Tg over the values of A and B such that S(Tx,Tg) < s. Similar to
A E/I OCs in Section 5.1, dividing s over the total number of tuples in r normalizes the
swap threshold as the approximation threshold. Again, exact |/l OCs become a special
case of A I/l OCs where the swap threshold is set to zero. For A 1/l OCs with a non-empty
context taken unconditionally, pairs of tuples are considered only within each partition
group of the data with respect to the context. For conditional candidates, the validity of
the candidates is considered within each partition group independent of the others.

Definition 19. Consider an unconditional A 1/l OC candidate X: A* ~ B* and an ap-
prozimation threshold 0 < ¢ < 1. This A 1/1 OC candidate is valid iff there exist total
orders Tx and Tg over the values of A and B, respectively, such that S(Tx,Tg) < s, where
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5= {6 Z&-ew (‘%')J denotes the swap thresholds.

As for a pair of strongest derivable orders, we first define a pair of best derived orders
Tx. and Tg. as total orders over the values of A and B, respectively, that minimize the num-
ber of swaps in r; i.e., S(TA., Ta.) = min ({S(TX,Tg) | TA and Tg are total orders over A
and B}) After discovering a pair of best derived orders, we again resolve all of the excep-
tions with respect to the best implicit orders discovered; i.e., we make the number of swaps
zero by removing the minimum number of tuples possible. With this repaired data, our
definition of strongest derivable orders from Section 4.1 becomes applicable again. There-
fore, the strongest derivable orders A* and B* are partial order subsets of Tx. and Tg.,
respectively.

Example 24. Consider the A 1/l OC candidate size® ~ ribbon™ over tuples ts — t11 in
Table 1.1 (i.e., all festivals in Canada) with 0.1 as the approximation threshold. the swap
threshold is computed as LO.l . (S)J = 1. The orders T3, .« = Small < Medium < Large and
Trbons = White < Blue < Red constitute a pair of best derived orders over the values of
size and ribbon, with S(TZ,e, Trppons) = 1 (corresponding to tuples tg and t11). Since the
number of swaps is within the swap threshold, this candidate holds approrimately. After
resolving this swap by removing one of the tuple tg or ti1, the strongest derivable orders

size* and ribbon® can be derived and are the same as T, and T3, .-, respectively.

size

5.4 Hardness of Validating Approximate I/T OCs

As has been proved in Section 4.4, even ezact unconditional /1 OCs and I/l ODs with a
non-empty context are NP-complete to validate. Conditional exact 1/1 ODs, however, as
has been shown in Section 4.3, are always valid and the strongest derivable orders using
them are empty partial orders. These results translate to the approximate case: validating
unconditional A /1 OCs and A |/l ODs is NP-complete, while conditional A 1/l ODs are
always valid (i.e., there always exist total orders over the values of attributes such that
there are zero swaps in the data) and the strongest derivable orders using them are empty
partial orders. However, we cannot directly infer the complexity of conditional A 1/I OCs
from previous results, as exact conditional |/ OCs take polynomial time to validate. Here,
we show that validating conditional A 1/l OCs is NP-complete. This concludes that, except
for the trivial case of conditional A 1/l ODs, validating all types of approximate implicit
OCs is NP-complete. We offer a polynomial reduction from instances of A E/I OC with
empty context to instances of A I/l OC with empty context, in which the A E/I OC instance
is valid iff the A 1/I OC instance is valid.
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Let relational instance r with attributes A and B be the input to the A E/I OC instance
A ~ B*. Let |[r| = n and {aq,...,q;} and {by,...,b,} be the active domains of A and
B, respectively. Without loss of generality, let a; < as--- < a; be the explicit order over
the values of A. For the corresponding A 1/l OC instance, let t be the relational instance
with attributes C and D and let C* ~ D* be the A I/l OC candidate. Let {ci, ¢, ..., co1}
and {D1 2, Dag3, ..., Dyoit1, di,da, ..., dp} be the domains of C and D, respectively. Let
N = 8n?, and add the following three types of tuples to t.

1. Forall 1 S 1 S 20 —1 add 2N dummy tuples d2N(i—1)+17 d2N(i—1)+27 Ce ad2N(i—1)+2N to
t, where IV of the tuples have values (¢;, D;;4+1) and the other N tuples have values
(Ci+1, Di,i+1)'

2. For all 1 S 1 S m add N anchor tuples aN(i_l)H, aN(i_1)+2, e aN(i_lHN to t, with
values (cj41,d;).

3. Finally, for each tuple t;, = (a;,b;) in r, add the real tuples r;, = (¢;,d;) and r} =
(Ci, dj) to t.

Let d, a, and r denote the sets of dummy, anchor, and real tuples, respectively. More-
over, the set of real tuples is itself divided into two disjoint sets, r and r”, containing
tuples rj, and r}, respectively. For classes of tuples s and t, let Ss(TZ,Tg5) denote the
number of swaps between tuples in these classes with respect to orders T¢ and Tg; i.e.,
Ss(TS, T5) = |{{si.t;} | si and t; are swapped w.r.t. T¢ and Tg}|. When T¢ and Tp
are clear from the context, we use Ss: to reduce verbosity. Let Cs; denote the number of
tuples of type s and t that have different left- and right-side values and can be swapped;
ie., H{si,tj} | sic # tjc Nsip # tjDH. Finally, let s be the threshold for the number of
swaps in the A E/I OC and set C'/2+ 2s as the threshold for the number of swaps in the A
I/1 OC instance, where C' = Cy ;4 Cq,+Cy . (Assume s < (g), as otherwise the candidate
is always valid.)

Example 25. Consider the A E/I OC candidate A ~ B* in Table 5.2 and let a; < ay be the
explicit order over the values of A. Figure 5.2 corresponds to the A |/l OC instance, where
the bipartite graph is used as the tabular representation would be too large. (Note that the
A E/I OC instance holds exactly as well, but is chosen to avoid making the graph for the
A 1/1 OC instance too complex.) Here, the A I/1 OC candidate is C* ~ D* and {c1,...,c5}
and {D19, ..., Dys, di,ds} denote the domains of C and D, respectively. In Figure 5.2,
thin edges correspond to real tuples, e.g., the edge (c1,dy), while wide edges correspond to
dummy or anchor tuples which are repeated N = 8n? = 8 - 22 = 32 times; e.g., the edge
(c3,dy) corresponds to N anchor tuples. A pair of best orders Té. = c¢; < ¢y < +-+ < ¢
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Table 5.2: A E/I OC instance.

4| A B
t | a bl
ty | a9 bg

Figure 5.2: Bipartite graph of the A I/1
OC instance.

Table 5.3: Summary of complexity results.

E/I I/1
Cond. Uncond. Cond. Uncond.
OD | OC | OD | OC OD OoC | OD | OC
Exact Poly | Poly | Poly | Poly | Trivial | Poly | NPC | NPC
Approx. | NPC | NPC | NPC | NPC | Trivial | NPC | NPC | NPC

and Tg. = D12 < Doz < dy < dy < D34 < Dyy for the A 1/1 OC instance corresponds to
a best order Tg. = by < by for the A E/I OC instance.

Theorem 8. Validating conditional A 1/1 OCs is NP-complete.

Table 5.3 summarizes the complexity results regarding exact and approximate explicit-
implicit and implicit-implicit candidates of different classes.
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Chapter 6

Using SAT Solvers for NP-complete
Cases

We now describe three reductions to SAT instances for the three NP-complete cases, i.e.,
exact 1/1 OCs, A E/I OCs, and A I/l OCs. (Note that here, the OC and OD cases are not
distinguished as they are solved using the same algorithms.)

In our translation to SAT instances, we construct variables such that a solution to
the SAT instance corresponds to a total order over the values of the attribute(s) with an
implicit order. To ensure that the final relation corresponds to a valid total order and is
consistent with the constraints imposed by the data, we rely on two types of clauses.

1. Valid Order. Recall from Definition 1 that a valid (strong) total order must satisfy
three conditions: irreflexivity, connexivity, and transitivity. Irreflexivity is ensured by
the way we generate our SAT variables. We create two subtype clauses to guarantee
a valid order: connezxivity and transitivity clauses.

2. Swaps. The second type of clauses corresponds to the constraints imposed by the
data; i.e., not having any swaps in the exact case, and minimizing the number of
swaps in the approximate cases.

6.1 Exact Unconditional I/T OCs

Given that discovering implicit domain orders via I/l OCs is NP-complete, we reduce it to
an instance of the SAT problem to validate the candidate and then to establish valid strong
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partial orders. The first step is similar to the conditional case in Section 4.2: we derive
bipartite graphs, BG;’s, for the tuples from each partition group. Presence of cyclicity or
3-fan-out invalidates the candidate, as by Theorem 4. Thus next, we check each BG; for
cyclicity or 3-fan-out; this validates or invalidates the candidate in linear time.!

We now explain the translation to SAT for an I/ OC candidate X: A* ~ B*. The
input is a list of bipartite graphs, BG’s, which indicate the co-occurrence of values in each
partition. For each bipartite graph BG;, the left-hand side (LHS) and right-hand side
(RHS) denote the values of the two attributes of the I/1 OC candidate, respectively. Let
ai,...,0, and by, ..., b, denote the distinct values of each.

We define two sets of propositional variables: V1 < 4,5 < m' : a;; and V1 < 4,5 <
m” : b;;, for distinct ¢ and j values. Assigning true to a variable a;; indicates a; < aj,
while assigning false means that a; < a;. As discussed before, we need to add two types
of clauses, one to ensure the validity of the order, and the second to guarantee not having
any swaps.

1. Valid Order. Irreflezivity is automatically satisfied since no variables a;; or b;,; are
created. However, we need two subtypes of clauses to guarantee a valid order:

(a) Connezivity. For all distinct 7 and j such that 1 < i,7 < m/, we add clauses
—(a;j Naj;) = (—a;; V—aj;) and (a;; Vaj;), as exactly one of variables a; ; and
a;; has to be true.

(b) Transitivity. For all distinct 7, j, and k such that 1 < 4,7,k < m’, we add clause
(aij Najr) = aip = (ai; V oaje Vaig).

We add similar clauses for variables b; ;.

2. No Swaps. For all (a;,b,), (a;,b,) € BGi such that a; # a; and b, # b,, we add
the clauses (a; ;j Abyy) V (@ Abyy) = (aij V byu) A (ajiV by,). Note that the initial
conditions ((—a;; V —a;;) and (—by, V —b,,)) were used to simplify these conditions.

Theorem 9. The unconditional 1/1 OC candidate is valid iff the corresponding SAT in-
stance s satisfiable.

If the SAT instance is satisfiable, to derive the final partial orders over the values of A
and B, we take the satisfying assignment and set ¢ < j for A iff a; ; = true, and similarly

!The constraint that each BG; has no 3-fan-out restricts the size of the graph to be linear in the number
of distinct values of the domain. Without this, the size of the graph could be quadratic in the number of
distinct values of the domain.
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for the values of B. To achieve a pair of strongest derivable orders, we remove the order
over pairs of values which should not exist in the final order, while keeping the order graph
valid. For every pair of distinct values a,,a, € PG; where a, < a,, we keep them in the
final order iff one of these conditions holds (and similarly for the RHS values): 1) the
nodes a, and a, are in the same connected component in BG; and the path from a, to
a, contains at least two nodes with degree two or larger; 2) the nodes a, and a, are
in the same connected component and the first condition does not hold, however, there
exists BG; with j # ¢ such that a,,a, € BG;; and 3) the nodes a, and a, are in different
connected components, but there exists BG; with j # ¢ and distinct values v,, v; belonging
to the same attribute such that v,, v; € BG; and v, and v, are in the same connected
components in BG; as a, and a,, respectively (note that v, and vs could be the same as
a, and a,). Intuitively, either of these conditions would make it impossible to remove an
order between two values through valid transpositions within the same witness class, as
defined in Section 4.1.

Algorithms 2 and 3 demonstrate the main steps to remove edges from the partial order
output of the SAT solver in order to achieve a pair of strongest derivable orders. Each
of these algorithms generates a set of pairs of values (i.e., nonremovables), which must be
kept in the final strongest derivable order graph. Note that these algorithms describe the
steps taken only for values on one side of the candidate, which can be repeated for the
other side as well.

Algorithm 2 corresponds to the first condition described above. Lines 2 to 10 find
pairs of values that satisfy this condition, i.e., pairs which exist within the same connected
component of some PG; such that there are at least two nodes with degree two or larger
along their connecting path. This is done by running a DFS from every node a, in the
graph and detecting all nodes a, which satisfy this condition. Algorithm 3 corresponds
to the second and third conditions described above. Line 2 creates a hashmap, which, for
each two values a, and a,, stores the bipartite graphs in which a, and a, are connected.
Lines 3 to 7 store the co-occurrences of such pairs of values in the variable sameP(G. Lines 9
to 13 correspond to second condition. They check all singleton values a, and a, that are
connected to the same value and add this pair to nonremouvables if they co-occur in at least
one other partition group. Lines 14 to 20 check the third condition. To do so, they traverse
over all pairs of connected components C'C; and C'C}, in a BG and check for values on the
same side of these connected components that co-occur in at least another partition group.
If this condition holds, all pairs of values from these connected components are added to
nonremovables.

The remaining step is to compute the union of output sets of Algorithms 2 and 3 and
to traverse over all the edges of the initial partial order graph (i.e., the output of the SAT
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solver) and remove those which do not exist in the union set, creating the final graph for
a strongest derivable order.

Algorithm 2 ITOC-SameConnectedComponent
Input: set of bipartite graphs BG = {BGy, ..., BG}.
Output: set of pairs of values that must be kept in the final order.

1: set nonremovables as an empty set
2: for each BG; € BG do
3:  for each a, € BG; do

4: run DFS from a, and add nodes with degree > 2 to degTwo
5: when visiting node a,:

6: if size(degTwo) > 2 then

7 add the pair (a,, a,) to nonremovables

8: end if

9: end for
10: end for

11: return nonremowvables

Example 26. Consider Table 4.3 and the |/l OC {C}: A* ~ B* candidate. The propo-
sitional variables for the reduction are ayg2, a1, ..., as3 and bia, ..., bgs. First,
connexivity clauses, e.g., (ma12 V —ag1) A (mags V —ase) and transitivity clauses, e.g.,
(a12Nas3) = ais, (a1 3N as2) = a2 are created to ensure a valid strong total order.
Next, for the no swaps condition, the clauses (a12V ba1) A (az1 V bia) are generated for
tuples t1 and to, and similarly for the rest of the pairs of tuples in BG; and BGs,.

Since this is a valid 1/1 OC, some strong partial order can be derived using the SAT
variable assignments. To derive the strongest orders from this pair, the final orders between
values such as (az,ay4) and (a1, as) on the LHS are kept, as these pairs satisfy the first and
third condition, respectively (values as and ay exist in a connected component in BGy with
two nodes with degree two along their path, and values a1 and ay are present on the LHS of
both BGy and BG;y). However, the order between values ay and as (and similarly as and ag)
is removed since these values do not satisfy any of the conditions. This process is repeated

for the RHS as well.
Lemma 6. The reduction to SAT for 1/l OCs is O(n + pm? + m?).

Since m tends to be small in practice (i.e., m < |r|) for meaningful cases and p heavily
depends on m as well, this runtime is manageable in real-life applications (Chapter 8).

We also use an optimization based on the overlap between values in different partition
groups to decrease the number of variables and clauses. Initially, we compute disjoint sets
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Algorithm 3 ITOC-MutualPairsOfValuesInPGs
Input: set of bipartite graphs BG = {BGy, ..., BG}.
Output: set of pairs of values that must be kept in the final order.

1: set nonremouvables as an empty set

2: set samePG as a hashmap from pairs of values in L to empty sets
3: for each BG; € BG do

4:  for each a,, a, € BG; do

5: add i to samePGay,, ay)

6: end for

7: end for

8: for each BG; € BG do

9 for each two singleton values a, and a, connected to b, do
10: if size(samePGlay,ay]) > 2 then

11: add the pair (ay, ay,) to nonremovables

12: end if

13:  end for

14:  for each two connected components CC; and CC}, in BG; do
15: if there exist v,,vs in the same attribute with v, € CC; and vs € CCj such that

size(samePGvy,vs]) > 2 then

16: for each a, € CCj and a, € CC), do

17: add the pair (ay, a,) to nonremovables

18: end for

19: end if
20:  end for
21: end for

22: return nonremowvables

of values that have co-appeared in the same partition groups. While considering pairs
or triples of values to generate variables or transitivity clauses, respectively, we consider
these sets of attributes separately, which reduces the runtime of the algorithm, without
affecting the correctness of the reduction. Furthermore, before reducing to a SAT instance,
we consider pairwise BGs and check their compatibility, in order to falsify impossible cases
as early as possible.
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6.2 Approximate E/I OCs

We offer a reduction from approximate E/I OCs to partial MAX-SAT, which allows us to
use an efficient MAX-SAT solvers to solve these instances. Partial MAX-SAT is a variant
of MAX-SAT, in which there are two groups of hard and soft clauses. The goal is to satisfy
all of the hard clauses, while maximizing the number of satisfied soft clauses. A solution
to the MAX-SAT instance is an assignment for the boolean variables such that all hard
clauses are satisfied.

Let r be a relational schema instance with n tuples. Let X: A ~ B* and s be the A E/I
OC instance and the input swap threshold, respectively. Let aq,as,...,a; and by,..., by,
denote the values of A and B, respectively. Without loss of generality, assume a; < - -+ < q
is the explicit order over the values of A. We define a SAT variable b, ; for all distinct ¢ and
j such that 1 < 4,57 < m. Intuitively, we assume that in the MAX-SAT solution, having
bi; = true implies b; < b; € Tg. Similar to unconditional exact /I OCs, we utilize two
types of clauses: wvalid order and swaps. Valid order clauses are defined as hard clauses since
they all must be satisfied to ensure a valid strong total order. However, as the candidate
does not hold ezactly; i.e., there are always swaps with respect to an order Tg, we define
the swaps clauses as soft clauses in order to minimize the number of swaps. These clauses
are defined as follows.

1. Hard Valid Order.

(a) Connezivity. For all distinct ¢ and j such that 1 < i,7 < m, we add clauses
(bi,j V bjﬂ') and (ﬁbi’j V _'bj,i)-

(b) Transitivity. For all distinct ¢, j, and k such that 1 <4, j, k < m, we add clause
(mbi; V bk Vbig).

2. Soft Minimum Swaps. Here, each unsatisfied clause corresponds to a swapped
pair of tuples in the database. For each pair of tuples t, = (u,b;) and t, = (v,b;)
within the same partition group of r such that u < v, we add the clause (b; ;).

Theorem 10. The A E/1 OC instance has a solution with at most t swaps if the MAX-SAT
instance has a solution with t unsatisfied soft clauses, and vice versa.

Therefore, the A E/I OC instance is valid iff there exists a solution to the MAX-SAT

instance with at most s unsatisfied clauses. If the A E/lI OC instance is valid, we can
generate a best order solution Tg. in polynomial time using a solution of the MAX-SAT
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instance that maximizes the number of satisfied soft clauses, or equivalently, minimizes the
number of unsatisfied soft clauses. To do so, we add b; < b; to Tg. iff variable b; ; is set
to true in the MAX-SAT solution. To derive a strongest derivable order B*, we can use
the algorithm proposed in [15] with O(nlnn) runtime to resolve all swaps with respect to
the explicit order over A and Tgz. by removing the minimum number of tuples from r. Let
t denote the repaired data. We construct B* by including a relation b; < b; from Tg. iff
there exist tuples t, = (u,b;) and t, = (v, b;) within the same partition group of t such
that u < v; intuitively, pruning Tg. to derive B*.

Although the naive implementation of this reduction takes quadratic time in the number
of tuples, it is possible to do it more efficiently. For a candidate X: A ~ B*, we create a
matrix M storing the number of times a value b; has occurred before value b; with respect
to the sorted partitions of 74 within each partition group. For each sorted partition of 7a
in a partition group, we keep the number of occurrences of values of B with the previous
sorted partitions. Using this, we can update the entries of M when traversing over each
value of A in its sorted partition. For example, if in some partition group, b; has occurred
r times with a, and b; has occurred s times with values a, such that a, < a,, we increase
the entry M|[b;, b;] by r-s. We use a reduction to weighted partial MAX-SAT, where the
weight of a soft clause (b; ;) is set to Mb;, b;]; i.e., based on how many times the value b;
has occurred before the value b;. (A similar approach can be used to derive a strongest
derivable order from the repaired data.) Let [ denote the number of unique values of the
side with an explicit domain order.

Lemma 7. The reduction to MAX-SAT for A E/I OCs is O(nInn + m? + plm?).

6.3 Approximate I/T OCs

Finally, we offer a reduction from A 1/l OCs to partial MAX-SAT. For this reduction, we
use ideas from both the exact I/l OC reduction as well as the A E/I OC reduction. Namely,
we use the same types of clauses as in the exact I/l OC reduction, while assigning softness
or hardness to clauses similar to the A E/I OC reduction. Again, a solution is a binary
assignment to the variables that satisfies all hard clauses.

Let r be a relational schema instance with n tuples and X: A* ~ B* be the A /1 OC
instance with the swap threshold s. Let ay,as,...,a, and by, bs,..., b,  be the values of
A and B, respectively. Define two sets of SAT variables: a;; for all distinct ¢ and j such
that 1 <4, j <m/, and similarly b, ; for the values of B. We assume that in the MAX-SAT
solution, having a; ; = true implies a; < a; € TX and b; ; = true implies b; < b; € T5. The
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two sets of valid order and minimum swaps clauses are generated as soft and hard clauses,
respectively, as follows.

1. Hard Valid Order.

(a) Connezivity. For all distinct ¢ and j such that 1 < 4,5 < m’, we add clauses
(ai,j V aj,i) and (ﬁai’j V ﬁajyi).

(b) Transitivity. For all distinct 4, j, and k such that 1 <4, j, k < m/, we add clause
(=i V=lie V).

Similar clauses are added for the values of B.

2. Soft Minimum Swaps. Here, each pair of clauses corresponds to a potential pair
of swapped tuples in the database. For each two tuples t, = (a;,b,) and t; = (a;, b,)
within the same partition group such that a; # a; and b, # b,, we add clauses
(a;; V byy) and (aj; V byy).

Theorem 11. The A 1/1 OC instance has a solution with at most t swaps if the MAX-SAT
instance has a solution with t unsatisfied soft clauses, and vice versa.

Therefore, the A I/l OC instance is valid iff the MAX-SAT instance has a solution with
at most s unsatisfied soft clauses. Assuming the A 1/1 OC instance is valid, a best pair of
orders T,. and Tz, can be derived from a solution to the MAX-SAT instance that satisfies
the maximum number of soft clauses, as done for exact I/1 OCs and A E/I OCs in previous
sections. We can again use the algorithm from [15] to resolve all swaps with respect to Tz
and Tg. and create the repaired data t. Next, the algorithms described in Section 6.1 are
used to remove unnecessary relations a; < a; from Tx., and similarly for Tg., to derive a
pair of strongest derivable orders A* and B*.

Similar to the reduction for A E/l OCs in Section 6.2, considering pairs of tuples is not
necessary for this reduction. When constructing the bipartite graphs BGs as in Section 4.2,
we use weighted edges, where the weight of an edge (a;, b;) denotes the number of tuples s
with sp = a; and sg = b; within that partition group. We can then consider pairs of edges
in each BG, and for edges (a;,b,) and (a;,b,) with weights r and s, respectively, add soft
clauses (a;; V by,) and (a;; V by,) to the weighted partial MAX-SAT instance, with weight
r - s each.

Lemma 8. The reduction to MAX-SAT for A 1/1 OCs is O(n + pm?).
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Chapter 7

Measure of Interestingness

The search space and the number of discovered implicit domain orders may be large in
practice. Inspired by previous work [21, 2], to decrease the cognitive burden of human
verification, we propose a measure of interestingness to rank the discovered domain orders
based on how close each is to being a strong total order. We argue that by focusing on
similarity to a strong total order, this measure is successful in detecting meaningful and
accurate implicit orders.

Given a DAG G representing a strong partial order, the pairwise interestingness measure
is defined as pairwise(G) = |pairs(G)|/ ("), where pairs(G) = {(u,v) : u,v € G and there
is a path between v and u}, and m is the number of vertices in G. The number of pairs
of vertices that are connected demonstrates the quality of the found strong partial orders,
while the binomial coefficient in the denominator is added for normalization purposes over
the possible pairs with respect to the number of unique values m. Based on this measure, a
strong total order graph has the perfect score of 1, while a completely disconnected graph
has a score of 0.

Example 27. Consider the order graph G presented in Figure 3.1b. There are 23 pairs of
;:gnnected vertices and (2) = 28 possible pairs. Thus, the pairwise score is pairwise(G) =
5 ~ 0.82.

For conditional implicit orders, we divide the number of pairs in each partition group
over the total number of pairs possible among all the values in the attribute, and then
compute their average. This is to prevent candidates with many partition groups with less
interesting partial orders from achieving a high score. To achieve a score of 1, the partial
order in each partition group needs to be strong total order over all the values in the
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attribute. Our algorithm for computing this measure may take quadratic time O(m?) in
the number of vertices in the graph, which corresponds to the number of unique elements
in the attribute. This is not significant, in practice (Chapter 8).
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Chapter 8

Experiments

We implemented our implicit domain order discovery algorithm, named iORDER, on top of
a Java implementation of the set-based E/E OD discovery algorithm [24, 25]. Furthermore,
we use Satdj, which is an efficient SAT solver library [18], and set the approximation factor
to 10% when discovering approximate orders. Our experiments were run on a machine
with a Core 19 2.9 GHz CPU with 128 GB RAM. We use two integrated datasets from
the Bureau of Transportation Statistics (BTS) and the North Carolina State Board of
Elections (NCSBE):

e Flight contains information about flights in the US with 1M tuples and 35 attributes
(https://www.bts.gov).

e Voter contains data about voters in the US with 1M tuples and 35 attributes (https:
//www .ncsbe. gov).

We chose these datasets due to their size for scalability experiments and for having real-life
attributes with interesting implicit orders.

8.1 Scalability

Exp-1: Scalability in |r|. We measure the running time of iORDER by varying the
number of tuples (Figure 8.1). We use the Flight and Voter datasets with 10 attributes and
up to 1M tuples, by showing data samples to users and asking them to mark attributes as
potential exact or approximate order candidates. In the absence of user annotation, the
algorithm can be run multiple times over different subsets of attributes to capture potential
implicit orders. Figure 8.1 shows the runtime of our framework when discovering exact or

47


https://www.bts.gov
https://www.ncsbe.gov
https://www.ncsbe.gov

10,000 —o-Exact 30,000 Exact
% =0~ Approximate % 20,000 Approximate
£ 5,000 E
10,000
0 0
200K 400K 600K 800K 1M 200K 400K 600K 800K 1M
Flight # of tuples Voter # of tuples

Figure 8.1: Scalability and effectiveness in |r|.

approximate implicit orders. In both cases, the runtime has a linear growth in the number
of tuples as computation is dominated by the linear steps of the discovery process and the
non-linear factors in our algorithm tend to have less impact. Thus, iORDER scales well
for large datasets. The runtime is on average twice as long when discovering approximate
implicit orders. This makes intuitive sense as many of the linear steps are repeated for
a candidate when discovering approximate implicit orders. We argue that this runtime
overhead, which is not significant, is worth it as approximate implicit orders can cover
interesting examples that are missed by the exact algorithm (as discussed in Exp-5).

Exp-2: Scalability in |R|. Next, we vary the number of attributes. We use the Flight
and Voter datasets with 1K tuples (to allow experiments with a large number of attributes
in reasonable time) and up to 35 attributes. For the approximate candidates, we only
check implicit orders for candidates that have at most 25 distinct values, as the runtime
gets prohibitively expensive due to the large number of candidates in this experiment and
the extra sensitivity of MAX-SAT reductions for approximate OCs to the number of distinct
values. This can be ameliorated by running the algorithm on random smaller subsets of
the attributes. Figure 8.2 illustrates that the running times of both exact and approximate
discovery frameworks increase exponentially with the number of attributes (the Y-axis is
in log scale). This is because the number of implicit order candidates is exponential in the
worst case. The Voter dataset requires more time for the same number of attributes due
to a larger number of candidates.

Exp-3: NP-complete Cases in Practice. The most general case of implicit domain
order discovery through unconditional |/l OCs as well as the approximate cases are NP-
complete (Sections 4.4, 5.2, and 5.4). However, the majority of observed cases took a
short time. The cases reduced to SAT or MAX-SAT were on average solved in under 60
ms in Exp-1 and Exp-2, indicating that NP-complete cases are handled well in practice.
In Exp-2, with varying the number of attributes and 1K tuples, on average, 33% of the
total runtime was spent on reducing to, and solving, the SAT instances. However, in the
corresponding Exp-1, with varying the number of tuples up to 1M tuples, this ratio was
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Figure 8.2: Scalability and effectiveness in |R].

less than 1%. This is attributed to the large number of candidates in Exp-2 and the small
number of tuples, so the linear steps of the algorithm do not dominate the runtime.

8.2 Effectiveness

Exp-4: Effectiveness over lattice levels. Here, we measure the running time and the
number of discovered implicit domain orders at different levels of the lattice (Figure 8.3).
We report the results with 10 attributes over 1M tuples (from Exp-1 using the framework
for exact order discovery) in the Flight and Voter datasets. Note that in this figure, the
first level corresponds to the lattice level with attribute sets of size two, as no OCs exist
in the previous lattice levels. Since the attribute lattice is diamond-shaped and nodes are
pruned over time through axioms, the time to process each level first increases, up to level
five, and decreases thereafter.

As most of the interesting implicit orders are found at the top levels with respect to
a smaller context (as verified in Exp-5), we can prune the lower levels to reduce the total
time. In the Flight and Voter datasets, approximately 85% and 73% of the orders are found
in the first three levels, taking about 45% and 19% of the total time, respectively. In the
Voter dataset, fewer implicit orders are found in the first levels of the lattice, creating fewer
pruning opportunities. Therefore, more time is spent on validating candidates with larger
contexts, explaining the runtime difference between the two datasets.

An interesting result when discovering approximate implicit orders is that the discovered
orders are, on average, 0.3 levels higher on the lattice (with smaller contexts) compared to
when discovering only exact implicit orders. This is because when discovering approximate
orders, the algorithm is able to ignore some exceptions and discover more general implicit
orders with smaller contexts. As shown in Exp-5, orders on upper levels of the lattice tend
to be more interesting.
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Figure 8.4: Interestingness scores of discovered implicit orders.

Exp-5: Interestingness of implicit orders. We argue that implicit domain orders
found at upper levels of the lattice are the most interesting. Implicit orders found with
respect to a context with more attributes contain more partition groups. Hence, an implicit
order with respect to a less compact context may hold, but may not be as meaningful, due
to overfitting. Figure 8.3 illustrates that the interestingness score drops from the fourth
level on for the Flight dataset and from the third level on for the Voter dataset. Figure 8.4
illustrates that our interestingness measure can help reduce the number of implicit domain
orders, by discarding the orders that achieve a very low score.

In the Flight dataset, we discover orders over monthGreg® and monthLunar® through an
unconditional 1/ OC with respect to the context of yearLunar (as the attribute yearGreg
has a fixed value), as well as the A |/l OC monthGreg® ~ monthLunar*, since the exceptions
in boundary months, i.e., December and January, can be ignored in the approximate case.
This is valuable in some instances, for example, when the year attributes are not provided.
We also found a high-scoring order delayDesc™, which orders flight delay as Early < On-time
< Short delay < Long delay, and is discovered through the E/I OD delay ~ delayDesc*. This
order is interesting since long delays may result in fines on the airline, so detecting these
instances is valuable. Implicit orders over distanceRangeMile and distanceRangeKM were
discovered through the I/l OC distanceRangeMile® ~ distanceRangeKM*, as the categories
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for these attributes are overlapping (e.g., ranges 0 — 700 and 700 — 3000 miles overlap
with the range of 1100 — 4800 kilometers). Another ordered attribute in this dataset is
flightLength (Short-haul < Medium-haul < Long-haul), which was discovered through the
E/I OD {airline}: flightDuration ~ flightLength*. The non-empty context is due to different
airlines using different ranges to define flight duration.

In the Voter dataset, the attributes ageRange (12 — 17 < 18 — 24 < ... < +75) and
generation (e.g., Baby Boomer < Generation X < Millennial < Generation Z) are dis-
covered through E/I ODs age ~ ageRange® and A E/I OD birthYear ~ generation®, re-
spectively, as well as the A I/l OC ageRange® ~ generation™ as the categories are over-
lapping. The reason for discovering these orders through approximate cases is different
age ranges being used to define generations, e.g., 1981-1996 or 1980-1994 for “Milla-
nial”. Finally, an order over birthYearAbbr was detected using the conditional E/I OD
{isCentenarian}: birthYear ~ birthYearAbbr*. This is because for the people born in the
early 1917 or before with isCentenarian = True we have '97 < '98 < ... <16 < 17, while
for people born after this date with isCentenarian = False we have 17 < 18 < ... < 98
< '99. Thus an unconditional OD is not possible. However, when discovering approximate
implicit orders, we discover the unconditional A E/I OD birthYear ~ birthYearAbbr*. This
is because approximate implicit orders can ignore the exceptional birth years, i.e., those
before 1900, and discover a more general implicit order.

Exp-6: Time to compute interestingness. We consider the effect of computing the
pairwise measure of interestingness on the algorithm runtime. We observed that in Exp-1
in the number of tuples, the runtime increase is less than 1%. In Exp-2 in the number of
attributes, this increase is at most around 10%, which is attributed to the higher ratio of
unique values to the number of tuples.

8.3 Applications

Exp-7: Data Profiling. Table 8.1 illustrates that iORDER finds implicit ODs in both
Flight and Voter with 10 attributes and 1M tuples. For each dataset, the first row represents
the number of implicit orders when using the exact implicit order discovery framework and
the second row when using the approximate framework. The second number in the round
brackets represents the number of various types of discovered ODs. As can be seen, we
can discover more than double the number dependencies when using our implicit order
discovery framework. To investigate the importance of different types of implicit OCs, we
categorize the number of top-k exact orders found in the Voter dataset using each type of
implicit OC in Table 8.2. It can be seen that all types of implicit OCs contribute to the
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Table 8.1: The number of implicit orders (data dependencies) when using 1M tuples
and 10 attributes.
E/I 171 0C
dataset FD ocC cond. uncond.
ob ocC ob oc cond. | uncond.
Flight (Exact) 0(20) | 0(12) | 4(4) | 30(30) | 3 (3) 6 (6) 0 (0) 16 (8)
Flight (Approx.) | 0 (20) | 0 (7) | 2(2) | 14 (14) | 6 (6) | 22 (22) | 8 (4) 2 (1)
Voter (Exact) 0 ( 0(l) |1(1)|10(10)|1(1)| 6(6) 6 (3) 2 (1)
Voter (Approx.) | O ( 0(1) |1(1)|20(20)|1(1)| 9(9 2 (1) 4 (2)
Table 8.2: Types of top-k orders.
dataset | k cond. ucond. cond. | ucond.
E/I OC/OD | E/ OC/OD | I/1 OC | 1/1 OC
5 0 41 0 0
Voter 10 2/1 471 1 1
15 3/1 6/1 2 2

most interesting orders found. A similar pattern was observed in the Flight dataset.

When

discovering approximate orders, we can discover on average 20% more implicit orders in the
data. In many cases, discovering approximate orders allows us to discover implicit orders
through more general types of dependencies; e.g., unconditional dependencies instead of
conditional ones, since we are able to ignore some exceptions in the data.

Exp-8: Knowledge Base Enhancement. As another application of implicit do-
main orders in data profiling, we now compare with an open-source manually curated
knowledge-base: YAGO. We quantify the percentage of automatically discovered implicit
domain orders by our algorithm among the top-5 (ranked by our pairwise measure of inter-
estingness) that exist in YAGO. The existence of an implicit order in YAGO is evaluated by
considering pairs of values within the ordered domain and verifying if there exist knowledge
triples specifying the relationship between the two entities. The result is that only 20% of
the top discovered orders exist in YAGO. Thus, existing knowledge bases can be enhanced
by our techniques, especially in instances where the discovered orders are domain-specific
or in knowledge bases that focus on objects rather than concepts, where implicit orders are
more common. This may be done by incorporating pairs of ordered values as knowledge
triples, e.g., (Corner, Less than, Peach).

Exp-9: Data Mining. We next evaluate the impact of implicit orders on the task
of data summarization in data mining. We use the techniques described in [7] and [32],
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Figure 8.5: Information gain with and without implicit orders.

which aim to summarize a database in k rows, each representing a subset of the data, by
maximizing the information gain of the summary. We consider two scenarios: one with
all the attributes treated as categorical, and one with implicitly ordered attributes treated
as ordinal, allowing the summary to refer to value ranges of these attributes rather than
individual values. We compare the information content of summaries of two datasets, Wine
and Electricity, which are available in the UCI (https://archive.ics.uci.edu/) and
openML (https://www.openml.org/) repositories, respectively. These datasets contain
implicitly ordered attributes such as dayOfWeek. To create more implicit orders for this
experiment, we converted some numeric attributes into implicitly-ordered ordinal ones
(e.g., representing price as cheap < moderate < expensive).

There are two parameters in the summarization approach from [32]: a sample size
from which to mine summary patterns, and the number of top patterns to explore in each
iteration of summary construction. We use default values of these parameters: 4 and 16,
respectively, and experiment with values of k£ (summary size) in {1,2,4,8,16}. As reported
in Figure 8.5, utilizing implicit orders allows on average 60% more information gain using
summaries of the same size (65% and 54% for Wine and Electricity datasets, respectively).
The larger improvement on the Wine dataset could be due to having more attributes with
implicit orders in this dataset.
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Chapter 9

Related Work

Previous work investigated the properties of and relationships between sorted sets [5].
However, to the best of our knowledge, besides [20], which focuses on extending OCs to
attributes with implicit orders, no algorithms for discovering implicit domain orders exist.

Existing OD discovery algorithms require some notion of explicit order [25, 24, 17, 1]
and can benefit from implicit orders to find “hidden” ODs that have not been feasible
before. In our solution, we use the set-based OD discovery algorithm [21, 25] since other
approaches cannot discover a complete set of non-trivial ODs. For example, the list-based
approach in [17] is intentionally incomplete in order to prune the much larger list-based
search space. A similar approach, recently shown in [11] is also incomplete despite the
authors’ claim of completeness: it omits ODs in which the same attributes are repeated in
the left- and the right-hand side, such as [country, profit] — [country, tax] and reports an OD
only when both the corresponding OFD and OC hold. Thus, it leaves out cases when only
an OFD or only an OC is true (e.g, OC week ~ month holds, but OFDs {week}: [] — month
and {month}: [| — week do not hold over the tuples within a single year). Additionally,
the algorithm recently presented in [1] is incomplete, as shown in [20].

The importance of sorted sets has been recognized for query optimization and data
cleaning. In [11], the authors explored sorted sets for executing nested queries. Sorted
sets created as generated columns (SQL functions and algebraic expressions) were used in
predicates for query optimization [19, 29]. Relationships between sorted attributes have
been also used to eliminate joins [25] and to generate interesting orders [23, 30]. A practical
application of sorted sets to reduce the indexing space was presented in [0]. So far, the
focus of this line of work has been on explicit orders, while these applications can also
benefit from implicit orders found using our algorithm.
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Chapter 10

Conclusions

We devised the first techniques to discover implicit domain orders. We factored the prob-
lem space across multiple dimensions and presented definitions, hardness results, and al-
gorithms for each of these cases. Finally, we demonstrated the scalability of our algorithm,
its effectiveness in discovering interesting orders, and the applicability of the discovered
orders in different domains. While in this work, we discover implicit domain orders with
respect to a single set-based OD, we plan to extend our framework to merge orders found
for a given attribute with multiple set-based ODs. We will also address implicit order
discovery in dynamic tables, as was recently done for explicit OD discovery [31]. We are
also interested in studying the foundations of E/I and I/l ODs / OCs, including inference.
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Appendix A

Proofs

Proof of Theorem 1
Assume (7g)a is an interval partitioning and, without loss of generality, let a1, ..., ap, be
the explicit order over values in A and the value of tuples t; to t,, projected on columns
A and B be the following: (a1,b1), (ag,b1), ..., (ap,.01), (ap,4+1.02), .., (apy,b2), ...,
(ap,_1+1:bq), -, (ap,,by) (tuples with duplicate values are represented as one tuple for
simplicity). Therefore, &(tg)a = {ap,_,41, ..., ap,} (assuming py = 0). The total order
TS, t1 < ... < t, is a valid witness and its projection on B results in total order b; <
. < b,. Since this is the only valid order (as it is enforced by the explicit order over the
values of A), Tg is the only valid—and therefore the strongest derivable—implicit order
over the values of B.

If (mg)a is not an interval partitioning, then there exist ¢, € [1,...,k] such that
1 < J and min(Ei(tB)A) =< Hlill(gj(tB)A) < max(&(tB)A). Let ti, = (min(&(tB)A), bz),
t;, = (max(&;(ts)a), b;), and t; = (min(&;(tg)a), b;). If this E/I OD candidate is valid, then
a total order T must exist that is: 1) compatible with the explicit order over the values
of A and 2) its projection produces a valid total order over the values of B. Given the first
condition, in any total order T, there must be t;; < t; < t;,, while the projection of this
order would produce a relation over B with b; < b; and b; < b;, which cannot be a valid
total order. Therefore, by contradiction, this E/I OC candidate is not valid. O

Proof of Lemma 1

Let the attributes involved in the E/I OD candidate with an empty context be A and B,
and assume the FD A — B holds. There are three cases (as enumerated in Section 3.2)
that depend on which side has the implicit order and whether the FD B — A holds. In
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all cases, we only need to sort m values (the number of distinct values of B), for a cost of
mInm. The other steps can be done in linear time using a hash table. Thus, the total
runtime is O(mInm + n). O

Proof of Theorem 2

Assume B™ is a valid weak total order and let Tg. denote an arbitrary strong total order
compatible with—that is, is a superset of —B™. To find a witness order T over the
tuples of the database, sort the tuples based on the explicit order over A and break ties by
Tg.. Considering the projected order of this witness over B, the b; < b; derived within a
partition group of A cannot result in a cycle, as they were initially enforced by Tg.. For
the b; < b; derived from different partition groups of A, it suffices to verify consecutive
partition groups of A due to the transitivity of the order relation. Assume the relation
b; < b; can be derived from two tuples in different partition groups PG, and PG, where,
without loss of generality, p < ¢q. If ¢ = p + 1, these partition groups are consecutive
and b; < b, is derived using our algorithm. Otherwise, the partition group PG,y # PG,
contains some tuple with the B-value of by (note that b, could be the same as b; or b,)
since otherwise PG, and PG, would have been consecutive. Using our algorithm, the order
b; < by is derived (if b; # by). Due to transitivity, it is now only required for b, < b; to
be derived (if b; # by), which is inductively derived from PG,; and PG,. Therefore, the
validity of B™ implies the validity of the witness order over tuples.

Now we prove the other direction. Without loss of generality, let PG; denote the ¢-th
sorted partition group of A and B; the set of values of B that co-occur with PG;. Assume
A ~ B* is valid and that T, is some witness order over the tuples. Based on the definition
of a witness order, the partition groups of A and B need to be placed consecutively (and in
ascending order for A) in T . Since the projected order of T over B is a valid total order,
for any two consecutive PG; and PG,,;, B; and B;.; have at most one value in common.
For each three consecutive partition groups PG;_;, PG;, and PG, let Bi_1; = Bi_1 N B;,
Biiv1 = BiN By, and B/ = B; \ Bi_1 \ Biy1. Since TS is a valid order, for any two i # j,
BiNB = (). Therefore, by deriving pairs of ordered values from consecutive partition
groups of A, the resulting order graph corresponds to a valid weak total order where each
partition over the values of B correspond to the value(s) within a set B or B; ;1 for some i
(in cases where B! = () and B;_1; = B;;11, consecutive partitions with the same values can
be considered as one). ]

Proof of Lemma 2

Consider the E/I OC candidate A ~ B*. Since the attributes in the OD-discovery algorithm
in Chapter 2 have been sorted in advance for the first level of the lattice, the sorted partition
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groups over the values of A can be created in O(n) time. A similar argument about the
3-fan-out rule for I/1 OCs in Section 4.2 also applies to E/l OCs with an empty context as
E/I OCs are more restrictive than I/l OCs. This ensures that when traversing consecutive
partition groups of A and inferring relations of the form b; < b;, the number of these
relations will be bounded by m?. Since the graph storing the partial order over the values
of B will at most have size O(m?) as well, the total runtime for an E/I OC candidate with
an empty context is O(n + m?). O

Proof of Theorem 3

Let G; denote the set of strongest derivable orders from within each partition group, and
let G be the union graph generated from these graphs using the procedure described in
Section 3.4. Each G; corresponds to a valid partial order over the values of the attribute
with the implicit order. First, assume G corresponds to a valid partial order; i.e., it is
acyclic. The witness order over the tuples within each partition group represents a valid
witness order over the entire dataset, since the union of all the derived relations over the
values corresponds to a valid partial order.

Assume that G is cyclic and, without loss of generality, let {(b1,b2), (bo,b3), ...,
(bp—1,b,), (by,b1)} denote the set of edges involved in a cycle in this graph. Clearly, each
edge (b;,b;) in this cycle must exist within some graph G;. Since the order graphs G;
correspond to the strongest derivable order over each partition group, an edge (b;, b) € G;
must be present in all witness total orders of the corresponding partition group. Therefore,
for any witness order over the partition groups, and consequently over the entire dataset,
b; < by, for any b; and by, will be derived, meaning that the partial order derived over the en-
tire dataset cannot be valid. Thus, the unconditional E/l OC candidate with a non-empty
context is invalid. O

Proof of Lemma 3

Given an E/I OC candidate with a non-empty context X', the algorithms in Sections 3.2 or
3.3 run for each partition group over X'. The runtime of discovering an implicit order over
each partition group is O(k In k+m?), where k denotes the number of tuples in the partition
group. Furthermore, the size of the order graph constructed from each partition group is
O(m?). Since creating the union graph using the individual orders and checking for cycles
can be done in linear time in size of the graphs, the total runtime is O(pk In k+pm?) which
is bounded by O(nlnn + pm?). O

Proof of Theorem 4
Assume that BG'a g contains a 3-fan-out. Without loss of generality, let the tuples partici-
pating in this 3-fan-out be as follows (the minimal required tuples for a node a4 containing
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the 3-fan-out): t; = (a1, b1), to = (ag,ba), t3 = (as, b3), ts = (a4,b1), t5 = (a4,by), and
te = (a4,b3). Assume that a witness total order T exists over the tuples, and, without
loss of generality, t; < t5 < ts. Since the projections of T over both A and B need to
result in a valid total order, it must be that t; < t4 and tg < t3. However, it is impossible
to find a valid placement for ty, as any placement results in a cycle in the projected order
over A or B. Therefore, by contradiction, the candidate is invalid.

Assume BG'a g contains a cycle. Let a cycle with length k& be over tuples t; = (ay, b;),
to = (a9, b1), ..., thie1 = (aky2, biy2), and t, = (a1, byy2), without loss of generality. Assume
that a witness total order T, exists over the tuples, and without loss of generality, t; < to.
Then ty < t3, and, inductively, t; < t;+1 must hold. Thus, t; <ty < ... < tx. However, this
results in a; < ay/2 and a2 < a;, which makes a valid order over A impossible. Therefore,
by contradiction, the candidate is invalid.

The other direction follows the correctness argument for the algorithm used to derive
the orders using an |/l OC candidate; i.e., by choosing an arbitrary node with degree one
in BG', and zig-zagging to an unvisited node in each step and adding it to the inferred
order based on the side it belongs to.  Let Tx. and Tg. denote the orders derived
using this algorithm (which are unique modulo polarity). Without loss of generality, let
a; < ag < -+ < ap and by < by < -+ < by, denote these total orders (the case where the
length of one of the chains is longer by one value is resolved similarly). Without loss of
generality, let a; denote the first node in BG's g with degree 1. This implies that the tuples
need to be of either of two patterns: 1) (aq,b1); or 2) (a;,b;—1) and (a;, b;) for i > 1. The
total order T derived by sorting the tuples by Tx. and breaking ties by Tg. results in a
valid witness order. This is because any cycles in the derived orders over A’ or B" would
indicate the existence of a cycle (e.g., some a; occurring with b;_5) or a 3-fan-out (e.g.,
some a; occurring with three values b;_1, b;, and b;,1). For the singleton values removed
in A’ and B’, they can easily be added to T, where a tuple (a;, by) can be added between
the tuples (a;, b;_1) and (a;, b;), resulting in the valid final witness order T, implying the
validity of this I/l OC candidate. O

Proof of Lemma 4

To validate an 1/l OC candidate with an empty context involves generating the BG, iterating
over the tuples once, and then using DFS traversal to check for cycles and 3-fan-outs. This
can be done in linear time in the number of tuples. Note that if the 3-fan-out condition
holds, the size of BG is linear in the number of distinct values (m). Thus, deriving an order
can be done in O(m) time, as it only requires traversing the bipartite graph a constant
number of times. For non-empty contexts, validation of 1/1 OCs requires the above steps
for each partition group. Thus, the overall runtime remains O(n). O]
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Proof of Theorem 5
Since the 1/1 OD candidate is considered conditionally, the validity of the candidates and
the strongest derivable orders over A* and B* are derived independently from within each
partition group. Consider an arbitrary partition group and, since XA — B, without loss of
generality, let the value of tuples t; to t, in the columns A and B be the following: (a;, b1),
(ag,b1), ..., (ap,,b1), (ap,41.b2), .., (apy,02), ..., (@p,_141,Dq)s - -, (ap,,by) (tuples with
duplicate values are represented as one tuple for simplicity). The total order T t; < ...
< tp, over the tuples is a valid witness and its projection would result in total orders a; <
. < ap, and by < ... < b, over the values of A and B, respectively. The same argument
can be applied to the rest of the partition groups, meaning that a conditional E/I OD
candidate is always valid.

As for the strongest derivable orders over A* and B*, without loss of generality, let the
initial witness order be T and consider transpositions of either of these types applied on
it: 1) relocating the tuple t;, p;—1 +1 < < p;, within the range [p;_1 +1, p;]; 2) relocating
the consecutive set of tuples t,, 11, ..., t,, to any location either between t,, and t,, i1,
or the beginning or end of T . Both transpositions are valid since the resulting projected
orders over the values of A and B are valid. The intersection of all such transposed witness
orders for each side is the empty partial order. Therefore, the strongest derivable orders
over A and B for this partition group (and, subsequently, for the other partition groups)
are empty partial orders. O

Proof of Theorem 6

Validating 1/l ODs is in class NP as a positive answer can be verified in polynomial time
using a valid witness order T, as defined in Chapter 4. We now show that the CPP
instance admits a valid polarization iff the I/l OD instance is valid. Since the reduction
takes polynomial time in the size of the CPP instance, this proves that validating |/l ODs

is NP-complete.

Assume the unconditional I/I OC candidate is valid and let T, denote a witness order.
For any list L; in the CPP instance, keep L;’s initial polarity if t;; < t;; € T and reverse
its polarity otherwise (i.e., if tj;, < t;; € T;). Note that the B-values in all partition
groups of ¢;; for a fixed i are b; and b}, and therefore, whether b; < b, € Tg or b; < b; €
Tg uniquely determines the polarity of the list L;. Since T is a valid witness order and
its projected order over the values of A is a strong partial order as well, the corresponding
polarization of the CPP instance also admits a strong partial order. Therefore, the CPP
instance is valid.

In the other direction, let some polarization of the CPP instance exist which admits a
strong partial order. To construct a valid witness order T, for the I/1 OD candidate, the
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tuples in each partition group c¢;; are added to the witness order as t;; < t; ; if list L; is
not reversed in the CPP instance, and as t;; < t;; otherwise. Since the polarization of
the CPP instance admits a strong partial order, the projected order of T over A will also
correspond to a strong partial order. Furthermore, the projected order over B will too be
a strong partial order since the order between each two values of b; ; and b ; is consistent
across all partition groups (as it directly corresponds to the polarity of list L;). Therefore,
T, is a valid witness and the corresponding unconditional 1/l OD candidate is valid. [

Proof of Theorem 7

Lemma 9. For any total order Tg over the values of B, the number of swaps between
non-adjacent tuples is equal to C/2.

Proof

Remember that C' denotes the number of pairs of non-adjacent tuple that have different A-
and B-values. We show a one-to-one correspondence between pairs of non-adjacent tuples,
such that exactly one of the pairs of corresponding tuples are swapped, regardless of the
order over the values of B.

Consider two non-adjacent tuples t; and t; such that ¢ < j and let Tz be the total
order over the values of B. Let i/ = —i — 1 if ¢ is positive and odd, or negative and
even. Otherwise, let i/ = —i + 1. Similarly define j* as —j — 1 or —j + 1. Consider
the corresponding pairs of tuples ty and t;. Since ¢ < j and t; and t; are non-adjacent,
j' < i’ and ty and t; are non-adjacent as well. Note that in the other direction, tuples ty
and t; correspond to tuples t; and t;, respectively, implying a one-to-one correspondence.
tig = tyg and t;5 = t;5, based on how the A E/I OD instance is constructed. Since i < j,
tin < tya and tuples t; and t; are swapped iff tjp < tig € Tg. On the other hand, since
j' <, tin < tya and tuples t; and t; are swapped iff tyg <ty € Tg; i.e., tig < tjz € Tg.
Therefore, exactly one of pairs of tuples t; and t; or t; and t; is swapped for any given Tg.
Since the number of pairs of non-adjacent tuples that can be swapped is C, the number of
swapped pairs of non-adjacent tuples for any Tg is C/2. n

We can now prove Theorem 7.

Proof

Validating A E/I ODs is in class NP as a positive answer can be verified in polynomial time
using a total order over the values of B as verifier. We now show that the MFAS instance
holds #ff the A E/I OD instance is valid. Since the reduction takes polynomial time in the
size of the MFAS instance, this proves that validating A E/I ODs is NP-complete.
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First, assume the MFAS instance is holds; i.e., there exists a total order Tj over its
vertices with at most ¢ back-edges. Let Tz = Ty be a total order over the values of B. For
any 1 < i < m, there are two pairs of adjacent tuples in r, i.e., t_9; and t_o;,; as well as
to;_1 and ty;, which correspond to the edge e; in G. Since —2¢ < —2i + 1, tuples t_5; and
t_2;+1 (and equivalently, tuples ty; 1 and to;) are swapped, i.e., t o115 < t_o;g € Tg iff e
is a back-edge with respect to 7, i.e., e;[1] < €;[0] € w. A similar argument applies to tuples
to;—1 and to; as they are equivalent to tuples t_o; and t_o; .1, respectively. Therefore, there
exists at least one back-edge in the MFAS solution for any two swaps between adjacent
tuples in the A E/I OD instance. Thus, the number of swaps between adjacent tuples is
bounded by 2¢. Based on Lemma 9, there exists exactly C'/2 swaps between non-adjacent
tuples in r with respect to Tg. Therefore, the total number of swaps in r with respect to
Tg is at most C'/2 + 2t and the A E/I OD instance is valid.

For the other direction, assume the A E/I OD instance is valid and Tg is a total order
over the values of B with at most C//2 + 2t swaps. Let Ty = Tg be an answer to the
MFAS instance. Based on Lemma 9, exactly C'/2 swaps exist between non-adjacent tuples
in r; therefore, the number of swaps between adjacent tuples is at most 2¢. Similar to the
arguments for the other direction, edge e; in the MFAS instance is a back-edge iff there are
at least two pairs of swapped adjacent tuples in r, i.e., tuples t_o; and t_9; 1 as well as tg; 1
and to;. Since the number of swaps between adjacent tuples is bounded by 2¢, the number
of back-edges in the MFAS instance with respect to Ty is bounded by ¢. Therefore, the
MFAS instance holds as well. O

Proof of Theorem 8

Lemma 10. If the A 1/1 OC instance is valid, then in any solution with at most C' /2 + 2t
swaps the orders TS and T3 are always ¢; < ¢g < -+ < Copy1 and Dyg < - < Dy i1 <
dray < dre) < -+ < drm) < Digipee < -0 < Dogopqr, respectively, or their reversals,
where T is some permutation of numbers in range [1,m] and w(i) denotes the i-th number
in the permutation. We refer to this solution structure as the desired structure.

Proof
First, note that C/2 + 2s < 8n?N, as C = (C,, + Cyq, + Cy,»)/2 and the following
inequalities hold:

e (C,,/2<2n-nN/2 < 2n*N,

e C4,/2<2-n-2nN/2 < 4n*N,
e Cv/2<n?/2<n?N,and

e 25 <2(3) <n(n—1) <n?N.
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Assume the A I/l OC candidate is valid and T¢ and T3 are solutions with at most
C'/2 + 2t swaps that do not follow this structure. Therefore, there exist swaps with respect
to at least two tuples of type dummy, or one tuple of type dummy and one anchor tuple.
Sine there are N copies of each dummy and anchor tuples in t, each NV copies of one tuple
are swapped with the N copies of the other tuples, and therefore, S(TZ, Tg) > N? = 64n’.
On the other hand, we have proved that C'/2+2t < 8n*N = 64n*. However, this contradicts
the assumption that there are at most C'/2+ 2t swaps in t with respect to TS and Tg; i.e.,
S(TE,Tg) > C/2 + 2t. O

Lemma 11. In a solution to the A 1/1 OC instance with the desired structure, S, ,+ Sq,+
Sy = C/2 independent of the order over d;-values.

Proof
Let T¢ and T3 constitute a solution to the A 1/l OC instance with the desired structure
from Lemma 10 and, without loss of generality, let T: be c; < g < -+ < Copr1. We

show a one-to-one correspondence from each pair of tuples (a,,r,) to a pair of tuples
(ap,ry) such that exactly one of these pairs of tuples is swapped with respect to the
solution with the desired structure. Consider tuples a, = (cx+1,d;) and r, = (¢, d;), where,
without loss of generality, | < k& + 1. Consider the corresponding tuple ry = (¢j1x+1, d;).
Tuples a, and r, are swapped with respect to this solution iff d; < d; € T5. On the
other hand, tuples a, and r, are swapped iff d; < d; € Tg. Therefore, in any solution
with the desired structure, exactly half of the pairs of tuples of type anchor and real are
swapped; i.e., Soy = C,,/2. A similar argument applies to Sy, and Sy ,». Therefore,
Sa7r + Sd,r + Cr/,r// = Ca,r/2 + Sd,r/2 + Cr/,r///2 = 0/2 UJ

We can now prove Theorem 8.

Proof

Validating A 1/l OCs is in class NP as a positive answer can be verified in polynomial
time using two total orders over the values of A and B as verifier. We now show that the
A E/I OC instance is valid iff the A I/l OC instance is valid. Since the reduction takes
polynomial time in the size of the A E/I OC instance, this proves that validating A 1/1 OCs
is NP-complete.

First, note that for any T¢ and Tg, S(TZ, T5) = Sdaa + Sad + Sar + Sar + Sy, using
the union rule and the fact that S,, = 0, as all tuples of type a have the same C-value.
AISO, Sr,r = Sr’,r” + Sr/,r/ =+ Sr”,r”-

Assume that the A E/I OC instance is valid and that T3 is a solution with at most s
swaps in r. Construct a solution to the A 1/l OC instance with T¢ and Ty with a desired
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(non-reversed) structure as described in Lemma 10, where d; < d; € Tg iff b; < b; € Tg.
First, Sy, + Sa, + Sv» = C/2 as per Lemma 11. Next, consider a swap between tuples
r, = (¢, d,) and r,, = (¢j,ds) in t (the A 1/l OC instance). There exist tuples t, = (a;, b,)
and t, = (a;,bs) in r (the A E/I OC instance), since the real tuples correspond to tuples
in r. Without loss of generality, assume ¢; < ¢; € TS and dy < d. € Tg. On the
other hand, a; < a; and b, < b, € Tg, due to the correspondence between the instances.
Thus, tuples t, and t, in r are swapped with respect to Tg. Since tuples r” and r” are
equivalent to tuples r/, and r., respectively, they are also swapped with respect to T¢ and
T5. Therefore, each two swaps in the A 1/l OC instance within tuples of type r' and r”,
respectively, correspond to at least one swap in the A E/I OC instance and Sy v+ Sy v < 2s.

Therefore, S(TZ, Tg) < C/2 + 2s and the A 1/l OC instance is valid.

Next, assume that the A I/l OC instance is valid and let TS and T3 constitute a
solution with at most C//2 + 2s swaps. Construct a solution to the A E/I OC instance Tg,
where b; < b; € Tg iff d; < d; € T5. First, T and T3 have a desired structure due
to Lemma 10 (if they have a reversed desired order, we first reverse both orders without
affecting the number of swaps). Second, as per Lemma 11, S, + Sy, + Sy = C/2 and
thus, Sy + Sy < 2s. Now, consider a swap between tuples t, = (a;,b,) and t, = (a;, by)
in r (the A E/I OC instance), where, without loss of generality, a; < a; and bs; < b, € Tg.
This swap corresponds to two pairs of swaps between tuples r), = (¢;,d,) and r,, = (¢;, d;)
as well as r!/ = (¢;,d,.) and r! = (¢;,d;) in t (the A 1/1 OC instance). Therefore, each swap
in the A E/I OC instance corresponds to at least two swaps of types Sy, or Sy v in the A
I/l OC instance. Since Sy, + Sy < 2s, as shown before, S(Tg) < s and the A E/I OC
instance is also valid. O

Proof of Theorem 9

Assume the SAT instance is satisfiable. A truth assignment to the SAT instance variables
that satisfies all the clauses can be translated to two valid implicit orders for the 1/l OC
instance, by considering the variables for each pair of values, where a true assignment to
a;; or a;; (or b; ; and b;,;, accordingly) would result in the implied order a; < a; or a; < a;,
respectively. Exactly one of these two variables is set to true, given the connexivity clauses
generated for each pair of variables. Furthermore, transitivity clauses ensure that this
relation is transitive. Therefore, the derived implicit orders over A and B are valid strong
total orders. To derive a witness order T, it is enough to sort the tuples in each partition
group by the implicit order derived over the values of A, and break ties by the implicit
order derived over the values of B (or vice versa). The projection of T over A and B results
in a valid total order, as all pairs of tuples within each partition group were considered
when generating the no swap clauses, meaning that the projected order over the attributes
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is perfectly captured by these clauses. Therefore, T, is a valid witness and the I/1 OC
instance is valid.

In the other direction, assume that the 1/l OC candidate is valid and let T, denote a
valid witness order over the tuples. To derive a solution to the SAT instance, the reverse of
the previous algorithm can be performed; i.e., the truth assignment for variables a; ; and
a;; (or b;; and b;,;) can be set based on the orders between values in the projected order.
If no order between some values has been established, ties are broken using an arbitrary
explicit order, e.g., alphabetical order. Since T is a valid witness and the explicit order
used to break ties a valid total order, the projected order over each attribute will be a valid
order. Therefore, the truth assignments for the SAT variables can be uniquely determined,
and would satisfy the connexivity and transitivity conditions. Furthermore, this variable
assignment would also satisfy the no swaps clauses, as the projected orders over variables
involved in these clauses are directly derived from pairs of tuples. Therefore, the SAT
instance is satisfiable. m

Proof of Lemma 6

The SAT representation has O(m?) propositional variables. Creating the connexivity and
transitivity clauses take O(m?) and O(m?) time, respectively. Generating the no-swap
clauses for each BG takes O(m?) time, as the number of edges in the bipartite graph
derived from each partition group is O(m), since the initial BG is acyclic and does not
contain any 3-fan-outs. This makes the runtime of this step (and the number of generated
clauses) O(pm?), where p denotes the number of partition groups. Since the initial traversal
of the database takes linear time, the total cost of the reduction to the SAT problem
O(n + pm? + m3). O

Proof of Theorem 10

Assume the MAX-SAT instance has a solution with satisfied hard clauses and ¢ unsatisfied
soft clauses. Construct a solution Tg to the E/I OC instance as follows. b; < b; € Tg iff
bij = true. First, note that Tz is a total order and thus, a valid solution to the E/I OC
instance since antisymmetry and transitivity are satisfied by the hard clauses. (Irreflezivity
is trivially satisfied since no clause b;; = true exists.) Consider a swap in the E/I OC
instance, i.e., tuples t, = (u,b;) and ty = (v,b;) such that u < v, but b; < b; € Tg. This
pair of tuples corresponds to the soft clause (b;;), which is set to false since b; < b; € Tg.
Therefore, this tuples is not satisfied in the MAX-SAT instance. Therefore, there exists at
least one unsatisfied soft clause for every pair of swapped tuples in r with respect to Tg.
Thus, the number of swapped tuples in the A E/I OC instance is at most t.
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For the other direction, assume the A E/I OC instance has a solution Tg with S(Tg) = t.
Create a solution to the MAX-SAT instance as follows. Set b;; = true iff b; < b; € Tg.
First, note that all of the hard clauses in the MAX-SAT instance are satisfied in this
solution, as Tg is a valid total order. Next, consider an unsatisfied soft clause (b; ;) in the
MAX-SAT instance. This clause is unsatisfied only if b; ; = false. Therefore, b; < b; € Tg,
based on how the MAX-SAT solution is constructed. On the other hand, this clause
corresponds to some pair of tuples t, = (u, ;) and t; = (v, b;) in r such that v < v. Since
bi < b; € Tg, b; < b; € Ty, which means that tuples t, and t, are swapped with respect to
Tg. Therefore, there exists at least one swap in the A E/l OC instance corresponding to
every unsatisfied clause in the MAX-SAT instance. Thus, the number of unsatisfied soft
clauses is at most . ]

Proof of Lemma 7

The MAX-SAT representation has O(m?) and O(m?) propositional variables and hard
clauses, which can be generated in O(m?) time. To generate the soft clauses, after getting
the sorted partitions of 7o within each partition group in O(nlInn), the tuples within each
sorted partition can be traversed in linear time, as the cumulative occurrences of the values
of B can be updated in O(1) for each tuple. However, for each sorted partition in 7a, the
values of the matrix M should be updated, which takes O(m?) in the worst case, making
this cost O(Im?) within each partition group. As there are p partition groups with respect
to the context, the total cost of the reduction is O(nlnn + m? + plm?). ]

Proof of Theorem 11

Assume there exist a truth assignment to the MAX-SAT instance that satisfies all hard
clauses and has ¢ unsatisfied soft clauses. Construct a solution to the A I/1 OC instance
with TX and Tg where a; < a; € Tx iff a;; = true and b; < b; € Tg iff b;; = true. T;
and Tz are valid total orders since all hard clauses in the MAX-SAT instance are satisfied.
Consider a swap in the A |/l OC instance between tuples t, = (a;, b,) and ts = (a;, b,), and
without loss of generality, assume a; < a; € T5 and b, < b, € Tg. Out of the two MAX-
SAT clauses corresponding to this pair of tuples, the clause (a;; V b,,) is unsatisfied, as
a;; = b,, = false. Therefore, there exists at least one unsatisfied clause in the MAX-SAT
instance for any swapped pair of tuples in the A I/l OC instance. Thus, S(Tx,Tg) < t.

For the other direction, assume that Ty and Tg constitute a solution to the A 1/l OC
instance with ¢ swaps. Construct a solution to the MAX-SAT instance in which a, ; = true
iff ai < a; € Tx, and b;; = true iff b; < b; € Tg. First, note that all hard clauses are
satisfied, due to Ty and T3 being total orders. Next, consider tuples t, = (a;,b,) and
ts = (a;,b,) in r, and the corresponding soft tuples (a;; V by,) and (a;; V by,,). Since the
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hard clauses are satisfied, at least one of these soft clauses is always satisfied. Assume one
of these clauses is not satisfied, and without loss of generality, let it be (a; ; Vb, ,,). Since this
clause is not satisfied, a; ; = b,, = false, and therefore, a; < a; € TR and b, < b, € Tg.
Thus, tuples t, and t, are swapped with respect to Tz and Tg and there exists at least one
swap in r for every unsatisfied clause in the MAX-SAT instance. Therefore, the number
of unsatisfied clauses is at most ¢. m

Proof of Lemma 8

Generating the initial propositional variables and the hard clauses takes O(n + m?) time.
To generate the soft clauses, since there may be 3-fan-outs in the bipartite graphs (unlike
for the exact case), the size of BGs can be quadratic in the number of distinct values.
Therefore, considering pairs of edges of bipartite graphs within each partition group can
take up to O(m*), making the total worst-case cost of this reduction O(n + pm?). ]
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