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Abstract 

Physical prototyping is often required when developing new equipment and workspaces 

so that human-systems integration can be considered. Digital human modelling facilitates more 

efficient, upstream assessment of human interactions with new equipment within a virtual 

environment. However, predicting how humans will behave (i.e., move and position) to perform 

industry relevant tasks, requires the ability to consider state-based influences, like fatigue, on 

predicted behaviours (Davidson, Graham, Beck, Marler, & Fischer, 2021). The overarching 

objective of this thesis was to understand how objective function weightings should be 

configured within a multi-objective task-focused human behaviour prediction model to simulate 

postures within a floor-to-shoulder height lifting task under different fatigue states. To achieve 

this aim, simulated lifting postures were generated by systematically altering objective function 

weightings where each simulation was compared with experimentally captured lifting posture 

data to determine the closest match and subsequent ideal optimal weighting configuration. 

Fifteen participants were recruited and completed a lifting protocol at 30% of their EPIC 

predicted maximum box lifting capacity. Participant fatigue level was evaluated based on their 

RPE and task completion time. Changes in participants lifting strategy over the course of the 

fatigue lifting protocol was also verified. Participants who were deemed fatigued and exhibited 

movement strategy changes were included in the simulation portion of the thesis where 

participant’s first and last lift kinematic data were used as inputs to a multi-objective 

optimization digital human model. Avatar’s were generated to match participant anthropometry 

and were constrained to maintain the same hand and foot position as the participants. 

Simulations were run while altering three objective functions including the minimization of: 

Discomfort, Total Joint Torque and, Maximum Joint Torque. The different objective functions 
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represent performance measures to be minimized in order to predict the design variables, in this 

case joint angles, within the avatar’s available degrees of freedom. Simulations were run for 

objective function weighting coefficients between 0-100% at 10% intervals for each subject, 

each posture and each fatigue state. Each simulation was compared to the simulation that was 

generated using the participant-specific motion capture data and the error between the motion 

capture and optimization predicted data were calculated. A total root mean squared error 

(RMSE) value was calculated including the ankle, knee, hip, trunk, shoulder, and elbow errors. 

Error was modeled as a function of objective function weightings using participant specific 

multivariate regression equations. Multivariate regression equations were then used to determine 

the objective function weighting configuration that would results in the lowest error for each 

participant, at lift origin and destination and for un-fatigued and fatigued lifting states. A two-

way repeated measures Friedman’s test was used to detect for difference in optimal objective 

functions weightings between locations (origin vs. destination) and fatigue state (un-fatigued vs. 

fatigued lift). Results showed a median objective function weighting of sixty, zero, and zero for 

the discomfort, maximum joint torque and total joint torque objective functions, respectively. 

Friedman’s test did not detect significant differences between fatigue states or location for any of 

the three objective function weightings. The discomfort objective function alone tended to 

predict box lifting postures best. Discomfort may include aspects of the torque based objective 

functions leading to its increased priority for predicting postures over the minimization of 

maximum and total joint torque. Future studies should build on the current suite of objective 

functions to improve predictive capabilities of digital human models for novel tasks. More 

accurate digital human models will allow for earlier consideration of humans-in-the-loop and 

significantly reduce industry costs of physical prototypes. 



v 

 

 

Acknowledgements 

I would like to thank the support team that I have had throughout the process of 

completing this thesis. To Dr. Steven Fischer, my supervisor, thank you for welcoming me to the 

Occupational Biomechanics and Ergonomics Lab family during my undergraduate degree and 

pushing me to grow as an individual and researcher throughout the completion of my graduate 

degree. To my committee, Dr. Jack Callaghan, and Dr. Clark Dickerson, thank you for your 

helping steer this thesis in the right direction and challenging me think deeply about the 

problems that I am attempting to address in this work. 

Having such an intelligent cohort of classmates to learn the fundamentals of 

biomechanics alongside throughout this degree was incredibly helpful in this journey so thank 

you to those individuals. Thank you to the OBEL team with a special thank you to Sarah 

Remedios and Sheldon Hawley for all the feedback and discussions that not only improved this 

thesis but helped in building my knowledge within this field. Another special thank you to 

Nathalie Oomen, for generously sharing your thesis data for the completion of this work. 

Finally, I would like to thank my family and friends, whom I consider family. From being 

a sound board for problems, to just bringing me back to reality after a long week of work, your 

support has been invaluable. To mom and dad, you have pushed me early on to do my best and 

persevere regardless of what I do in life. You have also taught me what it means to commit to 

something despite how difficult it may be and without these lessons I would not made it as far as 

I have. Jessa, you have been my rock, picking me up when I am down and giving me the tough 

love exactly when I need it. You are the most incredible, intelligent women, and I am so lucky 

that I have your love and care in my life.  



vi 

 

 

Table of Contents 
Authors Declaration ............................................................................................................ ii 

Abstract .............................................................................................................................. iii 

Acknowledgements ............................................................................................................. v 

List of Figures .................................................................................................................... ix 

List of Tables .................................................................................................................... xii 

List of Equations .............................................................................................................. xiv 

1.0 Introduction ............................................................................................................... 1 

2.0 Literature Review.......................................................................................................... 5 

2.1 Digital Human Modelling ......................................................................................... 5 

2.1.1 Manually Manipulated Models .......................................................................... 5 

2.1.2 Experimental Data Driven Models .................................................................... 6 

2.1.3 Optimization-Based Models .............................................................................. 7 

2.2 Optimal Control, Optimization and Objective Function Weightings ....................... 8 

2.3 Fatigue and Movement Behaviour Changes ........................................................... 11 

2.4 Multi-Objective Optimization-based Digital Human Model .................................. 15 

3.0 Purpose, Objectives and Hypotheses .......................................................................... 21 

6.0 Methodology ............................................................................................................... 23 

6.1 Experimental Methods ............................................................................................ 23 

6.1.1 Participants ....................................................................................................... 23 



vii 

 

 

6.1.2 Motion Capture Instrumentation ...................................................................... 24 

6.1.3 Fatigue Lifting Protocol ................................................................................... 25 

6.1.4 Data Processing ................................................................................................ 27 

6.1.5 Defining Fatigue Likelihood Criteria ............................................................... 28 

6.2 Simulation Methods ................................................................................................ 31 

6.2.1 Avatar Motion Seeding Configuration............................................................. 31 

6.2.2 Internal Avatar Constraints .............................................................................. 34 

6.2.3 External Avatar Constraints ............................................................................. 35 

6.2.4 Statistical Methods ........................................................................................... 38 

7.0 Results ......................................................................................................................... 43 

7.1 Fatigue Inclusion/Exclusion.................................................................................... 43 

7.2 Simulation Root Mean Squared Error..................................................................... 45 

7.3 Multivariate Polynomial Regressions ..................................................................... 47 

7.4 Predicted Lowest Error ........................................................................................... 50 

7.5 Assessing Systematic Differences with Fatigue State ............................................ 52 

8.0 Discussion ................................................................................................................... 53 

8.1 Response Surface Approach to Find Best Objective Function Weightings ........... 53 

8.2 Least Error Objective Function Weightings ........................................................... 55 

8.2.1 Joint Error Normalization ................................................................................ 56 

8.2.2 Including All Joint Degrees of Freedom .......................................................... 57 



viii 

 

 

8.2.3 Discomfort and Torque Objective Function Overlap ...................................... 58 

8.3 Objective Function Weighting Changes with Fatigue ............................................ 59 

8.4 Surface Response Model Fitting ............................................................................. 60 

8.5 Impact to Human-In-The-Loop Simulations .......................................................... 63 

8.6 Limitations .............................................................................................................. 63 

9.0 Conclusions ................................................................................................................. 66 

10.0 References ................................................................................................................. 67 

11.0 Appendices ................................................................................................................ 75 

11.1 Appendix A ........................................................................................................... 75 

11.2 Appendix B ........................................................................................................... 76 

11.3 Appendix C ........................................................................................................... 77 

11.4 Appendix D ........................................................................................................... 86 

 

  



ix 

 

 

List of Figures 

Figure 1. Cost effects of two design approaches where the “Computerized Ergonomics in 

Design” curve represents DHM use early in the design process (Chaffin, 2005). ......................... 2 

Figure 2. Shows the Sparrow and Newell (1998) constraint model as it pertains to metabolic 

energy expenditure and its potential influence the control and coordination of movement. ........ 11 

Figure 3. Shows the available degrees of freedom representing the Santos Pro human body. .... 16 

Figure 4. “A” Shows a lifting model with the minimization of maximum joint torque MOO 

weighting at 100% and B shows the same lifting model with the minimization of discomfort 

weighting at 100%. ....................................................................................................................... 20 

Figure 5. Passive reflective motion capture marker and cluster placement. ................................. 25 

Figure 6. Shows the floor-to-shoulder height box lift set up where participants performed a 

fatigue lifting protocol. ................................................................................................................. 26 

Figure 7. Shows the anatomical hardpoints (white markers) placed on the avatar in the same 

positions as the anatomical landmark markers of the experimental participants. ......................... 33 

Figure 8. Shows end-effectors within the Santos Pro software (teal circular points). .................. 35 

Figure 9. Shows three different marker target types (purple circular points) including the 

bounded line (left), the bounded plane (middle), and the bounded point (right) marker targets. . 36 

Figure 10. Shows a point load vector within the Santos Pro software (green circular point with 

green vector arrow). ...................................................................................................................... 37 

Figure 11. Shows the normalized RMSE error response for participant 8 where each axis 

represents a respective objective function weighting within the multi-objective optimization 

model (Santos). The colour bar corresponds to the normalized RMSE calculated at each 



x 

 

 

objective function weighting where dark blue represents the lowest error and dark red represents 

the highest error. ........................................................................................................................... 46 

Figure 12. Shows the predicted (x) vs actual (y) plots displaying model fit for participant 8 under 

each condition. The solid line represents a r-value of 1. .............................................................. 49 

Figure 13. Shows the median and interquartile ranges of objective function weightings which had 

the lowest regression predicted RMSE between the simulation and experimental data for each 

posture and fatigue state. JT stands for Joint Torque.................................................................... 50 

Figure 14. Example design space for an optimization problem obtained from Marler (2005). 

Where F1-3 minimum are the different objective function minimum solutions, g1-4 are the linear 

and non-linear constraint in the optimization problem, and x1-2 are the design variables which 

are being solved for. The beige/textured surface represents the pareto optimal set of potential 

solutions between the three objective functions. .......................................................................... 62 

Figure 15. Shows a sample response surface where a constraint plane may have limited the 

possible solutions to a single value at or above an 80% weighting for discomfort. ..................... 62 

Figure 16.  Origin lift postural index scores and standard deviations for each participant under 

each fatigue condition. Participants 1-10 were included within the simulation study and 

participants 11-15 did not meet the criteria for inclusion. Data from Participant 15 was excluded 

prior to analysis due to their protocol completion time being less than 10 minutes. .................... 76 

Figure 17. Normalized root mean squared error surfaces for Participant 1. ................................. 77 

Figure 18. Normalized root mean squared error surfaces for Participant 2. ................................. 78 

Figure 19. Normalized root mean squared error surfaces for Participant 3. ................................. 79 

Figure 20. Normalized root mean squared error surfaces for Participant 4. ................................. 80 

Figure 21. Normalized root mean squared error surfaces for Participant 5. ................................. 81 



xi 

 

 

Figure 22. Normalized root mean squared error surfaces for Participant 6. ................................. 82 

Figure 23. Normalized root mean squared error surfaces for Participant 7. ................................. 83 

Figure 24. Normalized root mean squared error surfaces for Participant 9. ................................. 84 

Figure 25. Normalized root mean squared error surfaces for Participant 10. ............................... 85 

Figure 26. Model fit graph of the predicted (x) vs actual (y) plots plots Participant 1 under each 

condition. ...................................................................................................................................... 86 

Figure 27. Model fit graph of the predicted (x) vs actual (y) plots Participant 2 under each 

condition. ...................................................................................................................................... 87 

Figure 28. Model fit graph of the predicted (x) vs actual (y) plots Participant 3 under each 

condition. ...................................................................................................................................... 88 

Figure 29. Model fit graph of the predicted (x) vs actual (y) plots Participant 4 under each 

condition. ...................................................................................................................................... 89 

Figure 30. Model fit graph of the predicted (x) vs actual (y) plots Participant 5 under each 

condition. ...................................................................................................................................... 90 

Figure 31. Model fit graph of the predicted (x) vs actual (y) plots Participant 6 under each 

condition. ...................................................................................................................................... 91 

Figure 32. Model fit graph of the predicted (x) vs actual (y) plots Participant 7 under each 

condition. ...................................................................................................................................... 92 

Figure 33. Model fit graph of the predicted (x) vs actual (y) plots Participant 9 under each 

condition. ...................................................................................................................................... 93 

Figure 34. Model fit graph of the predicted (x) vs actual (y) plots Participant 10 under each 

condition. ...................................................................................................................................... 94 

  



xii 

 

 

List of Tables 

Table 1. Participant demographics prior to fatigue-likeliness exclusion. ..................................... 24 

Table 2. Shows the different Cohen’s d effect size threshold values where anything equal to or 

greater than the defined threshold corresponds to the adjacent effect size definition. ................. 30 

Table 3. Shows the which landmark markers were mapped to their associated anatomical 

hardpoints (virtual landmark markers) for each body segment. ................................................... 34 

Table 4. Shows the organization of inputs for the regression model where  X1-3  are the four 

objective functions being used within the simulations and the error response is the calculated 

error using Equation 10. ................................................................................................................ 41 

Table 5. Shows participant inclusion/exclusion decision criteria where grey boxes indicate which 

stage in the decision criteria, participants data were excluded from the simulation phase. ......... 44 

Table 6. Demographics information for the final set of participants included within the 

simulations section of this thesis................................................................................................... 44 

Table 7. Multivariate model statistics for each participant under each condition.  PR2 is the 

predicted R2 value calculated with a leave one out cross validation.  RMSE is the root mean 

squared error of the residuals between the actual input values and the model predicted values. . 48 

Table 8. Shows the model predicted objective function weighting coefficients to minimize 

normalized RMSE where Disc is the minimization of discomfort objective function, Max JT in 

the minimization of maximum joint torque objective function, and Total JT is the minimization 

of total joint torque objective function. ......................................................................................... 51 

Table 9. Shapiro-Wilk significance score for the multivariate regression model predicted best 

objective function weightings. The Shapiro-Wilk score was calculated for each objective 



xiii 

 

 

function, lift posture, and fatigue state. The minimization of discomfort, maximum joint torque, 

and total joint torque are denoted by “Disc”, “Max JT” and “Total JT”, respectively. ................ 52 

Table 10. Friedman’s test statistic, degrees of freedom, and statistical significance (p-value) for 

each objective function which encompasses all conditions. The minimization of discomfort, 

maximum joint torque, and total joint torque are denoted by “Disc”, “Max JT” and “Total JT”, 

respectively. .................................................................................................................................. 52 

 

  



xiv 

 

 

List of Equations 

Equation 1. Shows the objective function to minimize effort where  γi  is a weight used to stress 

the relative stiffness of a joint. Variable  n  is the number of degrees of freedom, and  q  is the 

posture.  (qi − qi
initial)  is the joint angle displacement from the initial posture (Mi, Yang, & 

Abdel-Malek, 2009). ..................................................................................................................... 17 

Equation 2. Shows the objective function optimizing for the tendency to gravitate towards a 

neutral position where  q  represents a posture,  ∆qi
norm  is the normalized change in joint angle 

for a degree of freedom from the neutral position. Variable  γi  is a weight used to stress the 

stiffness of a joint where it is assumed joints are moved sequentially (Marler et al., 2005). ....... 18 

Equation 3. Shows the second equation used to minimize discomfort where G x QU and G x QL 

are penalty terms associates with values approaching the joint upper and lower limits 

respectively. .................................................................................................................................. 18 

Equation 4. Shows the delta potential energy objective function where  q  is the posture,  k  is the 

number of lumped masses. Variable  (Pi – Pi’)  is the change in potential energy from the neutral 

position (Mi et al., 2009)............................................................................................................... 18 

Equation 5. Shows the objective function for minimizing total joint torque (dynamic effort) 

adapted from Xiang et al., (2012) where variable  τi  represents the torque for a given degree of 

freedom, variable  (q) is the resultant posture. ............................................................................. 19 

Equation 6. Shows the minimization of maximum joint torque objective function equation where  

τi  represents the torque for a given degree of freedom,  (q)  is the posture and  τmax  represents 

the maximum torque limit of a degree of freedom. ...................................................................... 19 

 



xv 

 

 

Equation 7. Shows the joint displacement objective function where  q  represents a posture,  qi  is 

the joint angle for a degree of freedom within a set of joint limits. Variable  qN  represents the 

neutral angular position of a degree of freedom. Variable  n  is the number of degrees of freedom 

and  γi  is a weight introduced to stress the relative stiffness of a joint. ....................................... 19 

Equation 8. Shows the modified postural index equation where the inputs are the corresponding 

joints sagittal plane joint angle in degrees and the output is the postural index ratio. .................. 29 

Equation 9. Shows the Cohen’s d Effect Size equation used to quantify postural index 

differences with fatigue state within subjects. .............................................................................. 30 

Equation 10. Shows the calculation for normalized difference between the simulated and motion 

seeded joint angles (𝜃). This calculation was completed for all degrees of freedom (DoF) with 

each of their respective ranges of motion (RoM). All normalized differences were squared. ..... 39 

Equation 11. Shows the calculation of the average normalized joint error (∈) across all degrees of 

freedom within a joint. .................................................................................................................. 39 

Equation 12. Shows the root mean squared error (RMSE) for the combination of six joints of 

interest. Where the mean of the six average joint squared errors are calculated and the square 

root of that value is found and expressed as a percentage. ........................................................... 39 

Equation 13. Is a sample polynomial regression equation, adapted from Arora (2017), for 

modelling an error surface generated using Equation 10 for each objective function weighting 

where  X1-3  are the three objective functions being used within the simulations. A, B, C, D, E, F, 

G are coefficient values within the model determined by the least squares difference between the 

model predicted error responses and the error responses obtained in Equation 10. Variable  n  

represents a value between one and three corresponding to the different objective functions. .... 41 

 



 

 

1.0  Introduction 

New workspace designs and equipment, which require human interaction, commonly 

necessitate physical prototypes to be developed for human performance testing and evaluation. 

Physical prototype testing can be time-consuming, costly, and often requires subjective feedback 

to inform decision making on the prototype rather than biomechanically relevant outputs 

(Ahmed, Irshad, Demirel, & Tumer, 2019; Duffy, 2012; Jun, Lee, Kim, & Noh, 2019). 

Modelling and evaluating prototypes in a virtual or computer aided design (CAD) environment 

can substantially reduce costs. By leveraging CAD-based modeling packages (e.g. FEA, multi-

body dynamics), emerging ideas can be rapidly developed to evaluate structural and geometric 

parameters virtually, allowing iterative testing and improvement prior to physical prototyping 

and manufacturing (Bordegoni & Rizzi, 2011). However, consideration of human-in-the-loop 

interactions with new workspace designs and equipment is often poorly considered until the 

physical prototype is already developed (Chaffin, 2009). Digital human models (DHM) provide a 

virtual representations of a human within a digital environment, where the virtual human can 

then be used to predict safety or performance outcomes based on modeled interactions with 

products, equipment and workspaces (Demirel & Duffy, 2007). Leveraging DHMs throughout 

the CAD development phase allows for the early identification of human-systems integration 

concerns, where such issues would otherwise be discovered in the more expensive physical 

prototyping stage of development (Figure 1). DHMs can also allow for rapid trade-off analyses, 

where design components are altered and evaluated, to create better products for end-users. 

Though the use of DHMs have the potential to address human-system-integration considerations 

earlier in design, differences in underlying prediction and simulation approaches are important to 

consider. 
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Figure 1. Cost effects of two design approaches where the “Computerized Ergonomics in 

Design” curve represents DHM use early in the design process (Chaffin, 2005). 

 There are three main types of DHMs designed to predict and simulate human motion 

including: manually manipulated models, experimental data driven models, and optimization-

based models. Chapter 2 of this thesis discusses the three primary DHM types in more detail. 

This thesis focuses on an optimization-based DHM, as the theoretical basis for the optimization 

approach is more aligned with contemporary motor control theories (Abdel-Malek & Arora, 

2013; Scott, 2004; Yang, 2009). Optimization-based DHMs assume that humans inherently 

choose postures that minimizes or maximizes physiologically relevant performance criteria 

where design variables such as joint angles can be predicted given a set of internal (i.e. joint 

torque and range of motion limits) and external (i.e. body endpoint must contact a target 

location) constraints. The mathematical formulations of the physiologically relevant performance 
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criteria being minimized or maximized are considered as objective functions. In emerging 

DHM’s, multiple objective functions are available for users to include in their predictions; 

however, little evidence is available to guide end users in deciding which objective functions to 

use and when to predict biofidelic task-focused behaviour, and particularly when considering 

individual state factors such as fatigue. 

 Physiologically relevant objective functions used to represent motor control laws 

governing human movement are dynamic. Multiple physiologically relevant performance criteria 

may compete and/or cooperate in controlling human behaviour when performing a given task 

and can change with a change in task, an individual’s state, and the environment (Berret, Delis, 

Gaveau, & Jean, 2019; Cashaback & Cluff, 2015; Jin, Kulic, Lin, Mou, & Hirche, 2019; Sparrow 

& Newell, 1998; Yang, 2009). Human gait is well studied in this regard, where associated 

objective functions are well defined such as minimizing muscle activations and maximizing gait 

stability and smoothness (Miller, Umberger, Hamill, & Caldwell, 2012; Nguyen, Johnson, Sup, 

& Umberger, 2019); however, other objective functions that best predict other movements, like 

lifting still require further investigation. Moreover, how individual states (i.e. fatigue) and 

environmental conditions (i.e. thermal) alter the relative weightings of objective functions 

remain as under studied areas (Ma, Zhang, Chablat, Bennis, & Guillaume, 2009). Understanding 

prospective differences in underlying objective functions and weightings will improve the ability 

to deploy DHMs to support virtual prototyping for a wider range of design characteristics. 

 The purpose of this thesis was to explore existing objective functions within an 

optimization-based DHM to determine how those objective function weightings can be optimally 

tuned to predict floor to shoulder height box lifting under different fatigue states. Additionally, 

this study investigated if there was a systematic shift in the weights assigned to objective 
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functions when attempting to predict lifting postures in un-fatigued and fatigue states. Two 

postures (lift origin and lift destination) were assessed along with two fatigue states (un-fatigued 

and fatigued). Simulated postures were compared to participant specific lifting posture data that 

were obtained experimentally to generate an error response surface relative to unique objective 

function weightings. Response surfaces were modeled using multivariate polynomial regression 

where emergent regression equations were optimized to find the optimal objective function 

weighting configuration that predicted postures that best matched the experimentally captured 

origin and destination postures. 
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2.0 Literature Review 

2.1 Digital Human Modelling 

Digital human modelling (DHM) allows for the representation of humans within a virtual 

environment. Human representation within DHMs can include biomechanical, physiological, and 

psychological principles. Psychological models are typically not included with commercial 

DHMs aimed to model the full body biomechanics and physiology and will therefore be 

excluded for the purposes of this thesis. When modelling the human body in the commercial 

DHM  there are generally three approaches used:  

1. Manually manipulated models,  

2. Experimental data driven models and,  

3. Optimization-based models. 

2.1.1 Manually Manipulated Models 

Manual manipulation allows the users to position an avatar or virtual mannequin into a 

desired posture by altering joint profiles (position and angles), constrained by the degrees of 

freedom allowed within the DHM. Some examples include NexGen Ergonomics’ HumanCAD 

and the University of Michigan’s 3DSSPP software (Center for Ergnomics, n.d.; NexGen 

Ergonomics Inc., 1997). The manual manipulation approach is conceptually simple, where a user 

can manipulate joint angles as required to mimic observed task behaviours to understand and 

evaluate corresponding biomechanics. Manually manipulated models cannot predict postures or 

movement and cannot assess dynamic scenarios within the software (Abdel-Malek & Arora, 

2013). Additionally, manual posturing has limited repeatability and the accuracy of the model is 

highly dependent on the DHM user’s experience (Li, et al., 2018; Zhu et al., 2019). The manual 
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posturing approach is often used when modelling a pre-existing task or required posture, if a 

novel task is created the modeler would need to estimate the required human behaviour to 

complete the new task (Abdel-Malek & Arora, 2013). Though manually manipulated DHM have 

limited posture prediction functionality, they allow for quick visual representations of 

occupationally relevant task-focused behaviours, and they can provide useful outputs for 

ergonomic analyses of postures. 

2.1.2 Experimental Data Driven Models 

Experimental data driven models are a predictive DHM type relying on pre-recorded 

motion capture data to drive an avatars postures and movements. Data-driven posture prediction 

models have been widely adopted within the automotive manufacturing industry due to the ease 

of representing common manual materials handling movements (Blanchonette, 2010). 

Experimental data driven predictive models take the large databases of pre-recorded kinematic 

data and use them to generate statistical regressions from which new motions can be predicted 

(Abdel-Malek & Arora, 2013; Blanchonette, 2010; Chaffin, 2005). Not every task that may need 

to be evaluated within a DHM can be captured with motion capture data considering the 

diversity of possible movements and therefore some limitations of this prediction approach exist. 

Limitations include inaccuracies when predicting kinematics for tasks where obstacle avoidance 

is required, as well as inaccuracies when representing unique tasks or tasks that are highly 

dynamic in nature (Abdel-Malek & Arora, 2013; Marler et al., 2009; Marler, et al., 2005; Yang 

et al., 2004). Limitations in predicting movement behaviours for unique or novel tasks poses a 

specific problem when attempting to deploy DHM in upstream design for the evaluation of 

human-system integrations by considering unique or novel designs. 
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2.1.3 Optimization-Based Models 

The third type of DHM utilizes optimization to predict and simulate postures and 

motions. In this approach, joint angles serve as design variables to be solved for by using an 

optimization approach. Constraints on the optimization problem include joint range of motion 

and torque limits based on experimentally captured physiological data (Abdel-Malek & Arora, 

2013). Optimization-based DHMs are also modifiable by including end-effectors on the avatar 

model which can be constrained to reach a point, or zone defined by the user within the virtual 

environment (Abdel-Malek & Arora, 2013; Xiang, Arora, & Abdel-Malek, 2012; Xiang et al., 

2010). Objective functions serve to minimize or maximize specific criteria at the joint or whole-

body level such as energy efficiency or discomfort (Marler, Rahmatalla, et al., 2005). 

Optimization-based DHMs allow for the prediction of movements and postures without the need 

to drive avatar motions with pre-recorded motion capture data. Instead, motion capture can serve 

as a validation for a given scenario being modelled. Optimization-based DHM accuracy and 

validity is dependent on the objective function or functions that are chosen to be minimized or 

maximized (Marler, Yang, Arora, & Abdel-Malek, 2005). Understanding what objective 

functions to use and why will be discussed within the optimal control section of this thesis. 

Since DHM avatars are generally made up of rigid links with scaled anthropometry, 

inverse kinematics (IK) is generally used as a posture prediction method. Optimization or 

regression equation fitting allow for the IK problem to be solved with the available link segments 

and joint degrees of freedom (Abdel-Malek & Arora, 2013; Beck & Chaffin, 1992; Blanchonette, 

2010). Commonly, an end-effector is chosen somewhere on the avatar’s body to be constrained 

to a marker target, if the marker target cannot be reached within the constraints of the avatar, the 

posture cannot be predicted. If the marker target is within capable range of the avatar’s limits, a 
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posture will be predicted as represented by joint angles, that best minimize / maximize the 

underlying objective function or functions. Since segment lengths and weights are estimated by 

the input anthropometry, and since joint loads can be added to the avatar in 3D space, inverse 

dynamics calculations can be conducted within the DHM software to understand net joint 

moments and forces experienced by the avatar for a given posture (Chaffin, 2009). 

2.2 Optimal Control, Optimization and Objective Function Weightings 

Human motion prediction is a difficult undertaking as there are many degrees of freedom 

within the human body allowing for numerous solutions to achieve the same movement objective 

(Scott, 2004). Simply reaching for an object in front of you can be accomplished in an infinite 

number of ways due to the abundancy of degrees of freedom available within the anatomy of the 

human body. This creates an indeterminacy problem when modelling and predicting how human 

postures and movements are generated. Optimal control theory may provide a basis for 

navigating the indeterminacy involved when attempting to predict human kinematics. Optimal 

control theory assumes movement behaviours are minimizing or maximizing relevant criteria 

such as minimizing discomfort (Marler, Rahmatalla, et al., 2005) or maximizing jump height 

(Pandy & Zajac, 1991). The criterion that is being optimized for, according to the optimal control 

theory, can be operationalized by objective functions which are functions that can 

mathematically represent what the nervous system is trying to achieve (Todorov, 2004).  

In posture prediction, different objective functions can be used to estimate what an 

individual is optimizing for within a given task. Complex movements may consider multiple 

objective functions to be optimized throughout, thereby requiring different objective functions to 

represent the smaller units of the movement also known as movement primitives (Todorov & 
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Jordan, 2002). Single objective functions have been used to represent whole movements or 

movement primitives for a given task, this is called single objective optimization. Gait, for 

example, has been previously modelled using single objective optimization and the objective 

function of minimizing total muscular effort (Ghista, Toridis, & Srinivasan, 1976). Minimizing 

total effort falls under the overarching optimization assumption that human kinematic behaviour 

tends to minimize metabolic costs or maximize efficiency. This coincides with the observations 

that potential energy change of the human center of mass is low during walking, metabolic costs 

at self selected paces are low, and the center of mass motion generally maintains a smooth 

trajectory (Nguyen et al., 2019; Winter, 1976). Though the minimization of metabolic cost has 

been useful in gait modelling, it may not be appropriate in all movement behaviour scenarios as 

it alone does not predict average behaviour for other movements (Todorov, 2004). In fact, many 

different optimization strategies have been adopted to model movement including maximizing 

joint stability (Cashaback & Cluff, 2015), minimizing muscle stress (Crowninshield & Brand, 

1981), minimizing joint discomfort (Marler, Rahmatalla, et al., 2005), and minimizing joint loads 

(Yettram & Jackman, 1982). Movements or movement primitives may be better represented; 

however, by combining multiple optimization assumptions at a given time rather than only 

considering a single objective. 

Multi-objective optimization (MOO), allows for the consideration that many different 

control laws, operationalized by objective functions, may influence movement behaviour 

simultaneously. In MOO, a scenario where all objectives have a minimum simultaneously 

(utopia point) is rare (Marler, Yang, et al., 2005). Without a utopia point solution, there are 

multiple local optimums (pareto optimal solutions) that can be possible within a set of feasible 

solutions, therefore requiring a method to choose between the different pareto optimal solutions. 
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Many methods exist to navigate the pareto optimal space; however, the weighted sum method 

allows for the allocation of preferential weightings a priori (Yang, Marler, & Rahmatalla, 2011), 

that may give insight into the importance of a given objective function for a movement or 

movement primitive. One study, exploring three different methods for navigating through the 

number of possible solutions from a MOO using a digital human model and simple reach to point 

tasks, found that the weighted-sum method tended to provide the most natural postures when 

compared to a min-max and global criterion method for MOO (Marler & Arora, 2010). 

Furthermore, MOO solutions out-performed single objective optimization solutions for posture 

prediction outcomes (Xiang et al., 2010). Therefore, following the optimal control assumption 

that human movement behaviours are minimizing or maximizing relevant criteria, MOO and the 

weighted sum method may allow for the accurate prediction of human kinematic behaviours 

while simultaneously allowing for the understanding of how different movements are controlled. 

The optimal control laws that control movement behaviour, operationalized as objective 

functions and their assigned weightings, are modulated by different factors. Figure 2 shows 

Sparrow and Newell’s constraint model displaying how the task, environment, and organism can 

alter the coordination and control of movement (Sparrow & Newell, 1998). Theoretically, this 

constraint model can be applied to the optimal control space. When the individual’s state, the 

task being completed, or the environment, is altered, that individual’s movement behaviour may 

change, which can be represented by a change in the objective functions and their assigned 

weighting within a MOO framework. Previous studies within the DHM realm have investigated 

the different combinations of objective functions and their respective weightings in modelling 

postures for a given task (Marler & Arora, 2010; Marler, Yang, et al., 2005; Yang et al., 2011).  

Few studies, however, have investigated the changing of objective functions and their assigned 
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weightings when attempting to model the task-focused behaviour that might emerge from 

changes in an individual’s state or environment. This thesis will focus on fatigue as an individual 

state factors that can alter movement behaviours, with a focus on lifting. 

 

Figure 2. Shows the Sparrow and Newell (1998) constraint model as it pertains to metabolic 

energy expenditure and its potential influence the control and coordination of movement. 

2.3 Fatigue and Movement Behaviour Changes 

Fatigue is an individual state factor that can alter movement behaviour, theoretically by 

altering overarching objective functions and their assigned weightings within the context of a 

MOO problem. Fatigue is a multifaceted phenomenon that can emerge at the central and 

peripheral levels to reduce the maximum force capacity of the muscle (Gandevia, 2001; Noakes 
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& Gibson, 2004; Xia & Frey Law, 2008). Central fatigue is defined as the progressive decrease 

in voluntary activation of muscle fibers; while peripheral fatigue is produced by alterations at the 

neuromuscular junction or beyond it (Gandevia, 2001). In other words, central fatigue is the 

failure to drive motor neurons, while peripheral fatigue is the failure at the site of skeletal muscle 

contraction. Though fatigue can have central and peripheral causes, it can sometimes be difficult 

to distinguish between the two and separating them is not always required (Vøllestad, 1997). 

Fatigue can manifest from cognitively demanding tasks, a lack of sleep (sleep exhaustion), 

physically demanding tasks, boredom and more (Matthews & Hancock, 2017; Nibbeling, 

Oudejans, Ubink, & Daanen, 2014). For the purposes of this thesis, cognitive fatigue, exhaustion, 

and fatigue related diseases will not be addressed; however, these forms of fatigue are still 

common and influence an individual’s force generating capability as well as their movement 

behaviour (Matthews & Hancock, 2017; Nibbeling et al., 2014).  

Muscular fatigue has been well documented in biomechanics history and will be the 

personal state factor analyzed within this thesis. Muscular fatigue specifically, is defined as a 

decrease in force generating capability within a muscle that is only temporary and not caused by 

injuries (Bigland‐Ritchie & Woods, 1984; Gandevia, 2001; Gates & Dingwell, 2008). Muscle 

fatigue can be observed using several different approaches. When compared to an un-fatigued 

muscle state, a fatigued muscle has measurable metabolite concentration changes (Allen, Lamb, 

& Westerblad, 2008; H. Westerblad, Bruton, Allen, & Lannergren, 2000; Håkan Westerblad, 

Allen, & Lännergren, 2002). Also, when comparing fatigued muscle to un-fatigued muscle, at a 

given force, EMG amplitude increases and mean power frequency decreases (Bigland‐Ritchie & 

Woods, 1984; Petrofsky, 1979). Synchronous firing of motor unit action potentials as well as 

decreased conduction velocities of electrical signals are also common indicators of fatigue or 
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fatigue development within muscle (Arendt-Nielsen & Mills, 1988; Broman, Bilotto, & De Luca, 

1985; De Luca, Roy, & Erim, 1993). Being that a decrease in the muscles ability to generate a 

desired force defines a fatigued muscle, changes in force via maximum voluntary efforts is 

another way to measure fatigue development (Bigland‐Ritchie & Woods, 1984). More indirect 

measurements of muscle fatigue can also be surveyed such as ratings of perceived exertion and 

fatigue assessment scales although these are generally better used as complimentary measures to 

the aforementioned methods. 

Fatigue is not exclusive to changes at the muscular level and force production level. 

Fatigue has been known to change human movement and its control as well (Chen, 2000). This is 

important as differing kinematics will directly result in altered joint loading and performance. 

Researchers have observed movement related changes associated with the progression of fatigue 

including an increase in net joint moment variability and increased co-contraction (Cashaback & 

Cluff, 2015; O’Brien & Potvin, 1997; Psek & Cafarelli, 1993; Reeves, Cholewicki, Milner, & 

Lee, 2008; Singh, Arampatzis, Duda, Heller, & Taylor, 2010). From an optimal control 

standpoint, fatigue likely alters the objective(s) being optimized. Cashaback and Cluff (2015) 

found that with fatigue, less weight was given to optimizing energy efficiency and more weight 

was given to prioritize joint stability, likely to preserve end-point control to meet the task’s 

goals. This is counterintuitive as a logical conclusion for fatigue is to become more energy 

efficient to mitigate fatigue development. This means that overall, fatigue does not only reduce 

the force producing capabilities, but may also change the overarching control mechanisms which 

ties back to Newell and Sparrow’s constraint model on movement behavior. This does not 

specifically imply a human will choose to now optimize for stability instead of efficiency, rather 

a shift in the amount of emphasis placed on each objective may change. This has been discussed 
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as a hierarchal shift with fatigue and other modifying factors on the control space (Li, Todorov, 

& Pan, 2004; Todorov, 2004). 

In lifting, specific kinematic changes have been seen as fatigue progresses during 

prolonged lifting bouts. Bonato et al., (2003) found that individuals would move away from a 

stoop posture and towards a squat posture as fatigue progressed and similarly, Fischer et al., 

(2015) found that as fatigue progressed individuals altered their movement strategies to reduce 

trunk segment angles. In contrast, Fogleman and Smith (1995), Sparto et al., (1997), and Van 

Dieën et al., (1998), found increased lumbar flexion and less range of motion used at the knee 

joint during prolonged lifting bouts as fatigue progressed. Though different kinematic changes 

were found Fischer et al., (2015) and Van Dieën et al., (1998) agreed that the lifters adapt their 

lifting kinematics as they attempt to balance between the lifted mass and the diminishing force 

manifesting due to fatigue whether this force is due to a reduction at the knee joint (Sparto et al., 

1997) or the trunk musculature (Van Dieën et al., 1998). Interpreting the kinematic differences of 

the aforementioned lifting fatigue studies from an optimal control standpoint, there was a 

potential shift in how individual’s nervous system chose to optimize their lifting movement as 

fatigue progressed. While this was not specifically modelled using optimization methods, there is 

an opportunity to capture how the optimal control principles change due to a fatigue lifting 

protocol by leveraging MOO based DHMs.  

Modelling fatigue within DHM tools is a desired capability for end users (Davidson et al., 

2021); however, current modelling approaches alter joint strength capabilities exclusively which 

may not always account for the movement changes that occur due to fatigue development (Ma et 

al., 2009; NATO RTO Technical Task Group 019, 2009). To model fatigue related movement 

changes, within an experimental motion capture driven predictive model, more large-scale 
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motion capture collections post relevant fatiguing protocols would be necessary to develop the 

required regression models to draw upon when predicting kinematics. Within an optimization-

based DHM however, a hierarchal shift in objective functions and their associated weighting 

may enable modeling of fatigue related movement changes. Ma and colleagues (2009) used the 

Anybody DHM (Damsgaard, Rasmussen, Christensen, Surma, & de Zee, 2006) to explore 

changing objective functions to represent a drilling task as fatigue progressed. This investigation 

showed the optimal distance for workers to be postured from the drilling location to minimize 

fatigue; however, the chosen task was a simple drilling task where specific joint kinematics 

where not evaluated or compared against experimentally gathered drilling data. More complex 

tasks such as box lifting, a whole-body task, may show different results.  

2.4 Multi-Objective Optimization-based Digital Human Model 

For this thesis, Santos Pro will be used as an optimization-based DHM that allows users 

to vary the weightings for up to nine different objective functions. Santos Pro was originally 

developed in the Virtual Soldier Research Program (Abdel-Malek & Arora, 2013). Santos Pro 

includes avatars representing males and females for visual shape accuracy. Anthropometry can 

be altered manually within the software to represent specific groups or individuals 

(SantosHuman Inc, n.d.). Santos Pro permits manual manipulation of avatars, motion prediction 

based on the provision of experimentally obtained motion capture data and posture prediction 

with the use of whole-body MOO while leveraging the weighted sum method. 

Within an optimization-based model, three main components are necessary: design 

variables, constraints (internal and external) and objective functions. The design variables are the 

joint profiles of the model including joint angles of the available degrees of freedom (DOF) as 
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seen in Figure 3 (Abdel-Malek & Arora, 2013; Xiang et al., 2008). The shoulder complex that is 

modelled includes a glenohumeral joint with three degrees of freedom and a sterno-clavicular 

joint with two degrees of freedom. The Santos avatar’s spine has 17 spinal units that have three 

DOF each and move in succession. 

 

Figure 3. Shows the available degrees of freedom representing the Santos Pro human body. 

The constraints create boundaries for the optimization problem and include joint torque 

limits and joint range of motion limits. Joint torque limits defined within the Santos Pro software 

were obtained from various studies (Cahalan, Johnson, Liu, & Chao, 1989; Gill, Murray, & 

Saunders, 2002; Kaminski, Perrin, & Gansneder, 1999; Kumar, 1996). Other internal design 

constraints are available within the Santos Pro model including obstacle-avoidance and self-

avoidance which create constraining spheres for which the avatar cannot come in contact with. 

Finally, the model is constrained to follow basic laws of physics.  

Objective functions within the Santos Pro model are labeled performance measures and 

the software uses MOO while leveraging a weighted sum method to allocate the various 
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objective functions available. This allows for differing coefficients to be allocated to multiple 

objective functions which will alter the solution space as they attempt to reach pareto optimality 

(Marler, Yang, et al., 2005). Within the Santos Pro DHM software, nine objective functions are 

available to be altered within their weighted sum optimization. Two objective functions relate to 

vision, and one related to balance and whole-body stability (Zero-Moment Point). For the 

purposes of this thesis, the two vision objectives will not be included, and the one stability 

objective function will be considered as constraints rather than an objective function. Figure 4 

offers a visual representation of how altering objective function weightings can alter a given 

posture within Santos Pro. This leaves six objective functions to be altered within the software 

(Abdel-Malek & Arora, 2013; Marler, Rahmatalla, et al., 2005; SantosHuman Inc, n.d.; Yang et 

al., 2011):  

1. Minimization of Effort – models the inclination to avoid deviation from an initial position: 

 

Equation 1. Shows the objective function to minimize effort where  γi  is a weight used to stress 

the relative stiffness of a joint. Variable  n  is the number of degrees of freedom, and  q  is the 

posture.  (qi − qi
initial)  is the joint angle displacement from the initial posture (Mi, Yang, & 

Abdel-Malek, 2009). 
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2. Minimization of Discomfort – models three factors in muscular discomfort: 

• The tendency to maintain a neutral position (standing with arms at the side) (Equation 2). 

• The tendency to move body segments sequentially (limbs, then spine, and then clavicle). 

 

Equation 2. Shows the objective function optimizing for the tendency to gravitate towards a 

neutral position where  q  represents a posture,  ∆qi
norm  is the normalized change in joint angle 

for a degree of freedom from the neutral position. Variable  γi  is a weight used to stress the 

stiffness of a joint where it is assumed joints are moved sequentially (Marler et al., 2005).  

• Finally, the tendency to avoid joint limits (Equation 3). 

 

Equation 3. Shows the second equation used to minimize discomfort where G x QU and G x QL 

are penalty terms associates with values approaching the joint upper and lower limits 

respectively. 

3. Minimization of the Change in Potential Energy – minimizes the squared change in potential 

energy of each segments center of gravity heights at a neutral position (Equation 4). 

 

Equation 4. Shows the delta potential energy objective function where  q  is the posture,  k  is the 

number of lumped masses. Variable  (Pi – Pi’)  is the change in potential energy from the neutral 

position (Mi et al., 2009). 
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4. Minimization of Total Joint Torque – minimize dynamic effort defined as the square of all 

joint torques (Equation 5). 

𝑓(𝒒) =  ∑ 𝝉𝒊
2

𝐷𝑜𝐹

𝑖=1

 

Equation 5. Shows the objective function for minimizing total joint torque (dynamic effort) 

adapted from Xiang et al., (2012) where variable  τi  represents the torque for a given degree of 

freedom, variable  (q) is the resultant posture. 

5. Minimization of Maximum Joint Torque – minimize the squared torque with respect to the 

maximum torque limit of a joint (Marler, Knake, & Johnson, 2011). This objective function can 

be found in Equation 6. 

𝑓(𝒒) = ∑ (
𝝉𝒊

𝜏𝑚𝑎𝑥
)

2

𝐷𝑜𝐹

𝑖=1

 

Equation 6. Shows the minimization of maximum joint torque objective function equation where  

τi  represents the torque for a given degree of freedom,  (q)  is the posture and  τmax  represents 

the maximum torque limit of a degree of freedom. 

6. Minimization of Joint Displacement – models minimization of joint displacement from the 

neutral position (standing with arms at the side) (Marler, Yang, et al., 2005). This objective 

function can be found in Equation 7. 

 

Equation 7. Shows the joint displacement objective function where  q  represents a posture,  qi  is 

the joint angle for a degree of freedom within a set of joint limits. Variable  qN  represents the 

neutral angular position of a degree of freedom. Variable  n  is the number of degrees of freedom 

and  γi  is a weight introduced to stress the relative stiffness of a joint. 
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Figure 4. “A” Shows a lifting model with the minimization of maximum joint torque MOO 

weighting at 100% and B shows the same lifting model with the minimization of discomfort 

weighting at 100%. 
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3.0 Purpose, Objectives and Hypotheses 

Increased use of DHM can help reduce the time and costs associated with human-systems 

integration evaluation via physical prototyping. However, to increase DHM use, end-users 

require a level of fidelity that is sufficient to not only model human kinematic behaviour, but 

also how that kinematic behaviour changes as a function of the physiological state of the human 

(i.e., fatigue-state) (Davidson et al., 2021; Soldier Systems Technology Roadmap: Capstone 

Report and Action Plan, 2011). DHM’s that rely on multi-objective optimization, as a 

theoretically sound foundation for posture prediction, may provide the ability to model such 

state-based effects. However, understanding how to parameterize such models given a specific 

task, environment or state factor is currently unknown. To address this gap, this thesis explored if 

a multi-objective optimization-based DHM could be parameterized to predict box lifting 

behaviours under differing fatigued states. If so, understanding how objective functions and 

associated weightings change as a function of fatigue will also enhance our broader understand 

regarding overarching movement control under fatigue. 

The purpose of this thesis was to identify the optimal objective function weighting 

configurations that most accurately simulate the origin and destination postures of floor-to-

shoulder lifting relative to experimental data. Secondarily, this thesis aimed to determine if there 

were systematic changes in optimal weighting configurations when predicting lifting postures in 

un-fatigued and fatigue states.  
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Research Question 1: What is the best objective function weighting configuration, considering 

three objective functions (Minimization of Discomfort, Minimization of Maximum Joint Torque, 

and Minimization of Total Joint Torque), in order to simulate box lifting origin and destination 

postures with the least error when compared to experimentally captured postures in both fatigue 

and unfatigued states? 

Research Outcome 1: The best objective function weighting configurations that minimize the 

normalized root mean squared error between simulated and experimentally captured data at the 

origin and destination under both fatigued states. It was predicted that the best objective function 

weighting coefficients would include a combination of non-zero weightings for the three tested 

objective functions.  

Research Question 2: Are the best objective function weighting configurations different 

between fatigue conditions? 

Hypothesis 2: It was hypothesized that the un-fatigued state will show higher weightings for the 

minimization of discomfort objective function. It is also hypothesized that the fatigued state 

would show higher weightings for the minimization of maximum joint torque and total joint 

torque objective functions. 
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6.0 Methodology 

The methodology of this thesis is described in three distinct sections, the experimental 

methods, the simulation methods, and the statistical methods. The experimental methods 

describe the fatigue lifting protocol which participants completed (previously collected and used 

data), the kinematic data conditioning of the lifting protocol, and the fatigue likelihood criteria 

that were used to include/exclude participants in the simulation portion of this thesis. The 

simulation methods explain the process of driving the digital humans with motion capture for 

each participant specific lift posture and fatigue state. The simulation methods also describe the 

simulation design including the model internal and external constraints, the objective functions 

which were systematically altered for comparison with the motion capture data, and how the box 

lifting loads were applied to the simulation. The statistical methods describe the development of 

an error response surface using a normalized root mean square error (RMSE) between the 

participant’s motion capture and their avatar simulations at the different objective function 

weightings. The statistical methods also describe the decision criteria used for choosing the 

multivariate regression models that fit the error response surface for each participant, lift posture 

and fatigue state. Lastly, a two-way repeated measure Friedman’s test is described to address 

research question 2 which aimed to explore systematic changes in objective function weightings 

with fatigue state.  

6.1 Experimental Methods 

6.1.1 Participants 

Data were collected from fifteen participants (8 Females, 7 Males) recruited from a 

university population. Prior to collection, an information letter and informed consent letter was 
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given to participants. For each participant, demographics information was collected (Table 1) 

and a Standard Nordic Questionnaire was completed (Kuorinka et al., 1987). The Standard 

Nordic Questionnaire can be found in Appendix A. This questionnaire ensured that participants 

did not report pain or injury at the time of collection or in 12 months leading to the collection 

(exclusion criteria). 

Table 1. Participant demographics prior to fatigue-likeliness exclusion. 

Demographic Females (N=8) Males (N=7) 

Age (years) 22.9 ± 3.8 25.1 ± 4.1 

Height (cm) 161.3 ± 5.1 178.7 ± 8.8 

Weight (kg) 60.5 ± 9.1 68.5 ± 10.8 

 

The study protocol was reviewed by the University of Waterloo Office of Research 

Ethics Committee and was approved (ORE# 41674).  

6.1.2 Motion Capture Instrumentation 

Participants were instrumented with whole-body passive reflective markers (Figure 5). 

Passive reflective markers (14mm) were placed on anatomical landmarks and ten rigid passive 

reflective marker clusters (four markers for each cluster with the exception of the thigh clusters 

which had five markers) were affixed to the shank, thigh, pelvis, trunk, upper arm, and lower 

arm body segments via Velcro straps. Static calibration trials (Vicon, Centennial, Co, USA) were 

collected with the full reflective marker set after which the rigid clusters remained on the 

participants for the duration of the lifting task collection and the anatomical landmarks were 

removed with the exception of the head, hand, radial styloid, ulnar styloid, trunk markers (C7, 

T7, Xyphoid, and suprasternal notch), and foot markers. The rigid cluster markers were used to 

track the motion of the anatomical landmark markers based on the static calibration. Box motion 

within the box lifting task were also tracked using passive reflective markers placed on the four 
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corners of the box. The passive reflective marker’s motions were captured using a 12-camera 

Vicon motion capture system (Vicon, Centennial, Co, USA) sampled at 100Hz.  

 

Figure 5. Passive reflective motion capture marker and cluster placement. 

6.1.3 Fatigue Lifting Protocol 

 After completion of the demographics survey and the initial collection questionnaires, 

participants were instrumented with anatomical landmark reflective markers and segment 

reflective marker clusters. Once the participants were prepared, the collection space was 

calibrated, and a static participant calibration trial was collected with participants standing in a 

motor bike pose where upper arms are abducted and elbows are flexed to 90 degrees. Participants 
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completed two-handed floor-to-shoulder height box lifts at a self-selected pace for 60 minutes or 

until volitional fatigue. Three shelves were set up in succession (Figure 6) and one box was 

assigned for each of the three shelves, all containing the same load. Each participant’s required 

lifting load corresponded to 30% of their maximum box lifting capacity as determined by the 

EPIC Lifting Capacity test (Matheson et al., 1995). Participants approached the first shelf, lifted 

the box from floor-to-shoulder height, and then progressed to the next shelf. After the third shelf 

lift was complete, the participant walked to a starting line and approached the first shelf again 

where the boxes were reset to the floor-height by a lab assistant. 

 

Figure 6. Shows the floor-to-shoulder height box lift set up where participants performed a 

fatigue lifting protocol. 

 Following every 15 lifts, participants were asked to provide their rating of perceived 

exertion (RPE) based on the Borg 6-20 scale (Borg, 1982). Participants were also asked if they 
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were able to continue the lifting protocol. If the participant was able, they continued the protocol 

for another 15 lifts. If the participant was not able to continue, the protocol was stopped, and this 

was identified as volitional fatigue. 

6.1.4 Data Processing 

Reflective marker data were processed within the Vicon Nexus software (Vicon, 

Centennial, CO, USA). Marker trajectory gaps were filled using the rigid body fill function 

which requires the position of three closely related markers (typically from the same cluster) to 

fill the missing data. When rigid body fill was not an option (less than three associated markers 

available), pattern fill was used to fill the gap based on one associated marker. If the gap was less 

than 200ms and rigid body fill and pattern fill were unavailable (no associated marker available), 

a cubic spline was used to fill the gap in the marker trajectory data. Data quality were visually 

assessed on two separate occasions, first within the Vicon Nexus software, and second using a 

custom Python code to plot the three-dimensional trajectory data of all markers (Py27, Spyder 

v.3.3.6).  

After the marker trajectories were fully checked for high quality data, the motion capture 

data were imported into Visual3D (v.6.01.03, C-Motion, Germantown, MD, USA). Visual3D 

was first used to create a subject specific kinematic model using the anatomical landmark data 

from the static calibration trial. The kinematic model included bilateral foot, shank, thigh, upper 

arm, lower arm, and hand segments, as well as pelvis and trunk segments for each participant. 

ISB recommendations were followed to define all segment coordinate systems (Wu et al., 2002, 

2005). A hip joint center was determined using methods detailed by Bell et al., (1989). The 
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glenohumeral joint center was projected as 50mm inferior to the acromion along the axial axis of 

the trunk (Nussbaum & Zhang, 2000).  

Visual 3D was used to calculate joint center locations and joint angles. Firstly, all 

landmark marker data were filtered with a dual-pass 2nd order low pass Butterworth filter with an 

effective cut-off frequency of 6Hz (Winter, 2009). Using the filtered joint trajectory data, joint 

center locations and angles were calculated. Joint angles for the ankle knee hip and trunk were 

exported and used calculate a lifting index, where a Cohen’s D measure of effect size was used 

to characterize kinematic changes from initial (un-fatigued) and final (fatigued) lifts (see section 

6.1.5 below). To properly condition the data for avatar motion seeding within Santos (see section 

6.2.1 below), projected landmark trajectory data were exported from Visual3D and imported into 

Vicon Nexus where the data were filtered with a zero-lag 2nd order low pass Butterworth filter 

with an effective cut-off frequency of 6Hz (Winter, 2009). The data were not dual pass filtered 

twice. The C3D file format exported from the Visual3D software did not allow filtered landmark 

data to be exported as a C3D file, where the landmark data were critical to drive the avatar 

motion. In addition, the data required importing into Vicon Nexus and exported as a C3D file 

format via the Nexus platform for proper compatibility with Santos Pro. 

6.1.5 Defining Fatigue Likelihood Criteria 

Although 15 participants completed the repetitive lifting protocol, only those who likely 

fatigued were included in the analysis. Three critical metrics were used to define fatigue 

likelihood. The first criteria required participants to complete more than 10 minutes of the lifting 

protocol. It was assumed that participants who completed less than 10 minutes of box lifting at 

30% of their EPIC determined maximum box lift did not have sufficient exposure time to reach a 

fatigued state. Secondly, the RPE score was used as a decision criterion for inclusion into the 
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analysis. If participants did not articulate a RPE value greater than 14 by the end of their lifting 

protocol they were excluded from the simulation portion of the thesis. Jakobsen et al., (2014) 

found associations between high exertion (>4 on the Borg CR10 scale) and high muscle activity 

in the trapezius muscle when lifting. A Borg CR10 score of 4 matches a score of 14 on the Borg 

6-20 scale used within this collection protocol. In addition, Sundelin and Hagberg, (1992) found 

that shoulder fatigue development, as defined by a mean power frequency decrease of greater 

than 8% in participants electromyographic signal (infraspinatus and trapezius), corresponded to 

Borg 6-20 score changes from 11-14. Combining these results, a RPE value greater than 14 was 

deemed an appropriate fatigue cut-off.  

An additional requirement was required for participants’ data to be included within the 

simulation section of this thesis. Since research question two aimed to identify objective function 

weighting changes that might occur due to a change in postures with fatigue state; not only did 

fatigue need to be likely, but also postural differences had to be observed when comparing the 

earlier lifts (un-fatigued) and the final lifts (likely-fatigued) in the protocol for the likely fatigued 

participants. To quantify postural differences that likely occurred due to fatigue the magnitude of 

the postural change from initial lifts to final lifts must be outside of what is considered normal 

trial-to-trial variability (Frost, Beach, McGill, & Callaghan, 2015). Initial and final lifting 

postures were characterized using a postural index (Equation 8).  

𝑃𝑜𝑠𝑡𝑢𝑟𝑎𝑙 𝐼𝑛𝑑𝑒𝑥 =
𝐾𝑛𝑒𝑒 𝐽𝑜𝑖𝑛𝑡 𝐴𝑛𝑔𝑙𝑒

Ankle Joint + Hip Joint + Trunk Angle
 

Equation 8. Shows the modified postural index equation where the inputs are the corresponding 

joints sagittal plane joint angle in degrees and the output is the postural index ratio. 
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A postural index value was calculated from sagittal plane joint angles of the ankle, knee, 

hip and trunk where a value closer to one implies a leg (squat) dominant lifting posture and a 

value closer to zero implies a back (stoop) dominant lifting posture (Burgess-Limerick & 

Abernethy, 1997). This calculation is based on the origin posture of a lift. Visual3D joint angle 

outputs for the frame number than corresponded to the origin of the first 10 lifts and last 10 lifts 

on shelf #1 were extracted and used to calculate a postural index. Ten lifts were chosen as Frost 

et al., (2015) found upper and lower limits of kinematic variability were defined successfully in 

96% of all instances with 10 trails. To determine if there was a difference within subject’s origin 

postural index values, a Cohen’s D effect size calculation (Equation 9) was conducted within 

SPSS (Version 26, IBM Corp., Armonk, NY). Effect sizes were classified based on the standard 

effect size scale seen in Table 2 (Cohen, 1992). To be included within the simulation analysis, 

postural index changes from an un-fatigued state to a likely-fatigue state required a large effect 

size; therefore, any Cohen’s d effect size less than 0.8 was excluded from the study. After 

combining these inclusion requirements, 5 subjects were removed and 10 were retained. 

𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 𝐸𝑓𝑓𝑒𝑐𝑡 𝑆𝑖𝑧𝑒 =
𝑀𝑒𝑎𝑛𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

SDofDifference
 

Equation 9. Shows the Cohen’s d Effect Size equation used to quantify postural index 

differences with fatigue state within subjects. 

 

Table 2. Shows the different Cohen’s d effect size threshold values where anything equal to or 

greater than the defined threshold corresponds to the adjacent effect size definition. 

Effect Size Classification Threshold Value 

Small Effect Size ≥ 0.2 

Medium Effect Size ≥ 0.5 

Large Effect Size ≥ 0.8 
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6.2 Simulation Methods 

6.2.1 Avatar Motion Seeding Configuration 

Prior to running simulations, the box lifting origin and destination postures were defined. 

The origin and destination of the lift was defined using the bottom left box marker position and 

velocity data, respectively. The box lift origin was defined when the bottom left box tracking 

marker was displaced by 5cm in the global Z position (using the standard engineering 

convention) from its resting position on the bottom shelf height. The box lift destination was 

defined as the frame number when the sum of marker velocities in X, Y and Z axes was equal to 

zero. This zero-velocity point was defined after peak marker velocity (peak box velocity during 

the lift). All origin and destination points were checked for accuracy prior to leveraging them to 

drive postures within Santos. When simulating postures, only the initial and final box lift were 

used corresponding to the un-fatigued and likely-fatigued states, respectively.  

To establish baseline joint angles informed by motion capture, the anatomical landmark 

trajectory data from the Vicon Nexus software was imported into Santos Pro. Within Santos Pro, 

anatomical hardpoints (virtual landmark markers) were added to the Santos avatar in an identical 

manner to the anatomical marker positions on the participants within the experimental protocol. 

Marker placement was mimicked as closely as possible; however, due to the inability to palpate 

physical landmarks, some anatomical landmark misplacement errors may have persisted. Using 

the anthropometric data from the participants the avatars height and weight was scaled to match 

the anthropometry of each participant. Motion capture data from the relevant anatomical 

landmarks was paired with their respective virtual anatomical hardpoints to drive the avatars 

motion herein referred to as motion seeding. To ensure each segment was mapped appropriately 

onto the avatar, two landmark markers were mapped per segment as the anatomical landmark 
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mapping works to minimize the error between hardpoints and the input landmark data (mapping 

example seen in Figure 7 below). If all landmarks were included, priority would be given to 

segments that included multiple landmark markers such as the pelvis and trunk. Landmark 

mapping can be seen in Table 3 below. The approach of comparing all relevant joint angles 

within Santos Pro rather than comparing Santos Pro outputs with a more commonly used 

biomechanical human modelling software was chosen because it allowed consistency between 

the number of degrees of freedom that the underlying model contains providing a more direct 

comparison between simulation and motion capture recorded data. Joint angle data for the ankle, 

knee, hip, trunk, shoulder, and elbow were extracted for each of their respective degrees of 

freedom as defined within the model. Resulting data served as the benchmark data against which 

the optimization-based predicted behaviours were compared.  
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Figure 7. Shows the anatomical hardpoints (white markers) placed on the avatar in the same 

positions as the anatomical landmark markers of the experimental participants. 
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Table 3. Shows the which landmark markers were mapped to their associated anatomical 

hardpoints (virtual landmark markers) for each body segment. 

Segment Landmarks Mapped 

Bilateral Foot 1st and 5th Metatarsals 

Bilateral Shank Medial and Lateral Malleoli 

Bilateral Thigh Medial and Lateral Femoral Condyles 

Pelvis Left and Right Anterior Superior Iliac Spines 

Trunk C7 and Center of Manubrium 

Clavicle and Shoulder Blade Left and Right Acromion 

Bilateral Upper Arm Medial and Lateral Epicondyles 

Bilateral Lower Arm Ulnar and Radial Styloid Processes 

Bilateral Hand 2nd and 5th Metacarpals 

 

6.2.2 Internal Avatar Constraints 

Anthropometry within the Santos Pro software is scalable where link lengths are based on 

the ISO-3411 (International Organization for Standardization, 2007) anthropometric data and the 

segment mass proportions are based on the generator of body program data (GEBOD) (Cheng et 

al., 1994). Each avatar was scaled using the built-in anthropometric surveys previously 

mentioned. The scaling was based on participant height and weight as extracted from the 

demographics portion of the experimental data collection. 

To ensure simulation differences were due to the objective functions, internal constraints 

outside of anthropometry remained consistent. Default joint range of motion limit data within 

Santos Pro were used. In addition, joint torque limits were standardized to the default limits 

defined within Santos Pro which were obtained from multiple strength studies (Cahalan et al., 

1989; Gill et al., 2002; Kaminski et al., 1999; Kumar, 1996). The zero moment point (ZMP) 
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internal constraint was also included in the box lifting simulation (Matsunaga et al., 2004; Xiang 

et al., 2007). Zero moment point is a stability constraint assuming that balance is maintained by 

ensuring the ground reaction force at the feet must be within the individual’s base of support. 

The zero moment point concept was developed mainly for bipedal robot locomotion modelling 

but has been seen to be effective in simulations of lifting tasks as well (Xiang et al., 2008). 

6.2.3 External Avatar Constraints 

To create a realistic simulation for comparison with experimentally collected kinematic 

lifting data, external design constraints are also required. Within Santos these are defined using 

end-effectors, marker targets, vision marker targets, and point loads. An end-effector is a point 

that can be linked to any point on the avatar and is designed to interact with a target point 

defined in space. An end-effector example within Santos Pro can be found in Figure 8 below.  

 

Figure 8. Shows end-effectors within the Santos Pro software (teal circular points). 
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The marker target is a point that the end-effector is constrained to contact and can be 

placed anywhere within the virtual space. Marker targets can be individual points that a single 

end-effector must contact, a bounded line where end-effectors are constrained to contact any 

point on the line, or a bounded plane where end-effectors are constrained to contact any point 

within the plane. Bounded lines and planes are adjustable in size and orientation to suit a desired 

goal. An example of a point, bounded line, and bounded plane marker target can be seen in 

Figure 9 below. 

 

Figure 9. Shows three different marker target types (purple circular points) including the 

bounded line (left), the bounded plane (middle), and the bounded point (right) marker targets. 

Point loads (reaction force vectors) can be applied to the avatar in any orientation. For 

example, a hand load during a lift can be represented by a point load acting in line with gravity. 

Point load magnitudes can be adjusted and can be applied bilaterally and unilaterally when 

applied to limbs. Figure 10 below shows a point load applied to the hand of a Santos Pro avatar.  
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Figure 10. Shows a point load vector within the Santos Pro software (green circular point with 

green vector arrow). 

To simulate the box lifting for participants who completed the experimental data 

collection, end-effectors were placed bilaterally on the avatars 2nd and 5th metacarpal, and 1st and 

5th metatarsal. All end-effectors were constrained to corresponding marker targets that were set 

to the same global position as the passive reflective markers from each participant’s 

experimental data at the origin and destination of the box lift. This effectively constrained the 

avatar’s feet and hands to the same location as the participants, while leaving the rest of the 

avatar degrees of freedom open to the influence of the objective functions and their assigned 

weightings.  

Within the simulation software, the applied load can influence the posture prediction; 

therefore, hand forces, by means of point loads, were applied bilaterally to the 3rd metacarpal-
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phalangeal joint with the forces acting in line with the global z-axis (in line with gravity). The 

load was assumed to be equally distributed between left and right hands, and inertial effects of 

the load were not considered.  

The objective functions within Santos Pro have been previously discussed in Section 2.4. 

In this thesis, three of the available objective functions within the Santos Pro software were 

evaluated including the minimization of: Discomfort, Maximum Joint Torque, and Total Joint 

Torque. Joint displacement and effort were not evaluated as the discomfort objective function 

encompasses similar assumptions while adding objectives such avoiding end ranges of motion. 

The minimization of the change in potential energy objective function was not evaluated as it 

was previously found to not be a significant factor in governing human posture control (Marler et 

al., 2009). 

For both origin and destination of the box lift, as well as the un-fatigued and fatigued 

states (first and last lifts, respectively), objective functions were systematically altered to 

generate a unique set of postures for each combination of objective functions for each 

participant. Considering three different objective functions and eleven weighting values (0-100% 

in 10% increments), 1331 simulations of different objective function weightings were evaluated 

for each participant within each lift posture and fatigue state. Ankle, knee, hip, trunk, 

glenohumeral, and elbow joint angle data were retained for comparison with the experimental 

data. 

6.2.4 Statistical Methods 

Research Question 1 was addressed using a normalized root mean squared error (RMSE) 

approach. Firstly, the simulated joint angles for the different degrees of freedom at each joint 
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were subtracted from the experimental seeded joint angles, divided by the total range of motion 

for each specific degree of freedom, and squared to output a normalized joint degree of freedom 

squared error (Equations 10, 11, 12). These differences were averaged across the different 

degrees of freedom within a joint to produce an average squared joint error. For example, the 

ankle joint includes two degrees of freedom; therefore, left and right ankle squared errors were 

divided by four representing the total number of degrees of freedom bilaterally for the ankle. In 

total, six joints were included to present a total joint error similar to methods from Xiang et al., 

(2010). To create the root mean squared error (RMSE), the average of the squared error 

differences for each joint were calculated, squared and expressed as a percentage. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐽𝑜𝑖𝑛𝑡 𝐷𝑜𝐹 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 = (
𝑆𝑒𝑒𝑑𝑒𝑑 𝐷𝑜𝐹 𝜃 − 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐷𝑜𝐹 𝜃

𝐷𝑜𝐹 𝑅𝑜𝑀
)2 

Equation 10. Shows the calculation for normalized difference between the simulated and motion 

seeded joint angles (𝜃). This calculation was completed for all degrees of freedom (DoF) with 

each of their respective ranges of motion (RoM). All normalized differences were squared.  

Average Joint Squared Error (∈)  =
∑ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐽𝑜𝑖𝑛𝑡 𝐷𝑜𝐹 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑛𝐷𝑜𝐹
 

Equation 11. Shows the calculation of the average normalized joint error (∈) across all degrees of 

freedom within a joint.   

RMSE = √
∑(∈𝐴𝑛𝑘𝑙𝑒+ ∈𝐾𝑛𝑒𝑒+ ∈𝐻𝑖𝑝+ ∈𝑇𝑟𝑢𝑛𝑘+ ∈𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟+ ∈𝐸𝑙𝑏𝑜𝑤) 

6
 ∗  100 

Equation 12. Shows the root mean squared error (RMSE) for the combination of six joints of 

interest. Where the mean of the six average joint squared errors are calculated and the square 

root of that value is found and expressed as a percentage. 

Resulting RMSE values were plotted as a function of objective function weightings as 

seen in Appendix C. Since RMSE responses were only calculated at a 10% objective function 
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weighting resolution, the true objective function configuration than results in the lowest error 

may actually be found between the chosen resolution points. A response surface methodology 

approach was taken to bypass the computationally cumbersome method of simulating each 

possible objective function weighting configuration available within the software. The response 

surface methodology takes a set of measured variables, fits the surface with a multivariate 

function, and optimizes that function to find a maximum or minimum. The normalized RMSE 

response surfaces were fit with a function leveraging a multivariate regression (see Equation 11 

below for a sample function) (Cecen, 2021). Data were organized into a structure as seen in 

Table 4 below, where objective function weightings and the associated error response values 

were used to determine functions which will predict the error response surface for each subject’s 

lift posture and fatigue state. Being a multivariate regression R2 values were output for linear, 

quadratic, cubic and quintic powers to determine the best fit. A predicted R2 was calculated using 

a leave one out (LOO) cross-validation approach as a metric of model over-fitting, where an 

over-fit model may not predict new data points with high accuracy. Two criteria were used to 

determine which regression model’s equation would be used to determine the best objective 

function weighting coefficients. Firstly, the highest R2 was chosen assuming it was an 

improvement over the lower power by an R2 of at least 0.05. Secondly, the highest R2 was only 

chosen if the difference between the R2 and the predicted R2 was at most 0.05. Once the best 

regression model was chosen, the associated regression equation was optimized to find the 

objective function coefficients with the least error (Mathworks, R2020, Natrick, MA). The 

objective function configuration with the least error as determined by the optimized regression 

equations were retained for the investigation of Research Question 2 for each participant, lift 

posture and fatigue state. 
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𝑓 = 𝐴 + 𝐵𝑋1 + ⋯ 𝐶𝑋𝑛 + 𝐷𝑋1
2 + ⋯ 𝐸𝑋𝑛

2 + 𝐹𝑋1𝑋2 + ⋯ 𝐺𝑋𝑛1𝑋𝑛2 

Equation 13. Is a sample polynomial regression equation, adapted from Arora (2017), for 

modelling an error surface generated using Equation 10 for each objective function weighting 

where  X1-3  are the three objective functions being used within the simulations. A, B, C, D, E, F, 

G are coefficient values within the model determined by the least squares difference between the 

model predicted error responses and the error responses obtained in Equation 10. Variable  n  

represents a value between one and three corresponding to the different objective functions. 

Table 4. Shows the organization of inputs for the regression model where  X1-3  are the four 

objective functions being used within the simulations and the error response is the calculated 

error using Equation 10. 

 

 

 

 

A Shapiro-Wilk’s test of normality was completed within SPSS to determine if the best 

objective function weighting coefficients were normally distributed within an objective function 

(Version 26, IBM Corp., Armonk, NY). Significance was evaluated with an alpha value of 0.05, 

where a resultant p-value less than 0.05 would mean that the data deviated significantly from the 

normal distribution. With results that deviate from the normal a Friedman’s test is most 

appropriate. Three repeated measures Friedman’s two-way analysis of variance tests were 

conducted within the SPSS software, one for each objective function weighting. The dependent 

variables are the best objective function weighting coefficients as determined by the multivariate 

regression equations and the independent variables are the postures and fatigue states. An alpha 

Response 

Point 
X1 X2 X3 

Error 

Response 

1 0 10 20 𝜖 sum1 

2 10 20 30 𝜖 sum2 

3 20 30 40 𝜖 sum3 

… … … … … 

1331 100 100 100 𝜖 sum1331 
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value of less than 0.05 determined if significant differences were detected between an objective 

function’s weighting coefficients across location or fatigue state conditions.  



43 

 

 

7.0 Results 

7.1 Fatigue Inclusion/Exclusion 

Ten participants demonstrated sufficient evidence of fatigue and their data were retained 

for analysis. A total of five participants demonstrated volitional fatigue, an RPE greater than 14 

and a large effect size difference in pre-post postural index values (Table 5). Five other 

participants completed the full 60-minute protocol; however, on completion time these 

participants reported an RPE greater than 14 and showed postural index changes which 

supported their inclusion into the analysis (Table 5). The five remaining participants were 

excluded.  One participant was excluded as they did not meet the completion time of at least 10 

minutes, three participants were excluded based on their final RPE score being 14 or less and one 

participant was excluded for their effect size being less than 0.8. A total of 10 participants (6 

Female, 4 Male) were retained for the next phase of analysis (Table 6). Mean and standard 

deviation postural index scores for each participants’ first 10 and last 10 lifts are presented in 

Appendix B. 
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Table 5. Shows participant inclusion/exclusion decision criteria where grey boxes indicate which 

stage in the decision criteria, participants data were excluded from the simulation phase. 

Participant 
Completion 

Time (min) 

Total Lifts 

Completed 
Final RPE 

Postural Index 

Pre-Post Effect 

Size 

Inclusion 

Decision 

(Yes/No) 

1 38 333 19 2.38 Yes 

2 35 285 20 2.68 Yes 

3 60 510 16 1.36 Yes 

4 59 615 19 1.26 Yes 

5 60 540 17 4.78 Yes 

6 60 495 17 1.76 Yes 

7 27 255 20 1.4 Yes 

8 60 510 18 1.91 Yes 

9 60 495 18 1.66 Yes 

10 57 345 20 2.23 Yes 

11 60 450 17 0.59 No 

12 7 60 17 N/A No 

13 60 489 9 0.02 No 

14 60 420 14 0.57 No 

15 60 450 13 0.81 No 

 

Table 6. Demographics information for the final set of participants included within the 

simulations section of this thesis. 

Demographic Female (N=6) Male (N=4) 

Age (years) 22.2 ± 4.0 26.8 ± 3.9 

Height (cm) 162.2 ± 4.0 176.3 ± 11.5 

Weight (kg) 61.9 ± 10.2 64.5 ± 11.0 
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7.2 Simulation Root Mean Squared Error 

RMSE error was plotted as a function of objective function weightings for each 

participant, specific to each location and fatigue state condition. Figure 11 demonstrates the 

RMSE error plot for Participant 8, as an example. Remaining plots for each participant in each 

condition are provided in Appendix C. Based on the exemplar plots least error objective function 

weighting configurations (dark blue data points) tended to prioritize the minimization of 

discomfort objective function with minimal contributions of the minimization of maximum and 

total joint torque objective functions. 
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Figure 11. Shows the normalized RMSE error response for participant 8 where each axis 

represents a respective objective function weighting within the multi-objective optimization 

model (Santos). The colour bar corresponds to the normalized RMSE calculated at each 

objective function weighting where dark blue represents the lowest error and dark red represents 

the highest error.  
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7.3 Multivariate Polynomial Regressions 

Each participant and condition specific RMSE surface was fit using a multivariate 

regression equation. Models were fit using linear, quadratic, cubic and quintic powers to 

determine the best model type. The type of model was specific to each RMSE surface where two 

RMSE surfaces were best fit using a linear model, three using a quadratic model, 13 using a 

cubic model, and 22 using quintic a model (Table 7). The mean R-squared model fit across all 

models was 0.50 ± 0.16 (Table 7). Mean predicted R-squared, using the LOO-CV approach 

across all models was 0.47 ± 0.16 (Table 7). Mean residual RMSE across all models was as 

2.51% ± 1.06% normalized RMSE (Table 7). Model fits varied between participant and 

condition. An exemplar scatter plot demonstrates predicted normalized RMSE vs actual 

normalized RMSE for participant (1) (Figure 12). Remaining model fit plots are provided in 

Appendix D.



 

 

 

Table 7. Multivariate model statistics for each participant under each condition.  PR2 is the 

predicted R2 value calculated with a leave one out cross validation.  RMSE is the root mean 

squared error of the residuals between the actual input values and the model predicted values. 

Participant 

Number 

Un-Fatigued Origin  Un-Fatigued Destination 

Power R2 PR2 RMSE  Power R2 PR2 RMSE 

1 4 0.54 0.51 1.57  3 0.53 0.51 2.54 

2 4 0.66 0.64 1.74  3 0.62 0.61 2.37 

3 2 0.24 0.23 1.63  3 0.73 0.72 1.75 

4 2 0.73 0.72 2.50  1 0.27 0.26 5.01 

5 4 0.65 0.62 1.57  4 0.50 0.47 2.81 

6 3 0.52 0.50 3.14  4 0.67 0.65 1.83 

7 1 0.32 0.32 1.99  3 0.24 0.21 3.38 

8 4 0.41 0.37 1.83  3 0.36 0.34 4.01 

9 4 0.60 0.57 1.23  3 0.40 0.38 3.10 

10 4 0.71 0.69 1.58  4 0.68 0.65 2.31 
          

Participant 

Number 

Fatigued Origin  Fatigued Destination 

Power R2 PR2 RMSE  Power R2 PR2 RMSE 

1 4 0.52 0.48 1.69  4 0.45 0.42 3.73 

2 4 0.36 0.32 1.94  3 0.61 0.60 3.66 

3 3 0.35 0.33 2.91  4 0.67 0.64 1.98 

4 4 0.53 0.49 1.48  2 0.26 0.25 5.27 

5 3 0.41 0.38 2.26  3 0.35 0.33 5.18 

6 4 0.45 0.43 3.82  3 0.47 0.45 2.66 

7 4 0.31 0.26 2.26  4 0.62 0.59 1.75 

8 4 0.49 0.46 1.95  4 0.73 0.70 1.60 

9 4 0.28 0.23 2.27  3 0.35 0.33 2.95 

10 4 0.63 0.60 1.20  4 0.73 0.70 1.83 

          

 

 



 

 

 

Figure 12. Shows the predicted (x) vs actual (y) plots displaying model fit for participant 8 under 

each condition. The solid line represents a r-value of 1. 
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7.4 Predicted Lowest Error 

Regression models were optimized to determine the weighting coefficients for each of the 

three objective functions. Since resultant objective function weighting coefficients were not 

normally distributed, the median and interquartile range of the regression predicted lowest 

normalized RMSE for each posture and fatigue state is shown in Figure 13 below. Median 

optimal weighting for the minimization of discomfort objective function ranged between 50 and 

90%, while the median of the minimization of maximum and total joint torque were all 0%. 

Interquartile range for the minimization of maximum joint torque was 31.2% and 6.1% for the 

un-fatigued destination and fatigued origin conditions, respectively. Least error objective 

function weighting coefficients for each participant under each lift posture and fatigue state are 

shown in Table 8. 

 

Figure 13. Shows the median and interquartile ranges of objective function weightings which had 

the lowest regression predicted RMSE between the simulation and experimental data for each 

posture and fatigue state. JT stands for Joint Torque. 
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Table 8. Shows the model predicted objective function weighting coefficients to minimize normalized RMSE 

where Disc is the minimization of discomfort objective function, Max JT in the minimization of maximum joint 

torque objective function, and Total JT is the minimization of total joint torque objective function.  

Participant Un-Fatigued Origin 
  

Fatigued Origin 

Number 
Disc 

Max Total 

 
Disc 

Max Total 

  JT JT JT JT 

1 37 0 0  0 0 0 

2 32 0 0  0 100 100 

3 90 0 0  51 8 0 

4 100 0 0  97 0 0 

5 50 11 0  59 0 0 

6 30 0 0  100 0 0 

7 100 0 0  31 0 0 

8 83 0 0  96 0 0 

9 35 0 0  43 26 0 

10 50 15 0  100 0 0 

                

Participant Un-Fatigued Destination 
 

Fatigued Destination 

Number 
Disc 

Max Total 

 
Disc 

Max Total 

  JT JT JT JT 

1 26 1 0  38 0 0 

2 100 0 0  92 0 0 

3 25 0 0  100 0 0 

4 100 100 0  88 0 0 

5 100 0 0  100 0 0 

6 87 0 0  32 0 0 

7 16 0 0  88 0 0 

8 26 41 0  50 13 0 

9 62 49 0  100 0 0 

10 86 0 0  38 0 0 

                



 

 

7.5 Assessing Systematic Differences with Fatigue State 

A Shapiro-Wilk score test of normality was conducted for each objective function under 

both fatigue states and lift postures. All but two conditions were significantly different from a 

normal distribution (α ≤ 0.05) (Table 9).  Only discomfort in the un-fatigued origin and fatigue 

destination conditions were normally distributed where the rest of the data were skewed.  

Table 9. Shapiro-Wilk significance score for the multivariate regression model predicted best 

objective function weightings. The Shapiro-Wilk score was calculated for each objective 

function, lift posture, and fatigue state. The minimization of discomfort, maximum joint torque, 

and total joint torque are denoted by “Disc”, “Max JT” and “Total JT”, respectively. 

Posture 
Fatigue 

State 
Disc 

Max 

JT 

Total 

JT 

Origin 
Un-Fatigued 0.087 0.000 0.000 

Fatigued 0.020 0.000 0.000 

Destination 
Un-Fatigued 0.001 0.000 0.000 

Fatigued 0.062 0.001 0.000 

Three pairwise Friedman’s tests were conducted, one for each objective function. The 

Friedman’s test summary statistics for each objective function are provided in Table 10. There 

were no statistically significant differences (α ≤ 0.05) found across all conditions and objective 

functions.  

Table 10. Friedman’s test statistic, degrees of freedom, and statistical significance (p-value) for 

each objective function which encompasses all conditions. The minimization of discomfort, 

maximum joint torque, and total joint torque are denoted by “Disc”, “Max JT” and “Total JT”, 

respectively. 

Objective Function Disc 
Max 

JT 

Total 

JT 

Test Statistic 0.582 3.278 3 

Degree of Freedom 3 3 3 

Significance 0.901 0.351 0.392 
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8.0 Discussion 

This study revealed that the minimization of discomfort, not maximum or total joint 

torque, was the objective function responsible for predicting lift origin and destination postures 

with the least error relative to empirically measured postures. Additionally, fatigue state did not 

influence the objective function weighting configuration that resulted in the least error. Having 

one objective function (discomfort) responsible for predicting the least error between simulated 

and motion capture kinematics is in contrast with our research outcome theory that least error 

objective function weightings would include a combination of non-zero weightings from all three 

objective functions. Objective function weighting configurations did not shift from higher 

weightings of discomfort to higher weightings of maximum and total joint torque when changing 

from an un-fatigued to a fatigue state posture; thus, hypothesis two was not supported. 

8.1 Response Surface Approach to Find Best Objective Function Weightings 

Leveraging surface response methodology is a novel approach to estimate the objective 

function weighting configurations that best predict experimental lifting postures. The goal was to 

generate a response surface, fit that surface with a function and optimize the function to identify 

the objective function weighting values of interest. Using a response surface methodology 

approach not only allowed for an estimate of error response values that lie between the weighting 

resolution points that were simulated, but also allowed for the visualization of the error response 

surfaces and quantification of model fit which can provide important insight into how the 

optimization is functioning. This study is the first to apply an RSM approach to identify optimal 

weighting function configurations, where past efforts have relied on alternate approaches. 



54 

 

 

Previous researchers have leveraged other techniques to identify the best objective 

function weightings to minimize error between simulated and experimental data. Xiang et al., 

(2010) and Song et al., (2016) both simulated lifting tasks and compared the posture prediction 

outputs to motion capture to calculate an error response with the goal of determining the 

objective function weightings with the least error. Xiang et al., (2010) evaluated the 

minimization of total joint torque and maximization of stability objective functions and Song et 

al., (2016) evaluated the minimization of maximum joint torque and minimization of motion 

jerk. Both Xiang et al., (2010) and Song et al., (2016) ran simulations at 10% weighting 

resolutions to make find the least error objective function weightings between simulated and 

experimentally captured joint angles. The actual best weightings, however, may lie between 

resolution points and the response surface method used within this thesis circumvents the 

limitation of only having a particular simulation resolution by fitting a multivariate function and 

predicting among all weighting possibilities. Bataineh (2012) used an artificial neural network 

(ANN) approach to estimate objective function weightings that predict the least error when 

compared to motion capture data. Similar to how multivariate functions were developed to fit the 

response surface within this thesis, the ANN approach allows for a function to be fit to the data 

within the hidden layers. This allowed for the best weighting configurations to be chosen without 

being limited to a chosen simulation resolution as seen in Xiang et al., (2010) and Song et al., 

(2016). The ANN approach, however required manual, subjective predictions of the best 

objective function weightings for different tasks to train the model and the subjectivity of the 

model training can influence the outputs of the ANN. With the response surface methodology 

approach no manual estimates of least error objective functions were required to train the model 

because the model fits the data directly using a regression approach.  
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8.2 Least Error Objective Function Weightings 

Using a single objective function predicted postures with the least error when compared 

to motion seeded floor-to-shoulder lift origin and destination postures. This result held true 

regardless of the lift posture or fatigue state. In contrast, previous studies have shown that 

posture and motions are better predicted when combining various objective functions using the 

multi-objective optimization approach. Song and colleagues (2016) considered minimizing total 

joint torque and minimizing smoothness for two-dimensional lift prediction and found that 

combining these objectives produced more realistic results. Xiang et al., (2010) reported similar 

conclusions with the kinematics of lifting tasks, where it was observed that the use multiple 

objective functions simultaneously allow for the better prediction of experimentally captured 

joint angles. However, neither study considered a discomfort objective, where discomfort is 

already an inherently a multi-faceted function. 

Even though the minimization of discomfort is not a true single objective function, it has 

previously predicted postures best when combined with other objective functions within a multi-

objective optimization problem. Previous studies by Marler et al., (2005b; 2009) still suggest, 

however, that prediction accuracy of the discomfort objective function can be improved when 

combined with the minimization of the change in potential energy, a characteristic not 

considered with the discomfort function. This improved performance was evaluated qualitatively 

by visual comparison of one subject’s reach to target posture; therefore, it is not known how 

greatly the addition of the second objective function reduced posture prediction error or if more 

participants would have showed the same result. A separate study did quantitatively investigate 

an error between motion capture and simulated joint angles while considering four different 

objective function weighting configurations for the minimization of discomfort, joint 
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displacement, maximum joint torque, and total joint torque (Bataineh, 2012). Bataineh still found 

that the best postures were predicted when combining discomfort with other objective functions 

including the minimization of joint displacement, maximum joint torque, and total joint torque.  

There are clear discrepancies between the results presented within this thesis and the results 

found within the relevant body of literature. The differences seen with the approaches in this 

thesis may be due to the normalized joint angle errors that were considered, the additional 

degrees of freedom considered within the error calculation used within this thesis, and the 

overlapping objectives between discomfort and the torque based objective functions. 

8.2.1 Joint Error Normalization 

The normalization method used when calculating RMSE responses may explain why 

results from this thesis differed from previous findings. Previous research comparing joint angle 

errors between experimentally captured data and simulation data used absolute values for their 

joint angle comparisons (Bataineh, 2012; Song et al., 2016; Xiang et al., 2010). Within this 

thesis, all joint angles were normalized to the range of motion defined for its respective degree of 

freedom. The normalization process could prove to be an improvement to previous methods as 

joint degrees of freedom with a greater range of motion will not dominate the error in the 

combined error responses. For example, the range of motion for ankle dorsi/plantarflexion is 83 

degrees while range of motion for hip flexion/extension is 143 degrees as defined within the 

Santos model. This means that the hip flexion/extension error has the potential to be much larger 

than the ankle dorsi/plantarflexion error which can lead to the hip contributing more to a total 

error value than the ankle. If the objective is to evaluate the accuracy of whole-body error 

between optimization predicted and motion seeded data normalization should be used to ensure 

equal weighting of errors across all joint degrees of freedom. 
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8.2.2 Including All Joint Degrees of Freedom 

Inclusion of all joint degrees of freedom when calculating an RMSE value may have led 

to the prioritization of a single objective function rather than a combination. In this thesis, 

transverse and frontal planes were of particular importance to consider as the experimental 

fatigued lifting protocol did not constrain participants to symmetrical lifting motions and 

participants were free to approach the box and shelf in their own desired manner. The 

asymmetrical lifting strategies that may have been used by participants implies that frontal and 

transverse degrees of freedom are likely important components of the lifting motion (Kingma et 

al., 1998). Unlike the current thesis which evaluated joint angles in up to three dimensions (as 

available), the majority of previous literature that evaluates objective functions focusses on 

sagittal plane joint angles (Ayoub, 1998; Song et al., 2016; Xiang et al., 2010). When 

considering sagittal plane lifting specifically, minimization of maximum joint torque (Ayoub 

1998; Song et al., 2016), and minimization of total joint torque (Xiang et al., 2010), were 

effective at predicting lifting postures. Minimization of maximum and total joint torque objective 

functions likely performed well for predicting symmetrical lifting tasks and joint angles in the 

sagittal plane, as these torque based objective functions were initially created with the intention 

of explaining sagittal plane muscle activations in locomotion (i.e., also a predominantly sagittal 

plane movement) (Crowninshield & Brand, 1981; Ghista, Toridis, & Srinivasan, 1975; Pedotti, 

Krishnan, & Stark, 1978). When considering all joint degrees of freedom in the current thesis, 

the torque based objective functions were not often weighted above zero when predicting the 

seeded motion. This may imply that transverse and frontal plane degrees of freedom do not 

optimize for torque based objective functions with lifting tasks and perhaps there is an 

opportunity for new objective functions to improve non-sagittal joint angle prediction. This also 
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suggests that the joint angles that were adopted by participants during lifting were effectively 

predicted by the minimization of discomfort.  

8.2.3 Discomfort and Torque Objective Function Overlap 

Aspects of the minimization of discomfort objective function may overlap with some of 

the intended goals for the minimization of maximum and total joint torque objective functions. 

The minimization of discomfort objective function is within itself a kinematics-based MOO 

problem with three factors that it considers: the tendency to maintain a neutral position, the 

tendency to move body segments in a sequence (limbs, the spine, and then clavicle), and the 

tendency to avoid joint limits (Marler et al., 2005). The tendency to avoid joint limits objective 

may encompass the overarching goals of the minimization of maximum and total joint torque 

objective functions. Depending on the task being modelled, avoiding joint end ranges of motion 

may predict postures that reduce the moment arms to joints thereby decreasing the resultant 

torque. If minimizing the tendency to use joint end ranges of motion indirectly minimizes the 

torques this may explain why previous research has found minimization of total and maximum 

joint torques to be good predicters of lifting posture and this thesis did not (Ayoub, 1998; Song et 

al., 2016; Xiang et al., 2012, 2010). The reason why the torque based objective functions may 

not have outweighed the discomfort objective function in the opposing way even though they 

have overlapping objectives, may be due to the added predictive ability that the two additional 

objectives in the minimization of discomfort considers. In addition, torques for frontal and 

transverse plane degrees of freedom may not be as high in sagittal plane dominant movements 

such as a symmetrical box lifting. Since the torques are likely lower, the overarching control 

mechanism for these degrees of freedom may drift away from a torque consideration whereas the 

control laws may still try to avoid bringing joints to their end range. Having aspects of torque 
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based objective functions within discomfort may explain why it tended to predict the lowest 

normalized RMSE between motion seeded and optimization predicted postures. 

8.3 Objective Function Weighting Changes with Fatigue 

It was hypothesized that objective function weightings would change as participants 

altered their lifting strategies over the course of the protocol due to fatigue. This objective 

function change was not observed which may suggest that although participants altered their 

movement strategy throughout the lifting protocol, they maintained the objective of minimizing 

discomfort. This does not necessarily suggest, however, that maximum and total joint torque do 

not play a role in the way human’s control movement. Previous research has found these torque 

based objectives effective at representing lifting tasks (Ayoub, 1998; Song et al., 2016; Xiang et 

al., 2012, 2010), and as previously discussed the formulation of the discomfort objective function 

may include aspects of torque based considerations. In addition, discomfort may outperform 

torque based objective functions when prediction joint angles in the frontal and transverse 

planes, as the torque based objective functions were originally developed and validating for use 

in sagittal plane muscles and joint torque optimization (Crowninshield & Brand, 1981; Ghista, 

Toridis, & Srinivasan, 1975; Pedotti, Krishnan, & Stark, 1978). Thus, sagittal plane joint angles 

may be controlled by a different set of objectives than the frontal and transverse planes. Future 

work should investigate this theory by evaluating error prediction performance for specific 

planes of motion and potentially specific joints individually. 

Origin lifting postures of the included participants changed from an un-fatigued to a 

fatigued state; however, the best objective function weightings to model these postures did not. 

These findings may suggest that factors other than objective function weightings, such as 

external constraints, may have compensated for these changes. More specifically, external 
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constraints were determined based on hand and foot marker locations of the participant’s origin 

and destination postures. During the collection, participants had the freedom to move their hands 

and feet as desired to accomplish the lifting task; thus, the external constraints in the two fatigue 

conditions were likely different. If the external constraints between fatigue states were different 

for a given participant, the same objective function weighting may predict the different lifting 

strategies demonstrated by the postural index differences. If participants hand and foot locations 

were constrained to the same locations within the lifting protocol, objective function weighting 

changes may have been the primary driver explaining the different lifting postures with fatigue.  

8.4 Surface Response Model Fitting 

The multivariate polynomial regressions that were used to fit a curved to the normalized 

RMSE data had an average R-squared values of 0.50. This means 50% of the normalized RMSE 

response data were explained by the model variables (different powers and interaction variables 

of the three tested objective functions. For the most accurate predictions a higher R-squared 

value is always preferred. It may be the case that competing objectives for different joints or 

joint degrees of freedom may have led to a non-uniform response surface that was difficult to 

model. For example, at the shoulder height destination of the lift, the elbow and shoulder joint 

may have been minimizing the maximum joint torque so when higher weightings of that 

objective were applied the total RMSE decreased for those values while the ankle, knee, hip and 

trunk may have been minimizing objectives that align more with discomfort which increased the 

RMSE response data. These types of competing interests between joints and/or joint degrees of 

freedom might support the consideration of joint or joint degree of freedom level optimization 

for better predictive capabilities over a whole-body optimization approach. Future research 

should investigate objective function weighting performance for different joints and degrees of 
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freedom for a given task to understand the effects of joint specific optimization for posture 

prediction. 

The normalized RMSE response surface may have been difficult to model using the 

multivariate regression approach due to special cases where the underlying optimization was 

forced to find solutions which lies on a constraint plane. Figure 14 below, shows an example of 

an optimization design space where the possible solutions lies on the beige/textured plane. 

Constraints (linear and non-linear) are expressed by g and the different minima for the three 

objective functions (F1, F2, and F3) are represented by the black dots. When examining the F2 

minimum and the g1 constraint, the true minimum for F2 is outside of the feasible solution space 

and the resultant possible solution near the F2 minimum all lie on the line of g1. We believe this 

type of phenomenon was seen throughout the simulations that were conducted within this thesis.  

Figure 15 shows a response surface for Participant 4 in the un-fatigued, lift origin condition. At 

discomfort weightings at and above 80, the normalized RMSE response is consistently the same 

value. This likely suggests that the true minimum solution for these weighting configurations lie 

outside of the feasible solution space and a constraint boundary is limiting the posture prediction 

to that one posture that produces the same RMSE value. This phenomenon was seen on a larger 

scale in this example; however, it is possible that smaller cases of solutions falling on constraint 

planes occurred elsewhere within the analysis. This phenomenon creates inconsistencies within 

the response data which may contribute to the difficulties seen in predicting the error response 

surfaces. 
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Figure 14. Example design space for an optimization problem obtained from Marler (2005). 

Where F1-3 minimum are the different objective function minimum solutions, g1-4 are the linear 

and non-linear constraint in the optimization problem, and x1-2 are the design variables which 

are being solved for. The beige/textured surface represents the pareto optimal set of potential 

solutions between the three objective functions. 

 

Figure 15. Shows a sample response surface where a constraint plane may have limited the 

possible solutions to a single value at or above an 80% weighting for discomfort. 
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8.5 Impact to Human-In-The-Loop Simulations 

The present work is the first of its kind to leverage a response surface methodology to 

determine the best objective function weightings for modelling human postures. This method can 

be leveraged when determining objective function weightings for unique tasks while under 

different physiological states (i.e. fatigue) and environmental conditions (i.e. thermal). 

Determining the best objective function weightings for unique tasks, states, and environments 

can lead to a suite of more informed modelling guidelines for optimization-based human-in-the-

loop simulation software. Following this, human-in-the-loop software end-users will have the 

necessary resources to inform objective function weightings which allow for the most accurate 

predictive kinematic modelling of a variety of relevant tasks, states, and environments of interest. 

With better predictive models, more weight can be given to the evaluation of human-systems 

interactions within the virtual environment, leading to decreased reliance on physical prototyping 

and improved cost effectiveness. 

8.6 Limitations 

A sample size total of 15 participants were recruited for the experimental protocol within 

this study and 10 total participants met the fatigue criteria to be included within the simulations 

and therefore statistical analysis. This may have limited our ability to see potential differences in 

the least error weighting coefficients for the discomfort objective function from an un-fatigued to 

a fatigued state. This small sample may have also limited the variability seen within the 

maximum and total joint torque objective function weightings. In addition to the sample being 

small, the participants were all recruited within the university and therefore were all university 

aged. Using various ages may have shown differing results in least error objective function 

weightings as Song et al., (2016) suggested. 
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Though experimental participants were excluded if they did not meet the specific fatigue 

criteria outlined in section 6.1.5, the dependent fatigue factors that were assessed are indirect 

measures of fatigue. Subject RPE values greater than 14 have been associated with muscle 

fatigue (Jakobsen et al., 2014; Sundelin & Hagberg, 1992); however, since it is a perception 

based measure, other factors such as boredom or changes in attention can influence the perceived 

exertion of a participant other than fatigue. Maximum voluntary efforts of critical muscle groups 

required in lifting as well as electromyographic signal measurements of those muscle groups 

would have been more direct ways to quantify and assess participant fatigue states. Additionally, 

a more directed subjective measure of general fatigue, such as the fatigue visual analog scale, 

would better compliment maximum voluntary effort and/or electromyography measures. 

This study leveraged the postural index as a way to generally quantify lifting strategy 

change at the origin lift posture (Burgess-Limerick & Abernethy, 1997). Lifting induced fatigue 

has been shown to produce kinematic lifting strategy changes from an un-fatigued state to a 

fatigued state (Bonato et al., 2003; Fischer et al., 2015; Fogleman & Smith, 1995; Sparto et al., 

1997; Van Dieën et al., 1998). The postural index was used in this study as an effective way to 

simplify the joint angles into a single measure to be compared across fatigue conditions. All 

participants that were included within the optimization-based DHM simulations demonstrated a 

large effect size between the first ten and last ten lift origin postures. Although postural changes 

were confirmed via postural index changes, postural changes may have been artifacts of factors 

other than fatigue such as a learning effect over the course of the lifting protocol.  

The anthropometry of the digital human model avatar was scaled to the height of the 

participants based on the ISO-3411 anthropometric survey. Unlike the Visual3D model 

development, the subject link lengths were only scaled based on participant height rather than 
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segment lengths as determined by anatomical landmark markers. This difference in segment 

length estimation may have led to postural differences between the experimentally collected data 

and the avatar seeded motion data. It is not known the specific segment length errors that were 

present between the participants and their unique avatars; however, segment length measures or 

estimates may be useful in the future to scale the avatar segments of interest for improved 

validity in seeding avatar motion with motion capture. 
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9.0 Conclusions 

A novel surface response methodology approach was leveraged to quantify normalized 

RMSE between motion-capture seeded postures and multi-objective optimization-based 

predicted postures with varying objective function weighting coefficients. This approach yielded 

an individual specific best objective function weighting for the origin and destination postures of 

a lift under un-fatigued and fatigued states. When identifying the optimal objective function 

weightings, it was found that the minimization of discomfort alone tended to predict the best 

postures that match the motion capture data regardless of lift posture or fatigue state and 

therefore there were no observed systematic changes in objective function weightings with 

fatigue state. Although torque based objective functions have been reported as effective at 

predicting sagittal plane joint angles, discomfort may be able to better capture transverse and 

frontal plane joint angles. The discomfort objective function tendency to avoid joint end ranges 

of motion may indirectly consider minimizing joint torques which also explains its high 

prevalence in predicting low errors between motion seeded and optimization predicted postures.  

The results from this thesis build on existing literature exploring the optimal control 

theory and its utility within digital human models. The use of multi-objective optimization-based 

digital human models is growing as they do not directly rely on pre-recorded motion data to 

simulate novel tasks. Further research is still needed to build on the existing suite of objective 

functions to be considered within the models as well as to validate modelling state factors that 

influence movement such as fatigue. Ultimately, more accurate digital human models which can 

consider state and environment factor’s effects on human kinematics will greatly improve virtual 

prototype assessments of products and workspaces with humans-in-the-loop.  
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11.0 Appendices 

11.1 Appendix A 



 

 

11.2 Appendix B 

 

Figure 16.  Origin lift postural index scores and standard deviations for each participant under each fatigue condition. Participants 1-

10 were included within the simulation study and participants 11-15 did not meet the criteria for inclusion. Data from Participant 15 

was excluded prior to analysis due to their protocol completion time being less than 10 minutes.



 

 

 

11.3 Appendix C 

 

Figure 17. Normalized root mean squared error surfaces for Participant 1. 
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Figure 18. Normalized root mean squared error surfaces for Participant 2. 
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Figure 19. Normalized root mean squared error surfaces for Participant 3. 
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Figure 20. Normalized root mean squared error surfaces for Participant 4. 
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Figure 21. Normalized root mean squared error surfaces for Participant 5. 
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Figure 22. Normalized root mean squared error surfaces for Participant 6. 
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Figure 23. Normalized root mean squared error surfaces for Participant 7. 
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Figure 24. Normalized root mean squared error surfaces for Participant 9. 
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Figure 25. Normalized root mean squared error surfaces for Participant 10. 

 



 

 

11.4 Appendix D 

 

Figure 26. Model fit graph of the predicted (x) vs actual (y) plots plots Participant 1 under each 

condition.  
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Figure 27. Model fit graph of the predicted (x) vs actual (y) plots Participant 2 under each 

condition. 
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Figure 28. Model fit graph of the predicted (x) vs actual (y) plots Participant 3 under each 

condition. 
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Figure 29. Model fit graph of the predicted (x) vs actual (y) plots Participant 4 under each 

condition. 
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Figure 30. Model fit graph of the predicted (x) vs actual (y) plots Participant 5 under each 

condition. 
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Figure 31. Model fit graph of the predicted (x) vs actual (y) plots Participant 6 under each 

condition. 
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Figure 32. Model fit graph of the predicted (x) vs actual (y) plots Participant 7 under each 

condition. 
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Figure 33. Model fit graph of the predicted (x) vs actual (y) plots Participant 9 under each 

condition. 
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Figure 34. Model fit graph of the predicted (x) vs actual (y) plots Participant 10 under each 

condition. 

 


