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Abstract 
 

Mode share in major North American cities is currently dominated by private automobile use.  

Planners have theorized that transitioning commuter rail systems to regional rail networks is a viable 

method to increase ridership and stabilize mode share.  This process is currently underway in Ontario, 

Canada, as the amount and frequency of service is being increased throughout the GO Transit rail network 

via the GO Expansion Program.   

However, previous studies have shown that transit demand does not solely respond to service 

quantity expansions.  Variables related to the built environment, regional economy, network characteristics, 

and socioeconomic status of the customer base can influence transit demand to varying degrees.  Further, 

the literature states that the travel behavior of commuter rail users is unique, as access mode, distance, 

socioeconomic status, and the utility derived from varying trip types can differ compared to local transit 

users.  These findings suggest that supplementary policies might be needed to reduce automobile reliance 

and stimulate demand for regional transit.   

Many transit researchers have conducted demand elasticity studies to identify what factors are 

significantly associated with transit ridership.  However, no researcher has conducted this type of analysis 

specific to the GO Transit rail system.  The purpose of this thesis is to fill this gap.  Through literature 

review, variables significantly associated with transit demand were first identified.  Station-level datasets 

were then compiled at monthly intervals from January 2016 to December 2019.  During this process, station 

catchment areas estimated using PRESTO smartcard data were used to extract data related to land use, 

socioeconomic, and demographic indicators.  Additional factors related to station access, service quantity, 

and availability of substitute transport modes were also compiled.  A random effect linear panel data 

estimator was then applied to obtain demand elasticity estimates. 

Of the variables included in the analysis, this study finds that several variables such as service 

quantity, population density, fuel price, and unemployment rate are significantly associated with transit 

demand, regardless of trip type examined.  Ridership was also responsive to employment density and 

seasonal variation, although differing signs were shown depending on trip type examined.  Surprisingly, 

demand was relatively unresponsive to enhanced station access options, including park and ride capacity 

and the quality of feeder bus connections.  The results suggest that policies in addition to the service quantity 

improvements as outlined in the GO Expansion Program should be considered to further increase system 

demand.  Those aimed towards heightened densities and land use diversities around rail stations, increasing 

the cost of private automobile operation, and the implementation of competitive fare price strategies are 

outlined. 
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Notably, desktop research revealed that policies related to these factors have been previously 

explored by provincial stakeholders.  However, only service improvements as proposed within the GO 

Expansion Program have been committed too.  Knowing that demand is responsive to these factors could 

increase the level of political willingness needed to implement these policies to further increase ridership 

and subsequently balance mode share.  These findings could also be used by Metrolinx to justify the 

allocation of resources needed to update or implement policies within the study area.  Overall, this study 

highlights that many factors, including those related to the built environment, network characteristics, and 

the price / availability of substitute transport options are significantly associated with commuter rail 

demand.  Therefore, integrated planning policies should be considered by transit agencies undergoing 

similar network transitions to ensure that ridership is increased to the greatest extent possible.   
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1. Introduction 
1.1. Setting the Stage  

Transportation in North America, specifically infrastructure and facilities that service large urban 

centers, has been a topic of debate over the last several decades.  Historically, investment in this sector has 

focused on accommodating automobile use via the construction of roads, expressways, bridges, and other 

network elements (Hanson, 1992; Moore et al., 2007; Newman & Kenworthy, 1996).  As a result, over 90% 

of travel in some major North American metropolitan regions is completed via private automobile, a mode 

that has been investigated thoroughly regarding its impact on sustainable outcomes.  As urban communities 

continue to expand, planners are struggling to accommodate increased levels of congestion, greenhouse gas 

emissions, and other negative externalities being realized due to an uneven mode share.  Therefore, 

questions have arisen as to how municipalities and regions can shift automobile users to modes that are 

more sustainable, efficient, and effective.   

International examples have suggested that the provision of heavy rail infrastructure is an effective 

solution in facilitating inter-regional transport demand.  These systems may operate as both intracity or  

regional rail services, with the latter facilitating the movement of people from city suburbs into the centre 

of neighboring metropolitan areas, while operating with 5-20 minute headways on all lines throughout the 

day (Vuchic, 2007).  They are also shown to have numerous advantages when compared to private 

automobile in terms of speed, capacity, safety, environmental friendliness, energy savings and urban space 

consumption (Caroline & Yves, 2012).  Additionally, rail systems can offer fast and reliable service during 

peak commuting periods, an aspect that is often not accomplished during automobile travel due to high 

levels of expressway congestion (Allen & Levinson, 2014; Vuchic, 2007).  Various studies have suggested 

that when these conditions are accomplished, transit demand is stimulated, thus resulting in a mode share 

that is more evenly distributed.  For example, a study of 48 European cities revealed that those with 

extensive rail coverage were positively correlated with frequent use of the area’s transit system when 

compared to those with minimal offerings (Ingvardson & Nielsen, 2018).  A more direct analysis of rail 

ridership in Karlshrue, Germany, discovered that regional rail ridership increased by 400% once 

investments in service quantity and quality were implemented (Chisholm, 2002).  Therefore, international 

examples suggest that the provision of such infrastructure, combined with adequate service offerings, can 

encourage travelers to primarily use public transit when engaging in inter-regional travel.   

 

1.2. The Current State of Rail Transit in North America  
Rail service is provided in a variety of large metropolitan cities throughout North America, 

including Chicago, Boston, New York, Toronto, and Vancouver.  However, these systems operate as 

commuter rail systems, which are characterized by irregular headways and infrequent service offerings, 
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especially during weekends and off-peak periods (Vuchic, 2007).  Furthermore, service is typically only 

provided in a single direction during peak periods (ex. either in to or out of the metropolitan area), meaning 

that transit service is unavailable to commuters who work in areas outside of the downtown core.  As a 

result, large proportions of residents in these areas continue to choose private automobile as their main 

mode of transport when engaging in regional travel, as the convenience and flexibility associated with 

commuter rail use is fairly limited.  For example, when the City of Toronto is examined, private automobile 

continuously accounts for approximately 64.5% of trips completed within the area.  Further, public transit 

has not accounted for a mode share greater than 12% since the beginning of the 21
st
 century (Ashby, 2018; 

University of Toronto, 2003, 2009, 2014).  These figures are even greater when inter-regional public transit 

figures are examined, as only 1% of trips are completed using GO Transit, the region’s commuter rail 

network.  Among other things, large amounts of congestion and inflated travel times along key arterial 

routes are continuously realized in North American metropolitan areas, as private automobile use is relied 

on for inter-city accessibility.   

 

1.3. The Role of Regional Rail 
One solution that can be implemented to alleviate these negative externalities involves upgrading commuter 

rail systems to regional rail networks.  This strategy is logical as a variety of low-cost, low technology 

measures can be implemented to upgrade service levels and reduce unit costs of operation (Allen, 1998; 

Schumann & Phraner, 1994).  Embracing this philosophy, GO Transit planners and provincial officials in 

Ontario, Canada, introduced a plan aimed at improving rail ridership via an increase in flexible and 

convenient service offerings across all network segments located throughout southwestern Ontario 

(Government of Ontario, 2018a).  Now titled the GO Expansion Program, the bulk of the program involves 

transforming the current network from one that is primarily focused on satisfying commuter travel behavior 

to one that provides all-day, two-way service in to and out of the City of Toronto, with 15-minute headways 

promised during peak travel times.  The plan theorizes that 121.3 million additional annual riders will be 

generated by the time the network transition is completed, representing a 211% increase in ridership 

compared to ridership figures observed in 2017 (Government of Ontario, 2018b).  Furthermore, a cost-

benefit analysis of the program estimated that the network transition should generate $42.2 billion dollars 

in economic benefits, as negative externalities currently realized such as congestion, large travel times for 

transit users, and environmental emissions will be reduced (Government of Ontario, 2018b).   

 

1.4. Understanding the Determinants of Transit Demand 
However, a network transition such as the one proposed in the GO Expansion Program is not a 

simple task, as the expansion of service coverage and trip quantity does not guarantee that mode shift will 
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occur.  Economic theory states that when faced with a variety of purchase decisions, consumers seek to 

maximize their utility by selecting the good or service that results in the highest level of overall satisfaction 

(Mankiw, 2013).  Since transport demand typically stems from a person’s need to temporarily relocate to 

another area to engage in various activities such as work, social activities, or shopping, those engaging in 

travel should instead be considered as disutility minimizers, as the mode associated with the lowest total 

cost incurred by the user is typically selected (Athira et al., 2016; Ben-Akiva & Morikawa, 2002; Casello 

& Hellinga, 2008; O’Fallon et al., 2004; Yang et al., 2018).   

Internal variables including the price, quantity, and quality of transit service provided are various 

aspects that can influence the amount of utility (and therefore disutility) associated with transit use 

(Balcombe et al., 2004; Holmgren, 2007; Schimek, 2015; Taylor et al., 2009).  External variables such as 

traveler characteristics, physical and economic characteristics of surrounding urban areas, and the 

availability of alternative transport modes can further influence mode choice decisions.  Research has also 

illustrated that in the North American context, station access for regional transit systems is primarily 

facilitated via private automobile, meaning that the capacity of park and ride facilities could significantly 

influence transit demand (Government of Ontario, 2016; Levinson et al., 2012).  Therefore, demand may 

be more sensitive to variance among station access indicators, rather than fare prices and service quantities, 

if station access is restricted at some stations compared to others.  Fortunately, analytical models can be 

used to understand the significance and magnitude of influence that various internal and external variables 

have on transit demand.  Undertaking such an analysis allows transportation planners to better understand 

ridership figures, predict future demand, and implement more informed policy decisions to further 

encourage mode shift.   

 

1.5. Research Purpose and Questions 
The purpose of this research is to further understand what variables significantly influence commuter 

rail ridership.  Using the GO Transit rail network as a case study, the following research questions were 

formulated: 

 

• What internal and/or external variables are most determinantal to GO Transit rail ridership? 

• Do findings differ depending on trip type examined? 

• How do these results compare to relationships identified in previous demand elasticity studies? 

• Do station accessibility indicators specific to the North American context, such as park and ride 

capacity and the quality of feeder bus connections, influence demand? 

• In addition to the GO Expansion Program, could additional plans or policies be explored to further 

encourage mode shift and transit demand in the study area? 
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• What lessons can be transferred to other regional transit agencies looking to grow rail ridership?  

 

1.6. Thesis Structure 
To answer these questions, Chapter 2 begins with an overview of the case study area.  Trends and 

patterns relating to demographics, mode choice, and transportation behavior study area are provided, while 

the history and current structure of the GO Transit rail network is summarized.  Plans and policies pertinent 

to land use and transportation planning in southern Ontario are also highlighted.   

Chapter 3 summarizes literature relevant to transit demand studies.  This includes an overview of 

econometric and regression modelling techniques and its application to transit analysis.  Previous findings 

from ridership elasticity studies are also outlined with the purpose of highlighting various internal and 

external factors that have displayed significant relationships with transit demand.  The chapter concludes 

with a summary of data collection methods, specifically those used to estimate station catchment areas, 

extract external variable datasets, and  measure station accessibility indicators.   

Chapter 4 outlines the methodology employed to answer the research questions.  Methods used to 

delineate station catchment areas, measure station accessibility indicators, and analyze the impact that 

various external and internal variable datasets had on GO Transit rail ridership are therefore justified in this 

chapter. 

Chapter 5 explores data analysis methods.  First, the chapter outlines how linear extrapolation, the 

use of Geographic Information Systems (GIS), and various statistical software programs were used to 

compile the dependent variable and independent variable datasets that were analyzed.  The steps used to 

select a final subset of independent variables are also outlined.  Finally, the modelling framework and 

process is presented.   

Chapter 6 presents the findings generated from the modelling outputs and discusses the relationship 

and significance of each variable in relation to transit demand.  A discussion regarding model performance 

and explanatory capacity is also highlighted in this chapter.  

Chapter 7 further discusses the model outputs and compares and contrasts findings relative to those 

identified in previous studies.  Policy implications in relation to the GO Expansion Program are further 

discussed.  This chapter concludes with a discussion regarding the limitations of the study and suggestions 

for future research.   
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2. Overview of Study Area 
2.1. The Greater Golden Horseshoe 
2.1.1. Spatial Context  

The Greater Golden Horseshoe (GGH) is a 

geographical region located in southern part of Ontario, 

Canada.  Conceptualized by the provincial government in 2006, 

the region begins on the western shore of the Niagara River and 

wraps around the western end of Lake Ontario, thereby 

encompassing the Greater Toronto and Hamilton Area 

(GTHA).  As shown in Figure 1, the GGH further extends along 

the northwestern shore of Lake Ontario before terminating at 

Oshawa.  Further inland, municipalities including Brantford, 

the Regional Municipality of Waterloo, Guelph, the City of 

Barrie, Peterborough, and Kawartha Lakes are contained within 

the region.  More specifically, the GGH consists of 110 separate 

municipal jurisdictions in total, 21 of which are single or upper-

tier municipalities, and 90 of which are lower-tier 

municipalities (Allen, R. Campsie, 2013).  Various pieces of 

provincial legislation, including the Greenbelt Act, the Niagara 

Escapement Plan, and the Oak Ridges Moraine Conservation 

Act restrict development in areas that have been identified as 

environmentally sensitive throughout the region. 

Figure 1 - Spatial Extent of the Greater Golden Horseshoe and Corresponding Single/Upper-Tier 
Municipalities 
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 Commonly known as the Greenbelt, this area encompasses 22% of the region’s 32,000 km2 land mass 

(Government of Ontario, 2017a). 

  

2.1.2. Demographic and Transportation Trends  
The GGH is one of the most populous areas in Canada.  Currently, the region is home to 9 million 

residents, and is forecasted to grow to a population of 13.5 million residents by 2041 (Government of 

Ontario, 2020a).  This accounts for roughly 67% of Ontario’s population, and more than a quarter of the 

national population according to the 2016 Census of Population (Statistics Canada, 2017).  When individual 

municipalities within the region are examined, the City of Toronto contains the largest number of residents 

with a population of 2,731,571 (Statistics Canada, 2017).  As a result, the City of Toronto is not only the 

region’s most populous municipality, but the largest in Canada.  At an international level, the City of 

Toronto ranks as the 4th largest city in North America.  The GGH is also significant in terms of economic 

output.  Currently, businesses in the region generate 25% of Canada’s Gross Domestic Product, while 

highlighted sectors include finance, insurance, real estate, industrial, and technology-based firms 

(Government of Ontario, 2020a). 

Currently, the majority of residents within the GGH are dependent on private automobile as their 

main mode of transport.  According to the University of Toronto’s Transportation Tomorrow Survey, only 

43% of trips completed in the region are completed using sustainable modes, resulting in an average of 2.6 

automobile trips generated per household on a daily basis (Ashby, 2018).  The survey also highlights that 

while the population of the region has grown by 40% since the beginning of the 21st century, mode share 

has remained largely stagnant (Ashby, 2018).  Automobile use continuously accounts for approximately 

64.5% of trips completed in the region, while public transit has not accounted for a mode share greater than 

12% in any given year.  As shown in Table 1, these figures are even greater when inter-regional public 

transit figures are examined, as approximately 99% of trips are completed using modes other than regional 

rail (Ashby, 2018; University of Toronto, 2003, 2009, 2014). 

As a result, the GGH is plagued by large and highly variable travel times.  Real-time traffic data 

compiled by TomTom, a worldwide Global Positioning System company, found that a commuter in the 

City of Toronto is expected to spend 33% more time in traffic during peak periods compared to those 

experienced in off-peak periods (TomTom International BV, 2020b).  Based on this finding, they theorize 

that a typical commuter logs 142 hours of lost time per year as a result of congestion (TomTom International 

BV, 2020a).  Compared to other large cities that were also included in the study, Table 2 illustrates that the 

City of Toronto ranks as the 6th most congested city in North America. 
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Table 1 - Historical Mode Share Conditions in the Greater Golden Horseshoe 

 

 

Table 2 - Congestion in the City of Toronto Relative to Other North American Cities 
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2.1.3. History of Regional Public Transit in the GGH 
Regional public transit has been provided to municipalities throughout the GGH long before the 

region was conceptualized.  GO Transit, abbreviated for Government of Ontario Transit, was founded by 

the provincial government in 1967 to provide regional public transit to commuters working in the City of 

Toronto (Government of Ontario, 2017b).  Commuter rail service was first provided along Lake Ontario’s 

shoreline between Pickering and Hamilton, on what is now known as the Lakeshore West and Lakeshore 

East corridors.  Initially launched as a pilot project, passenger volumes grew rapidly and quickly outpaced 

projections.  As such, the size and extent of the network was expanded throughout the 20th century to satisfy 

demand.  

At the end of the 20th century, the majority of service provided by GO Transit was facilitated via service 

agreements with municipalities and freight companies, as GO Transit did not own any rights of way on 

which they operated (Lysyk, 2016).  Additionally, little policy was in place to give the organization any 

legislative mandate to expand service throughout the region, resulting in stagnant service expansion.  To 

address this, Premier Dalton McGuinty and the Liberal Government of Ontario drafted the Greater Toronto 

Transportation Authority Act in the spring of 2006, which involved the establishment of a corporation 

responsible for regional transportation planning throughout the GGH (Greater Toronto Transportation 

Authority Act, 2006).  After the bill received royal assent in the provincial government on June 22, 2006, 

the province became the sole stakeholder responsible for regional transportation planning in the GGH.  The 

official objectives of the corporation were: 

 

1. To provide leadership in the co-ordination, planning, financing, and development of an integrated 

and multimodal regional transport network, 

2. To act as a central procurement agency for purchase of public transportation assets on behalf of 

Ontario municipalities, 

3. To be responsible for the operation of the GO Transit system and the provision of other transit 

services throughout the operating area (Greater Toronto Transportation Authority Act, 2006).   

 

The establishment of the Greater Toronto Transportation Authority officially allowed a single 

organization to plan for and organize an integrated regional transportation system.  Therefore, the 

introduction of the Greater Toronto Transportation Authority was seen as a step in the right direction for 

regional transportation planning in the area, as a consistent regional transportation plan could be drafted 

and acted on with provincial authority.  During this time, large advancements in regional transportation 

planning across the region were realized.  This was shown as “The Big Move”, the region’s first regional 

transportation plan, was released in 2009 (Government of Ontario, 2008).  This established a coordinated 
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direction and vision about how regional transit in the area should evolve until 2031, and also identified 

“quick wins” that could be established by the corporation to enhance transit connections and service in the 

area.  Additionally, several complementary pieces of legislature, such as the Greater Toronto and Hamilton 

Area Transit Implementation Act of 2009, combined the Greater Toronto Transportation Authority and GO 

Transit into one corporation titled “Metrolinx” (Greater Toronto and Hamilton Area Transit Implementation 

Act, 2009).  This further streamlined the provision of regional public transportation, as planning and service 

implementation now laid under one corporation and governing legislation.  Furthermore, these policies 

enabled the province to direct funds and prioritize investment in regional transit infrastructure and service 

as they saw fit.   

 

2.2. Current GO Transit Network  
2.2.1. Network Layout 

The current GO Transit rail system provides commuter rail service to 68 stations throughout the 

GGH via five radial lines and a single diametrical line.  All corridors feed into Union Station in the City of 

Toronto, which acts as the main hub of the network.  The location and extent of each corridor is illustrated 

in Figure 2.  Appendix A provides a more detailed overview of each corridor currently in operation.   

 

2.2.2. Trackage Ownership  
While GO Transit maintains full ownership of its rolling stock, various infrastructure components 

throughout the network are owned by private corporations and/or other crown corporations.  When service 

first began, GO Transit formulated agreements with major freight rail companies Canadian National (CN) 

Railway and Canadian Pacific (CP) Railway to use their freight corridors for public transit purposes 

(Collenette, 2016).  As a result, GO Transit paid a usage fee to CN and CP in exchange for track usage 

rights, therefore avoiding large upfront costs for trackage and corridor construction (Collenette, 2016).  

Beginning in 1999, GO Transit recognized that service expansion would be difficult based on these track 

usage agreements, as freight traffic and freight priority prevented GO Transit from increasing service levels 

(Lysyk, 2016).  As such, GO Transit began to negotiate track and land purchases with both CN and CP to 

allow them to dictate operating agreements and prioritize public transit over freight transport throughout 

the network.  As of 2016, approximately 80% of trackage throughout the network has been purchased by 

GO Transit, while the remaining portions are still shared with CN and CP under similar track usage 

agreements.  Appendix A provides further information on the state of the network with respect to track 

ownership rights.  
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2.2.3. Fare Structure and Collection Methods 
GO Transit uses a zonal fare structure to assign ticket 

prices.  Unlike a flat fare structure where all customers pay the 

same fare price regardless of distance travelled, zonal fare 

structures assign a ticket price depending on the origin and 

destination of the traveler.  This allows the agency to assign a 

fare that is correlated with the distance travelled by the 

customer, resulting in a more accurate and equitable fare policy.  

55 fare zones are present within the GO Transit rail network, 

with fare prices assigned depending on how many fare zones 

the customer travels between during their trip (Smith, 2020).  A 

variety of fare payment systems are used to collect fares, 

although the majority of fares are collected via the PRESTO 

smartcard system.  Otherwise known as a proof of payment 

system, PRESTO allows users to load stored values onto a 

smartcard, which is then collected from automated fare 

collection machines located within stations and platforms when 

they board at their origin and alight at their destination.  The 

system then deducts the appropriate fare based on the distance 

travelled by the user.  This also allows GO Transit to track 

reliable data regarding system ridership, fare price data, and the 

distribution of boardings and alightings throughout the 

network.  

Figure 2 - GO Transit Rail Network 
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Approximately 90% of GO Transit rail riders pay their fares using PRESTO cards (Smith, 2020).  

This system also offers riders the ability to register their PRESTO card online so that stored values can be 

refunded to the user in the event that it is lost or stolen.  Through this process, important demographic data 

of the user is also recorded and made available to GO Transit, including the postal code of the rider’s 

residential address.  PRESTO was first introduced as a pilot project in 2009, and slowly expanded to include 

networkwide coverage by mid 2012 (McCarter, 2012). Due to various operating glitches during program 

launch and initial use, PRESTO smartcard data is only considered to be reliable from 2014 onwards (Smith, 

2020; McCarter, 2012).   

 

2.3. Planning Policy Framework  
2.3.1. The Planning Act 

The Planning Act legislates land use planning in Ontario (Planning Act, 1990).  Mainly, it describes 

how land uses may be controlled and by whom they are controlled, and specifies the role of the province 

and individual municipalities with respect to land use planning matters.  The Planning Act also provides a 

basis for considering provincial interests, preparing planning policies to guide future development, and 

provides a variety of implementation tools that can be used to facilitate planning.  At the provincial level, 

the Planning Act specifies that the role of the province is to promote provincial interests, including the 

support of public transit and sustainable infrastructure development.   

 

2.3.2. The Provincial Policy Statement  
The Provincial Policy Statement (PPS) helps to explain and interpret the guidelines set forth in the 

Planning Act (Government of Ontario, 2020b).  In other words, the Planning Act provides a framework for 

land use planning In Ontario, while the PPS provides an overall policy direction that should be pursued to 

address planning matters of provincial interest.  Three major policy sections are outlined in the PPS, 

including “Building Strong Healthy Communities”, “Wise Management of Resources”, and “Protecting 

Public Health and Safety”.  Policies addressed within these sections formulate the basis for land use 

planning in Ontario. The provision and development of public transit service is addressed under “Building 

Strong Healthy Communities” and outlines how it can be used to facilitate the growth of communities in a 

sustainable and efficient manner.  Specifically, the PPS states that: 

 

1. Public transportation should be provided to facilitate the movement of people, and that dense and 

mixed-use developments should be promoted to reduce the number of trips made by private 

automobile while encouraging the use of public transit, 
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2. Providing for an efficient, cost-effective, and reliable multimodal transportation system that is 

integrated with other systems and jurisdictions is a key component in ensuring long-term prosperity 

in the region, 

3. Intensification along public transportation corridors, integrated with transit-supportive 

development, should be encouraged to shorten commute journeys and decrease congestion 

(Government of Ontario, 2020b). 

 

Therefore, the PPS is clear in establishing the connection between public transit provision and 

sustainable land use planning, as it can be used as a tool to move people efficiently, influence settlement 

patterns, generate economic output, and reduce greenhouse gas emissions in the study area.   

 

2.3.3. A Place to Grow – Growth Plan for the Greater Golden Horseshoe  
A Place to Grow, Growth Plan for the Greater Golden Horseshoe (hereby referred to as “the Growth 

Plan”), is a regional planning framework meant to guide government investment and land use planning 

activities in the region (Government of Ontario, 2020a).  The Growth Plan recognizes that population 

densities, employment figures, and settlement patterns in the GGH are unique compared to other areas 

throughout the province.  Essentially, it builds on the PPS to establish unique land use planning objectives 

that are specific to the regional context.   

The Growth Plan states that the built environment is currently not optimal to accommodate current 

and projected population growth throughout the GGH.  Notably, the plan highlights that recent development 

within the region is sprawled and fragmented, meaning that public transit is ineffective in serving these 

populations.  As a result, the majority of residents within the area are reliant on private automobile as their 

main mode of transport.  Secondly, the Growth Plan highlights that the economic foundations of the region 

are changing, and that the regional transportation system has not adapted to facilitate this transition.  

Notably, the current transportation network favors the movement of freight and goods, rather than the 

movement of people and ideas.  Finally, a summary of various negative externalities being realized as a 

result of the current mode share is provided.  Large levels of greenhouse gas emissions and congestion have 

been shown, resulting in impacts to air quality, water quality, and loss of economic output due to increases 

in travel times.  Therefore, the Growth Plan highlights that the objectives as outlined in the PPS have not 

been accomplished throughout the GGH.  As a result, the potential economic benefits realized from, dense, 

growing urban settlements could be marginalized if interventions are not implemented to influence where 

and how growth throughout the GGH occurs.   



13 
 

Fortunately, the Growth Plan recognizes that an integrated and high quality regional public transit 

system can be used as a tool to alleviate these challenges.  Section 3.2.2 of the Growth Plan states that the 

transportation system within the GGH will be planned and managed to: 

 

• “Offer a balance of transportation choices that reduces reliance upon the automobile and promotes 

transit”, 

• “Be sustainable and reduce greenhouse gas emissions by encouraging the most financially and 

environmentally appropriate mode for trip- making”, 

• “Offer multimodal access to jobs, housing, schools, cultural, and recreational opportunities, and 

goods and services” (Ontario, 2020a, pg. 32). 

 

The Growth Plan further states that “Public transit will be the first priority for transportation 

infrastructure planning and major transportation investments", with the purpose of maximizing the 

efficiency and viability of existing and planned service levels, increasing the capacity of existing transit 

systems, and increasing the mode share of transit in the area (Ontario, 2020a, pg. 32).  Therefore, specific 

plans and policies directed at increasing the vitality of regional public transit in the region are required to 

ensure that the objectives outlined in the PPS and the Growth Plan are accomplished.  To date, the 2041 

Regional Transportation Plan and the GO Expansion Program are the most significant policies released by 

Metrolinx with the purpose of supporting these objectives.   

 

2.3.4. 2041 Regional Transportation Plan and GO Expansion  
The 2041 Regional Transportation Plan outlines how Metrolinx and GO Transit plan to utilize 

regional public transit as a tool to satisfy the objectives as outlined in the PPS and the Growth Plan 

(Government of Ontario, 2018a).  Building on the initial objectives as outlined in The Big Move, the vision 

of the 2041 Regional Transportation Plan is to implement a sustainable transportation system that is aligned 

with appropriate land uses, while supporting healthy and complete communities.  Consistent with the key 

objectives identified in the PPS and the Growth Plan, the goal of such a system is to provide convenient 

and reliable connections, support a high quality of life, stimulate a prosperous and competitive economy, 

and protect the environment. 

The Regional Express Rail program is a major initiative outlined in the 2041 Regional Transportation 

Plan as a means of accomplishing these goals.  Now titled the GO Expansion Program, the program aims 

to transform the current GO Transit rail network from a commuter focused system to one that is a 

comprehensive regional rail system.  GO Expansion is expected to increase the quantity and quality of 

service provided to customers, increase the amount of residential and employment areas that are accessible 
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to GO Transit rail service, encourage intensification of both residential and employment developments 

located within close proximity to GO Transit rail service, and provide system access to all subgroups of the 

population.  In order to do this, the GO Expansion Program has proposed the following deliverables:   

 

1. Expand service by over 1,000 new trips per day, 

2. Implement two-way, all-day service throughout the region, 

3. Increase the provision and coordination of station access options, including feeder bus connections 

and parking capacity, 

4. Increase frequencies to ensure 15 minute or better headways along priority transit corridors, 

5. Implement a transit-oriented development framework that engages both private developers and 

public stakeholders, 

6. Ensure that the cost of transit use is competitive with other transport modes (Government of 

Ontario, 2018a). 

 

Metrolinx believes that implementing these deliverables will have a significant impact in mitigating the 

land use planning challenges currently being realized in the GGH.  Mainly, the expected increase in service 

quantity is expected to increase ridership by 211% by 2031, with daily ridership projected to be 630,000 

trips per day (Government of Ontario, 2018a).  Metrolinx anticipates shifting 145,000 car trips per day to 

rail, therefore influencing mode share and decreasing time lost due to congestion by a total of 6.5 million 

hours per year. 

GO Expansion is further expected to make rail transit a viable and competitive option for residents and 

workers throughout the region.  42% of the region’s population is expected to live within five kilometers 

of a GO Transit rail station providing two-way, all-day service, whereas 34% of the region’s population 

will be able to reach Union Station in 45 minutes via train (Government of Ontario, 2018a).  This level of 

accessibility, coupled with increased service provisions, is expected to decrease average commute times by 

ten minutes per trip compared to the current state. 

The number of connections to major employment centers throughout the region is expected to 

increase as a result of this network transition.  Employment centers outside of downtown Toronto will also 

be accessible throughout the day, as all-day two-way connections are expected to be provided to emerging 

employment generators such as Kitchener, Barrie, and Oshawa (Government of Ontario, 2020a).  

Additionally, 42% of all jobs within the Greater Toronto and Hamilton Area are expected to be within a 

45-minute rail trip from Union Station, resulting in increased flows of people and ideas throughout the 

region (Government of Ontario, 2018a).  Additionally, GO Expansion is expected to influence settlement 

patterns throughout the region.  40% of all homes and 45% of all jobs within the region are planned to have 
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access to 15-minute, two-way all-day service on priority transit corridors, thereby making these areas 

attractive for commuters and employers who do not live or work in downtown Toronto (Government of 

Ontario, 2018a).  Increased densities and diverse land uses are also recommended for these areas via the 

Growth Plan, thereby further concentrating growth towards areas of the built environment that are transit 

supportive.  Concentrating development in areas supplemented by frequent transit service is expected to 

reduce auto-centric behavior, as transit could therefore be used to satisfy both work-related and 

discretionary transport demands.   

Finally, Metrolinx has stated that in order to remain cost competitive with other modes, substantial 

fare price increases will not be implemented to help fund the project (Government of Ontario, 2018a).  

Instead, fare prices will only be implemented that are consistent with inflation, while other fare and transfer 

agreements with municipal service providers will be investigated to decrease the overall cost of transit use.  

These fare policies should thereby encourage ridership by remaining competitive with other modes, while 

remaining affordable for marginalized subsections of the population.   

 

2.4. Conclusion 
In summary, various plans and studies have recognized that significant growth within the Greater 

Golden Horseshoe is expected.  However, the current state of the area’s regional transportation network 

could prevent sustainable and healthy development from occurring.  Negative externalities stemming from 

an auto centric mode share, including congestion, increased travel times, and lost economic productivity 

are expected to continue if policy interventions are not implemented.   

Provincial planning policies relevant to the Greater Golden Horseshoe have stated that increased 

provision of regional transit service should be prioritized to reduce these effects.  Notably, the GO 

Expansion Program states that transitioning the current GO Transit rail network to a regional rail network 

will be an effective solution.  Substantial service increases that are planned as a part of transition are 

theorized to be a significant driver of increased transit demand in the study area.   
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3. Literature Review  
Previous research has revealed that transit demand can be influenced by a variety of internal and 

external variables.  Typically, econometric analysis and the application of linear regression techniques are 

used to understand the relationship between transit demand and change in these factors.  As mentioned 

above, the study area considered for this analysis is governed by a distinctive land use and transportation 

planning framework, as settlement patterns, demographics, and public transit systems in the region are 

unique compared to other areas throughout Ontario.  Therefore, relationships identified within the context 

of this study might differ from those previously identified in various academic papers or professional 

studies.   

This chapter begins with an overview of concepts and theory related to econometric analysis and 

its application to transit demand studies.  Secondly, findings from previous transport behavior, demand, 

and/or mode share studies are summarized with the purpose of creating a list of variables that could be 

determinantal to transit demand in the study area.  Where possible, attempts were made to focus on the 

inclusion of studies completed in the North American context, which also included commuter / regional 

rail ridership in their analysis.  Finally, quantitative methods used to identify and extract various datasets 

are reviewed, with a unique focus on methods used to obtain feeder bus connection quality datasets and 

those used to delineate station catchment boundaries.  The paragraph concludes by identifying relevant gaps 

in the literature to be filled by this body of work.   

 

3.1. Regression Analysis 
3.1.1. Foundational Concepts 

Econometric modeling uses mathematical equations to describe various relationships.  Demand 

modeling is a type of econometric modeling used to describe how the demand of a good or service changes 

based on economic factors impacting the customer.  Many studies have revealed that a variety of economic 

factors such as fare price, service quantity, economic status, underlying socioeconomic conditions, and 

demographic characteristics can impact the quantity of transit demanded.  If sufficient data is available, the 

change in transit demand attributed to these variables can be measured.   

Regression analysis is used to measure these relationships.  Essentially, it is a mathematical equation 

that measures the impact that a single independent variable, or multiple independent variables, have on a 

dependent variable.  Results generated from a regression model can be used to understand: 

 

• The influence of the independent variable(s) on the dependent variable, 

• The statistical significance of the relationship, 
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• Which independent variable is most important in influencing the dependent variable, given the 

inclusion of multiple independent variables in the model, 

• How the dependent variable should change if fluctuation in an independent variable occurs 

(Wooldridge, 2012). 

 

3.1.2. Simple Linear Regression 
Linear regression is the most common method of regression analysis.  A simple linear regression 

attempts to explain the value of the dependent value based on the independent variables included in the 

model, and those not included (ex. the error term).  A simple linear regression takes the following form: 
 

 ! = 	$! +	$"& + 	' Eq. 1 

 

Where; 

• ! = the dependent variable, 

• & = the independent variable, 

• $! = the intercept parameter, otherwise known as the constant term, 

• $" = the slope parameter (i.e., the effect) that the independent variable has on the dependent 

variable, 

• $" = the slope parameters (ex. the effect) that “&” has on “!” holding other factors in “'” constant, 

• ' = the error term (represents factors not captured in the model that effect “!”). 

 

3.1.3. Ordinary Least Squares Regression 
Ordinary Least Squares (OLS) is a common simple linear regression method used in econometric 

modeling.  When using the OLS method, the sum of squared residuals is used to compute the parameters 

of the model, with the goal of estimating a fitted line that minimizes the distance between observed values 

and fitted values (Wooldridge, 2012).  This method is commonly used as it is the best linear approximation 

of the true relationship between the dependent and independent variable(s), and allows researchers to 

estimate unbiased and consistent statistical properties of relationships (James et al., 2013).  Per Wooldridge 

(2012), the equation is first rearranged to solve for the intercept and slope parameters, where: 

 
 $(! =	!) −	$("&̅ Eq. 2 

 

and: 
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$(" =	

∑ (&# −	&̅)(!# −	!))$
#%"
∑ (&# −	&̅)$
#%"

&  
Eq. 3 

 

Using Equation 3, a fitted value for each observation in the sample is estimated, while the residual 

for a given observation is the difference between the actual “y” value and the fitted value.  The sum of 

squared residuals is then made as small as possible given the following form: 

 
 

/01#&
$

#%"
=	/(!# − $(! −	$("&#)	&

$

#%"
 

Eq. 4 

 

The OLS regression line can then be estimated, where: 

 
 !1 = 	$(! +	$("& Eq. 5 

 

3.1.4. Multiple Linear Regression 
The OLS method can also be applied when a dependent variable is regressed on multiple factors.  

Additional independent variables may be added to the model to minimize the error term, while increasing 

the amount of information made available to the researcher about the relationship (Wooldridge, 2012).  The 

form of the regression line looks similar to Equation 1, where: 

 
 !1 = 	$(! +	$("&" +	$(&&&+… +	$((&( 	 Eq. 6 

 

And: 

• 2 = the number of independent variables included in the model. 

 

3.1.5. Application to Transit Demand Analysis 

In transit demand elasticity studies, the slope estimate ($(() of each independent variable is of 

primary interest to the researcher.  The sign of the slope explains the direction of the relationship with the 

dependent variable; a positive sign indicates a positive correlation, while a negative sign indicates a 

negative correlation.  The slope estimate also predicts the anticipated change in the dependent variable 

should the independent variable increase by one unit.  Per Taylor et al. (2009), analysis based on this model 

is the most efficient method of calculating ridership elasticities, as the slope estimates can be easily used to 

calculate demand elasticities.  Additionally, a variety of variables can be included in the model to estimate 



19 
 

their relationship and impact on transit demand, including transit fares, travel times, service supply, service 

attributes, passenger characteristics, prices of alternative transport modes, urban characteristics, and 

regional characteristics (Taylor et al., 2009).   

 

3.1.6. Advanced Methods 
While simple linear regression methods are adequate in assessing one-dimension datasets, more 

advanced techniques are often used for datasets that have a cross-sectional and/or time-series component.  

These datasets, otherwise known as panel or longitudinal data, observe the behavior of multiple entities 

across time (Torres-Reyna, 2007).  Compared to a one-dimensional dataset, such as a study that analyzes 

station-level ridership at a given point in time, panel data is usually preferred as it provides more 

information, contains more variability, and demonstrates less collinearity amongst independent variables.  

When transit demand studies are considered, panel data also allows the researcher to utilize readily available 

internal variable datasets, and combine them with more detailed station level observations such as land use 

information, parking availability, and the provision of feeder bus connections, so that ridership figures can 

be explained more efficiently (Guerra & Cervero, 2011). 

When analyzing panel datasets, the simple OLS method is rarely used as subsequent observations 

inherently influence each other.  Additionally, the impact of unobserved factors also has a consistent impact 

on model performance (Torres-Reyna, 2007).  However, various methods that build upon the OLS method 

are commonly used to analyze panel datasets which account for these issues, including pooled OLS, fixed 

effect and random effect estimators (Wooldridge, 2012).  A variety of statistical tests, such as the Lagrange 

Multiplier and the Hausman Test, are then applied to the model outputs to determine the method that best 

suits the dataset (Guerra & Cervero, 2011; Lee & Lee, 2013; R. Liu, 2018; Stover & Christine Bae, 2011). 

 

3.2. Factors Associated With Transit Demand 
A review of ridership elasticity studies generated by academics, transit authorities, and research 

centers presented in the Canadian Urban Transit Association’s Ridership Trends Study found that a variety 

of built environment, socioeconomic, transit service, and external factors can be determinantal to ridership 

demand (E. J. Miller et al., 2018).  Of these, population density, employment density, fare price, service 

quantity, fuel price, vehicle ownership, unemployment rate, and income were found to have a consistent 

and statistically significant correlation with transit ridership.  This literature review identified several 

additional variables that could be determinantal to commuter rail demand, including seasonality, distance 

to the central business district, age, households with children, park and ride capacity, and the presence of 

feeder bus connections.  A summary of findings pertinent to each factor is presented below.    
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3.2.1. Fare Price 
Previous studies found fare price to be significantly correlated with transport demand.  Since 

transport demand analysis originally focused on assessing the impact of fare price changes on ridership 

figures, a large body of literature in relation to this variable exists (Curtin, 1968; Mayworm et al., 1980; 

Webster & Bly, 1981).  A metadata analysis of transport demand studies identified a common range of 

demand elasticities with respect to fare price (Balcombe et al., 2004).  Notably, their findings suggest that 

fare price elasticities differ depending on the geographical context examined.  When all modes were 

considered, an overall demand elasticity of -0.44 was identified for studies conducted in the United 

Kingdom, while a lesser elasticity of -0.35 was obtained when Australian and North American studies were 

analyzed.  The authors theorize that this difference could be a result of differing urban morphologies, or the 

presence of high fare prices and poor service quality in the United Kingdom compared to other regions 

included in the study.   

Transport demand studies conducted solely in the North American context have attempted to 

further quantify this relationship (Boisjoly et al., 2018).  An analysis of transport ridership trends in 25 

North American cities identified a statistically significant fare price elasticity of -0.219, while a similar 

elasticity of -0.207 was found once service quantity metrics were disaggregated by mode.   

Differing figures have been shown when trip type, time period, and size of the metropolitan area 

were controlled for.  Using data obtained from 265 urban areas throughout the United States, Taylor et al. 

(2009) found a statistically significant fare price elasticity of -0.42, whereas a larger elasticity of -0.51 was 

estimated once per capita transport demand was estimated.  The results suggest that large metropolitan areas 

are more sensitive to fare price changes compared to small urban centers, most likely due to a greater 

proportion of commuters that use transit willingly in large cities. 

Demand elasticities were estimated using data obtained from 103 Canadian transport agencies over 

a 14 time-series (Diab et al., 2020).  Total personal expenditure on public transport was used as a fare price 

indicator, which displayed a statistically significant elasticity of -0.143.  Separate models were also 

produced that controlled for the size of the transit agency, where a lower elasticity of -0.147 was found for 

large transit agencies compared to a larger elasticity of -0.162 which was found for agencies with less than 

1.2 million yearly trips.  When contrasted with results produced by Taylor et al. (2009), the results suggest 

even within the North American context, fare price changes affect users in Canadian cities differently 

compared to those in American urban areas.    

Furthermore, an analysis of American transit agencies attempted to control for both time-period 

and size of metropolitan area examined (Schimek, 2015).  An overall fare elasticity of -0.32 was found in 

the short-run, comparable to that estimated by Balcombe et al. (2004).  Separate models were also computed 

after controlling for the size of urban areas examined, and produced results separated into short-run and 
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long-run estimates.  Fare price elasticities in small urban areas were revealed to be -0.38 in the short-run 

and -0.73 in the long-run, whereas lesser elasticities of -0.2 and -0.48 were discovered when ridership in 

large urban areas was analyzed.  Notably, the difference in magnitude between short-run and long-run 

elasticities was shown to be comparable in both models, further indicating that users display a greater 

sensitivity to fare price changes over time.  Furthermore, the results suggest that fare price changes have a 

greater impact on those living in small urban centers compared to those living in large metropolitan areas.  

Like Diab et al. (2020), the author notes that this is likely due to differences in the socioeconomic status of 

the respective customer bases, as a large proportion of customers in large metropolitan areas are wealthy 

commuters, compared to those in small urban centers who are low-income captive riders.   

Various studies have specifically focused on analyzing the determinants of commuter rail ridership 

and have suggested that fare price elasticities might differ compared to other modes examined.  A study of 

59 rail transit projects in the United States found that ridership is expected to decrease by 4.55% if fare 

price is increased by 10% (Guerra & Cervero, 2011).  Notably, ridership figures gathered for their analysis 

were aggregated, meaning that demand elasticities were not calculated for individual rail modes.  

Regardless, the authors state that demand for commuter rail service is most likely inelastic to fare changes 

compared to other modes, as the majority of users are workers.  Therefore, users are unaffected by fare 

price changes as the utility associated with the trip outweighs the additional disutility generated by the fare 

price change.  As a result, the authors suggest that external variables such as population or employment 

density might be more significant in influencing commuter rail ridership.  In addition to overall transit 

demand, Balcombe et al. (2004) identified fare elasticities specific to commuter rail systems.  A fare 

elasticity of -0.58 was identified when studies conducted in the United Kingdom were considered, whereas 

a lesser elasticity of -0.37 was obtained when Australian and North American studies were analyzed.  Unlike 

Guerra & Cervero (2011), the authors theorize that rail might have a larger elasticity compared to other 

local modes such as metro and bus, as longer average trip lengths associated with commuter rail can result 

in automobile being a direct competitor.   

Using data collected from several major North American cities over a 10-year period, demand 

elasticities were estimated for a variety of transit modes including commuter rail (Iseki & Ali, 2014).  

Notably, a fare price elasticity of -0.353 was considerably larger compared to those calculated for other rail 

modes examined, including light rail and metro.  The authors theorize that commuter rail users could be 

more sensitive to fare price increases as prices are often already high due to the use of distance or zonal 

based fare schemes.  Similar results were generated in an analysis of transit demand in Chicago (Nowak & 

Savage, 2013).  A comparison of rail ridership in the city and surrounding metropolitan area identified a -

0.42 demand elasticity for suburban rail, whereas an insignificant fare price elasticity of 0.038 was 

estimated for the city’s metro and light rail systems.  The authors state that this difference could be attributed 
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to a fare price increase that occurred on the city bus system during the study period, thus resulting in 

increased city rail ridership.  The results indicate that the provision, availability, and pricing of alternative 

transport systems should be considered when interpreting demand elasticity estimates.     

A review of New Jersey Transit’s commuter rail system identified both short and long-run fare 

elasticities in relation to network ridership (C. Chen et al., 2011).  Using data collected at monthly intervals 

between January 1996 and February 2009, a fare price elasticity of -0.4 was found in the short-run, while a 

fare elasticity of -0.8 was found in the long-run.  Similar to Schimek (2015), their results suggest that 

commuter rail demand is twice as sensitive to fare changes over time.  The authors are quick to note that 

their elasticity estimates might be overestimated, as the metropolitan area surrounding New Jersey is one 

of few in North America where public transit is a direct substitute to private automobile use.  Therefore, 

the availability of substitute transit systems, such as local bus and light rail transit routes, could entice users 

to switch to other public transit modes if commuter rail fares are increased.     

Paulley et al. (2006) further explored findings compiled by Balcombe et al (2004) to explore the 

impact that trip type might have on commuter rail fare elasticity estimates.  Notably, the results show that 

demand elasticities differ considerably once trip type is accounted for.  For example, an estimated short-

run off-peak period fare elasticity of -0.79 was found for suburban rail systems located within the United 

Kingdom, whereas an elasticity of -0.34 was estimated for peak period riders in the same geographical 

context.  Consistent with findings from Guerra and Cervero (2011), the results indicate that commuters are 

less sensitive to fare price changes compared to discretionary travelers, and that these impacts are realized 

to a greater extent when commuter rail demand is examined.   

Regardless, a variety of studies have found fare price to be insignificant in explaining ridership.  

Focusing on transit ridership in the State of Washington, Stover and Bae (2011) assessed ridership data 

obtained from several counties throughout the state.  Fare price was found to be statistically significant in 

only four areas examined, whereas a model that considered both cross-sectional and temporal differences 

demonstrated a statistically insignificant elasticity of -0.0388.  Additionally, two counties demonstrated a 

positive coefficient, when a negative sign was expected.  An examination of travel survey data in Germany 

found that fuel price and household vehicle ownership, rather than fare price, were the main determinants 

of ridership (Frondel & Vance, 2011).  Unlike the literature reviewed above, fare price demonstrated a 

statistically insignificant relationship with ridership.  The authors theorize that the high level of service 

quantity and quality associated with their transit systems, such as the InterCity Express rail system, could 

render fare price insignificant if people are willing to pay for these services.  In the Canadian context, data 

obtained from 85 urban transit agencies throughout the country also found demand to be relatively inelastic 

to changes in fare price (Kohn, 2000).  While demand elasticities were not calculated, the author discovered 

that despite fare price increases and service decreases, fare box revenue increased throughout the time-
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series analyzed, thus indicating an inelastic relationship.  The author theorizes that commuter related 

transport could be the driving force behind this trend, as the increased cost of a ride is marginal compared 

to the cost of operating a vehicle and paying for parking at employment destinations.   

Furthermore, a variety of studies that analyzed commuter rail demand found fare price to be 

insignificant in explaining ridership figures.  For example, a study of rail ridership in Canada excluded fare 

price as a variable from their final models altogether due to insignificance, whereas an examination of rail 

ridership in California only found fare price to be a significant factor in two of four systems examined 

(Durning & Townsend, 2015; R. Liu, 2018).  Studies completed in recent years have attempted to quantify 

the main determinants of commuter rail ridership, but excluded fare price as a candidate variable altogether 

(Brown et al., 2014; S. H. Chen & Zegras, 2016; C. Liu et al., 2016; Rahman et al., 2019).  This could 

suggest that data availability in relation to this variable is hard to obtain and/or interpret due to the use of 

zonal or distance-based fare schemes, or it could indicate that researchers are more interested in assessing 

the impact that other internal and external variables might have on commuter rail ridership. 

To summarize, a negative correlation between fare price and ridership is suggested by the literature, 

although these affects might not be significant in explaining ridership on commuter rail systems.   

 

3.2.2. Service Quantity  
Service quantity has been revealed to be extremely significant in explaining transit demand, and is 

commonly included in demand elasticity studies as it is one of few internal variables that is easy to quantity 

and assess (Schimek, 2015).   When analyzed, aspects such as varying geographies, trip types, and modal 

classification are shown to have similar influences on demand elasticities as those identified in relation to 

fare price.  The following paragraph summarizes these findings.   

Taylor et al. (2009) tested both total revenue vehicle hours and service frequency (ex. total vehicle 

revenue hours divided by route miles) in their assessment of transit demand in urbanized American cities.  

Both variables were included in their final model as they demonstrated a statistically significant positive 

relationship with ridership.  An elasticity of 1.23 was shown for vehicle revenue hours, and an elasticity of 

0.48 was found for service frequency.  The authors state that these findings, coupled with demand 

elasticities identified in relation to fare price, indicate that adjustments to internal variables could be 

implemented to double ridership figures in North America.   

An early examination of transit use in Canada found service quantity to be the most influential 

variable in explaining ridership demand (Kohn, 2000).  After considering a variety of variables including 

population, city size, and transit usage rates, only fare price and vehicle revenue kilometers remained in 

their final model.  Of these, service quantity was found to be most significant in explaining ridership, as a 
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much larger t-statistic was shown for this variable.  Further to Taylor et al. (2009), the author suggests that 

changes only need to be made to these two internal variables to increase ridership. 

A study of transit ridership in Canada determined ridership to be largely elastic to service supply 

changes (Diab et al., 2020).  Vehicle revenue hours demonstrated the largest elasticity in their model 

outputs, as an elasticity of 1.009 was shown.   Separate models were also estimated for transit agencies with 

more than 1.2 million trips in 2016, and those with less than 1.2 million trips to investigate if results differed 

depending on the size and extent of the transit agency.  However, similar elasticities of 1.044 and 0.827 

were found (Boisjoly et al., 2018).  The results indicate that regardless of city size, ridership in North 

America can be grown via service expansion efforts.     

Service supply was shown to have a varying influence on transit demand in the State of Washington 

(Stover & Christine Bae, 2011).  Service elasticities ranging in value from 0.34 to 1.39 were identified, as 

separate models were developed for each network included in the study.  However, a panel data estimator 

identified an average demand elasticity with respect to service quantity of 0.7.  The results suggest that the 

impact of service provision on transit demand can differ greatly as evidenced by the range of elasticities 

computed.   

Demand elasticities with respect to service quantity have been shown to fluctuate depending on the 

time period analyzed.  Schimek (2015) was able to separate service elasticity estimates into short-run and 

long-run estimates, using vehicle revenue miles as a service quantity indicator; elasticities of 0.41 and 0.79 

were found respectively.  Li et al. (2020) identified similar findings in their study of transit ridership in 

Canada, as a short-run demand elasticity of 0.227 was found, compared to a long-run demand elasticity of 

1.31.  Much like findings in relation to fare price, the results indicate that users respond more drastically to 

service quantity changes over time.  Schimek (2015) further controlled for the city size in an attempt to see 

if short and long run elasticities differed depending on the population of the study area.  Notably, elasticities 

were found to be much larger in populous urban areas compared to smaller cities.  A long-run service 

elasticity of 1.12 was noted in large urban areas, compared to a 0.67 elasticity identified for areas with less 

than 1 million residents.  A similar trend, although not as drastic, was noted when short-run elasticities were 

examined; a 0.45 elasticity was found in large urban areas compared to an estimate of 0.35 identified for 

less populous urban areas.  The author suggests that the variance between estimates may be a result of 

socio-economic characteristics correlated with city size, as large urban centers are more likely to have high 

concentrations of wealthy commuters who choose to use transit in an effort to avoid vehicle operation costs, 

whereas a greater ratio of riders in small, urban areas consists of captive, low income riders. Therefore, 

users in larger urban areas are more likely to shift to public transit if the level of convenience is comparable 

to that of driving, thereby making them more elastic to change in this variable.   
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Mode specific research has suggested that rail users are twice as sensitive to service changes 

compared to alternative transit users (Balcombe et al., 2004).  Using vehicle revenue kilometers as a service 

quantity indicator, a short-run demand elasticity of 0.75 was computed, compared to an elasticity of 0.38 

identified for bus systems included in the analysis.  The results indicate that commuter rail users are twice 

as sensitive to service changes compared to bus users, but authors caution that results should be interpreted 

carefully as only three rail studies were included in their analysis, compared to 27 bus studies.  They suggest 

that further research on rail ridership demand elasticities is needed for this finding to be corroborated.   

Ridership demand in Chicago was regressed on a variety of independent variables, including 

average daily revenue vehicle miles (Nowak et al., 2013).  Mode specific demand models found that 

commuter rail demand is expected to increase by 5.69% if a 10% increase in service quantity is 

implemented.  A nearly identical service elasticity of 0.536 was identified in a separate examination of rail 

systems in the United States (Guerra & Cervero, 2011).  Comparatively, demand elasticities with respect 

to service quantity generated for other modes ranged from 0.173 to 0.298 (Nowak & Savage, 2013).  The 

results further suggest that commuter rail users within North America are much more sensitive to service 

supply compared to bus or local rail users.   

Furthermore, a study of transit ridership in urban areas throughout the United States generated 

differing results (Iseki & Ali, 2014).  Commuter rail, bus, and heavy rail ridership demonstrated comparable 

demand elasticities with respect to service quantity, as values ranged between 0.263 and 0.299.  The authors 

note that of the entities included in their study, data regarding commuter rail ridership obtained from South 

Florida Regional Transportation Authority demonstrated a negative correlation with service quantity, which 

could have resulted in an underestimation of the commuter rail service quantity elasticity.   

Multiple studies undertaken in the New Jersey area identified varying demand elasticities with 

respect to service quantity.  Chen et al., (2011) identified a short-run service elasticity of 0.13, considerably 

lower than previous estimates.  The authors theorize that since their study solely analyzed commuter rail 

ridership, the level of service currently associated with the system is so extensive that additional service 

offerings result in marginal ridership increases.  In comparison, a short-run elasticity of 0.973 was identified 

by Yanamx-Tuzel et al. (2010), although all modes offered by the New Jersey Transit authority including 

commuter rail were aggregated in their analysis.  The results suggest the importance of modal separation 

when transit demand elasticities are calculated, as mode specific conditions and characteristics could 

heavily influence demand elasticity estimates.  This postulation is further highlighted by Boisjoly et al. 

(2013), as very different demand elasticities of 0.0093 and 0.465 with respect to service quantity were found 

once service quantity statistics were disaggregated by mode in their modelling outputs. 

Additional studies have further suggested the level of baseline service offered can influence 

demand elasticities with respect to service quantity.  A cross-sectional study of four major rail systems in 
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California found that an aggregate demand elasticity with respect to service quantity of 0.643, but relatively 

low elasticity values of 0.19 and -0.067 in cities where high levels of baseline service are offered (R. Liu, 

2018).  An assessment of public transit ridership in the San Francisco Bay Area generated similar results, 

as service quantity was not found to be a significant factor in explaining transit demand (Wasserman, 2019).  

The results suggest that simply expanding service on rail systems might not increase ridership figures, 

especially for those associated with service supply levels that are already consistent and convenient.  

Instead, integrated and multi-faceted planning approaches that decrease the disutility of system use in other 

ways might be required to stimulate transit demand.   

The findings above illustrate that commuter rail ridership is most likely sensitive to change in 

service quantity, as more convenient and flexible trip offerings decrease the amount of disutility associated 

with system use.  However, aspects including size of metropolitan area examined, time period analyzed, 

and level of baseline service can all have significant impacts on model outputs.   

 

3.2.3. Distance to Central Business District  
Various studies have revealed that transit use is correlated with distance from the study area’s 

central business district (CBD).  However, the direction of the relationship differs depending on the mode 

examined.  A survey of homemakers in New York City was completed to see if internal or external 

characteristics were most significant in influencing transport behavior (C. Chen & McKnight, 2007).  After 

analyzing travel diaries completed by over 11,000 households, the researchers noticed a significance 

difference in mode share depending on geographical location of the respondent.  For example, those living 

in outer lying metropolitan areas completed only 1% of trips using public transit, whereas those living in 

central city areas completed upwards of 17% of trips via public transit.  An analysis of transport behavior 

in Montreal used distance to downtown as an independent variable when estimating the likelihood of public 

transit use during the a.m. peak period (Grimsrud & El-Geneidy, 2013).  Based on survey data obtained in 

1998, 2003, and 2008 the authors found that distance to downtown was the only variable that demonstrated 

a consistent level of significance throughout all three study periods.  A negative sign was consistently 

displayed, meaning that commuter rail, metro, and municipal bus ridership decreased as distance from the 

CBD increased.  The authors theorize that the abundance of transit in the CBD, compared to the lack of 

accessibility options in outer lying suburban locations, was a contributing factor.   

These findings were further reinforced in a station-level analysis of commuter rail ridership in the 

Boston area (S. H. Chen & Zegras, 2016).  Although distance to CBD was only included in models that 

analyzed off-peak and weekend ridership, they found demand elasticities of -0.303 and -0.260 respectively.  

An analysis of ridership behavior in the Chicago area illustrated similar findings (Lascano Kežić & 

Durango-Cohen, 2018).  They identified a significant increase in ridership at rail stations located within a 
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10 kilometer radius of the city’s CBD, whereas ridership remained stagnant at stations located outside of 

this boundary.  Both studies theorized that urban renewal, population density increases, and low commute 

times associated with living in close proximity to work was the main reason for this observation.  

In contrast to Kežić et al. (2018), a study of station-level rail ridership in Chicago found that transit 

demand is significantly influenced by distance from the station to the CBD, although this relationship is not 

as significant as it once was (C. Miller & Savage, 2017).  Using ridership data obtained at the station-level 

in 2004, 2006, 2009, and 2013, separate ridership models were estimated for each time period.  Distance 

from downtown continuously displayed a negative coefficient in all model outputs, although smaller 

coefficients were displayed in more recent observation periods.  For examples, elasticities of -0.024 and -

0.027 were found in 2004 and 2006, while elasticities of -0.013 and -0.009 were found in 2013.  Although 

small in magnitude, the trend suggests that demand for transit in suburban areas has increased considerably 

over the past 15 years.   

An analysis of GO Transit rail users in Toronto, Ontario, was undertaken to better understand 

station access behavior (Engel-Yan et al., 2014).  The authors theorized that several variables, including 

station location relative to the CBD, could influence average station access distance and associated ridership 

figures.  The authors found that suburban stations demonstrated much larger station catchment areas 

compared to those located in urban areas, therefore resulting in larger customer bases.  They theorized that 

the provision of commuter rail service might be inefficient when offered in close proximity to the CBD, as 

the availability of walking, cycling, and alternative transit choices may be preferred by those residing within 

the city.  An examination of transit use in Toronto, Ontario, reinforced this observation (Mahmoud et al., 

2014).  The authors found that users are most likely to choose metro, rather than commuter rail, if both 

types of service are available to the user.  Like Engel-Yan et al. (2014), the authors theorize that this could 

be a result of increased costs and transfer penalties associated with commuter rail systems, whereas metro 

systems are more attractive in terms of real costs and convenience.  Therefore, the availability of substitutes 

could result in decreased commuter rail demand in high density urban environments, where alternative 

transit modes are typically offered.   

To summarize, the literature suggests that demand for transit demonstrates a negative correlation 

with distance to the CBD, although the opposite relationship should be expected when commuter rail 

demand is analyzed.   

 

3.2.4. Station Accessibility Indicators 
More station access options typically results in increased transit demand.  A variety of variables, 

including station-level parking supply, were tested for their significance in influencing station access 

distance, the extent of station catchment areas, and subsequent commuter rail demand in the Greater 
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Toronto and Hamilton Area (Engel-Yan et al., 2014).  They found that all three factors were heavily 

influenced by the number of parking spaces available, as the majority of riders access the system via private 

automobile.  Further, their results indicated that users disperse between adjacent stations depending on 

parking availability during the a.m. peak period, thereby suggesting that parking capacity is a limiting factor 

on station-level ridership demand.  These findings were reinforced by Mahmoud et al. (2014), who 

discovered that station choice in the Greater Toronto and Hamilton Area is largely dependent on availability 

of park and ride infrastructure and local transit service connections.  Their results suggest that in order to 

stimulate commuter rail demand, increasing the number of park and ride spaces at the station-level may be 

necessary. 

A direct demand model of rail ridership in the Washington D.C and Maryland area used dummy 

variables to indicate the presence of station-level park and ride lots and feeder bus service (C. Liu et al., 

2016).  When only commuter rail ridership was modelled, the author found that ridership increased 

significantly in the presence of feeder bus connections, while all other candidate variables were 

insignificant.  The influence of parking supply on demand could not be tested as the researchers found that 

park and ride lots were present at all commuter rail stations included in their analysis.   

In contrast, an examination of commuter rail ridership in Orlando, Florida, found that the provision 

of park and ride lots had a drastic influence on the number of boardings and alightings.  However, data with 

respect to feeder bus connections was unavailable for analysis (Rahman et al., 2019).  The results suggest 

that station accessibility indicators are significant in influencing commuter rail ridership, although the joint 

influence of both factors on ridership warrants further examination.   

A study of light-rail transit ridership in the United States suggested that the provision of feeder bus 

service might have a greater impact on growing ridership compared to additional park and ride spaces 

(Kuby et al., 2004).  They found that the addition of a bus connection resulted in 123 more weekday 

boardings, indicating that riders not only respond to the presence of multi-modal connections, but also the 

frequency of such offerings.  The number of park and ride spaces at each station was also included in their 

analysis; the authors identified an elasticity of 0.77.  Both variables demonstrated a p-value < 0.001, 

indicating that station access played a large role in influencing boardings throughout the study area. Similar 

results were found in an analysis of rail rapid transit ridership in Canada, as feeder bus connections and the 

presence of park and ride lots were included in their direct demand model (Durning & Townsend, 2015). 

The availability of bus connections was represented using a dummy variable, while a continuous variable 

representing the number of park and ride spaces at each station was analyzed.  Station-level ridership was 

found to increase by 40.88% with the provision of feeder bus connections, while ridership increased by 

16.2% for every additional park and ride space offered.  Both authors highlight that coordinating and 
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facilitating a greater amount of alternative transit connections, rather than providing additional parking 

facilities, may be more effective in growing rail ridership.   

The influence of station access indicators on demand has been found to be more influential to some 

users once trip type is controlled for.  Chen and Zegras (2016) used dummy variables to indicate the 

presence of feeder bus connections in their station-level demand elasticity analysis of Boston’s commuter 

rail network.  Differing elasticities were found depending on trip type; an elasticity of 0.44 was found during 

a.m. peak period, while an elasticity of 0.252 was found during the p.m. peak period.  Furthermore, 

Wasserman (2019) found parking supply to be a significant determinant to ridership in the a.m. peak period, 

whereas an insignificant relation was identified when ridership in the p.m. peak was examined.  Their 

findings indicate that commuters may be more sensitive to the provision of multi-modal connections, 

specifically during the a.m. peak period, compared to other users.   

The literature reviewed suggests that park and ride capacity and the provision of feeder bus 

connections has a positive influence on ridership, although further research is warranted.   

 

3.2.5. Population  
Various studies have attempted to quantify the relationship between population density and public 

transit use.  Several researchers have found that people are more likely to use transit in dense areas, but are 

less likely to travel long distances to satisfy their trip purposes.  A review of transport behavior in the United 

Kingdom found that when the density of an urban space is less than five persons per hectare, only 0.11 rail 

journeys per person per week were generated, compared to a rate of 0.63 journeys per person per week in 

areas with a population density greater than 50 people (Balcombe et al., 2004).  However, distance travelled 

per person per week via all public transit modes increased with density, but overall distance travelled 

demonstrated an inverse relationship.  Transport behavior studies in both the European and North American 

context reiterated these findings.  A study of homemakers in New York City found those living in dense 

urban areas demonstrated a transit mode share of approximately 16.5%, compared to a transit mode share 

of 1% for those living in suburban locations (C. Chen & McKnight, 2007).  A study of German transport 

behavior also found that transit use differed significantly urban and suburban respondents (Frondel & 

Vance, 2011).  As suggested by Frondel & Vance (2012), this is likely a result of increased transit service 

coverage and density typically shown in urban communities, which therefore shortens transit access 

distance and travel times compared to transit systems that operate in rural areas.  Furthermore, the authors 

suggest that the distance between residential locations and places of importance are reduced when 

population density increases, which further incentivizes transit use as the disutility of using a private 

automobile to complete a short distance trip is much greater compared to transit modes.     
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Previous studies have shown that total population has demonstrated a significant positive influence 

on transit demand.  Boisjoly et al. (2018) examined ridership trends in 25 cities throughout Canada and the 

United States, although only areas with a population greater than 1.5 million were included in his analysis.  

The total population of surrounding metropolitan areas was used as an independent variable in their 

analysis.  A demand elasticity of 0.339 was found, indicating that population has a consistent impact on 

ridership in large urban areas.  Population was also found to be statistically significant in an analysis of 

light-rail transit ridership in the United States, as the results indicated that for population increases of 100 

residents, an additional 9.2 boardings would be realized (Kuby et al., 2004).  The authors note that policies 

aimed at increasing population size and densities should be investigated to encourage ridership growth.  An 

analysis of station level rail ridership in San Francisco also found population to be determinantal in 

explaining ridership, although significance differed depending on trip type examined (Wasserman, 2019).  

Total population within a 0.5-mile radius of each station was tabulated and included in their model.  Smaller, 

but still significant elasticities of 0.126 and 0.105 were found when weekday a.m. and p.m. peak ridership 

was examined.  Notably, population was found to be insignificant in explaining weekend demand.  The 

results suggest that population may be more determinantal in explaining commuter related travel, compared 

to discretionary demand.   

Population density has been used as a factor in other transit demand studies rather than total 

population, although similar results have been shown.  Guerra et al. (2011) found a statistically significant 

demand elasticity of 0.37 when population density was included in their station-level regression model.  

They state that while their findings were statistically significant, the majority of station areas included in 

their study were located in suburban locations.  Therefore, demand with respect to population density could 

be understated, as a substantial amount of variation in their population density dataset did not occur.  The 

authors suggest that the impact of population density on ridership might be more significant if estimates 

obtained from a wide range of environments were included in their model.  More specifically, population 

and dwelling density were included as independent variables in a demand elasticity study of 342 rail stations 

throughout Canada (Durning & Townsend, 2015).  Dwelling density was eliminated from their analysis as 

it displayed multi-collinearity with other independent variables, whereas population density was shown to 

demonstrate a statistically significant elasticity of 0.326.  The author suggests that increasing density around 

existing stations, coupled with increased density targets around new station locations, could be instrumental 

in growing ridership figures.  On a smaller scale, Miller et al. (2017) included population density as an 

independent variable in their rail demand study of the Chicago Transit Authority.  Like Wasserman (2019) 

separate demand models were estimated for different trip types.  Their overall ridership model found 

population density to be statistically significant, as did their model that only assessed Saturday demand.  

The authors theorize that Saturday ridership might be particularly impacted as high-density neighborhoods 
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throughout the study area are often correlated with low levels of car ownership, thereby meaning that transit 

is needed if residents want to take leisurely weekend trips.  Additionally, the authors theorize that these 

locations could be large leisure trip generators, as an abundance of recreational and social activities that 

occur in these areas draw people in from other areas of the city, but do not have a large amount of parking 

supply.  Therefore, public transit is needed both for outgoing residents and incoming tourists.  These 

findings suggest that the inclusion of other variables in the model that might capture these relationships, 

such as employment density or parking supply, could further distinguish the role of population density in 

influencing ridership demand.   

Both total population size and population density have been included as factors in several transit 

demand studies.  An analysis of transit use in Atlanta, Georgie found demand elasticities of 1.284 and 0.5, 

indicating that consumer response to change in population might be overestimated if aggregate population 

is used as an indicator (Brown et al., 2014).  Chen and Zegras (2016) also included both population and 

population density in their station-level examination of rail ridership in Boston.  Only a single variable 

representing population was selected for inclusion in each model based on which variable had the greatest 

impact on model performance.  When a.m. peak period ridership was modelled, population density was 

shown to be most significant in determining ridership; a demand elasticity of 0.576 was identified.  Total 

population was also found to be statistically significant when off-peak and p.m. peak period ridership was 

analyzed, as elasticities of 0.34 and 0.33 were shown.   

More advanced studies have also shown that population density can be positively correlated with 

other important factors, such as service supply.  Therefore, two-stage methods are sometimes used to 

estimate appropriate service supply indicators, while population is represented using alternative metrics 

that do not display multi-collinearity with other independent variables.  Taylor et al. (2009) initially 

identified a positive relationship with population density and service supply.  They theorize that this is the 

case as increased levels of service supply are expected to be delivered by transit agencies that service large 

populations, thereby increasing ridership as service supply increases.  To prevent collinearity in their 

models, they first used population density as a factor to explain total transit ridership, and then used total 

population as an instrumental variable to estimate service supply.  Consistent with the previous literature, 

an elasticity of 0.42 was found.  Per capita ridership was then modelled, where population density was 

instead used as the instrumental variable to estimate service supply, and geographic land are of the 

surrounding metropolitan area was used to represent population.  A smaller yet still significant demand 

elasticity with respect to population of 0.19 was found.   

A similar approach was also used in a study of Canadian transit demand, as vehicle revenue hours 

was estimated using population (Diab et al., 2020).  Different dwelling types were instead used as a proxy 

measure of population density, as the author theorized that the presence of single-family homes are often 
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correlated with sprawled urban areas, whereas apartments and row houses are more prevalent in dense 

environments.  When overall ridership was modelled, apartments and row houses demonstrated a significant 

and positive correlation with ridership, while an elasticity of -0.342 was shown in relation to single-family 

dwellings.  However, the sign of the demand elasticity with respect to apartments shifted once transit agency 

size was controlled for.  For example, when ridership for large agencies was modelled, a demand elasticity 

of -0.404 was found, but a positive elasticity of 0.535 was identified when small agency ridership was 

modelled.  The authors suggest that the increased presence condos in large Canadian cities might discourage 

the use of transit in these areas, as increased wealth and automobile ownership is also typical of condo 

owners.  The results suggest that if collinearity between service quantity variables and population factors 

is significant, proxy measures of population can be used as a viable source of information.  However, 

population should be represented using magnitude or density measures if quantifying this relationship is of 

significant importance to the researcher, as information garnered via proxy measures could be difficult to 

translate into practice or policy recommendations.   

To summarize, the results suggest that a variety of metrics can be used to estimate the impact of 

population size and density on transit demand, however a statistically significant positive relationship 

should be expected.   

 

3.2.6. Employment  
Findings have suggested that number of jobs, in addition to number of residents, can influence 

transit demand to a large degree.  A variety of metrics, including total number of employees, employment 

density, and number of commercial or retail locations have been used in demand elasticity studies to 

evaluate the impact that economic output has on ridership.  A cross-sectional analysis of transit ridership 

in Houston and San Diego found that ridership was heavily influenced by the distribution, location, and 

density of jobs, employment centers, and workplaces (Kain & Liu, 1999).  After analyzing ridership and 

socioeconomic statistics obtained between 1980 and 1990, an employment elasticity of 0.25 was identified 

in both cities.  Regardless, the authors estimated that employment increases had a greater impact on 

ridership growth experienced in San Diego compared to that experienced in Houston, as employment 

growth in San Diego was concentrated in the CBD of the city.  The authors suggest that the implementation 

of zoning by-laws was key in facilitating the development realized in San Diego, whereas development in 

Houston is allowed to happen in a sporadic and haphazard fashion.  The authors theorize that demand for 

transit can be maximized if land use policies that guide employment intensification in key areas are 

implemented in conjunction with adequate transit service between key residential and employment 

locations. 
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Number of jobs within a 0.5 mile radius of each station was used as a factor to explain rail demand 

in the United States (Guerra & Cervero, 2011).  After applying a fixed effect panel data estimator, a 

statistically significant demand elasticity of 0.597 was found, the largest elasticity produced by the analysis.  

An analysis of light rail transit ridership in the United States also found that total employment was 

significant in explaining transit demand, and estimated that an additional 100 jobs should result in an 

additional 2.3 boardings (Kuby et al., 2004).  However, the authors note that their findings should be 

interpreted with caution, as different metrics were used to compile employment data across entities.  

Regardless, the results suggest that station-level transit demand is sensitive to the number of employment 

opportunities in surrounding areas.   

Total employment opportunities in the surrounding metropolitical area has been used as a factor in 

the absence of station-level employment statistics.  Using this metric, Schimek (2015) found that 

employment was statistically significant in both the short and long run, as demand elasticities of 0.21 and 

0.41 were found respectively.  Notably, a study of rail ridership in Chicago used the same metric, but found 

that demand was not responsive to change in total employment (Lascano Kežić & Durango-Cohen, 2018).  

However, the authors note that their findings could be minimized by the fact that little variation in 

employment occurred over the time-series analyzed, suggesting that the results computed by Schimek 

(2015) are more reliable. 

Consistent with Schimek (2015), additional studies have revealed that demand elasticities with 

respect to employment can differ depending on time period examined.  A review of New Jersey Transit’s 

commuter rail system identified a short-run elasticity of 0.00, whereas a long-term elasticity of 0.59 was 

also estimated (C. Chen et al., 2011).  The authors highlight that a short-run demand elasticity of 0.00 is 

unusual, but note that there is often a lag between change in employment and change in settlement and 

transport behavior, which could explain this finding.     

Wasserman (2019) included jobs at destination and jobs at origin as employment variables in his 

station level analysis of San Francisco’s rail network.  His results suggest once trip type is controlled for, 

employment has varying impacts on transit demand.  For example, jobs at origin demonstrated an elasticity 

of 0.121 in the a.m. peak period, while an elasticity of 0.347 was displayed in the p.m. peak period.  Nearly 

opposite elasticities were found when the impact of jobs at destination was evaluated, as an elasticity of 

0.364 in the a.m. peak period was identified compared to an elasticity of 0.173 during evening rush hour.  

The author states that these results are expected, as the majority of jobs in San Francisco are concentrated 

in the CBD, resulting in heightened transport flows between this location and residential areas throughout 

the city.  The results indicate that the identification and provision of service between key trip generators 

can be effectively used to encourage mode shift. 
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Both aggregate employment and employment density were included as independent variables in 

rail ridership studies conducted in Boston, Massachusetts, and Atlanta, Georgia (Brown et al., 2014; S. H. 

Chen & Zegras, 2016).  Brown et al. (2014) theorized that employment figures at the riders’ destination 

would have a significant impact on rail use, whereas Chen & Zegras (2016) also theorized that employment 

would be a primary driver of ridership.  Interestingly, Brown et al. (2014) found a demand elasticity with 

respect to total employment of 1.231, but discovered a negative correlation between employment density 

and ridership.  Elasticities generated by Chen & Zegras (2016) displayed the expected sign regardless of 

the employment indicator used, although elasticities differed depending on trip type examined.   An 

elasticity of -0.137 was identified during the a.m. peak period, while an elasticity of 0.507 in the p.m. peak 

was shown.  Their results conform to the expectation that the majority of trips in the a.m. peak period are 

home-based, whereas the opposite is true during the p.m. peak period, thus indicating that the majority of 

users are commuters.  Furthermore, the results generated by Brown et al. (2014) could indicate that the 

majority of jobs are located at the fringe of the city, therefore indicating that transport and commuter related 

flows in Atlanta are not concentrated towards the CBD during peak periods.   

Various studies have determined that employment type can influence transit demand to differing 

degrees.  Zhang & Wang (2014) included statistics relating to the amount of retail and storage area in their 

model of metro ridership in New York City.  The authors theorized that the presence of retail areas would 

sustain traffic throughout the day, thus resulting in increased transit demand.  Their demand model found 

that the presence of such establishments had a significant impact on ridership; station level demand was 

estimated to be 3.19% higher if the amount of retail area increased by 10%, whereas ridership decreased by 

0.5% if the amount of storage area increased by 10%.  Nearly identical estimates were calculated in an 

analysis of rail ridership throughout Canada (Durning & Townsend, 2015).  After concluding that job 

density displayed multi-collinearity with other independent variables, commercial site density was selected 

as a proxy indicator to measure the impact of economic make-up on ridership.  The authors found a 

significant demand elasticity of 0.327.  Chen & Zegras (2016) further identified that density of retail outlets 

can influence transit demand, as an elasticity of 0.303 was computed, however findings were only estimated 

with respect to off-peak ridership.  An analysis of the Orlando SunRail commuter rail system also found 

that the presence of commercial and financial centers within a 1500 metre radius of stations had a significant 

impact on the number of station-level boardings (Rahman et al., 2019).  Weekday boardings were 

significantly higher if commercial and financial centers were located in close proximity to the station, 

whereas weekday alightings were also significantly higher if commercial centers were nearby.  The results 

suggest that the presence of mixed-use developments in surrounding station areas is key in influencing both 

commuter related and discretionary demand for rail systems, as ridership is stimulated in all time periods. 
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The results indicate employment has a statistically significant positive impact on ridership, while 

employment types such as retail and commercial uses can influence demand regardless of trip type 

examined.   

 

3.2.7. Unemployment Rate 
Unemployment rate has been shown to demonstrate differing relationships with transit demand.  

Surprisingly, limited findings with respect to this variable were presented in the reviewed literature.  An 

analysis of ridership in Chicago, Illinois, found unemployment rate to be determinantal in influencing 

demand, especially when commuter rail ridership was examined (Nowak & Savage, 2013).  Unemployment 

rate demonstrated an elasticity of -0.149, whereas elasticities ranging in value from -0.055 to 0.005 were 

found when heavy rail, city bus, and suburban bus systems were examined.  The results indicate that 

commuter rail systems are more sensitive to economic downturns and corresponding shifts in household 

socioeconomic statistics.  The authors theorize this should be expected, as regional transit systems are more 

heavily utilized by commuters than casual users. 

Differing findings were presented in a study of rail ridership throughout the state of Washington 

(Stover & Christine Bae, 2011).  Separate regression models demonstrated a significant positive 

relationship in six of seven transit systems examined.  Additionally, a panel data estimator identified a 

significant elasticity of 0.29.  Unlike Nowak & Savage (2013), the results suggest that as unemployment 

increases, transit demand will increase.  The authors theorized that sustained economic downturn could 

transition choice riders to captive users if they cannot afford costs associated with vehicle ownership, and 

that decreasing commuter flows during recessionary periods could be offset by those switching to public 

transit in order to save money on transport.   

These findings were reinforced in a study of transit demand in 10 major urbanized areas throughout 

the United States (Iseki & Ali, 2014).  When the authors regressed ridership on a variety of variables, 

unemployment rate was found to demonstrate a statistically significant positive relationship with ridership 

in all modes examined except commuter rail.  For example, percentage-wise elasticities ranging in value 

from 0.028 to 0.0343 were found, whereas unemployment rate was excluded from the commuter rail model 

altogether due to insignificance.  Unemployment rate was also found to be insignificant in explaining transit 

demand in a variety of studies that assessed transit demand in areas where demand was largely comprised 

of commuters (Boisjoly et al., 2018; Diab et al., 2020; Taylor et al., 2009).    

The results suggest that unemployment rate could demonstrate an insignificant relationship with 

demand if the customer base is primarily comprised of commuters. 
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3.2.8. Seasonality  
Various studies have shown that transit demand can demonstrate seasonal fluctuations.  Seasonal 

dummy variables were included to assess the impact of climate stability on ridership in nine major American 

cities (Lane, 2010).  Using winter as a baseline, the authors found that seasonal factors were significant in 

explaining demand for those cities located in temperate climates, as demand was significantly reduced 

during winter months.  Similar results were found in an analysis of light rail transit ridership throughout the 

United States, as cities with stable climates were associated with up to 300 additional boardings per station 

compared to the average (Kuby et al., 2004).  In contrast, ridership in cities associated with temperate 

climates saw ridership reduced by the same amount during cooler seasons.  Further, a demand study of 

metro riders in Chicago found that demand for transit during the a.m. peak period was significantly lower 

in winter and spring seasons compared to the summer baseline.  The authors suggest that the abundance of 

adverse weather conditions and cold temperatures during winter months is a rational explanation, as public 

transit users are often exposed to environmental conditions when waiting for vehicles.  Therefore, demand 

often shifts to private modes as the utility of an enclosed, sheltered, and warm vehicle for the majority of 

the trip outweighs the disutility of vehicle operation costs.    

Various studies have found that the disutility of transit use can also increase in the presence of 

adverse weather conditions, regardless of season.  A demand analysis of rail users in Orlando, Florida, 

found that daily use declinded in the presence of rain and wind (Rahman et al., 2019).  An analysis of metro 

riders in New York City illustrated similar findings, although impacts differed depending on time of day 

examined (Singhal et al., 2014).  For example, a.m. peak period ridership was most significantly impacted 

by rain and abnormal temperatures, while the presence of rain and snow was correlated with a decrease in 

demand during the midday off-peak period.  Ridership during the p.m. peak period also declined 

significantly if snow was present, whereas rain demonstrated insignificant impacts.  Additional models 

were developed by Singhal et al. (2014) to determine if weather related variables had differing impacts on 

station-level ridership depending on the type of platform infrastructure used.  They found that in the 

presence of various weather events including rain, heavy rain, wind speed, and warm days, ridership at 

elevated stations was significantly impacted compared to ridership at underground stations.  Notably, heavy 

snow was found to increase ridership at both station types, while regular snow displayed a negative 

correlation.  The authors theorize that the presence of snow may deter riders due to safety concerns related 

to station access, while heavy snow could result in private auto users shifting to public transit due to unsafe 

driving conditions. Regardless, their results suggest that elevated stations may benefit from station 

infrastructure improvements that include weather protection features. 
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To summarize, the literature indicates that cold temperatures, snow, and adverse weather conditions 

related to seasonal climate trends can negatively impact transit ridership for systems located in temperate 

climates. 

 

3.2.9. Income  
Previous research has revealed that the effect of income on transit demand is significant.  Balcombe 

et al. (2004) states that the sign and magnitude of demand elasticities with respect to income will vary 

depending on the income level of the user.  They note that all things being equal, an increase in income 

typically results in an increase in car ownership, therefore leading to a reduction in the demand for transit.  

Otherwise known as the income effect, a study of transport behavior in Montreal, Quebec, revealed a similar 

relationship as the authors identified a negative relationship between income and the likelihood of using 

transit (Grimsrud & El-Geneidy, 2013).  Further, the authors estimated that an increase in income of $1000 

decreases the likelihood of using public transit by 1%.  Holmgren (2007) completed a metadata analysis of 

transit demand studies in an attempt to identify a common income elasticity.  Their analysis was further 

disaggregated by geography and time period examined, but an elasticity of -0.62 was shown in all estimates.  

The authors theorize that as disposable income increases, demand for public transit decreases as other 

modes become more affordable and accessible to the user (Balcombe et al., 2004; Grimsrud & El-Geneidy, 

2013).  Therefore, the literature suggests that public transit is an inferior service in all contexts.   

Median household income was included in a mode share study conducted in the Calgary, Alberta 

(Pasha et al., 2016).  185 community areas were assessed in an attempt to determine the main factors 

influencing transit use and associated mode share percentages throughout the city.  Income was classified 

into four levels representing basic income, low income, middle class, and wealthy households.  Consistent 

with Grimsrud et al. (2013), transit use was positively associated with those earning less than $40,000 per 

year, whereas the opposite was found for those earning more than $125,000 per year.  The authors suggest 

that these findings should be used to develop more equitable transit policies and programs.  

Schimek (2015) identified a similar relationship, as their overall demand model identified a short-

run elasticity with respect to per capita income of -0.36.  Unlike Holmgren (2007), effects were shown to 

be more drastic over long time periods, as a long-run elasticity of -0.69 was identified.  Notably, they found 

that demand responded differently when urban area size was controlled for, as large urban areas 

demonstrated short and long-run elasticities of -0.37 and -0.91, whereas elasticities of -0.26 and -0.5 were 

found in small urban areas.  The authors theorize demand could be more elastic in large urban areas as these 

spaces typically have a large share of commuters with more disposable income.  In contrast, the customer 

base in small urban areas is typically comprised of low-income captive riders.  Therefore, the income effect 
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is more prevalent in large urban areas as a greater proportion of residents with alternative transport options 

live in these spaces.   

Regardless, studies specific to commuter-related transit systems found an opposite relationship.  

Transit ridership in major American cities demonstrated an income elasticity of 0.92, indicating that 

demand is stimulated when income increases (Taylor et al., 2009).  Balcome et al. (2004) further identified 

that income has a positive impact on rail demand, as a range of income elasticities varying between 0.11 

and 2.07 were found.  Notably, the largest income elasticity computed in their study was for those travelling 

between suburban locations and the CBD.  Chen and Zegras’ (2016) found that income was positively 

correlated with commuter rail ridership in Boston, but only during the a.m. peak period; an elasticity of 

0.398 was found.  Consistent with Chen et al. (2016), an income elasticity of 0.27 was identified in an 

examination of station level ridership in New York City (Zhang & Wang, 2014).  Taylor et al. (2009) 

suggests that these findings could be explained by the presence of high paying jobs typically located in the 

central business district of metropolitan areas, therefore resulting in the use of regional transit infrastructure 

to facilitate commuter related travel patterns.  Previous studies have also theorized that since most rail users 

already have access to a private automobile, additional income rarely generates an additional rider (Paulley 

et al., 2006).  Instead, additional work responsibilities associated with increases to income could additional 

journeys to and from work, therefore increasing transit demand in the process.   

To summarize, the literature suggests that transit demand demonstrates a negative correlation with 

income, but only in areas where the customer base consists of a variety of users.  The opposite correlation 

should be expected of systems widely comprised of wealthy commuters, as variables other than income 

have a greater impact at mode choice decisions.   

 

3.2.10. Vehicle Ownership  
Vehicle ownership has shown to be correlated with transit demand, but findings are scarce relative 

to other variables such as fare price and service levels.  Various studies have suggested that findings are 

limited as vehicle ownership is often correlated with other factors such as income, thus warranting it’s 

removal from the demand model (Balcombe et al., 2004; S. H. Chen & Zegras, 2016; Grimsrud & El-

Geneidy, 2013; Iseki & Ali, 2014).  Regardless, a negative correlation with transit demand has been 

illustrated, although further research is commonly recommended.  A mode share review of various countries 

throughout the European Union notes a distinctive difference between vehicles owned per capita and mode 

share (Balcombe et al., 2004).  Of 15 countries reviewed, the number of vehicles owned per capita often 

demonstrated a negative correlation with public transit mode share.  Regardless, results were not consistent, 

as some countries with a high mode share also had a high level of vehicle ownership, while the opposite 
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was true for others.  The authors theorize that regional contexts play a role in these relationships, therefore 

making it hard to identify a “common” car ownership elasticity.   

Holmgren (2007) further states that demand research with respect to vehicle ownership is relatively 

new.  In their metadata analysis of ridership determinants in Europe, America, and Australia, a variety of 

elasticities ranging from -0.21 to -2.75 are identified.  Unlike Balcombe et al. (2004), he notes no variation 

based on geography or period of analysis, and recommends an overall demand elasticity of -1.48.  

Regardless, the author states that only eight studies included in his review accounted for car ownership in 

their regression models, and therefore recommends that results should be interpreted with caution.   

Research that included a large cross-section of entities found that the proportion of carless 

households was statistically significant in influencing transit demand (Boisjoly et al., 2018).  In their model 

that aggregated bus and rail service levels, a demand elasticity of 0.447 was identified, the second largest 

generated.  An additional model which disaggregated bus and rail service quantity into separate categories 

found a lesser but still statistically significant elasticity of 0.253.  Based on the results, the authors suggest 

that policies aimed at reducing vehicle ownership could be most effective at increasing transit demand. 

A study of transit demand in Boston found similar results, as average household ownership 

demonstrated a statistically significant negative relationship with station-level ridership (S. H. Chen & 

Zegras, 2016).  An elasticity of -0.469 was found for their daily weekday ridership model, consistent with 

findings from Boisjoly et al. (2018).  However, the authors note that factor was removed due to multi-

collinearity when other sources of information, such as distance to CBD and station accessibility indicators, 

were included in the model.  The results provide further explanation as to why findings in relation to this 

variable are scarce when demand elasticity studies are undertaken.    

Finally, the likelihood of using transit in Montreal was estimated using a number of independent 

variables including number of cars per license (Grimsrud & El-Geneidy, 2013).  This variable was selected 

as it demonstrated less correlation with demographic factors compared to household vehicle counts.  

Vehicle ownership was found to display the greatest impact on transit use, as an elasticity of -2.98 was 

found.  Notably, once observation period was controlled for, the impact of this variable on transit use 

decreased significantly, suggesting that a growing number of people are keeping automobiles but might not 

be using them for commuter related transport.  Their findings suggest that the impact of vehicle ownership 

on transit use could have differing impacts depending on trip type examined. 

To summarize, vehicle ownership is expected to have a negative correlation on ridership, although 

findings with respect to differing trip types is somewhat unclear.   
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3.2.11. Gender  
Previous research has shown that gender can influence demand for transit.  Like income, these 

findings are relatively limited in the space of demand elasticity studies, but travel surveys and qualitative 

studies have suggested this correlation.  An analysis of origin-destination survey data collected in Montreal 

was used to explain station access distance during the a.m. peak period (Vijayakumar et al., 2011).  Notably, 

gender was found to be one of the most influential factors, as they estimated that station access distance of 

males is 12.5% larger compared to females.  The results suggest areas that contain a higher percentage of 

male residents should result in larger ridership figures, as the station catchment area and associated 

customer base is greater compared to environments with a larger proportion of females.  In contrast, a 

similar analysis of origin-destination surveys in Montreal found that female respondents were more likely 

to use public transit for commuter related trips (Grimsrud & El-Geneidy, 2013).  Unlike Vijayakumar et al. 

(2011), survey data obtained in 1998, 2003, and 2008 was analyzed in an attempt to explain transit use.  

Notably, transit use was found to be higher amongst female respondents, although the significance of this 

relationship declined over time.  For example, observations obtained in 1998 found this relationship to be 

statistically significant in all age groups examined, whereas a statistically significant relationship was only 

present in the 50-54-year-old age group in 2008.  The results suggest that transit demand could be influenced 

by gender, although impacts might decline as service and system infrastructure is developed to higher 

standards.  Further investigation is recommended by the authors.  

Like Grimsrud & El-Geneidy (2013), a ridership demand study in Calgary found that communities 

with a large proportion of male residents were more likely to take transit (Pasha et al., 2016).  Further, 

communities associated with female lone parents did not use transit often in their study.  An analysis of 

data obtained from the Utah Household Travel Survey further found that females have a significantly larger 

cost associated with transit use compared to males, therefore resulting in lower trip generation rates (Farber 

et al., 2014).  Both studies indicate that the level of disutility associated with transit use is greater for females 

compared to males, although rationale is not provided.  Notably, the demand study produced by Farber et 

al. (2014) included both bus, light rail, and commuter rail ridership, indicating that these effects could be 

expected regardless of mode examined.   

Various qualitative studies have theorized that gender differences in transport behavior are often a 

result of safety concerns.  In Los Angeles, California, travel surveys were distributed to residents located 

within six station catchment areas before and after the corridor became operational, to see if mode share or 

trip generation rates changed significantly.  Respondents were asked to record trip activity, including 

information regarding socioeconomic characteristics, over a seven-day period.  Additional questions ranked 

on a 7-Point Likert scale were asked regarding environmental beliefs and safety concerns related to transit 

use.  The analysis revealed that change in transport behavior varied depending on the gender of the 
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respondent.  For example, a ridership was negatively correlated with gender once a a female respondent 

dummy variable was included in the model.  Additionally, the respondent’s measure of safety was also 

significantly correlated with female respondents and transit use.  A qualitative analysis of female transit 

users in Irvine, California, generated similar findings (Hsu, 2008).  The authors hypothesized that in the 

face of sexual harassment vulnerability, female riders might alter their travel patterns or switch modes 

altogether if they feel unsafe.  Using a panel of 18 middle-aged female respondents, questions regarding 

their perception, personal experience, position regarding proposed and existing policies aimed to address 

these issues were asked.  A qualitative review of responses found that safety and security might be an 

important consideration for females when making decisions regarding transport behavior.  For example, 

respondents were found to make changes to travel patterns, routes, or boarding/alighting destination if they 

were concerned about the occurrence of sexual harassment.  The results suggest that females are less likely 

to use transit compared to males due to safety and security concerns disproportionally realized by the female 

gender.   

A study of transport behavior in Chicago suggested an alternative explanation (C. Miller & Savage, 

2017).  When year over year ridership trends were examined, the author also found that station catchment 

areas containing large proportions of males were significantly correlated with increases in station level 

ridership.  Furthermore, results were significant in all day types examined, including weekdays, Saturdays, 

and Sundays / holidays.  Unlike the results summarized above, the authors theorize that changes to the 

urban environment, rather than attitudinal concerns regarding safety and security, can explain these trends.  

For example, the authors outline that neighborhoods with unusually large proportions of males emerged in 

areas that were gentrified during the study period, and that the first “new wave” of settlers in these areas 

were men.  In contrast, females were found to live more frequently in neighborhoods where development 

remained stable.  They further note that neighborhoods associated with gentrified developments also 

increased trip generation rates during off-peak hours, as restaurants and nightlife associated with these areas 

attracts traffic in all time periods.  Therefore, they theorize that trends associated with gentrification, 

settlement, and change to the urban form are likely to explain gender differences in transit demand.   

To summarize, the literature suggests that gender differences regarding safety and security can 

negatively impact female’s likelihood of using transit, but contextual information regarding development 

patterns and changes to the urban form can also explain observed trends.   

 

3.2.12. Age 
Various studies have suggested that younger age cohorts are more likely to use public transit.  The 

direct impact of age on mode choice behavior was analyzed in a study of origin-destination surveys by 

Grimsrud et al. (2013).  After computing separate mode share models that controlled for age of the 
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respondent, they determined that transit mode share was larger for young persons compared to older aged 

populations.  The authors theorize that this could be attributed to an increase in environment and 

sustainability related material in the school curriculum, thus resulting in younger age groups choosing travel 

modes that are more sustainable.  They also theorize that attitudes and behaviors of younger adults are 

changing, meaning that negative perceptions associated with public transit are not as abundant compared 

to older populations.  The author recommends that discounted fares for young professionals could be 

implemented to further increase ridership, whereas discount fare cards received by university and high 

school students should be sustained.   

Demand elasticity studies that controlled for age revealed similar findings, as a study of rail users 

in the United Kingdom found that children were less affected by fare price changes compared to older 

populations (Balcombe et al., 2004).  A fare price elasticity of -0.47 was calculated, whereas adults and the 

elderly/disabled demonstrated fare elasticities of -0.59 and -0.77 respectively.  The authors note that 

children are more likely to be captive users, while older aged populations are likely to be discretionary 

users.  Therefore, the authors state that differing elasticities should be expected as income, vehicle 

ownership, and trip purpose can vary between age cohorts. 

Percent of population in college was included as an independent variable in an examination of 

transit ridership trends throughout the United States (Taylor et al., 2009).  The authors identified a 

significant relationship with respect to total ridership, as an elasticity of 0.228 was estimated.  Similar 

results were identified in an analysis of ridership trends in Canada, as the proportion of postsecondary 

students demonstrated a statistically significant elasticity of 0.117 (Diab et al., 2020).  Taylor et al. (200) 

notes that the inclusion of this variable rendered other variables, such as poverty, insignificant as areas 

examined with the largest poverty rates were those located within college towns.  Like Balcombe et al. 

(2004), the results indicate that younger populations are more likely to take transit compared to older 

populations, most likely a result of low income and unavailability of other mode choices.  A statistically 

significant, yet substantially smaller demand elasticity of 0.02 was identified in a demand elasticity study 

of 67 urbanized areas throughout the United States, but the authors theorize their results could be minimized 

by the fact that annual data was used to record this variable, whereas the majority of other variables included 

in the dataset were made available at monthly intervals (Lee & Lee, 2013).   

Diab et al. (2020) also included percent of population that are children and percent of population 

that are senior to see if transit demand was stimulated by those not in the workforce.  Both variables were 

excluded from their overall ridership model due to insignificance.  However, percentage of population that 

are senior was included in their model that specifically examined ridership in large transit agencies, where 

a statistically significant elasticity of 0.123 was found.  The results indicate that older aged adults in large 
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urban areas are more likely to use transit, most likely to access recreational or discretionary uses within the 

city. 

The literature suggests that younger people are expected to use transit if alternative travel options 

are not readily available, while older people could be more likely to use transit in off-peak periods due to 

discretionary related travel patterns.   

 

3.2.13. Households with Children  
The literature illustrates that transit demand is negatively influenced by the number of dependants, 

specifically children, at the household level.  A mode share study in Montreal found a statistically 

significant negative correlation between transit use and the presence of children aged 5 years or younger.  

A negative elasticity of -0.22 was found when mode choice across all time periods and age groups was 

considered (Grimsrud & El-Geneidy, 2013).  Similar findings were identified in a study of transit ridership 

in Utah, as transit use demonstrated an inverse relationship with the number of children and retirees at the 

household level (Farber et al., 2014).  El-Geneidy et al. (2013) theorized that adult members are faced with 

more responsibility when young children are introduced to the household.  Therefore, the disutility of 

private auto ownership is offset by the convenience and travel time benefits generated, thus making it more 

favorable compared to transit.  Findings generated by a case study of the Orlando SunRail commuter rail 

system reinforced this observation, as the authors found that station-level ridership was reduced 

significantly in the presence of education centers (Rahman et al., 2019).  Assuming that a greater proportion 

of families and children live in close proximity to schools, observed transit figures could be explained by a 

large proportion of the customer base using private auto to facilitate school-related transport patterns in the 

a.m. and p.m. peak periods.  El-Geneidy et al. (2013 further disaggregated their analysis by age group, and 

found greater significance amongst individuals whose age ranged from late 20s to early 30s.  Their results 

suggest that transit demand is temporarily reduced for adults once children are born, but impacts are reduced 

as children eventually grow older and become more transit dependant.    

A study of transit ridership in Calgary tested many factors in an attempt to quantify the impact of 

children on mode choice behaviour (Pasha et al., 2016).  Of these, number of children less than 14, a family 

size of three, share of lone parent families with female lone parent, and share of couple families without 

children were all found to be statistically significant in explaining mode share.  A negative coefficient 

associated with number of children less than 14, coupled with a positive coefficient of share of couple 

families without children, indicated that communities with large proportions of young children were more 

likely to be auto dependant, thus reducing transit usage.  The authors theorize that inconvenience associated 

with travelling on public transit with kids could be a factor, while kids might be prevented from using transit 

themselves due to parental concerns regarding safety and security.  However, the authors also found a 
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statistically significant positive correlation with family size and transit mode share, suggesting that large 

families with older children are more likely to use transit due to diversified trip destinations.  Consistent 

with El-Geneidy et al. (2013), the results suggest that presence of pre-teen children is a limiting factor on 

household transit use.   

The literature indicates that private modes are favoured when children are introduced to the 

household, likely due to convenience and travel time benefits that cannot be matched by public transit 

modes.  Therefore, the presence of children at the household level is expected to have a negative influence 

on ridership. 

 

3.2.14. Fuel Price 
A variety of studies has shown that the price of gas is a determinantal variable that can influence 

transit demand.  Frondel (2011) examined the main determinants of transit ridership in Germany, paying 

specific attention to the elasticity of ridership with respect to fuel price.  Using household travel surveys 

obtained from the German Mobility Panel, he found that increased fuel prices were a major factor in 

explaining transit demand, as an elasticity of 0.262 was identified.  Various studies have reinforced these 

observations, but have noted that demand elasticities are influenced by the availability of alternative modes.  

For example, a survey of residents in Austin, Texas, found that only 17.7% of private auto users would 

switch to transit if fuel prices were increased (Bomberg & Kockelman, 2012).  In contrast, an analysis of 

rail demand throughout the United States found that demand elasticities with respect to fuel price were 

typically largest in cities with expansive transit systems, such as Cleveland, Ohio, and Seattle, Washington.  

Average price per gallon of fuel was included as a factor in an analysis of transit ridership throughout the 

state of Washington, where an aggregate elasticity of 0.172 was identified when all entities were modelled 

(Stover & Christine Bae, 2011).  However, insignificance was identified in four of the eleven areas 

examined when individual regression models were computed.  Findings were further disaggregated when 

urban area size was controlled for, as a long-run elasticity of 0.22 was calculated for large urban areas, 

compared to a 0.13 long-run elasticity shown in small urban spaces.  The results indicate that adequate 

transit service offerings need to be in place for consumer response to occur, as mode shift cannot occur if 

alternatives are not available. 

Several studies have noted that short run consumer response to fuel price increases could be 

minimal.  A study of New Jersey Transit ridership identified a short-run elasticity of 0.11, compared to a 

long-run elasticity of 0.19.  A comparable but insignificant short-run elasticity was identified in a separate 

study of New Jersey Transit ridership, but the authors note that their time-series analyzed might not have 

been long enough to capture changes in consumer response (Yanmaz-Tuzel & Ozbay, 2010).  Similar 

conclusions were reached in a study of city and regional transit systems in Chicago (Nowak & Savage, 
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2013).  When Metra commuter rail ridership was assessed, a ridership elasticity with respect to gas price of 

0.002 was calculated.  The authors theorize that their results might be lower than previous estimates, as 

their 12-month data collection period would not have captured long run effects.  These findings indicate 

that users are relatively insensitive to short-term fluctuations in gas price, and that maintained increases are 

instead needed to encourage mode shift.   

Demand elasticities with respect to fuel price have further shown to differ depending on spatial 

context.  A meta-analysis of demand elasticities studies identified a short-run elasticity of 0.4 for those 

conducted in Europe, compared to a short-run elasticity of 0.82 for those completed in America and 

Australia.  Similar trends were noted when long-run elasticities were summarized.  The findings suggest 

that European users are less responsive to fuel price increases compared to American and Australian 

examples.  Stover and Bae (2011) theorize that this can occur in the presence of paid parking schemes, 

congestion, and toll roads, as the cost of driving could be increased to a  threshold where fuel price changes 

would have marginal impacts.  Guerra and Cervero (2011) also note that demand elasticities with respect 

to fuel price should be interpreted with caution, as fuel price is only one cost associated with private 

automobile operation.  Therefore, change in other factors such as parking costs and toll road charges could 

further influence elasticity estimates if not controlled for.  Balcombe et al. (2004) further states that the 

initial cost of car ownership is high in Europe therefore preventing market access for a large proportion of 

consumers.  As a result, consumers in these markets are less responsive to change in automobile operation 

costs, as other variables associated with automobile ownership and access prevents mode shift from 

occurring.  These findings highlight the importance of controlling for factors specific to the regional context 

when conducting demand elasticity studies.   

Currie and Phung (2007) suggests that mode examined can heavily influence elasticity estimates.  

They calculated an aggregate ridership elasticity with respect to gas price of 0.104 for all modes, but a 

negative and insignificant ridership elasticity of -0.093 was calculated when commuter rail systems were 

analyzed in a separate model.  In contrast, elasticity values ranging from 0.27 to 0.28 were calculated in an 

assessment of Philadelphia’s regional rail system (Maley & Weinberger, 2009).  The authors theorize that 

their findings could be influenced by the presence of more choice riders, whereas users of other transit 

systems in the area, such as city bus, are typically captive riders.  Both authors note that other variables 

such as fare and service data were not included in their analysis, meaning that results should be interpreted 

with caution.   

Demand elasticities have also been shown to differ depending on the baseline price of gasoline.  

For example, when commuter rail ridership was examined, a demand elasticity with respect to fuel price of 

0.61 was identified.  However, an elasticity of 0.527 was shown when a price threshold of three dollars per 

gallon was reached.  Similar results were identified in Bomberg’s (2012) study, who estimated that ridership 
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increased to a greater extent when gas price increased and stayed at four dollar per gallon.  The results 

suggest transit demand could be stimulated if high gas prices are sustained.    

To summarize, the literature suggests that a wide range of factors, including price and availability 

of alternatives, mode examined, and baseline price can influence demand elasticities with respect to fuel 

price.  However, a consistent and significant negative correlation with ridership should be expected if long-

run impacts are captured.   

 

3.3. Data Collection Methods  
3.3.1. Delineation of Station Catchment Areas 

According to the literature, station catchment areas are used to extract external variable datasets 

included in demand elasticity studies.  A station catchment area is defined as a spatial boundary that 

encompasses the area where the majority of non-transferring passengers originate from (Andersen & 

Landex, 2008).  In other words, the station catchment area can be viewed as the customer base for a given 

transit station or network. When using household statistics to formulate external variable datasets, station 

catchment areas should be as accurate as possible to ensure that data being captured is reflective of the 

customer base.   

Station catchment areas are delineated using a variety of methods.  Most commonly, station 

catchment areas are determined as a function of the maximum distance a transit user is willing to reach.  In 

North America, this is commonly done by implementing a circular Euclidian buffer around a given station, 

ranging in distance from 400-800 metres (Andersen & Landex, 2008; Durning & Townsend, 2015; El-

Geneidy et al., 2014; Guerra et al., 2012).  The size of the catchment area reflects the assumption that a 

passenger walking at a speed of 1.3 metres per second can reach the station within ten minutes (Guerra et 

al., 2012).  External variable datasets lying within the buffer are then extracted for further analysis.  Network 

buffers are also commonly used to delineate station catchment areas.  Unlike Euclidian buffers, aspects of 

the urban environment that might impede station access are incorporated into the estimate (Andersen & 

Landex, 2008).  Therefore, distribution and layout of road networks, pathways, buildings, rivers, and other 

natural / built features are incorporated to generate a more realistic station catchment area that is not uniform 

in size or shape.  Both Euclidian and network buffers can be estimated in terms of access time, rather than 

access distance, if the researcher chooses to do so.  

A study of 21 transit systems across the United States was conducted to determine if demand model 

accuracy differed on the Euclidian distance used to extract external variable datasets (Guerra et al., 2012).  

Data was extracted from 1,449 station catchment areas in 21 American cities, using buffers ranging in size 

from 0.25 miles to 1.5 miles.  Model results did not improve depending on the size of the Euclidian buffer 

used, indicating that a “correct” station catchment area size is far from clear, and likely varies with the 
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spatial context of the study.  The authors state that based on these findings, researchers should use datasets 

that are easily calculatable and readily available when extracting external variable data.  However, 

commuter rail stations were not included in their analysis.   

The use of Euclidian and network buffer thresholds can be improved by weighing extracted data 

according to station access distance, as transit ridership is negatively correlated with this variable.  Keiier 

and Rietveld (2000) found that people living 500-1000 metres from rail stations use transit 20% less 

compared to people living within 500 metres from the station.  Another study in south Florida used onboard 

surveys to determine that the majority of trips originated within 1,800 feet of a transit stop, while few trips 

originated more than 2,700 feet from the access station (Zhao et al., 2003).  Using this data, the author was 

able to model a distance-decay curve which indicated that transit use beyond a 0.5 Euclidian buffer is 3% 

of that within a 300-foot Euclidian buffer.  Therefore, the authors recommend that distance decay-functions 

should be applied to external variable datasets, as their results indicate that data extracted from areas in 

close proximity to the station is more characteristic of the customer base.   

A direct demand analysis of transit riders in Madrid, Spain incorporated a distance decay function 

while extracting external variable data for use in their study (Gutiérrez et al., 2011).  Consistent with Zhao 

et al. (2003), they stated that external variables extracted from station catchment areas should not be 

weighted equally, as households in close proximity to the station have a larger impact in explaining demand.  

Several demand models were tested using a variety of station catchment area delineation methods.  They 

found that using a network distance threshold, coupled with a distance-decay function, improved model fit 

by 5.2% compared to the model using a Euclidian distance threshold with no distance decay function.  Their 

findings indicate that ridership models that use sophisticated methods to estimate station catchment areas 

produce more accurate demand models. 

Regardless, previous studies have suggested that station access distance varies depending on a 

number of factors.  A study of origin-destination surveys in Montreal identified a mean walking access 

distance of 1259 metres for commuter rail, 873 metres for subway, and 484 metres to 897 metres for bus, 

depending on the type of service provided (El-Geneidy et al., 2014).  A separate analysis incorporated 

demographic and socioeconomic data into their estimation of station access distance, also obtained via an 

onboard survey (Vijayakumar et al., 2011).  The authors found that gender, age, park and ride capacity, 

overall trip length, and service quantity / quality variables were statistically significant in determining 

station access distance.   For example, the station access distance of males was found to be 12.5% longer 

compared to females, while an additional 100 park and ride spaces at the station level resulted in an 

increased access distance of 0.38%.  Further to this, a GIS analysis of transit riders found that station access 

distance was largely a function of station access mode (Wang et al., 2016).  Customer origin points were 

collected for over four thousand public transit users after a survey was administered in Beijing, China.  GIS 
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tools were applied to this dataset to determine the most likely station access distance and associated access 

mode used by the sample.  The authors found that walkers had a mean access distance of 430 metres, 

compared to 9115 metres by those accessing the system via private automobile.  Their results indicate that 

the station catchment area of high order transit systems is much larger, especially when commuter rail 

systems are considered since the majority of customers use private auto to access the system.  Therefore, 

station catchment boundaries should be delineated using techniques other than Euclidian or network-based 

buffers to ensure that areas are digitized that reflect the actual customer base. 

An analysis of station access quality throughout the GO Transit rail network echoes the concerns 

brought forth in the previous studies (Engel-Yan et al., 2014).  The authors state that using a 400 to 800-

meter arbitrary buffer is not applicable for commuter rail systems, as the majority of passengers access the 

system via automobile.  Therefore, buffers estimated using alternative methods are needed to ensure that 

the majority of riders and associated external variable datasets are captured.  Instead of using arbitrary 

buffers that are larger in size, Engel et al. (2014) outlines a methodology that uses customer origin data to 

formulate station catchment areas to ensure that the size and shape of the buffer is representative of 

customer origin locations.  In their analysis, the authors gathered customer origin point data via station level 

surveys, and mapped customer origin points using GIS tools.  After the removal of outliers (ex. customer 

origins located more than 10km from the station, and an additional 10% of observations located farthest 

from the centre mean of observations) a convex hull polygon was digitized around these points.  The authors 

highlight notable differences between using observed customer origin locations compared to arbitrary 

buffers.  For example, they note that for some stations located in industrial areas, the estimated catchment 

area did not even include the station.  They also note that for most estimates, the station was not centered 

in the catchment area, with the boundary typically stretched in the opposite direction of the CBD.  Their 

results reinforce that the creation of station catchment areas is more accurate when estimated using observed 

customer origin locations, rather than methods that generalize the station access behavior of the customer 

base.     

 

3.3.2. Feeder Bus Connection Quality Indicators  
As noted in Section 3.2.4, previous studies have identified that transit demand is dependent on the 

availability of station access options, as customers need a means of accessing the station.  If station 

accessibility is not easily available or convenient, riders will be pushed to other modes that are more 

accessible, resulting in stagnant ridership growth.  Various studies have suggested that station access is a 

key component of the GO Expansion Program.  The 2016 Station Access Plan notes that approximately 

62% of GO Transit riders access the station using park and ride infrastructure, but approximately 85% of 

parking lots are at or are near capacity (Government of Ontario, 2016).  Therefore, Metrolinx theorizes that 
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additional park and ride spaces need to be constructed to account for increased demand, or alternative 

station access choices should be explored to accommodate new customers.   

A study of station access options in the study area found that while feeder bus connections are 

provided to GO Transit stations, accessibility and quality of connecting services could be improved (Engel-

Yan et al., 2014).  For example, the authors note that most feeder bus routes do not serve areas where 

customers live, and that direct service is rarely provided to GO Transit stations.  Therefore, customers often 

chose private auto to facilitate station access, as large travel times due to service layouts results in a large 

amount of disutility experienced by the user.  Their findings suggest that the accessibility, service quantity, 

and service quality of feeder bus systems should be considered in demand elasticity studies, as a 

combination of these aspects, rather than just service provision, are determinantal in growing regional rail 

ridership.   

Of the sources reviewed, ridership elasticity studies have traditionally assessed the impact of feeder 

bus connections on ridership through the use of a dummy variable to indicate the presence of service, or by 

recording the number of station level connections / feeder bus lines.  Therefore, this metric ignores the 

characteristics highlighted in the previous paragraph as being determinantal to use.  A new methodology 

for recording feeder bus connection data that incorporates both system accessibility, service quality, and 

service quantity is recommended which incorporates these aspects into the indicator used to measure feeder 

bus connection quality. 

 

3.4. Justification for Study 
The literature revealed that a variety of factors can influence transit demand.  Table 3 summarizes 

how factors related to station accessibility, metropolitan economy, demographics, the price and availability 

of alternative services, and transit system characteristics are expected to influence commuter rail demand.  

This table could be referenced by regional transit planners or transportation researchers when researching 

demand elasticities in relation to commuter rail ridership.     

Interestingly, demand elasticity estimates were found to vary depending on a number of aspects.  

Most notably, the sign of various relationships differed depending on the transit mode examined.  For 

example, commuter rail ridership demonstrated an opposite relationship with distance to CBD, 

unemployment rate, and income compared to studies that analyzed overall transit demand.  The significance 

and magnitude of various relationships was also impacted by modal classification, as commuter rail demand 

was shown to be less responsive to change in fare price and vehicle ownership, compared to other modes 

such as bus and light rail transit.  Alternatively, service quantity was found to have a greater impact on 

commuter rail demand compared to alternative transit modes examined.   
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Demand elasticities were also found to differ depending on the geographical context of the study.  

Specifically, demand elasticities with respect to fuel price were typically found to have twice the impact on 

ridership in North American cities compared to European examples.  Differences in climatic conditions 

were also shown to have a significant impact on transit demand.   

Studies that disaggregated ridership figures by time of day further illustrated that trip type can 

influence the size and significance of various demand elasticities.  Most notably, population density was 

found to have a significant impact on ridership during the a.m. peak period, while employment density was 

found to have a greater impact on p.m. peak ridership.  Station accessibility indicators were also found to 

have differing impacts once trip type was controlled for.   

Finally, the literature suggests that transit demand responds more significantly to various factors 

over the long-run compared to the short-run.  For example, considerable lags were noted when fare price, 

service quantity, employment, and fuel price demand elasticities were calculated over both short and long-

run time periods.  Therefore, previous demand elasticity estimates could be understated if a lack of data 

was available for the researcher to analyze.   

The literature suggests that a general understanding of public transit and subsequent commuter rail 

demand can be gathered from previous studies.  However, a demand elasticity study has not been conducted 

in the context of the Greater Golden Horseshoe that: 

 

1. Calculated demand elasticity estimates specific to commuter rail ridership, 

2. Evaluated how commuter rail demand responds relative to trip type, 

3. Considered the impact that various station accessibility indicators may have on demand,  

4. Utilized a longitudinal dataset to incorporate both cross-sectional and temporal information into 

the analysis.   

 

Further, the Canadian Urban Transit Association recommends that when specific research questions 

relating to transit demand are proposed, studies that analyze a specific mode, geography, and trip type are 

most effective as they include and account for factors and variables specific to the regional context being 

examined (E. J. Miller et al., 2018).  Therefore, a demand elasticity study specific to the GO Transit rail 

system is needed to determine the main determinants of ridership, and to see if service quantity is the most 

significant variable that ridership responds to.  The results will indicate if the service expansions proposed 

within the GO Expansion Program are the most effective means of growing ridership and encouraging mode 

shift in the Greater Golden Horseshoe, or if additional policy directions should be considered by Metrolinx 

to ensure that mode share and ridership targets proposed within the GO Expansion Program are achieved.   
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Table 3 - Hypothesized Relationships between Ridership and Independent Variables 

Expected Relationship With Dependent Variable 
Independent Variable Expected  

Relationship 
Rationale 

Population Density + More population results in larger customer base.   

Employment Density + Larger levels of employment generate commuter trips.  

Gender - Female  - Safety / convenience of travel more important to females  

compared to males, results in higher disutility for public transport. 

Income + / - (-) Greater value of time, availability of substitute transport modes increases. 

(+) More CBD bound trips generated due to increased employment 

responsibilities. 

Unemployment Rate + / - (+) More unemployment results in more captive riders.   

(-) More unemployment reduces number of commuter related trips. 

Age + / - (+) Older aged adults less likely to engage in commuter related travel, but more 

likely to generate discretionary related trips during off-peak periods. 

(-) Young professionals / students more likely to use cost effective transport 

modes. 

Households With Children - Number of dependents increases cost and decreases utility of public  

transport, thereby making other transport options more convenient. 

Vehicle Availability / Ownership + / - (+) Vehicle ownership complementary access mode for majority of commuter 

rail users. 

(-) Vehicle availability results in less captive riders. 

Fuel Price + Increase in fuel price disincentivizes alternative transport modes. 

Service Quantity + More service increases convenience, flexibility associated with transit. 

Fare Price - Larger fares disincentivizes transit use. 

Distance to Central Business  

District – Near 

- Greater selection of cost competitive and more convenient transit modes. 

Distance to Central Business  

District – Far 

+ Less mode choice options, GO Transit only transit  

mode available for long distance travel.   

Number of Parking Spaces + More parking spaces can accommodate  

more park and ride customers.   

Feeder Bus Connection Quality  

(transit access time) 

- Longer transit access times decrease system accessibility. 

Winter - Rain, snow, cold temperatures discourage transit use. 

Spring + Increase in discretionary trips related to tourism. 

Summer  + Increase in discretionary trips related to tourism. 

Fall - Rain, snow, cold temperatures discourage transit use. 
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3.5. Chapter Summary 
The first section of this literature review summarized methods frequently used by transit researchers 

to understand demand.  Most commonly, econometric analysis is undertaken which explains how ridership 

is influenced by change in a variety of internal and external variables.  The literature identified that this 

analysis is most commonly completed using an ordinary least squares estimator, although more advanced 

methods are used if both cross-sectional and temporal information is available to the researcher.   

The next section reviewed academic literature to identify variables that have been shown to 

influence transit demand.  Variables such as service quantity, fare price, population and employment density 

continuously demonstrate a consistent relationship with transit demand, while findings in relation to other 

demographic, socioeconomic, and station accessibility indicators are less certain.  Notably, the influence, 

significance, and importance of these relationships were shown to vary depending on mode examined, 

regional context of the study, trip type, and data availability.  The results suggest that a demand elasticity 

study specific to the study area is needed in order to accurately answer the research questions proposed in 

Section 1.5.  A complete list of all studies summarized in this section of the literature review can be found 

in Appendix B.  This resource could be used by transit researchers interested in identifying demand 

elasticity research that has previously been conducted.   

The literature review further summarized data collection methods commonly used in transit 

demand studies.  Specifically, methods used to delineate station catchment variables were summarized, as 

the accuracy of external variable datasets and corresponding model performance is dependent on the 

method selected by the researcher.  Commonly, station catchment boundaries are digitized using Euclidian 

or network-based buffers, but inaccurate datasets could be captured if the station access distance of the 

customer base is extensive.  Since this is the case for commuter rail systems, alternative methods such as 

the use of customer origin data to delineate station catchment boundaries is recommended.  Methods used 

to represent station access indicators, including feeder bus connections, were also summarized.  Notably, 

the literature states that this variable is commonly represented using a dummy variable, and other aspects 

that could be determinantal to use and subsequent ridership are understated.  The use of an indicator that 

incorporates the quality and accessibility of feeder bus routes is therefore recommended.   

Various gaps in the literature were then identified.  Notably, it was found that a demand elasticity 

study is needed in relation to GO Transit rail ridership to understand what variables are most determinantal 

to commuter rail demand.  The following chapter outlines the research approach adopted to answer these 

questions.   
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4. Methodology  
4.1. Station Selection  

Data was collected at the station-level from January 

2016 to December 2019.  All stations along the Lakeshore 

West, Lakeshore East, Milton, Kitchener, Barrie, Richmond 

Hill, and Stouffville corridors were initially considered for 

inclusion in the study.  Stations along the Niagara Falls corridor 

were excluded as regular weekday service was not offered 

during this time period.  To ensure that the effects of network 

expansion were not captured in the demand elasticity models, 

Gormley GO Station and Downsview Park GO Station were 

excluded as they only became operational in December 2016 

and January 2018 respectively.  Union Station was also 

excluded from the analysis as its inclusion would have 

produced skewed model outputs, as ridership is concentrated at 

this station in all time periods except for the a.m. peak period.  

Hamilton GO Centre and West Harbour GO Station were also 

eliminated from the analysis, as minimal service was provided 

to these stations in contrast to two-way, all-day service that was 

provided to all remaining stations along the Lakeshore West 

corridor for the duration of the time-series.  As a result, 

Aldershot GO Station was selected as the terminus station for 

this corridor, as the number of trips originating and terminating 

 

Figure 3 - Study Area - GO Transit Rail Stations Included in Analysis 
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at this location was more characteristic of a termini station compared to Hamilton GO Centre or West 

Harbour GO Station.  After these adjustments were made, a total of 61 stations were included in the analysis 

as shown in Figure 3.  

Danforth GO Station is the only station in the network other than Union Station that services 

multiple corridors, as vehicles travelling on both the Lakeshore East and Stouffville corridors pass through 

Danforth GO Station.  Ridership, fare price, and level of service data at this station is therefore aggregated 

to reflect both customer bases.   

 

4.2. Time Parameters and Trip Types Analyzed 
Data was recorded at monthly intervals, resulting in a total of 48 observation periods.  Data 

collection was further disaggregated by time of boarding so that trip type could be controlled for.  Therefore, 

separate datasets and models were created for the a.m. peak, midday off-peak, p.m. peak, and evening off-

peak time periods.  The time parameters as indicated in Table 4 were used to delineate these datasets.  An 

observation was only included in the analysis if outbound service was offered at the given station at a given 

observation period.  All stations in the study area offer outbound service during the a.m. peak period; 

therefore, all 61 stations were included in the a.m. peak period analysis, resulting in a balanced panel.  Fewer 

stations were included in the midday off-peak and evening off-peak models, as two-way, all-day service is 

currently only provided to stations located along the Lakeshore West and Lakeshore East corridors.  A 

reduced number of stations were also included in the p.m. peak analysis, as termini stations were excluded 

if outbound service was not offered during this time period.  Since the dependent variable used to record 

ridership was number of boardings, ridership figures could not be obtained if a departing in-service trip was 

not avaliable.  For this reason, the majority of termini stations outside of the a.m. peak period saw reduced 

levels of service if two-way service was not provided.   

 

4.3. Modelling Framework  
4.3.1. Panel Data Analysis 

 As outlined in Section 3.1.6, panel data estimators 

build on the simple OLS model as additional terms which 

account for serial correlation and unobserved factors are 

introduced into the model.  This methodology was selected 

as the dataset being analyzed has both a temporal and 

cross-sectional component, as observations at the station-

level are being analyzed over a 48-month time-series.  

Trip Type Time Parameters 
Trip Type Start 

Time 
End 
Time 

A.M. Peak 5:00 9:30 

Midday Off-Peak 9:31 14:59 

P.M. Peak 15:00 19:00 

Evening Off-

Peak 

19:01 26:00 

Table 4 - Time Parameters Used to Define Trip Types 



55 
 

Therefore, the panel data methodology results in the estimation of more reliable and efficient demand 

elasticities compared to those computed using a simple OLS methodology.   

 

4.3.2. Model Assumptions 
When linear regression analysis is conducted utilizing the OLS framework, several conditions should 

be met to ensure that model outputs are efficient, unbiased, and accurate (Wooldridge, 2012).  Otherwise 

known as the Gauss-Markov assumptions, these include:  

 

• Linearity, 

• Random Sampling, 

• Non-Collinearity, 

• Exogeneity, 

• Homoscedasticity. 

 

If these assumptions are not satisfied, inaccurate model outputs could be produced.  For example, when 

multi-collinearity amongst two independent variables is present, this indicates that both factors are 

correlated with each other in addition to the dependent variable.  In other words, this introduces redundancy 

into the model, as the same relationship is being captured by two independent variable datasets.  When this 

occurs, the significance of the true relationship can be understated, as some the variance in the dependent 

variable is captured by a redundant supply of information.  This could lead the researcher to conclude that 

both factors are insignificant in explaining the dependent variable, thus warranting exclusion from the 

model, while the relationship could in fact be significant if represented by a single source of information.  

In addition to multi-collinearity, Table 5 further outlines issues that could be encountered by the researcher 

if the Gauss-Markov assumptions are violated.  The use of preliminary analysis and various test statistics 

are often used by researchers to ensure that the Gauss-Markov assumptions are met before the regression 

analysis procedure is completed.    

 

Table 5 - Outline of Gauss-Markov Assumptions for Linear Regression Models, from Wooldridge (2012) 

Assumption Algebraic Expression Description Issues If Violated 
Linearity γ = 	β! +	β"x + u Assumes the dependent variable is 

a linear function of the 
independent variable(s). 

Coefficients could be biased 
and inefficient.  

Random Sampling {(x#, y#): i = 1, 2, … , n} Assumes that the sample is 
obtained from a random subset of 
the population. 

Results cannot be interpreted 
/ applied to general 
population.     
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Non-Collinearity {x#, i = 1,… , n} Assumes that independent 
variables are not correlated with 
one another.  

Coefficients could be 
overestimated and display 
opposite sign.  Model will be 
less efficient, but unbiased.   

Exogeneity E(u	|x) = 0 Assumes that the error has an 
expected value of zero given any 
value of the independent variable 
(s).  Therefore, the error term 
cannot be correlated with the 
independent variable(s).  

Coefficients could be 
overestimated.  Model could 
be biased if omitted variables, 
measurement errors, etc. 
introduce error into the 
model.   

Homoskedasticity Var(u|x) = 	σ$ Assumes that the variance of the 
error term is the same given any 
value of the independent variable 
(s).   

Coefficients could be 
overestimated.  Model  will 
be less efficient, but 
unbiased.  

 

Wooldridge (2012) further states that when panel datasets are analyzed, the structure of the data results 

in the inherent violation of various Gauss-Markov assumptions.  For example, the assumption of random 

sampling is fundamentally violated, as data points are continuously obtained from the same entities over a 

defined time-series.  Further, this leads to the violation of homoskedasticity, as values obtained in an 

observation period naturally depend on conditions observed in a prior observation period.  Therefore, serial 

autocorrelation and spatial dependencies often arise.    

When analyzing panel datasets, it is common practice to first ensure that multi-collinearity is not present 

to ensure that coefficients and relationships are accurate.  This is commonly accomplished using cross-

correlation tables and variance inflation factor scores, which highlight independent variables are highly 

related with each other.  If a high level of correlation is identified between two factors, one is removed from 

the model to ensure that the relationship is only captured by one source of information. 

Panel data estimators are then used to estimate model outputs, which build on the simple OLS 

framework but include additional terms that can account for exogeneity of the error terms and spatial / 

temporal dependencies.  These estimators are outlined in the following sections. 

 

4.3.3. Pooled Ordinary Least Squares 

Pooled OLS is the most simplistic approach used when modeling panel data, as a simple OLS 

regression is run on all observations included in the dataset.  This approach is commonly selected when an 

unbalanced panel is being analyzed, or when sample entities vary greatly throughout the time-series 

(Wooldridge, 2012).  Notably, assumptions regarding individual heterogeneity are ignored using this 

approach, meaning that spatial and temporal effects which could impact the true nature of the relationship 

between the independent variable(s) and dependent variables are not accounted for.  As a result, many 

pooled OLS outputs appear to be good, as statistically significant coefficients, expected relationships, and 



57 
 

large R-squared values are computed (Gill-Carcia, JR. Puron-Cid, 2014).  However, since spatial and 

temporal relationships are ignored, auto-correlation within the data results in the overestimation of model 

parameters (Gill-Carcia, JR. Puron-Cid, 2014).  Therefore, pooled OLS is rarely used in final model outputs, 

and is instead used as a baseline to introduce more advanced modeling frameworks.   

 

4.3.4. Fixed Effect  

A fixed effect model is used when the researcher is interested in analyzing the impact of 

independent variables that vary over time.  The model assumes that each entity has its own individual 

characteristics that could influence the dependent variable, and therefore need to be controlled (Torres-

Reyna, 2007; Wooldridge, 2012).  Time-invariant characteristics and the associated effect of these variables 

are removed, but are captured in the unknown intercept term for each entity to control for these effects.  As 

a result, the model assumes that the entity’s error term and its independent variables are correlated.  Due to 

this process, a fixed effect estimator does not consider cross-sectional relationships, and is only concerned 

with analyzing change in the dependent variable attributed to temporal change in the independent variables.  

The model takes the following form: 

 

 !!" =	$#%!"# +	$$%!"$+…$&%!"& + '! + (!"	 Eq. 7 

 

• !!" = a given dependent variable (where i = entity and t = time), 

• %!"& = a given independent variable, 

• $& = the coefficient for a given independent variable, 

• '! = the unknown intercept, or unobserved fixed effects, for each entity, 

• (!"	= the idiosyncratic error term.   

 

4.3.5. Random Effect  

A random effect model can be used instead of a fixed effect model if the idiosyncratic error terms 

are assumed to be uncorrelated with the associated independent variables (Wooldridge, 2012).  Since this 

assumption holds true, time-invariant variables can be included in this estimator (Torres-Reyna, 2007).  

However, unlike a fixed effect estimator that captures entity-specific characteristics in the error term, this 

assumption does not hold true for a random effect estimator.  Therefore, entity specific characteristics that 

could influence the dependent variable (such as geographical location, sampling time, etc.) need to be 

controlled for to ensure that the effects being analyzed are truly random.  If this is not completed, outputs 

generated using this approach may produce unrealistic results.  The random effect model takes the following 

form: 
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 !!" =	$#%!"# +	$$%!"$+…$&%!"& + ' + (!" + )!"  Eq. 8 

 

• !!" = a given dependent variable where (i = entity and t = time), 

• %!"& = a given independent variable, 

• $& = the coefficient for a given independent variable, 

• ' = the intercept of the model,  

• (!" = the combined time-series and cross-sectional error, 

• )!" = the individual specific cross-sectional error. 

 

4.3.6. Selection of Appropriate Estimator  
When selecting the appropriate estimator, it is common practice for the researcher to analyze the 

panel dataset using both pooled OLS, fixed effect, and random effect models.  A variety of statistical tests 

are then applied to the model outputs to determine the method that best suits the dataset (Guerra & Cervero, 

2011; Lee & Lee, 2013; R. Liu, 2018; Stover & Christine Bae, 2011).   

Of these, a Breusch-Pagen Lagrange Multiplier is commonly used to compare the pooled OLS 

estimator to both the fixed and random effect estimators.  The null hypothesis is that there are no panel 

effects; if the test produces a significant result, this indicates that time and/or entity effects are present.  

Therefore, the use of a fixed or random effect estimator will produce more reliable and unbiased results and 

should be further explored by the researcher.   

A Hausman test can also be used to compare the efficiency of the fixed effect estimator to the 

random effect estimator.  Per Wooldridge (2012), a fixed effect estimator should be prioritized when the 

entity’s error term is correlated with the same entity’s independent variables, as the model allows for this 

correlation to occur.  A significant Hausman test statistic indicates that this relationship is present, thereby 

indicating that the fixed effect estimator should compute results that are more reliable and unbiased 

compared to the random effect estimator.   

 

4.3.7. Controlling for Heteroskedasticity  

It is also common practice for the researcher to further diagnose the model for the presence of 

spatial and/or temporal dependencies, as the presence of such relationships would result in inefficient model 

outputs.  As mentioned in Section 4.3.2, it is common that spherical errors such as heteroskedasticity and 

autocorrelation are present within panel datasets due to the sampling nature.  Various test statistics can be 

applied to detect these effects, including the Durbin-Watson test for serial correlation in panel data models 
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and the Breusch-Pagen test for heteroskedasticity.  If detected, non-constant variance estimates can be used 

to compute regression outputs that are robust to heteroskedasticity and autoregressive effects.  Regression 

outputs can be estimated using a variety of non-constant variance estimators, however White robust 

standard errors are commonly used in econometric analysis and transit demand elasticity studies that have 

utilized a panel data approach (Lee & Lee, 2013; Torres-Reyna, 2007, 2010). 

 

5. Methods  
5.1. Data Collection  
5.1.1. Dependent Variable  

As outlined in Section 2.2.3, specific and accurate ridership counts are recorded by Metrolinx via 

the PRESTO smartcard system.  Therefore, the number of boardings as indicated by the PRESO system 

was used to formulate the dependent variable dataset for this study.  Filters were applied so that monthly 

boarding counts could be obtained at the station-level, separated by trip type.  Only weekday ridership 

counts were included in the analysis.  Station-level monthly ridership is therefore expressed by the 

following equation: 

 

 
;<=>ℎ@A	BCDEFGℎCH%& 	= 	I J<KFDC=LG'

(

')	" M@
	∀	G>K>C<=G, @	K=D	O<=>ℎG, M	 

Eq. 9 

 

Where: 

• * = a given month, 

• +	 = a given station, 

• ,	= a given weekday, 

• -.'/0,123 = number of boardings as recorded by PRESTO, 

• ∀ = for all. 

 

Figure 4 illustrates how GO Transit rail ridership at the network level changes throughout the time-

series.  The graph illustrates that ridership during the a.m. peak period is drastically larger than other time 

periods examined, although this was expected as the majority of trips during the p.m. peak originate at 

Union Station and were thus excluded from the analysis.  Notably, ridership during the midday off-peak, 

p.m. peak, and evening off-peak periods is shown to demonstrate seasonal dependencies, whereas the  
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Figure 4 - Distribution of GO Transit Rail Ridership, Jan. 2016 - Dec. 2019 
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number of boardings during the a.m. peak period fluctuates more drastically on a monthly basis.  Drastic 

service increases, such as those that occurred in December 2017, September 2018, and September 2019 are 

highlighted.  Notably, the number of boardings was seen to increase in the month(s) following the service 

expansion.    

It was further theorized that variation in the number of business days per month could influence 

monthly ridership counts.  To account for these differences, ridership figures were normalized by the 

number of business days in a given month.  The dependent variable therefore took the form of average daily 

boardings per month: 

 

 !"#$%&#	(%)*+	,)-#$.ℎ)0!" =
2345ℎ*+	,)-#$.ℎ)0!"

6!
∀	.5%5)34., *	%4-	9345ℎ., : 

Eq. 10 

 

Where: 

• ! = a given month, 

• " = a given station, 

• # = the total number of business days, 

• ∀ = for all. 

 

5.1.2. Delineation of Station Catchment Areas  
As summarized in Section 3.3.1, Euclidian and network-based buffers are commonly used when 

delineating station catchment areas.   This approach was initially considered, as it is an efficient delineation 

method when estimated using GIS tools.  However, a Metrolinx study found that approximately 81.5% of 

GO Transit rail users access the station via private automobile in some capacity (Government of Ontario, 

2016).  Additionally, findings generated by Engel et al. (2014) indicate that station catchment areas 

previously estimated around GO Transit stations are not uniform in size and shape, most likely attributed 

to the access mode share and modal classification of the system (Grimsrud & El-Geneidy, 2013; 

Vijayakumar et al., 2011; Wang et al., 2016).  Therefore, to ensure that more accurate station catchment 

areas could be created, customer origin data was used to delineate station catchment areas throughout the 

study area.   

A methodology outlined by Engel et al. (2014) used customer origin data obtained from a survey 

of GO Transit rail passengers to digitize station catchment boundaries.  For this study, customer origin data 

as indicated by PRESTO records were selected and downloaded for analysis.  The use of PRESTO data 

was prioritized for a number of reasons.  As outlined in Section 2.2.3, PRESTO references customer origin 

data to the postal code of the user’s residence.  Additional information such as the number of boardings 
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associated with each customer origin location is also recorded.  Therefore, very specific and accurate station 

catchment boundaries weighted by the intensity of demand could be estimated via this data source.  

Secondly, PRESTO customer origin data was available for the duration of the study period, while survey 

data only represents station access behavior for a specific point in time.  Therefore, PRESTO data allowed 

for a more realistic understanding of station catchment behavior for the duration of the time series, thus 

resulting in the delineation of accurate station catchment boundaries.  Finally, approximately 90% of 

customers use the PRESTO fare payment system, meaning that catchment areas mapped using this data 

source are an accurate generalization of station access behavior for the entirety of the customer base.     

The first step when delineating station catchment areas is to define the urban environment, various 

rights of way, and station locations throughout the network (Andersen & Landex, 2008).  A baselayer 

containing data on roadways and topological features within the study area was loaded into ArcMap via 

ArcGIS Online, while station location data was downloaded from the Metrolinx Open Data Inventory.  

Customer origin data was then obtained from the PRESTO server.  A temporal filter was applied 

to remove observations not related to the study period.  Each observation specified the postal code, number 

of boardings, and access station of the customer.  Observations were then disaggregated by access station 

of the customer to ensure that unique station catchment areas could be created for each station within the 

study area.  Observations were then uploaded to ArcGIS so that station catchment areas could be digitized.  

Current GIS software does not allow for postal code data to be georeferenced if corresponding spatial 

information, such as latitude and longitude coordinates, are not specified.  Instead, observations need to be 

linked to a baselayer where postal code locations have already been georeferenced.  As shown in Figure 5, 

a shapefile containing all possible postal code addresses and associated locations in the study area was 

downloaded from the University of Waterloo’s Geospatial Centre so that customer origin data could be 

georeferenced to the appropriate location.  In some cases, it was found that a single postal code address was 

represented by multiple polygons.  This occurred if postal code addresses were separated by a natural or 

urban feature, or if one postal code address was used to represent multiple parcels of land within the study 

area.  Polygons sharing the same postal code address were dissolved into a single polygon to avoid double 

counting customer origin data.   

Customer origin data was then georeferenced to the postal code boundary shapefile.  Initial outputs 

revealed that customer origin locations were widely dispersed throughout southern Ontario.  Following the 

methodology outlined in Engel et al. (2014), all customer origin records located further than 10km of the 

access station were eliminated.  This was done to ensure that only home-based trips were included in the 

analysis.  A heatmap as shown in Figure 6 was then created using the remaining customer origin 

observations.  The heatmap was weighted according to the number of boardings to ensure that areas with a 

larger concentration of riders were reflected more heavily in the analysis.  A polygon(s) was then
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 digitized around the computed heatmap, which was then saved 

and exported as the corresponding station catchment area.  The 

output generated for Clarkson GO Station as shown in Figure 6 

reveals that some station catchment areas were not continuous.  

This can be explained by the presence of natural or built 

features, such as the Greenbelt or freeways, that cause 

disconnects in the urban environment surrounding GO Transit 

rail stations.  Additionally, some GO Transit rail stations are 

located in employment and industrial areas where residential 

locations are not permitted, resulting in an absence of customer 

origin data and a subsequent disconnect in the station catchment 

boundary.  This process was completed for each station in the 

study area.   

 

5.1.3. Extrapolation of Census Data 
Few countries collect household demographic and 

socioeconomic statistics more than twice per decade.  Previous 

ridership elasticity studies have used linear extrapolation to 

estimate monthly values from annual or quinquennial census-

based data sources (Chiang et al., 2011; Lee & Lee, 2013).  

Linear extrapolation provides a more finite amount of 

information to the research, but also ensures that change in 

demographic and socioeconomic variables is captured and 

accounted for in the modelling process.  Observations from the 

Figure 5 - Delineation of Station Catchment Area at Clarkson GO Station, Postal Code Boundary 
Shapefile 
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2016, 2011, and 2006 Canadian Census of Population were 

used to complete the projections, as a minimum of three census 

periods are required to complete accurate census data 

projections (Lewis, 2018).  In some cases, values were also 

obtained from the 2011 National Household Survey as different 

sampling techniques and variable classifications were used 

during the 2011 census period.  Data was collected at the 

dissemination area scale as this is the most disaggregated 

census dataset available to the public, which was downloaded 

from the Computing in the Humanities and Social Sciences 

(CHASS) Data Server via the University of Toronto.  

Characteristics representing population, gender, income, 

unemployment rate, age, and number of households with 

children were obtained.  A descriptive list of the characteristics 

downloaded to represent these factors is provided in Appendix 

C.   

Data was initially downloaded and processed for all 

dissemination areas throughout Ontario. Redundant 

observations were then removed from the dataset to decrease 

file size and processing times.  Only dissemination areas 

located with the Greater Golden Horseshoe were considered for 

further analysis.  

Figure 6 - Final Output, Delineation of Station Catchment Area at Clarkson GO Station 
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Several datasets were cleaned and adjusted to ensure that all candidate variables closely represented 

those identified in the literature as being determinantal to transit demand.  For example, Section 3.2.12 

highlights that households with children can be determinantal to transit demand, but the Canadian Census 

of Population provides separate counts based on the material status of the household.  These datasets were 

therefore aggregated to provide a single count tabulating all households with children in each census period. 

Varying measures of central tendency were also used to track the age of the population throughout 

the study period.  Median age was reported at the dissemination area scale in the 2011 census, whereas 

average age was reported at this scale in the 2016 census.  However, both average and median age were 

reported at the provincial scale in the 2016 census.  These two values were compared, and a difference of 

0.73% was estimated between the two measures.  As described in Appendix D all average age values 

identified in the 2016 census at the dissemination area scale were adjusted by this value to reduce any 

inaccuracies in the dataset.  Additionally, a central measurement of age was not reported in the 2006 census 

altogether.  Values provided from the 2011 census were carried over to 2006 to account for this void.   

Observations were then merged in Microsoft Excel so that values corresponding with each 

dissemination area could be visualized in the same spreadsheet.  The merge was completed using the 

Geographic Unique Identifier (GEOUID) of the dissemination area.  Observations were then extrapolated 

in Microsoft Excel using the “Trend” function.  This process was completed for each Dissemination Area 

within the study area.  Figure 7 illustrates how the process was conducted, and further demonstrates how 

extrapolated figures accurately reflect changing socioeconomic and demographic conditions compared to 

the use of time-invariant values.  Once the projection was completed, each dissemination area contained a 

projected monthly estimate for each of the factors obtained from the CHASS server.     

After completion, it was found that a small proportion of dissemination areas within the Greater 

Golden Horseshoe did not contain observations for all three census periods, or that null/zero values were 

recorded for certain characteristics.  As a result, extrapolated values could not be estimated for these entities.  

While dissemination area boundaries remain relatively stable over time, their delineation is correlated with 

population size, which is targeted from 400 to 700 persons (Canada, 2018).  Therefore, population increases 

likely resulted in various dissemination areas being resized, thus resulting in a larger count of dissemination 

areas in 2016 compared to 2011 and 2006.  To ensure data consistency, values obtained from 2016 census 

products were used if missing or null values were found in previous census periods.  This correction was 

required for approximately 20% of dissemination areas within the study area.   
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Figure 7 - Extrapolated Socioeconomic and Demographic Values 

 
 
 
 

 

 

 

2000

2020

2040

2060

2080

2100

2120

2140

2160

2180

2200

Jan. 2006 Sep. 2008 Jun. 2011 Mar. 2014 Dec. 2016 Sep. 2019Po
pu

la
tio

n 
De

ns
ity

 (r
es

id
en

ts
 p

er
 Sq

. K
m

 

Time-Series

Using Previous Census Observations to Extrapolate Monthly  
Estimates During Intercensal Periods

Population Density, Clarkson GO Station

Extrapolated Monthly Estimates Previous Census Observations
Values Without Use of Extrapolation Start of Time-Series

Dec. 2019Jan. 2016

2006

2011

2016

Census values and interpolated monthly
estimates shown for Dissemination Area GEOUID
35210444, located within the Clarkson GO Station
catchment area.



67 
 

 

5.1.4. Extracting Census Data Using Overlay Analysis  
Station-level external variable datasets were then identified 

using overlay analysis in ArcGIS.  A spreadsheet containing the 

projected external variable data was first uploaded to ArcGIS.  

A shapefile representing the size and extent of all dissemination 

areas in Ontario, consistent with the 2016 Census, was also 

uploaded to ArcGIS via Statistics Canada.  

 

Figure 8 shows how station catchment boundaries previously 

delineated in Section 5.1.2 were used to identify dissemination 

areas and corresponding external variable datasets correlated 

with customer origin location.  Overlay analysis was used to 

ensure that external variable datasets obtained at the station-

level were representative of proven customer origin locations 

and the intensity of boardings.   As shown in Figure 9, only 

dissemination areas whose centroid was located within the 

estimated station catchment area boundary were selected.  

Using the “Calculate Geometry” tool, the total area of all 

dissemination areas selected was also calculated.  A 

spreadsheet containing the projected datasets within the 

estimated station catchment boundary and the area of the 

associated dissemination areas was extracted using the 

“Export” tool for further processing in Microsoft Excel. 

Figure 8 - Overlay Analysis to Extract Socioeconomic and Demographic Datasets 
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5.1.5. Final Form of Demographic and 
Socioeconomic Variables 

Characteristics were then adjusted to ensure that the 

final form of each external factor was consistent with those  

identified in the literature.  Factors representing population 

density, density of households with children, percent of 

population female, median household income, median age, and 

unemployment rate were formulated.  Since data was obtained 

from multiple dissemination areas within each station 

catchment area, figures were aggregated to provide a single 

monthly value for each entity included in the analysis.  Some 

factors were normalized by the size of the station catchment 

area so that density measures could be computed.  Other 

variables that were already expressed using a measure of central 

tendency, such as median age, were normalized by the number 

of dissemination areas within the identified station catchment 

area to provide a single averaged value.  The expression of each 

external variable estimated using census products is outlined 

below:

Figure 9 - Dissemination Areas Selected to Formulate Socioeconomic and Demographic Datasets 
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Where: 

• ! = a given month,  

• " = a given station’s catchment boundary, 

• # = a given dissemination area within a station’s catchment boundary,  

• $%&' = area of the dissemination area in Sq. Km.,  

• ( = the number of dissemination areas within a station’s catchment boundary, 

• ∀ = for all. 

 

5.1.6. Employment Density  
Data obtained from the Census of Population only records employment statistics at the household 

level.  Therefore, any employment data obtained from this source is a function of the population living in 

the catchment area, and does not convey information about regional economic output.  However, the 2016 

Census of Population asks respondents to indicate their census tract of residence and their census tract of 



70 
 

workplace.  Therefore, count data indicating census tract of workplace is an approximate estimate of the 

level of employment within a given census tract. 

Data was downloaded from the 2016 Census into Microsoft Excel.  Data was originally given as 

origin-destination pairs, separated by census tract of origin and census tract of destination.  Pivot tables 

were used to sum the total number of incoming commuters in each given census tract.  Notably, only a 

single observation for each census tract was provided, and archived data from previous Census’ could not 

be obtained.  Therefore, projected values could not be computed.   

This dataset was uploaded into ArcMap so that data from census tracts located within the previously 

identified station catchment areas could be downloaded for further analysis.  Count data for each census 

tract was uploaded and linked with a shapefile illustrating all census tract boundaries in southern Ontario. 

Data was extracted using the same process as outlined in the Section 5.1.4.  A separate dataset was 

download and exported for each station in the study area.  Each dataset was processed so that a value 

representing employment density could be estimated.  This was done by summing the number of incoming 

commuters in a given month in a given station area, and normalizing it by the size of all census tracts within 

the station catchment boundary.  Employment density thereby took the following form: 

 

 
*+,"-.+&/0	2&/3#0.! =

∑ 6/7-++#/8	9-++:0&%3"!
#
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#
"$%

∀	-'&'(")-, % 
Eq. 17 

 

Where: 

• " = a given station’s catchment boundary, 

• # = a given census tract within the station’s catchment boundary,  

• $%&' = area of the census tract in Sq. Km,  

• ∀ = for all instances of. 

 

5.1.7. Vehicle Ownership 
Vehicle ownership statistics were downloaded from the 2016, 2011, and 2006 Transportation 

Tomorrow Survey, also obtained from the CHASS Data Centre at the University of Toronto.  Count data 

tabulating the number of vehicles owned per household at continuous levels (0, 1, 2…99 vehicles owned) 

was provided for all upper-tier municipalities located throughout the Greater Golden Horseshoe.  To obtain 

monthly estimates for each value, these figures were also extrapolated using the same process as outlined 

in Section 5.1.3.  Vehicle ownership in each upper-tier municipality was then calculated by multiplying the 

estimated count data by the corresponding household level of car ownership: 
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Eq. 18 

 

Where: 

• ! = a given month,  

• " = a given upper-tier municipality, 

• ∀ = for all instances of. 

 

Since data was only provided for upper/single-tier municipalities located within the Greater Golden 

Horseshoe, overlay analysis could not be used to delineate station-level values.  Therefore, stations were 

assigned the value corresponding to the municipality in which they are located.  Appendix E further 

describes this process and outlines what values were allocated to each station in the study area.   

 

5.1.8. Fuel Price 
Fuel price data was obtained from the Ontario Fuel Price Survey via the Ontario Data Catalogue.  

The survey estimates the average price of one liter of unleaded fuel at monthly intervals for various regions 

throughout the province.  Values for the Toronto West, Toronto East, and Southern Ontario regions were 

downloaded for the duration of the time-series.   

Notably, geographic boundaries delineating these regions are not specified.  Stations were assigned 

a value based on their geographical location relative to the City of Toronto.  Toronto East and Toronto West 

values for a given month were averaged and were assigned to stations located within the City of Toronto.  

Remaining stations located along the Milton and Lakeshore West corridors were assigned the Toronto West 

value, while remaining stations located along the Lakeshore East corridor were assigned the Toronto East 

value.  All other stations along the Kitchener, Barrie, Stouffville, and Richmond Hill corridors were 

assigned the Southern Ontario Value.  This process is further specified in Appendix E.   

 

5.1.9. Final Form of Internal Variable Datasets 
A variety of internal variables including service quantity, fare price, distance to CBD, and the 

availability of station access alternatives were included in the analysis.  The majority of variables included 

were not readily available from internal databases and were therefore downloaded and processed from 

external sources.  This paragraph outlines this process and the final form that each internal variable took in 

the analysis.   

 



72 
 

5.1.9.1. Service Quantity  
Service data was originally compiled using archived service vetting reports supplied by Metrolinx.  

However, it was discovered that service quantity was being recorded at the corridor level, using a metric of 

number of trips per corridor.  Unfortunately, this metric ignores the impact of express and local trips on 

service distribution, as all stations along a corridor were considered to receive the same level of service 

regardless of service type.  Further investigation of internal databases revealed that service data was only 

recorded using this method, meaning that industry standard metrics, such as vehicle revenue hours were 

unavailable for analysis.  To resolve this problem, it was determined that number of trips per station, rather 

than corridor level counts, should be used to represent service supply as this metric delineates between 

stations that have a greater supply of service compared to others.   

A Python script was used to extract trip data from archived GO Transit General Transit Feed 

Specification (GTFS) files obtained from “transitfeeds.com” (Ionescu, 2020).  GTFS files were used as 

they contain archived service schedules, meaning that number of trips per station could be estimated for the 

duration of the time-series.  Individual estimates could have been obtained for each month in the time-

series, however internal Metrolinx service reports indicated that service changed only 17 times over the 

time-series.  Therefore, trip data gathered from a single GTFS file could be assigned to multiple observation 

periods, as the same level of service was offered over consecutive observation periods.  A list of GTFS 

feeds used in the analysis is outlined in Appendix F.   

Once processed, trip data at the station level including the arrival time, departure time, direction of 

travel, and station destination of each vehicle was obtained.  Pivot tables were used to extract station-level 

trip counts for each trip type.  Trips arriving but terminating at a given station were excluded from the 

count, as no boardings would result from these trips.  Unlike the number of boardings dataset, final counts 

were not normalized by the number of business days in the observation period as data was already obtained 

at the daily level.    Service quantity therefore took the following form: 

 

 
J&%K#7&	L:'/0#0.&! =	?=:0B-:/E	M%#,3"! ∀	-'&'(")-, %	&)5	6")'ℎ-, 8 

Eq. 19 

 

Where: 

• ! = a given month, 

• " = a given station, 

• # = a given business day, 

• =:0B-:/E	M%#,3 = a trip arriving at a given station and continuing service to other stations along 

the corridor,  
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• ∀ = for all. 

 

5.1.9.2. Fare Price 
Consistent fare price values could not be obtained as fare price depends on the number of zones 

through which a customer travels.  Additionally, archived reports specifying the average cost of travelling 

from one zone to another could not be obtained.  Therefore, fare price values were estimated using data 

obtained from the PRESTO system. 

PRESTO estimates fare price at a given station by averaging the total fare revenue obtained by the 

total number of boardings.  As a result, station-level fare price is a function of the number of boardings and 

the average distance travelled.  Pivot tables were used to separate estimates by trip type, while monthly 

estimates were provided for the duration of the time-series.  The final values used can be expressed by the 

following equation: 
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Eq. 20 

 

Where: 

• ! = a given month,  

• " = a given station, 

• ∀ = for all. 

 

5.1.9.3. Park and Ride Capacity  
Park and ride statistics were obtained from the Metrolinx Open Data Portal.  Total number of 

parking spaces at the station level were provided for the duration of the time-series.  All types of park and 

ride spaces, including handicap, priority, and electric vehicle spaces were included.  Only spaces owned 

and operated by Metrolinx were included in the analysis.  The variable took the following form: 
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Eq. 21 

 

Where: 

• ! = a given month, 

• " = a given station, 

• ∀ = for all. 
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5.1.9.4. Distance to Central Business District  
Straight-line distance from a station to the largest CBD within the operating area has shown to 

influence transit demand.  However, preliminary analysis showed that this metric was highly correlated 

with fare price, as stations located further away from the CBD were associated with larger fare price due to 

longer distances being travelled by the customer base.  Instead, dummy variables were used to indicate if a 

station was located within the City of Toronto municipal boundary, as this area contains the largest CBD 

in the study area. 

Stations located within the City of Toronto were identified using geospatial analysis.  A shapefile 

containing all station locations was loaded into the software, along with a shapefile illustrating the City of 

Toronto municipal boundary, obtained from the City of Toronto’s Open Data Portal.  A data query was 

then used to select stations that were within the boundary.  Stations within the boundary were assigned a 

value of “1”, while stations located in other municipalities were assigned a value of “0”.   

 

5.1.9.5. Feeder Bus Connection Quality  
Feeder bus connection quality can be recorded by determining the transit travel time from areas 

that have a concentrated number of riders to the associated access station.  Otherwise known as the transit 

access time, this measure allows service characteristics, such as service quality and service quantity, to 

influence the travel time estimate.  Additionally, estimating the travel time from areas of proven customer 

origin allows system accessibility to be incorporated into the measure, as access times will increase if 

minimal or dispersed service is provided within these areas.   

Transit access times can be calculated using the Network Analyst tool in ArcGIS Pro.  The software 

allows the user to upload a point of customer origin, a GTFS file outlining the extent and quality of transit 

service in the area, a point of customer destination, and a road network within the study area.  Once a 

departure time is specified, the software can calculate how long it will take the customer to travel from their 

origin to their destination, using the uploaded transit network as their main mode of transport.  Notably, 

this analysis can be completed using archived GTFS files, meaning that unique values could be calculated 

for the duration of the time-series.   

The first step in such a process is determining areas with concentrations of GO Transit riders.  

Section 5.1.2 outlines how heatmaps illustrating concentrations of GO Transit riders were previously 

created when station catchment boundaries were delineated.  The same process was followed here, but 

customer origin observations within an 800-meter radius of the station were also removed.  This was 

completed as customer origin locations at some stations were concentrated within an 800-meter radius of 

the station, therefore skewing the results.
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Figure 10 illustrates how points were digitized over areas where 

customer origin was shown to be most concentrated.  Five customer 

origin points were created for each station in the study area.  Archived  

GTFS files of local bus networks operating within the study area were 

then downloaded from "transitfeeds.com”.  GTFS feeds could have 

been downloaded at monthly intervals,  but the majority of local transit 

authorities only make service changes at the beginning of each season.  

Therefore, GTFS files were downloaded and processed at times 

coinciding with Metrolinx’s seasonal board period changes as indicated 

in Appendix F.   If a GTFS file was not available for a specified board 

period, data from the next closest board period was used to ensure data 

consistency.    

As shown in Figure 11, a virtual transit network in each board 

period was built so that transit stops, routes, scheduling information, 

and associated road network data could be incorporated into the travel 

time estimate.  This was completed using the steps outlined in the World 

Bank’s Introduction to the General Transit Feed Specification (GTFS) 

and Informal Transit System Mapping tutorial, and the ArcGIS 

Network Analyst Tutorial (ESRI, 2019, 2020; World Bank Group, 

2020).  Different theoretical departure times as specified in Table 6 

were inputted to ensure that different travel time estimates could be 

obtained for the various trip types included in the analysis.

Figure 10 - Common Customer Origin Points Surrounding Clarkson GO Station Used 
in Feeder Bus Connection Quality Analysis 
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After completion, a spreadsheet specifying each origin-destination pair and the associated transit 

travel time between each pair was computed.  Separate estimates were calculated for each observation 

period and time period.  These files were exported to Microsoft Excel for further processing.   

 

Figure 11 - Virtual Transit Network of All Municipal Service Providers in the Greater Golden Horseshoe, Used to Obtain 

Feeder Bus Connection Quality (ex. Travel Time) Estimates 

 
 

Data was then processed in Microsoft Excel to control for outliers and account for origin-

destination pairs that were incorrectly specified by the software.  For example, abnormally large transit 

travel times were calculated for some origin-destination pairs, most likely a result of minimal or no feeder 

bus service being provided in these areas.  In these situations, the software assumed that the customer would 

access the station on foot, thus resulting in extremely large 

travel times.  To account for this, an upper limit of 60 

minutes was used.  Additionally, the Network Analyst tool 

sometimes connected a customer origin point to the wrong 

access station.  This occurred if the software determined 

that another GO Transit rail station, rather than the station 

associated with the customer origin location, was shown 

to have a lesser transit access travel time.  If this occurred, 

a transit access time of 60 minutes was also assigned, as 

Trip Type Time Parameters 
Trip Type Theoretical Departure 

Time 
A.M. Peak 7:00 
Midday Off-Peak 12:30 
P.M. Peak 16:00 
Evening Off-
Peak 

19:00 

Table 6 - Time Parameters Used to Define Trip 

Types for Feeder Bus Connection Quality Analysis 
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the results indicate that feeder bus service in the specific area does not adequately provide service to the 

associated access station. 

Transit access time was then estimated by calculating the average transit access time between each 

origin-destination pair at a given station for a specific observation period: 

 
 

!""#"$%&'()**"+,-)*.&/0-,1!" =
∑ 4$/5"0	4-7"#!"$
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Eq. 22 

 

• 9 = a given board period, 

• 0 = a given station, 

• - = a given origin/destination pair, 

• ∀ = for all. 

 

5.2. Data Analysis   
 

As outlined in Section 5.1, monthly station-level observations for one dependent variable and 16 

independent variables were obtained over a 48-month time-series from January 2016 to December 2019.  

As noted in the descriptive analysis of the dependent variable, it was theorized that ridership could be 

influenced by seasonal effects.  Therefore, dummy variables indicating the season of observation were also 

included in the analysis. In total, one dependent and 19 independent variables were compiled in Microsoft 

Excel for processing.  Separate spreadsheets that compiled observations by trip type were further created.  

A summary of all variables included in the analysis is outlined in Table 7. 

 

Table 7 – Final List of Variables Compiled for Analysis 

Final List of Variables Compiled For Analysis 

Variable Indicator Type of Data Data Source / 
Spatial Scale 
(if applicable) 

Are Values Time-
Variant? 

Unique 
Values 

Obtained 
for Different 
Trip Types? 

Ridership Average daily number 

of boardings 

Continuous PRESTO 

server 

Yes Yes 

Population Density Population density Continuous Census 

products, 

Dissemination 

Area 

Yes, unique values 

obtained via 

extrapolation 

No 
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Final List of Variables Compiled For Analysis 

Variable Indicator Type of Data Data Source / 
Spatial Scale 
(if applicable) 

Are Values Time-
Variant? 

Unique 
Values 

Obtained 
for Different 
Trip Types? 

Employment Density Density of incoming 

commuters 

Continuous Census 

products, 

Census Tract 

No No 

Gender – Female  Percentage of 

population female 

Continuous Census 

products, 

Dissemination 

Area 

Yes, unique values 

obtained via 

extrapolation 

No 

Income Median household 

income 

Continuous Census 

products, 

Dissemination 

Area 

Yes, unique values 

obtained via 

extrapolation 

No 

Unemployment Rate Unemployment rate Continuous Census 

products, 

Dissemination 

Area 

Yes, unique values 

obtained via 

extrapolation 

No 

Age Median age Continuous Census 

products, 

Dissemination 

Area 

Yes, unique values 

obtained via 

extrapolation 

No 

Households With 

Children 

Density of households 

with children. 

Continuous Census 

products, 

Dissemination 

Area 

Yes, unique values 

obtained via 

extrapolation 

No 

Vehicle Availability / 

Ownership 

Total amount of 

private vehicles 

owned 

Continuous Transportation 

Tomorrow 

Survey, 

Upper/Single-

Tier 

Municipality 

Yes, unique values 

obtained via 

extrapolation 

No 

Fuel Price Price of one liter of 

unleaded fuel 

Continuous Ontario Fuel 

Price Survey, 

Region 

relative to City 

of Toronto 

Yes, unique monthly 

observations available 

for duration of time-

series 

No 

Service Quantity Number of outbound 

trips per station 

Continuous Generalized 

Transit Feed 

Specification 

files 

Yes, unique monthly 

observations available 

for duration of time-

series 

Yes 

Fare Price Average fare price Continuous PRESTO 

server 

Yes, unique monthly 

observations available 

for duration of time-

series 

Yes 

Distance to Central  

Business District – Near 

Station located within 

City of Toronto 

Nominal Metrolinx 

Open Data 

Portal 

Yes, unique monthly 

observations available 

for duration of time-

series 

No 
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Final List of Variables Compiled For Analysis 

Variable Indicator Type of Data Data Source / 
Spatial Scale 
(if applicable) 

Are Values Time-
Variant? 

Unique 
Values 

Obtained 
for Different 
Trip Types? 

Distance to Central  

Business District – Far 

Station not located 

within City of Toronto 

Nominal Metrolinx 

Open Data 

Portal 

Yes, unique monthly 

observations available 

for duration of time-

series 

No 

Number of Parking  

Spaces 

Total number of 

parking spaces 

Continuous Metrolinx 

Open Data 

Portal 

Yes, unique monthly 

observations available 

for duration of time-

series.   

No 

Feeder Bus Connection  

Quality 

Average transit access 

time 

Continuous Generalized 

Transit Feed 

Specification 

files 

Yes, unique monthly 

observations available 

for duration of time-

series 

Yes 

Winter Observation occurred 

in January, February, 

or March 

Nominal  No No 

Spring Observation occurred 

in April, May, or June 

Nominal  No No 

Summer  Observation occurred 

in July, August, or 

September 

Nominal  No No 

Fall Observation occurred 

in October, 

November, or 

December 

Nominal  No No 

 

Summary statistics for the above datasets were then calculated using the “summary” function in R-

Studio.  These results are presented in Appendix H.  

 

5.2.1. Initial Formatting of Datasets  
Data was then organized using a long panel data format, where each row represents one time point 

per entity.  Therefore, the entity (station) and time (month and year) were specified in the first two columns, 

with corresponding dependent / independent variable observations specified in the following columns.   

Observations were only included if service was offered at a given station during a given time period.  

Since service is offered at all GO Transit rail stations during a.m. peak period, this resulted in a balanced 

panel for this model.  Other time periods, such as midday off-peak, were not balanced as service was 

gradually added to some stations throughout the duration of the time series.   
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5.2.2. Adjusting for Inflation 
To account for inflation, variables including fare price, income, and fuel price were converted into 

January 2016 Canadian dollars.  This was done to ensure that change in these values over time was a result 

of changing urban and socioeconomic conditions, rather than change in the value of Canadian currency.    

Using Canada’s Consumer Price Index (monthly, not seasonally adjusted), a deflator value referenced to 

the January 2016 Consumer Price Index was calculated for each observation period throughout the time 

series (Government of Canada, 2020).  Real values in each observation were then estimated as shown in 

Appendix I.  

 

5.2.3. Natural Logarithm Transformations  
All continuous variables were then transformed by their natural logarithm.  Log-log transformations 

are commonly used in ridership elasticity studies for several reasons.  First, the coefficients estimated in 

regression model outputs can be directly interpreted as ridership elasticities, because they represent the 

percent change in demand when an independent variable is increased by 1% (Holmgren, 2007; Li et al., 

2020; Stover & Christine Bae, 2011; Taylor et al., 2009).  Secondly, the use of logarithm transformations 

can normalize the skewness of datasets, which has been shown to increase the fit of models and thereby 

improve model performance (Durning & Townsend, 2015; Taylor et al., 2009).  The transformation was 

completed using the “LM” function in Microsoft Excel. 

 

5.2.4. Data Cleaning  
A number of observations were found to contain fare price and ridership counts with a value of less 

than one.  This could have been a result of internal processing errors, as employees could have been testing 

the PRESTO system or associated proof of payment infrastructure, resulting in invalid observations.  Since 

the natural log of any number less than one is a negative number, this prevented the regression analysis 

from occurring as the software package used to compute the regression analysis is constrained to positive 

values.  Observations containing a value of less than one in either category were therefore removed to 

prevent this error from occurring.  In total, 35 observations were removed from the p.m. peak dataset, 136 

observations were removed from the evening off-peak dataset, while no observations were removed from 

the a.m. peak and midday off-peak datasets.   

 

5.2.5. Examination of Multi-Collinearity 
Spreadsheets were then loaded into R-Studio so that independent variables could be examined for 

multi-collinearity.  As summarized in Section 4.3.2, redundant supplies of information need to be identified 

and eliminated to ensure that accurate model parameters are computed.  Before a regression model is 
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estimated, the amount of correlation between independent variables can be estimated by calculating the 

correlation coefficient of each pair of independent variables included in the regression.  Variance Inflation 

Factor (VIF) scores are also used to illustrate the variance, or error, in a regression coefficient that is 

increased due to multi-collinearity with other independent variables.  However, little consensus exists as to 

how these scores should be applied to address multi-collinearity issues.  

Wooldridge (2012) states that pairs of independent variables that demonstrate perfect correlation 

should be eliminated from the model, but a definitive correlation coefficient value that can be used as a cut-

off to eliminate other independent variables that are problematic to the regression analysis is not definitive.    

While a correlation coefficient value of 0.7 is commonly used as a cut-off, a variety of thresholds ranging 

from 0.4 to 0.85 have been identified depending on the level of restrictiveness the author wishes to 

implement. (Dormann et al., 2013).    Wooldridge (2013) further states that all things being equal, a model 

with less correlation between independent variables will perform better than one that suffers from multi-

collinearity, but the researcher risks losing information if too many variables are eliminated.  For this study, 

a fairly unrestrictive correlation coefficient cut-off of 0.85 was used to ensure minimal loss of information 

from the analysis. 

VIF scores were also used to identify independent variables whose correlation coefficients might 

be overestimated due to multi-collinearity.  A cut-off of 10 was used to identify such variables.  The 

“corrplot” package in R-Studio was used to estimate correlation coefficients for all independent variables 

in each time period (Wei & Simko, 2017).  VIF scores for each independent variable were also estimated 

in R-Studio using the “faraway” package (Faraway, 2016).  A full summary of the results is provided in 

Appendix J. 

As shown in Table 8, independent variables with coefficients and VIF scores above the established 

thresholds are highlighted in red and were removed from each model.  In all time periods, households with 

children were removed as it demonstrated significant correlation with population density.  Households with 

children, rather than population density, were selected for removal as population density has been shown 

to be more significant in influencing ridership and is more relevant to the research question.   

Once removed, all correlation coefficients and VIF scores were below the predetermined 

thresholds.   Of note, a perfect correlation was shown to exist between distance to CBD – near and distance 

to CBD – far.  However, this was expected as these variables represent a two-category dummy variable.  

Therefore, both variables remained in the regression and were not eliminated during the evaluation process. 

Updated correlation plots after removal of households with children are further summarized in Appendix J. 
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Table 8 – Initial Unrestricted Model Correlation Plots, Highly Correlated Independent Variables 
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Correlation Plot 

P
o
p
u
la

ti
o
n
 D

e
n
si

ty
 

D
is

ta
n
c
e
 t

o
 C

B
D

 –
 F

a
r 

Households With Children 0.98 - 
 

Households With Children 0.95 - 

Distance to CBD – Near - -1* 
 

Distance to CBD – Near - -1* 
       

P.M. Peak 
Correlation Plot 

P
o
p
u
la

ti
o
n
 D

e
n
si

ty
 

D
is

ta
n
c
e
 t

o
 C

B
D

 –
 F

a
r 

 

Evening Off-Peak 
Correlation Plot 
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5.2.6. Initial Unrestricted Models   
Panel data frames were then created in R-Studio using the “pdata.frame” function.  A separate panel 

data frame was created for each time period.  Using the “plm” package, ridership in each time period was 

regressed on the final list of independent variables using both pooled OLS, fixed effect, and random effect 

estimators (Croissant & Miinno, 2008).  Independent variables including employment density, distance to 

CBD – near, and distance to CBD – far were excluded from the fixed effect analysis as they are time-

invariant.  In all models, the distance to CBD - near dummy variable was compared to the baseline of 

distance to CBD – far, and the winter, spring, and summer dummy variables were compared to the fall 

baseline.  Initial results from the unrestricted model outputs are summarized in Table 9 to Table 12. 
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Table 9 – A.M. Peak Unrestricted Model Outputs 

A.M. Peak Unrestricted Model Outputs 

                          

  Pooled OLS Model Fixed Effect Model Random Effect Model 

  Coefficient SE t-value p-value Coefficient SE t-value p-value Coefficient SE t-value p-value 

(Intercept) -10.193 1.230 -8.284 < 0.001 - - - - -6.763 4.943 -1.368 0.171 

Service Quantity 0.661 0.018 37.745 < 0.001 0.174 0.029 5.919 < 0.001 0.208 0.028 7.429 < 0.001 

Fare Price 0.487 0.060 8.139 < 0.001 -0.337 0.063 -5.326 < 0.001 -0.283 0.062 -4.589 < 0.001 

Feeder Bus Connection Quality -0.202 0.024 -8.400 < 0.001 0.006 0.020 0.295 0.768 -0.008 0.020 -0.411 0.681 

Population Density 0.413 0.021 19.281 < 0.001 0.049 0.439 0.111 0.911 0.397 0.125 3.174 0.002 

Gender - Female -0.017 0.111 -0.151 0.880 -0.061 0.045 -1.362 0.173 -0.057 0.046 -1.221 0.222 

Unemployment Rate 0.720 0.053 13.520 < 0.001 -0.086 0.265 -0.325 0.745 0.568 0.182 3.128 0.002 

Income 1.015 0.058 17.601 < 0.001 -0.698 0.293 -2.385 0.017 0.151 0.231 0.654 0.513 

Age -1.300 0.202 -6.435 < 0.001 3.306 1.674 1.975 0.048 1.201 1.047 1.147 0.252 

Employment Density 0.056 0.015 3.658 < 0.001 - - - - -0.134 0.097 -1.390 0.165 

Fuel Price 0.077 0.090 0.859 0.391 0.217 0.041 5.258 < 0.001 0.199 0.041 4.902 < 0.001 

Vehicle Ownership 0.148 0.021 7.067 < 0.001 0.650 0.255 2.546 0.011 0.265 0.109 2.432 0.015 

Park and Ride Capacity 0.238 0.005 48.743 < 0.001 0.019 0.008 2.374 0.018 0.043 0.008 5.593 < 0.001 

Distance to CBD - Near -0.522 0.037 -14.198 < 0.001 - - - - -1.626 0.177 -9.187 < 0.001 

Winter 0.024 0.021 1.120 0.263 0.018 0.009 2.105 0.035 0.022 0.009 2.440 0.015 

Spring 0.057 0.022 2.630 0.009 0.014 0.009 1.498 0.134 0.022 0.009 2.428 0.015 

Summer 0.019 0.021 0.899 0.369 -0.014 0.009 -1.564 0.118 -0.007 0.009 -0.837 0.403 

  

Number of Observations: 2928. Total Sum of 
Squares: 3110.5. Residual Sum of Squares: 
473.62. R-Squared: 0.84773. Adj. R-Squared: 
0.8469. F-statistic: 1012.91 on 16 and 2911 DF, p-
value  < 0.001..   

Number of Observations: 2928. Total Sum of 
Squares: 84.317. Residual Sum of Squares: 
73.809. R-Squared: 0.12463. Adj. R-Squared: 
0.10192. F-statistic: 29.0135 on 14 and 2853 DF, 
p-value  < 0.001. 

Number of Observations: 2928. Total Sum of 
Squares: 94.99. Residual Sum of Squares: 
79.542. R-Squared: 0.16263. Adj. R-Squared: 
0.15802. Wald Chi-Squared: 565.342 on 16 DF, 
p-value  < 0.001. 
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Table 10 - Midday Off-Peak Unrestricted Model Outputs 

Midday Off-Peak Unrestricted Model Outputs 

                          

  Pooled OLS Model Fixed Effect Model Random Effect Model 

  Coefficient SE t-value p-value Coefficient SE t-value p-value Coefficient SE t-value p-value 

(Intercept) -1.891 2.261 -0.836 0.403 - - - - -57.082 8.400 -6.796 < 0.001 

Service Quantity 0.978 0.017 57.003 < 0.001 0.535 0.016 33.054 < 0.001 0.565 0.016 35.244 < 0.001 

Fare Price 1.261 0.086 14.741 < 0.001 -0.288 0.069 -4.199 < 0.001 -0.232 0.069 -3.382 < 0.001 

Feeder Bus Connection Quality -0.176 0.046 -3.849 < 0.001 -0.116 0.033 -3.560 < 0.001 -0.091 0.033 -2.726 0.006 

Population Density 0.523 0.051 10.213 < 0.001 0.062 1.289 0.048 0.962 1.442 0.249 5.779 < 0.001 

Gender - Female -0.087 0.141 -0.618 0.537 0.011 0.057 0.199 0.842 0.010 0.059 0.167 0.868 

Unemployment Rate -0.078 0.101 -0.765 0.444 -0.733 0.515 -1.422 0.155 0.427 0.319 1.338 0.181 

Income 0.199 0.101 1.976 0.048 3.919 0.746 5.253 < 0.001 1.593 0.427 3.727 < 0.001 

Age -0.420 0.411 -1.023 0.306 27.475 2.415 11.378 < 0.001 11.824 1.710 6.913 < 0.001 

Employment Density 0.001 0.036 0.038 0.969 - - - - -0.504 0.187 -2.695 0.007 

Fuel Price 0.392 0.151 2.594 0.010 0.514 0.067 7.683 < 0.001 0.495 0.067 7.421 < 0.001 

Vehicle Ownership -0.195 0.070 -2.804 0.005 0.153 0.517 0.297 0.767 -0.859 0.222 -3.878 < 0.001 

Park and Ride Capacity 0.031 0.011 2.700 0.007 -0.010 0.015 -0.666 0.506 0.002 0.015 0.141 0.888 

Distance to CBD - Near -0.991 0.074 -13.441 < 0.001 - - - - -1.689 0.303 -5.571 < 0.001 

Winter -0.138 0.035 -3.925 < 0.001 -0.127 0.015 -8.758 < 0.001 -0.136 0.015 -9.253 < 0.001 

Spring -0.136 0.036 -3.787 < 0.001 -0.104 0.015 -6.751 < 0.001 -0.121 0.015 -7.875 < 0.001 

Summer 0.092 0.035 2.632 0.009 0.103 0.014 7.226 < 0.001 0.094 0.014 6.475 < 0.001 

  

Number of Observations: 1735. Total Sum of 
Squares: 2553.2. Residual Sum of Squares: 
448.71. R-Squared: 0.82425. Adj. R-Squared: 
0.82262. F-statistic: 503.595 on 16 and 1718 DF, 
p-value  < 0.001. 

Number of Observations: 1735. Total Sum of 
Squares: 189.17. Residual Sum of Squares: 
69.147. R-Squared: 0.63448. Adj. R-Squared: 
0.6216. F-statistic: 207.675 on 14 and 1675 DF, 
p-value  < 0.001. 

Number of Observations: 1735. Total Sum of 
Squares: 198.78. Residual Sum of Squares: 
75.675. R-Squared: 0.61974. Adj. R-Squared: 
0.6162. Wald Chi-Squared: 2856.94 on 16 DF, p-
value  < 0.001. 
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Table 11 – P.M. Peak Unrestricted Model Outputs 

P.M. Peak Unrestricted Model Outputs 

                          

  Unrestricted Pooled OLS Model Unrestricted Fixed Effect Model Unrestricted Random Effect Model 

  Coefficient SE t-value p-value Coefficient SE t-value p-value Coefficient SE t-value p-value 

(Intercept) -4.862 1.831 -2.655 0.008 - - - - -32.576 6.868 -4.743 < 0.001 

Service Quantity 1.627 0.023 69.965 < 0.001 0.351 0.037 9.437 < 0.001 0.553 0.034 16.140 < 0.001 

Fare Price 1.482 0.044 33.498 < 0.001 0.088 0.032 2.750 0.006 0.132 0.033 3.989 < 0.001 

Feeder Bus Connection Quality -0.214 0.036 -6.006 < 0.001 0.094 0.026 3.687 < 0.001 0.091 0.026 3.443 < 0.001 

Population Density 0.395 0.031 12.640 < 0.001 -2.328 0.543 -4.290 < 0.001 0.390 0.175 2.226 0.026 

Gender - Female 0.002 0.160 0.014 0.989 -0.001 0.054 -0.020 0.984 0.013 0.057 0.230 0.818 

Unemployment Rate 0.590 0.088 6.697 < 0.001 1.919 0.356 5.399 < 0.001 2.662 0.244 10.932 < 0.001 

Income -0.113 0.084 -1.351 0.177 2.475 0.383 6.466 < 0.001 1.591 0.315 5.044 < 0.001 

Age 0.475 0.334 1.420 0.156 11.006 2.044 5.384 < 0.001 2.935 1.453 2.020 0.043 

Employment Density 0.165 0.023 7.016 < 0.001 - - - - 0.259 0.136 1.900 0.057 

Fuel Price 0.289 0.136 2.126 0.034 0.119 0.051 2.316 0.021 0.169 0.052 3.231 0.001 

Vehicle Ownership -0.174 0.033 -5.353 < 0.001 1.653 0.355 4.652 < 0.001 -0.352 0.167 -2.110 0.035 

Park and Ride Capacity -0.037 0.009 -4.014 < 0.001 0.006 0.010 0.583 0.560 -0.002 0.010 -0.162 0.871 

Distance to CBD - Near -0.044 0.059 -0.743 0.457   - -   0.333 0.248 1.341 0.180 

Winter -0.042 0.032 -1.288 0.198 -0.097 0.011 -8.781 < 0.001 -0.099 0.011 -8.668 < 0.001 

Spring 0.016 0.033 0.493 0.622 0.035 0.011 3.076 0.002 0.026 0.012 2.191 0.028 

Summer 0.163 0.032 5.107 < 0.001 0.214 0.011 19.719 < 0.001 0.205 0.011 18.153 < 0.001 

  

Number of Observations: 2690. Total Sum of 
Squares: 6144.5. Residual Sum of Squares: 
902.95. R-Squared: 0.85305. Adj. R-Squared: 
0.85217. F-statistic: 969.783 on 16 and 2673 DF, 
p-value  < 0.001. 

Number of Observations: 2690. Total Sum of 
Squares: 169.77. Residual Sum of Squares: 
97.334. R-Squared: 0.42666. Adj. R-Squared: 
0.41089. F-statistic: 139.107 on 14 and 2617 DF, 
p-value  < 0.001. 

Number of Observations: 2690. Total Sum of 
Squares: 185.6. Residual Sum of Squares: 
109.37. R-Squared: 0.41093. Adj. R-Squared: 
0.40741. Wald Chi-Squared: 1898.47 on 16 DF, 
p-value  < 0.001. 
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Table 12 - Evening Off-Peak Unrestricted Model Outputs 

Evening Off-Peak Unrestricted Model Outputs 

                          

  Unrestricted Pooled OLS Model Unrestricted Fixed Effect Model Unrestricted Random Effect Model 

  Coefficient SE t-value p-value Coefficient SE t-value p-value Coefficient SE t-value p-value 

(Intercept) -0.549 2.801 -0.196 0.845 - - - - -45.478 10.957 -4.150 < 0.001 

Service Quantity 1.014 0.016 61.803 < 0.001 0.458 0.017 26.396 < 0.001 0.488 0.017 29.407 < 0.001 

Fare Price 1.454 0.051 28.750 < 0.001 0.067 0.032 2.068 0.039 0.118 0.033 3.596 < 0.001 

Feeder Bus Connection Quality -0.035 0.051 -0.695 0.487 -0.054 0.040 -1.346 0.178 -0.060 0.040 -1.496 0.135 

Population Density 0.453 0.045 10.012 < 0.001 -3.231 0.877 -3.682 < 0.001 0.567 0.261 2.175 0.030 

Gender - Female -0.120 0.233 -0.516 0.606 -0.007 0.086 -0.078 0.938 -0.006 0.088 -0.073 0.942 

Unemployment Rate 1.019 0.135 7.557 < 0.001 3.721 0.615 6.054 < 0.001 2.346 0.381 6.151 < 0.001 

Income 0.056 0.128 0.435 0.664 6.181 0.662 9.339 < 0.001 3.130 0.505 6.198 < 0.001 

Age -0.618 0.495 -1.249 0.212 19.649 3.511 5.596 < 0.001 5.397 2.283 2.364 0.018 

Employment Density 0.301 0.035 8.713 < 0.001 - - - - 0.264 0.202 1.306 0.191 

Fuel Price -0.221 0.206 -1.073 0.283 0.298 0.084 3.549 < 0.001 0.204 0.084 2.434 0.015 

Vehicle Ownership -0.350 0.045 -7.769 < 0.001 -2.207 0.577 -3.823 < 0.001 -1.493 0.247 -6.035 < 0.001 

Park and Ride Capacity 0.050 0.012 4.130 < 0.001 -0.002 0.015 -0.154 0.877 0.000 0.015 0.026 0.979 

Distance to CBD - Near 0.610 0.096 6.379 < 0.001 - - - - 1.065 0.377 2.822 0.005 

Winter -0.084 0.049 -1.722 0.085 -0.131 0.018 -7.357 < 0.001 -0.131 0.018 -7.206 < 0.001 

Spring 0.136 0.049 2.765 0.006 0.109 0.019 5.846 < 0.001 0.103 0.019 5.427 < 0.001 

Summer 0.315 0.048 6.596 < 0.001 0.313 0.018 17.777 < 0.001 0.307 0.018 17.079 < 0.001 

  

Number of Observations: 2515. Total Sum of 
Squares: 8160.8. Residual Sum of Squares: 
1787.3. R-Squared: 0.78099. Adj. R-Squared: 
0.77959. F-statistic: 556.741 on 16 and 2498 DF, 
p-value  < 0.001. 

Number of Observations: 2515. Total Sum of 
Squares: 417.74. Residual Sum of Squares: 
227.01. R-Squared: 0.45656. Adj. R-Squared: 
0.44077. F-statistic: 146.605 on 14 and 2443 DF, 
p-value  < 0.001. 

Number of Observations: 2515. Total Sum of 
Squares: 440.87. Residual Sum of Squares: 
244.92. R-Squared: 0.44449. Adj. R-Squared: 
0.44094. Wald Chi-Squared: 2015.03 on 16 DF, 
p-value  < 0.001. 
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5.2.7. Evaluation of Initial Unrestricted Models  
Model diagnostic tools were applied to each set of models to determine which estimator best fit the 

data.  First, a Breusch-Pagen Lagrange Multiplier test was applied using the “plmtest” function from the 

“plm” package to compare the pooled OLS and random effect estimators (Croissant & Miinno, 2008).  For 

each set of models, the test returned significant results, indicating that the use of a random effect estimator 

should be further investigated.   

Second, a Breusch-Pagen Lagrange Multiplier test was applied using the “pFtest” function from 

the “plm” package to compare pooled OLS and fixed effect estimators (Croissant & Miinno, 2008).  Again, 

the test returned significant results for each set of models, indicating that the use of pooled OLS is not an 

efficient estimator for these datasets.   

A Hausman test was then conducted to compare the fixed effect estimator to the random effect 

estimator using the “phtest” function (Croissant & Miinno, 2008).  The test returned significant for each set 

of models, indicating that a fixed effect model is most applicable for these datasets.  

 

5.2.8. Model Selection  
Per the Hausman test, a fixed effect estimator was selected, and a stepwise regression procedure 

was completed for each dataset.  However, the results were too degraded to generate informative results 

and discussion.  As the stepwise regression procedure continued, the majority of independent variables 

included in the unrestricted model were eliminated as they were shown to be insignificant in explaining 

transit demand, while only a few independent variables remained at the conclusion of the procedure.  

Additionally, some of the remaining independent variables demonstrated inflated coefficients and counter-

intuitive signs that did not align with previous estimates identified in the literature.  

Torres-Reyna (2007) states that this can occur when the structure of the dataset being analyzed 

does not align with the mathematical concept of the fixed effect estimator.  Because a fixed effect analysis 

only considers change over time and does not consider cross-sectional differences, such models are only 

efficient when independent variable datasets demonstrate considerable temporal variation.  Since the 

external variable datasets used were generated from projections and do not reflect real values, this could 

have resulted in little fluctuation over the time-series, thus resulting in insignificant outputs.  Additionally, 

some independent variables such as employment density and distance to CBD were excluded from the 

model altogether as they are time invariant.  Eliminating these sources of information could have further 

skewed model outputs and increased model error, as the reviewed literature indicated that these are 

significant sources of information that help explain transit demand.  As noted in Lee et al. (2013), the use 

of a fixed effect estimator can be inefficient if time-invariant variables are theorized to be significant in 

explaining transit demand.   
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The literature further notes that if the researcher has reason to believe that cross-sectional 

differences have some impact on the dependent variable being analyzed, a random effect estimator should 

be selected (Torres-Reyna, 2007).  When station-level transit demand is analyzed, cross-sectional 

differences in external variable datasets such as population and employment density are expected to have 

an influence on ridership, as catchment areas with more residents and workers inherently results in a larger 

customer base compared to stations located in sprawled and dispersed environments.   

A random estimator was therefore selected to produce final modelling outputs as this method 

allowed transit demand to be explained by both cross-sectional, temporal, and time-invariant factors, 

therefore increasing the accuracy and explanatory capacity of the models.  The final form of each 

unrestricted random effect model is outlined below: 

 
 ("#$%&'ℎ#)*+,%-.)!"

= 1(2%&3#4%56-78#89)!" + 1(;-&%,&#4%)!"
+ 1(;%%$%&<6'=>77%48#>756-?#89)!" + 1(,>)6?-8#>7@%7'#89)!"
+ 1(A%7$%& − ;%C-?%)!" + 1(D7%C)?>9C%78"-8%)!" + 1(E74>C%)!"
+ 1(*F%)!" + 1(GC)?>9C%78@%7'#89)!" + 1(;6%?,&#4%)!"
+ 1(H%ℎ#4?%IJ7%&'ℎ#))!" + 1(,-&.-7$"#$%=-)-4#89)!"
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+ 1(26CC%&)!" +	-# + 6!" + N!"  

Eq. 23 
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+ 1(*F%)!" + 1(GC)?>9C%78@%7'#89)!" + 1(;6%?,&#4%)!"
+ 1(H%ℎ#4?%IJ7%&'ℎ#))!" + 1(,-&.-7$"#$%=-)-4#89)!"
+ 1(@#'8-74%8>=<@ − K%-&)!" + 1(L#78%&)!" + 1(2)&#7F)!"
+ 1(26CC%&)!" +	-# + 6!" + N!"  

Eq. 24 
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+ 1(@#'8-74%8>=<@ − K%-&)!" + 1(L#78%&)!" + 1(2)&#7F)!"
+ 1(26CC%&)!" +	-# + 6!" + N!"  

Eq. 25 
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 ("#$%&'ℎ#)G3%7#7FIOO,%-.)!"
= 1(2%&3#4%56-78#89)!" + 1(;-&%,&#4%)!"
+ 1(;%%$%&<6'=>77%48#>756-?#89)!" + 1(,>)6?-8#>7@%7'#89)!"
+ 1(A%7$%& − ;%C-?%)!" + 1(D7%C)?>9C%78"-8%)!" + 1(E74>C%)!"
+ 1(*F%)!" + 1(GC)?>9C%78@%7'#89)!" + 1(;6%?,&#4%)!"
+ 1(H%ℎ#4?%IJ7%&'ℎ#))!" + 1(,-&.-7$"#$%=-)-4#89)!"
+ 1(@#'8-74%8>=<@ − K%-&)!" + 1(L#78%&)!" + 1(2)&#7F)!"
+ 1(26CC%&)!" +	-# + 6!" + N!"  

Eq. 26 

 

5.2.9. Model Diagnostics  
Each random effect unrestricted model was tested for the presence of heteroskedasticity and serial 

correlation of error terms.  A Durbin-Watson test for serial correlation in panel data models was conducted 

using the “pdwtest” function, while a Breusch-Pagen test for heteroskedasticity was conducted using the 

“bptest” function obtained from the “lmtest” package (Croissant & Miinno, 2008; Zeileis, 2002).  Both tests 

were completed in R-Studio.  Significant results were found in all models, therefore indicating the presence 

of heteroskedasticity and serial correlation.  Model outputs produced during the stepwise regression 

procedure were thereby estimated with White robust standard errors, clustered at the station level, to ensure 

that estimated coefficients and the level of significance associated with each individual variable included 

in the analysis was correctly specified (Guerra & Cervero, 2011; Torres-Reyna, 2007; Zeileis, 2002).   
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Table 13 - Unrestricted Random Effect Model Outputs Estimated Using Robust Standard Errors 

A.M. Peak Unrestricted Model Estimated Using Robust Standard Errors   Midday Off-Peak Unrestricted Model Estimated Using Robust Standard Errors 

                     

  Coefficient SE t-value p-value     Coefficient SE t-value p-value 

(Intercept) -6.763 5.893 -1.148 0.251   (Intercept) -1.891 2.261 -0.836 0.403 

Service Quantity 0.208 0.033 6.248 < 0.001   Service Quantity 0.978 0.017 57.003 < 0.001 

Fare Price -0.283 0.112 -2.522 0.012   Fare Price 1.261 0.086 14.741 < 0.001 

Feeder Bus Connection Quality -0.008 0.015 -0.546 0.585   Feeder Bus Connection Quality -0.176 0.046 -3.849 < 0.001 

Population Density 0.397 0.139 2.861 0.004   Population Density 0.523 0.051 10.213 < 0.001 

Gender - Female -0.057 0.005 -11.696 < 0.001   Gender - Female -0.087 0.141 -0.618 0.537 

Unemployment Rate 0.568 0.273 2.080 0.038   Unemployment Rate -0.078 0.101 -0.765 0.444 

Income 0.151 0.203 0.743 0.458   Income 0.199 0.101 1.976 0.048 

Age 1.201 1.217 0.987 0.324   Age -0.420 0.411 -1.023 0.306 

Employment Density -0.134 0.089 -1.510 0.131   Employment Density 0.001 0.036 0.038 0.969 

Fuel Price 0.199 0.036 5.524 < 0.001   Fuel Price 0.392 0.151 2.594 0.010 

Vehicle Ownership 0.265 0.072 3.651 < 0.001   Vehicle Ownership -0.195 0.070 -2.804 0.005 

Park and Ride Capacity 0.043 0.010 4.282 < 0.001   Park and Ride Capacity 0.031 0.011 2.700 0.007 

Distance to CBD - Near -1.626 0.134 -12.140 < 0.001   Distance to CBD - Near -0.991 0.074 -13.441 < 0.001 

Winter 0.022 0.009 2.511 0.012   Winter -0.138 0.035 -3.925 < 0.001 

Spring 0.022 0.009 2.435 0.015   Spring -0.136 0.036 -3.787 < 0.001 

Summer -0.007 0.009 -0.780 0.435   Summer 0.092 0.035 2.632 0.009 

Number of Observations: 2928. Total Sum of Squares: 94.99. Residual Sum of Squares: 
79.542. R-Squared: 0.16263. Adj. R-Squared: 0.15802. Wald Chi-Squared Test: 1441.1 
on 16 DF, p-value  < 0.001. 

 
Number of Observations: 1735. Total Sum of Squares: 198.78. Residual Sum of Squares: 
75.675. R-Squared: 0.61974. Adj. R-Squared: 0.6162. Wald Chi-Squared Test: 2237.1 on 16 
DF, p-value  < 0.001. 
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Table 14 - Unrestricted Random Effect Model Outputs Estimated Using Robust Standard Errors (continued) 

P.M. Peak Unrestricted Model Estimated Using Robust Standard Errors   Evening Off-Peak Unrestricted Model Estimated Using Robust Standard Errors 

                     

  Coefficient SE t-value p-value     Coefficient SE t-value p-value 

(Intercept) -32.576 7.182 -4.536 < 0.001   (Intercept) -45.478 13.414 -3.390 < 0.001 

Service Quantity 0.553 0.055 10.154 < 0.001   Service Quantity 0.488 0.027 17.884 < 0.001 

Fare Price 0.132 0.045 2.910 0.004   Fare Price 0.118 0.046 2.568 0.010 

Feeder Bus Connection Quality 0.091 0.024 3.763 < 0.001   Feeder Bus Connection Quality -0.060 0.045 -1.338 0.181 

Population Density 0.390 0.187 2.084 0.037   Population Density 0.567 0.243 2.329 0.020 

Gender - Female 0.013 0.006 2.263 0.024   Gender - Female -0.006 0.019 -0.344 0.731 

Unemployment Rate 2.662 0.246 10.806 < 0.001   Unemployment Rate 2.346 0.360 6.513 < 0.001 

Income 1.591 0.341 4.670 < 0.001   Income 3.130 0.552 5.672 < 0.001 

Age 2.935 1.508 1.947 0.052   Age 5.397 2.579 2.092 0.036 

Employment Density 0.259 0.144 1.801 0.072   Employment Density 0.264 0.206 1.284 0.199 

Fuel Price 0.169 0.054 3.139 0.002   Fuel Price 0.204 0.086 2.366 0.018 

Vehicle Ownership -0.352 0.185 -1.902 0.057   Vehicle Ownership -1.493 0.219 -6.809 < 0.001 

Park and Ride Capacity -0.002 0.013 -0.119 0.906   Park and Ride Capacity 0.000 0.017 0.023 0.982 

Distance to CBD - Near 0.333 0.271 1.227 0.220   Distance to CBD - Near 1.065 0.386 2.758 0.006 

Winter -0.099 0.011 -9.203 < 0.001   Winter -0.131 0.017 -7.679 < 0.001 

Spring 0.026 0.011 2.298 0.022   Spring 0.103 0.018 5.789 < 0.001 

Summer 0.205 0.012 17.347 < 0.001   Summer 0.307 0.019 16.296 < 0.001 

Number of Observations: 2690. Total Sum of Squares: 185.6. Residual Sum of 
Squares: 109.37. R-Squared: 0.41093. Adj. R-Squared: 0.40741. Wald Chi-Squared 
Test: 1438.6 on 16 DF, p-value  < 0.001. 

 
Number of Observations: 2515. Total Sum of Squares: 440.87. Residual Sum of Squares: 
244.92. R-Squared: 0.44449. Adj. R-Squared: 0.44094. Wald Chi-Squared Test: 38734 on 16 
DF, p-value  < 0.001. 
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5.2.10. Stepwise Regression 
Table 13 outlines the results produced from the unrestricted random effect models estimated using 

robust clustered standard errors.  Initial examination of the model outputs show that a variety of variables 

are statistically insignificant in explaining ridership, as large p-values are associated with several factors.  

A backwards stepwise regression procedure was therefore used to eliminate insignificant independent 

variables, with the purpose of improving the explanatory capacity of each model.  

The stepwise regression was completed by selecting and eliminating the independent variable 

associated with the largest p-value in each model.  Once a variable was removed, model outputs were 

recalculated so that updated statistical measures could further inform the stepwise regression process.  The 

stepwise regression process continued until all variables included in each model were statistically 

significant, as evidenced by a corresponding p-value less than or equal to 0.1.  Analytical reasoning was 

also used to eliminate variables where the sign or magnitude of the coefficient was counterintuitive.  Once 

a variable was removed, model outputs were recalculated until all variables included in the model were 

shown to be significant.  The stepwise regression process undertaken for each model is detailed below. 

Age was eliminated from every model as it displayed an abnormally large coefficient, and its 

exclusion did not dramatically decrease model performance.  After removal, feeder bus connection quality, 

income, and employment density were eliminated from the a.m. peak model due to insignificance.  Summer 

was also shown to be insignificant, but remained in the model as a separate linear hypothesis test showed 

that all seasonal dummy variables were jointly significant in explaining demand (Fox & Weisberg, 2019).  

Employment density and park and ride capacity were eliminated from the midday off-peak model due to 

insignificance.  Park and ride capacity were also eliminated from the p.m. peak and evening off-peak model 

as it was not significantly correlated with demand.  All variables in the evening off-peak model were shown 

to be significant once gender - female and feeder bus connection quality was removed.   

After the stepwise regression procedure, the p-value associated with all variables included in the 

final models were shown to be less than the predetermined significance threshold, indicating statistical 

significance.  Final results generated for each trip type are summarized in the following chapter.  A complete 

copy of the regression outputs used to inform the stepwise regression process can be found in Appendix K. 

 

5.3. Chapter Summary 
In sum, this section summarized the steps taken to clean and prepare the datasets, the process used 

to remove multi-collinearity from each model, how the panel data model estimator was selected, and the 

stepwise regression procedure used.  Findings from the restricted model outputs are therefore presented in 

the following chapter.  A full reproducible code used to complete the analysis as outlined above can be 

obtained by contacting the author.  
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6. Results 
In this chapter, separate regression outputs are presented for each trip type analyzed.  Ridership 

elasticities pertaining to internal, socioeconomic, demographic, and station access indicators are presented 

in Table 16 and Table 17.  As described in Table 15, results are color coded to indicate the level of 

significance and relationship demonstrated by each independent variable included in each model.  A 

summary of the significance and magnitude associated with each demand elasticity is further provided, as 

is a comparison of similar and/or differing results between models.  A discussion regarding the explanatory 

capacity of each model is also outlined.   

 

6.1. A.M. Peak Model 
After adjusting for multi-collinearity, eliminating insignificant variables, and controlling for 

heteroscedasticity and spatial correlation, the restricted a.m. peak ridership model takes the following form: 

 

 ("#$%&'ℎ#)*+,%-.)!"
= 1(2%&3#4%56-78#89)!" + 1(;-&%,&#4%)!" + 1(,<)6=-8#<7>%7'#89)!"
+ 1(?%7$%& − ;%A-=%)!" + 1(B7%A)=<9A%78"-8%)!"
+ 1(;6%=,&#4%)!" + 1(C%ℎ#4=%DE7%&'ℎ#))!"
+ 1(,-&.-7$"#$%F-)-4#89)!" + 1(>#'8-74%8<FG> − H%-&)!"
+ 1(I#78%&)!" + 1(2)&#7J)!" + 1(26AA%&)!" +	-# + 6!" + L!"  

Eq. 27 

 

 As shown in Table 16, all continuous variables were found to significantly explain ridership.  Some 

variables, including service quantity, gender - female, price of fuel, park and ride capacity, vehicle 

ownership, and distance to CBD - near were shown to have a greater influence on a.m. peak period ridership 

as a p-value < 0.001 was associated with these factors.  When considered independently, dummy variables 

representing seasonal effects had differing impacts on ridership.  However, a joint significance test revealed 

that all seasonal variables were significant in explaining the number of boardings.  As a result, summer 

remained in the model regardless of the 

large p-value associated with this 

factor.  The results indicate that a 

combination of internal and external 

variables were significant in explaining 

ridership during the a.m. peak time 

period.

Sign With Respect to A Priori Assumption 

A Priori Assumption 

Realized 

A Priori Assumption 

Not Realized 

A Priori Assumption 

Not Formulated 

      

Table 15 - Regression Model Color Coding Scheme 
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Table 16 - Restricted Random Effect Model Outputs Estimated Using Robust Standard Errors 

A.M. Peak Restricted Model Estimated Using Robust Standard Errors   Midday Off-Peak Restricted Model Estimated Using Robust Standard Errors 

                     

  Coefficient SE t-value p-value     Coefficient SE t-value p-value 

(Intercept) -0.983 1.154 -0.852 0.394   (Intercept) -13.069 5.143 -2.541 0.011 

Service Quantity 0.207 0.033 6.261 < 0.001   Service Quantity 0.571 0.030 19.334 < 0.001 

Fare Price -0.296 0.114 -2.591 0.010   Fare Price -0.244 0.095 -2.566 0.010 

Population Density 0.284 0.111 2.550 0.011   Feeder Bus Connection Quality -0.085 0.035 -2.449 0.014 

Gender - Female -0.056 0.004 -12.625 < 0.001   Population Density 0.770 0.147 5.240 < 0.001 

Unemployment Rate 0.532 0.268 1.990 0.047   Gender - Female 0.022 0.008 2.811 0.005 

Fuel Price 0.203 0.036 5.642 < 0.001   Unemployment Rate 0.625 0.274 2.278 0.023 

Vehicle Ownership 0.305 0.080 3.816 < 0.001   Income 1.515 0.383 3.953 < 0.001 

Park and Ride Capacity 0.041 0.010 4.194 < 0.001   Fuel Price 0.532 0.068 7.833 < 0.001 

Distance to CBD - Near -1.543 0.145 -10.611 < 0.001   Vehicle Ownership -0.692 0.173 -3.992 < 0.001 

Winter 0.021 0.009 2.396 0.017   Distance to CBD - Near -0.882 0.215 -4.100 < 0.001 

Spring 0.020 0.009 2.213 0.027   Winter -0.139 0.014 -9.847 < 0.001 

Summer* -0.009 0.009 -0.898 0.369   Spring -0.126 0.015 -8.515 < 0.001 

Number of Observations: 2928. Total Sum of Squares: 93.71. Residual Sum of 

Squares: 79.02. R-Squared: 0.15676. Adj. R-Squared: 0.15329. Wald Chi-Squared 

Test: 1291.4 on 12 DF, p-value  < 0.001. 

*Summer dummy variable not eliminated as a joint significance test found that all seasonal 

variables were significant in explaining ridership.   

  Summer 0.091 0.015 6.210 < 0.001 

 
Number of Observations: 1735. Total Sum of Squares: 200.49. Residual Sum of Squares: 

78.324. R-Squared: 0.60989. Adj. R-Squared: 0.60694. Wald Chi-Squared Test: 1798.4 on 13 

DF, p-value  < 0.001. 
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Table 17 - Restricted Random Effect Model Outputs Estimated Using Robust Standard Errors (continued) 

P.M. Peak Restricted Model Estimated Using Robust Standard Errors   Evening Off-Peak Restricted Model Estimated Using Robust Standard Errors 

                     

  Coefficient SE t-value p-value     Coefficient SE t-value p-value 

(Intercept) -20.945 4.479 -4.676 < 0.001   (Intercept) -23.063 6.666 -3.460 < 0.001 

Service Quantity 0.562 0.054 10.448 < 0.001   Service Quantity 0.493 0.027 18.115 < 0.001 

Fare Price 0.135 0.045 2.993 0.003   Fare Price 0.121 0.046 2.639 0.008 

Feeder Bus Connection Quality 0.094 0.024 3.902 < 0.001   Population Density 0.410 0.210 1.950 0.051 

Population Density 0.307 0.171 1.790 0.074   Unemployment Rate 2.388 0.350 6.828 < 0.001 

Gender - Female 0.016 0.006 2.650 0.008   Income 2.824 0.522 5.414 < 0.001 

Unemployment Rate 2.703 0.238 11.344 < 0.001   Employment Density 0.403 0.175 2.300 0.022 

Income 1.506 0.337 4.467 < 0.001   Fuel Price 0.197 0.086 2.306 0.021 

Employment Density 0.342 0.136 2.503 0.012   Vehicle Ownership -1.407 0.213 -6.593 < 0.001 

Fuel Price 0.176 0.054 3.292 0.001   Distance to CBD - Near 1.267 0.362 3.496 < 0.001 

Vehicle Ownership -0.339 0.180 -1.887 0.059   Winter -0.132 0.017 -7.761 < 0.001 

Distance to CBD - Near 0.485 0.258 1.878 0.060   Spring 0.099 0.018 5.621 < 0.001 

Winter -0.100 0.011 -9.235 < 0.001   Summer 0.306 0.019 16.198 < 0.001 

Spring 0.024 0.011 2.178 0.030   Number of Observations: 2515. Total Sum of Squares: 443.3. Residual Sum of Squares: 

246.98. R-Squared: 0.44288. Adj. R-Squared: 0.44021. Wald Chi-Squared Test: 759.55 on 

12 DF, p-value  < 0.001. Summer 0.204 0.012 17.326 < 0.001   

Number of Observations: 2690. Total Sum of Squares: 186.53. Residual Sum of 

Squares: 110.07. R-Squared: 0.41012. Adj. R-Squared: 0.40703. Wald Chi-Squared 

Test: 1090.5 on 14 DF, p-value  < 0.001. 
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Service quantity demonstrated a coefficient of 0.207, indicating that a 10% increase in service 

supply could increase ridership by 2.07%.  This suggests that users are more sensitive to fare price increases 

compared to service quantity changes, as a demand elasticity with respect to fare price of -0.296 was found.  

Station location demonstrated the largest coefficient in the analysis.  The base scenario is stations located 

outside of the city of Toronto, so the negative sign of distance to CBD – near  indicates that stations located 

within the city of Toronto were associated with fewer boardings than those located beyond the municipal 

boundary. 

Variables related to station access, including park and ride capacity and feeder bus connection 

quality generated differing results.  Feeder bus connection quality was removed from the model during the 

stepwise regression procedure due to insignificance.  However, park and ride capacity was statistically 

significant in explaining ridership as a p-value < 0.001 was found.  A coefficient of 0.041 indicates that a 

10% increase in parking spaces could yield a 0.41% increase in boardings.  These results suggest that park 

and ride lots are a significant means of connecting the current customer base to the network, whereas feeder 

bus connection quality does not play a significant role in facilitating ridership.   

Population density demonstrated a coefficient of 0.284, indicating that ridership should increase by 

2.84% if the concentration of residents is increased by 10%.  Notably, employment density was removed 

during the stepwise regression procedure due to insignificance  This conforms to the expectation that 

stations located in areas with high employment densities have less trip production during the a.m. peak 

period, as the majority of boardings during this time period are derived from home-based commuter related 

trips.  Unemployment rate significantly explained ridership, while the coefficient indicates that a 10% 

increase in unemployment could increase ridership by 5.32%.  Consistent with Stover & Bae (2011), the 

results suggest that sustained periods of economic downturn could render vehicle ownership infeasible, 

therefore resulting in increased ridership.  Gender - female demonstrated a significant negative correlation 

with ridership.  As expected, this indicates that station catchment areas with a greater proportion of female 

residents were less likely to take transit.  Variables related to automobile ownership were positively 

correlated with ridership.  This was expected for fuel price, as rising vehicle operation costs can entice 

travelers to use transit as it is more affordable compared to private vehicle use.  However, vehicle ownership 

also demonstrated a positive relationship, indicating that an increase in the number of vehicles within the 

study area has a positive impact on ridership.   These findings indicate that vehicle availability can 

complement transit use, as long as the cost of regional transport via private automobile is large.  Seasonality 

was also shown to have a significant impact on the number of boardings.  The base scenario is observations 

that were recorded in October, November, and December.  An insignificant coefficient was generated for 

observations recording during the summer, indicating that ridership during these months did not differ 
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greatly from ridership figures observed in the fall.  The positive sign for winter and spring indicates that 

ridership was significantly larger during the first half of any given year.   

 

6.2. Midday Off-Peak Model 
After adjusting for multi-collinearity, eliminating insignificant variables, and controlling for 

heteroscedasticity and spatial correlation, the restricted midday off-peak model takes the following form: 

 
 ("#$%&'ℎ#)*#$$+,-../%+0)!"

= 3(4%&5#6%78+9:#:,)!" + 3(<+&%/&#6%)!"
+ 3(<%%$%&=8'>?99%6:#?978+@#:,)!" + 3(/?)8@+:#?9A%9'#:,)!"
+ 3(B%9$%& − <%D+@%)!" + 3(E9%D)@?,D%9:"+:%)!" + 3(F96?D%)!"
+ 3(<8%@/&#6%)!" + 3(G%ℎ#6@%-H9%&'ℎ#))!"
+ 3(A#':+96%:?>=A − I%+&)!" + 3(J#9:%&)!" + 3(4)&#9K)!"
+ 3(48DD%&)!" +	+# + 8!" + M!"  

Eq. 28 

 

Table 16 highlights that all variables except unemployment rate, feeder bus connection quality, and 

fuel price significantly explained ridership, as p-values > 0.001 were found.  Additional factors including 

unemployment rate, feeder bus connection quality, and fuel price were also found to be correlated with 

demand, as p-values less than the a priori criterion were identified.  Similar to the a.m. peak model,  a 

variety of internal and external variables were shown to influence the number of boardings during the 

midday off-peak time period, however the direction and significance of several independent variables 

shifted.   

Service quantity demonstrated a coefficient of 0.571, indicating that a 10% increase in service 

supply could increase ridership by 5.71%.  While still significant, fare price demonstrated a lesser 

coefficient of -0.244.  Unlike the a.m. peak period model, these findings indicate that midday riders are 

more responsive to service changes compared to fare price increases.  Station level ridership was again 

negatively impacted if the station was located in close proximity to downtown Toronto.  Compared to the 

findings from the a.m. peak period model, a smaller but statistically significant coefficient of -0.882 was 

identified. 

Park and ride capacity was removed during the stepwise regression due to insignificance, while 

feeder bus connection demonstrated a statistically significant relationship with ridership.  A coefficient of 

-0.085 was estimated, indicating that a 10% increase in transit access time decreases ridership by 0.85%.  

In contrast to the a.m. peak model, these findings indicate that the quality of feeder bus connections is 

important to midday off-peak riders, whereas the provision of park and ride infrastructure is not influential.   

Population density demonstrated a coefficient of 0.77, suggesting that a 10% increase in the 

concentration of residents could increase ridership by 7.7%.  Again, employment density was removed from 
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the model due to insignificance, so coefficients comparing the impact of additional residents vs. additional 

jobs were not shown. Household income generated the largest coefficient in the model; an estimate of 1.515 

was computed, indicating that a 10% increase in household income could increase ridership by 15%.  These 

results suggest that stations located in affluent areas are more likely to generate riders compared to those 

located in marginalized neighborhoods.  The coefficient for unemployment rate was similar to that 

generated in the a.m. peak period model, suggesting that rising unemployment figures have a positive 

impact on transit ridership.  Large proportions of female residents had a statistically significant positive 

impact on ridership, thereby displaying the opposite sign generated by the a.m. peak model.  These results 

illustrate that females are more likely to use transit during the midday off-peak period compared to the a.m. 

peak period. Again, seasonality had a significant impact on ridership.  Demand during winter and spring 

was significantly less compared to the fall baseline scenario, whereas observations obtained during the 

summer were correlated with a larger number of riders.  These observations conform to the expectation that 

large amounts of midday trips are generated during summer months due to vacations, leisure trips, and other 

tourism related travel patterns.  Fuel price generated a coefficient similar to that generated in the a.m. peak 

model, as an elasticity of 5.32% was found.  Notably, the findings with respect to vehicle ownership suggest 

that a 10% increase in the number of vehicles within the study area could decrease ridership by 6.9%.  These 

findings are unlike those identified in the a.m. peak model and suggests that private automobile competes 

with, rather than compliments rail demand outside of the a.m. peak period.   

 

6.3. P.M. Peak Model  
After adjusting for multi-collinearity, eliminating insignificant variables, and controlling for 

heteroscedasticity and spatial correlation, the restricted p.m. peak model takes the following form: 

 
 ("#$%&'ℎ#)/*/%+0)!"

= 3(4%&5#6%78+9:#:,)!" + 3(<+&%/&#6%)!"
+ 3(<%%$%&=8'>?99%6:#?978+@#:,)!" + 3(/?)8@+:#?9A%9'#:,)!"
+ 3(B%9$%& − <%D+@%)!" + 3(E9%D)@?,D%9:"+:%)!" + 3(F96?D%)!"
+ 3(ND)@?,D%9:A%9'#:,)!" + 3(<8%@/&#6%)!"
+ 3(G%ℎ#6@%-H9%&'ℎ#))!" + 3(A#':+96%:?>=A − I%+&)!"
+ 3(J#9:%&)!" + 3(4)&#9K)!" + 3(48DD%&)!" +	+# + 8!" + M!"  

Eq. 29 

 

The results summarized in Table 17 illustrate that demand during the p.m. peak period was most 

sensitive to service quantity, fare price, unemployment rate, household income, and seasonal factors.  Fare 

price and fuel price were also shown to be statistically significant as p-values < 0.01 were associated with 

these factors.  While not as influential, employment density, population density, vehicle ownership, and 
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distance to CBD displayed p-values less than the 0.1 significance threshold, thus warranting inclusion in 

the final model.    

Service quantity demonstrated the expected sign and produced a coefficient of 0.562, indicating 

that a 10% increase in service could result increase ridership by 5.62%.  Fare price displayed the opposite 

sign, indicating that riders are willing to pay for service when offered.  These findings, coupled with those 

summarized above, indicate that a.m. peak users are more sensitive to the monetary cost associated with 

transit use compared to other riders.  Distance to CBD was further shown to influence ridership, as stations 

located close to downtown Toronto generated more ridership compared to those located in suburban 

environments.  This was expected as employment centers and districts are disproportionally concentrated 

within the city of Toronto compared to the rest of the study area.  Employment density further generated a 

statistically significant relationship with demand, therefore validating these findings.   

Park and ride capacity was eliminated during the stepwise regression procedure due to 

insignificance, while feeder bus connection quality tested significant; however, the opposite sign was 

displayed.  These results indicate that boardings during the p.m. peak period could be concentrated at 

stations associated with poor quality feeder bus connection, or that transit access quality has worsened while 

ridership has grown over the time-series.  Ridership during this time period might be better explained by 

station access infrastructure that is more abundant in the downtown core, such as walking connections or 

cycling infrastructure, as ridership is concentrated at these stations.   

Population density demonstrated a coefficient of 0.307, indicating that 10% increase in the 

concentration of residents could increase demand by 3.07%.  Comparatively, an elasticity of 3.42% was 

found for employment density.  These findings indicate that ridership during the p.m. peak period is more 

dependent on the presence of employment centers and business parks, although this finding was expected 

as p.m. peak ridership is mainly dominated by trips that originate from a person’s place of employment.   

Household income and unemployment rate generated the two largest coefficients in the model as 

elasticities of 15.06% and 27.03% were found.  The findings with respect to household income are 

consistent with those identified by the midday off-peak model, while the impact of increasing 

unemployment is much larger compared to the other time periods analyzed.  Again, fuel price demonstrated 

a significant relationship with ridership, as an elasticity of 1.76% was identified.  Ridership was negatively 

impacted by large levels of vehicle ownership, further indicating that the availability of alternative transport 

modes impacts demand outside of the a.m. peak period.  Using fall as the base scenario, ridership was again 

impacted by seasonality.  Demand during winter months was significantly less, while spring and summer 

seasons generated an increase in boardings.  These results conform with the expectation that holidays and 

weather have a negative impact on ridership during cooler time periods.   
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6.4. Evening Off-Peak Model  
After adjusting for multi-collinearity, eliminating insignificant variables, and controlling for 

heteroscedasticity and spatial correlation, the restricted evening off-peak model takes the following form: 

 
 ("#$%&'ℎ#)N5%9#9K-../%+0)!"

= 3(4%&5#6%78+9:#:,)!" + 3(<+&%/&#6%)!" + 3(/?)8@+:#?9A%9'#:,)!"
+ 3(E9%D)@?,D%9:"+:%)!" + 3(F96?D%)!"
+ 3(ND)@?,D%9:A%9'#:,)!" + 3(<8%@/&#6%)!"
+ 3(G%ℎ#6@%-H9%&'ℎ#))!" + 3(A#':+96%:?>=A − I%+&)!"
+ 3(J#9:%&)!" + 3(4)&#9K)!" + 3(48DD%&)!" +	+# + 8!" + M!"  

Eq. 30 

 

In this model, a p-value < 0.001 was identified with respect to a variety of factors, therefore 

indicating statistical significance.  Employment density, fuel price, and population density were shown to 

have a less significant impact on demand, but p-values less than the predetermined cut-off value were still 

identified.   

Service quantity produced a coefficient of 0.493, indicating that a 10% increase in service supply 

could increase ridership by 4.93%.  Consistent with findings from the p.m. peak model, fare price 

demonstrated a significant positive correlation with ridership.  Again, these findings indicate that riders 

who board during the latter half of the day are willing to pay for service.  Distance to CBD played a 

significant role in explaining ridership, as stations located close to downtown Toronto generated a greater 

number of riders.  This could be a result of concerts, gatherings, or sporting events that take place within 

Toronto, therefore resulting in more discretionary trips.   

Park and ride capacity was excluded from the model during the stepwise regression procedure, 

indicating that park and ride infrastructure is an insignificant station amenity for evening riders.  Feeder 

bus connection quality was also eliminated from the model due to insignificance.  These findings are most 

likely a result of parking spaces being available during the evening off-peak period, thus reducing the 

importance of feeder bus connections and overall parking supply.   

Consistent with findings from the p.m. peak model, population and employment density generated 

comparable coefficients, as elasticities of 4.1% and 4.03% were identified.  This is most likely attributed to 

trips generated by the presence of service and retail industries, both of which are open later than typical 

white-collar businesses.  Household income and unemployment rate were also found to generate the largest 

coefficients in the dataset, as elasticities of 23.88% and 28.24% were estimated.  Again, these findings 

suggest that both wealthy and marginalized residents are likely use regional rail services either due to 

increased travel time valuations or as a means of reducing overall transport costs.  Ridership increased in 

the presence of growing fuel prices, as an elasticity of 0.197 was found.  Vehicle ownership also 
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demonstrated a negative relationship with ridership, consistent with findings from midday off-peak and 

p.m. peak models.  Seasonality had a significant impact on ridership, as ridership during winter months was 

significantly lower compared to the fall baseline.  Alternatively, ridership increased significantly during 

spring and summer months, therefore illustrating that tourism and leisure-based trips are a valid source of 

ridership outside of the a.m. peak period.   

 

6.5. Model Fit 
All models were statistically significant in explaining the observed ridership figures.  Wald’s Chi-

squared tests of overall significance returned significant results for each restricted model, indicating that 

the dependent variable was significantly affected by the explanatory variables included in each analysis.  

Notably, the r-squared test statistic found that the explanatory capacity of some models was greater than 

others.  Wooldridge (2013) notes that the r-squared value is a number that summarizes how well the 

computed regression line fits the data.  Essentially, it explains the fraction or percentage of variation in the 

dependent variable that is explained by the factors included in the analysis.  Previous studies have revealed 

that transport behaviour during the a.m. peak period is predictable and consistent, as the majority of demand 

generated during this time period is a function of home-based work trips.  Therefore, it was theorized that 

the r-squared value associated with the a.m. peak period model would be the largest relative to the other 

trip types analyzed.  However, the model representing a.m. peak ridership demonstrated an r-squared value 

of 0.157, indicating that only 15.7% of variation in ridership during this time period was explained by the 

factors included in the model.  In contrast, an r-squared value of 0.61 was shown for the midday off-peak 

period model, while the r-squared value of both the p.m. peak and evening off-peak models was greater 

than 0.4. 

Descriptive analysis suggests that the spread and range of station-level ridership during the a.m. 

peak period was a contributing factor.  Box and whisker plots presented in Figure 12 illustrate that the 

distribution of station-level ridership varied greatly during the a.m. peak period compared to the other trip 

types analyzed.  Since datasets with more variation are harder to explain, the lower r-squared value as 

shown for the a.m. peak ridership model is plausible.  The results suggest that ridership, specifically during 

the a.m. peak period, is heavily influenced by explanatory factors not included in the analysis. 
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Figure 12 - Distribution of Station-Level Ridership by Trip Type, December 2016 - January 2019 
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Regardless, Miller et al. (2017) states that this should be expected when station-level ridership is 

analyzed.  A variety of variables, such as neighbourhood gentrification, the opening / closing of local 

businesses, construction, and special events such as festivals, concerts, and success of sports teams can 

randomly influence station-level ridership.  However, these occurrences are too descriptive to be included 

in demand studies of this scale.  Therefore, the r-squared values identified in all models is within an 

acceptable range as suggested by the author, and is comparable to previous transit demand studies that used 

linear panel data estimators in their analysis (C. Miller & Savage, 2017; Stover & Christine Bae, 2011).   

 

6.6. Chapter Summary  
This chapter summarized results generated from regression models that analyzed GO Transit rail 

demand between January 2016 and December 2019.  Separate models with respect to a.m. peak, midday 

off-peak, p.m. peak, and evening off-peak ridership were presented.  A variety of internal, external, and 

station accessibility indicators demonstrated a statistically significant relationship with demand.  Further, 

post regression test statistics revealed that these models efficiently explained demand during the time period 

analyzed.   

Demand was shown to respond differently to a variety of factors, including fare price, vehicle 

ownership, and seasonality depending on trip type examined.  Further, demand was unresponsive to station 

accessibility indicators outside of the a.m. peak period.  However, this analysis found that several 

independent variables including service quantity, population density, fuel price, unemployment rate, and 

distance to CBD are significant in explaining ridership regardless of trip type examined.  This suggests that 

policies targeted toward these factors will effectively stimulate ridership demand.  Therefore, policies in 

addition to the service quantity improvements proposed in the GO Expansion Program should be explored 

to further improve ridership and stimulate mode shift throughout the Greater Golden Horseshoe.  Policy 

and practice recommendations that could be considered as a result of these findings are explored in the 

following chapter.   
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7. Discussion 
The purpose of this thesis was to identify variables associated with station-level ridership 

throughout the GO Transit rail network.  12 independent variable datasets were used to develop statistically 

viable regression models that analyzed transit demand across a 48-month time-series.  Results from these 

models were highlighted in the previous chapter. 

This thesis also sought to understand how these relationships might differ depending on the trip 

type examined.  Separate regression models which analyzed demand during the a.m. peak, midday off-

peak, p.m. peak, and evening off-peak time periods were therefore formulated.  The results indicate that 

some factors are more influential in explaining station-level ridership in some time periods compared to 

others.  The following section contrasts our results with previous studies and theorizes how the identified 

relationships may have been realized.     

This chapter further explores these differences to formulate practice and policy recommendations 

that could be implemented to further stimulate demand throughout the GO Transit network.  Discussion is 

directed towards variables that were found to be influential across all trip types, as it would be most effective 

for transit agencies to implement policies that stimulate demand throughout the day.  Based on our findings, 

it is recommended that planners in the Greater Golden Horseshoe focus on policies related to the density 

and diversity of the built environment, the cost of vehicle operation, and the price of short-distance trips 

within the city of Toronto to stimulate demand.  Desktop research revealed that even in the absence of this 

study, planners throughout the GGH have suggested that policies related to these factors should be 

implemented to increase ridership.  However, implementation barriers and a lack of political commitment 

have prevented this from occurring.  Therefore, recommendations are also provided which could be applied 

to overcome these barriers.    

This chapter concludes by outlining limitations that were realized during the research process, and 

states future research directions that could pursued by transit researchers.   

 

7.1. Consistent Findings Between Models  
The results illustrate that GO Transit rail ridership is impacted by a variety of variables, but that 

the sign, significance, and magnitude of influence can differ depending on the type of trip examined.  

However, the sign and significance of service quantity, average price, of fuel, unemployment rate, and 

population density remained consistent between models.   

 

7.1.1. Service Quantity  

Elasticity estimates for service quantity remained positive regardless of trip type examined, as 

elasticities ranging from 0.207 to 0.571 were calculated.  Consistent with previous findings, the results 
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support the notion that increasing the amount of commuter rail trips will increase demand regardless of trip 

type or purpose (Balcombe et al., 2004; Guerra & Cervero, 2011; Nowak & Savage, 2013; Taylor et al., 

2009).  Furthermore, three of the four models found that demand was more responsive to service quantity 

than fare price.  This suggests that customers in the GGH are not overly sensitive to monetary costs 

associated with transit use, but instead are significantly influenced by the increase in utility generated by 

decreased headways and more convenient trip options.  These findings indicate that in service supply, 

compared to fare price reductions, should have a more significant impact on increasing all day ridership 

(Balcombe et al., 2004; Kohn, 2000; Taylor et al., 2009).   

Notably, our results found that demand during the a.m. peak period was less responsive to service 

quantity changes compared to other trip types examined.  This could be explained by extensive baseline 

service that was already offered during the a.m. peak period, as previous studies have shown that consumer 

response can be limited if little benefit is realized by the addition of an extra trip (C. Chen et al., 2011; R. 

Liu, 2018; Wasserman, 2019; Yanmaz-Tuzel & Ozbay, 2010).  As shown in Figure 13, a lesser elasticity 

during the a.m. peak period was also expected as the number of trips during this time period increased at a 

lower rate compared to the other trip types analyzed.  These findings suggest that demand should increase 

as service quantity continues to expand, but that marginal gains should be expected as customers become 

climatized to adequate service quantity levels.   

 

Figure 13 - GO Transit Rail Network Service Quality Increases, January 2016 - December 2019 
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7.1.2. Population Density  

Population density demonstrated a positive relationship with ridership in all models estimated, as 

demand elasticities ranging from 0.284 to 0.77 were identified.  Consistent with previous studies, the results 

suggest that rail demand can be increased significantly when dense residential developments are constructed 

within close proximity to the network (Boisjoly et al., 2018; Brown et al., 2014; Durning & Townsend, 

2015; Guerra & Cervero, 2011).  Further, the consistency of the relationship across models indicates that 

policies aimed at intensifying residential areas around GO Transit rail stations is an effective method of 

influencing mode share and transit use for all trip types.   

While a statistically significant relationship was continuously noted, elasticity values differed 

between model outputs.  Previous studies have found that population density has a strong influence on 

transit demand during the a.m. peak period, as the majority of travel during this time period consists of 

home-based work trips.  Therefore, it was expected that ridership during the a.m. peak period would be 

elastic to increased population densities relative to other models estimated..   

Instead, an elasticity of 0.284 was identified, nearly half of that identified by the midday off-peak 

model.  As noted by Miller & Savage (2017), large population densities are expected to stimulate demand 

in off-peak periods, as the abundance of recreational and social activities can draw people into these areas 

from other regional locations.  Our findings suggest that discretionary demand is more sensitive to increased  

population densities instead of commuter related trips.   

This value could have been minimized by the fact that key trip generators during the a.m. peak 

period are located in low density suburban environments.  For example, stations associated with large 

ridership figures such as Oakville, Clarkson, and Whitby GO Stations are surrounded by urban areas that 

consist of sprawled, single family homes.  In contrast, stations located in dense urban environments, such 

as Exhibition, Bloor, and Danforth GO Stations struggle to generate ridership during this time period.  The 

results suggest that ridership could be further increased if policies are implemented that incentivize GO 

Transit rail use for inter-city travel.   

Various articles have suggested that even if large population densities are realized, the presence of 

children at the household level significantly impacts ridership as more complex trip chains are required 

(Currie & Delbosc, 2011; Rahman et al., 2019).  Therefore, transit use is reduced in favour of private 

automobile due to the convenience and flexibility associated with this mode.  The impact of this factor on 

ridership could not be assessed, as households with children was eliminated from all models during the 

stepwise regression process as a significant correlation with population density was detected.  For future 

research, a metric different than the one specified for this study should be used to record the presence of 

children at the household level, to see if elasticities with respect to population density change once the 

presence of children is accounted for. 
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7.1.3. Fuel Price  

The price of fuel significantly explained ridership demand, as relatively high demand elasticities 

were estimated across all models.  The significance of these results indicate that push techniques aimed at 

increasing the disutility of private automobile use is a viable method to encourage mode shift and increase 

ridership demand (C. Chen et al., 2011; Lane, 2010; Maley & Weinberger, 2009; Taylor et al., 2009).  

Strategies aimed at increasing the cost of parking and expressway use could play a role, as these costs could 

be strategically implemented to increase the cost of inter-regional transport without negatively impacting 

local or work-related transport patterns where private automobile use is necessary.  However, collaboration 

and cooperation from various levels of government could prove difficult, as the optics associated with such 

policies decreases political willingness regardless of the potential benefits that could be realized (M. J. 

Bianco et al., 1997).  

 

7.1.4. Unemployment Rate  

Surprisingly, unemployment rate demonstrated a relationship commonly seen in studies where 

local transit ridership, rather than regional transit demand is analyzed.  For example, various studies have 

suggested that local transit ridership increases when the unemployment rate rises, as choice riders transition 

to public transit due to cost concerns.  However, the opposite has been shown for commuter rail ridership 

as a reduction in the amount of traffic between residential and employment locations is expected to occur 

when a downturn in economic activity is realized (Iseki & Ali, 2014; Nowak & Savage, 2013; Stover & 

Christine Bae, 2011).  Most likely, the sign and significance of this relationship was skewed as extrapolated 

values, rather than real values, were used to obtain monthly unemployment rate estimates throughout the 

study area.  Previous demand studies have shown that linear extrapolation is commonly used to project and 

obtain socioeconomic and demographic values during intercensal periods (Chiang et al., 2011; Lee & Lee, 

2013), but this method fails to capture local industrial and economic trends that have a significant impact 

on unemployment rates (Weden et al., 2015).  Therefore, it is likely that the unemployment rate dataset 

used for this study was misspecified.  It is recommended that results in relation to this variable be interpreted 

with caution, as the use of real household employment statistics are needed to further explain the 

relationship between unemployment rate and transit demand.     

 

7.2. Differing Findings Between Models  
Model comparison revealed that a variety of internal and external variables significantly explained 

transit demand for some trip types but not others.  Of the variables assessed, the sign, significance, and 

coefficient associated with fare price, seasonality, employment density, and vehicle ownership differed 

between models.   
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7.2.1. Fare Price  
Fare price demonstrated a negative correlation with ridership demand, but only during the a.m. 

peak and midday off-peak periods.  These findings are unlike those identified in the literature, who found 

that larger fare prices should discourage transit demand, regardless of trip purpose (Boisjoly et al., 2018; 

C. Chen et al., 2011; Diab et al., 2020; Guerra & Cervero, 2011; Iseki & Ali, 2014; Schimek, 2015).  

Furthermore, previous studies have theorized that peak period users are less sensitive to fare price changes, 

as the utility generated by employment offsets the cost of transit use (Guerra & Cervero, 2011).  Several 

factors could explain why differing relationships were identified in this analysis.     

First, previous studies have found that commuter rail demand responds differently to fare price 

changes compared to other modes (Brown et al., 2014; S. H. Chen & Zegras, 2016; Durning & Townsend, 

2015; R. Liu, 2018; Rahman et al., 2019; Stover & Christine Bae, 2011).  Kohn (2000) theorized that many 

vehicle owners chose to use commuter rail as high vehicle operation and parking costs experienced at 

employment destinations is much larger than fare prices charged by commuter rail agencies.  Therefore, 

additional transport costs that are  experienced as a result of a fare price increase is marginal compared to 

increased costs that would be realized if the rider chose to use private automobile for the entirety of their 

trip.  This can result in fare price elasticities that are low relative to other transit modes.  While not directly 

measured, high parking costs or a lack of parking in the study area’s CBD could explain the fare price 

elasticities identified.  The results suggest that sustained demand should be expected until fare prices are 

comparable to parking costs experienced in the city of Toronto.   

Secondly, drastic service quantity increases occurred throughout the time-series while only 

marginal fare price changes were experienced.  Further to findings identified by Stover et al. (2011), fare 

price elasticities can be understated if few and/or marginal fare price changes occur during the study period.  

These findings, coupled with the drastic level of service changes that were realized, could have resulted in 

the underestimation of demand elasticities with respect to fare price for the models estimated. 

Third, it is important to note that fare price changes that occurred during the time-series were not 

uniform in direction.  For example, a memo released by Metrolinx stated that fare prices were increased for 

long distance trips, while those 10 kilometers or less in length were reduced to a flat rate of $3.70 (Woo & 

Childs, 2019).  As a result, the relatively stable elasticities identified outside of the a.m. peak time period 

suggest that long distance riders lost as a result of the fare increase were balanced out by additional riders 

engaging in more short-distance trips.  Per Farber et al (2014), these findings should be interpreted with 

caution by the transit agency being reviewed, as declines in average trip length could decrease revenues 

and encourage the use of unsustainable modes when completing long distance trips.  Further research could 

be conducted to see if average trip length did decrease after the fare adjustment took place, to indicate if 

rider behaviour did change significantly with respect to fare price.   
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7.2.2. Seasonality  

Seasonality was shown to have a significant impact on demand in all models.  Typically, 

observations that occurred during the winter demonstrated a negative correlation with demand, while 

ridership increased in summer months.  This was expected as previous studies have noted that rail ridership 

is heavily impacted by seasonal effects for systems located in temporal climates (C. Chen et al., 2011; Lane, 

2010).  As summarized in Section 3.2.8, inadequate station infrastructure could result in decreased ridership 

during winter months, as this creates a disutility of having to wait outside to bear cold temperatures and 

precipitation events (Singhal et al., 2014).  His study found that rail users whose origin station was elevated 

were particularly elastic to the presence of snow and rain, and that cold temperatures also impacted ridership 

figures (Singhal et al., 2014).  He further states that internal characteristics, such as service frequency and 

total trip time, can reduce the impacts caused by climatic related events, and station upgrades can be 

implemented to otherwise deter seasonal fluctuations.    

Notably, the majority of stations throughout the GO Transit network use elevated platforms, 

meaning that passengers need to stand outside when boarding and alighting vehicles.  Additionally, the 

majority of stations currently in use by GO Transit were constructed in the 20th century and were not 

designed to satisfy high volume passenger flows.  Further, the largest increase in ridership during the time 

series was seen at stations where new station infrastructure has been implemented, such as Oakville and 

Clarkson GO Stations. Therefore, inadequate station infrastructure could be a driver of decreased winter 

ridership, as the disutility of being exposed to cold weather and precipitation events may encourage choice 

riders to use private automobile rather than transit.  Per Singhal et al. (2014), changes to station 

infrastructure, such as the number of heated shelters, the amount of indoor seating, and reduced headways 

during winter months, are all internal changes that could be implemented to decrease the amount of 

disutility associated with system use during winter months.  Investigating the implementation of covered 

or enclosed stations, as seen in Europe, could further deter impacts.    

An exception to this was ridership during the a.m. peak period, as relatively small coefficients 

suggest that morning commuters are not overly sensitive to seasonal effects.  However, this was anticipated 

as more utility is generated by trips that occur during the a.m. peak period, which therefore result in greater 

consistency and less seasonal deviation in demand compared to the other time periods examined.  

Regardless, upgrades to station infrastructure could still be considered as a greater level of customer 

satisfaction could be realized by these improvements.   

 

7.2.3. Employment Density  

Employment density demonstrated a positive correlation with transit demand, but only during the 

p.m. peak and evening off-peak time periods.  As identified in the literature, these findings conform to the 
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expectation that the majority of trips during the later half of the day are work-based trips that consist of 

commuters returning to residential areas (S. H. Chen & Zegras, 2016; Wasserman, 2019).  Notably, 

population density also demonstrated a significant correlation with transit demand during these time 

periods, suggesting that stations surrounded by a variety of land uses are associated with larger ridership 

figures compared to those surrounded by uniform uses.  This was expected as the presence of retail stores, 

commercial outlets, and eating establishments, which are often located in mixed-use areas, generate 

increased amounts of discretionary traffic due to late operating hours and recreational offerings (S. H. Chen 

& Zegras, 2016; Durning & Townsend, 2015; Rahman et al., 2019; Zhang & Wang, 2014).  The results of 

this study indicate that increasing the diversity of land uses surrounding GO Transit rail stations could be 

effective in increasing transit demand during p.m. peak and evening off-peak hours.   

 

7.2.4. Station Location  

Station location was significantly associated with ridership, although the sign of this relationship 

differed between models.  Stations near the study areas CBD were associated with fewer boardings during 

the a.m. and midday off-peak periods, while the opposite relationship was identified in the p.m. and evening 

off-peak models.  The results indicate that trips undertaken during the first half of the day are concentrated 

in suburban areas, while those in the p.m. and evening off-peak are concentrated within the city of Toronto.  

This was expected, as the majority of GO Transit rail users are those who reside in suburban locations and 

commute to downtown Toronto, as employment opportunities are concentrated in this area.  

Regardless, the fact that boardings were disproportionally concentrated at suburban and inner-city 

stations during peak periods suggests that residents within the study area rarely use GO Transit for trips 

other than commuter related travel.  The negative relationship identified during the a.m. peak period further 

suggests that residents within the city of Toronto likely use other modes to satisfy transport patterns, despite 

the fact that stations are more accessible compared to those located in rural or suburban areas.  Additional 

policies could be implemented to increase the utility associated with inner-city trips, therefore increasing 

the amount of station-level ridership within the city of Toronto.  Competitive fare pricing strategies could 

be explored to ensure that the amount of disutility associated with system use does not exceed that 

associated with local service providers who operate within the study area.   

 

7.2.5. Household Vehicle Ownership 

More vehicles were associated with increased transit demand during the a.m. peak period, while 

the opposite relationship was identified for remaining trip types examined.  Consistent with Balcombe 

(2004), these findings were expected as the utility generated by travel time savings and increased 

productivity can influence automobile owners to use the system for part of their journey.  Most likely, large 
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amounts of congestion in and around the city of Toronto during the a.m. peak period can further explain 

this relationship, as increased travel times, unreliability, and reduced productivity increase the utility 

associated with rail use compared to private automobile.   

Regardless, the other models indicate that private automobile availability is a competitive good that 

negatively impacts ridership outside of the a.m. peak period.  As suggested by Grimsrud (2013), this 

indicates that vehicles might be kept and utilized for discretionary related transport, such as shopping, 

during off-peak periods.  Furthermore, improved traffic conditions are commonly realized throughout the 

study area once the a.m. peak period concludes, meaning that the disutility otherwise associated with private 

automobile use is reduced.  Much like the results identified in relation to fuel price, these findings suggest 

that methods which disincentivize automobile use during all time periods could encourage the use of public 

transit. 

 

7.2.6. Park and Ride Capacity 

Park and ride capacity was associated with more boardings, but only during the a.m. peak period.  

A demand elasticity of 0.041was calculated during this time period, further suggesting that ridership is not 

overly sensitive to increases in parking capacity.  The results indicate that the presence of park and ride 

facilities have enabled ridership figures that are currently realized, but the expansion of such infrastructure 

is not needed to encourage additional demand.  Consistent with previous studies, this suggests that the 

provision of alternative station access infrastructure such as pull-up-drop-off circles, cycling connections, 

and direct pedestrian routes could have a more significant impact on ridership (Engel-Yan et al., 2014; 

Government of Ontario, 2016).   

Previous research has also noted that users are likely to access nearby GO Transit rail stations if 

parking capacity has been reached at their regular access station (Engel-Yan et al., 2014; Mahmoud et al., 

2014).  These findings suggest that parking utilization may have a greater impact on station-level demand 

as this could be a driving factor that influences station choice and associated station-level demand.  Further 

research could measure how transport behaviour responds to variation in parking utilization, rather than 

parking capacity, to see if ridership is elastic to change in this variable.  

 

7.2.7. Feeder Bus Connection Quality  

Much like parking capacity, feeder bus connection quality does little to explain station-level 

ridership throughout the study area.  This factor was found to have a significant impact on ridership during 

the midday off-peak and p.m. peak periods, but the expected sign was only displayed during the midday 

off-peak period.  Unlike the literature reviewed, a marginal coefficient of -0.085 suggests that demand is 
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relatively unaffected when poor quality feeder bus connections are provided (S. H. Chen & Zegras, 2016; 

Durning & Townsend, 2015; R. Liu, 2018; Rahman et al., 2019; Wasserman, 2019).  

The results could be explained by the provision of indirect routes, large headways, or dispersed 

service coverage that is common of local transit providers that operate in North American suburban centers 

(Alshalalfah & Shalaby, 2012; C. Chen & McKnight, 2007).  Further, the access times computed were 

shown to be extremely uncompetitive with other access modes such as private auto, as travel times greater 

than 30 minutes were continuously realized.  These results, coupled with those identified in relation to the 

built environment, suggest that increased land use densities and diversities within station catchment areas 

is first needed before the impact of feeder bus service on commuter rail ridership can be accurately 

evaluated. 

 

7.3. Practice and Policy Recommendations  
This study is intended not only to determine what variables are most determinantal to GO Transit 

rail ridership, but to use these findings to further inform the implementation of the GO Expansion Program.  

The following paragraph outlines recommendations that could be incorporated into the GO Expansion 

Program to encourage mode shift and stimulate regional transit demand in the study area.   

 

7.3.1. Expand the Role of Mixed-Use Development  

The analysis identified that transit demand is positively influenced by large population and 

employment densities.  Therefore, areas that are planned for dense, mixed-use developments should 

stimulate transit demand in all time periods compared to those where sprawled and singular land uses are 

permitted.  Recognizing this, the GO Expansion Program states that lands surrounding GO Transit rail 

stations should be planned in a transit-supportive fashion, but a formal development strategy is not outlined.  

Instead, Metrolinx has stated provincial planning guidelines and municipal planning policies will guide the 

development of transit-supportive communities within GO Transit station catchment areas.  A review of 

provincial and municipal planning documents was undertaken to see if appropriate planning guidelines and 

policies have been specified.   

 As outlined in Section 2.3, the implementation of land use plans and minimum density by-laws in 

Ontario is a municipal responsibility.  However, the province can specify unique land use planning 

objectives via the Growth Plan to ensure that sustainable growth occurs throughout the GGH.  The Growth 

Plan recognizes the connection between dense, mixed-use spaces and transit ridership, and that all lands 

within a 500-800 meter radius of GO Transit stations located along priority transit corridors should be 

designated as a Major Transit Station Area (MTSA) (Government of Ontario, 2020a).  Therefore, municipal 

plans need to specify that these lands should be planned for a variety of land uses, and developments should 
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be able to meet a minimum density target of 150 residents and jobs combined per hectare (Government of 

Ontario, 2020a).  As shown in Figure 16, 37 stations within the study are located on priority transit corridors.  

Therefore, municipal planning documents currently in-effect for lands surrounding these stations should 

conform to the development specifications as outlined in the Growth Plan.   

However, a review of current municipal planning documents revealed that appropriate land use 

policies have not been implemented by the majority of municipalities located throughout the study area.  

For example, uniform and incompatible land use designations are currently in effect for lands surrounding 

Aldershot, Appleby, and Burlington GO Stations, despite the drafting of transit-supportive land use plans 

as illustrated in Figure 14.  Further, the Port Union Village Community Secondary Plan, which outlines site 

specific land use and zoning by-laws for areas surrounding Rouge Hill GO Station in the city of Toronto, 

mainly contains policies aimed at the preservation of low and medium density residential developments 

throughout the area (City of Toronto, 2006, 2019; Lintern, 2019).  Similar issues were identified when land 

use plans in the cities of Brampton, Mississauga, and Markham were examined, as low density land use 

policies are currently in-effect for lands surrounding GO Transit rail stations in these municipalities.  These 

findings suggest that differing municipal priorities, inadequate budgets, and staffing limitations are 

potential implementation barriers currently being realized by municipal stakeholders that is preventing the 

implementation of appropriate transit-supportive land use planning guidelines.  Regional partnerships 

should be developed with appropriate municipal stakeholders to aid in the development of appropriate land 

use plans at the station-level, to ensure that appropriate plans are drafted and implemented as soon as 

possible.  Funding should also be provided to municipal partners to aid in the development of such plans if 

internal capacity is unavailable.   
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Figure 14 - Suggested Land Uses Surrounding Aldershot GO Station 

 
 

 

 

 

City of Burlington. (2018). Aldershot GO Mobility Hub Draft Precinct Plan – May 2018. City of Burlington. 

https://www.burlington.ca/en/your-city/resources/Grow-Bold/Mobility-Hubs/Appendix-A---Aldershot-GO-Draft-Precincts.pdf 
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Figure 15 - Current Land Use Schedule In-Effect Surrounding Rouge Hill GO Station 

 
 

 

 

 As mentioned above, the Growth Plan specifies that MTSA designations and associated transit-

oriented development guidelines are required for lands surrounding stations that are located on priority 

transit corridors.  Therefore, municipalities are not required to implement transit-supportive land use 

policies for lands surrounding GO Transit rail stations if located on a non-priority transit corridor.  The lack 

of a consistent transit-supportive development framework could be a limiting factor on demand, as 24 of 

the 61 stations located within the study area are located on non-priority transit corridors.  Ridership growth 

as projected in the GO Expansion Program could be at risk if low density, uniform developments continue 

to occur throughout the study area.

City of Toronto. (2006). Port Union Village Secondary Plan - Urban Structure Plan. City of Toronto. https://www.toronto.ca/wp-

content/uploads/2017/11/9049-cp-official-plan-SP-4-PortUnionVillage.pdf 
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Additional policy is needed to encourage transit-

supportive development at all GO Transit rail stations, regardless 

of corridor status. Land use policies that build upon the current 

MTSA framework should be mandated by the province, although 

local context should be taken into account when specifying 

minimum density targets and the extent of such policies.  For 

example, the extent of the MTSA designation and associated 

minimum density requirements could be reduced for stations 

located in rural environments, such as Georgetown GO Station.  

A consistent land use framework could ensure that ridership 

growth is realized at all stations throughout the network, therefore 

further encouraging mode shift throughout the GGH.  If not 

accomplished, increased ridership figures might not be realized 

during the early stages of the GO Expansion Program’s lifecycle.   

 

7.3.2. Exploration of Integrated Transport Pricing 
Strategies  

This study found that users are sensitive to vehicle 

operation costs, such as fuel price.  These results are consistent 

with those identified in the literature, and indicate that demand 

could be stimulated by increasing the price of fuel (C. Chen et al., 

2011; Guerra & Cervero, 2011; Maley & Weinberger, 2009; 

Paulley et al., 2006).  Previous studies have further stated that 

vehicle operation costs include all expenses incurred per vehicle

Figure 16 - GO Transit Rail Network, Spatial Extent of Priority and Non-Priority Rail Corridors 
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kilometer of operation, including fuel, parking costs and toll road charges (Guerra & Cervero, 2011; Voith, 

1997).  Transit demand could be further stimulated if the disutility associated with automobile use is 

increased via integrated transport pricing methods.  A summary of these strategies, and their applicability 

to the study area, is outlined below.   

A review of transport studies found that the availability and price of parking is the most significant 

variable that influences the utility of private automobile use (Morrall & Bolger, 1996; Taylor & Fink, 2003).  

Various pricing strategies including cost, supply, and incentive-based programs are various options that 

increase the disutility of private automobile use and increase transit demand  (M. Bianco et al., 1997).  

Specific examples include the implementation of a tax on parking space use, increased tax rates on revenues 

earned by parking providers, the expansion of parking meters and residential permit programs, and the 

monetization of parking benefits generated choice transit users.  Of these, Bianco et al. (1997) found that 

mode shift occurred most frequently when a tax on parking space use was implemented.  Further, a study 

of pricing strategies in California found that private automobile users were 2.25 times more likely to change 

their transport behaviour if parking fees were increased, rather than if an incentive of the same amount was 

provided (Shoup, 1997).  Regardless, the authors recommend that the use of mixed methods are most 

effective as politicians are less likely to implement policies that disproportionally impact a specific segment 

of the customer base. 

Furthermore, several studies have found that pricing mechanisms such as congestion charges, road 

pricing, and the implementation of tolls can effectively stimulate mode shift and  transit demand (Stopher, 

2004; U.S. Department of Transportation, 2008).  Planners in London, England, found that vehicle use in 

Central London decreased by 15% once a congestion charge was implemented (U.S. Department of 

Transportation, 2008).  Further, they found that the majority of vehicle users switched to transit modes, 

meaning that more service could be provided by the transit agency as a result of increased revenues.  A 

study of five major European cities found that once road tolls were implemented, traffic volumes decreased 

by 1 to 4.5% depending on initial congestion conditions that were experienced (Spears et al., 2012).  

Comparable results were identified by Arentze et al. (2004) who found that private auto users were likely 

to switch to public transit if road tolls were implemented.  The results suggest that similar pricing 

mechanisms could be implemented in the GGH to shift private auto users to GO Transit services.   

Notably, the potential of road pricing strategies in the GGH has been previously investigated.  The 

Big Move, the original regional transportation plan developed by Metrolinx in 2008, suggested that High 

Occupancy Vehicle (HOV) lanes, road pricing schemes, and High Occupancy Toll (HOT) lanes should be 

explored and implemented throughout the Greater Golden Horseshoe.  Specifically, a strategy aimed at 

assessing and implementing an inter-connected regional expressway network with the potential for HOT 

lanes was outlined (Government of Ontario, 2008).  Strategies 3.7 and 3.8 in the 2041 Regional 
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Transportation Plan reiterated these proposals, and stated that Metrolinx will “continue to explore how 

mobility pricing (e.g., parking, road pricing, HOT lanes, and off-peak fares) could be used to shift travel 

behaviour”, and that the use of HOT lanes and toll roads could be expended to include some form of 

charging on all major roads throughout the study area (Government of Ontario, 2018a).   

An investment strategy released by Metrolinx in 2013 further stated that various pricing strategies,  

including a $0.05 per litre regional fuel tax, a $0.25 per day commercial parking space tax, and the 

implementation of a HOV lane system that would charge users $0.30 cents per kilometer would be 

implemented throughout the GGH with the purpose of encouraging mode shift, but to also fund future 

transit investments such as the GO Expansion Program (Government of Ontario, 2013).  Interest in transport 

pricing strategies has also been expressed by municipal stakeholders, as the city of Toronto previously 

recommended that tolling options including flat and distance-based fares be implemented on major 

highways throughout the area, such as the Gardiner Expressway and the Don Valley Parkway.  Toll prices 

ranging in value from $1.25 to $3.25 for flat fares and $0.10 to $0.35 per kilometer for distance-based 

options were proposed (Livey & Rossini, 2015).   

However, the implementation of these policies has been difficult.  Despite approval from internal 

stakeholders, transport pricing strategies have often been halted or overturn by provincial governments.  

This is likely a result of motorists’ low acceptability of transport pricing strategies, resulting in policy 

decisions that are made in the interest of political vitality rather than in the best interest of the public (Schade 

& Schlag, 2003).  A study of HOT lane implementation in the GGH further identified political willingness 

as the key barrier to implementation, and noted that the coordination of road, transit, and urban planning, 

as well as cooperation from different departments and levels of government would be required (Lindsey, 

2007).  Therefore, despite being identified as an effective solution, the implementation of transport pricing 

methods in the GGH could prove difficult if political willingness to implement such a proposal remains 

low.  

Various studies have suggested that motorists are more receptive to transport pricing schemes if 

the costs, benefits, and allocation of funds generated from such programs are openly communicated to the 

public.  Further, those that prioritize revenues towards transit system improvements are more successful 

compared to those that are directed towards generalized public budgets (Schuitema & Steg, 2008; U.S. 

Department of Transportation, 2008).  Based on the policies reviewed, it is clear that the transport pricing 

schemes proposed within the GGH have a purpose of reducing automobile reliance and stimulating transit 

demand, but this information might not be readily communicated to constitutes.  It is recommended that 

Metrolinx continues to propose similar transport pricing strategies such as those previously proposed by 

the agency, and could further emphasize the connection between revenue allocation and transit 

improvements so that the benefits of such policies are positively communicated to the public.  Furthermore, 
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collaborative efforts could be explored with municipal partners to reinvestigate how the implementation of 

toll roads and congestion pricing could be further used to disincentivize the use of private automobile for 

regional transport and increase the demand for regional transit services.   

 

7.3.3. Decrease Fare Price Within the City of Toronto  

Finally, our results suggest that location had a significant impact on station-level demand in all 

time periods examined.  Notably, demand during the a.m. peak and midday off-peak periods was 

concentrated at stations located outside of the city of Toronto.  Previous studies have theorized that the 

price, abundance, and accessibility of local transit service available within major urban areas can explain 

these trends.  A study of transit ridership in Chicago found that public transit users switched from bus to 

rail modes when bus fares were increased (Nowak & Savage, 2013).  A review of New Jersey Transit’s 

commuter rail system further stated that the extent and availability of local public transit in the area is 

extensive compared to other urban areas throughout North America (C. Chen et al., 2011).  Therefore, they 

found that users were more likely to switch to alternative public transit modes when a fare price increase 

occurred.  Hensher (1997) further explored these relationships and measured how mode-specific ridership 

is expected to vary when the price of another mode changes.  He found that a 10% increase in rail fare 

prices should increase bus ridership by 0.57%.  Balcombe (2004) also suggested that metro ridership is 

sensitive to the price of alternatives, as a 0.18 demand elasticity with respect to rail fares was found.  

Therefore, these results illustrate that demand could be negatively impacted if less expensive or more 

convenient transit options are available within the study area.   

While cross-elasticities were not directly measured as part of this study, a review of alternative 

transit options and associated fare price schemes renders this theory plausible.  For example, the Toronto 

Transit Commission operates extensive bus, light rail transit, and metro service within Toronto.  Further, a 

flat fare price of $3.25 is charged for all trips regardless of distance travelled and number of transfers 

completed.  In comparison, the price of a trip between GO Transit rail stations in the city of Toronto ranges 

between $3.70 - $11.06, with the average cost being $6.04 (GO Transit, 2021).  Therefore, inner-city 

travellers may prefer to use Toronto Transit Commission services, as the cost of the GO Transit rail system 

is approximately 86% higher compared to the competitor.   

Notably, Metrolinx has noticed that this discrepancy could impact the effectiveness of the GO 

Expansion Program.  A draft memo released by the agency in the spring of 2018 found that current fare 

prices were uncompetitive with other transit agencies, thereby discouraging the use of GO Transit rail for 

short distance trips (Woo, 2018).  As a result, the memo proposed that all trips between stations within 

Toronto be charged a flat fare of $3 per trip, and that trips less than 10km in length will be charged a similar 
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price.  The report projects that station-level ridership should increase by approximately 10-15% as a result 

of this change alone.   

However, a media scan and use of Metrolinx’s interactive fare price calculator revealed that these 

changes have not been implemented.  Notably, several fare price changes have been implemented to reduce 

the cost of short-distance trips, as trips 10 kilometers or less in distance were reduced to a flat fare rate of 

$3.70 in 2019.  This resulted in a 21% reduction in fare price compared to the previous price of $4.71 (GO 

Transit, 2021).  However, this price is still substantially larger than the flat fare currently charged by the 

Toronto Transit Commission and other local service operators within the study area.  Further, it is clear that 

the flat fare scheme originally proposed for trips between stations within Toronto has not been 

implemented, as distance-based fares are still being assigned to GO Transit rail users travelling within 

Toronto.  It is recommended that Metrolinx continue to pursue competitive fare pricing options, including 

a flat fare policy for travel within the city of Toronto that is similar to the $3.25 flat fare currently charged 

by the Toronto Transit Commission.  The implementation of such policies should increase ridership at 

stations located within the city of Toronto, therefore balancing network utilization and increasing overall 

ridership figures.   

 

7.4. Limitations 
7.4.1. Processing Capacity 

As evidenced in Section 5,  extensive work was needed to compile, collect, and estimate various 

independent variable datasets included in this study.  Improved model fit and additional demand elasticities 

could have been realized if extra time and resources were available to gather and process supplementary 

datasets.  To ensure that this thesis was completed with the time constraints of a two-year master’s program, 

the inclusion of additional factors such as land use mix, education, service quality, and the availability of 

active transit options was not possible. However, since variables capturing both regional geography, 

economy, population characteristics, transit system aspects, and those of the surrounding automobile / 

highway system were included in the analysis, these are arguably the best models that could be specified 

within the time constraints of the study. 

 

7.4.2. Extrapolation of Socioeconomic and Demographic Datasets 

A time-series of January 2016 to December 2019 was selected as accurate and specific ridership 

data was available for analysis.  As mentioned in Section 5.1.3, the majority of socioeconomic and 

demographic variable datasets were obtained from extrapolated estimates, as the time-series was located 

within an intercensal period.  While extrapolation is commonly used when monthly values need to be 

estimated using previous observations, error can be introduced to the model as ridership is therefore 
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explained by predicted values rather than real observations.  Further, linear extrapolation could have 

resulted in the inaccurate specification of  some external variable datasets, such as unemployment rate, as 

socioeconomic factors fluctuate heavily based on localized conditions and economic events.  These 

limitations could be negated in future studies if more specific and disaggregated data products are used to 

formulate socioeconomic and demographic variable datasets.   

 

7.4.3. Discrepancy in Dissemination Area Boundaries  

The majority of socioeconomic and demographic variable datasets were extracted at the 

dissemination area scale using overlay analysis.  As noted in Section 5.1.3, the size and extent of some 

dissemination areas changed between observation periods.  This was the case for approximately 20% of the 

dissemination areas identified within station catchment boundaries, meaning that only a single data point 

obtained from 2016 Census products were associated with these entities.   

As a result, extrapolated values could not be estimated for these entities.  This inevitably introduces 

error into the model, as changing socioeconomic and demographic trends were not captured.  However, the 

effect on model performance was negligible, as the proportion of those included is relatively small 

compared to those where linear extrapolation methods were used.  Similar to the recommendation outlined 

in the previous section, this effect could be minimized if socioeconomic and demographic datasets were 

obtained from more specific sources.  If monthly figures are estimated from census products in future 

studies, it is recommended to interpolate monthly estimates between two known census periods, rather than 

extrapolated using existing observations, to minimize the spatial variability of dissemination areas.   

 

7.5. Directions for Future Research  
7.5.1. Further Investigation of Ridership Determinants During A.M. Peak Period 

Section 6.6 highlights that 85% of variance in ridership during the a.m. peak period was explained 

by factors not included in the analysis.  Further research could be undertaken to identify additional factors 

associated with ridership during the a.m. peak period to better understand the behaviour of those engaged 

in home-based work trips.   

 

7.5.2. Inclusion of Additional Factors 

This research analyzed the sensitivity of GO Transit rail demand in relation to a variety of factors.  

As mentioned above, a subset of independent variables was chosen due to resource constraints and 

processing capacity.  The inclusion of additional variables, specifically those related land use mix and 

business type, could be included to further understand how transit demand responds as changes to the built 
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environment occur.  Additional analysis could also be conducted using updated census products, including 

those expected to be released in 2021, to increase the reliability of model outputs.  

 

7.5.3. Investigation of Multi-City Analysis 

A study conducted by the Canadian Urban Transit Association found that within-city studies, 

including those that analyze ridership of a single network, are appropriate for answering research questions 

and formulating policy recommendations specific to a single transit agency or study area (E. J. Miller et al., 

2018).  However, results are typically non-transferable to other agencies, as variables specific to the 

regional context often influence model outputs.  While this research has identified factors that are heavily 

associated with commuter rail ridership in southern Ontario, additional research could be completed that 

utilizes a multi-city approach to further understand the main determinants of commuter rail ridership across 

varying geographies. Literature reviewed as part of this study indicates that a multi-city study of commuter 

rail demand has not been undertaken in the North American context, indicating that this gap could be filled 

by future work.  Additional cities that could be considered include Vancouver, New York City, 

Philadelphia, Boston, and Los Angeles, as commuter rail systems are operational in these areas.   

 

7.5.4. The Role of Station Accessibility Indicators  

The results show that transit demand is not overly responsive to station accessibility indicators, 

including park and ride capacity and the quality of feeder bus connection services.  However, a 

comprehensive subset of station accessibility factors, such as the provision of pedestrian connections, 

cycling infrastructure, or the availability of pull-up-drop-off areas was not included in the analysis.  

Therefore, absolute conclusions regarding the role of station access on transit demand should not be reached 

until more detailed and complete analysis is undertaken.  It is recommended that monthly, station-level 

observations with respect to a wide range of station-accessibility indicators be undertaken so that future 

demand elasticity models can better understand how first-and-last-mile connections influence station-level 

transit demand.  
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8. Conclusion 
This study sought to identify factors significantly associated with GO Transit rail ridership.  12 

independent variable datasets, including those related to the study area’s regional geography, economy, 

population characteristics, transit system aspects, and the surrounding automobile / highway system were 

collected across a 48-month time-series.  Datasets were separated into a.m. peak, midday off-peak, p.m. 

peak, and evening off-peak periods to determine if relationships differed depending on the trip type 

analyzed.  A random effect linear panel data estimator was then used to determine the explanatory power 

of each variable.   

Despite challenges encountered in terms of data availability and processing capacity, the results 

revealed that ridership was sensitive to service quantity, population density, fuel price, and station location 

regardless of trip type examined.  Notably, the sign and significance of fare price, park and ride capacity, 

feeder bus connection quality, and vehicle ownership differed between models.  This study highlights the 

importance of disaggregating demand elasticity estimates by trip type, as policies targeted towards 

stimulating demand in all time periods should be prioritized to ensure effective ridership growth. 

Findings from these models were used to inform a critical review of the GO Expansion Program 

and associated land-use and transportation planning policies currently in-effect throughout the Greater 

Golden Horseshoe.  The results suggest that a variety of planning policies, in addition to service quantity 

improvements outlined in the GO Expansion Program, could be implemented to stimulate station-level 

demand.  Since demand was associated with increased population and employment densities, Metrolinx 

could collaborate with municipal stakeholders to ensure that planning objectives conform to transit-

supportive guidelines as mandated by the province of Ontario.  Metrolinx could further lobby for the 

implementation of a consistent land use planning framework to ensure that sprawled and uniform 

development does not occur on lands surrounding GO Transit stations.  Demand was also associated with 

fuel price, indicating that users are sensitive to monetary costs associated with automobile use.  Toll roads 

or congestion pricing schemes could be implemented to increase the amount of disutility associated with 

inter-regional trips, therefore increasing demand.  Increased transparency and more effective 

communication methods could also be explored to increase the level of political willingness needed to 

implement such methods.  Finally, station-level demand within the city of Toronto could be increased if 

competitive fare price options are offered to inner-city customers.   

In conclusion, this study finds that a variety of factors are associated with commuter rail ridership.  

Therefore, integrated planning policies are needed stimulate mode shift and increase demand for regional 

transit in the Greater Golden Horseshoe.  In the absence of this, negative externalities currently being 

realized throughout the study area may not be alleviated to the greatest extent possible.  This research could 

be considered by other jurisdictions looking to transition their commuter rail networks to regional rail 
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networks, and should be used to encourage integrated and complementary planning policies when 

undergoing similar network transitions.   
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Appendix A – GO Transit Rail Network Additional Information  
 

Table 18 - GO Transit Rail Network - Additional Corridor Information 

Corridor Name Length (km) Terminus Station Stations Serviced Notes 
Barrie 101 Allandale Waterfront GO Station 11  
Kitchener 101 Kitchener GO Station 11  
Lakeshore East 51 Oshawa GO Station 9  
Lakeshore West 67 West Harbour GO Station / 

Hamilton GO Centre. 
11 The corridor branches into two separate lines 

after Aldershot GO Station.  Therefore, both 
West Harbour GO Station and Hamilton GO 
Centre  act as terminus stations for the corridor.   

Milton 50 Milton GO Station 8  
Niagara Falls 70 Niagara Falls GO Station 3 A branch of the Lakeshore West corridor, 

which stretches between West Harbour GO 
Station and Niagara Falls GO Station.   
 
Service only provided on select weekends to 
satisfy seasonal travel demands.  

Richmond Hill 43 Gormley GO Station 5  
Stouffville 50 Lincolnville GO Station 11  
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Figure 17 - GO Transit Rail Network - Current State of Track Ownership 
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Appendix B – Descriptive Review of Transit Demand Elasticity Literature  
 

Table 19 - Descriptive Review of Transit Demand Elasticity Literature 

Authors Geographical 
Scale 

Geographical 
Context 

Mode 
Examined 

Time 
Period 

Trip Type Analysis 
Methods 

Dependent 
Variable 

Investigated Factors Significant Factors 

Balcom
be et al. 
(2004) 

Multi-city United 
Kingdom, 
North 
America,  
Australia 

All transit, 
bus, metro, 
suburban 
rail 

Short-run Varies Metadata 
analysis 

Ridership Variety of internal and external 
factors 

Results differed depending on 
mode examined / regional 
context of study 

Bernal 
et al. 
(2016) 

Within-city Chicago, 
Illinois, 
United States 

Heavy rail Did not 
distinguish 

Weekday 
A.M. Peak 

Two stage 
ordinary least 
squares 

Ridership Slow zone delay, Slow zone delay 
squared, Number of trains, 
Reliability, Gas price, Holiday 
dummy, Friday dummy, Monday 
dummy, Seasonal dummies   

Total Northbound Ridership 
Model: Reliability (+), Gas 
Price (+), Holidays (-), Fall 
(+) 
Total Southbound Ridership 
Model: Reliability (+), Gas 
price (+), Holidays (-), Friday 
(-), Fall (+)   

Boisjol
y et al. 
(2018) 

Multi-city North 
America 
(Canada and  
United States) 

Heavy rail, 
bus, light 
rail, 
streetcar 

Did not 
distinguish 

Aggregated 
(total trips) 

Longitudinal 
multilevel 
mixed-effect 
regression 

Ridership Total vehicle revenue kilometers, 
Rail vehicle revenue kilometers, 
Bus vehicle revenue kilometers, 
Fare price, Population, Area, 
Percent of households without a car, 
Unemployment rate, GDP per 
capita, Gas price, Highway milage, 
Presence of private bus operator, 
Presence of Uber, Presence of 
bicycle sharing system 

Final Model With 
Disaggregated Service 
Quantity Statistics:  Rail 
Vehicle Revenue Kilometers 
(+), Bus Vehicle Revenue 
Kilometers (+), Fare Price (-), 
Presence of private bus 
operator (+), Presence of 
bicycle sharing system (+), 
Percent of households without 
a car (+), Gas Price (+) 

Bomber
g et al. 
(2012) 

Within-city Austin, 
Texas, United 
States 

All transit   Did not 
distinguish 

Aggregated 
(total trips) 

Qualitative 
(survey 
analysis, 
ordered probit 
model) 

Probability 
of reducing  
overall 
driving 
distance  

Current commute mode, Work at 
home 2+ times per week, Commute 
to work using different modes 2+ 
times per week, Take children to 
school, Travel time, Number of 
non-work related driving trips per 
week, Gas expenditure, Vehicle 
miles traveled per week, Average 
fuel economy of all household 
vehicles, Fuel economy less than 20 
mpg dummy, Fuel economy greater 

Bus (+), Work at home (+), 
Multiple modes (-), Number 
of home based not  
work related trips per week (-
), Vehicle miles travelled per 
week (-), Employed dummy (-
), Age dummy (-), College 
educated dummy (+), Income 
(+), Vehicles per driver (+), 
Number pf basic jobs (+), 
Number of retail jobs (+), 
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than 30 mpg dummy,  Age, Male 
gender dummy, Household income 
before taxes, Full time student 
dummy, Employed dummy, College 
educated dummy, Household size, 
Vehicles per driver, Local 
population, residential area, 
Commercial area, Number of basic 
jobs, Number of retail jobs, Number 
of service industry jobs, Total 
employment, Distance to Central 
Business District, Bus stop density, 
Mised use density  

Number of service jobs (-), 
Total number of jobs (-) 

Brown 
et al. 
(2014) 

Within-city Atlanta, 
Georgia, 
United States 

Regional 
bus, 
regional 
rail 

Did not 
distinguish 

Aggregated 
(total trips) 

Negative 
binomial 
regression  

Transit use Percent of population white, 
Population, Population Density,  
Median household income, 
Percentage of households without 
children, Number of vehicles per 
person, Residential vacancy rate, 
Unemployment rate, Employment, 
Employment density, Presence of 
transit oriented development, 
Presence of regional centre, 
Presence of central business district, 
Out of vehicle travel time, In-
vehicle travel time, Transfer time 

Regional Rail Model:  
Percent of population white (-
), Population (+), Population 
density (+), Vehicles per 
person (+), Residential 
vacancy rate (-), Employment 
(+), Employment density (-), 
Transit oriented development 
(+), Presence of central 
business district (+), Out of 
vehicle travel time (-), In 
vehicle travel time (-), 
Transfer time (-)   

Chen & 
McKnig
ht 
(2007) 

Within-city New York 
City, New 
York,  
United States 

Non-
motorized, 
automobile, 
train, bus, 
cab 

Not 
applicable 

Not 
applicable 

Qualitative 
(survey 
analysis) 

Mode share Spatial Location - Manhattan, 
Bronx Brooklyn and Queens Area, 
Suburbs 

Significant difference in mode 
split by area  

Chen & 
Zegras 
(2016) 

Within-city Boston, 
Massachusett
s,  
United States 

Commuter 
rail 

Did not 
distinguish 

Aggregated 
(total trips), 
A.M. Peak,  
P.M. Peak, 
Off-Peak, 
Weekend  

Ordinary least 
squares 

Ridership Average household auto ownership, 
Median household  
income, Population, Population 
density, Employment, Employment 
density, Development mix, Retail 
mix, Entropy-land use mix, 
Intersection density, Four-way 
intersection density, Average 
sidewalk width, Sidewalk density, 
Average road width, Walk score, 
Walk index, Level of service, 
Interstation spacing, Transfer 
station, Terminal station, Number 

A.M. Peak Model:  
Household income (+), 
Population density (+), 
Employment density (-), 
Percentage of four-way 
intersections (+), Sidewalk 
density (+), Interstation 
spacing (+), Number of feeder 
bus connections (+) 
P.M. Peak Model:  
Population (+), Employment 
density (+), Walk index (+), 
Average road width (+), 
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of feeder bus connections, Parking 
availability, Accessibility, Distance 
to central business district  

Interstation spacing (+), 
Number of feeder bus 
connections (+), Accessibility 
(+)   
Off-Peak Model: Population 
(+), Retail employment 
density (+), Percentage of 
four-way intersections (+) , 
Interstation spacing (+), 
Number of feeder bus 
connections (+), Distance to 
central business district (-)  

Chen et 
al. 
(2011) 

Within-city New Jersey, 
New Jersey 
State,  
United States 

Commuter 
rail 

Short-run, 
long-run 

Aggregated 
(total trips) 

Autoregressive 
fractionally 
integrated 
moving average 
model 

Ridership Gas price, Fare price, Vehicle 
revenue miles, Size of labour  
force, seasonal dummy variables 

Short-run Model: Gas price 
(+), Vehicle revenue hours 
(+), Fare price (-), Labour 
force (+)  
Long-run Model: Gas price 
(+), Vehicle revenue hours 
(+), Fare price (-), Labour 
force (+)  

Chow 
et al. 
(2006) 

Within-city Brownard 
County, 
Florida,  
United States 

All transit   Did not 
distinguish 

Weekday 
A.M. Peak 

Geographically 
weighted 
regression 

Percentage 
of workers  
taking 
transit 

Average walking distance from 
residence, Shortest walking distance 
from  
TAZ centroid to nearest bus stop, 
Highway accessibility, Average 
number of cars in households 
without children, Percent of 
population black, Median worker 
earnings, Median household 
income, Percent of households with 
no automobiles, Percent of roads 
with sidewalk within 025 mile 
buffer of bus stop, Average peak 
hour headway, Service level, 
Service coverage, Employment 
density, Average number of cars in 
households with children, Percent 
of households below poverty  

Employment density (+/-), 
Regional accessibility (+), 
Percentage of zero car  
households (+), Average cars 
owned by households (+/-), 
Percent of population black 
(+/-)   

Currie 
& 
Phung 
(2007) 

Multi-city United States All transit, 
heavy rail, 
light rail, 
commuter 
rail, bus 

Long run Aggregated 
(total trips) 

Ordinary least 
squares 

Ridership Gas price Gas price (+/-)  
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Diab et 
al. 
(2020) 

Multi-city Canada Did not 
distinguish 

Did not 
distinguish 

Aggregated 
(total trips) 

Two stage 
ordinary least 
squares 

Ridership Total population, Number of 
businesses, Percent dwellings  
apartments, Percent dwellings row 
houses, Percent dwellings single 
family, Percent population recent 
immigrants, Percent population 
working from home, Percent 
population postsecondary students, 
Median household income, Personal 
expenditure on public transit, 
Percent of people who work outside 
CSD of residence, Total operating 
expenses, Vehicle revenue hours, 
Gas price, Presence of Uber, 
Presence of bike-sharing systems, 
Presence of automated fare 
collection system 

General Model:  Predicted 
vehicle revenue hours (+), 
Percent of dwellings 
apartments (+), Percent of 
dwellings row house (+), 
Percent of dwellings single 
family (-), Number of 
businesses (+), Percent of 
population postgraduate 
students (+), Percent of people 
who work outside CSD of 
residence (-), Personal 
expenditure on public transit 
(-), Gas price (+), Presence of 
automated fare collection 
system (-), Presence of bike 
sharing system (-)  
Larger Agency Model: 
Predicted vehicle revenue 
hours (+), Percent of 
dwellings apartments (-), 
Percent of dwellings row 
house (+), Percent of 
dwellings single family (-), 
Number of businesses (+), 
Percent of dwellings rented 
(+), Percent of population 
working from home (-), 
Percent of population senior 
(+), Percent of people who 
work outside CSD of 
residence (-), Personal 
expenditure on public transit 
(-), Gas price (+), Presence of 
automated fare collection 
system (-), Presence of Uber 
(+), Presence of bike sharing 
system (-)  
Smaller Agency Model: 
Predicted vehicle revenue 
hours (+), Percent of 
dwellings apartments (+), 
Percent of dwellings row 
house (+), Percent of 
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dwellings single family (-), 
Percent of population recent 
immigrant (+), Percent of 
people work outside CSD of 
residence (-), Person 
expenditure on public transit 
(-), Presence of Uber (-)  

During 
& 
Townse
nd 
(2015) 

Multi-city Canada All rail (did 
not 
disaggregat
e) 

Did not 
distinguish 

Aggregated 
(total trips) 

Ordinary least 
squares 

Ridership Unemployment rate, Median 
household income, Percentage  
of renter households, Age, Number 
of bus connections, Number of park 
and ride spaces, Terminal / transfer 
station, Distance to terminus, 
Relative distance to terminus, 
Station spacing, Presence of bike 
parking, Presence of car share, 
Population density, Population + 
Employment density, Number of 
nodes, long-node ratio, Total links, 
Total road length, Street density, 
Average block length, Intersection 
density, Percentage of area open, 
Percentage of area park, Percentage 
of area residential, Job density, 
Dwelling density, Percentage of 
area resource-industrial, Percentage 
of area government-institutional, 
Percentage of area commercial, 
Residential-nonresidential, Presence 
of university, presence of CBD, 
Land use mix, Land use entropy, 
Walkability index, Commercial site 
density, Presence of peak only 
service, Transit pass cost, Regular 
fare price  

Population density (+), 
Intersection density (+), Street 
density (-), Number of bus 
connections (+), Number of 
park and ride spaces (+), 
Station is transfer station (+), 
Station only offers peak only 
service (-), Commercial site 
density (+), Residential ratio 
(+)  

Engel-
Yan et 
al. 
(2014) 

Within-city Toronto, 
Ontario, 
Canada 

Commuter 
rail 

Not 
applicable 

Aggregated 
(total trips) 

Ordinary least 
squares 

Station 
access 
distance 

Distance from boarding to alighting 
station, Number of parking spots, 
Vehicle headway, Presence of 
terminal station, Station located in 
City of Toronto, Presence of all-day 
two-way service  

Distance from boarding to 
alighting station (+), Number 
of parking spots (+),  
Presence of terminal station 
(+)  



145 
 

Farber 
et al. 
(2014) 

Within-city Wasatch 
Front, Utah,  
United States 

All transit   Not 
applicable 

Not 
applicable 

Ordinal / 
continuous 
regression 
model  

Trip 
generation  

Household income, Ethnicity, Race, 
Age, Employment, Education, 
Drivers license dummy, Limited 
mobility dummy, Number of 
vehicles owned, Home ownership 
status, Residency status, Self-
reported place type, Residence type  

Age less than 17 years (+), 
Age 18-24 (+), Age over 65 
(+), Mobility limitation  
(-), Households with retirees 
(-), Self-employed (+), 
Student, employed 25+ hours 
per week (-), 
Unemployed/retired (+/-), 
Grad or post-grad degree (-), 
Female (+), Hispanic (+/-), 
No driver's license (+/-), Zero 
vehicle household (-), 2 
vehicle household (+), 3+ 
vehicle household (+), 
Household rents + Distance to 
central business district (+), 
Household rents (-), 
Household tenure refusal (+), 
3+ workers (-), 3+ children 
bikes (+), 6+ people (-), 
Suburban mixed 
neighbourhood (-) 

Frondel 
& 
Vance 
(2011) 

Multi-city Germany All transit   Not 
applicable 

Not 
applicable 

Qualitative 
(survey 
analysis, zero-
inflated  
negative 
binomial 
model) 

Mode share Fuel price, Fare price, Public transit 
density, Age, Income,  
Number of children younger than 
18, Walking time to nearest transit 
stop, High school diploma, Drivers 
license, Employed, Gender, City 
size, Parking space at home, 
Parking space at work, Workplace 
transit connection, Presence of rail 
transit, Number of vehicles owned   

Zero-Inflated Negative 
Binomial Model (marginal 
effects): Female gender (+), 
Age (-), Employed (+), High 
school diploma (+), License (-
), Employed w/ parking space 
at work (-), Parking space at 
home (-),  Number of cars (-), 
Walking distance to transit (-), 
Transit connection at work 
(+), City size (+), Presence of 
rail transit (+), Number of 
children less than 18 (-), 
Income (-), Fuel price (+), 
Transit density (+)   
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Grimsru
d & El-
Geneid
y 
(2013) 

Within-city Montreal, 
Quebec, 
Canada 

Bus, metro, 
commuter 
rail 

Not 
applicable 

A.M. Peak Probability 
analysis (logit 
model) 

Mode share Age, Female, School trip, Number 
of licensed drivers, Cars per license,  
Number of children less than 5, 
Number of commuters, Income, 
Distance to downtown from origin, 
Bus route count at origin, Average 
bus wait time at origin, Metro stop 
count at origin, Commuter rail stop 
count at origin, Distance to 
downtown from destination, Bus 
route count at destination, Average 
bus wait time at destination, Metro 
stop count at destination, Commuter 
rail stop count at destination  

Transit Mode Share Model: 
Female (+), School trip (+), 
Number of licensed  
drivers (+), Cars per license (-
), Number of children less 
than 5 (-), Number of 
commuters (-), Income (-), 
Distance to downtown from 
origin (-), Bus route count at 
origin (+), Average bus wait 
time at origin (-), Metro stop 
count at origin (+), Commuter 
rail stop count at origin (+), 
Distance to downtown from 
destination (-), Bus route 
count at destination (+), 
Average bus wait time at 
destination (-), Metro stop 
count at destination (+), 
Commuter rail stop count at 
destination (+), Various age 
groups differing effects  

Guerra 
& 
Cervero 
(2011) 

Multi-city United States All rail (did 
not 
disaggregat
e) 

Did not 
distinguish 

Aggregated 
(total trips) 

Linear panel 
data estimators 
(ordinary least 
squares,  
fixed effect, 
random effect, 
between effect) 

Ridership Number of jobs within 05 mile of 
station, Population within  
05 mile of station, Number of jobs 
within 5 miles of station, Population 
within 5 miles of station, Number of 
park and ride spots, Number of bus 
route connections, Average fare 
price, Average speed, Average 
frequency, Metropolitan economic 
growth, Average retail gas price, 
New corridor, Average distance to 
central station 

Random Effect Model: 
Number of jobs within 05 
miles (+), Population within 
05 miles (+), Average fare 
price (-), Average frequency 
(+), Average speed (+), Fuel 
price (+), Average distance of 
stations to central business 
district (-), Metropolitan 
economic growth (-), New 
corridor (-)  

Holmgr
en 
(2007) 

Multi-city United 
Kingdom, 
North 
America,  
Australia 

All transit   Short-run, 
long-run 

Aggregated 
(total trips) 

Metadata 
analysis 

Demand 
elasticities  

Fare price, Vehicle kilometers, 
Income, Price of gas, Car ownership  

Fare price (-), Vehicle 
kilometers (+), Income (-), 
Price of gas (+), Car  
ownership (-)  

Hse 
(2008) 

Within-city Irvine, 
California,  
United States 

All transit   Not 
applicable 

Not 
applicable 

Qualitative 
(interview 
analysis) 

Transit use Cultural differences, sexual 
harassment, experiences regarding  
sexual harassment, presence of 
policies / interventions aimed at 

Responses varied  
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addressing sexual harassment on 
public transit  

Hsu et 
al. 
(2019) 

Within-city Los Angeles, 
California,  
United States 

Light rail 
transit 

Not 
applicable 

Not 
applicable 

First 
differenced 
model using 
ordinary least 
squares 

Transit use Gender, Age, Ethnicity, Education 
level, Household income, 
Household size,  
Home ownership status, residence 
within 05 mile of station, Questions 
regarding attitudes and intentions 
regarding safety, security, and 
environmental concerns related to 
transit use  

First-Difference Panel Data 
Model (Model 4): 
Environmental concerns (+), 
Residence within 05 mile of 
station (+), Female + 
Residence within 05 miles 
from station + Safety and 
security concerns (-) 

Iseki & 
Ali 
(2014) 

Multi-city United States All transit, 
bus, 
commuter 
rail, light 
rail, heavy 
rail 

Did not 
distinguish 

Aggregated 
(total trips) 

Linear panel 
data estimators 
(fixed effect)  

Ridership Gas price, Fare price, Vehicle 
revenue hours, Service  
frequency, Total population, 
Number of federal highway miles, 
Mean household income, 
Unemployment rate, Percentage of 
households without vehicle 

Non-Constant Elasticity 
Model: Gas price (+), Fare 
price (-), Vehicle revenue 
hours (+), Total population 
(+), Federal highway miles (-
), Mean household income 
(+),   

Kain & 
Liu 
(1999) 

Multi-city Houston, 
Texas & San  
Diego, 
California, 
United States 

Did not 
distinguish 

Long run Aggregated 
(total trips) 

Ordinary least 
squares 

Ridership Metropolitan area employment, 
Central city population, Bus and rail  
miles, Fare price 

Houston Ridership Model: 
Metropolitan area 
employment (+), Central city 
population (+), Bus  
and rail miles (+), Fare price 
(-) 
San Diego Ridership Model: 
Metropolitan area 
employment (+), Central city 
population (+), Bus  
and rail miles (+), Fare price 
(-) 

Kežić et 
al. 
(2018) 

Within-city Chicago, 
Illinois, 
United States 

Heavy rail Did not 
distinguish 

Aggregated 
(total trips) 

Qualitative 
review (review 
of change in 
variables  
over time, 
regression 
analysis not 
completed) 

Ridership Distance from central business 
district, Ethnic groups, Service 
quantity 

Distance from central 
business district (-)   
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Kohn 
(2000) 

Multi-city Canada All transit   Did not 
distinguish 

Not 
applicable 

Multiple 
regression 

Ridership Average fare price, Number of 
passengers, City size, Ridership  
rate per capita, Vehicle revenue 
hours, Vehicle revenue kilometers, 
Population 

Average fare (-), Vehicle 
revenue hours (+) 

Kuby et 
al. 
(2004) 

Multi-city United States Light rail 
transit 

Did not 
distinguish 

Weekdays   Ordinary least 
squares 

Ridership Employment, Population, Presence 
of airport, Presence of international  
border, Number of college 
enrollments, Presence of central 
business district, Number of park 
and ride spaces, Number of bus 
connections, Presence of other rail 
lines, Temperature, Metropolitan 
area population, Presence of 
terminal station, Interstation 
spacing, Presence of transfer 
station, Accessibility, Employment 
coverage, Percent renters  

Employment (+), Population 
(+), Presence of airport (+), 
Number of park and ride 
spaces (+), Number of bus 
connections (+), Temperature 
(-), Presence of terminal 
station (+), Presence of 
transfer station (+), 
Accessibility (-), Employment 
coverage (+), Percent renters 
(+)  

Lane 
(2010) 

Multi-city United States Bus, trolley 
bus, 
commuter 
rail, heavy 
rail, light 
rail 

Long run Aggregated 
(total trips) 

Ordinary least 
squares 

Ridership Gas price, Standard deviation gas 
price, Vehicle revenue miles, 
Vehicles  
operated in maximum service, Time 
dummy, Seasonal dummy   

Gas price (+/-) 

Lane 
(2012) 

Multi-city United States Bus (motor 
bus, trolley 
bus),  
Rail 
(commuter 
rail, heavy 
rail, light 
rail) 

Long run Aggregated 
(total trips) 

Ordinary least 
squares 

Ridership Inflated gas price, Deflated gas 
price, Gas price range, Vehicle 
revenue  
miles, Linear trend, Log trend, 
Service coverage dummy variables   

Rail Ridership Model: Gas 
price (+/-), Vehicle revenue 
miles (+/-)  

Lee & 
Lee 
(2013) 

Multi-city United States All transit   Long run Aggregated 
(total trips) 

Two stage 
ordinary least 
squares, random  
effect linear 
panel data 
estimator  

Ridership Vehicle revenue miles, Public 
operating subsidy per capita, Total 
urbanized  
area population, Gas price, 
Population density, Compactness 
index, Containment policy dummy, 
Average fare price, Freeway lane 
miles per capita, Share of residents 
who are postsecondary students, 
Unemployment rate, Trend (time-

Random Effect Model 
(Model 3):  Predicted vehicle 
revenue miles (+), Gas price 
(+), Population density (+), 
Containment policy (+), Fare 
price (-), Highway lane miles 
per capita (+), Proportion of 
population in postsecondary 
school (+), Unemployment 
rate (-), Time-series trend (-), 
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series) dummy, Post gasoline price 
peak dummy, Seasonal dummies   

Post gas price peak dummy 
(+), Seasonal effects (+/-)  

Li et al. 
(2020) 

Multi-city Canada Did not 
distinguish 

Short-run, 
long-run 

Aggregated 
(total trips) 

Linear panel 
data estimators 
(fixed effect and 
ordinary  
least squares, 
dynamic panel 
data estimator 
(generalized  
methods of 
moments) 

Ridership Vehicle revenue kilometres, Fare 
price, Gas price, Median  
personal income 

Short-run Model:  Vehicle 
revenue kilometers (+), Fare 
price (-), Price of gas (+) 
Long-run Model:  Vehicle 
revenue kilometers (+), Fare 
price (-) 

Liu 
(2018) 

Multi-city Los Angeles, 
San 
Francisco,  
San Jose, 
Sacramento, 
California,  
Unites States 

All rail (did 
not 
disaggregat
e) 

Did not 
distinguish 

Aggregated 
(total trips) 

Autoregressive 
fractionally 
integrated 
moving average 
model,  
Linear panel 
data estimators 
(pooled ols, 
fixed effect, 
random effect) 

Ridership Vehicle revenue miles, Number of 
stations, Number of  
employees, Gas price, Fare price 

Fixed Effect Model: Fare 
price (-), Vehicle revenue 
miles (+), Number of stations 
(+) 

Liu et 
al. 
(2016) 

Within-city State of 
Maryland,  
United States 

Commuter 
rail, light 
rail transit, 
light rail 
transit  
and metro, 
all transit 
excluding 
commuter 
rail 

Did not 
distinguish 

Aggregated 
(total trips) 

Ordinary least 
squares 

Ridership Number of trips a.m. peak, Presence 
of park and ride, Presence  
of feeder bus connections, Terminal 
station, Connectivity index, 
Population density, Employment 
density, Land use index, Street 
connectivity, Automobile 
accessibility, Transit accessibility, 
Distance to central business district, 
Walk score, Vehicle ownership, 
Household income, Ethnicity, 
Median age, Percent of housing 
owned 

Commuter Rail Model: 
Feeder bus connections (+) 
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Mahmo
ud et al. 
(2014) 

Within-city Toronto, 
Ontario, 
Canada 

Commuter 
rail, metro 

Not 
applicable 

Not 
applicable 

Probability 
analysis 
(multinominal 
logit model) 

Station 
choice  

Distance from household location to 
park and ride station location, 
Station  
direction relative to work-home 
location, Parking lot capacity, 
Parking cost in a.m. peak period, 
Presence of refreshment kiosk, 
Presence of washrooms, Presence of 
reserved parking, Presence of 
reserved carpool parking, Presence 
of regional transit, Presence of local 
transit, Presence of metro, Presence 
of metro pass, Presence of regional 
transit pass  

Overall Demand Model: 
Distance from household 
location to park and ride 
station location (-), Station 
direction relative to work-
home location (-), Parking lot 
capacity (+), Presence of 
regional transit (-), Distance 
from household location to 
park and ride station location 
with Presence of metro pass 
(+), Distance from household 
location to park and ride 
station location with Presence 
of regional transit pass (-)  
Regional Rail Model: 
Distance from household 
location to park and ride 
station location (-), Station 
direction relative to work-
home location (-), Parking lot 
capacity (+), Presence of 
reserved parking and Presence 
of reserved carpool parking 
(+), Presence of refreshment 
kiosk and Presence of 
washrooms (+), Presence of 
local transit (+)  
Metro Model:  Distance from 
household location to park 
and ride station location (-), 
Station direction relative to 
work-home location (-), 
Parking lot capacity (+), 
Presence of regional transit 
(+) 

Maley 
& 
Weinbe
rger 
(2009) 

Within-city Philadelphia, 
Pennsylvania,  
United States 

Regional 
transit 
(rail),  
City transit 
(bus, 
trolley, 
metro) 

Long run Aggregated 
(total trips) 

Ordinary least 
squares 

Ridership Gas price, seasonal dummy 
variables 

Gas price (+), Summer 
seasonal effects (-)  
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Miller 
& 
Savage 
(2017) 

Within-city Chicago, 
Illinois, 
United States 

Heavy rail, 
bus 

Did not 
distinguish 

Weekdays, 
Saturdays,  
Sunday / 
Holidays 

Linear panel 
data estimators 
(Pooled 
ordinary  
least squares, 
fixed effect) 

Ridership Per capita income, Distance from 
downtown, Proportion of males,  
Proportion of elderly, Proportion of 
children, Year over year change in 
revenue per rider, Year over year 
change in total employment, Year 
over year change in price of gas, 
Year over year change in revenue 
vehicle miles   

Overall Ridership Model:  
Population density (+), 
Distance from downtown (-), 
Proportion of males (+), 
Proportion of elderly (+), 
Year over year change in 
employment (+) 
Weekday Ridership Model:  
Distance from downtown (-) 
Saturday Ridership Model: 
Distance from downtown (-), 
Proportion of males (+) 
Sundays / Holiday Ridership 
Model: Distance from 
downtown (-), Proportion of 
males (+)  

Nowak 
& 
Savage 
(2013) 

Within-city Chicago, 
Illinois, 
United States 

City rail, 
city bus, 
commuter 
rail, 
suburban 
bus 

Medium 
run 

Aggregated 
(total trips) 

Ordinary least 
squares (12-
month 
difference  
in dependent 
variable) 

Ridership Gas price, Gas price per litre 
dummy variables, Average daily  
bus revenue miles, Fare price, 
Unemployment Rate, Proportion of 
weekdays in a month, Leap year 
dummy variable 

Commuter Rail Model:  Gas 
price >$3 (+), Gas price >$4 
(+), Average daily bus 
revenue miles (+), Fare price 
(-), Unemployment rate (-), 
Proportions of weekdays in 
month (+)   

Pasha et 
al. 
(2016) 

Within-city Calgary, 
Alberta, 
Canada 

Light rail 
transit 

Did not 
distinguish 

Weekday 
A.M. Peak 

Ordinary least 
squares 

Transit 
share 

Street pattern, Geographical size, 
Primary land use, Structural type,  
Heavy vehicle volume, Highway 
km, Train stations, Commercial 
area, Total occupied dwellings, 
Median income, Family size, share 
of couple families with / without 
children, Share of lone-parent 
families with / without children, 
Share of not living with spouse who 
are single / separated / divorced / 
widowed, Share of 65+ year olds 
not living in a census family who 
are living with relative / living with 
non-relative / living alone, 
Language spoken at home, 
Unemployment rate, Percent male, 
Number of children <14 years old  

Curvilinear street pattern (+), 
Mixed street pattern (+), 
Geographical size  
<1 (-), Primary land use park 
(+), Type of dwelling, row 
house (+), Heavy vehicle 
volume (-), Highway km (+), 
Train station (+), Total 
commercial area (+), Total 
number of occupied dwellings 
(+), Median income <$40k 
(+), Median income >$125k (-
), Share of couple families 
without children (+), Share of 
lone-parent families with 
female lone parent (+), Family 
size 3 (+), Share of not living 
with spouse who are divorced 
(-), share of 65+ not living in 
a census family and living 
with a relative (-), Multiple 
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languages spoken at home (+), 
Unemployment rate (+), 
Percent male (+), Number of 
children (-)   

Paulley 
et al. 
(2006) 

Multi-city United 
Kingdom, 
North 
America,  
Australia 

Commuter 
rail 

Short-run Peak period Metadata 
analysis 

Ridership Fare price,  Fare price (-), 

Rahman 
et al. 
(2019) 

Within-city Orlando, 
Florida, 
United States 

Commuter 
rail 

Did not 
distinguish 

Aggregated 
(total trips) 

Linear panel 
data estimators 
(random effect) 

Ridership Day of week, month of year, Total 
roadway length, Number of  
bus stops, Presence of free parking 
facility, Number of commercial 
centers, Number of educational 
centers, Number of financial 
centers, Land use mix, Vehicle 
ownership, Average temperature, 
Average windspeed, Presence of 
rainfall 

Number of Boardings 
Model: Monday (-), Friday 
(+), Jan-Aug (+), Total 
roadway length (-), Number 
of bus stops (+), Presence of 
free parking facility (+), 
Number of commercial 
centers (+), Number of 
educational centers (-), 
Number of financial centers 
(+), Land use mix (+), Vehicle 
ownership - no vehicle (-), 
Average temperature (+), 
Average wind speed (-), 
Rainfall (-)  

Schime
k 
(2015) 

Multi-city United States Did not 
distinguish 

Short-run, 
long-run 

Aggregated 
(total trips) 

Dynamic panel 
data estimator 

Ridership Average fare price, Vehicle revenue 
miles, Gas price,  
Metropolitan area employment, 
Personal income per capita 

Total Ridership Model: Fare 
(-)(-), Vehicle revenue miles 
(+)(+), Gas price (+)(+), 
Employment (+)(+), Income 
(-)(-)  
Large Urban Area Model: 
Fare (-)(-), Vehicle revenue 
miles (+)(+), Gas price (+)(+), 
Employment (+)(+), Income 
(-)(-)  
Small Urban Area Model: 
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Fare (-)(-), Vehicle revenue 
miles (+)(+), Gas price (+)(+), 
Income (-)(-)  

Singhal 
et al. 
(2014) 

Within-city New York 
City, New 
York,  
United States 

Heavy rail Did not 
distinguish 

Weekday 
and 
weekend 
(A.M. 
Peak, 
Midday  
Off-Peak, 
and P.M. 
Peak), 
holidays 
excluded 

Ordinary least 
squares 

Ridership Temperature deviation, Hot 
temperature dummy, Cold 
temperature  
dummy, Wind speed, Strong breeze  
dummy, Rain, Heavy rainfall 
dummy, Snow, Heavy snow 
dummy, Snow in last 24h dummy, 
Fog dummy, seasonal dummies   

Weekday A.M. Peak Model: 
Rain (-), Hot day (-), Cold day 
(-), Snow last 24h (-), Fall (+), 
Winter (+), Spring (+) 
Weekday Midday Off-Peak 
Model: Rain (-), Snow (-), 
Temperature deviation (+), 
Snow last 24h (-), Fall (+), 
Winter (+), Spring (+) 
Weekday P.M. Peak Model: 
Snow (-), Temperature 
deviation (-), Snow last 24h (-
), Fall (+), Winter (+), Spring 
(+) 
Underground Station 
Model: Rain (-), Snow (-), 
Heavy rain (-), Heavy snow 
(+), Wind speed (-), Strong 
breeze (-), Temperature 
deviation (+), Hot day (-), 
Cold day (+), Fall (+), Winter 
(+), Spring (+)   
Elevated Station Model:  
Rain (-), Snow (-), Heavy rain 
(-), Wind speed (-), 
Temperature deviation (+), 
Hot day (-), Cold day (+), Fall 
(+), Spring (+)  

Stover 
& Bae 
(2011) 

Within-city Washington 
State, United 
States 

Did not 
distinguish 

Did not 
distinguish 

Aggregated 
(total trips) 

Ordinary least 
squares, Linear 
panel  
data estimators 
(fixed effect) 

Ridership Gas price, Fare price, Vehicle 
revenue hours, Unemployment  
Rate, Size of labour force, Seasonal 
dummy variables 

Total Ridership Model: Gas 
price (+), Vehicle revenue 
hours (+), Unemployment rate 
(+), Size of labour force (+) 
Winter (-), Summer (-)  
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Taylor 
et al. 
(2009) 

Multi-city United States Did not 
distinguish 

Did not 
distinguish 

Aggregated 
(total trips) 

Two stage 
ordinary least 
squares 

Ridership Area, Population, Population 
density, Regional location  
(ex UZA in the South), Median 
household income, Number of 
people unemployed, percept of 
population in collage, Percent of 
population in poverty, percent of 
population recent immigrants, 
political party affiliation, ethnic 
composition, freeway lane miles, 
fuel prices, number of non-transit 
trips, percent carless households, 
total lane miles of roads, vehicle 
miles per capita, Total revenue 
vehicle hours, Dominance of 
primary transit operator, Fare price, 
Service frequency, Predicted transit 
service levels, Route density  

Total Transit Demand 
Model: Predicted vehicle 
revenue hours (+), Population 
density (+), UZA in the South 
(-), Percent of population in 
college (+), Percent of 
population recent immigrants 
(+), Percent carless 
households (+), Fare price (-), 
Service frequency (+) 
Per Capita Transit Demand 
Model: Predicted vehicle 
revenue hours (+), Geographic 
land area (+), Median 
household income (+), 
Number of non-transit trips 
(+), Fare price (-), Service 
frequency (+)  

Vijayak
umar et 
al. 
(2011) 

Within-city Montreal, 
Quebec, 
Canada 

Commuter 
rail 

Did not 
distinguish 

Weekday 
A.M. Peak 

Ordinary least 
squares 

Driving 
station  
access 
distance 

Male dummy, Age, Distance to 
destination, Number of parking 
spots,  
Number of inbound trains, Distance 
to downtown terminus   

Male (+), Age (-), Distance to 
destination (+), Number of 
parking spots (+),  
Number of inbound trains (+)  

Wasser
man 
(2019) 

Within-city San 
Francisco, 
California,  
United States 

Heavy rail Did not 
distinguish 

Weekday 
A.M. Peak,  
Weekday 
P.M. Peak, 
Off-Peak 

Ordinary least 
squares 

Ridership Jobs at destination, BART travel 
time, Population at destination, 
Presence  
of transfer, Destination at a 
terminus, BART parking at origin, 
Population at origin, Origin at a 
terminus, Household income at 
origin, Jobs, at origin, Lines at 
destination, Household income at 
destination, Drive time to BART 
time ratio, Lines at origin 

A.M. Peak Model: Jobs at 
destination (+), Presence of 
transfer (+), BART travel time 
(-), Population at destination 
(+), Destination at a terminus 
(+), BART parking at origin 
(+), Jobs at origin (+), 
Household income at origin (-
), Population at origin (+), 
Origin at a terminus (+), Lines 
at destination (+), Drive time 
to BART time ratio (+), 
Household income at 
destination (-)  
P.M. Peak Model:  Jobs at 
origin (+), Presence of 
transfer (-), BART travel time 
(-), Population at origin (+), 
Jobs at destination (+), Origin 
at a terminus (+), Population 
at destination (+), BART 
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parking at destination (+), 
Household income at 
destination (-), Destination at 
a terminus (+), Lines at origin 
(+), Drive time to BART time 
ratio (-), Household income at 
origin (-)   

Yanmaz
-Tuzel 
et al. 
(2010) 

Within-city New Jersey, 
New Jersey 
State,  
United States 

Did not 
distinguish 

Short-run, 
medium-
run 

Aggregated 
(total trips) 

Time-lag linear 
regression 
model 

Ridership Gas price, Average fare price, 
Employment total, Total vehicle 
hours  

2005 Short-run Model:  Gas 
price 3-month lag (+), Gas 
price 4-month lag (+), 
Employment rate (+), Average 
fare price (-), Vehicle revenue 
hours (+) 
2005 Long-run Model: Gas 
price 4-month lag (+), 
Employment rate (+), Average 
fare price (-), Vehicle revenue 
hours (+) 
2008 Short-run Model:  Gas 
price 2-month lag (+), 
Employment rate (+) 
2008 Long-run Model:  Gas 
price 3-month lag (+), 
Employment rate (+), Average 
fare price (-)   

Zhang 
& 
Wang 
(2014) 

Within-city New York 
City, New 
York,  
United States 

Metro Did not 
distinguish 

Weekdays   Network 
Kriging model 

Ridership Total population, Income, Total 
employment, Retail area, Storage 
area,  
Top attraction dummy, Number of 
subway lines, Multimodal 
connection dummy  

Network Kriging with 
Network Distance Model: 
Total population  
(+), Income (+), Total 
employment (+), Retail area 
(+), Storage area (-), Top 
attraction dummy (+), 
Number of subway lines (+), 
Multimodal connection 
dummy (+)  

* title of model and subsequent results summarized highlighted in bold if multiple models presented by author.   
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Appendix C – Characteristics as Downloaded from Statistics Canada 
 

Table 20 – Description of Characteristics as Downloaded from Statistics Canada 

Description of Data Sources Obtained from Statistics Canada     

Variable Indicator Data Source Characteristic 

Population Density Population density 2016, 2011, 2006 - Census 
of Population 

2016, 2011, 2006 - Total population 

Employment 
Density 

Density of incoming 
commuters 

2016 -  Census of 
Population 

2016 - Place of work, total, mode of 
transportation 

Gender - Female  Percentage of 
population female 

2016, 2011, 2006 -  
Census of Population 

2016, 2011, 2006 - Total population, female 

Income Median household 
income 

2016, 2006 - Census of 
Population 
2011 - National 
Household Survey 

2016 - Median household income,  
2011 - Median household total income,  
2006 - Median earnings for economic families 
with earnings 

Unemployment Rate Unemployment rate 2016, 2006 - Census of 
Population  
2011 - National 
Household Survey 

2016, 2011, 2006 - Unemployment rate 

Age Median age 2016, 2011 - Census of 
Population  

2016 - Average age,  
2011 - Median age of population 

Households With 
Children 

Density of households 
with children 

2016, 2011, 2006 - Census 
of Population 

2016 - Total, couple census families in private 
households; Total, couples with children in 
private households; Total, lone-parent census 
families in private households 
2011 - Total, number of census families in 
private households (Married couples, with 
children at home; Common-law couples, with 
children at home; Total lone-parent families by 
sex of parent and number of children) 
2006 - Married couples with children; 
Common-law couples, with children at home 
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Appendix D – Calculations Used to Adjust Median Age Values  
 

Table 21 - Calculations Used to Adjust 2016 Average Age Values 

 Province of Ontario 

Median age of the population 41.3 

Average age of the population 41.0 

  

Difference between values 0.3 

Percentage difference between values 0.73 

2016 Average Age values adjusted by 1.0073 

 

 

 

 

 

When external variable datasets were obtained from Statistics Canada for inclusion in the demand models, 

it was found that differing measures of central tendency were used to report age statistics at the 

Dissemination Area scale between census periods.  For example, Median Age was reported in 2011, while 

Average Age was reported in 2016.  Therefore, age could not be reported using raw values as differences 

in measurement methodology could induce error into the model.   

Notably, both Average Age and Median Age were reported at the provincial scale in the 2016 Census of 

Population.  As shown in the above table, these two figures were compared and a difference of 0.73% was 

realized.  Therefore, Median Age estimates at the Dissemination Area scale were obtained by adjusting all 

Average Age values by a factor of 1.0073%.   

 

 

 

 

 

 

 

 

 

Statistics Canada. 2017. Ontario [Province] and Ontario [Province] (table). Census Profile. 2016 Census. Statistics Canada 

Catalogue no. 98-316-X2016001. Ottawa. Released November 29, 2017. 

https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E (accessed February 9, 2021). 
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Appendix E – Spatial Parameters Used to Assign Station-Level 
Household Vehicle Ownership and Fuel Price Values  
 

Table 22 - Spatial Parameters Used to Assign Household Vehicle Ownership Values 

Delineation of Household Vehicle Ownership Values 
Upper / Single-tier 
Municipality 

Station Name 

City of Barrie • Allandale Waterfront GO Station  • Barrie South GO Station 
County of Durham • Ajax GO Station 

• Bronte GO Station 
• Burlington GO Station 

• Oshawa GO Station 
• Pickering GO Station 
• Whitby GO Station 

City of Guelph  • Guelph GO Station,   
Regional Municipality of Halton • Acton GO Station 

• Aldershot GO Station 
• Appleby GO Station 

• Georgetown GO Station 
• Milton GO Station 
• Oakville GO Station 

Regional Municipality of Peel • Bramalea GO Station 
• Brampton GO Station 
• Clarkson GO Station 
• Cooksville GO Station 
• Dixie GO Station 
• Erindale GO Station 
• Lisgar GO Station 

• Long Branch GO Station 
• Malton GO Station 
• Meadowvale GO Station 
• Mount Pleasant GO Station, 
• Port Credit GO Station 
• Streetsville GO Station 

Simcoe County  • Bradford GO Station  
City of Toronto • Agincourt GO Station 

• Bloor GO Station 
• Danforth GO Station 
• Eglinton GO Station 
• Etobicoke North GO Station 
• Exhibition GO Station 
• Guildwood GO Station 
• Kennedy GO Station 
• Kipling GO Station 

•  Milliken GO Station 
• Mimico GO Station 
• Old Cummer GO Station 
• Oriole GO Station 
• Rouge Hill GO Station 
• Scarborough GO Station 
• Weston GO Station 
• York University GO Station 

Regional Municipality of 
Waterloo 

• Kitchener GO Station,  

Regional Municipality of York • Aurora GO Station 
• Centennial GO Station 
• East Gwillimbury GO Station 
• King City GO Station 
• Langstaff GO Station 
• Lincolnville GO Station 
• Maple GO Station 

• Markham GO Station 
• Mount Joy GO Station 
• Newmarket GO Station 
• Richmond Hill GO Station 
• Rutherford GO Station 
• Stouffville GO Station 
• Unionville GO Station   
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Table 23 - Spatial Parameters Used to Assign Fuel Price Values 

Delineation of Fuel Price Values 

Station Location Geographical Region (per Ontario Fuel Price 
Survey) 

City of Toronto Average of Toronto West + Toronto East 

Lakeshore East corridor AND not in the City of 

Toronto 

Toronto East 

Kitchener corridor AND not in the City of Toronto Southern Ontario 

Milton Corridor AND not in the City of Toronto Toronto West  

Barrie corridor AND not in the City of Toronto Southern Ontario 

Stouffville corridor AND not in the City of 

Toronto 

Southern Ontario 

Richmond Hill corridor AND not in the City of 

Toronto 

Southern Ontario  
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Appendix F – General Transit Feed Specification Files Used to Extract Service Quantity and Feeder 
Bus Connection Quality Data  
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GTFS Files Used to Extract Service Quantity and Feeder Bus Connection Quality Data – Separated by 

Board Period 

 

Jan. – Mar. 2016 

Barrie Transit. (2016). Barrie Transit General Transit Feed Specification File January 14, 2016. 
transitfeeds.com. http://transitfeeds.com/p/barrie-transit/522/20160114 

Brampton Transit. (2016). Brampton Transit General Transit Feed Specification File February 
3, 2016. transitfeeds.com. http://transitfeeds.com/p/brampton-transit/35/20160203 

Burlington Transit. (2016). Burlington Transit General Transit Feed Specification File March 
15, 2016. transitfeeds.com. http://transitfeeds.com/p/burlington-transit/294/20160315 

Durham Region Transit. (2016). Durham Region Transit General Transit Feed Specification File 
May 3, 2016. transitfeeds.com. http://transitfeeds.com/p/durham-region-
transit/642/20160503 

Grand River Transit. (2015). Grand River Transit General Transit Feed Specification File 
December 31, 2015. transitfeeds.com. http://transitfeeds.com/p/grand-river-
transit/203/20151231 

Guelph Transit. (2016). Guelph Transit General Transit Feed Specification File November 24, 
2016. transitfeeds.com. http://transitfeeds.com/p/guelph-transit/53/20161124 

Hamilton Street Railway. (2016). Hamilton Street Railway General Transit Feed Specification 
File January 8, 2016. transitfeeds.com. http://transitfeeds.com/p/hamilton-street-
railway/31/20160108 

Metrolinx. (2016). GO Transit General Transit Feed Specification File January 11, 2016. 
transitfeeds.com. http://transitfeeds.com/p/go-transit/32/20160111 

Milton Transit. (2018). Milton Transit General Transit Feed Specification File March 20, 2018. 
transitfeeds.com. http://transitfeeds.com/p/milton-transit/929/20180320 

MiWay. (2016). MiWay General Transit Feed Specification File June 8, 2016. transitfeeds.com. 
http://transitfeeds.com/p/miway/641/20160608 

Oakville Transit. (2016). Oakville Transit General Transit Feed Specification File March 8, 
2016. transitfeeds.com. http://transitfeeds.com/p/oakville-transit/615/20160308 

Toronto Transit Commission. (2016). Toronto Transit Commission General Transit Feed 
Specification File January 12, 2016. transitfeeds.com. 
http://transitfeeds.com/p/ttc/33/20160112 
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York Region Transit. (2016). York Region Transit General Transit Feed Specification File 
January 12, 2016. transitfeeds.com. http://transitfeeds.com/p/york-regional-
transit/34/20160112 

 

Apr. – Jun 2016 

Barrie Transit. (2016). Barrie Transit General Transit Feed Specification File May 4, 2016. 
transitfeeds.com. http://transitfeeds.com/p/barrie-transit/522/20160504 

Brampton Transit. (2016). Brampton Transit General Transit Feed Specification File April 20, 
2016. transitfeeds.com. http://transitfeeds.com/p/brampton-transit/35/20160420 

Burlington Transit. (2016). Burlington Transit General Transit Feed Specification File March 
15, 2016. transitfeeds.com. http://transitfeeds.com/p/burlington-transit/294/20160315 

Durham Region Transit. (2016). Durham Region Transit General Transit Feed Specification File 
May 3, 2016. transitfeeds.com. http://transitfeeds.com/p/durham-region-
transit/642/20160503 

Grand River Transit. (2016). Grand River Transit General Transit Feed Specification File April 
25, 2016. transitfeeds.com. http://transitfeeds.com/p/grand-river-transit/203/20160425 

Guelph Transit. (2016). Guelph Transit General Transit Feed Specification File November 24, 
2016. transitfeeds.com. http://transitfeeds.com/p/guelph-transit/53/20161124 

Hamilton Street Railway. (2016). Hamilton Street Railway General Transit Feed Specification 
File April 22, 2016. transitfeeds.com. http://transitfeeds.com/p/hamilton-street-
railway/31/20160422 

Metrolinx. (2016). GO Transit General Transit Feed Specification File Apr. 26, 2016. 
transitfeeds.com. http://transitfeeds.com/p/go-transit/32/20160426 

Milton Transit. (2018). Milton Transit General Transit Feed Specification File March 20, 2018. 
transitfeeds.com. http://transitfeeds.com/p/milton-transit/929/20180320 

MiWay. (2016). MiWay General Transit Feed Specification File June 8, 2016. transitfeeds.com. 
http://transitfeeds.com/p/miway/641/20160608 

Oakville Transit. (2016). Oakville Transit General Transit Feed Specification File March 8, 
2016. transitfeeds.com. http://transitfeeds.com/p/oakville-transit/615/20160308 

Toronto Transit Commission. (2016). Toronto Transit Commission General Transit Feed 
Specification File April 3, 2016. transitfeeds.com. http://transitfeeds.com/p/ttc/33/20160403 
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York Region Transit. (2016). York Region Transit General Transit Feed Specification File April 
22, 2016. transitfeeds.com. http://transitfeeds.com/p/york-regional-transit/34/20160422 

 

Jul. – Aug. 2016 

Barrie Transit. (2016). Barrie Transit General Transit Feed Specification File June 23, 2016. 
transitfeeds.com. http://transitfeeds.com/p/barrie-transit/522/20160623 

Brampton Transit. (2016). Brampton Transit General Transit Feed Specification File August 18, 
2016. transitfeeds.com. http://transitfeeds.com/p/brampton-transit/35/20160818 

Burlington Transit. (2016). Burlington Transit General Transit Feed Specification File June 27, 
2016. transitfeeds.com. http://transitfeeds.com/p/burlington-transit/294/20160627 

Durham Region Transit. (2016). Durham Region Transit General Transit Feed Specification File 
August 16, 2016. transitfeeds.com. http://transitfeeds.com/p/durham-region-
transit/642/20160816 

Grand River Transit. (2016). Grand River Transit General Transit Feed Specification File July 
12, 2016. transitfeeds.com. http://transitfeeds.com/p/grand-river-transit/203/20160712 

Guelph Transit. (2016). Guelph Transit General Transit Feed Specification File November 24, 
2016. transitfeeds.com. http://transitfeeds.com/p/guelph-transit/53/20161124 

Hamilton Street Railway. (2016). Hamilton Street Railway General Transit Feed Specification 
File, July 5 2016. transitfeeds.com. http://transitfeeds.com/p/hamilton-street-
railway/31/20160705 

Metrolinx. (2016). GO Transit General Transit Feed Specification File July 4, 2016. 
transitfeeds.com. http://transitfeeds.com/p/go-transit/32/20160704 

Milton Transit. (2018). Milton Transit General Transit Feed Specification File March 20, 2018. 
transitfeeds.com. http://transitfeeds.com/p/milton-transit/929/20180320 

MiWay. (2016). MiWay General Transit Feed Specification File June 30, 2016. 
transitfeeds.com. http://transitfeeds.com/p/miway/641/20160630 

Oakville Transit. (2016). Oakville Transit General Transit Feed Specification File June 27, 
2016. transitfeeds.com. http://transitfeeds.com/p/oakville-transit/615/20160627 

Toronto Transit Commission. (2016). Toronto Transit Commission General Transit Feed 
Specification File July 23, 2016. transitfeeds.com. http://transitfeeds.com/p/ttc/33/20160723 

York Region Transit. (2016). York Region Transit General Transit Feed Specification File June 
30, 2016. transitfeeds.com. http://transitfeeds.com/p/york-regional-transit/34/20160630 
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Sept. – Dec. 2016 

Barrie Transit. (2016). Barrie Transit General Transit Feed Specification File June 23, 2016. 
transitfeeds.com. http://transitfeeds.com/p/barrie-transit/522/20160623 

Brampton Transit. (2016). Brampton Transit General Transit Feed Specification File October 8, 
2016. transitfeeds.com. http://transitfeeds.com/p/brampton-transit/35/20161008 

Burlington Transit. (2016). Burlington Transit General Transit Feed Specification File 
November 22, 2016. transitfeeds.com. http://transitfeeds.com/p/burlington-
transit/294/20161122 

Durham Region Transit. (2016). Durham Region Transit General Transit Feed Specification File 
September 26, 2016. transitfeeds.com. http://transitfeeds.com/p/durham-region-
transit/642/20160926 

Grand River Transit. (2016). Grand River Transit General Transit Feed Specification File 
October 6, 2016. transitfeeds.com. http://transitfeeds.com/p/grand-river-
transit/203/20161006 

Guelph Transit. (2016). Guelph Transit General Transit Feed Specification File November 24, 
2016. transitfeeds.com. http://transitfeeds.com/p/guelph-transit/53/20161124 

Hamilton Street Railway. (2016). Hamilton Street Railway General Transit Feed Specification 
File November 25, 2016. transitfeeds.com. http://transitfeeds.com/p/hamilton-street-
railway/31/20161125 

Metrolinx. (2016). GO Transit General Transit Feed Specification File September 26, 2016. 
transitfeeds.com. http://transitfeeds.com/p/go-transit/32/20160906 

Milton Transit. (2018). Milton Transit General Transit Feed Specification File March 20, 2018. 
transitfeeds.com. http://transitfeeds.com/p/milton-transit/929/20180320 

MiWay. (2016). MiWay General Transit Feed Specification File September 23, 2016. 
transitfeeds.com. http://transitfeeds.com/p/miway/641/20160923 

Oakville Transit. (2016). Oakville Transit General Transit Feed Specification File September 1, 
2016. transitfeeds.com. http://transitfeeds.com/p/oakville-transit/615/20160901 

Toronto Transit Commission. (2016). Toronto Transit Commission General Transit Feed 
Specification File October 3, 2016. transitfeeds.com. 
http://transitfeeds.com/p/ttc/33/20161003 
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York Region Transit. (2016). York Region Transit General Transit Feed Specification File 
November 10, 2016. transitfeeds.com. http://transitfeeds.com/p/york-regional-
transit/34/20161110 

 

Jan. – Mar. 2017 

Barrie Transit. (2016). Barrie Transit General Transit Feed Specification File June 23, 2016. 
transitfeeds.com. http://transitfeeds.com/p/barrie-transit/522/20160623 

Brampton Transit. (2016). Brampton Transit General Transit Feed Specification File December 
29, 2016. transitfeeds.com. http://transitfeeds.com/p/brampton-transit/35/20161229 

Burlington Transit. (2016). Burlington Transit General Transit Feed Specification File 
November 22, 2016. transitfeeds.com. http://transitfeeds.com/p/burlington-
transit/294/20161122 

Durham Region Transit. (2017). Durham Region Transit General Transit Feed Specification File 
January 17, 2017. transitfeeds.com. http://transitfeeds.com/p/durham-region-
transit/642/20170117 

Grand River Transit. (2017). Grand River Transit General Transit Feed Specification File 
January 6, 2017. transitfeeds.com. http://transitfeeds.com/p/grand-river-
transit/203/20170106 

Guelph Transit. (2017). Guelph Transit General Transit Feed Specification File January 10, 
2017. transitfeeds.com. http://transitfeeds.com/p/guelph-transit/53/20170110 

Hamilton Street Railway. (2017). Hamilton Street Railway General Transit Feed Specification 
File March 7, 2017. transitfeeds.com. http://transitfeeds.com/p/hamilton-street-
railway/31/20170307 

Metrolinx. (2017). GO Transit General Transit Feed Specification File January 14, 2017. 
transitfeeds.com. http://transitfeeds.com/p/go-transit/32/20170114 

Milton Transit. (2018). Milton Transit General Transit Feed Specification File March 20, 2018. 
transitfeeds.com. http://transitfeeds.com/p/milton-transit/929/20180320 

MiWay. (2017). MiWay General Transit Feed Specification File January 30, 2017. 
transitfeeds.com. http://transitfeeds.com/p/miway/641/20170130 

Oakville Transit. (2017). Oakville Transit General Transit Feed Specification File February 18, 
2017. transitfeeds.com. http://transitfeeds.com/p/oakville-transit/615/20170218 
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Toronto Transit Commission. (2017). Toronto Transit Commission General Transit Feed 
Specification File January 5, 2017. transitfeeds.com. 
http://transitfeeds.com/p/ttc/33/20170105 

York Region Transit. (2017). York Region Transit General Transit Feed Specification File 
January 18, 2017. transitfeeds.com. http://transitfeeds.com/p/york-regional-
transit/34/20170118 

 

Apr. – Jun 2017 

Barrie Transit. (2017). Barrie Transit General Transit Feed Specification File May 22, 2017. 
transitfeeds.com. http://transitfeeds.com/p/barrie-transit/522/20170522 

Brampton Transit. (2017). Brampton Transit General Transit Feed Specification File April 10, 
2017. transitfeeds.com. http://transitfeeds.com/p/brampton-transit/35/20170410 

Burlington Transit. (2017). Burlington Transit General Transit Feed Specification File June 16, 
2017. transitfeeds.com. http://transitfeeds.com/p/burlington-transit/294/20170616 

Durham Region Transit. (2017). Durham Region Transit General Transit Feed Specification File 
April 225, 2017. transitfeeds.com. http://transitfeeds.com/p/durham-region-
transit/642/20170425 

Grand River Transit. (2017). Grand River Transit General Transit Feed Specification File April 
5, 2017. transitfeeds.com. http://transitfeeds.com/p/grand-river-transit/203/20170405 

Guelph Transit. (2017). Guelph Transit General Transit Feed Specification File May 8, 2017. 
transitfeeds.com. http://transitfeeds.com/p/guelph-transit/53/20170508 

Hamilton Street Railway. (2017). Hamilton Street Railway General Transit Feed Specification 
File March 7, 2017. transitfeeds.com. http://transitfeeds.com/p/hamilton-street-
railway/31/20170307 
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Appendix G – Steps Taken to Calculate Customer Origin Density and 

Conduct Feeder Bus Connection Quality Analysis in ArcGIS 

 

As mentioned in Section 5.1.2, station catchment areas were estimated using customer origin data 

as downloaded from Metrolinx’s PRESTO smartcard system.  The system provides the postal code address 

of PRESTO users that register their card online, the total number of boardings, and the access station 

associated with these boardings.  The following text outlines the process followed in ArcMap to create 

station catchment areas using this dataset  A database containing all relevant datasets and station catchment 

area outputs can obtained by contacting the author. 

 

Section 5.1.9.5 further stations that station-level feeder bus connection quality was measured by 

calculating the transit access time from intense customer origin locations to the access station.  As part of 

this process, customer origin data as indicated by PRESTO was analyzed a second time to identify common 

points of customer origin within a 0.8-10km radius of each GO Transit Rail station.  After points were 

digitized over these areas, the Network Analyst tool in ArcGIS was used to determine the transit travel time 

between each of these points and the associated access station.  The average of these values was calculated, 

and used to estimate the level of feeder bus connection quality at the station-level.  A database containing 

all relevant datasets and outputs relevant to the feeder bus connection quality analysis can obtained by 

contacting the author. 

 

The process outlined below describes the steps taken in ArcMap to obtain customer origin density 

estimates and associated station catchment boundary outputs.  Following this, the steps taken to obtain 

feeder bus connection quality estimates in ArcGIS are also outlined.   

 

Process Used to Delineate Station Catchment Boundaries Using PRESTO Data 

Step 1 – Obtain Customer Origin Data from Metrolinx 

• Obtain customer origin dataset from PRESTO.  A Microsoft Excel spreadsheet should be provided, 

which indicates the postal code of the user and the number of boardings attributed to each postal 

code.  Separate spreadsheets should be provided for each station analyzed.  This data can be 

obtained from the Customer Analytics team at Metrolinx.   

Step 2 – Georeference Customer Origin Data in ArcMap 

• Data provided at the postal code scale cannot be georeferenced unless additional spatial data is 

provided, such as latitude and longitude coordinates.  Unfortunately, the customer origin dataset 
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provided by Metrolinx only specifies the postal code address of the user.  The dataset needs to be 

joined with a postal code baselayer, which delineates all postal code locations and boundaries in 

the study area, so that it can be georeferenced to the appropriate location.  This dataset can be 

obtained by contacting Canada Post, or in this case was obtained from the University of Waterloo’s 

Geospatial Centre.   

• Load the postal code boundary shapefile into ArcMap.  It is important to note that postal code 

boundaries are not mutually exclusive.  For example, several polygons within the shapefile could 

represent a single postal code address, as natural and physical breaks in the environment can prevent 

postal code boundaries from being continuous.  Postal code boundaries containing the same postal 

code address first need to be aggregated into a single polygon to ensure that customer origin counts 

are only attributed to each postal code address once.   

o Open the “Dissolve” tool in ArcMap. 

o Dissolve postal code boundaries by Postal Code ID – this will dissolve multiple polygons 

that share the same Postal Code ID into a single polygon and will ensure that only a single 

polygon represents each postal code address within the study area.   

• Load the customer origin dataset into ArcMap.  Join the customer origin dataset with the cleaned 

postal code boundary shapefile.  When completing the join, ensure to exclude records where a 

match does not exist, so that postal code addresses that are not associated with any riders are 

excluded from the analysis.  Once completed, all customer origin locations and the number of 

boardings associated with each location will be properly georeferenced.   

Step 3 – Clean Customer Origin Data to Only Include Home-Based Trips 

• Next, ensure that only home-based trips are included in the analysis.  Notably, customer origin 

locations are distributed throughout the country, a result of visitors using the system.  To eliminate 

these outliers and reduce processing capacity, only customer origin data within a 10km radius of 

the station will be included in the analysis.  Create a 10km buffer around the station using the 

“Buffer” tool.  Once created, select all postal code polygons that intersect this feature.  Use the 

“Export” tool to extract this dataset, and include it as a separate file in the analysis.  This shapefile 

should therefore contain customer origin data, georeferenced at the postal code scale, only within 

10km of the station being analyzed.   

o If customer origin density is being visualized for the purpose of feeder bus connection 

quality analysis, also exclude observations located within an 800m buffer of the station.  

This is done as customer origin density was often concentrated in these areas, therefore 

limiting the level of analysis that could be completed with respect to feeder bus 
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connections.  Follow the same steps as outlined in the above paragraph to eliminate these 

observations.  

Step 4 – Create Heatmap Illustrating Customer Origin Density, Weighted by Number of Boardings 

• Using the dataset as exported above, create a heatmap, weighted by number of boardings, to 

illustrate where customer origin is most intense. 

o Heatmaps can only be created using point features.  Since postal code addresses are 

currently stored as a polygon feature, convert the polygon feature class to a point feature 

class using the “Feature to Point” tool.  The points created are referenced to the centroid of 

each postal code polygon included in the analysis and will still indicate the postal code 

address of the user and number of boardings associated with this location. 

o Create a heatmap using the newly created point feature class.  Complete this using the 

“Point Density” tool.  Select the “Number of Boardings” field in the “Population” drop 

down menu to ensure that the heatmap is weighted by the number of boardings associated 

with each postal code address.  This step is important, as otherwise the software will simply 

create a heatmap illustrating where postal code addresses are most concentrated.   

Step 5 – Digitize Station Catchment Area 

• Once the heatmap has been created, digitize a polygon around areas where customer origin data is 

shown to be most intense.  This could be a single polygon or could be several if the concentration 

of riders is located in several fragmented areas.  This is possible, as natural or physical breaks in 

the environment (ex. the presence of rivers, streams, highways, or uniform employment / industrial 

land uses) could result in this occurring.   

• Save and export the digitized polygon.  The area within the polygon therefore represents the station 

catchment area of the analyzed station.   

 

Process Used to Obtain Feeder Bus Connection Quality Estimates 

Step 1 – Create Heatmap Illustrating Customer Origin Density, Weighted by Number of Boardings 

• Follow steps 1-4 in previous section to estimate customer origin density surrounding the station 

being analyzed 

Step 2 – Digitize 5 Dense Customer Origin Locations  

• Next, digitize five locations where customer origin is most concentrated.  This is accomplished 

because travel time estimates can only be calculated between a pair of point features.  In this 

analysis, the customer origin location acts as the origin point, while the access station acts as the 

destination point.  Notably, heat map outputs as computed by ArcGIS are produced as “raster” 

outputs, meaning that the output illustrates the data being analyzed but has no quantitative standing.  
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Therefore, the user has to manually digitize customer origin points over areas where customer 

origin is observed to be most dense.   

• Conduct a qualitative scan of the heatmap produced in the previous step.  Using the “Create Point” 

feature, digitize five locations where rider origin is most concentrated within the station catchment 

area.  Early in the analysis, it was decided that five locations were to be selected at each station so 

that an “average” transit access time value could be estimated.  Ensure that the point shapefile is 

referenced to the “GCS_North_American_1983_CSRS” projection to ensure data consistency 

between outputs. 

Step 3 – Construct Virtual Transit Network in ArcGIS  

• A virtual transit network will then need to be constructed in ArcGIS to obtain transit travel time 

estimates between customer origin locations and the associated access station.  Instructions 

outlining this process were obtained from the ArcGIS guidebook (ESRI, 2020).  These steps are 

summarized below. 

• Download a shapefile of the road network within the study area.  For the purpose of this study, a 

shapefile of Ontario’s road network was downloaded from the Province of Ontario’s geospatial 

portal (insert citation).   

• Convert the road network shapefile to a geodatabase.  In ArcGIS: 

o Open the Catalog pane, 

o Right-click on the folder where you want to store all data / files relevant to the analysis,   

o Click New > File Geodatabase, 

o Name the new geodatabase appropriately (ex. Ontario Road Network). 

o Right-click the Ontario Road Segment shapefile in the table of contents pane,  

o Select Data -> Export Data, 

o Under save type, select File and Personal Geodatabase feature class, 

o Navigate to the geodatabase that was previous created – export the road network 

shapefile into the new geodatabase 

o Save the new road network geodatabase appropriately 

• Add appropriate columns in roads geodatabase. 
o Open the roads geodatabase. 

o Add “RestrictPedestrians” field (text field) – leave values “null” 

o Add “ROAD_CLASS” field (short integer field) – leave values “null” 

o These columns will allow pedestrians to walk on all streets, and will allow the software to 

configure directions using the road network once the Network Analyst tool is used.    
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• Download and unzip General Transit Feed Specification files 

o Download General Transit Feed Specification files for the time period in which you want 

to obtain feeder bus connection quality estimates.  For example, to obtain feeder bus 

connection quality estimates for the board period spanning January – March 2016, 

download the GTFS files as indicated in the Jan-Mar 2016 reference paragraph above.  The 

metadata of these files has been checked and confirmed that these files and the transit 

schedules associated with these transit providers were in-effect between January and 

March, 2016.   

o Once downloaded, unzip the GTFS files.   

• Create a file geodatabase and feature database that the GTFS files can reference.  To create a file 

geodatabase: 

o Open the catalog pane, 

o Right-click the databases folder – click New File Geodatabase, 

o browse to location where you want to store the database, enter an appropriate name (ex. 

GTFS Analysis Jan-Mar2016) and save, 

• To create a Feature Database: 

o Right-click on the newly created File Geodatabase, 

o Click New > Feature Dataset 

o Select a coordinate system identical to the one that the road network geodatabase is 

currently referenced too 

• Place the road network geodatabase into the newly created Feature Database 

o Load road network geodatabase into ArcGIS 

o Copy and paste into the Feature Database 

o Ensure that it is named “Streets” – the GTFS files will not reference the roads baselayer if 

it is not named “Streets” 

• Obtain schedule, stop, and route information from previously downloaded GTFS files 

o Upload GTFS files using GTFS to Network Dataset Transit Sources tool  

o Select unzipped GTFS feeds that you will use to construct the virtual transit network  

o Under Target Feature Dataset dropdown menu, select the Feature Database previously 

created 

o Run the tool – a virtual Network Dataset will be created 

• Georeference schedule, stop, and route information from GTFS files to previously uploaded street 

network geodatabase 

o Use the Connect Network Dataset Transit Sources To Streets tool  
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o Select the previously created Network Dataset 

o Reference this file to the Streets file geodatabase previously created  

• Create virtual transit network  

o Download the Transit Network Template provided in the ESRI Network Analyst Tutorial 

o Select the Create Network Dataset From Template tool  

o Under the input dropdown menu, select the downloaded template 

o Under the output dropdown menu, select the Feature Dataset previously created 

o Run the tool  

• Build the network  

o Open the Build Network Tool  

o Select the Feature Dataset previously created 

• A fully functioning virtual transit network should now be constructed  

Step 4 – Obtain Travel Time Estimates   

• Now that a virtual transit network has been constructed, transit travel times between origin and 

destination pairs can be estimated using the schedule, stop, and route information that has been 

extracted from the previously downloaded GTFS files 

• Uploaded the identified points of customer origin as estimated in Step 2 

• Uploaded a point shapefile of the station location – station locations were obtained from the 

Metrolinx Open Data Portal  

• Select the OD-Matrix tool under the Network Analyst toolbox  

• For origins, select the shapefile containing the identified points of customer origin.  For destination, 

select the shapefile illustrating the access station  

• Select departure time / data parameters – for the purpose of this analysis, a generic weekday was 

selected, while time parameters as indicated below were selected depending on the trip type 

examined  

• Specify that each origin should only map to the closest destination – this prevents the software from 

calculating transit travel time estimates between origin points  

• Run the tool 4 times, specifying a different time parameter to obtain separate estimates for each 

trip type: 

o A.M. Peak – 7:00am 

o Midday Off-Peak – 12:30pm 

o P.M. Peak – 4:00pm 

o Evening Off-Peak – 7:00pm 
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• Export file containing travel time estimates for further analysis  

Step 5 – Calculate Average Transit Travel Time (this value will be used as the indicator for feeder bus 

connection quality) 

• Once the transit travel time estimates were calculated between each customer origin location and 

the access station, data was cleaned to account for any discrepancies caused by the software 

• For example, sometimes the Network Analyst tool would calculate the transit travel time between 

a customer origin location and a GO Transit rail station other than the associated access station.  

This would occur if the software determined that it was faster to access an alternate station that the 

associated access station.  In these situations, a value of 60 minutes was assigned to these origin-

destination pairs. 

• Further, extremely large transit travel times were found for some stations, specifically those located 

in rural locations where no local bus service is provided.  In these situations, the software would 

assume that a user would walk between the customer origin location and the associated access 

station, resulting in extremely inflated transit access time values.  In these situations, an upper value 

of 60 minutes were also assigned to these origin-destination pairs.  

• Once cleaned, the average transit access time for each station in a given time period was calculated.  

These estimated were obtained using the “Average” function in Microsoft Excel.  These results 

were exported as the final feeder bus connection quality values for use in the demand model.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



185 
 

Appendix H – Summary Statistics  

 

Table 24 – A.M. Peak Model All Variables Summary Statistics 

A.M. Peak Model All Variables Summary Statistics  
Mean Median Minimum Maximum Range 

Ridership A.M. Peak 1498.08 1013.26 38.90 5272.05 5233.15 
Service Quantity 10.93 9.00 2.00 24.00 22.00 
Fare Price 6.28 6.24 2.54 12.99 10.45 
Feeder Bus Connection 
Quality 

35.59 33.15 13.14 60.00 46.86 

Population Density 3538.26 3206.26 458.98 12875.39 12416.41 
Gender - Female 52.02 51.35 49.95 1885.12 1835.17 
Households With Children 659.73 660.14 92.06 1632.46 1540.40 
Unemployment Rate 7.65 7.64 4.10 10.73 6.63 
Income 94066.35 95700.89 58667.12 130295.92 71628.80 
Age 40.66 40.93 34.11 44.34 10.23 
Employment Density 474.88 414.15 69.99 1846.81 1776.83 
Fuel Price 109.22 108.24 86.99 130.63 43.63 
Vehicle Ownership 755171.65 743433.43 83906.00 1224959.58 1141053.58 
Number of Parking Spaces 992.41 657.00 1.00 4540.00 4539.00 
Distance to CBD - Near 0.30 0.00 0.00 1.00 1.00 
Distance to CBD - Far 0.71 1.00 0.00 1.00 1.00 
Winter 0.25 0.00 0.00 1.00 1.00 
Spring 0.25 0.00 0.00 1.00 1.00 
Summer 0.25 0.00 0.00 1.00 1.00 
Fall 0.25 0.00 0.00 1.00 1.00       

n = 2928 
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Table 25 - Midday Off-Peak Model All Variables Summary Statistics 

Midday Off-Peak Model All Variables Summary Statistics  
Mean Median Minimum Maximum Range 

Ridership Midday Off-Peak 371.72 315.62 4.14 1438.86 1434.72 
Service Quantity 16.26 12.00 1.00 45.00 44.00 
Fare Price 5.39 5.28 2.44 11.09 8.66 
Feeder Bus Connection 
Quality 

35.00 34.25 13.60 60.00 46.40 

Population Density 3927.66 3352.03 708.01 12875.39 12167.38 
Gender - Female 52.47 51.42 49.95 1885.12 1835.17 
Households With Children 711.67 680.85 140.75 1632.46 1491.71 
Unemployment Rate 8.01 8.05 4.14 10.73 6.59 
Income 91463.04 86399.56 58667.12 130295.92 71628.80 
Age 40.78 41.12 34.11 44.28 10.17 
Employment Density 427.45 365.70 69.99 1070.26 1000.27 
Fuel Price 109.97 108.55 86.99 130.63 43.63 
Vehicle Ownership 823375.96 760936.99 92014.71 1224959.58 1132944.87 
Number of Parking Spaces 1183.55 783.00 1.00 4540.00 4539.00 
Distance to CBD - Near 0.39 0.00 0.00 1.00 1.00 
Distance to CBD - Far 0.61 1.00 0.00 1.00 1.00 
Winter 0.25 0.00 0.00 1.00 1.00 
Spring 0.24 0.00 0.00 1.00 1.00 
Summer 0.25 0.00 0.00 1.00 1.00 
Fall 0.26 0.00 0.00 1.00 1.00       

n = 1735 
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Table 26 – P.M. Peak Model All Variables Summary Statistics 

P.M. Peak Model All Variables Summary Statistics  
Mean Median Minimum Maximum Range 

Ridership P.M. Peak 247.13 89.12 1.40 2390.05 2388.65 
Service Quantity 11.11 8.00 1.00 30.00 29.00 
Fare Price 3.99 3.87 1.01 9.66 8.65 
Feeder Bus Connection 
Quality 

35.20 34.48 13.40 60.00 46.60 

Population Density 3644.44 3341.03 458.98 12875.39 12416.41 
Gender - Female 52.08 51.36 49.95 1885.12 1835.17 
Households With Children 678.43 677.38 92.06 1632.46 1540.40 
Unemployment Rate 7.70 7.69 4.10 10.73 6.63 
Income 94266.56 95972.54 58667.12 130295.92 71628.80 
Age 40.69 41.03 34.11 44.34 10.23 
Employment Density 477.74 401.74 69.99 1846.81 1776.83 
Fuel Price 109.30 108.26 86.99 130.63 43.63 
Vehicle Ownership 775615.34 748360.48 83906.00 1224959.58 1141053.58 
Number of Parking Spaces 1032.67 701.50 1.00 4540.00 4539.00 
Distance to CBD - Near 0.31 0.00 0.00 1.00 1.00 
Distance to CBD - Far 0.69 1.00 0.00 1.00 1.00 
Winter 0.25 0.00 0.00 1.00 1.00 
Spring 0.25 0.00 0.00 1.00 1.00 
Summer 0.25 0.00 0.00 1.00 1.00 
Fall 0.25 0.00 0.00 1.00 1.00       

n = 2690 
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Table 27 - Evening Off-Peak Model All Variables Summary Statistics 

Evening Off-Peak Model All Variables Summary Statistics  
Mean Median Minimum Maximum Range 

Ridership Evening Off-Peak 101.85 15.86 1.00 2489.43 2488.43 
Service Quantity 9.35 4.00 1.00 25.00 24.00 
Fare Price 4.75 4.83 1.01 8.86 7.86 
Feeder Bus Connection 
Quality 

35.55 34.14 12.00 60.00 48.00 

Population Density 3564.98 3291.73 458.98 12875.39 12416.41 
Gender - Female 52.12 51.39 49.95 1885.12 1835.17 
Households With Children 669.14 669.02 92.06 1632.46 1540.40 
Unemployment Rate 7.75 7.73 4.10 10.73 6.63 
Income 94622.24 96985.89 58667.12 130295.92 71628.80 
Age 40.70 41.04 34.11 43.37 9.25 
Employment Density 487.80 404.48 69.99 1846.81 1776.83 
Fuel Price 109.42 108.29 86.99 130.63 43.63 
Vehicle Ownership 761971.34 746715.37 83906.00 1224959.58 1141053.58 
Number of Parking Spaces 1078.44 774.00 1.00 4540.00 4539.00 
Distance to CBD - Near 0.29 0.00 0.00 1.00 1.00 
Distance to CBD - Far 0.72 1.00 0.00 1.00 1.00 
Winter 0.25 0.00 0.00 1.00 1.00 
Spring 0.25 0.00 0.00 1.00 1.00 
Summer 0.26 0.00 0.00 1.00 1.00 
Fall 0.25 0.00 0.00 1.00 1.00       

n = 2515 
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Appendix I – Calculations Used to Adjust For Inflation  

 

Fare price, income, and fuel price values were adjusted for inflation before inclusion in the demand 

model.  This was done to ensure that change in the purchasing power of Canadian currency did not influence 

model results.   

Statistics Canada maintains a Consumer Price Index (CPI) which indicates changes in consumer 

prices experienced by the Canadian public.  Over time, the cost of a fixed basket of goods and services, 

referenced to the price paid in 2002, is tabulated.  As a result, price movement of the goods and services 

represented in this basket are representative of inflation costs being realized by the public. 

Archived CPI values can be obtained online via the Statistics Canada website.  Using the Statistics 

Canada Consumer Price Index (CPI) deflator tool, CPI values in a given month can be compared to a CPI 

value in a previous month to determine the level of inflation that has occurred between these periods.  A 

deflator value is then estimated, which allows for consistent dollar estimated between values obtained in 

each observation period.   

CPI values were downloaded at monthly intervals for the duration of the time series.  All values 

were referenced to the CPI value shown in January 2016, as this is the first month of the time-series 

analyzed.  The CPI value in January 2016 was then divided by the CPI value in a given month to obtain an 

associated deflator value.  All fare price, income, and fuel price values were then multiplied by the deflator 

value that was estimated in a given month to obtain inflation adjusted estimated.  This process is outlined 

in the table below.   
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Table 28 - Adjusting For Inflation - Consumer Price Index and Estimated Deflator Values 

Adjusting For Inflation - Consumer Price Index and Estimated Deflator Values  
Jan-

16 
Feb-

16 
Mar-

16 
Apr-

16 
May-

16 
Jun-

16 
Jul-
16 

Aug-
16 

Sep-
16 

Oct-
16 

Nov-
16 

Dec-
16 

CPI 
Value 

126.8 127.1 127.9 128.3 128.8 129.1 128.9 128.7 128.8 129.1 128.6 128.4 

Deflator  
Value 

1.000 0.998 0.991 0.988 0.984 0.982 0.984 0.985 0.984 0.982 0.986 0.988 

             
 

Jan-
17 

Feb-
17 

Mar-
17 

Apr-
17 

May-
17 

Jun-
17 

Jul-
17 

Aug-
17 

Sep-
17 

Oct-
17 

Nov-
17 

Dec-
17 

CPI 
Value 

129.5 129.7 129.9 130.4 130.5 130.4 130.4 130.5 130.8 130.9 131.3 130.8 

Deflator  
Value 

0.979 0.978 0.976 0.972 0.972 0.972 0.972 0.972 0.969 0.969 0.966 0.969 

             
 

Jan-
18 

Feb-
18 

Mar-
18 

Apr-
18 

May-
18 

Jun-
18 

Jul-
18 

Aug-
18 

Sep-
18 

Oct-
18 

Nov-
18 

Dec-
18 

CPI 
Value 

131.7 132.5 132.9 133.3 133.4 133.6 134.3 134.2 133.7 134.1 133.5 133.4 

Deflator  
Value 

0.963 0.957 0.954 0.951 0.951 0.949 0.944 0.945 0.948 0.946 0.950 0.951 

             
 

Jan-
19 

Feb-
19 

Mar-
19 

Apr-
19 

May-
19 

Jun-
19 

Jul-
19 

Aug-
19 

Sep-
19 

Oct-
19 

Nov-
19 

Dec-
19 

CPI 
Value 

133.6 134.5 135.4 136.0 136.6 136.3 137.0 136.8 136.2 136.6 136.4 136.4 

Deflator  
Value 

0.949 0.943 0.936 0.932 0.928 0.930 0.926 0.927 0.931 0.928 0.930 0.930 
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Appendix J – Correlation Plots and Variance Inflation Factor Scores  

 

Table 29 – A.M. Peak Model Correlation Plots and VIF Scores 
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Table 30 - Midday Off-Peak Model Correlation Plots and VIF Scores 
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Table 31 – P.M. Peak Model Correlation Plots and VIF Scores 
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Table 32 - Evening Off-Peak Model Correlation Plots and VIF Scores 
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Appendix K – Outputs Used to Inform Backwards Stepwise Regression  

 

Table 33 - Outputs Used to Inform Backwards Stepwise Regression 

A.M. Peak Unrestricted Model Estimated Using Robust Standard Errors  
Coefficient SE t-value p-value 

(Intercept) -6.763 5.893 -1.148 0.251 
Service Quantity 0.208 0.033 6.248 < 0.001 
Fare Price -0.283 0.112 -2.522 0.012 
Feeder Bus Connection Quality -0.008 0.015 -0.546 0.585 
Population Density 0.397 0.139 2.861 0.004 
Gender - Female -0.057 0.005 -11.696 < 0.001 
Unemployment Rate 0.568 0.273 2.080 0.038 
Income 0.151 0.203 0.743 0.458 
Age 1.201 1.217 0.987 0.324 
Employment Density -0.134 0.089 -1.510 0.131 
Fuel Price 0.199 0.036 5.524 < 0.001 
Vehicle Ownership 0.265 0.072 3.651 < 0.001 
Park and Ride Capacity 0.043 0.010 4.282 < 0.001 
Distance to CBD - Near -1.626 0.134 -12.140 < 0.001 
Winter 0.022 0.009 2.511 0.012 
Spring 0.022 0.009 2.435 0.015 
Summer -0.007 0.009 -0.780 0.435 
Action: Eliminate Age. Rationale: P-value greater than predetermined cut-off, large coefficient that 
does not align with previous estimates as seen in literature.       

A.M. Peak Unrestricted Model Estimated Using Robust Standard Errors  
After Elimination of Age  

Coefficient SE t-value p-value 
(Intercept) -2.112 2.539 -0.832 0.406 
Service Quantity 0.209 0.034 6.230 < 0.001 
Fare Price -0.291 0.114 -2.555 0.011 
Feeder Bus Connection Quality -0.008 0.015 -0.523 0.601 
Population Density 0.353 0.129 2.731 0.006 
Gender - Female -0.055 0.005 -11.828 < 0.001 
Unemployment Rate 0.592 0.261 2.267 0.023 
Income 0.128 0.196 0.653 0.514 
Employment Density -0.097 0.078 -1.243 0.214 
Fuel Price 0.201 0.037 5.479 < 0.001 
Vehicle Ownership 0.274 0.073 3.734 < 0.001 
Park and Ride Capacity 0.043 0.010 4.268 < 0.001 
Distance to CBD - Near -1.558 0.128 -12.208 < 0.001 
Winter 0.021 0.009 2.474 0.013 
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Spring 0.022 0.009 2.383 0.017 
Summer -0.008 0.009 -0.808 0.419 
Action: Eliminate Feeder Bus Connection Quality. Rationale: P-value greater than predetermined cut-
off, largest p-value in current model output.        

A.M. Peak Unrestricted Model Estimated Using Robust Standard Errors  
After Elimination of Feeder Bus Connection Quality  

Coefficient SE t-value p-value 
(Intercept) -1.985 2.550 -0.779 0.436 
Service Quantity 0.208 0.033 6.225 < 0.001 
Fare Price -0.290 0.113 -2.558 0.011 
Population Density 0.352 0.130 2.709 0.007 
Gender - Female -0.056 0.005 -12.126 < 0.001 
Unemployment Rate 0.585 0.263 2.229 0.026 
Income 0.114 0.196 0.579 0.563 
Employment Density -0.098 0.079 -1.237 0.216 
Fuel Price 0.200 0.037 5.479 < 0.001 
Vehicle Ownership 0.277 0.074 3.749 < 0.001 
Park and Ride Capacity 0.043 0.010 4.256 < 0.001 
Distance to CBD - Near -1.560 0.128 -12.143 < 0.001 
Winter 0.021 0.009 2.465 0.014 
Spring 0.021 0.009 2.339 0.019 
Summer -0.008 0.009 -0.817 0.414 
Action: Eliminate Unemployment Rate. Rationale: P-value greater than predetermined cut-off, largest 
p-value in current model output.        

A.M. Peak Unrestricted Model Estimated Using Robust Standard Errors  
After Elimination of Income  

Coefficient SE t-value p-value 
(Intercept) -0.719 2.550 -0.282 0.778 
Service Quantity 0.205 0.033 6.143 < 0.001 
Fare Price -0.297 0.113 -2.621 0.009 
Population Density 0.347 0.130 2.670 0.008 
Gender - Female -0.056 0.005 -12.197 < 0.001 
Unemployment Rate 0.537 0.263 2.046 0.041 
Employment Density -0.100 0.079 -1.271 0.204 
Fuel Price 0.203 0.037 5.547 < 0.001 
Vehicle Ownership 0.293 0.074 3.975 < 0.001 
Park and Ride Capacity 0.040 0.010 4.002 < 0.001 
Distance to CBD - Near -1.598 0.128 -12.440 < 0.001 
Winter 0.021 0.009 2.413 0.016 
Spring 0.020 0.009 2.224 0.026 
Summer -0.009 0.009 -0.899 0.369 
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Action: Summer demonstrates p-value greater than predetermined cut-off and is largest p-value in 
current model output.  Investigate if seasonal dummy variables are jointly significant in explaining 
ridership.  
     

Joint Test of Significance for Seasonal Dummy Variables 
Hypothesis 

    

Winter = 0 
    

Spring = 0 
    

Summer = 0 
    

     

Model 1  restricted model 
  

Model 2  Ridership.AM.Peak ~ Service Quantity + Fare Price + 
Population Density + Gender - Female + Unemployment 
Rate + Employment Density + Fuel Price + Vehicle 
Ownership + Park and Ride Capacity + Station Location - 
Near + Winter + Spring + Summer      

 
Res.Df Df Chisq Pr(>Chisq) 

Model 1 2917 
   

Model 2 2914 3 53.053 < 0.001 
Action: Eliminate Employment Density. Rationale: Seasonal dummy variables shown to jointly 
significant in explaining ridership, therefore Summer should not be removed from the regression 
model. Employment Density therefore eliminated as it has a p-value greater than predetermined cut-off, 
and second largest p-value (after summer) in current model output.  
     

A.M. Peak Unrestricted Model Estimated Using Robust Standard Errors  
After Elimination of Employment Density  

Coefficient SE t-value p-value 
(Intercept) -0.983 1.154 -0.852 0.394 
Service Quantity 0.207 0.033 6.261 < 0.001 
Fare Price -0.296 0.114 -2.591 0.010 
Population Density 0.284 0.111 2.550 0.011 
Gender - Female -0.056 0.004 -12.625 < 0.001 
Unemployment Rate 0.532 0.268 1.990 0.047 
Fuel Price 0.203 0.036 5.642 < 0.001 
Vehicle Ownership 0.305 0.080 3.816 < 0.001 
Park and Ride Capacity 0.041 0.010 4.194 < 0.001 
Distance to CBD - Near -1.543 0.145 -10.611 < 0.001 
Winter 0.021 0.009 2.396 0.017 
Spring 0.020 0.009 2.213 0.027 
Summer -0.009 0.009 -0.898 0.369 
Action: Summer demonstrates p-value greater than predetermined cut-off and is largest p-value in 
current model output.  Investigate if seasonal dummy variables are jointly significant in explaining 
ridership.  
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Joint Test of Significance for Seasonal Dummy Variables 
Hypothesis 

    

Winter = 0 
    

Spring = 0 
    

Summer = 0 
    

     

Model 1  restricted model 
  

Model 2  Ridership.AM.Peak ~ Service Quantity + Fare Price + 
Population Density + Gender - Female + Unemployment 
Rate + fuel Price + Vehicle Ownership + Park and Ride 
Capacity + Station Location - Near + Winter + Spring + 
Summer      

 
Res.Df Df Chisq Pr(>Chisq) 

Model 1 2918 
   

Model 2 2915 3 52.465 < 0.001 
Seasonal dummy variables shown to be statistically significant, therefore Summer should not be 
removed from regression model.  All remaining variables demonstrate p-values less than the 
predetermined significance cut-off, therefore stepwise regression is completed.  The restricted AM 
Peak model therefore takes the final form as outlined in Equation 27.  Complete results are further 
shown in Table 16. 
     

Midday Off-Peak Unrestricted Model Estimated Using Robust Standard Errors  
Coefficient SE t-value p-value 

(Intercept) -57.082 9.683 -5.895 < 0.001 
Service Quantity 0.565 0.029 19.402 < 0.001 
Fare Price -0.232 0.095 -2.446 0.015 
Feeder Bus Connection Quality -0.091 0.034 -2.657 0.008 
Population Density 1.442 0.234 6.166 < 0.001 
Gender - Female 0.010 0.011 0.869 0.385 
Unemployment Rate 0.427 0.285 1.499 0.134 
Income 1.593 0.406 3.927 < 0.001 
Age 11.824 1.754 6.740 < 0.001 
Employment Density -0.504 0.160 -3.150 0.002 
Fuel Price 0.495 0.066 7.452 < 0.001 
Vehicle Ownership -0.859 0.199 -4.309 < 0.001 
Park and Ride Capacity 0.002 0.013 0.162 0.871 
Distance to CBD - Near -1.689 0.272 -6.212 < 0.001 
Winter -0.136 0.014 -9.837 < 0.001 
Spring -0.121 0.015 -8.229 < 0.001 
Summer 0.094 0.015 6.460 < 0.001 
Action: Eliminate Age.  Rationale: Large coefficient that does not align with previous estimates as 
seen in literature.  
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Midday Off-Peak Unrestricted Model Estimated Using Robust Standard Errors  
After Elimination of Age  

Coefficient SE t-value p-value 
(Intercept) -13.073 5.421 -2.412 0.016 
Service Quantity 0.570 0.030 19.270 < 0.001 
Fare Price -0.247 0.095 -2.591 0.010 
Feeder Bus Connection Quality -0.085 0.035 -2.447 0.015 
Population Density 0.773 0.193 4.002 < 0.001 
Gender - Female 0.023 0.008 2.874 0.004 
Unemployment Rate 0.576 0.279 2.063 0.039 
Income 1.497 0.397 3.776 < 0.001 
Employment Density 0.015 0.136 0.111 0.911 
Fuel Price 0.533 0.068 7.857 < 0.001 
Vehicle Ownership -0.683 0.183 -3.734 < 0.001 
Park and Ride Capacity 0.010 0.014 0.685 0.494 
Distance to CBD - Near -0.868 0.238 -3.642 < 0.001 
Winter -0.139 0.014 -9.855 < 0.001 
Spring -0.126 0.015 -8.538 < 0.001 
Summer 0.091 0.015 6.231 < 0.001 
Action: Eliminate Employment Density. Rationale: P-value greater than predetermined cut-off, largest 
p-value in current model output.        

Midday Off-Peak Unrestricted Model Estimated Using Robust Standard Errors  
After Elimination of Employment Density  

Coefficient SE t-value p-value 
(Intercept) -12.821 5.212 -2.460 0.014 
Service Quantity 0.571 0.030 19.306 < 0.001 
Fare Price -0.246 0.095 -2.579 0.010 
Feeder Bus Connection Quality -0.084 0.035 -2.441 0.015 
Population Density 0.784 0.149 5.249 < 0.001 
Gender - Female 0.023 0.008 2.863 0.004 
Unemployment Rate 0.585 0.278 2.104 0.036 
Income 1.485 0.389 3.816 < 0.001 
Fuel Price 0.533 0.068 7.849 < 0.001 
Vehicle Ownership -0.692 0.174 -3.980 < 0.001 
Park and Ride Capacity 0.010 0.014 0.703 0.482 
Distance to CBD - Near -0.875 0.219 -4.002 < 0.001 
Winter -0.139 0.014 -9.846 < 0.001 
Spring -0.126 0.015 -8.530 < 0.001 
Summer 0.091 0.015 6.225 < 0.001 
Action: Eliminate Park and Ride Capacity. Rationale: P-value greater than predetermined cut-off, 
largest p-value in current model output.   
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Midday Off-Peak Unrestricted Model Estimated Using Robust Standard Errors  
After Elimination of Park and Ride Capacity  

Coefficient SE t-value p-value 
(Intercept) -13.069 5.143 -2.541 0.011 
Service Quantity 0.571 0.030 19.334 < 0.001 
Fare Price -0.244 0.095 -2.566 0.010 
Feeder Bus Connection Quality -0.085 0.035 -2.449 0.014 
Population Density 0.770 0.147 5.240 < 0.001 
Gender - Female 0.022 0.008 2.811 0.005 
Unemployment Rate 0.625 0.274 2.278 0.023 
Income 1.515 0.383 3.953 < 0.001 
Fuel Price 0.532 0.068 7.833 < 0.001 
Vehicle Ownership -0.692 0.173 -3.992 < 0.001 
Distance to CBD - Near -0.882 0.215 -4.100 < 0.001 
Winter -0.139 0.014 -9.847 < 0.001 
Spring -0.126 0.015 -8.515 < 0.001 
Summer 0.091 0.015 6.210 < 0.001 
All remaining variables demonstrate p-values less than the predetermined significance cut-off, 
therefore stepwise regression is completed.  The restricted Midday Off Peak model therefore takes the 
final form as outlined in Equation 28.  Complete results are further shown in Table 16. 
     

P.M. Peak Unrestricted Model Estimated Using Robust Standard Errors  
Coefficient SE t-value p-value 

(Intercept) -32.576 7.182 -4.536 < 0.001 
Service Quantity 0.553 0.055 10.154 < 0.001 
Fare Price 0.132 0.045 2.910 0.004 
Feeder Bus Connection Quality 0.091 0.024 3.763 < 0.001 
Population Density 0.390 0.187 2.084 0.037 
Gender - Female 0.013 0.006 2.263 0.024 
Unemployment Rate 2.662 0.246 10.806 < 0.001 
Income 1.591 0.341 4.670 < 0.001 
Age 2.935 1.508 1.947 0.052 
Employment Density 0.259 0.144 1.801 0.072 
Fuel Price 0.169 0.054 3.139 0.002 
Vehicle Ownership -0.352 0.185 -1.902 0.057 
Park and Ride Capacity -0.002 0.013 -0.119 0.906 
Distance to CBD - Near 0.333 0.271 1.227 0.220 
Winter -0.099 0.011 -9.203 < 0.001 
Spring 0.026 0.011 2.298 0.022 
Summer 0.205 0.012 17.347 < 0.001 
Action: Eliminate Age. Rationale: Large coefficient that does not align with previous estimates as 
seen in literature.  
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P.M. Peak Unrestricted Model Estimated Using Robust Standard Errors  
After Elimination of Age  

Coefficient SE t-value p-value 
(Intercept) -21.083 4.502 -4.683 < 0.001 
Service Quantity 0.559 0.054 10.377 < 0.001 
Fare Price 0.134 0.045 2.974 0.003 
Feeder Bus Connection Quality 0.094 0.024 3.910 < 0.001 
Population Density 0.302 0.173 1.749 0.080 
Gender - Female 0.016 0.006 2.617 0.009 
Unemployment Rate 2.710 0.240 11.299 < 0.001 
Income 1.512 0.338 4.471 < 0.001 
Employment Density 0.343 0.138 2.487 0.013 
Fuel Price 0.176 0.054 3.272 0.001 
Vehicle Ownership -0.331 0.181 -1.830 0.067 
Park and Ride Capacity -0.001 0.013 -0.097 0.923 
Distance to CBD - Near 0.481 0.264 1.821 0.069 
Winter -0.100 0.011 -9.239 < 0.001 
Spring 0.024 0.011 2.188 0.029 
Summer 0.204 0.012 17.265 < 0.001 
Action: Eliminate Park and Ride Capacity. Rationale: P-value greater than predetermined cut-off, 
largest p-value in current model output.        

P.M. Peak Unrestricted Model Estimated Using Robust Standard Errors  
After Elimination of Park and Ride Capacity  

Coefficient SE t-value p-value 
(Intercept) -20.945 4.479 -4.676 < 0.001 
Service Quantity 0.562 0.054 10.448 < 0.001 
Fare Price 0.135 0.045 2.993 0.003 
Feeder Bus Connection Quality 0.094 0.024 3.902 < 0.001 
Population Density 0.307 0.171 1.790 0.074 
Gender - Female 0.016 0.006 2.650 0.008 
Unemployment Rate 2.703 0.238 11.344 < 0.001 
Income 1.506 0.337 4.467 < 0.001 
Employment Density 0.342 0.136 2.503 0.012 
Fuel Price 0.176 0.054 3.292 0.001 
Vehicle Ownership -0.339 0.180 -1.887 0.059 
Distance to CBD - Near 0.485 0.258 1.878 0.060 
Winter -0.100 0.011 -9.235 < 0.001 
Spring 0.024 0.011 2.178 0.030 
Summer 0.204 0.012 17.326 < 0.001 
All remaining variables demonstrate p-values less than the predetermined significance cut-off, 
therefore stepwise regression is completed.  The restricted PM Peak Model therefore takes the final 
form as outlined in Equation 29.  Complete results are further shown in Table 17. 
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Evening Off-Peak Unrestricted Model Estimated Using Robust Standard Errors  
Coefficient SE t-value p-value 

(Intercept) -45.478 13.414 -3.390 0.001 
Service Quantity 0.488 0.027 17.884 < 0.001 
Fare Price 0.118 0.046 2.568 0.010 
Feeder Bus Connection Quality -0.060 0.045 -1.338 0.181 
Population Density 0.567 0.243 2.329 0.020 
Gender - Female -0.006 0.019 -0.344 0.731 
Unemployment Rate 2.346 0.360 6.513 < 0.001 
Income 3.130 0.552 5.672 < 0.001 
Age 5.397 2.579 2.092 0.036 
Employment Density 0.264 0.206 1.284 0.199 
Fuel Price 0.204 0.086 2.366 0.018 
Vehicle Ownership -1.493 0.219 -6.809 < 0.001 
Park and Ride Capacity 0.000 0.017 0.023 0.982 
Distance to CBD - Near 1.065 0.386 2.758 0.006 
Winter -0.131 0.017 -7.679 < 0.001 
Spring 0.103 0.018 5.789 < 0.001 
Summer 0.307 0.019 16.296 < 0.001 
Action: Eliminate Age. Rationale: Large coefficient that does not align with previous estimates as 
seen in literature.       

Evening Off-Peak Unrestricted Model Estimated Using Robust Standard Errors  
After Elimination of Age  

Coefficient SE t-value p-value 
(Intercept) -23.786 6.788 -3.504 < 0.001 
Service Quantity 0.493 0.027 18.093 < 0.001 
Fare Price 0.123 0.046 2.671 0.008 
Feeder Bus Connection Quality -0.056 0.045 -1.251 0.211 
Population Density 0.404 0.216 1.876 0.061 
Gender - Female -0.003 0.017 -0.169 0.866 
Unemployment Rate 2.430 0.357 6.807 < 0.001 
Income 2.917 0.530 5.507 < 0.001 
Employment Density 0.413 0.179 2.307 0.021 
Fuel Price 0.210 0.086 2.440 0.015 
Vehicle Ownership -1.430 0.217 -6.583 < 0.001 
Park and Ride Capacity 0.001 0.017 0.089 0.929 
Distance to CBD - Near 1.294 0.374 3.457 0.001 
Winter -0.132 0.017 -7.728 < 0.001 
Spring 0.101 0.018 5.674 < 0.001 
Summer 0.306 0.019 16.225 < 0.001 
Action: Eliminate Park and Ride Capacity. Rationale: P-value greater than predetermined cut-off, 
largest p-value in current model output.   
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Evening Off-Peak Unrestricted Model Estimated Using Robust Standard Errors  
After Elimination of Park and Ride Capacity  

Coefficient SE t-value p-value 
(Intercept) -23.659 6.772 -3.494 < 0.001 
Service Quantity 0.493 0.027 18.118 < 0.001 
Fare Price 0.123 0.046 2.680 0.007 
Feeder Bus Connection Quality -0.057 0.045 -1.254 0.210 
Population Density 0.407 0.214 1.907 0.057 
Gender - Female -0.003 0.017 -0.185 0.854 
Unemployment Rate 2.423 0.354 6.848 < 0.001 
Income 2.900 0.529 5.481 < 0.001 
Employment Density 0.411 0.179 2.300 0.022 
Fuel Price 0.209 0.086 2.433 0.015 
Vehicle Ownership -1.423 0.216 -6.581 < 0.001 
Distance to CBD - Near 1.279 0.369 3.464 0.001 
Winter -0.132 0.017 -7.730 < 0.001 
Spring 0.101 0.018 5.669 < 0.001 
Summer 0.306 0.019 16.252 < 0.001 
Action: Eliminate Gender - Female. Rationale: P-value greater than predetermined cut-off, largest p-
value in current model output.        

Evening Off-Peak Unrestricted Model Estimated Using Robust Standard Errors  
After Elimination of Gender - Female  

Coefficient SE t-value p-value 
(Intercept) -23.503 6.704 -3.506 < 0.001 
Service Quantity 0.494 0.027 18.283 < 0.001 
Fare Price 0.124 0.046 2.693 0.007 
Feeder Bus Connection Quality -0.057 0.045 -1.253 0.210 
Population Density 0.412 0.212 1.946 0.052 
Unemployment Rate 2.412 0.352 6.846 < 0.001 
Income 2.876 0.526 5.472 < 0.001 
Employment Density 0.408 0.177 2.308 0.021 
Fuel Price 0.208 0.086 2.427 0.015 
Vehicle Ownership -1.415 0.214 -6.600 < 0.001 
Distance to CBD - Near 1.266 0.366 3.459 0.001 
Winter -0.132 0.017 -7.730 < 0.001 
Spring 0.101 0.018 5.666 < 0.001 
Summer 0.306 0.019 16.242 < 0.001 
Action: Eliminate Feeder Bus Connection Quality. Rationale: P-value greater than predetermined cut-
off, largest p-value in current model output.        
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Evening Off-Peak Unrestricted Model Estimated Using Robust Standard Errors  
After Elimination of Feeder Bus Connection Quality  

Coefficient SE t-value p-value 
(Intercept) -23.063 6.666 -3.460 0.001 
Service Quantity 0.493 0.027 18.115 < 0.001 
Fare Price 0.121 0.046 2.639 0.008 
Population Density 0.410 0.210 1.950 0.051 
Unemployment Rate 2.388 0.350 6.828 < 0.001 
Income 2.824 0.522 5.414 < 0.001 
Employment Density 0.403 0.175 2.300 0.022 
Fuel Price 0.197 0.086 2.306 0.021 
Vehicle Ownership -1.407 0.213 -6.593 < 0.001 
Distance to CBD - Near 1.267 0.362 3.496 < 0.001 
Winter -0.132 0.017 -7.761 < 0.001 
Spring 0.099 0.018 5.621 < 0.001 
Summer 0.306 0.019 16.198 < 0.001 
All remaining variables demonstrate p-values less than the predetermined significance cut-off, 
therefore stepwise regression is completed.  The restricted Evening Off Peak model therefore takes the 
final form as outlined in Equation 30.  Complete results are further shown in Table 17. 

 


