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Abstract

Indexes for multidimensional data based on the R-Tree are popularly used by databases
for a wide range of applications. Such index trees support point and range queries but are
costly to construct over datasets of millions of points. We present the Non-Intersecting
R-Tree (NIR-Tree), a novel insert-efficient, in-memory, multidimensional index that uses
bounding polygons to provide twice as efficient point queries, and equivalent range query
performance while indexing data up to an order of magnitude faster. The NIR-Tree lever-
ages non-intersecting bounding polygons to reduce the number of nodes accessed during
queries, compared to existing R-family indexes. Our experiments demonstrate that insert-
ing into a NIR-Tree is 27× faster than the ubiquitous R*-Tree, and 1.2× faster than the
Revised R*-Tree. Furthermore, point queries in the NIR-Tree complete 2.2× faster than
in the R*-Tree, and 3.1× faster than in the Revised R*-Tree, while range queries execute
just as quickly.

iv



Acknowledgments

For continued direction, advice, and editorial guidance throughout the entire research
process, I would like to thank my supervisor Professor Khuzaima Daudjee. For their
constructive comments which contributed to the quality of this work I would like to thank
the readers Professors Tamer Oszu and Galdimir Baranoski. For her repeated insights into
the geometry problems encountered during this research I would like to thank Professor
Therese Biedl. For his technical advice, editorial guidance, and implementation of the
R*-Tree I would like to thank Brad Glasbergen. For their initial implementations of the
R*-Tree and R+-Tree I would like to thank Pei Lin Li and James Lu respectively. Finally,
for support both technical and personal during the process of creating this thesis I would
like to thank the community here at the University of Waterloo.

This work has made use of data from the European Space Agency (ESA) mission Gaia
(https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Anal-
ysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium).
Funding for the DPAC has been provided by national institutions, in particular the in-
stitutions participating in the Gaia Multilateral Agreement.

v

https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/web/gaia/dpac/consortium


Table of Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 The R-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Scatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Related Work 10

3.1 Data Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Space Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Index Structure Categorization . . . . . . . . . . . . . . . . . . . . . . . . 14

4 The NIR-Tree 17

4.1 Structure and Data Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Insert Downward Sweep . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.2 Insert Upward Sweep . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



4.3 Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 NIR-Tree Analysis 30

5.1 Geometric Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Geometric Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Zero-Area Intersection Guarantee . . . . . . . . . . . . . . . . . . . . . . . 33

6 Performance Evaluation 35

6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Datasets and Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2.2 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3.1 Point Query Performance . . . . . . . . . . . . . . . . . . . . . . . 38

6.3.2 Update Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3.3 Range Query Performance . . . . . . . . . . . . . . . . . . . . . . . 41

6.3.4 Memory Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3.5 Node Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Conclusion and Future Work 47

References 48

APPENDICES 52

vii



A Dataset Detail 53

B Visualizations 57

viii



List of Figures

1.1 An R-Tree exhibiting scatter during search. . . . . . . . . . . . . . . . . . 2

1.2 NIR-Tree exhibiting no scatter during search. . . . . . . . . . . . . . . . . 2

2.1 Recursive grouping forming an R-Tree. Geometric formation is shown in
(a), (c), and (e) while corresponding logical formation is shown in (b), (d),
and (f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Splitting a node in an R-Tree. Geometric alterations to the tree are shown
in (a), (c), (e), and (g) while corresponding logical alterations to the tree
are shown in (b), (d), (f), and (h). . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Expansion causing intersection in three examples. (a) Expansion using
change in area. (b) Expansion using distance. (c) Expansion using in-
tersection area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 Insertion is shown with polygon expansion, fragmentation, refinement, and
splitting. Maximum Fanout = 3. . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Polygon fragmentation in two dimensions. The original state of B (a) is
fragmented in the y dimension (b), (c) and is fragmented in the x dimension
(d), (e), resulting in a new polygon composed of fragments (f). . . . . . . . 21

4.3 Refinement reducing polygon size in rectangles. (a) Redundant rectangles
on the perimeter. (b) Redundant rectangles within other rectangles. (c) A
mergeable row of rectangles. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 Definitional examples. (a) Point. (b) Rectangle. (c) Polygon. (d) Disjoint
rectangles. (e) Intersecting rectangles. . . . . . . . . . . . . . . . . . . . . . 31

6.1 Point query times (log scale). . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



6.2 Insertion times (log scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3 Range query times (log scale). . . . . . . . . . . . . . . . . . . . . . . . . . 42

A.1 Left to right: California, Biological, Forest, Canada Roads, Gaia. . . . . . . 53

B.1 Clockwise from the top: R-Tree, R+-Tree, RR*-Tree, R*-Tree. . . . . . . . 58

B.2 A Quad-Tree. Displayed large to preserve detail. . . . . . . . . . . . . . . . 59

B.3 A NIR-Tree. Displayed large to preserve detail. . . . . . . . . . . . . . . . 60

x



List of Tables

3.1 Categorization of Multidimensional Indexes On Core Features. . . . . . . . 14

6.1 Polygon sizes in the NIR-Tree. . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Tree size by dataset measured in nodes. . . . . . . . . . . . . . . . . . . . . 45

6.3 Memory usage (MB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xi



Chapter 1

Introduction

Multidimensional indexes are an important part of modern databases [25, 14, 12]. Corre-
lated data, such as points in space or the RGB values of a pixel, can be stored and retrieved
together in multidimensional indexes. These indexes need to support efficient querying and
retrieval of data for many popular application domains, such as infectious disease tracking,
continental road networks, video game states, and scientific simulations of entire galaxies.
The volume and variety of such multidimensional data demand indexes that can deliver
high performance through low latency querying of data.

Indexing multidimensional data is a challenging task due to the fundamental lack of
a total data order. Data existing along a single dimension may be placed into a totally
ordered state, for example integers from smallest to largest, and that order may be exploited
by index structures such as the B-Tree [2]. However, data existing in multiple dimensions
has no exact analog, since two multidimensional data points may have different orderings in
different dimensions. The challenge for multidimensional indexes is therefore to efficiently
impose or discover some ordering of the data that, while not total, is nonetheless exploitable
for high performance, low latency querying of data.

Solutions to indexing multidimensional data [3, 29, 17, 5, 21, 6, 30] are based largely on
the conceptual structure that originates from the R-Tree [13]. R-Trees recursively group
multidimensional data into bounding rectangles that represent an approximation of the
data group’s local region of space. When executing search queries, bounding rectangles
are consulted to direct the search into continually smaller, more specific rectangular re-
gions that meet the search criteria. When data groups are poorly represented by large or
intersecting bounding rectangles, search is slowed by accessing regions whose data does not
meet the search criteria.
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Figure 1.1: An R-Tree exhibiting scatter during search.

Figure 1.2: NIR-Tree exhibiting no scatter during search.

To illustrate, consider Figure 1.1 depicting an R-Tree with nodes and associated bound-
ing rectangles shown in the same colour. R-Trees require parent bounding rectangles to
enclose their children’s bounding rectangles, and so R’s black bounding rectangle encloses
children A and B with blue and yellow bounding rectangles respectively. The search for
the black point in Figure 1.1, indicated by the dashed red line, is slowed by scattering into
logical nodes A and F . This search spuriously accesses A and F which do not contain the
desired point because their associated bounding rectangles undesirably enclose the point.
Bounding rectangle pairs A,B and E,F create scatter and thus slow search with their
intersection.

A desirable, efficient multidimensional index would support search by minimizing in-
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tersection between bounding rectangles. As a running example, consider the same point
from Figure 1.1 indexed by the reconfigured geometry in Figure 1.2. Instead of the limited
geometry of bounding rectangles, Figure 1.2 illustrates flexible sets of bounding rectangles
which compose bounding polygons. This improved R-Tree design, which we call the NIR-
Tree, removes the intersection area between bounding polygon pairs A,B and E,F . By
doing so, search for the same black data point no longer scatters to nodes A and F . This
33% reduction in accessed nodes, again highlighted by a dashed red path in Figure 1.2,
translates into a faster search.

Prior proposals improved ways to organize bounding rectangles [3, 29, 17] while other
approaches [19, 16] abandoned rectangles entirely in favour of more complex geometric
objects. Although these approaches reduce intersection area they, unlike our proposed
NIR-Tree, cannot eliminate it entirely. Proposals which use arbitrarily shaped bounding
objects [19, 16] suffer from slow, complicated geometric tests to determine if a point is
enclosed by a bounding object.

From a hardware perspective, current and prior work shows a clear trend toward fully
memory resident multidimensional indexes; our proposed NIR-Tree is in this vein. Estab-
lished multidimensional indexes now regularly use hybrid memory-disk layouts [5], while
new works assume the index is entirely in memory [24, 22]. Moreover, entire databases
in both the academic domain, such as Hyper [18], and in the commercial domain, such as
VoltDB [10], SingleStore (formerly MemSQL) [15], and SAP Hana [28], are fully in-memory.

1.1 Thesis Contributions

In this thesis, we present the NIR-Tree, a new in-memory tree that adaptively replaces
bounding rectangles with bounding polygons. The NIR-Tree guarantees zero-area inter-
section between bounding polygons to reduce the number of nodes accessed during queries
compared to existing R-family indexes, thereby eliminating slowdowns in search caused
by scattering. Our experiments demonstrate that inserting into a NIR-Tree is an order of
magnitude faster than the ubiquitous R*-Tree, with point queries completing in half the
time and range queries executing just as quickly.

Concretely, the contributions of this thesis to multidimensional indexing are as follows:

1. The design and implementation of the NIR-Tree, a novel in-memory structure that
creates axis-aligned bounding polygons from bounding rectangles.
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2. Complete implementations of the R-Tree, R*-Tree, Quad-Tree, NIR-Tree and a mod-
ern implementation of the R+-Tree.

3. A zero-area intersection guarantee among bounding polygons in the NIR-Tree, in-
cluding an analysis and proof of this guarantee.

4. Creation of two easily accessible point datasets and accompanying query workloads
representing both the road network of Canada and a section of the Milky Way as
observed by the Gaia telescope.

5. Extensive evaluation on both real and synthetic datasets, demonstrating that the
NIR-Tree is 27.8× faster to construct and 2.2× faster to point query than the R*-
Tree, and 1.2× faster to construct and 3.1× faster to point query than the Revised
R*-Tree.

1.2 Thesis Organization

The remaining chapters of this thesis are organized as follows:

1. Chapter 2 discusses the fundamentals of the R-Tree and how bounding polygons can
eliminate intersection area.

2. Chapter 3 covers work with related approaches to the problem of multidimensional
indexing.

3. Chapter 4 presents the design of the NIR-Tree, describing in detail the three basic
data structure operations of insertion, searching, and deletion.

4. Chapter 5 analyzes the zero-area intersection guarantee, proving it holds before and
after any of the three basic data structure operations.

5. Chapter 6 provides an experimental evaluation of the NIR-Tree compared with re-
lated prior approaches.

6. Chapter 7 concludes our work and provides future directions for building upon the
NIR-Tree.

Without loss of generality, we reference and discuss the two-dimensional versions of
trees throughout the thesis (with the exception of Chapter 5) to simplify the presentation.
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Chapter 2

Background

In this chapter we describe the basic R-Tree and explain how and why scatter arises in
multidimensional indexes based on the R-Tree [13].

2.1 The R-Tree

The R-Tree partitions data by recursively grouping data. To illustrate, consider Figure
2.1. Every R-Tree’s lowest level is the collection of data points being indexed. Figure 2.1a
shows the geometric structure of this lowest level alongside the logical structure in Figure
2.1b. Imposing structure on the raw data, the next level of every R-Tree groups data points
together, approximating them by a bounding rectangle. Each bounding rectangle entirely
encloses all the points in the group it represents. Notice that in Figure 2.1c there are
no points outside the bounding rectangles A,B,C. The R-Tree represents each geometric
grouping as exactly one logical node. Logical nodes and their associated bounding rectan-
gles are coloured and labeled the same in Figure 2.1c (geometric) and Figure 2.1d (logical).
The top level of the example tree depicted in Figure 2.1 groups bounding rectangles A,B,
and C together in a larger bounding rectangle D (Figure 2.1f). Thus, the logical children
of node D are A,B,C as shown in Figure 2.1e.
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Figure 2.1: Recursive grouping forming an R-Tree. Geometric formation is shown in (a),
(c), and (e) while corresponding logical formation is shown in (b), (d), and (f).
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Figure 2.2: Splitting a node in an R-Tree. Geometric alterations to the tree are shown in
(a), (c), (e), and (g) while corresponding logical alterations to the tree are shown in (b),
(d), (f), and (h).
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R-Trees are a dynamic data structure and we will describe the insertion process next
using Figure 2.2. The R-Tree of Figure 2.2 begins as the same R-Tree just discussed in
Figure 2.1. Suppose that a new red point is to be inserted (Figure 2.2c). The process of
choosing a leaf into which the new point will be placed begins at the root of the tree, in
this case D (Figure 2.2c). Since the new point is contained in a bounding rectangle at this
level, namely D, the children of D are considered next. When a new point is not contained
in an existing rectangle, as is the case for the red point among nodes A,B,C, a bounding
rectangle is expanded to enclose the new point. The selection of a bounding rectangle is
based on a cost function called a metric. Bounding rectangle B is selected to expand in
Figure 2.2e, enclosing the new point. However, R-Tree nodes cannot contain an arbitrarily
large number of logical children. Upon construction, a maximum fanout for each node
is set, nodes may not have more children than the maximum fanout. To address a node
that is overflowing with children, the R-Tree splits the overflowing logical node into two
new nodes positioned at the same height of the tree and having the same parent as the
overflowing node. Figure 2.2f and Figure 2.2h show B as an overflowing node before and
after the application of a split. The logical and geometric split are performed at the same
time. Splits place children into two groups (nodes E and B in Figure 2.2h), deciding which
group a child belongs to by computing a cost metric involving the child and each group’s
bounding rectangle (rectangles E and B in Figure 2.2g). Each group is then made a child
of the overflowing node’s parent. If by adding nodes to the parent it would overflow, then
the splitting process is recursively applied to the parent until the root is reached. The
R-Tree grows taller by one level if the root itself overflows and must be split.

2.2 Scatter

Scatter, which degrades search performance in an R-Tree, is caused by positive intersection
area. Insertions induce intersections when bounding rectangles are expanded to enclose a
new point. Bounding rectangles within the R-Tree are selected to minimize the amount
of additional area required to enclose a new point. Figure 2.3a depicts the specifics of
the R-Tree’s metric. A new black point must be enclosed either by the blue or the yellow
rectangle. Since the yellow rectangle requires less additional area than the blue rectangle
to enclose the new point, the yellow rectangle is selected and expanded.

Bounding rectangle intersection is not limited to the R-Tree’s metric. For example,
a simple alternative metric that selects bounding rectangles based on minimum distance
to the new point is depicted in Figure 2.3b, yet intersection may still occur. For another
example, the R*-Tree [3] and Revised R*-Tree both consider the perimeter of the expanded
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Figure 2.3: Expansion causing intersection in three examples. (a) Expansion using change
in area. (b) Expansion using distance. (c) Expansion using intersection area.

bounding rectangle (Figure 2.3a) and additional intersection area (Figure 2.3c). However,
all of these alternatives may cause intersection. The yellow rectangle in Figure 2.3 always
minimizes the given metric in each case, yet its selection and expansion invariably causes
positive intersection area. Note that this happens even when the metric optimizes for
intersection area directly.

In contrast with existing R-family trees, when the NIR-Tree’s bounding rectangles cause
intersection, they are replaced with bounding polygons that do not intersect. NIR-Tree
bounding polygons are sets of rectangles that, when treated as a logical whole, form an
axis-aligned polygon like the collection of blue {A1, A2} and green {F1, F2, F3} rectangles
illustrated in Figure 1.2. By forming bounding polygons from bounding rectangles during
insert, the NIR-Tree achieves zero-area intersections between bounding polygons (Figure
1.2) where the R-Tree fails to do so. Zero-area intersection in turn produces point queries
in the NIR-Tree which execute 2 − 4× faster than in any other state-of-the-art R-family
tree.
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Chapter 3

Related Work

The field of multidimensional indexing is well studied with proposals for multidimensional
data management [27]. In this chapter, we contrast the NIR-Tree with prior approaches
to multidimensional indexing. We divide these approaches into two categories: data par-
titioning and space partitioning.

3.1 Data Partitioning

Data partitioning indexes cluster data and typically recursively form trees from these
groups of data. Data partitioning indexes are a popular type of multidimensional index
implemented in mainstream databases such as PostgreSQL [12] and MySQL [25]. The
NIR-Tree is closely related to the works in this class of partitioning.

The R-Tree [13] is a multidimensional extension of the B-Tree [2]. Rectangular data
objects are recursively grouped into rectangular regions to create a balanced tree. When
the root has too many children, exceeding some set maximum, the overflow is addressed by
building a new root on top and breaking the original into two nodes. In opposite fashion,
when the root has too few children and falls below some set minimum, the underflow is
addressed by replacing the root of the tree with a child node. Unlike one dimensional
B-Tree ranges, R-Tree regions may intersect because their volumetric data objects take
up space and may intersect. R-Tree performance degrades as the number of dimensions
increases because the volumetric data objects become more likely to intersect in some
dimension. The effect is known as the curse of dimensionality.
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The R*-Tree [3] improves upon the R-Tree by re-inserting the data or children of
overflowing nodes. Re-insertion creates a restructuring effect larger than node splits alone,
usually resulting in denser, better organized trees. The R*-Tree also identifies four axes of
optimization along which data partitioning trees may move. These axes are: area covered
by bounding objects, area of intersection between bounding objects, and perimeter of
bounding objects should all be minimized, while at the same time, nodes should have
many children, thus having high utilization of the maximum fanout.

The Revised R*-Tree [5] matches the performance of the R*-Tree without using rein-
sertions by considering one additional factor during splits and chooseSubtree. When
selecting a leaf in chooseSubtree, the RR*-Tree optimizes for minimum area, and mini-
mum perimeter when the dimensionality of the data is high. An extra factor, considered
during node splits, is the logical number of children on each side of the split. The Revised
R*-Tree seeks to balance splits logically while also balancing the splits geometrically.

Optimizing for intersection area, the NIR-Tree and R+-Tree [29] both seek to eliminate
intersection. The R+-Tree lessens intersection by splitting nodes along a partition line.
Any bounding objects lying across the partition line are recursively split. Volumetric data
lying across the partition line cannot be split and are instead duplicated to both sides of
the split. While the two resulting nodes from a split are disjoint in an R+-Tree, the tree
still creates intersection when expanding bounding rectangles during insertion.

The Hilbert R-Tree [17] uses a metric predicated on the Hilbert space-filling curve.
Instead of selecting bounding rectangles with least additional area, or least intersection
area (see Figure 2.3), the Hilbert R-Tree selects bounding rectangles whose centroids have
a Hilbert number closest to the point of interest’s Hilbert number. The result is a clustering
effect, because Hilbert numbers exhibit an order that approximates spatial nearness. The
focus on clustering excludes consideration of intersection area from Hilbert R-Trees, and
they may have sub-optimal intersection area.

Some trees discard axis-alignment constraints by using arbitrarily oriented bounding
rectangles. SICC indexes [31] remove axis-alignment constrains. They group points by
temporal locality of insertion, computing a new axis through each group using incremental
principal component analysis (roughly analogous to a line of best fit), and fitting a bounding
rectangle around the points oriented along this new axis. While incremental analysis and
construction is suitable for observational data, it cannot be applied to the general point
data indexed by other indexes such as the NIR-Tree.

P-Trees [16] illustrate arbitrarily-shaped bounding objects. Since a rectangle is defined
by a maximum and minimum value in each of two dimensions, additional pairs along
new axes can be added to create more complex shapes. P-Trees allow for any number of
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additional dimensions to be introduced. As a result, polygons in the P-Tree may become
arbitrarily complex leading to slowdowns as a result of excessive range checks.

Similarly, k-discrete oriented polygon (k-DOP) hierarchies [19] use additional axes but
fix the number of axes to be k in a d dimensional space such that k >= d. For example,
such over-description of the space allows 4-DOP’s to form octagons in two dimensional
space. However, the complexity of shapes is limited since k is fixed in advance. Complex
polygons achieve low coverage and intersection area, but quickly become computationally
unwieldy for dimensions greater than three. k-DOP hierarchies are therefore generally used
for collision detection in low dimensional spaces.

Recent work on clipping bounding rectangles [30] removes dead space from the corners
of bounding rectangles. Using a close analog of skylines, called stairlines, clipped bounding
rectangles create bounding polygons (Definition 7) which tightly enclose their children.

To address the curse of dimensionality, trees like the TV-Tree [21] or X-Tree [6] specif-
ically target high-dimensional data and the degradation it causes in R family trees. The
TV-Tree dynamically ”telescopes” the dimensions under consideration to artificially reduce
dimensionality. Reduction is possible since often only a small number of dimensions are
discriminant. The X-Tree outperforms the TV-Tree by simultaneously allowing overfull
nodes to exist and choosing splits in which the resulting bounding rectangles cause the
least overlap.

Unlike an R-Tree, the NIR-Tree begins by considering points rather than volumetric
objects, exploiting the infinitesimal nature of points to eliminate positive area intersection.
As we demonstrate, the area of intersection in the NIR-Tree can be pushed to zero, an
area smaller than any other data partitioning index can attain. To achieve zero-area inter-
section, the NIR-Tree uses rectangle fragmentation and partition lines to create bounding
polygons based on siblings. Partition lines balance leaf splits in the NIR-Tree logically and
geometrically while totally eliminating intersection during node splits. Left unchecked,
rectangle fragmentation and partition lines may cause NIR-Tree polygons to contain re-
dundant rectangles. To keep polygons small in size (Table 6.1), NIR-Tree polygons are
constantly culled during insertion (Algorithm 4). Small dynamic bounding polygons al-
low the NIR-Tree to gracefully accommodate an arbitrary amount of additional insertions,
which some space partitioning indexes cannot guarantee, as discussed in the next section.
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3.2 Space Partitioning

An alternative multidimensional indexing approach partitions space rather than data to
implicitly form groups. Grid files [23] are a popular space partitioning option [25, 14, 12].
These files divide space into disjoint variable size cells on a grid. Each cell represents a
page on disk. Cells are split on overflow, and merged on underflow. Grid files maintain a
directory mapping cells to pages. The most significant drawbacks of this approach are the
rapid growth of the directory size when the data is sparse and the difficulty of choosing
grid granularity appropriately.

Inspired by grid files and seeking to bring multidimensional indexes into main memory,
BLOCK [24] defines a number, L, of uniform static grids at multiple resolution levels. Inter-
section tests dominate range search times in memory and multi-resolution grids drastically
reduce the number of intersection tests required. However, selection of the L appropriate
grids is only possible because BLOCK assumes the indexed data is static.

Recent approaches build on the grid file by replacing the mapping directory with ma-
chine learning models. In addition to replacing the mapping directory, Flood [22] uses its
models to optimize attributes of the grid such as resolution. Although Flood is not static
like BLOCK, it requires that its models be retrained and its data rearranged when a data
distribution shift occurs. Too many additional insertions of points not predicted by Flood’s
models require a complete rebuild of the index.

LISA [20] by contrast, is fully dynamic and uses its models in a hierarchy. LISA is
a disk-based index that has a prediction function locating the cell wherein a point lies,
and a cell-local prediction function selecting which pages to access. While LISA reduces
I/O cost, its CPU cost, the dominant in-memory factor [24], is higher than that of the
R*-Tree’s, which is equivalent to that of the NIR-Tree’s.

The curse of dimensionality is not exclusive to data partitioning approaches. Space par-
titioning indexes also suffer from, and address, the curse of dimensionality. The VA-File [32]
is a grid file with a novel heuristic that determines cells based on Vector Approximations
of high-dimensional data points. While not fully static, VA-Files can only tolerate minor
shifts in data distribution before reconstruction is required.

Breaking from the grid file mold, Quad-Trees [11] recursively divide space into quadrants
until a set number of objects are within each quadrant. However, regular divisions of space
lead to deep trees when the data is skewed in some region(s). Deep trees lead to long
search paths, exacerbated by dense areas that are likely to be accessed simply because
those regions hold more of the data. Quad-Tree fanout, as well as height, scales poorly
due to its 2d fanout requirement. Conversely, the NIR-Tree can maintain short trees
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Table 3.1: Categorization of Multidimensional Indexes On Core Features.

Structure
Data or Space Memory or Disk Bounding Object Dynamic Bounding Bounding Objects
Partitioning Based Objects May Intersect

R-Tree [13] Data Disk Rectangle No Yes
Hilbert R-Tree [17] Data Disk Rectangle No Yes

R+-Tree [29] Data Disk Rectangle No Yes
R*-Tree [3] Data Disk Rectangle No Yes
Revised R*-Tree [5] Data Disk Rectangle No Yes
CBB [30] Data Disk Axis-aligned Polygon Yes Yes
SICC Index [31] Data Disk Axis-unaligned Rectangle No Yes
P-Tree [16] Data Disk Min and max values for each axis No Yes
k-DOP Tree [19] Data Memory Discrete Oriented Polygon No Yes
TV-Tree [21] Data Disk Rectangle No Yes
X-Tree [6] Data Disk Rectangle No Yes
PR-Tree [1] Data Disk Rectangles No Yes
BLOCK [24] Space Memory Grid No No
LISA [20] Space Disk Grid No No
FLOOD [22] Space Memory Grid No No
VA-File [32] Space Disk Grid No No
Quad-Tree [11] Space Memory Quadrants No No
NIR-Tree Data Memory Axis-aligned Polygon Yes No

with fixed fanout independent of the dimension. Finally, while Quad-Trees do not require
reconstruction upon insertion, deletes require reconstruction of the entire subtree rooted
at the deleted element.

3.3 Index Structure Categorization

To highlight the differences between the NIR-Tree and the related work discussed above,
every multidimensional indexing approach was categorized along five dimensions. These
five dimensions are i) indexing partitioning style: either data or space, ii) index memory
model: either disk or memory based, iii) index bounding object type, iv) whether the
index’s bounding object representations are dynamic or static, and v) the index’s bounding
objects ability to prevent intersection with one another.

First, Table 3.1 divides indexes into two groups wherein the index either creates groups
implicitly by subdivisions of the space, or makes groups explicitly by choosing particular
data for particular groups. These two styles are known as space partitioning and data
partitioning respectively. Our categorization includes indexes of both partitioning types.
The NIR-Tree is a data partitioning index and therefore most closely related to other data
partitioning indexes. However, as can be seen in the fifth category, the NIR-Tree brings
the non-intersection of space partitioning bounding objects into a data partitioning index
style.

Second, research into multidimensional indexes spans multiple eras of computer memory
development. With main memory sizes increasing in modern systems, some multidimen-
sional indexes like the BLOCK [24] index, and the k-DOP Tree [19], assume data will
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fit entirely into main memory. While the NIR-Tree is listed as an in-memory index, and
our experiments are performed in-memory (Chapter 6), the NIR-Tree’s balanced tree-like
structure can be extended to operate on disk pages in a direct analog to previous R-family
trees’ disk operations.

Third, while bounding rectangles are the most popular bounding object, data partition-
ing multidimensional indexes do contain a variety of bounding objects. Space partitioning
indexes, on the other hand, uniformly use regular rectangular partitions of space. The
data partitioning SICC index [31] moves away from the rectangle paradigm slightly by
permitting rotated bounding rectangles. The Clipped Bounding Box technique [30] and
the NIR-Tree both use bounding rectangles in a more flexible way, constructing polygons
out of rectangles. Finally, multidimensional indexes like the P-Tree [16] or the k-DOP Tree
[19] add additional axes to the space to build irregular polygons. As seen in our classifica-
tion, multidimensional indexes with more complex bounding objects are rarer, since there
exists a trade off between precise representations of the underlying data and the cost of
computing intersection or containment with those representations.

Fourth, the ability of bounding objects to change the degree to which they represent
the underlying data is categorized. The overwhelming majority of multidimensional in-
dexes select a single bounding object to approximate all data groupings, using it for the
entire lifetime of the index. If data could be better approximated by a more complex
bounding object, the multidimensional indexes without dynamic bounding objects cannot
take advantage of this fact. Instead, only the NIR-Tree, TV-Tree [21], Clipped Bounding
Box technique [30], and the P-Tree [16] can dynamically adjust the quality of approxima-
tion given by their bounding objects. The TV-Tree adjusts quality of approximation by
adjusting the number of dimensions used by a given bounding object. For example, if all
data points in a group are equal in the fourth dimension, then the TV-Tree will create
a three dimensional bounding object and not consider the fourth dimension. The P-Tree
acts like a fully dynamic version of the k-DOP Tree. While k-DOP’s must have k specified
in advance, the P-Tree creates as many additional axes as it needs to approximate the data
to some desired level. Lastly, the NIR-Tree and Clipped Bounding Box technique increase
the quality of their approximations by removing regions of bounding rectangles whenever
they are causing intersection area or are empty, respectively.

Fifth and finally, we categorize multidimensional indexes based on the amount of inter-
section area allowed between bounding objects. By definition space partitioning multidi-
mensional indexes do not have positive intersection area between their bounding objects.
Exactly opposite to space partitioning indexes, data partitioning indexes all allow inter-
section area, with the sole exception of the NIR-Tree. This is the advantage the NIR-Tree
brings to data partitioning multidimensional indexes. Without positive intersection area,
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the benefits of no-scatter searching (Chapter 1) are available to data partitioning indexes
through the NIR-Tree’s techniques.
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Chapter 4

The NIR-Tree

In this chapter, we outline the logical structure of the NIR-Tree and then describe in detail
how the NIR-Tree creates, expands, and splits bounding polygons (and associated nodes)
during insert. Afterwards, the point and range search operations are detailed, and the
chapter concludes with an explanation of the deletion operation remove. A visualization of
the NIR-Tree, along with visualizations of other trees for comparison, appear in Appendix
B.

4.1 Structure and Data Layout

The NIR-Tree is structured as a tree of nodes, each associated with a bounding polygon.
Nodes may be one of two types: routing or leaf. Routing nodes contain a set of branches,
where branches are a pointer to a child node childi and a bounding polygon Pi representing
the geometric region of that child.

Definition 1. A routing node is a tuple 〈parent, {〈child0,P0〉, . . . , 〈childn,Pn〉}〉.

Leaf nodes contain a set of points, which are optionally associated with some value.
Both types of nodes contain a pointer to their parent to enable upwards tree traversal.

Definition 2. A leaf node is a tuple 〈parent, {p0, . . . , pn}〉
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Figure 4.1: Insertion is shown with polygon expansion, fragmentation, refinement, and
splitting. Maximum Fanout = 3.
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As in other multidimensional indexes, nodes must contain no more branches or data
points than some maximum fanout m assigned at tree construction time. Nodes that
contain more than m branches or data points are said to overflow and must be split. In
contrast to nodes, bounding polygons may be composed of as many —or as few— rectangles
as desired.

For notational convenience, we will use N.branches and N.data to denote the set of
tuples and the set of data points within node N respectively. Additionally, we will use
N.poly to denote the bounding polygon associated with node N . Concretely, if N is a
child of parent P , denoted N.parent, then N.poly is the bounding polygon associated with
N ’s branch in P .

4.2 Updating

Updates define the geometric structure of the NIR-Tree and greatly influence the perfor-
mance of other operations. The primary update operation insert is carried out in two
stages: (i) a downward root-to-leaf sweep expanding bounding polygons along the insertion
path, carried out by chooseLeaf (Algorithm 1), and then (ii) an upward leaf-to-root sweep
along the same path, splitting nodes whenever they overflow, carried out by adjustTree

(Algorithm 2). We will use Figure 4.1 as a running example for the steps executed during
insert, described next.

4.2.1 Insert Downward Sweep

Insertion starts with the NIR-Tree illustrated in Figure 4.1a. Note that all bounding
polygons have zero-area intersection and every bounding polygon is completely enclosed
by its parent’s bounding polygon. During the downward sweep, chooseLeaf (Algorithm
1) executes the following process at every level, starting at the root. First, the stopping
condition must be checked (line 2). If the current node is a leaf, then execution stops
because a leaf has been successfully chosen. Otherwise, chooseLeaf uses the NIR-Tree’s
area minimization metric to select bounding polygons for expansion on each level (line 6).
Bounding polygons within the NIR-Tree are selected to minimize the amount of additional
area required to enclose a new point (Figure 2.3b). Every rectangle within each bounding
polygon is evaluated using this metric, and the bounding polygon with the constituent
rectangle that needs the least additional area is selected. Our metric minimizes additional
area because future steps force intersection area to be zero.
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Algorithm 1 chooseLeaf(N , p) → L

Require: N is the root, p a new point, L is a leaf
1: L = N
2: while L is not a leaf do
3: if ∃B ∈ L.branches such that p ∈ B.P then
4: L = B.child
5: else
6: Let B be the branch of L for which B.P requires least additional area to enclose

p.
7: Expand B.P to contain p
8: for ∀B′ ∈ L.branches where B′.P not disjoint from B.P do
9: B.P = fragment(B.P , B′.P)
10: end for
11: B.P = B.P ∩ L.P
12: refine(B.P)
13: L = B.child
14: end if
15: end while
16: return L
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Figure 4.2: Polygon fragmentation in two dimensions. The original state of B (a) is
fragmented in the y dimension (b), (c) and is fragmented in the x dimension (d), (e),
resulting in a new polygon composed of fragments (f).

In the best case, the new point already lies within an existing bounding polygon and no
expansion is necessary (line 3). Unfortunately, the new point in Figure 4.1a is not enclosed
by any existing bounding polygon. Instead, bounding polygon B is selected for expansion
because it requires the least additional area to enclose the new point. Specifically, the
rectangle within bounding polygon B requiring the least additional area is expanded to
enclose the new point. Since B contains only one rectangle, it is trivially selected for
expansion. Now, as concretely observed between bounding polygons B and C in Figure
4.1b, expansion may cause sibling bounding polygons to have positive intersection area.

If expanding a bounding polygon (line 7) causes intersection area between sibling
bounding polygons to become positive, then the NIR-Tree replaces the selected rectan-
gle within the selected bounding polygon with a set of new rectangles that do not intersect
its sibling bounding polygons (line 9). We call this process fragmentation because the of-
fending rectangle is replaced with fragments of itself. We start by discussing fragmentation
generally using Figure 4.2 before applying the process to our running example in Figure
4.1c.

Since the fragmentation process must generalize to any number of dimensions, one
dimension is processed at a time. In Figure 4.2a, bounding polygon P = {R} has expanded
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and intersects bounding polygon P ′ = {B}. To aid our analogy, the y dimension is
considered first, where a ceiling Cy and floor Fy are created by bounding copies of R with
the “top” and “bottom” of B in y (Figures 4.2b and 4.2c). The process is then repeated
for the x dimension where a ceiling Cx is created; bounded now not only by the “top”
and “bottom” of B in x, but also all previously created ceilings and floors. The fully
bounded ceiling is depicted in orange in Figures 4.2d and 4.2e. Notice that a floor Fx is
not created for the x dimension because the “bottom” of B in x lies outside of R. After
all ceilings and floors in all dimensions have been computed this way, P is set to be these
resulting fragments. That is, P = {R1, R2, R3} as depicted in Figure 4.2f. Each rectangle
is fragmented into at most 2×d pieces in Rd. If the bounding polygon P ′ had been a set of
multiple rectangles {B1, B2, B3} instead of a set consisting of a single rectangle {B}, then
the process just described would be executed for each of B1, B2, B3 with any fragments of
R created during previous iterations.

Applying the above process to our running example, the single rectangle within B is
replaced with two rectangles B1, B2 (Figure 4.1c), achieving zero-area intersection with
bounding polygon C. To maintain a valid NIR-Tree, we prune away any area of the
produced fragments outside the selected node’s parent bounding polygon (line 11). Since
no area of B1 or B2 in Figure 4.1c is outside of the area of R, B1 and B2 remain the same.

If as a result of fragmentation or expansion B’s geometric region could be enclosed using
fewer rectangles, then refine (line 12, Figure 4.3) will reduce the number of rectangles
in B if B matches one or more of the following patterns. First, when a rectangle is also
a line and lies on the perimeter of another rectangle (Figure 4.3a), the line rectangle is
removed. Second, when a rectangle is enclosed by another rectangle (Figure 4.3b), the
enclosed rectangle is removed. Finally, when rectangles are organized into a column or row
of constant width or height and have positive intersection area (Figure 4.3c), the row or
column is replaced with a single rectangle. In Figure 4.1c, B1 and B2 do not exhibit any
of the three patterns so B is left unaltered.

After the execution of rectangle fragmentation and refinement are complete for the
current level, insertion moves down the tree (line 13) into the selected child node (B in
our running example). Selection, expansion, fragmentation, refinement, and descent are
repeated until there exist no more children to be selected. As a result, we see in Figure 4.1
that E is expanded to enclose the new point, and then E is fragmented and refined into
E1, E2, E3 in Figure 4.1e so as to eliminate intersection with F . Since E is a leaf, we place
the new point in E, and we pass E to the second stage of insert, adjustTree.
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Figure 4.3: Refinement reducing polygon size in rectangles. (a) Redundant rectangles on
the perimeter. (b) Redundant rectangles within other rectangles. (c) A mergeable row of
rectangles.

23



Algorithm 2 adjustTree(N)

Require: N is a leaf, ∃m a maximum fanout
1: while N not root do
2: if |N.branches| > m or |N.data| > m then
3: 〈NL,PL〉, 〈NR,PR〉 = splitNode(N , partitionNode(N))
4: Add 〈NL,PL〉 to N.parent.branches
5: Add 〈NR,PR〉 to N.parent.branches
6: Remove 〈N,P〉 from N.parent.branches
7: end if
8: N = N.parent
9: end while

Algorithm 3 getReferencePolygon(N) → Pref

Require: N is a node
1: if N not root then
2: Pref = N.parent.poly
3: else if N is leaf then
4: Pref = {R} where R is the smallest rectangle enclosing all points in N.data
5: else
6: Pref = {R} where R is the smallest rectangle enclosing all polygons in N.branches
7: end if
8: return Pref
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4.2.2 Insert Upward Sweep

During execution of the upward sweep, adjustTree (Algorithm 2) splits overflowing nodes
(line 3). If placing the resulting nodes into the parent (line 4) causes the parent to overflow,
then the split propagates upwards by splitting the parent. If eventually the root overflows,
then a new node will be allocated and set to be the root. Each of the two nodes created
from the old root become the new root’s children. For example, assume that E already
contains three points before being selected to contain the new point in Figure 4.1d. E will
then contain 4 points, exceeding the maximum fanout of m = 3, and thus must be split.

The splitting of nodes always begins at the leaf level. To split a node, data and
bounding polygons are divided along some line determined by partitionNode (Algorithm
5). This dividing line is called a partition line. NIR-Tree partition lines are determined
by computing a d-dimensional average point called the geometric median (lines 4, 8). For
leaf nodes, the median is the average of data points. For routing nodes, the median is
the average of bounding polygon rectangle corners. These medians determine a possible
partition line in each dimension. For leaf nodes the dimension with highest sample variance
is chosen (line 3). For routing nodes the dimension whose line divides the fewest bounding
polygons is chosen (line 9). Tangibly, Figure 4.1f shows the two possible partition lines P1
and P2 of the leaf E. We will assume that the most variate dimension is x, and thus P1
is chosen to be the partition line.

With a partition line computed, splitNode (Algorithm 4) divides the current node
along it (line 2). In Figure 4.1g, E1 lies entirely to the left of the partition line, so it is
converted into the bounding polygon for a new left-hand node G. E2, E3 are entirely to
the right of the partition line so they remain the bounding polygon for the now right-hand
node E. Data points are divided based on containment in left- and right- hand nodes (line
7), E and G respectively in our example. If a point lies on the perimeter of both the left-
and right- hand bounding polygons, then the tie is broken by choosing the node containing
fewest data points.

Continuing our example, at the level above E, B receives the new node G (Figure 4.1f)
and overflows, requiring the split of E to be propagated by splitting B. New partition lines
P3 and P4 are computed as described above; because P3 splits one bounding polygon and
P4 splits two, P3 is used. Both partition lines divide B’s child F ’s bounding polygon, and
F is therefore split by a recursive call to splitNode (line 24). The current partition line
is passed to the recursive call so F is split along the same line as its parent, P3 in Figure
4.1g. Importantly, using the partition line computed for B means F is split into F and
H even though it does not exceed the maximum fanout m. F and H (Figure 4.1h) lie
entirely on opposite sides of P3 and are placed into B, and B’s new sibling I, respectively.
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Algorithm 4 splitNode(N , l, D) → 〈NL,PL〉, 〈NR,PR〉
Require: N is a node, l ∈ R, D a dimension
1: Pref = getReferencePolygon(N)
2: PL,PR = left and right side of Pref sliced along l in dimension D
3: NL = NR = 〈N.parent, ∅〉
4: Branch left = 〈NL,PL〉
5: Branch right = 〈NR,PR〉
6: for p ∈ N.data do
7: if p ∈ PL and p ∈ PR then
8: Ntie = N with smaller of |NL.data| and |NR.data|
9: Ntie = {p} ∪Ntie.data
10: else if p ∈ PL then
11: NL.data = {p} ∪NL.data
12: else if p ∈ PR then
13: NR.data = {p} ∪NR.data
14: end if
15: end for
16: for B ∈ N.branches do
17: if B.P ∩ PL = ∅ then
18: NR.branches = 〈B.child, B.P〉 ∪NR.branches
19: B.child.parent = NR

20: else if B.P ∩ PR = ∅ then
21: NL.branches = 〈B.child, B.P〉 ∪NL.branches
22: B.child.parent = NL

23: else
24: Branches bL, bR = splitNode(B.child, l, D)
25: NL.branches = 〈bL.child, bL.P〉 ∪NL.branches
26: bL.child.parent = NL

27: NR.branches = 〈bR.child, bR.P〉 ∪NR.branches
28: bR.child.parent = NR

29: end if
30: end for
31: refine(PL)
32: refine(PR)
33: return bL, bR
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Algorithm 5 partitionNode(N) → l, d

Require: N is a node, l ∈ R, d a dimension
1: if N is a leaf then
2: S = {(v, d) | v = σ2(N.datad)}
3: G =geometricMedian(N.data)
4: d′ = s.d where s ∈ S such that s.v is maximum
5: else if N is a routing node then
6: R =

⋃
B∈N.branchesB.P .rectangles

7: corners =
⋃

r∈R{r.ll, r.ur}
8: G =geometricMedian(corners)
9: d′ = d such that the line a = Gd passes through minimum number of r ∈ R
10: end if
11: return Gd′ , d

′

An identical process follows to split the root.

4.3 Searching

Finally, we describe the NIR-Tree search (Algorithm 7) operation that follows from the
other operations described above. Point searches are equivalent to range searches executed
with a query rectangle R whose two defining corner points are equal. search begins at the
root of the NIR-Tree and proceeds downward towards the leaves. At each tree level the
query rectangle is tested for intersection with the bounding polygon in each of the current
node’s branches. We determine intersection between the query rectangle and a bounding
polygon (line 3) by computing rectangle-rectangle intersection between the query and each
rectangle comprising the polygon. Any node whose associated bounding polygon intersects
the query rectangle is recursively searched. Points in leaf nodes reached by a search are
filtered based on containment in the query rectangle (line 7). Points may be independent
or associated with data items as keys. This choice determines if points themselves are
placed into the output accumulator A (line 9) or if the data associated with the point-keys
are placed into A.

27



Algorithm 6 search(N , p) → D

Require: N is a node, p is a point, D the data associated with p
1: for B ∈ N.branches do
2: if p ∈ B.P then
3: D = search(B.child, p)
4: end if
5: end for
6: for p′ ∈ N.data do
7: if p = p′ then
8: D = data associated with p′.
9: end if
10: end for
11: return D

Algorithm 7 search(N , R) → A

Require: N is a node, R is a rectangle
1: A = ∅
2: for B ∈ N.branches do
3: if R ∩B.P 6= ∅ then
4: A = A ∪ search(B.child, R)
5: end if
6: end for
7: for p ∈ N.data do
8: if p ∈ R then
9: A = A ∪ {p}
10: end if
11: end for
12: return A
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4.4 Deletion

Generally, the deletion operation is not a focus of multidimensional indexes. Some indexes
such as the Quad-Tree [11] do not support deletions at all, others such as the RR*-Tree [5]
do not apply their techniques to deletion. However, for the sake of completeness, deletion
is implemented in the NIR-Tree and described briefly here.

Similarly to insert, the deletion operation remove also has a forward root-to-leaf and
a backward leaf-to-root stage. In the forward root-to-leaf stage, remove searches for the
point to delete in exactly the same manner as search, which is described in the previous
section (Section 4.3). Once the leaf node containing the requested point is located, deletion
proceeds through the second leaf-to-root stage lazily. In a process almost identical to
adjustTree, deletion walks the tree backward, replacing calls to splitNode with branch
deletions when |N.branches| = 0 or |N.data| = 0. No further reorganization of the tree is
required.
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Chapter 5

NIR-Tree Analysis

In this chapter, we provide definitions of the relevant terms used throughout the thesis.
We then formally analyze and prove the zero-area intersection guarantee among bounding
polygons in the NIR-Tree.

5.1 Geometric Primitives

It is assumed that the underlying space discussed is Rd, thus, we define a point in the
obvious way (see Figure 5.1a for an example):

Definition 3. A point p = (p0, . . . , pd) ∈ Rd.

While points have no obvious total sort order we use the related concept called domi-
nance:

Definition 4. A point p′ dominates a point p, denoted p ≤ p′, if and only if ∀i, pi ≤ p′i.

Together, points and the dominance relation enable the specification of rectangles. Note
that rectangles, as defined here, are always axis-aligned. Further, observe that a rectangle
is defined with two characteristic points, ll and ur, representing the lower left and upper
right respectively (see Figure 5.1b for an example):

Definition 5. A rectangle R = {ll, ur ∈ Rd | ll ≤ ur} with corner points ll and ur.

Definition 6. A point p is contained by a rectangle R, denoted p ∈ R, if and only if
R.ll ≤ p ≤ R.ur.
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Figure 5.1: Definitional examples. (a) Point. (b) Rectangle. (c) Polygon. (d) Disjoint
rectangles. (e) Intersecting rectangles.

From a collection of rectangles, polygons, and what it means for a point to be in a
polygon, are defined. Again observe that since rectangles are axis-aligned, polygons will
also be axis-aligned (Figure 5.1c).

Definition 7. A polygon is a set of n rectangles P = {R0, . . . , Rn}.

Definition 8. A point p is contained by a polygon P, denoted p ∈ P, if and only if ∃R ∈ P
such that p ∈ R.

5.2 Geometric Relationships

We now explicitly define how geometric primitives interact through intersection, perimeter,
and disjointness.

Definition 9. The intersection of rectangles R and R′ is defined as
R ∩ R′ = {min(R.ll, R′.ll),max(R.ur,R′.ur)}. Where max is the point that results from
choosing the coordinate-by-coordinate maximum of the inputs. Similarly for min.

Since it is useful to talk about points on the “edge”, or “border”, or “perimeter” of a
rectangle, the concept of perimeter is defined next.

Definition 10. A point p is said to be on the perimeter of a rectangle R if and only if
∃d such that pd = R.lld or pd = R.urd.

Polygons that intersect may have area (volume, hyper-volume) in common that is zero
or greater. To distinguish between zero-area and positive-area intersection, we introduce
the idea of disjoint polygons. If polygons are disjoint then their area of intersection is
zero. Visual examples of disjointness and intersection are found in Figures 5.1d and 5.1e
respectively.
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Definition 11. The intersection of polygons

P ∩ P ′ =
⋃

R∈P,R′∈P ′

{R ∩R′}

Definition 12. Rectangles R and R′ are disjoint if and only if:

1. R ∩R′ = ∅ or

2. ∀r ∈ R ∩R′, r on the perimeter of R and R′

Definition 13. Two polygons P and P ′ are disjoint if and only if ∀R ∈ P and ∀R′ ∈ P ′,
R and R′ are disjoint.

Rectangle fragmentation is central to the insert algorithm (Algorithm 1). Described
in Section 4.2 and illustrated in Figure 4.2, we now give a precise definition for the concept
of rectangle-rectangle fragmentation and polygon-polygon fragmentation.

Definition 14. A rectangle fragmented by a rectangle,
fragment(R,R′) = {C0, F0, . . . , Cd, Fd} where ceilings Ci and floors Fi are defined, with
j ∈ [0, d], as follows:

1. Ci.llj =


max(C0.ur0, . . . , Ci−1.ur0) j < i

R′.uri j = i

R.llj j > i

2. Ci.urj =

{
min(C0.ll0, . . . , Ci−1.ll0) j < i

R.urj j ≥ i

3. Fi.ll obtained similarly by replacing ur → ll in (2).

4. Fi.ur obtained similarly by replacing ll→ ur in (1).

5. ∀i, Ci, Fi are rectangles.

Polygon fragmentation is the pairwise generalization of rectangle fragmentation.

Definition 15. A polygon fragmented by a polygon,

fragment(P ,P ′) =
⋃

R∈P,R′∈P ′

fragment(R,R′)
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5.3 Zero-Area Intersection Guarantee

Having defined geometric primitives and the relationships between them, we define the
invariant properties for the NIR-Tree, followed by a proof that the NIR-Tree respects
these properties before and after the execution of any operation. The NIR-Tree’s zero-area
intersection guarantee is exactly Definition 16 property (2).

Definition 16. The invariant, denoted IV , for a NIR-Tree T and ∀N ∈ T consists of:

1. N.poly ⊆ N.parent.poly or ∀p ∈ N.data, p ∈ N.poly

2. ∀N ′ 6= N at height h, N ′.poly and N.poly are disjoint

These invariant properties of the NIR-Tree ensure that children are entirely enclosed
by their parent, and that sibling nodes have zero-area intersections. These properties are
shown to hold by the following theorem.

Theorem 1. For any NIR-Tree T , if T satisfies IV before the execution of insert, search,
or delete then T also satisfies IV afterwards.

Proof. Observe that as described above, neither search nor delete may affect IV since
neither alters the bounding polygon of any node. Further, note that Algorithm 1 lines
7-11 and Algorithm 4 are the only operations in insert which alter bounding polygons.
A discussion of refine is omitted since it simply removes redundant rectangles and hence
does not alter the logic of this proof.

Observe that Algorithm 1 is executed first and then Algorithm 4 is executed second as
part of Algorithm 2. Thus it will suffice to show that, at the conclusion of Algorithm 1,
T satisfies IV (1) and IV (2) and subsequently that at the conclusion of Algorithm 4, T
satisfies IV (1) and IV (2).

First, let us consider IV (1). On inspection, Algorithm 1 explicitly satisfies IV (1) by
intersecting B.P with B.parent.poly and the end of execution on line 11.

Second, let us consider IV (2). Let N = B.child from Algorithm 1 line 6. Line 7
possibly causes N.poly at height h to violate IV (2). However, suppose S is any sibling of
N . By construction of the NIR-Tree, S is at the same height h as N . If, after execution
of line 7, S.poly is not disjoint from N.poly then by definition of rectangle fragmentation
S.poly is disjoint from N.poly after execution of line 9. Now suppose S is any node at
height h in T . Since Algorithm 1 lines 7-11 do not alter S.parent or N.parent, we know
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that S.poly ⊆ S.parent.poly and that S.parent.poly is disjoint from N.parent.poly. It
therefore follows that after line 11, since N.poly ⊆ N.parent.poly, N.poly is disjoint from
S.poly by definition of subset and disjointness. Thus IV (1) and IV (2) are satisfied for any
N in T after Algorithm 1 is executed.

To complete the proof, we show that IV (1) and IV (2) hold for Algorithm 4 if IV (1)
and IV (2) hold before its execution.

First, let us consider IV (1). By definition of PL and PR at Algorithm 4 line 2, ∀RL ∈
PL, RL.lld ≤ l and RL.urd ≤ l. Moreover, ∀RR ∈ PR, RR.llD ≥ l and RR.urD ≥ l. Ad-
ditionally, PL ⊆ Pref and PR ⊆ Pref . Therefore, NL.poly = PL ⊆ NL.parent.poly = Pref

and NR.poly = PR ⊆ NR.parent.poly = Pref since NL.parent = NR.parent = N.parent.

If N is a leaf then we must show that ∀p ∈ NL.data, p ∈ NL.poly. When N is leaf
it suffices to consider only Algorithm 4 lines 6 — 15. Observe that NL.data = ∅ by
construction at line 3. In conjunction with the definition at line 3, lines 10 and 12 yield
p ∈ NL � p ∈ PL = NL.poly. Without loss of generality, the same argument may be
applied to p ∈ NR.data and NR.poly = PR. IV (1) is therefore satisfied when N is a leaf.

If N is not a leaf then we must show that ∀BL ∈ NL.branches, it is the case that
BL.P ⊆ PL upon conclusion of the execution of lines 16 — 30. If BL was placed in NL

at line 21 it is clear that BL.P ⊆ PL since BL.P ∩ PR = ∅ and it is certainly the case
that BL.P ⊆ Pref by our hypothesis that IV (1) is satisfied before execution. Otherwise,
B placed in NL at line 35 implies BL.P was sliced during the recursive call at line 24
along l in D since l and D are passed to the recursive call unchanged. Thus, ∀R ∈ BL.P ,
R.llD ≤ l ⇒ BL.P ⊆ PL as desired. Without loss of generality, the same argument made
here may be applied ∀B ∈ NR.branches with respect to PR. IV (1) is therefore satisfied at
the conclusion of Algorithm 4 for all nodes N .

Second, let us consider IV (2). Again by construction of PL and PR at Algorithm 4 line
2, we have that ∀p ∈ PL∩PR, pD = l and therefore PL and PR are disjoint. Since PL ⊆ Pref

and PR ⊆ Pref by construction, we have that NL.poly = PL and NR.poly = PR are disjoint
from all S.poly at height h because N.poly = Pref is disjoint from all S.poly at height h
by our hypothesis that IV (2) is satisfied before execution. The same argument may be
applied to the recursive call at line 24 since l and D are passed to B.child unchanged. The
transitivity of subset implies bL.P ⊆ PL ⊆ N.parent.poly and bR.P ⊆ PR ⊆ N.parent.poly
as desired. The transitivity of subset is not limited and so this argument may be applied
recursively as many times as necessary to satisfy IV (2). With the execution of Algorithm
4 thus complete, IV (2) is satisfied in all cases.

Therefore we have shown that all operations on a valid NIR-Tree T satisfying IV result
in a tree satisfying IV (1) and IV (2), thus satisfying IV .
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Chapter 6

Performance Evaluation

In this chapter, we experimentally demonstrate the performance advantage of the NIR-
Tree over the R-Tree [13], Quad-Tree [11], R+-Tree [29], R*-Tree [3], and Revised R*-Tree
[5] in terms of search and insertion efficiency using both real and synthetic datasets.

6.1 Experimental Setup

We first describe our experimental setup and methodology, including machine configura-
tion.

6.1.1 Software

We compared the NIR-Tree against our implementations of the R-Tree [13], Quad-Tree
[11], R+-Tree [29], R*-Tree [3], and Revised R*-Tree [5]. The Quad-Tree was selected for
comparison for two reasons. First the Quad-Tree, like the NIR-Tree, is a multidimensional
index designed for memory and structured as a tree. Secondly, the Quad-Tree serves as a
reference point to space partitioning style multidimensional indexes. Next, the R+-Tree was
selected for comparison because a split mechanism similar to its partition line and recursive
downward split is present in the NIR-Tree. The R*-Tree was selected for comparison due to
its popularity and widely accepted baseline status. The Revised R*-Tree is a less popular
version of the R*-Tree achieving similar query performance with lower insertion times, and
was therefore selected as the state-of-the-art competitor. All trees resided entirely in main
memory during experiments. We set the maximum fanout m of all trees so as to provide

35



the best point and range query performance. For the R-Tree, R+-Tree, and R*-Tree, a
maximum fanout of 100 and minimum fanout of 50 produced the best query times. For
the Revised R*-Tree, the authors’ suggested maximum fanout of 100 and minimum fanout
of 20 produced the best query times. For the NIR-Tree, a maximum fanout of 50 resulted
in the best query times by keeping bounding polygons small. Finally, the Quad-Tree’s
fanout at each node was set by definition to 2d.

6.1.2 Hardware

We evaluated trees on a machine with 4× Intel E5-4620v2 2.60GHz CPUs (32 physical
cores), 256GB of physical memory, and a 400GB Intel S3700 SSD.

6.1.3 Methodology

We constructed each tree by sequentially inserting all of the points in each dataset. Point
and range queries were executed on the constructed tree. Statistics such as tree memory
usage and tree height were gathered at the end of each experiment. Every point in each
dataset was queried in the tree, and 1000 or more range queries were executed depending
on the dataset. Operation (e.g., search) times reported are averages over five independent
runs. 95% confidence intervals are shown as error bars (at times barely visible) around
each averaged operation time.

6.2 Datasets and Queries

We describe next the six datasets and associated queries used to evaluate the trees. Ex-
tended descriptions of the datasets, including visualizations, are found in Appendix A.

6.2.1 Datasets

Each of the six indexes were constructed using each of the following datasets:

• California: A subset of the larger TIGER/Line dataset mapping the United States
[4, 5]. The data is a mixture of points and rectangles expressed as doublets or quartets
of GPS coordinates. Due to the mixed nature of the data, we represented rectangles
by their centroids. Dimensions = 2. Size = 1.8M points.
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• Biological: A large real collection of points representing biological features [4, 5].
Points cluster in a pyramid-shaped region between the X and Y axes with a distinct
break before clustering in two sheets along the X and Y axes. Dimensions = 3. Size
= 11.9M points.

• Forest: Real data describing a 30 × 30m section of forest, collected by the United
States Forestry Service [4, 5]. Attributes describing elevation, distance to water, fire,
and roadways are indexed. Data is skewed towards water features and directional
stream patterns are present. Dimensions = 5. Size = 581K points.

• Canada Roads: A large collection of polygons representing the road network of
Canada created by Statistics Canada [8]. All the corners of each polygon were indexed
due to their axis-unaligned nature. Data is densest around population centers in the
South West and South East, and sparser in the Mid-West and North. Dimensions =
2. Size = 19.4M points.

• Gaia: A subset of the stars observed by the European Space Agency’s Gaia mission
to map our galaxy [7, 9]. All the stars within a square portion of the sky, anchored
by the star Proxima Centauri, are indexed. Points describing each star consist of
two coordinates placing each star in the sky, using degrees, and a third attribute
measuring distance from the Sun in parsecs. Data is dense along the galactic plane,
becoming sparser above and below the plane. Dimensions = 3. Size = 18M points.

• Uniform: A synthetic collection of points distributed in the unit square. Points
are generated by choosing each coordinate from the range [0.0, 1.0] with uniform
probability. Dimensions = 2. Size = 10M points.

6.2.2 Queries

All datasets were queried using rectangles that contained about 1000 points. Query rectan-
gles for California, Biological, and Forest data are specified in advance by the benchmark
[4, 5]. Query rectangles for Uniform data were generated by selecting a random point in
the unit square to be ll of the query rectangle (see Definition 5) and then adding a value
α to each coordinate of ll to get ur. α was selected so that the resulting query rectan-
gle contained 1000 points in expectation. Query rectangles for Canada Roads and Gaia
data were generated by iteratively increasing 5000 small rectangles centered around 5000
randomly selected points until each rectangle contained about 1000 points.
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Figure 6.1: Point query times (log scale).

6.3 Results

We present and analyze the point query and range query times as well as insertion times
for the NIR-Tree and its competitors.

6.3.1 Point Query Performance

Recall from Chapter 1 that the NIR-Tree’s scatter reduction is highly efficient. On the
California, Biological, and Gaia datasets, the NIR-Tree executed 99.8% of queries opti-
mally with no scatter. On the Forest dataset, the NIR-Tree provided optimal point query
execution for 98.6% of queries, and on the Uniform and Canada datasets the NIR-Tree
executed optimally 99.9% of the point queries. The rare cases where the NIR-Tree did
not provide no-scatter searches were when a point lay on the perimeter of two bounding
polygons. No point query in the NIR-Tree ever needed to access more than two extra
nodes.

Efficient point queries allow the NIR-Tree to out-compete every R-family tree on every
dataset with the sole exception of the R+-Tree on the Biological dataset. Moreover, the
NIR-Tree out-competes the space partitioning Quad-Tree on the California and Canada
Roads datasets. The popular R*-Tree is outperformed by the NIR-Tree by an average
factor of 2.2×. Additionally, the R*-Tree is usually also outperformed by the R+-Tree.
Lastly, the Revised R*-Tree is outperformed by the NIR-Tree by an average factor of 3.1×.

The NIR-Tree saw its closest competition among R-family trees from the R+-Tree
instead of the R*-Tree or Revised R*-Tree, because the R+-Tree uses a similar partition-line
oriented split to reduce intersection and thus scatter. The R+-Tree enjoyed an advantage
over the NIR-Tree on the Biological dataset by being one level shorter. R+-Tree height
was not due to better node utilization, but rather to a maximum fanout twice that of the

38



NIR-Tree. Maximum fanout is set relatively low for the NIR-Tree so as to keep bounding
polygons simple. In general, larger fanouts in the NIR-Tree require more complex bounding
polygons because they must remain disjoint, yet enclose more children. In aggregate,
the R+-Tree was slightly faster than the NIR-Tree on the Biological dataset through a
combination of mild scatter reduction, and consistently requiring one less random memory
access for point queries. Despite this, the NIR-Tree used 24% less time than the R+-Tree
to perform all point containment operations, and executed 20% more queries optimally.
These advantages for the NIR-Tree are evident in all five other datasets.

Between the data partitioning NIR-Tree and space partitioning Quad-Tree, the NIR-
Tree outperformed the Quad-Tree on California and Canada Roads by an average factor
of 1.2×. By the Quad-Tree’s nature, point queries exhibit no scatter and only d less-than
comparisons must be made at each node. Point queries are therefore slowed only by tall,
unbalanced trees created on skewed datasets. When indexing in the presence of mild skew
in California and Canada Roads, the NIR-Tree’s advantage in tree balance overcame the
cost of point in polygon tests, retrieving points faster than the Quad-Tree. For example,
the Quad-Tree accessed an average of 64.4 nodes during each point query on the Canada
Roads dataset. This is 13×more nodes per query than the NIR-Tree accessed. By contrast,
the Uniform dataset created a more balanced Quad-Tree due to its distribution. On the
Uniform dataset the Quad-Tree accessed an average of 16.1 nodes during point queries,
which by comparison is only 3.2× the number of nodes the NIR-Tree accessed during
point queries. As a result, Quad-Tree point queries consumed less time than NIR-Tree
point queries. On all datasets the Quad-Tree achieved good point query times at the cost
of range query performance (Section 6.3.3) and intensive memory usage (Section 6.3.4).

The NIR-Tree’s competitors were ordered in the same fashion across all datasets: the
Quad-Tree was closest, followed by the R+-Tree, then the R*-Tree or Revised R*-Tree,
then the R-Tree. The differences among the indexes’ point search times decreased to their
lowest point on the California dataset.

6.3.2 Update Performance

Existing multidimensional indexes trade off insertion time for query performance [3, 20, 22,
1, 17]. Breaking from this norm, the NIR-Tree improves insertion time without compro-
mising query times. For example, the NIR-Tree is significantly faster to construct than the
R*-Tree and Revised R*-Tree while having better point query performance (Section 6.3.1),
and equivalent range query performance (Section 6.3.3). For insertions, the R*-Tree con-
sumes, on average, a substantial 27.8× the insertion time of the NIR-Tree, and the Revised
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Figure 6.2: Insertion times (log scale).

R*-Tree consumes, on average, 1.2× the insertion time of the NIR-Tree. The Quad-Tree
trades off insertion time for query performance in the opposite direction, providing the
lowest insertion times and the highest range query times of all trees.

By allowing leaf or routing nodes to be re-inserted once on each level, the R*-Tree
induces a significant amount of tree restructuring during insertion, resulting in a denser
tree (Section 6.3.4) and very high insertion times. The NIR-Tree delivers a large advantage
because it avoids expensive re-insertions. In fact, the R*-Tree runs in O(n2) time if there
are re-insertions [3]. By leveraging bounding polygons instead of re-insertions to reduce
query scatter, the cost of NIR-Tree insertions are kept small. These insertion strategies
give rise to the differences between the NIR-Tree and the R*-Tree in Figure 6.2. Other
trees use neither re-insertions nor bounding polygons, thereby trading-off insertion time
for query performance.

Point queries in the Revised R*-Tree perform uniformly slower than in the NIR-Tree.
Significantly, NIR-Tree insertion performance is not generally traded-off to achieve this
result. On the Biological and Forest datasets the NIR-Tree builds more complex polygons
in the presence of both high skew and high dimensionality, thus requiring more time to
insert on average. The 1.7× slowdown present on these two datasets is compensated for
by a 5.4× speedup of point queries and a 1.2× speedup of range queries over the Revised
R*-Tree. More importantly, the majority of datasets show the NIR-Tree on average both
inserting points 1.6× faster, and querying for points 1.9× faster than the Revised R*-Tree.

Among all trees, the R*-Tree requires the most amount of time to insert, followed by
the R-Tree or Revised R*-Tree, followed by the NIR-Tree, then the R+-Tree, and then
the Quad-Tree. This ordering is prevalent on all datasets except Biological and Forest
where the NIR-Tree and Revised R*-Tree swap places. As described above, the NIR-Tree
is much faster than the R*-Tree due to quadratic operations present within R*-Tree re-
insertions. Next, the R-Tree, using an O(n2) split algorithm but no re-insertions [13], still
under-performs the NIR-Tree whenever the average size of a bounding polygon is below 3.
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The Revised R*-Tree consumes a similar amount of time to insert as the R-Tree, having
a worst case runtime of O(n2) [3], but improved average case performance as seen in our
experiments. The NIR-Tree’s superior insertion performance is reflected by its average
insertion time speedup of 1.3× over the R-Tree and 1.2× over the Revised R*-Tree.

The R+-Tree is 81× faster than the R*-Tree and faster than the NIR-Tree for two
reasons. First, the R+-Tree’s split algorithm runs in O(dn log(n)) time [29], and the cost
metric is computed using bounding rectangles instead of the more flexible bounding poly-
gons of the NIR-Tree, yielding faster splits. Second, by creating stripes and repeatedly
splitting within them along the same dimension, the R+-Tree executes fewer downward
splits than the NIR-Tree (see Algorithm 4). Stripes, though computed quickly, are gen-
erally a poor bounding shape and impose a significant cost during range searches. Long,
thin rectangles provide unsatisfactory range query performance (Section 6.3.3) because
range queries extend across many stripes and waste time filtering data at opposite ends of
the stripes. For example, in the California dataset, the NIR-Tree has a rectangular side
length ratio 7:29, while the R+-Tree stripes have an extreme side length ratio of 3:1226.
As expected, R+-Tree striping results in range query performance least desirable among
the R-family trees tested.

The Quad-Tree is 271× faster than the R*-Tree and faster than all the trees for the
simple reason that it does not have to compute cost metrics or split nodes during insertion.
Insertions in a Quad-Tree are equivalent to a search plus one memory allocation for a
new tree node that is always placed in an empty fanout slot at the bottom of the tree.
Dissimilarly, R-family trees perform extra computations at insertion time to maintain
the balanced property necessary for efficient range queries. Accordingly, the Quad-Tree’s
straightforward insertion strategy impairs range query performance to the extent that range
queries on the Quad-Tree are slowest among all trees tested (Section 6.3.3).

Overall, among trees providing the best range query performance, no tree was faster to
construct than the NIR-Tree.

6.3.3 Range Query Performance

Across different datasets and dimensions, range queries within the NIR-Tree performed
well (Figure 6.3). On all datasets, the R*-Tree and Revised R*-Tree were the NIR-Tree’s
closest competitors. The NIR-Tree and R*-Tree range queries were essentially equivalent,
the NIR-Tree being within 8% of the R*-Tree on average and outperforming the R*-Tree
on the Canada Roads dataset. Similarly, the NIR-Tree and Revised R*-Tree range queries
were also equivalent, the NIR-Tree being faster by an average of 3.7%. Examining range
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Figure 6.3: Range query times (log scale).

query performance, we see that the gap between the R*-Tree and the NIR-Tree is largest on
the Forest and Biological datasets. In contrast with those highly skewed datasets, map-style
datasets with less skew (California, Canada Roads, Gaia) demonstrated the NIR-Tree is
very competitive with the R*-Tree. Distinct from the R*-Tree trend, the NIR-Tree equaled
or exceeded the performance of the Revised R*-Tree on all datasets except California and
Uniform 2d. Lastly the Quad-Tree, while a close competitor of the NIR-Tree for point
query and insertion times, was consistently an order of magnitude slower to range search
than the NIR-Tree.

Range queries within the NIR-Tree and R*-Tree accessed a similar number of nodes on
map-style datasets. For example, California dataset range queries accessed an average of
61 nodes in the NIR-Tree while accessing an average of 52 nodes in the R*-Tree. Despite
indexing with more complicated bounding polygons, the NIR-Tree spent 14% less time
than the R*-Tree testing intersection between bounding objects and the query rectangle,
since the dense nodes of the R*-Tree required many more intersection tests per node.
The similar intersection test time, and similar node access time meant the NIR-Tree and
R*-Tree performed similarly across these datasets.

In contrast to map-style datasets, the NIR-Tree accessed more nodes than the R*-Tree
on the highly skewed Forest and Biological datasets. For example, range queries on the
NIR-Tree indexing Biological data accessed an average of 124 nodes, while accessing an
average of 73 nodes in the R*-Tree. Higher node accesses are expected since the NIR-Tree
indexed using half the maximum fanout of the R*-Tree (Section 6.3.4). However, with skew
increasing the average number of rectangles per bounding polygon to 4.78 vs. 2.68 for the
Gaia dataset, the NIR-Tree and R*-Tree spent an identical total time of 2.13s performing
intersection tests, resulting in the NIR-Tree not making up for higher node accesses.

Range queries on the Revised R*-Tree and NIR-Tree were identical for the Forest and
Gaia datasets, performing within 1% of each other. Next, on the Canada Roads and
Biological datasets, the NIR-Tree performed range queries 25% more efficiently on average
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than the Revised R*-Tree. Without re-insertions or flexible bounding objects, the Revised
R*-Tree’s ability to eliminate skew was dampened on these datasets. By contrast, the
two datasets where range queries performed 13.5% more efficiently on the Revised R*-Tree
were exactly those datasets with limited skew, namely California and Uniform. Overall,
the NIR-Tree was competitive with the Revised R*-Tree.

Range queries executed exceptionally poorly on the Quad-Tree. For all datasets except
Gaia, range queries were over 10× faster when performed on the NIR-Tree. The best range
query performance for the Quad-Tree was on the Gaia dataset where the NIR-Tree still
maintained a significant 2× speedup. Commensurate with its order of magnitude advan-
tage, the NIR-Tree accessed over an order of magnitude fewer nodes during range queries.
Again taking the Biological dataset as an example, the Quad-Tree accessed an average of
1798 nodes per range search compared to the 124 nodes of the NIR-Tree. Compounding
the scatter effect, traversing the Quad-Tree for range queries required much more com-
putation than traversing the Quad-Tree for point queries. Instead of exactly d less-than
comparisons per node, range queries required a point in rectangle test in addition to 2d

quadrant-query rectangle intersection tests per node to direct further searching. Pitfalls
of Quad-Tree range queries are made most obvious by the Forest dataset. There the data
is highly skew, creating a deep tree, and the number of dimensions forces the fanout of
each node of the Quad-Tree to approach the fanout of the NIR-Tree and other R-family
trees. Quad-Tree nodes account for 25 = 32 possible branches, and must test each of these
branches when range querying, yet many of these branches are short and represent dead
ends of the tree. As a result, the Quad-Tree spends an excessive amount of time testing
the query rectangle against quadrants, inhibiting range queries.

Among other trees, dataset distribution and higher dimensionality explain the R-Tree
and R+-Tree’s relative performance inversion on Biological and Forest datasets. Higher
dimension datasets ameliorated the R+-Tree’s bounding rectangles’ extreme side length
ratio because they became long and thin in only one dimension while other dimensions
became more rectangular. Consider the Forest dataset: R+-Tree bounding rectangles had
an average side length ratio of 30:112:31:113:413, which while extreme in the 30:413 case,
exhibit much better relative ratios e.g., 30:31 and 30:112, for other cases. Additionally, the
roughly pyramid-shaped data distributions of Biological and Forest meant striping did not
always cause range queries to filter points on the opposite extreme of the space.

6.3.4 Memory Overhead

The unbounded complexity of NIR-Tree polygons may mislead one to assume that the
memory usage of the NIR-Tree is untenable. Our analysis of tree sizes, polygon size,
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and tree heights show these concerns to be unfounded. Across all experiments, the av-
erage polygon was formed using only 3.3 rectangles. Even in extremely skewed datasets,
such as Biological and Forest, the average polygon was still formed using an average of
5.4 rectangles (Table 6.1). As the number of dimensions rise, it is only reasonable that
more rectangles are required to index any given node, because there are effectively more
neighbours which must be avoided.

To index without intersection, the NIR-Tree uses only about 20% more memory com-
pared to the space-efficient R*-Tree (Table 6.3). Memory overhead in the NIR-Tree is
largely accounted for by the storing of bounding polygons. For example, the index for Cal-
ifornia stores 3.28MB of bounding polygons, Biological stores 40.42MB, and Gaia stores
43.5MB. Competitor trees contained no more than 1.2× the number of nodes (Table 6.2)
of any other with the exception of the Quad-Tree (Table 6.2), aligning with their mem-
ory consumption pattern (Table 6.3). The NIR-Tree used on average 2.6× the number of
nodes competitor trees used, but had half the maximum fanout of R-family competitor
trees. Thus, a 2× size in nodes is expected. Still, the NIR-Tree shows 1.3× above the
expected number of nodes. These extraneous nodes in the NIR-Tree make up the last
portion of memory overhead, and result from downward splits during Algorithm 4, which
keep the NIR-Tree intersection free.

Lastly, the Quad-Tree used an average of 2.3× the memory footprint of the NIR-Tree.
For example, the Quad-Tree used 1.07GB to index the Gaia dataset while the NIR-Tree
used 516MB and the most compact tree, the R*-Tree, used 439MB (Table 6.3). Since
each node with a Quad-Tree contains exactly one data point and space for pointers to
2d descendants, the Quad-Tree allocates space for pointers it does not use, inflating its
memory overhead into the gigabyte range, while R-family trees require only on the order
of megabytes. The Quad-Tree’s point per node paradigm also inflates the height of tree.
At it’s deepest, the Quad-Tree had a height of 30 on the most skew dataset Forest, and
2086 on the largest dataset Canada Roads. Extreme heights and a large memory overhead
illustrate the considerable trade off the Quad-Tree makes to achieve efficient insertions and
point queries.
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Table 6.1: Polygon sizes in the NIR-Tree.

Dataset Total Size of All Polygons Avg. Polygon Size

California 215,256 2.86
Biological 2,649,392 4.78
Forest 194,158 6.08
Canada Roads 1,254,812 1.79
Gaia 1,902,288 2.68
Uniform 2d 446,566 1.37

Table 6.2: Tree size by dataset measured in nodes.

Dataset R-Tree Quad-Tree R+-Tree R*-Tree RR*-Tree NIR-Tree

California 30,526 1,888,012 30,386 29,843 49,622 75,298
Biological 187,744 11,958,999 198,944 167,306 261,392 553,831
Forest 9,222 581,012 12,599 8,334 14,850 31,945
Canada Roads 310,016 19,371,405 310,219 281,370 386,475 699,203
Gaia 286,303 18,084,053 267,943 258,304 378,921 709,576
Uniform 2d 155,943 10,000,000 146,131 143,639 207,124 325,449

Table 6.3: Memory usage (MB).

Dataset R-Tree Quad-Tree R+-Tree R*-Tree RR*-Tree NIR-Tree

California 32 100 31 31 34 38
Biological 300 729 296 290 309 349
Forest 23 44 24 23 24 27
Canada Roads 335 1030 328 319 339 386
Gaia 455 1100 446 439 465 516
Uniform 2d 172 534 168 164 176 192
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6.3.5 Node Utilization

Excluding the Quad-Tree, the height of competitor trees was 4 across all experiments. Due
to a smaller maximum fanout, the NIR-Tree used one level more than competitor trees,
for a tree height of 5 (with the exception of Forest where it used 4). Concretely, the NIR-
Tree’s competitors index the largest dataset, Canada Roads, in 4 levels which requires a
node utilization of at least 60% given their maximum fanout of m = 100. Theoretically, the
NIR-Tree could index 9.76M points in a 5 level tree with 50% utilization of m = 50. With
a higher utilization of 60%, the NIR-Tree could theoretically index up to 24.3M points in
a 5 level tree. Comparing these theoretical utilizations with measured NIR-Tree heights
and competitor tree heights, we see that the NIR-Tree achieves good node utilization of
well over 50%, indexing the 19M points of Canada Roads in 5 levels.

6.3.6 Summary

We compared the NIR-Tree with five spatial indexes and found that only two, the popu-
lar R*-Tree and sate-of-the-art Revised R*-Tree, provided similar range queries. Among
these three front-running trees, we observed that constructing a NIR-Tree is on average
27× faster than constructing an R*-Tree, and on average 1.2× faster than constructing
a Revised R*-Tree without trading off for query times in either instance. Moreover, the
NIR-Tree achieved range searches equivalent with both trees and point searches 2.2× and
3.1× faster respectively.
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Chapter 7

Conclusion and Future Work

Traditional multidimensional indexes support efficient point and range searches through
expensive insertion-time optimization techniques. By limiting the basic bounding shape
to a rectangle, existing R-Tree family indexes cannot achieve zero-area intersection. The
NIR-Tree introduces flexible bounding polygons as a new type of bounding shape which
provably guarantee optimal (zero) intersection between bounding shapes to support effi-
cient insertion and searches. With simple yet flexible bounding polygons, the NIR-Tree is
an efficient, state-of-the-art multidimensional index.

The NIR-Tree offers at least three future directions for multidimensional indexing. To
benefit datasets that cannot be indexed in-memory, it would be interesting to extend the
NIR-Tree to disk. With a tree-based paradigm, the NIR-Tree is already appropriately
structured for paging. Furthermore, disk access dominating search times means the NIR-
Tree could afford more complex polygons at each level, in turn speeding range searches.
Next, multithreading within the NIR-Tree can offer greater concurency, and therefore
preformance. The NIR-Tree is suited to such an extension due to a split strategy that
requires access only to descendant nodes and not the entire insertion path within the
tree. Finally, the problem of covering or re-covering a bounding polygon’s area with a
different configuration of constituent bounding rectangles during the insertion operation is
an interesting theoretical geometry problem.
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Appendix A

Dataset Detail

Figure A.1: Left to right: California, Biological, Forest, Canada Roads, Gaia.

The following dataset descriptions contain extended discussion including more precise
characterizations of the skewness of each dataset. Descriptions use the Fisher-Pearson
coefficient to measure the skewness of each dataset. For reference, the Normal distribution
has a coefficient of 0, while the Exponential distribution has a coefficient of 2. Negative
coefficients describe a skew towards larger values while positive coefficients describe a
skew towards smaller values. In addition to measuring the Fischer-Pearson coefficient,
we measured the kurtosis of each dataset. Kurtosis measures the difference between the
tails of a Normal distribution and the given distribution. A kurtosis value of 0 means the
tails are equivalently shaped. High kurtosis implies that either outliers are extreme and
the majority of data is concentrated around the mean, or that outliers are less extreme
and the majority of data is spread out into the tails of the distribution. Low kurtosis
implies that the majority of the data is concentrated around the mean with few outliers.
The visualizations in Figure A.1 aid in interpreting the meaning of skew coefficients and
kurtosis values.
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• California: A subset of the larger TIGER/Line dataset mapping the United States
[4, 5]. Visualization of the data in Figure A.1 is sourced from the author of the
benchmark [4]. The data is a mixture of points and rectangles expressed as doublets
or quartets of GPS coordinates. No false Northing or false Easting is present, the co-
ordinate data corresponds exactly to locations in California. Due to the mixed nature
of the data, we represented rectangles by their centroids. The overall distribution of
points corresponds to the location of cities. Roads are present throughout the state
but densest around the cities on the coast and in the South. Expressed concretely,
the Fisher-Pearson coefficients of skewness is 0.0149 for the East-West dimension and
0.4021 for the North-South dimension. Thus, data points in the California dataset
are distributed mostly uniformly East to West while being significantly skewed to
the South, validating our qualitative observation that cites are located generally on
the coast and to the South. Extreme outliers are not present in this dataset as can
be observed from Figure A.1 and the kurtosis value confirms this; both dimensions
have a kurtosis value of approximately −1.0. Dimensions = 2. Size = 1.8M points.

• Biological: A large real collection of points representing biological features [4, 5].
Visualization of the data in Figure A.1 is sourced from the author of the benchmark
[4]. Points cluster in a pyramid-shaped region between the X and Y axes with a
distinct break before clustering in a sheet parallel to the X axis. The high coefficient
of skew, −1.1180, for the X axis confirms this, being more than halfway to resembling
an exponential distribution. The remaining dimensions exhibit a lesser but still
high level of skew at −0.4323 and 0.3319. Similar to the California dataset, few
outliers exist and the kurtosis values are accordingly small negative values. For the
X dimension where skew is extreme, a high kurtosis of 0.9078 aligns with the long
tail observed in Figure A.1. Dimensions = 3. Size = 11.9M points.

• Forest: Real data describing a 30 × 30m section of forest, collected by the United
States Forestry Service [4, 5]. Visualization of the data in Figure A.1 is sourced
from the author of the benchmark [4]. Attributes describing elevation, distance to
surface water, distance to wildfire ignition points, and distance to nearest roadways
are indexed. All measures are recorded in meters. Data is skewed towards water
features and directional stream patterns are present. The third dimension is so
skewed with skew coefficient 1.7902, it almost resembles an exponential distribution.
Similarly, the second and fifth dimensions are also extremely skewed with coefficients
1.1404 and 1.2886 respectively. All but the first dimension exhibit positive skew,
favoring small values and making the area around the origin dense with data. This
dataset is therefore particularly challenging for multidimensional indexes because of
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its relatively high dimensionality and extreme skew properties. Dimensions = 5. Size
= 581K points.

• Canada Roads: A large collection of polygons representing the road network of
Canada created by Statistics Canada [8]. Visualization of the data in Figure A.1 is
sourced from the CBC [26]. All the corners of each polygon were indexed due to their
axis-unaligned nature. False Northing and false Easting is present, forcing the sign
of every coordinate to be positive. Data is densest around population centers in the
South West and South East, and sparser in the Mid-West and North. The visualiza-
tion highlights longer more major roads in brighter colors and illustrates an almost
bimodal East-West distribution with skew coefficient −0.5123. The kurtosis value of
the East-West dimension is accordingly −1.2335. With a few roads extending into
the Northern region of Canada, extreme outliers from the mean in the South create
another high kurtosis value of 1.7443 for the North-South dimension. The North-
South dimension is about as skewed as the East-West dimension with a coefficient
of 0.8316, the change in sign indicating skew towards smaller values instead of larger
values. Dimensions = 2. Size = 19.4M points.

• Gaia: A subset of the stars observed by the European Space Agency’s Gaia mission
to map our galaxy [7, 9]. Visualization of the data in Figure A.1 was created via
the Gaia Visualization tool [7, 9]. All the stars within a square portion of the sky,
anchored by the star Proxima Centauri, are indexed. Points describing each star
consist of two coordinates placing each star in the sky, using degrees, and a third
attribute measuring distance from the Sun in parsecs. Data is dense along the galactic
plane, which is visualized as two bright bands in the center of the image with a gap
in between. Moving up from the galactic plane, data is slightly sparser, visualized as
the less bright blue regions at the top and bottom. Although the density of the data
does vary, skewness coefficients of −0.0420 and 0.0811 for the first two dimensions
confirm the visual intuition that the data is relatively uniform. In contrast with
the relative uniformity of the first two dimensions, distance from the Sun is skewed
towards smaller values with a coefficient of 1.6009. Combining an anchor point of
Proxima Centauri with the intra-galaxy mission of Gaia resulted in a selection of
stars close to the Sun. In keeping with the relatively uniform nature of the data,
kurtosis values for this dataset were low for the first two dimensions at −1.2086 and
−1.3234 respectively. The third dimension on the other other hand, contains outlier
distances as a few stars are far away while the majority are close. The very high
kurtosis value of 5.9444 confirms this intuition. Distance from the Sun on the other
hand, contains Dimensions = 3. Size = 18M points.
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• Uniform: A synthetic collection of points distributed in the unit square. Points
are generated by choosing each coordinate from the range [0.0, 1.0] with uniform
probability. By construction the data is not skew and concentrates uniformly from
the mean. Therefore, we did not compute Fischer-Pearson coefficients or kurtosis
values for this dataset. Dimensions = 2. Size = 10M points.
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Appendix B

Visualizations

Below are visualizations of all six multidimensional indexes discussed throughout this the-
sis. We produced the visualizations of each tree on a two dimensional uniform dataset
containing 10, 000 points and with maximum and minimum fanouts set as in Chapter 6.
Trees consisted of exactly three levels: root, middle, and leaf. The root level visualizations
of each tree contained at most three rectangles and are therefore not shown. Leaf level visu-
alizations consist of an uninteresting uniform field of points and are not shown. Therefore,
for all indexes except the Quad-Tree, indexes were visualized using only their middle level
bounding boxes. Each bounding box is shown as a different colored rectangle, or in the
case of the NIR-Tree, collection of rectangles. The Quad-Tree is slightly different due to
its space partitioning nature. Instead of displaying bounding rectangles which group data
together, the Quad-Tree’s visualization displays all of its space partitioning lines, each in
a different colour. The purpose of these visualizations is to further illustrate the geometric
shape of each tree discussed. In particular note the intersection area of bounding rectan-
gles of the R-Tree in Figure B.1, the striping of the R+-Tree in Figure B.1, the improved
but not eliminated intersection area of bounding rectangles of the R*-Tree and RR*-Tree
in Figure B.1, the volume of space-partitioning lines in the Quad-Tree in Figure B.2, and
finally the zero-area intersection of bounding polygons within the NIR-Tree in Figure B.3.

57



Figure B.1: Clockwise from the top: R-Tree, R+-Tree, RR*-Tree, R*-Tree.
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Figure B.2: A Quad-Tree. Displayed large to preserve detail.
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Figure B.3: A NIR-Tree. Displayed large to preserve detail.
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