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Abstract

Superconducting devices have emerged as leading candidates for building practical
quantum computers, owing to their scalability, designability, and ease of control. Devel-
opment of superconducting devices has been accompanied by increases in coherence times
from nanoseconds to tens of microseconds, and a multitude of new types of superconduct-
ing qubits. In turn, these improvements in coherence, and study of superconducting qubits
has produced models for these devices accurate and trustworthy enough to enable design
decisions to be determined prior to device fabrication. Recent work by the superconduct-
ing quantum devices (SQD) group has produced a variant of the capacitively-shunted flux
qubit that features fast control over the lowest three levels, allowing the device to be used
as a qutrit. This thesis presents a model and characterization results for this device.

This thesis also presents experimental results characterizing control fidelity for a qutrit
using randomized benchmarking (RB). Quantum process tomography and application of
repeated gate sequences are also used to support the randomized benchmarking results.
The method of synthesizing the gates in the qutrit Clifford group can decompose any gate
into two-state rotations. The fidelity of 99.0±0.2 % obtained by randomized benchmarking
establishes the device as a useful qutrit, and outlines interesting directions in using higher
levels to improve qubit-based quantum computers, and in using higher levels to pack more
states into fewer devices in quantum computers. Analysis of experimental results indicates
errors are dominated by ac-Stark and Bloch-Siegert shifts during qutrit control.

This thesis then presents two new devices meant to study the impact of changing design
parameters on the suitability of flux qubits for multilevel control. The first device tests
individual qubits, with the goal of further improving the coherence time, and improving
qutrit control. The second device couples two devices together, so that two-qubit gates
can be studied. The available design parameters and their impact on qubit properties are
discussed, and design variations are selected for the single and two-qubit devices. The
result is a set of devices ready for manufacture and experimental characterization.
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Chapter 1

Introduction

Quantum computers are computers that use quantum-mechanical effects to implement
quantum algorithms [4]. For a large class of problems, including integer factorization
(Shor’s algorithm) [5, Sec. 5.3.1], unstructured search (Grover’s algorithm) [5, Ch. 6], and
simulation of quantum systems, quantum algorithms achieve answers in significantly fewer
operations than equivalent classical algorithms. See [5, Sec. 6.1] for an example. In the
gate model of quantum computing, the quantum algorithm is encoded into a sequence of
operations called gates, which map a space of quantum states to another space of states.
These gates are applied to a known initial state, and measurement of this state after gate
application yields the solution. Randomized benchmarking (RB) is a class of protocols
that can efficiently measure how well a quantum computer implements a quantum gate set
[6].

A qubit is a quantum system with two orthogonal states |0〉 and |1〉 which can be pre-
pared in a known state, controlled, and measured [5, Ch. 7]. Qubits are the building blocks
of quantum computers. In recent years, superconducting qubits have emerged as a can-
didate platform for quantum computing, owing to their ease of control and measurement
and scalability to multi-qubit systems [7]. Interest in superconducting quantum comput-
ing has grown due to improved understanding of decoherence in superconducting devices,
and development of new qubit designs that are less sensitive to noise channels that cause
decoherence [8, Ch. 1]. These types of superconducting qubit can store quantum informa-
tion for longer periods while retaining fast control present in earlier devices, meaning more
quantum gates can be carried out before the qubit decoheres. The flux qubit, also known as
the persistent current qubit [9], consists of three superconductor-insulator-superconductor
junctions, also known as Josephson junctions, arranged in a loop. This type of qubit fea-
tures a |0〉 and |1〉 state that are well isolated from other excitations in the qubit, fast
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control, and a relatively long coherence time, making it a good candidate for building
quantum computers.

Recent work in the superconducting quantum devices (SQD) group, including [10] and
[11], has led to a flux qubit with gate times on the order of nanoseconds, and coherence
times on the order of microseconds. In addition, control has been demonstrated on qubits
encoded using the ground (|0〉) and first excited state (|1〉), as well as qubits encoded
using the first excited and second excited state |2〉. This opens up the possibility of using
the device presented in [10] as a base-three qubit, known as a qutrit. With more states
available per device, larger quantum computers can be built with fewer devices. The
device was shown to be excellent for qutrit control, but the procedure was not checked
efficiently, and two-qubit gates between devices of this type were not demonstrated. This
thesis presents a qutrit RB experiment that demonstrates qutrit control, and presents a
set of devices to further understand the flux qubit, and to study two-qubits gates using
flux qubits.

1.1 Outline of Thesis

Chapter 2 introduces the elements of superconducting circuits required to understand a
capacitively-shunted flux qubit (CSFQ). Next, it discusses how to experimentally determine
the CSFQ properties. Finally, the chapter introduces randomized benchmarking as a tool
for characterizing a gate set on the CSFQ. Each property is also related to experimental
results.

Chapter 3 discusses the qutrit randomized benchmarking experiment. It shows how
to decompose arbitrary qutrit gates into two-level rotations, and how to build up those
rotations into a randomized benchmarking sequence. The average fidelity of 99.0 ± 0.2 %
over the elements of the qutrit Clifford group was compared to quantum process tomog-
raphy (QPT) on a subset of the Clifford group. Errors are dominated by ac-Stark and
Bloch-Siegert shifts. This experiment demonstrates that high-fidelity qutrit control can
be achieved in flux qubits, and outlines new avenues for future work in superconducting
qutrit control. Of particular interest is the need to correct for level shifts on transitions,
even if those transitions are not being driven at a given time in the RB sequence.

Chapter 4 discusses a new generation of CSFQ devices to further qutrit control. These
devices also study how well the CSFQ device implements two qubit gates, knowledge of
which is necessary in order to use the CSFQ in quantum computers. The chapter begins by
identifying the design attributes against which qubits are evaluated, followed by the design
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parameters that can be altered to change the attributes. A set of single-CSFQ devices are
then designed to study the effect of changing design parameters on CSFQ performance.
Finally, a design for a two-qubit CSFQ device is presented.

Conclusions from the qutrit RB experiment and the design study are presented and
discussed in Chapter 5.
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Chapter 2

Introduction to Capacitively-Shunted
Flux Qubits

2.1 Superconducting Circuits

Superconductivity is transport of charge without resistance. Superconductivity in alu-
minum is described by the Bardeen-Cooper-Schrieffer (BCS) theory [12]. This theory
features electrons and phonons pairing into Cooper pairs, with Cooper pairs occupying a
single quantum state with a single phase [13, Ch. 4]. This macroscopic occupation of a
single quantum state is what enables superconductors to perform quantum computing. As
a consequence of superconductivity, the magnetic flux Φ through a loop of superconductor
must be an integer multiple of the flux quantum Φ0, given by

Φ0 =
h

2e
. (2.1)

One can construct superconducting circuit elements analogous to classical circuit el-
ements, such as capacitors and inductors [14], and so build superconducting circuits. In
these circuits, the charge Q, voltage V the current I, and the flux Φ are generalized to
operators, as opposed to classical dynamical variables seen in conventional circuits [15,
Sec. 3.1.1]. Current is the time derivative of charge, and voltage is the time derivative of
flux. Ideal circuit elements, like capacitors and inductors, relate these variables to each
other.

The capacitor relates current and flux via

I = CΦ̈, (2.2)
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Figure 2.1: A diagram of an LC oscillator driven by a current source

where C is the capacitance, and Φ̈ is the second-order time derivative of Φ. If I and Φ̈
are real numbers instead of operators, the classical capacitor relation is recovered. The
inductor relates current and flux through

I =
1

L
Φ, (2.3)

where L is the inductance.

The Josephson junction (JJ) is a circuit element unique to superconducting circuits,
which behaves like a nonlinear inductor [15, Sec. 4.1]. Its current-flux relation is

I = Ic sin

(
2π

Φ

Φ0

)
, (2.4)

where Ic is the critical current of the junction [13, sec. 1.1.1].

The equations of motion for a superconducting circuit can be constructed and solved
in a similar way to Kirchoff’s laws for classical circuits [15]. For example, connecting an
inductor in series with a capacitor and a time-dependent current source I(t), as shown
in Figure 2.1 gives the LC oscillator. From Kirchoff’s flux law, the capacitor flux Φc and
inductor flux Φl are equal to the flux from the current source Φ. From conservation of
current, the circuit equation of motion

CΦ̈ +
1

L
Φ + I(t) = 0 (2.5)

is obtained. This equation is equivalent to the equation of motion as a forced simple
harmonic oscillator. Circuits made of inductors, capacitors, and Josephson junctions are
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examples of Lagrangian systems. Their equations of motion are the solution of the Euler-
Lagrange (EL) equations for an appropriately-formulated Lagrangian L [15, Sec. 2.1.8].
For a circuit with n degrees of freedom given by Φ1 to Φn, L is a function of the degrees
of freedom, their derivatives, and the time. The EL equations are

d

dt

(
∂L
∂Φ̇n

)
− ∂L
∂Φn

= 0. (2.6)

The charges Qn are the conjugate momenta to fluxes Φn, given by

Qn =
∂L
∂Φ̇n

. (2.7)

For constraints of the type
f(Φ1,Φ2, ...Φn) = 0, (2.8)

such as flux quantization, one can solve the EL equations with one Φn written as a function
of the others, and substituted into L. In considering circuits with multiple and coupled
capacitances and mutual inductances, and Josephson junctions, one can construct a general
Lagrangian of the type

L =
1

2
CijΦ̇iΦ̇j +

1

2
L−1
ij ΦiΦj + Φ0Ic,n cos

(
Φn

Φ0

)
, (2.9)

with capacitance and inductance matrices Cij and Lij. Equation 2.9 is specified together
with the constraints. It is convenient to define γ = 2π Φ

Φ0
, at which point the Lagrangian

becomes

L =
Φ2

0

2
Cij γ̇iγ̇j +

Φ2
0

2
L−1
ij γiγj + Φ0Ic,n cos γn. (2.10)

Time-dependent voltage and current controls are introduced by adding terms into the La-
grangian coupling a voltage (current) signal V (t) (I(t)) to Φ̇ (Φ) via V (t)CiΦ̇i (I(t)MiΦi).
After their introduction, it must be checked that L still produces the correct equation of
motion. Ci and Mi represent the coupling capacitance and mutual inductance.

Every variable γn has an associated generalized momentum given by

pn =
∂L
∂γ̇n

. (2.11)

Taking the Legendre transform of L with respect to all the pn gives the Hamiltonian H,
given by

H =
∑
n

γ̇npn − L. (2.12)
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Therefore, the Hamiltonian associated with the Lagrangian in equation 2.10 is

H =
1

2Φ2
0

C−1
ij pipj −

Φ2
0

2
L−1
ij γiγj − Φ0Ic,n cos γn. (2.13)

This circuit Hamiltonian can be quantized using canonical quantization by promoting pn
and γn to operators and imposing the canonical commutation relation [γn, pm] = i~δmn [14,
Sec. 4]. The resulting Hamiltonian can be diagonalized, and its spectrum determines the
energy levels of the circuit.

2.2 Types of Superconducting Qubits

This section specializes Section 2.1 to charge qubits and flux qubits, showing how to develop
the Hamiltonian for both types of qubits.

2.2.1 Charge Qubits

The charge qubit, also known as the Cooper Pair Box (CPB), was the first superconducting
device on which coherent control was performed [16]. It is composed of a capacitor in
parallel with a JJ, and a gate capacitance connected to a voltage source. Figure 2.2 (b)
shows an illustration of the CPB used in [2]. There is a single degree of freedom in the
system, and Lij is negligible.

From the Hamiltonian in equation 2.13, p can be associated with a charge n through
p = ~n. Defining the capacitance energy EC = ~2

2φ2
0(C+Cg)

and the Josephson energy

EJ = φ0Ic gives the Hamiltonian

H = EC

(
n+

1

2e
CgV (t)

)2

− EJ cos γ. (2.14)

Writing out cos γ in the basis of n allows the Hamiltonian to be written in the basis of the
charge operator {|n〉} [17, Sec. 1.2] as

H = EC

∞∑
n=0

n

(
n+

Cg
e
V (t)

)
|n〉〈n| − EJ

∞∑
n=−∞

1

2
(|n− 1〉〈n|+ |n+ 1〉〈n|) + . . .

. . . EC

(
1

2e
CgV (t)

)2

. (2.15)
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(a) (b)

Figure 2.2: (a) A circuit diagram of a charge qubit. (b) A micrograph of a transmon qubit,
taken from Figure S1 of [2] , with capacitances from Figure 2.2 (a) labelled.

In equation 2.15, n refers to the eigenvalues of the number operator. The last term in
equation 2.15 can be omitted as it is proportional to the identity operator. After truncating
the infinite sums, H can be diagonalized numerically. The ground state |0〉 and the first
excited state |1〉 of H are the states on which quantum computing can be performed.

By modifying EC and EJ , one can engineer the CPB to have desired parameters such as
the transition frequency between |0〉 and |1〉. EC and EJ can be set by different C and Ic,
which are in turn set by the qubit geometry. By designing for different EC and EJ , one can
also design around possible problems in the circuit. For example, suppose V (t) includes
some noise in addition to the control signal. By placing a large capacitance in series with
the junction, one can make the qubit less sensitive to voltage noise. This is the principle
behind the transmon qubit [18]. However, the cost of this large shunt capacitance is that
the qubit behaves more like a harmonic oscillator, making the qubit harder to control.
Design decisions like these are crucial to designing good qubits. Chapter 4 describes such
a design process for flux qubits.

2.2.2 Flux Qubits

The flux qubit, also called the persistent current qubit, consists of three Josephson junctions
in series around a loop. [9]. Figure 2.3 (a) shows a circuit model for the flux qubit. There
are three independent fluxes Φ21, Φ31, and Φ10, since Φ23 is set by flux quantization. Using
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(a)

100 �m

(b)

(c)

Figure 2.3: (a) A circuit diagram for the three-pad CSFQ, without any control or readout
lines connected. (b) A micrograph of the device, with circuit depicted . (c) The lowest
seven energy levels of the device versus the applied external flux. E = 0 is referred to the
energy of the ground state at the symmetry point.

the circuit Hamiltonian 2.13 in the basis (γ21, γ31, γ10), Cij is

Cij =

 C12 + C23 + C02 −C23 C02

−C23 C13 + C23 + C03 C03

C02 C03 C01 + C02 + C01

 , (2.16)

where the capacitances are referred to those in figure 2.3. The capacitances C0i refer to
capacitances to the ground plane surrounding the CSFQ. The coupling capacitances are
provided by the large capacitive pads shown in Figure 2.3 (b), on which the three Josephson
junctions are placed.

If one of the three Josephson junctions is made smaller than the others by a factor α,
the transition frequencies can be tuned by an external magnetic flux φext threading the
Josephson junction loop [9]. This is shown in the energy level diagram of the lowest seven
levels in Figure 2.3 (c). Note the large difference between the |0〉 → |1〉 and |1〉 → |2〉
transition, where |2〉 is the second excited state. This difference, called the anharmonicity,
is retained in flux qubits even for large capacitances, unlike in the case of transmons. The
large anharmonicity, combined with low charge noise susceptibility, allows multiple levels

9



to be used in quantum computing, making it possible for the flux qubit device to be used
either as a two-level qubit, or a three-level qutrit.

2.3 Flux Qubit Control and Readout

Flux qubits are controlled using time-dependent voltage signals V (t) or currents I(t) cou-
pled capacitively to the circuit in the case of V (t) or inductively in the case of I(t). For
the three-pad CSFQ presented in Section 2.2.2, and following the general Hamiltonian in
equation 2.13, Cij and Lij are modified to account for coupling capacitances. Let C ′ij de-
note the matrix after including the drive line capacitances. Section 2.6 gives an example
of this with the V (t) term. The modified capacitance matrix is

C ′ij = Cij +

 C2d 0 C2d

0 C3d C3d

C2d C3d C1d + C2d + C3d

 . (2.17)

V (t) couples to the momenta via the coupling capacitances Ci, [10]. This yields the Hamil-
tonian

H =
1

2Φ2
0

(pi − CiV (t))C ′−1
ij (pj − CiV (t))− Φ0Ic,n cos γn, (2.18)

where Ci are the coupling capacitances. Unlike Section 2.2.1, V (t) couples to multiple
islands, so Ci is determined by

Ci =

 0 1 0
0 0 1
1 1 1

 Cv,1
Cv,2
Cv,3

 , (2.19)

where Ci is written in the (γ21, γ31, γ10) basis, and Cv,k is the capacitance between V (t) and
the node k in Figure 2.3 (a). The control Hamiltonian can be found by analyzing equation
2.18 about V (t) = 0, and the transition strengths between states |m〉 and |n〉, are

Ωmn(t) =

〈
m

∣∣∣∣∂H∂V
∣∣∣∣n〉V (t). (2.20)

By switching on V (t) with the appropriate frequency, one can resonantly drive transitions
between eigenstates of the Hamiltonian, and so control the qubit. For two-level subspaces
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of the device, define the Pauli operators as

σmnx = |m〉〈n|+ |n〉〈m| (2.21)

σmny = i(|m〉〈n| − |n〉〈m|) (2.22)

σmnz = |m〉〈m| − |n〉〈n| . (2.23)

For two-level transitions, the Hamiltonian simplifies to

H = −1

2
ωmnσ

mn
z +

1

2

(
tr

(
∂H

∂V
σmnx

)
σx + tr

(
∂H

∂V
σmny

)
σy

)
V (t), (2.24)

where ωmn = 〈m|H|m〉−〈n|H|n〉. The drive strength is linearly proportional to the applied
voltage. When multilevel transitions involving more than two states are concerned, two-
photon oscillations [19] and level shifts [11] also become important at large drive strengths.

To read the CSFQ state, one can capacitively couple a resonator to the circuit, and
perform dispersive readout [20]. Again, Cij must be modified to take the resonator capac-
itance into account, just as was done with the control line. The qubit-resonator coupling
produces a Jaynes-Cummings type interaction

Hint = gσmnx (a+ a†), (2.25)

where a (a†) is the annihilation (creation) operator of the resonator. The coupling strength
g can be determined by treating the resonator as a capacitive coupling to a zero-point

voltage V0 =
√

~ω
C

, where ω is the resonance frequency, and C is the capacitance of the

resonator. In the limit where the resonator and the transition are far detuned from each
other, known as the dispersive regime, the resonator will experience a frequency shift
χ = 2g2/∆, depending on whether the qubit is in state |1〉 or |0〉. Measuring the resonator
frequency performs a non-demolition projective measurement [5, Sec. 2.2.5] of the qubit
state [21].

In experiments, the readout resonator frequency is measured by driving the readout
resonator at its resonance frequency. The signal coming out of the readout resonator is
then down-converted to in-phase and quadrature components using an IQ mixer, such that
the resonator frequency is mixed down to a DC signal. The qubit state is then determined
by measuring the average voltage 〈V 〉 of the readout signal. If the qubit is in state |0〉, the
voltage is higher than if the qubit is in state |1〉, since the frequency shift of the resonator
gives an AC signal after being mixed down, lowering the average readout voltage. V is
the observable for the qubit state. Around 104 measurements of V are done for each data
point in order to average the noisy readout signal.
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2.4 Sources of Decoherence

Decoherence is the loss of information in a quantum system caused by unknown irreversible
interactions between the system and its environment [5, Sec. 8.2.2]. These interactions are
modelled as memoryless (Markovian) dissipative processes, or as fluctuating parameters in
the circuit Hamiltonian. For a system with density operator ρ, the master equation

ρ̇ =
i

~
[ρ,H] + LiρL

†
i −

1

2

(
L†iLiρ+ ρL†iLi

)
(2.26)

accounts for dissipation through the collapse operators Li. In general, any stray signal
coupled to the system causes decoherence [5, Sec. 8.4.1]. Therefore, noise sources can be
modelled by adding noisy V (t) and I(t) signals at appropriate points in the circuit model
of a qubit. The two dominant sources of noise in the three-pad CSFQ are charge noise and
flux noise.

Dissipative processes can be classified into dephasing and relaxation processes. For a
two-level subspace spanned by the eigenvectors |m〉 and |n〉 of the circuit Hamiltonian H,
with 〈m|H|m〉 > 〈n|H|n〉, the dephasing collapse operator is L =

√
Γφmnσ

mn
z , where the

relaxation rate Γ is

Γφmn =
1

2~2
| 〈m|A|m〉 − 〈n|A|n〉 |2S(0). (2.27)

A is the interaction operator between the circuit and the noise source, and S(0) is the noise
power spectral density (PSD) of the at zero frequency [22, Sec. 3]. White noise sources
have PSDs independent of frequency, and 1/f noise sources have PSDs proportional to 1

ωα
.

The relaxation process |m〉 to |n〉 has a collapse operator

L =
√

Γ|m〉→|n〉 |m〉〈n| (2.28)

with associated rate

Γ|m〉→|n〉 =
1

~2
| 〈m|A|n〉 |2S(ωmn). (2.29)

Following detailed balance, each relaxation processes has an associated reverse process

L =
√

Γ|n〉→|m〉 |n〉〈m| (2.30)

with rate

Γ|n〉→|m〉 = exp

(
−~ωmn
kBT

)
Γ|m〉→|n〉, (2.31)
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where kB is Boltzmann’s constant and T is the temperature of the device [23, Sec. 3.b].
From equation 2.26, relaxation drives the qubit to the equilibrium state

ρeq =
exp

(
− H
kBT

)
tr exp

(
− H
kBT

) , (2.32)

which, though detrimental for coherence, is useful for state preparation.

For the case of two-level systems, relaxation rates are quoted using the T1 and T ∗2 decay
parameters [24, Sec. A.3]. T1 gives the rate at which a system prepared in |1〉〈1| decays to
ρeq, and T ∗2 gives the rate at which components of ρ in the 1√

2
(|0〉+ |1〉) state decay. T1

and T ∗2 are given by

T1 =
(
Γ|0〉→|1〉 + Γ|1〉→|0〉

)−1
(2.33)

and

T ∗2 =

(
1

2T1

+ Γφ01

)−1

. (2.34)

The challenge of quantum control is to perform as many operations as accurately as possible
within a reasonable fraction of T1, beyond which the qubit loses coherence.

In flux qubits, two dominant noise mechanisms are charge noise and flux noise. Charge
noise is caused by stray voltages accumulating on capacitive elements in superconducting
devices [9, Sec. 2]. Examples of these include two-level systems in the Josephson junction
dielectric barrier and local fluctuations caused by microscopic effects on capacitive pads.
This noise shows up as a fluctuating parameter ng in the Hamiltonian, which can be
modelled as a capacitive coupling to the CSFQ. Effects of charge noise can be reduced
by decreasing EC . Flux noise is noise caused by stray magnetic fields from environment
dipoles or current noise in flux biasing. This can be suppressed by increasing the aspect
ratio of the superconducting loop in the persistent current qubit [25].

2.5 Measuring CSFQ Properties

This section discusses how to determine the flux qubit Hamiltonian, control, readout, and
noise parameters experimentally. The first step is to obtain the transmission spectrum of
the readout resonator versus the magnetic flux bias. This determines the readout resonator
frequency, the location of the symmetry point, and the coupling strength g. Figure 2.4 (a)
shows the transmission spectrum through the readout resonator versus the applied voltage
to an external magnetic flux biasing coil.
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The next step is to perform transmission spectroscopy, applying a low-power control
signal V (t) = V cos(ωt). Resonance occurs when ω = ω01. Figure 2.4 (b) shows spec-
troscopy around the ω01 transition. This yields ω01 = 2π× 1.1465 GHz. Control signals at
frequency ω01 are optimal for applying quantum gates, as the largest population transfer
occurs when V (t) is resonant.

After determining ω01, a Rabi experiment [10] is used to measure the Rabi frequency
Ω01. Applying V (t) at ω01 causes the qubit state |ψ〉 to oscillate between |0〉 and |1〉 with
frequency Ω01. Therefore, applying V (t) with frequency ω01 for duration Ω01/2 realizes an
X01 = |0〉〈1|+ |1〉〈0| quantum gate [5, Sec. 4.2]. Applying V (t) for duration Ω01/4 realizes
an H01 = |+〉〈0|+ |−〉〈1| gate, where

|±〉 =
1√
2

(|0〉 ± |1〉) . (2.35)

Figure 2.4 (c) shows the |0〉 → |1〉 Rabi experiment, with the X01 gate time labelled.

Spectroscopy with a X01 gate applied prior to the spectroscopy pulse then follows in
order to find ω12. A Rabi experiment on ω12 then finds X12. In this way, spectroscopy
and control can be determined up to any desired level, limited by coherence and available
control frequencies. Higher-amplitude drives also identify two-photon transitions. Figure
2.4 shows spectroscopy and Rabi experiments for the 12 and the 02 two-photon transition
in addition to the 01 transitions.

In addition to gate times, ρeq is determined by comparing Rabi oscillation amplitudes.
Assume the circuit starts in ρeq as in equation 2.32, and 〈2|ρeq|2〉 is negligible. Then, the
amplitude A1 of the Rabi 01 experiment with an X12 preparation pulse and the amplitude
A2 of the Rabi 01 experiment with an X12X01 preparation pulse (X01 is applied first), is
related to the equilibrium population by

〈0|ρeq|0〉 =
A1

A1 + A2

. (2.36)

This measures ρeq. Once ρeq is known, V can be measured by V with ρeq, and comparing
tr (V ρeq), tr (σ01

x ρeqσ
01
x V ), and tr (V σ12

x σ
01
x ρeqσ

01
x σ

12
x V ).

With preparation, control, and measurement parameters determined, the next step is
to determine coherence parameters. Figure 2.5 (a) shows a T1 experiment result. This is
obtained by applyingX01 and waiting for the device to relax back to ρeq. Following equation
2.26 with the collapse operators in equations 2.28 and 2.30, 〈V 〉 decays exponentially with
rate 1

T1
. A typical T1 is 45µs.
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Figure 2.4: (a) The transmission spectrum of the CSFQ device versus magnetic field biasing
voltage. (b-d) Low power Transmission spectroscopy, showing 〈Vh〉 versus control frequency
from (top to bottom), the 01 (b), 12 (c), and 02 (d) transitions. (e) The result of a typical
Rabi experiment on 01, showing 〈V 〉 versus the delay time τ (f) Rabi frequency versus
voltage for the 01, 12, and 02-two photon transitions. (g) Rabi frequency versus drive
voltage for the 02 two-photon transition. Note the quadratic dependence of Rabi frequency
on drive voltage.
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Figure 2.5(b) shows a Ramsey experiment result used to obtain T ∗2 . The Ramsey
experiment is done by applying H01, waiting some time τ , applying H01 again, and then
measuring 〈Vh〉. 〈Vh〉 decays exponentially versus τ , with decay constant T ∗2 . To make the
decay easier to see, the H gates were applied slightly off resonance, so that the exponential
decay also has a sinusoidal component. A typical T ∗2 was 4.5µs.

Following the Wiener-Khinchin theorem, the autocorrelation function κ(t) = 〈V (0)V (t)〉
for a noise source, and its power spectral density S(ω) are Fourier transforms of each other.
For white noise, κ(t) is a Dirac delta, meaning that V (t) measured at a later time is inde-
pendent to the V (t) measured at an earlier time. This is not the case for 1

f
noise, where

V (t) is correlated in time. As a result, driven evolution can “undo” some dephasing, espe-
cially on short time scales. This means that T ∗2 is a worst case coherence time. In the best
case, the qubit will not be exposed to 1

f
noise during driven evolution, and so T2 = 2T1

becomes more representative of the coherence time. This effect can be seen in the spin
echo experiment. It consists of the following sequence

1. H01

2. Delay of τ
2

3. X01

4. Delay of τ
2

5. H01

6. Measurement of 〈V 〉

〈V 〉 decays exponentially. The decay rate T2,echo is 9.0µs.

Finally, Figure 2.5 (c) shows a multilevel relaxation plot, used to obtain the relaxation
rates for all transitions in the |0〉, |1〉, and |2〉 space. This is a modification of the T1

experiment, where for each delay, one measurement is taken as is, and one measurement is
taken with an σ12

x pulse applied. By comparing 〈Vh〉 for both measurements, and assuming
populations stay in the {|0〉 , |1〉 , |2〉} space, the diagonal elements of ρ can be determined
versus the time delay. Relaxation rates were then fit to this data, yielding a three-level
relaxation model for the device. Ramsey experiments on 01, 12, and the 02 transition filled
in the components for pure dephasing.

Following this experiment setup, the transition frequencies, Rabi frequencies, equilib-
rium state, voltage observable, and a coherence model are now known. One now has all
the tools needed to perform and characterize gate sets on the CSFQ device.
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Figure 2.5: (a) A typical T1 experiment result, with T1 = 46.1 ± 2.5µs. (b) A typical
Ramsey experiment result, with T ∗2 = 4.7± 0.3µs. (c) The multi-level relaxation result

2.6 Characterizing Gates on a CSFQ

2.6.1 The Average Gate Fidelity

A quantum gate, or channel, maps density operators to density operators [5, Sec. 8.2].
A gate mapping a d-dimensional density matrix to another d-dimensional density matrix
requires d4 real coefficients to specify [26]. The most complete description of a quantum
gate therefore consists of a list of these coefficients, but the data needs to be summarized
to get a figure of merit for the gate performance. What is needed is a function that takes
in two gates and returns a number indicating how well one gate implements another, with
an operationally-useful definition.

For seeing how well a state ρ matches a state σ, such a quantity is readily available in
terms of the fidelity F (ρ, σ), given by [5, Sec. 9.2.2]

F (ρ, σ) = tr
√√

ρσ
√
ρ. (2.37)

F (ρ, σ) gives the probability of ρ passing a test to identify as σ. To get an equivalent
measure for two gates Λ1 and Λ2, one can consider F (Λ1(ρ),Λ2(ρ)), but this leaves an
open question of which ρ to use [27]. For finite-dimensional ρ, this problem is solved by
averaging F (Λ1(ρ),Λ2(ρ)) over all pure states (i.e. states where ρ = |ψ〉〈ψ| for some |ψ〉),
yielding the average gate fidelity F(Λ1,Λ2) [28].

Just as density operators ρ inhabit a space of possible operators, so too do quantum
gates. In the case of unitary gates, i.e. those Λ for which a Λ† exists such that (Λ◦Λ†)(ρ) =

17



ρ, the space of unitary operators has an SU(d) group structure. If d is finite, this also
implies there exists a unique uniform measure µ on this space, relative to which one can
integrate [29]. This means uniform random sampling over pure states in SU(d) is possible,
and allows definition of the Haar average W of Λ as

W (Λ)(ρ) =

∫
(U ◦ Λ ◦ U †)(ρ) dµ(U). (2.38)

The Haar average rigorously assigns a “surface area” to a set of operators in SU(d). For
qubits, the analogy of the Haar average is that it measures the surface area of the Bloch
sphere [5, Sec. 1.2]. W (Λ) is invariant under unitary transformations [28], since µ(U) is
uniform. For qubit unitary channels, the analogy of equation 2.38 is that the Bloch sphere
has the same surface area regardless of whether measurement starts at the north or south
pole. Haar averaging over unitary operators is equivalent to Haar averaging over pure
states, since ∫

〈φ|Λ(|φ〉〈φ|)|φ〉 dµ(|φ〉〈φ|) =

∫
〈0|U †Λ(U |0〉〈0|U †)U |0〉 dµ(U). (2.39)

The average gate fidelity is therefore

F(Λ1,Λ2) =

∫
F ((Λ1 ◦ U) (|0〉〈0|), (Λ2 ◦ U) (|0〉〈0|)) dµ(U) (2.40)

and if Λ2 is unitary, then F(Λ,U) = F(U † ◦ Λ, I), where I is the identity map, and

F(Λ,U) = 〈0|W (U † ◦ Λ)(|0〉〈0|)|0〉 . (2.41)

Following [28], F(Λ,U) simplifies to

F(Λ,U) =
1

d2(d+ 1)

∑
P∈Pd

tr
(
P †U †Λ(P )U

)
+

1

d+ 1
(2.42)

where U is the unitary operator associated with U , and Pd = 〈Xd, Zd〉 is the Pauli group.
Given two copies of a random pure state, one of which is sent through Λ, and the other
through U , F(Λ,U) gives the expected fidelity between the two states that come out of Λ
and U . A higher F(Λ,U) therefore indicates that Λ is a better implementation of U in a
meaningful way.
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2.6.2 Quantum Process Tomography

Quantum process tomography (QPT) is a means of obtaining all d4 coefficients of Λ by
measuring the output state ρout = Λ(ρin) for d2 different linearly-independent (i.e. the
different ρ cannot be related by scalar multiplication) ρin input states [30]. Given a mea-
surement V , a set of X and H gates, and many copies of ρ, one can measure all the
coefficients of ρ by performing d2 experiments. This requires assuming that X and H
are implemented to high average gate fidelity, so that for an experimental implementation
Λprep of a preparation gate Uprep,

tr(UprepρU
†
prepV ) = tr(Λprep(ρ)V ). (2.43)

Expressing ρ in an orthogonal basis of operators like the Pauli group allows the effect of
all d2 operators U to be calculated, and thus determine the unique ρ that produces the
set of measurements tr(Λprep(ρ)V ). This is quantum state tomography (QST). Performing
this with d2 different ρ, and taking QST on each of theses ρ then gives the d4 coefficients
of the gate Λ. This is quantum process tomography (QPT). QPT is the gold standard
for characterizing gates, and has the advantage of yielding the entire process matrix, but
it only characterizes one gate, and it is a slow procedure, especially when compared with
randomized benchmarking (RB). Furthermore, the assumption of equation 2.43 means
QPT cannot distinguish between errors intrinsic to the gate and state preparation and
measurement (SPAM) errors.

2.6.3 Randomized Benchmarking

Randomized benchmarking (RB) is an alternate means of characterizing gate sets compared
to QPT. It is a set of experiment protocols consisting of taking a state, applying a set of
randomly-chosen gates to it, inverting the set of randomly-chosen gates to ideally prepare
some final state, and then measuring [6, p. 3]. RB protocols yield less information about
individual gates than QPT, but they can return results faster, and in a manner robust
to state preparation and measurement errors. Two tools in RB that enable this are Haar
averaging, and unitary t-designs.

Following [29], the Haar average W (Λ) of a map Λ as presented in Section 2.6.1 is a
depolarizing channel. This means that for all ρ, there is some p such that

W (Λ)(ρ) = pρ+ (1− p)tr (Idρ)
Id
d

+K(ρ), (2.44)
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where Id is the identity operator on the d-dimensional space that was Haar-averaged. K(ρ)
is a leftover term, which must be invariant under unitary transformations on the Haar-
averaged space, and satisfy

tr (K(ρ)) = (1− p)(1− tr (Idρ)). (2.45)

If p is large, then K is negligible, making W (Λ)(ρ) a depolarizing channel robust to small
leakage out of the Haar-averaged space. If Λ is a noisy implementation of the identity map
I, then

F(Λ, I) = p+
1− p
d

. (2.46)

Taking n-fold compositions of Λ is then equivalent to composing depolarizing channels,
yielding

W (Λ)◦n(ρ) = pnρ+ (1− pn)
I

d
(2.47)

and which then allows p to be determined from the exponential decay of 〈V 〉 as a function
of n, as the state depolarizes. Since depolarizing channels are invariant under unitary
transformations, this depolarization will be visible regardless of errors in preparing or
measuring ρ.

Depolarization is now robust to SPAM error because of unitary invariance of W (Λ),
but the question how to sample from W (Λ) still remains. Fortunately, the Clifford group
Cd, consisting of all operators that map Pauli operators Pd to Pauli operators, has the
2-design property. This means

W (Λ)(ρ) =
1

|Cd|
∑
C∈Cd

C†Λ(ρ)C (2.48)

Since Cd is finite, one can therefore sample from this group, and construct depolarizing
channels. Λ is then a map from the ideal Clifford group to the real Clifford group as imple-
mented on the device, and so F(Λ, I) measures how well the Clifford gates are implemented
on average.

The RB experiment therefore consists of taking the initial state ρeq and applying n− 1
random Clifford gates. Next, an inversion gate is applied to make the sequence map to the
identity operator, and then V is measured. Note that an inversion operator also exists,
owing to the Clifford group property. Repeating this many times for each n gives the
average 〈V 〉 measured as

tr(W (Λ)◦n(ρeq)V ) = pntr(ρeqV ) + (1− pn)tr

(
I

d
V

)
(2.49)
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Figure 2.6: A result for qubit RB on the 01 space of the CSFQ.

which can be re-written as

〈V 〉 (n) = tr

((
ρeq −

I

d

)
Vh

)
pn + tr

(
I

d
V

)
. (2.50)

The average fidelity can then be found using equation 2.46. This fidelity determines how
far away the error Λ in implementing a Clifford group is from the identity map, and so
the higher the value, the better the control scheme is in implementing Clifford gates on
average. This is a desirable property of a control scheme, and it can be measured over the
set in a single exponential decay, as opposed to the hundreds of QPT experiments required
to get the same quantity [27].

Figure 2.6 gives an RB result on the qubit, plotting 〈V 〉 versus the number of Clifford
gates. 〈V 〉 was read on the Q quadrature. The initial value 〈V 〉 corresponds to tr(V ρeq),
the final value corresponds to tr

(
V I

2

)
, and the exponential decay gives a fidelity of 99.92±

0.03 %. This shows that the control is strong enough that it can implement a depolarizing
channel using Clifford gates to high fidelity. Note that some gates in the Clifford gate set
may be implemented to higher fidelity than others. Evidence for good gate implementations
comes from other experiments, like interleaved RB [31], or QPT.
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Chapter 3

Qutrit Randomized Benchmarking

This chapter describes an experiment characterizing qutrit control using randomized bench-
marking (RB). RB is a protocol that yields the average error for the elements of the Clifford
group. We implement qutrit gates using a universal decomposition method that can be
used to generate any unitary for a qutrit and more generally for qudits of any dimension.
The measured average fidelity is F̄ = 99.0± 0.2% for members of the qutrit Clifford group
C3. In addition, we characterize a subset of the Clifford group using quantum process
tomography (QPT), which provides an independent verification of the unitary synthesis
method and yields results in agreement with RB. Analysis of this experiment revealed
errors due to level shifts, leakage, and decoherence. Level shifts, which do not lead to
significant errors in the usual case of resonant control in a two-dimensional subspace, are
the dominant source of errors, pointing to relevant future work on shaped control pulses
for qudits.

3.1 The Randomized Benchmarking Experiment

Recent advances in large-scale quantum information processors have relied on manipulating
quantum information using two-level systems as qubits [32, 33, 34, 35]. Theoretical work
shows that using multilevel systems as qudits offers performance advantages in quantum
error correction [36, 37, 38, 39], quantum sensing [40, 41], and quantum communication [42].
Efficient universal qudit control required for these applications follows from an extension of
the Solovay-Kitaev theorem from the qubit unitary group SU(2) to the qudit group SU(d),
where d is the dimension of the qudit’s Hilbert space [43]. However, implementation of such
control brings new challenges including mapping qudit gates to experimentally-accessible
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controls, and understanding how control errors influence the type and amount of errors in
a qudit gate. Characterizing qudit gates is also more resource-intensive than characterizing
qubit gates because the larger Hilbert space allows more complex states to form.

The qutrit randomized benchmarking experiment is performed on a variant of a capacitively-
shunted flux qubit that combines relatively long coherence times with high anharmonic-
ity [10]. Anharmonicity is the difference between the second and first transition frequencies.
A qutrit is encoded in the lowest three energy states of the device, denoted by |0〉, |1〉, and
|2〉. The large anharmonicity enables fast selective driving of the |0〉−|1〉 and |1〉−|2〉 transi-
tions. Qutrit control is done using microwave pulses sent via a coplanar waveguide coupled
capacitively to the device (see Fig. 3.1 (a)). Application of a microwave pulse resonant with
the |m〉−|n〉 transition implements a rotation R(θ)nmφ in the two dimensional space formed
by states |m〉 and |n〉, where θ is the rotation angle and φ is the rotation axis phase. Control
pulses are generated using direct synthesis by a large bandwidth arbitrary waveform gener-
ator, model Tektronix AWG 70001. Using large bandwidth direct synthesis enables the use
of sequences of short pulses with widely different carrier frequencies. The device state is
measured using homodyne readout of a coplanar waveguide resonator also coupled capaci-
tively to the device. The readout voltage, averaged over many repetitions, corresponds to
the expectation value of the operator V = V0 |0〉〈0|+ V1 |1〉〈1|+ V2 |2〉〈2|. State preparation
is done by waiting for the device to relax to the thermal state ρth = Pth,0 |0〉〈0|+Pth,1 |1〉〈1|,
where Pth,n = 〈n|ρth|n〉. We assume that higher state populations are negligible, in line
with the large transition frequency between states |1〉 and |2〉. The thermal excited state
population Pth,1 and the readout voltage levels V0, V1, and V2 are measured using a proto-
col based on observing |0〉 − |1〉 Rabi oscillations starting with initial states based on the
thermal state with additional population swaps (see Section 3.2 and Ref. [10]).

Performing a qudit gate U requires a decomposition of U that can be mapped to the
available controls, which becomes more difficult as d increases. In this chapter we use
an approach that decomposes U into products of Givens rotations R(θ)mnφ , where Givens
rotations are unitaries in two-dimensional subspaces of the qudit space. This approach is
universal for qudits of any dimension d and only requires the availability of Givens rotations
for d − 1 pairs of states that span the full Hilbert space [44]. The decomposition U has
two main steps. In the first step, Givens rotations are identified that, when multiplying
the unitary U in succession, lead to step-by-step cancellation of the off-diagonal elements
of U , yielding a diagonal matrix. A maximum number of 1

2
d(d− 1) Givens rotations, one

corresponding to cancellation of each element in the upper diagonal block, is required. In
the second step, d − 1 phase gates multiply the resulting diagonal matrix, yielding the
identity matrix up to a phase factor. Each phase gate requires three Givens rotations, for
a total of 3(d − 1) rotations (see Section 3.2). Decomposing a qutrit gate requires up to
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Figure 3.1: A representation of the experiment setup. (a) A scanning electron micrograph
of the device on which the experiment was performed, with connections to the control AWG
and the readout setup shown. The control AWG is synthesizing a sequence of Clifford
gates C1 to Cn for an RB experiment. (b) The waveform for a Walsh-Hadamard gate H3

as outputted by the control AWG. Black (dark) lines indicate |0〉 − |1〉 driven transitions
and red (light) lines indicate |1〉 − |2〉 driven transitions (c) A level diagram for the qutrit,
with transition frequencies shown.
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9 Givens rotations. Each Givens rotation R(θ)mnφ is then mapped to a pulse generated
by the AWG with the pulse envelope area proportional to θ, the frequency resonant with
the mn transition, and the phase given by φ. The control Hamiltonian for R(θ)mnφ is

Hdrive = 1
2
Ωmne

−iφ |m〉〈n|+ h.c., where Ωmn is the drive strength for the m− n transition.
Each pulse has a cosine-shaped rise and fall envelope with trise = tfall = 2 ns. Figure 3.1 (b)
shows the waveform for a qutrit Walsh-Hadamard gate H3 at Ω01 = Ω12 = 2π × 50 MHz
synthesized using this decomposition [11].

The approach for implementing an arbitrary unitary is verified using QPT for a set of
representative gates, following the procedure from Ref. [11]. QPT is a standard technique
for finding the process matrix of a black box [30], and so the gate fidelity [28] determined
from the process matrix determines whether a qutrit gate performs as intended. The
Walsh-Hadamard gate H3, the generalized phase gate S3, and the generalized Pauli gates
X3 and Z3 are characterized. H3 and S3 are chosen because they generate the qutrit
Clifford group. X3 and Z3 are chosen because they generate the Pauli group P3 [45]. The
gate fidelities for H3, S3, X3 and Z3 are 96.0%, 98.4%, 99.0%, and 99.0%, respectively,
showing that the experimental implementation of the gate decomposition synthesizes the
intended gates. We attribute the discrepancy between the individual gate fidelities from
QPT and the average gate fidelity from RB to state preparation and measurement (SPAM)
error, and due to H3 requiring more Givens rotations to synthesize than X3 or Z3. Figure
3.5 in Section 3.3 shows the gate decompositions found for these gates.

Next, the average fidelity F̄ of C3 is characterized using RB. RB relies on the fact
that a sequence of l random gates selected from C3, such that their product is the identity
operator, behaves on average as a depolarizing channel with the same F̄ as C3 [29, 27].
Therefore, measuring 〈V 〉 versus l determines F̄ via the model

〈V 〉 = (Vi − Vf )
(
dF̄ − 1

d− 1

)l
+ Vf , (3.1)

where Vi (Vf ) is 〈V 〉 at l = 0 (l = ∞), and d = 3 is the dimension of the qudit [46]. RB
is used because it measures F̄ faster than QPT, at the expense of not giving information
about individual gates in C3 [27]. Based on the fact that Hd and Sd generate Cd for any
prime d [47], the set C3 is generated by taking products of H3 and S3 until no new elements
are obtained. The group generated in this way has 216 elements, as expected. Each
Clifford gate used in RB is decomposed into Givens rotations using the decomposition
presented above. Figure 3.2 (a) plots the experimentally-determined 〈V 〉 versus l for ten
randomizations at each l ∈ {2, 6, 10, 20, 50, 100, 200}, with Ω01 = Ω12 = 2π × 50 MHz.
The measured F̄ = 99.0± 0.2% indicates that the members of C3 are implemented to high
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Figure 3.2: Experiment and simulated results for qutrit RB. (a) The experimentally-
measured 〈V 〉 compared to three simulation results. Simulation 1 is the numerically-
simulated result. Simulation 2 is like Simulation 1, but with V3 and V6 optimized to match
experiment data. Simulation 3 is like Simulation 1, but with decoherence modelled as
well. Fits to equation 3.1 are shown for the experiment and each simulation. (b) The
populations from Simulation 1 with the leakage analysis from [3] performed on them. The
dashed line is an exponential fit for P0 vs l.

fidelity on average. Uncertainties are quoted to one standard deviation. Increasing Ω01 and
Ω12 to 2π × 97.38 MHz leads to a lower fidelity of 97.3± 0.3%. Scaling the drive voltages
by ±3% to correct for possible over-rotations in 01 and 12 neither significantly affects the
fidelity, nor does it lead to a clear optimal result.

Since C3 is finite, each element of C3 has a finite, characteristic order. Repeatedly
applying a gate N times therefore nominally produces a 〈V 〉 signal periodic in N , with
the period equal to the order of the element. H3, S3, X3, and Z3 are repeatedly applied to
observe this periodic behaviour. For S3 and Z3, an H3 gate is prepended and appended to
the sequence to produce a 〈V 〉 signal varying with N . Figure 3.3 shows the experimentally-
measured 〈V 〉 versus the value expected from applying ideal gates to ρth. The experiments

26



0 4 8 12 16

3.0

3.5

4.0

4.5

5.0

V
 (m

V)

0 4 8 12 16
1.0

1.5

2.0

2.5

3.0

3.5

4.0

NN

H3 X3

0 4 8 12 16

3.0

3.5

4.0

4.5

5.0

N

(a) (b)

(c) (d)

V
 (m

V)
V

 (m
V)

V
 (m

V)

S3

0 4 8 12 16
1.5
2.0
2.5
3.0
3.5

4.0
4.5
5.0
5.5

N

Z3

Figure 3.3: 〈V 〉 versus N for repeated applications of H3, X3, S3, and Z3, shown in panels
(a), (b), (c), and (d) respectively. The red circles are the expected 〈V 〉 versus N signal for
the ideal gate, and the black squares are the experiment results.

confirm the expected periodicity of these elements of the Clifford group. The deviation
from the expected result increases with N , due to errors in control and decoherence.

We now discuss the sources of error in the experiment. Comparing results from the
RB and QPT experiment, the individual gate fidelities found in QPT are comparable to
the average gate fidelity from RB. In the RB experiment, Vi = 5.36 ± 0.03 mV matches
tr (V ρth) = 5.35± 0.07 mV and Vf = 4.50± 0.07 mV matches tr (V ρdep) = 4.59± 0.03 mV,
where ρdep = 1

3
(|0〉〈0| + |1〉〈1| + |2〉〈2|). This is consistent with the RB sequence behaving

as a depolarizing channel [46]. Numerical simulations of the time dynamics of the system
are done in a first step without including decoherence. The Hamiltonian is truncated
to the seven lowest energy states, which was found to be sufficient to properly explain
level shifts in previous work including two-photon driving (See Section 3.4 and Ref. [11]).
Figure 3.2 (a) compares the results (Simulation 1) with experiments. The simulation fit
gives F̄ = 98.3 ± 0.4%, which is close to the experimental result. Simulations also show
a drop in fidelity when increasing Ω01 and Ω12, as well as a weak variation when scaling
the drive voltage, as observed in the experiment. Numerical simulation of each gate in C3
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individually, and then averaging their respective fidelities, gave F̄ = 98.4 ± 1.08%, with
individual gate fidelities ranging from 95.8% to 99.9%. This shows that in addition to the
average fidelity being high, each gate in C3 is synthesized to high fidelity as well. The range
in fidelity is also comparable to the range of fidelities from QPT.

From numerical simulations, we calculate the baseline of the exponential decay to be
Vf = 4.00 ± 0.09 mV, with error accounting for the experimental errors in Pth,1 and the
readout voltage levels V0, V1, and V2. This value is significantly lower than Vf from the
RB data fit and the expected value Vf = tr (V ρdep). A likely cause for this is leakage out
of the qutrit space span({|0〉 , |1〉 , |2〉}). Figure 3.2 (b) shows the populations based on the
simulation. These populations are used to determine the leakage L1 per Clifford gate, the
seepage L2, and the adjusted average fidelity F̄L following [3]. Whereas leakage measures
population transfer out of the qutrit space, seepage measures population transfer into the
qutrit space. Simulation 1 gives L1 = (1.36 ± 0.82) × 10−3, L2 = (6.50 ± 2.83) × 10−3,
and F̄L = 96.9 ± 1.4%. Since F̄L is not significantly smaller than the simulated F̄ , and
the small leakage approximation from Ref. [3] matches the simulated populations, leakage
does not contribute significantly to the error in simulation.

To gain further insight into the role of leakage in the experiment, we modeled the mea-
sured homodyne voltage with additional components arising from higher states (Simulation
2 in Fig. 3.2 (a)). The only significant populations of higher states are those for states |3〉
and |6〉, which arises due to the strength of matrix elements in the driving Hamiltonian.

We analyzed the measured 〈V 〉 vs l RB data in terms of a model where 〈V 〉 =
6∑

n=0

VnPn,

with the populations Pn based on the simulations and V3 and V6 as free parameters. The
resulting V3 = 4.69 ± 1.15 mV and V6 = 6.89 ± 1.83 mV give Vi = 5.37 ± 0.03 mV and
Vf = 4.51 ± 0.12 mV, in line with experimental values. However the decay constant of
the curve disagrees with the experiment. The uncertainty in the estimated V3 and V6 is
also much larger than the experimentally-measured uncertainty of the readout voltages
for the states in the qutrit space, suggesting that non-zero V3 and V6 is not the primary
contributor to RB experiment error.

The role of decoherence is analyzed using a model that includes measured relaxation
and excitation rates and dephasing in the qutrit space. Simulation 3 in Fig. 3.2 (a) show
numerical results with a model that includes decoherence but neglects the contribution
of states outside the qutrit space to 〈V 〉. Adding decoherence to the simulations brings
the range of measured 〈V 〉 for a given l in line with experiment values, and gives a Vf of
4.17 ± 0.04 mV. This indicates that decoherence further reduces the dependence of F̄ on
spurious occupation of higher levels. Based on these results, we conclude that contributions
to the error from leakage and decoherence are therefore small compared to coherent control
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errors.

To analyze coherent control error in the qutrit RB experiment, the errors of Clifford
group unitaries must be connected to errors in their component R(θ)mnφ . For a noisy

implementation C̃ =
∏
n

R̃n of a qutrit gate C =
∏
n

Rn, with R̃n of noisy versions of ideal

Givens rotations Rn, the gate error r(C̃, C) = 1 − F(C̃, C) is approximately r(C̃, C) ≈∑
n

r(R̃n, Rn), with r(R̃n, Rn) the error for a Givens rotation. The approximation follows

from modeling the error for a Givens rotation as an operator Kn = R̃nR
†
n, with Kn =

αnI +βnMn, where αn the complex number minimizing ||Kn−αnI||∞, βn = ||K −αIn||∞,
and Mn = 1

βn
(Kn−αnI). ||A||∞ is the magnitude of the largest eigenvalue for an operator

A. Relating αn and βn to F(R̃n, Rn) and F(C̃, C) using

F(Ṽ , V ) =

∑
Uj∈Pd

tr
(
V †UjV Ṽ UjṼ

†
)

+ d2

d2(d+ 1)
(3.2)

for two unitaries V and Ṽ yields r(C̃, C) ≈
∑
n

r(R̃n, Rn), assuming products of βn are

small. (See Section 3.6) Figure 3.4 (a) shows that the approximation holds numerically,
and gets better as r(C̃, C) decreases.

To understand the errors in individual Givens rotations, the effective Hamiltonian
Heff = − i

τ
ln R̃n is calculated for each numerically calculated R̃n, where τ is the effec-

tive time to implement Rn and ln R̃n is the matrix logarithm. The difference between
Heff and the ideal control Hamiltonian Hdrive can be connected to errors introduced by the
failure of the rotating wave approximation. Figure 3.4 (b) shows the error of the Givens
rotations versus drive strength, showing that the error scales quadratically with the drive
strength. The effective Hamiltonian is well-approximated by Hdrive + smnΩ2

mnσ
mn
z , with

σmnz = |m〉〈m| − |n〉〈n|. The coefficients smn are well-approximated by smn = 1
2(ωmn−ωd)

,
where ωd is the drive frequency. These results indicate that the main errors are caused by
driving-induced level shifts. Figure 3.4 (c) shows tr (Heffσ

mn
z ) for mn = 01 and mn = 12

for R(π)01
0 and Figure 3.4 (d) shows the results for R(π)12

0 . The leakage error identified
in the RB analysis is also visible in simulation of the Givens rotations as non-negligible
values of 〈2|Heff |3〉, 〈1|Heff |6〉, and 〈2|Heff |6〉. However, these terms are small compared to
tr (Heffσ

mn
z ), confirming that contribution of leakage to the control error is small compared

to level shifts. Note that level shift errors are much more significant for qutrit control than
for qubit control, since the level shift is a coherent error on levels used to store informa-
tion in qutrits, compared to an incoherent error on levels not used to store information in
qubits.
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Figure 3.4: (a) The error of the Clifford gate versus the sum of the errors of the component
Givens rotations for C3 at various drive frequencies. The line of best fit and 95% prediction
bands are also shown. (b) The error versus the drive frequency for a set of Givens rotations,
at Ω = 2π × 50 MHz. The Stark shift and Bloch-Siegert Shift shown for (c) R(π)01

0 and
for (d) R(π)12

0 . The lines in (c) and (d) show quadratic fits.
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In conclusion, we have demonstrated control sufficient to synthesize the qutrit Clifford
group C3 to 99% fidelity, using a universal method for gate decomposition into Givens
rotations. While leakage out of the qutrit space and decoherence contribute to the mea-
sured gate errors, level shifts due to off resonant coupling to states outside the driven
two-dimensional subspace corresponding to each Givens rotation are the dominant source
of error. In future work it will be important to explore application of level shift corrections,
as done in Ref. [11], and more generally design optimal control pulses that mitigate both
level shifts and leakage. These results establish randomized benchmarking as a tool to un-
derstand superconducting qutrit control and pave the way towards using superconducting
qudits in quantum information tasks.

3.2 Experiment Details

The device is manufactured using a planar process described in Ref. [11]. The device
is capacitively coupled to a coplanar waveguide resonator for dispersive readout, and to a
transmission line terminated by a capacitor for control. The device is placed in a microwave
package and mounted in a dilution croystat. Experiments are done with the device operated
at its flux symmetry point, with the required flux provided by an external coil. The
measured transition frequencies are ω01 = 2π × 1.15 GHz, ω12 = 2π × 5.69 GHz, and
ω23 = 2π × 5.12 GHz, where ωmn is the frequency of the transition between states m and
n. The Rabi frequency has the expected linear dependence on applied ac voltage for each
transition, with a slope of 1021±4 MHz (411±4 MHz) for the 01 (12) transition. Readout
is done with a resonator of resonance frequency 2π × 6.72 GHz and full-width at half-
maximum (FWHM) of 2π × 784 kHz, coupling to the lowest two levels of the device with
a Jaynes-Cummings interaction strength of g01 = 2π × 11.6 MHz.

The population of the first excited state in the thermal state ρth is measured by compar-
ing the amplitude of two Rabi oscillations between |0〉 and |1〉. The first oscillation is done
starting with the thermal state with populations in states |1〉 and |2〉 swapped, and the
second oscillation is done starting with the thermal state with a |0〉 − |1〉 population swap
followed by a |1〉− |2〉 swap prior to performing the Rabi oscillation. The voltage levels V0,
V1, and V2 in the readout voltage observable V are characterized by measuring 〈V 〉 for three
reference states: the thermal state, the thermal state followed by swapping states |0〉 and
|1〉, and the thermal state followed by swapping states |1〉 and |2〉, then swapping states |0〉
and |1〉 [10]. From these measurements, ρth = (0.703± 0.007) |0〉〈0|+ (0.297± 0.007) |1〉〈1|,
V0 = 6.57 ± 0.06 mV, V1 = 2.47 ± 0.03 mV, and V2 = 4.73 ± 0.05 mV. The ground state
population of the thermal state 〈0|ρth|0〉 is consistent with an effective temperature of
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Table 3.1: The decoherence rates measured in the qutrit space.

Rate Value (Hz)
Γ10

1 1.62× 104

Γ01
1 5.40× 103

Γ21
1 3.15× 105

Γ12
1 1.50× 104

Γ20
1 2.16× 104

Γ02
1 1.50× 103

Γ01
2 2.04× 105

Γ12
2 2.38× 105

Γ02
2 1.82× 105

64± 2 mK.

We extract the coherence times of the device used as a qutrit following Ref. [10]. Table
3.1 shows the relaxation (m > n) and excitation (m < n) rates Γmn1 and the Ramsey
dephasing rates Γmn2 for all pairs of the qutrit energy levels [24, Sec. 2.7].

3.3 The Gate Decomposition

The gate decomposition, based on Ref. [44], decomposes a qutrit gate U into a product of
up to nine Givens rotations R(θ)mnφ , where θ is the rotation angle, φ is the rotation phase,
and mn is the two dimensional subspace on which this rotation acts. The first step consists
of finding three rotations R(θ1)01

φ1
, R(θ2)12

φ2
, and R(θ3)01

φ3
, which, when applied in sequence,

transform U into a diagonal form. For R(θ1)01
φ1

, setting θ1 and φ1 via

sin θ1 =
| 〈0|U |2〉 |√

| 〈0|U |2〉 |2 + | 〈1|U |2〉 |2
(3.3)

and

eiφ1 = i
(〈0|U |2〉)† 〈1|U |2〉
| 〈0|U |2〉 || 〈1|U |2〉 |

, (3.4)

and applying R(θ1)01
φ1

to U yields a U ′ with 〈0|U ′|2〉 = 0. Continuing in the sequence, R(θ2)
leads to cancellation of 〈1|U ′|2〉 to give U ′′, which is U ′ after applying R(θ2)12

φ2
, R(θ3) leads

to cancellation of 〈0|U ′′|1〉 to give a unitary Udiag, which has no off-diagonal elements.
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Table 3.2: The Givens Rotation decompositions for H3, S3, X3, and Z3.

Pulse Number H3 S3 X3 Z3

0 R(1.5708)01
2.61799 R(1.5708)01

1.5708 R(3.14159)12
0.0 R(1.5708)12

1.5708

1 R(1.91063)12
−3.66519 R(1.39626)01

−3.14159 R(3.14159)01
0.0 R(4.18879)12

0.0

2 R(1.5708)01
1.0472 R(1.5708)01

−1.5708 R(1.5708)01
1.5708 R(1.5708)12

−1.5708

3 R(1.5708)01
1.5708 R(1.5708)12

1.5708 R(6.28319)01
−3.14159

4 R(4.18879)01
−3.14159 R(2.79253)12

−3.14159 R(1.5708)01
−1.5708

5 R(1.5708)01
−1.5708 R(1.5708)12

−1.5708 R(1.5708)12
1.5708

6 R(1.5708)12
1.5708 R(3.14159)12

−3.14159

7 R(1.0472)12
−3.14159 R(1.5708)12

−1.5708

8 R(1.5708)12
−1.5708

The second step implements the diagonal elements of Udiag. For a qutrit gate, this
requires two phase gates, each of which has the form

exp (iβσmnz ) = R
(π

2

)mn
π
2

R(2β)mn0 R
(π

2

)mn
−π

2

, (3.5)

where σmnz = |m〉〈m| − |n〉〈n|. A total of six rotations are needed in this step, with the
first three rotations implementing a |0〉 − |1〉 phase gate, and the last three rotations
implementing a |1〉 − |2〉 phase gate.

Each R(θ)mnφ is mapped to a single microwave control pulse with a cosine rise and fall
envelope with trise = tfall = 2 ns, and the pulse amplitude determined by the drive strength
Ωmn. The pulse duration is constrained to be at least trise + tfall, which requires the drive
strength for a pulse to be reduced if a rotation of θ cannot be implemented at the drive
strength Ωmn. Figure 3.5 gives the AWG waveforms implementing the gatesH3, S3, X3, and
Z3 using the decomposition presented above, at a drive strength Ω01 = Ω12 = 2π×50 MHz.
Table 3.2 gives the Givens rotation decomposition for these gates. The waveforms in Figure
3.5 implement the pulses shown in Table 3.2.

Following Ref. [44], generalizing the decomposition from qutrit gates to a d-dimensional
qudit gate U requires a total of 1

2
d(d − 1) rotations are needed in the first step of the

decomposition, equal to the number of elements of U in the upper-triangular region. In
the second step, the d − 1 phase gates required to implement the diagonals of U require
3(d − 1) rotations to implement. The total number of rotations required to implement U
is therefore of order O(d2).
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Figure 3.5: The waveforms implementing the qutrit gates H3 (a), S3 (b), X3 (c), and Z3

(d). Black (dark) areas indicate 01 transitions and red (light) areas indicate 12 transitions.
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Table 3.3: The coefficients of Hstatic used in simulations. All other coefficients not shown
are zero.

Coefficient Value (2π × 109 Hz)
ω01 1.146
ω02 6.838
ω03 11.96
ω04 17.22
ω05 17.78
ω06 18.34

3.4 Numerical Simulation of Device Dynamics

The circuit Hamiltonian, derived in the model presented in Ref. [10], together with the
drive has the form H(V (t)) = Hstatic + Hdrive(V (t)), where Hstatic =

∑s−1
j=1 ω0j|j〉〈j| and

Hdrive(V (t)) =
∑s−1

i,j=0
i 6=j

V (t)(gij|i〉〈j|+ h.c.) describes time-dependent control with the volt-

age V (t) at control pad of the device. The Hilbert space is truncated to the lowest s = 7
levels, owing to the agreement between the simulation and previous multi-level control ex-
periments including two-photon Rabi oscillations [11]. The transition frequencies ω0j and
the transition matrix elements gij of the voltage operator are calculated from the circuit
model fitted to experiment data. Table 3.3 gives the values of ω0j and Table 3.4 gives the
values of gij used in the simulation.

The decoherence model consists of Lindblad operators of the form
√

Γmn1 |m〉〈n| for

relaxation/excitation, and
√

1
2
Γmn2 (|m〉〈m| − |n〉〈n|) for dephasing. To determine ρ(t) after

applying an RB sequence, the Lindblad master equation [5, Sec. 8.4.1] is solved numerically
in qutip [48]. One solution is found with |0〉〈0| as the initial state, another is found with
|1〉〈1| as the initial state, and ρ(t) is determined by combining the two solutions together.
〈V 〉 is determined by tr (V ρ(t)). This approach propagates measured uncertainties in Pth,0

and uncertainties in the elements of V . For numerical simulations of Clifford gates and
Givens rotations, the corresponding propagator at the end of the decomposition of the gate
is calculated, and compared against the ideal propagator. The AWG waveform voltage is
related to the voltage at the device control pad V (t) by scaling the voltage of 01 and 12
pulses by their respective transfer coefficients c01 = 5.84 × 10−3 and c12 = 7.02 × 10−4.
These coefficients are determined by simulating a Rabi experiment, and matching the Rabi
frequency with the experimentally-measured value.
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Table 3.4: The coefficients of Hdrive used in simulations. All other coefficients not shown
are zero.

Coefficient Value (2π × 109 Hz V−1)
g01 174.7
g03 −294.2 + 205.2i
g04 105.6 + 32.43i
g12 584.6
g15 90.71 + 65.45i
g16 −119.7− 223.2i
g23 567.5− 395.9i
g24 −17.72− 5.442i
g35 −4.953− 14.15i
g36 −109.6 + 931.7i
g45 93.17 + 31.61i
g46 0.2782 + 0.2757i

3.5 Calculation of Gate Fidelity

Following [28], the gate fidelity F(Ũ , U), where Ũ is a noisy implementation of U , is

F(Ũ , U) =
1

d2(d+ 1)

∑
P∈Pd

tr
(
P †U †Ũ(P )U

)
+

1

d+ 1
, (3.6)

where Pd is the Pauli group defined on a d-dimensional Hilbert space [47]. Since the
device simulation is conducted over seven dimensions, but the RB experiment is conducted
over three dimensions, it is necessary to find the gate fidelity averaged over a subspace
of states considered in the simulation, to obtain a gate fidelity comparable to the RB
experiment. To find the gate fidelity for the qutrit subspace, the elements of P3 are
expanded into 7-dimensional operators by padding the matrices with zeroes such that
P ∈ P3 occupied the top-left 3 × 3 block. F(Ũ , U) is then found using equation 3.6 with
d = 3. This is done because the elements of P3 are used as a basis for writing down the
maximally-entangled qutrit state |φ〉 = 1√

3
(|0〉 |0〉 + |1〉 |1〉 + |2〉 |2〉). F(Ũ , U) is related,

and ultimately derived from, the entanglement fidelity Fe(U
† ◦ Ũ) = 〈φ|I3 ⊗ (U † ◦ Ũ)|φ〉,

where I3 = |0〉〈0|+ |1〉〈1|+ |2〉〈2|, via

F(Ũ , U) =
dFe(U

† ◦ Ũ) + 1

d+ 1
, (3.7)
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following Ref. [28]. Since the qutrit maximally entangled state has no components outside
the lowest three levels, the elements of P3 cannot have support outside the space spanned
by the lowest three levels, meaning P3 elements expand by padding with zeroes. This also
means P3 elements that are unitary in 3 dimensions are not unitary in 7 dimensions.

3.6 Approximating the Fidelity of Clifford Gates from

Givens Rotations

Let C represent an ideal Clifford gate and C̃ represent its error-prone implementation.
C̃ is

∏
n

R̃n, where R̃n = KnGn is a noisy implementation of an ideal Givens rotation Rn

with error Kn. Assume Kn = αnI + βnMn, where αn ∈ C, β ∈ R, Mn is an operator,
and I is the identity operator. αn is the complex number minimizing the magnitude of
the largest eigenvalue of Kn − αnI, denoted ||Kn − αnI||∞. βn = ||Kn − αnI||∞ and
Mn = 1

βn
(Kn − αnI). The zeroth-order approximation to the fidelity F0(C̃, C) assumes βn

is negligible. The fidelity then simplifies as

F0(C̃, C) = F

(∏
n

KnRn,
∏
n

Rn

)∣∣∣∣
βn=0

(3.8)

= F0

(∏
n

αn
∏
n

Rn,
∏
n

Rn

)
(3.9)

= F0

(∏
n

αnI, I

)
(3.10)

=
1

d2(d+ 1)

∑
j

tr

((∏
n

αnUj
∏
n

α∗nU
†
j

))
+

1

d+ 1
(3.11)

=
1

d2(d+ 1)

∏
n

|αn|2
d2∑
j=1

tr
(
UjU

†
j

)
+

1

d+ 1
(3.12)

=
1

d2(d+ 1)

∏
n

|αn|2
d2∑
j=1

tr (I3) +
1

d+ 1
(3.13)

=
d
∏

n |αn|2 + 1

d+ 1
. (3.14)
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Let r0(C̃, C) = 1−F0(C̃, C) represent the zeroth-order approximation to the error. For a
single Givens rotation R̃n, αn is related to r0(R̃n, Rn) by

|αn|2 = 1− d+ 1

d
r0(R̃n, Rn). (3.15)

The zeroth-order error for a Clifford gate is then

r0(C̃, C) =

(
d

d+ 1

)(
1−

∏
n

(
1−

(
d+ 1

d

)
r0(R̃n, Rn)

))
. (3.16)

Since r0(R̃n, Rn) is small, one can make the approximation∏
n

(
1−

(
d+ 1

d

)
r0(R̃n, Rn)

)
≈ 1−

(
d+ 1

d

)∑
n

r0(R̃n, Rn), (3.17)

giving r0(C̃, C) ≈
∑
n

r0(R̃n, R̃n). If β is small, then r(C̃, C) ≈
∑
n

r(R̃n, Rn).

To get a more accurate approximation to r(C̃, C), consider a C̃ made of two Givens
rotations, such that C̃ = K2R2K1R1. To get the first-order approximation to the fidelity
F1(C̃, C), assume any terms with more than one β are negligible when taking the product
U †jC

†C̃UjC̃
†C. The approximation is

U †jC
†C̃UjC̃

†C ≈ α2α1α
∗
1α
∗
2

(
I + U †jR

†
1R
†
2

β2M2

α2

R2R1Uj + U †jR
†
1

β1M1

α1

R1Uj + I3
β1M

†
1

α∗1
+ I3R

†
1

β2M
†
2

α∗2
R1

)
.

(3.18)
Substituting this into equation 3.6 gives

F1(C̃, C) =

d
∏
n

|αn|2 + 1

d+ 1
+

∏
n

|αn|2

d+ 1

(
tr

(
β1

(
M1

α1

+
M †

1

α∗1

)
I3

)
+ tr

(
β2

(
M2

α2

+
M †

2

α∗2

)
I3

))
,

(3.19)
which generalizes to

F1(C̃, C) = F0(C̃, C) +

∏
n

|αn|2

d+ 1

∑
n

tr

(
βn

(
Mn

αn
+
M †

n

α∗n

)
I3

)
(3.20)

Figure 3.6 shows r(C̃, C) versus r0(C̃, C) and r1(C̃, C), for the same Clifford gates as in
Figure 4 (a) in the main text. The first-order approximation improves the estimate of
F(C̃, C), as can be seen by the 95% prediction band narrowing.
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(a) (b)

Figure 3.6: The simulated error for each Clifford gate versus its (a) zeroth-order estimate
and (b) first-order estimate. The line of best fit and 95% prediction bands are shown as
well.

3.7 Effective Hamiltonian Calculation

To find the Hamiltonian Heff such that U = exp(−iHeffτ), the objective function 1 −
F(U , exp(−iHeffτ)) is minimized over the space of possible Hamiltonians. In the mini-
mization, the gate fidelity F is taken over seven dimensions, not three, so that the effective
Hamiltonian replicates the dynamics outside the qutrit space as well as inside. The initial
condition for this minimization is an ideal Hamiltonian H̃. The Hilbert space of Hamil-
tonians is parameterized by the Generalized Gell-Mann matrices Gk, giving H̃ =

∑
k

αkGk

and Heff =
∑
k

βkGk [49]. During the minimization, βk is constrained to prevent spurious

2π rotations from being introduced.
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Chapter 4

Designing a New Generation of
Capacitively-Shunted Flux Qubits

4.1 Introduction

The qutrit randomized benchmarking experiment discussed in Chapter 3 establishes the
three-pad capacitively-shunted flux qubit (CSFQ) introduced in Section 2.2.2 as a useful
device for quantum computing. The fidelity of the qutrit control stands out in particular.
The features of the CSFQ that enabled this experiment include its very high anharmonicity
and its good coherence time. The anharmonicity of this device offers an advantage over
more commonly superconducting qubit implementations like transmons [18]. However,
unlike fluxonium devices with similar anharmonicities to the three-pad CSFQ [50], this
CSFQ requires only three junctions to work, making manufacturing easier.

A natural next step following the qubit RB experiment is to implement a two-qubit
gate using three-pad CSFQ devices. This motivates the new generation of device designs
introduced in this chapter. To determine which of the CSFQs should be coupled together
to participate in the two-qubit experiment, a set of single CSFQ devices needs to be
investigated as well. This set of devices is also necessary to further explore and improve
coherence. Section 4.2 of this chapter discusses the single-qubit device design, and section
4.3 discusses how to couple these devices together. Conclusions are drawn in Section 4.4.
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4.2 Designing Single CSFQ Devices

The qutrit randomized benchmarking (RB) experiment discussed in Chapter 3 identified
leakage, lack of knowledge of V for the third excited state and above, and decoherence as
sources of error. However, it also showed that high-fidelity qutrit control can be performed
on the CSFQ, and that the device is capable of very high anharmonicities. This motivates
additional experimental work in CSFQ devices, which requires new CSFQ designs. These
designs need to address the low Ramsey coherence time T ∗2 (See section 2.4), and the low
ground state population observed in the previous experiment.

We first discuss the desired optimizations to make in new CSFQ devices. In the 2020
cooldown when qutrit RB was done, T ∗2 ranged from 3.5 µs to 4.5 µs. However, T2,echo from
a spin echo experiment [51] was 9.0µ s, and T2 measured from a Carr-Purcell-Meiboom-Gill
(CPMG) experiment [51] was 26.5 µs. T2,echo and T2 compare well to values measured in
2018, when the qubit was cooled down for the first time, but T ∗2 is much lower [10]. This
suggests that there is low-frequency noise in the device, and that driven evolution reduces
exposure to this noise.

In addition to the low frequency noise, the thermal ground state population of 0.703±
0.007 was problematic for state preparation. This population is worse than the 0.95 ground
state population observed in the 2018 cooldown. Based on spectroscopy and steady-state
population data in 2020, the effective temperature of the device increased to 64 mK. This
compares unfavourably to 27 mK measured in 2018 [10]. The low ground state population
can be mitigated by increasing the transition frequency. It can also be mitigated by cooling
the qubit through Raman scattering to the cavity [11]. This cooling becomes faster as the
equilibrium ground state population increases, as less population needs to be transferred
from |1〉 to the readout resonator. Improved state preparation also brings ρeq closer in line
to RB protocols that assume the device starts in the state |0〉〈0| [6, p. 18]. This makes
protocols like leakage RB [3] more effective.

Finally, it is useful to explore wider parameter ranges in a single cooldown of the device,
and have reproducibility checks done consistently. The device on which the RB experiment
was conducted only had two qubits on a 7 × 3 mm die. Of these, only one was used in
qutrit RB since it had a higher transition frequency. Increasing the number of devices
per die allows multiple design variations to be investigated in the same cooldown. This
reduces variability in devices between cooldowns, increases device density, and improves
reproducibility of results. Devices can be distinguished by coupling to readout resonators
of different frequency as in [52].

Having outlined the desired optimizations to make in the CSFQ devices, we now discuss
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the properties against which CSFQ designs were evaluated. The first such property is the
set of the qubit transition frequencies, denoted ωmn. It is useful to have all transition
frequencies of interest between 1.5 and 7 GHz. The lower bound ensures a high ground
state population in the thermal state, denoted 〈0|ρeq|0〉. The upper bound avoids collisions
between the readout resonator frequency and a transition frequency, which violates the
large cavity-qubit detuning required for dispersive readout. The Purcell effect is also more
promiment as the qubit frequency gets closer to the readout resonator frequency, reducing
qubit coherence [20]. The readout resonator frequencies were chosen to be between 7.1
and 7.7 GHz, in order to comply with an 8 GHz frequency limit on the readout amplifier.
It is important to consider two-photon transition frequencies as well as the single-photon
transitions. Transition frequencies can be increased by reducing the size of the CSFQ
capacitive pads, and increasing the critical current of the Josephson junctions, and reducing
the ratio of critical currents between the small and large junctions, denoted α.

In addition to the transition frequencies, anharmonicities must be considered as well.
Anharmonicity is the difference between ω12 and ω01, and it measures how far the CSFQ
deviates from being a harmonic oscillator [53]. Anharmonicity is important as it determines
to what extent it is possible to drive the |0〉 − |1〉 transition independent of the |1〉 − |2〉
transition, and so reduce leakage to |2〉 when driving the |0〉 − |1〉 transition [7, sec. 2.1].
Reducing the drive power reduces the leakage, but this also increases gate time. Techniques
to compensate for the additional |1〉-|2〉 transition such as DRAG also lose effectiveness
as the anharmonicity decreases [53]. In addition to 01 and 12 anharmonicity, it is also
necessary to consider the anharmonicity between the 12 and 23 transitions as well, in
order to suppress leakage during qutrit control. Anharmonicity can be increased by raising
α.

The persistent current Ip is the current circulating in the CSFQ in one of the two flux
states in the two-level approximation of the CSFQ [9]. It is determined by fitting ω01 to
the Hamiltonian

H =
∆

2
σx +

1

2
IpΦ0

(
f − 1

2

)
σz, (4.1)

where σx and σz are in the flux state basis. The flux states |l〉 and |r〉 are related to |0〉 and
|1〉 by |0〉 = 1√

2
(|l〉+ |r〉) and |1〉 = 1√

2
(|l〉 − |r〉) at the symmetry point. A high persistent

current results in high susceptibility to flux noise, but some persistent current must be
present in the system in order to tune the CSFQ. Furthermore, a low persistent current
requires small junctions to be made, placing more demands on the fabrication process and
harming reproducibility. In the CSFQ from Chapter 3, Ip was 73.4 nA in 2018, but it
increased to 86.4 nA by the time the qutrit RB experiment was conducted in 2020. These
values are higher than the design value of 60 nA. Reducing Ip to 40 nA is a goal of this
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design.

The flux noise sensitivity is
I2
p

ω01
at the symmetry point. This factor relates a flux

fluctuation δφ to a fluctuation in the transition frequency δω01. Fluctuations in ω01 cause
the qubit to dephase, and this lowers the T ∗2 of the qubit. The flux and transition frequency
are related by equation 4.1. The sensitivity is found by analyzing ω01 versus φ at the bias
point. At the symmetry point, the first-order term

∂ω01

∂φ
=

I2
p

(
φ− 1

2
φ0

)√
∆2 +

(
Ip
(
φ− 1

2
φ0

))2
(4.2)

vanishes, and the second-order term

∂2ω01

∂φ2
=
I2
p

∆

((
Ip
∆

(
φ− 1

2
φ0

))2

+ 1

)− 3
2

(4.3)

becomes
I2
p

ω01
[54]. Lowering this factor is a priority, as flux noise contributes to the low

coherence observed in the qutrit RB experiment.

The frequency modulation due to charge noise δfng describes the effect of charge noise
on the flux qubit. The charge noise is modelled as additive noise on each island of the
CSFQ [18], causing the charge on each island to fluctuate. This causes p = ~n to fluctuate.
To model these effects, the flux qubit Hamiltonian

H = 2e2(ni −Dikng,k)C
−1
ij (nj −Djkng,j)− Φ0Ic,n cos γn (4.4)

includes an ng offset for each operator ni. e is the elementary charge, and D maps ng from
each island k on the qubit (see Section 2.2.2), to ni. H is periodic in ng with period 1.
δfng is the difference in extremes in ω01 caused by adding an ng to any island in the circuit.
Higher capacitances reduce the charge modulation, as in the case of transmon qubits, but
this comes at the cost of anharmonicity. To increase coherence, charge modulation should
be reduced as much as possible.

We now move from discussing design parameters to the available knobs to control. The
first is the critical current Ic of the two large junctions. This impacts both Ip and ω01. It can
be changed by changing the junction dimensions, or by changing the critical current density
Jc. The former is determined by design, and the latter is determined by manufacturing
process parameters [55, 56], particularly the pressure at which the insulating oxide layer in
the Josephson junction is grown. The goal is to reduce Ic in order to reduce Ip. However,
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reducing Ic also requires smaller junctions to be made. Ic must therefore be considered as
part of a collection of design attributes that determine Ip. In addition to Ic, the value α
sets the critical current of the α junction as αIc. α ranges from 0.5 to 1. A high α qubit
is difficult to tune, and also lowers the transition frequency at the qubit symmetry point.
Small α qubits are more difficult to manufacture since they require small junctions to be
made. This problem becomes worse as Ic decreases. The goal for the current designs is to
examine the effect of changes in α on CSFQ properties.

Finally, coupling strengths to the readout resonators and control lines must also be
considered in the design process. Large coupling strengths permit faster Rabi drive and
larger dispersive shifts, respectively. However, having too large a coupling introduces a
decoherence channel, as the qubit loses coherence due to the Purcell effect [57]. The
Purcell filter is a means of mitigating this problem on the readout resonator, as it reduces
the frequency response of the readout line at the qubit transition frequencies [20].

Having reviewed the design attributes against which CSFQ designs are evaluated, we
now consider design parameters. The first set of parameters are the dimensions of the qubit
pads. The three dimensions considered were the size of the capacitive pads, the perimeter
of the qubit, and the size of the gap between pads. Larger pads increase capacitance, and
therefore reduce charge modulation, but they also lower the 01 transition frequency and
the anharmonicity. Decreasing the gap size increases the capacitance, but bringing the
pads too close increases the electric field between the pads. This increases loss due to the
large field interacting with two-level systems in the dielectric [58]. The perimeter of the
pads should also be as small as possible, so that there are few regions of high electric field
on the pads. This reduces the electric field extending from the aluminum electrodes into
lossy silicon, improving coherence [18]. Considering that the previous qubit design was
shown to work in experiment, and that the pads are close to square on the current CSFQ
design, it was decided to keep the aspect ratio of the pads the same, and scale the pads by
a factor k.

The next most important dimension is the junction size. In principle, Ic can be can
be controlled by varying the thickness of the oxide layer, changing the gap between the
junction islands, and by changing the junction width. The oxide thickness is determined
by the process, and is the hardest variable to control, owing to the thin layer of oxide and
the exponential dependence of the critical current density on the thickness of the oxide
layer [55].

The junction length, i.e. the width of the Dolan bridge used to fabricate the junction
[59], was not changed from the previous design due to the reliability of fabricating junctions
with this gap size. This leaves the junction width as a design parameter, with the junction
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width being linearly proportional to the critical current. Varying the junction width to set
the critical current was more convenient than varying both gap and junction width, and
keeping the junction gap was considered less risky for the fab process. However, this made
setting Ic and α more difficult as the difference in junction widths became smaller.

Based on the previous qubit design, the distance between the qubit and readout line
was scaled by the geometry scale factor k, in order to keep the capacitance, and thus
dispersive shift, consistent. The control line distance was also scaled by the geometry scale
factor to keep the control coupling consistent. Owing to the use of a common control
feedline connected to a 50 Ω load, the predicted Rabi frequency is half that of the previous
CSFQ design. This is because since the feedline is not terminated by an open circuit, as
in the case of the previous design, an equivalent voltage applied to the control feedline will
produce half the voltage at the end of the qubit control line. The length of the coupler
between readout resonators and the readout feedline was set to ensure a coupling quality
factor Q of 1.7× 105, matching the previous qubit design. The coupling Q is the ratio of
a resonator frequency to its bandwidth [60, sec. 6.1], and is inversely-proportional to the
amount of loss in the resonator.

Finally, the last design parameter varied in the study was the width of the Josephson
junction traces. Wider traces have been shown to decrease flux noise, as the magnetic field
is spread across multiple wires [61].

To investigate the relation between the design parameters and the design attributes,
simulations in ANSYS Q3D and SONNET EM suite were used to model the qubit capaci-
tances, and microwave line frequency responses, respectively. Mathematica code was used
to investigate the qubit Hamiltonian. The first step was to determine the capacitances
in the single-qubit design as a function of the scale factor. To do this, a finite element
simulation in ANSYS Q3D Extractor was set up, and the capacitance matrix was extracted
from these islands. In this study, k ranged from 0.5 to 1.5 in increments of 0.1. The lower
bound was chosen to prevent dielectric loss from the plates from being significant, and the
upper bound was selected to investigate larger capacitive pads while still keeping ω01 large.
Values in between were interpolated from simulation data.

In addition to studying the impact of k on pad capacitances, the capacitances between
the CSFQ, the bias line, and the drive line were checked in Q3D as well. It was expected
that the capacitance between qubit pads and the control antenna would be the same
regardless of whether the control antenna was terminated by the edge of the simulation,
or whether the antenna connected to a control line. Figure 4.1 labels the control line and
control antenna. The Q3D simulation showed that a distance of 175µm between the start
of the turn in the control line, and the base of the rectangular region was sufficient to
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Figure 4.1: An illustration labelling the control antenna, control line, and readout resonator
connections for a single qubit. The labelled dimension shows the 175µm distance required
to isolated the control line from the qubit

isolate the control line from the qubit. The control is therefore expected to behave as in
the 2018 design.

The capacitance data as a function of geometry was then inputted into a Mathematica
simulation. Given this, and the junction areas, the simulation numerically determined
the device Hamiltonian. For scale factors of 0.6, 0.8, 1.0, and 1.2, the design attributes
were plotted as a function of the critical current and alpha. The Mathematica simulations
showed that there was a region around Ic = 140 nA and α = 0.5 with good 01 and
12 anharmonicities. However, the region was risky in terms of low transition frequencies
and sensitivity of parameters to critical current. The simulations also showed that charge
modulation is exponentially suppressed as critical current increases. α was varied by 0.07
between qubit variations, and Ic was varied by 40 nA between qubit variations. This
ensures that the resulting junction dimensions vary enough to be writeable by electron
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beam lithography. Figure 4.2 shows the design parameters plotted against Ic and α. Figure
4.6 (a) and 4.6 (e) shows a difference between ω23 and ω12 of 1.0 GHz at Ic = 140nA and
α = 0.55. When combined with the high anharmonicity seen in Figure 4.2 (c), this merits
setting Ic and α to these values, in order to improve qutrit RB.

Finally, SONNET simulations were conducted on parts of the device to determine
the microwave frequency response. The devices were modelled using thin lossless metal,
with 500 µm of silicon under the metal, and a ground plane under the silicon. The silicon
thickness matches that of the wafer used in fabrication. A 1800 µm thick air box was placed
above the waveguide. The height was chosen both to give the electric fields in vacuum space
to decay, and to match the height of the cavity in which the sample is to be placed. The
lengths of the readout resonators l were initially determined from l = c

2
√
εefff

, where c is

the speed of light, εeff is the waveguide’s effective dielectric constant [62, sec. 2.2], and f
is the resonance frequency. The relation between the resonator length and the simulated
resonant frequency was then fit to the model

f = A/l +B, (4.5)

where A and B are fitting parameters. The A coefficient captures the inverse relation
between resonator length and frequency. The offset term B accounts for non-idealities
including fringing fields. Coupling Q factors were determined from the linewidth of the
simulated transmission spectra, and confirmed by a three-port simulation of the couplers.
Figure 4.3 shows the 2-port simulation of a λ/2 resonator, a three-port simulation of the
coupler, and the transmission spectrum of the resonator. The coupling Q is confirmed by
the transmission spectrum in Figure 4.3 (c).

Having completed the simulations, design variations were then selected. The fabrication
process accommodates 7× 3 mm or 7× 7 mm dies, each with up to eight RF connections
on the chip. Four connections were required for these devices, two for the control lines,
and two for the readout lines. This setup was chosen to match other experiments besides
the CSFQ in the fabrication run, and reduce the amount of rewiring between cooldowns.
The 7 × 3 mm dies were selected, owing to more dies being available for more qubits to
be made. Up to four qubits could fit on each die, with most of the space taken up by λ/2
readout resonators. Figure 4.4 shows a CAD drawing of the baseline variation.

The baseline variation centered around an Ic of 172 nA, and an α of 0.61. This was
chosen to match the qubit on which qutrit RB was conducted. A variation involving a
Purcell filter, and a variation with double the drive line coupling was also added. Variations
sweeping Ic from 112 to 212 nA, and sweeping α from 0.54 to 0.68 were added. Finally, the
resonator Q of 85K was selected in addition to 170K, in order to observe larger dispersive
shifts and determine the impact of stronger resonator coupling on coherence.
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Figure 4.2: Plots of design parameters as a function of the critical current Ic and α. (a)
The 01 transition frequency. (b) The 01-transition frequency with geometry scaled by 0.6.
(c) The persistent current. (d) The 01 anharmonicity. (e) The difference betwen ω23 and
ω12, and (f) the charge modulation.
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Figure 4.3: Simulation results of (a) a 7.3 GHz half-wavelength resonator coupled to a
feedline, and (b) the portion of the resonator from (a) coupling to the feedline, with the
other end connected to a 50 Ω port. (c) The real and imaginary components of S12 obtained
from the resonator in (a), with a simultaneous fit of the components to the expected S12.
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The qubits are fabricated using a planar process involving three layers, starting with
a silicon wafer. The first layer etches cross-shaped markers 1.5µm deep markers into the
silicon. The second layer is a lift-off of 100 nm of Al evaporated onto the silicon. Optical
lithography is used in this step to pattern large features down to a resolution of 2µm.
Aluminum is evaporated over three angles in order to get a stepped profile of Al, and so
get good adhesion between the second and third layer of writing. The third layer consists
of electron-beam lithography and shadow evaporation of Al onto the silicon. Electron
beam lithography is used to pattern small features. The Josephson junctions are made by
evaporating Al at one angle, oxidizing the Al, and then evaporating Al at the opposing
angle [59]. Starting from a 4” wafer, the wafer is divided into 21 17×17 mm (Approximately
1” diagonal) square chips, and the chips are further divided into either ten 7× 3 mm dies.
One die can be studied at a time in the cryostat.

The process imposes minimum dimensions on the required features. It is difficult to
make a junction narrower than 65 nm, as the process introduces a 6 nm random error into
junction dimensions. In addition, a 100 nm junction requires patterning a 50 nm wide
feature into EBL resist, as the fabrication process results in junctions wider than the
lithographically-defined size. The process sets a minimum variation of Ic and α, since a
10 nm random error in junction size can shift α by 0.05. This affects qubits in the high
Ic and low α region, requiring large variations in α in order to view systematic differences
between qubits. The process also requires that no critical features are within 300µm of
the die, as this is where the ground plane is wirebonded to the device package. Finally,
the process fixes the location of the microwave connectors on the die, as these need to be
wirebonded to fixed traces on the package.

Figure 4.4 shows the baseline CAD design for the qubit. The readout resonators have
a frequency of 7.1, 7.3, 7.5, and 7.7 GHz, respectively. All qubits except the last one have
a critical current of 172 nA. The right-most qubit has an Ic of 132 nA and the αs are 0.61,
0.68, 0.54, and 0.61, looking from left to right.

4.3 Coupled CSFQ Devices

The single qubit CSFQ design work introduced in Section 4.2 furthers the understanding
of varying design dimensions in the CSFQ sufficiently to consider two-qubit gates being
applied on these devices. Two-qubit gates, like CNOT, SWAP, or CZ, are gates where
the action on the target qubit depends on the state of a control qubit. It is impossible to
construct a universal multi-qubit gate set without a two-qubit gate, but only one two-qubit
gate is needed to realize a universal gate set [5, sec. 4.5.2].
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(a) (b) (c)

(d)

Figure 4.4: A drawing showing the baseline variation for the single-CSFQ device. (a)
The partitioning of a 4” wafer into chips, and the location of the 17× 17 mm chip on the
wafer. (b) The 17 × 17 mm chip partitioned into 7 × 3 mm dies, and the location of the
baseline variation on this chip. (c) The baseline variation of the Josephson junction for (d)
the single-qubit CSFQ design. Green arrows indicate the direction in scaling, from large
features to small features.
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When considering the two-qubit design, there are further design attributes that need
to be considered in addition to those in Section 4.2. The first such design parameter is the
choice between inductive [63] or capacitive [52] coupling. Whereas inductive coupling is
useful for tunable couplers, and generally implements a σz ⊗ σz interaction, the capacitive
coupling implements transverse σx⊗ σx and σy ⊗ σy-type interactions. Pauli operators are
written in the flux basis. Capacitive coupling was chosen since the small loops located at
the center of large shunting pads would require cutting into the design to run inductors
close enough to get good coupling.

The next parameter is the choice between fixed and tunable coupling. Fixed couplers
offer fewer channels for decoherence, and are much simpler to design. However, the coupling
cannot be switched off as in the case of a tunable coupler. The fixed coupling scheme was
chosen, with the understanding that tunable couplers can be built using the information
taken from a fixed coupling scheme.

The next design consideration is to consider what two-qubit gate to apply. For fixed
coupling, the candidates are the selective darkening (SD) gate, the cross-resonance (CR)
gate, and the frequency-tuned gate. The CR gate is the simplest type of two qubit gate,
performed by driving the control qubit at the frequency of the target qubit. [64] Improve-
ments to this gate by [65] include adding a drive to the target qubit, and then a correction
pulse on the control qubit. The experiment described in [65] realized σz ⊗ σx gate to
99.1± 0.2 % average gate fidelity (See section 2.6.1) in 160 ns with a 3.8 MHz qubit-qubit
coupling. When the drive is stopped at the appropriate time, the drive realizes a CNOT
gate. SD differs from the CR gate by driving the target qubit in addition to driving the
control qubit. The extra tone in the SD gate suppresses the |01〉− |11〉 transition, in order
to realize the a CNOT gate faster than the CR gate [66]. Both the SD and CR gates have
been demonstrated to fidelity exceeding 99 %.

The frequency-tuned gate is also another route to a two-qubit gate. It works by tuning
the qubits to the same resonant frequency, and then waiting for the coupling to produce a
SWAP-type interaction between the qubits [67]. These gates are generally much faster than
the SD and CR gates for a given coupling strength, but they require moving qubits away
from the symmetry point, which reduces the coherence time. Recent work also outlines a
method of suppressing the flux noise by incorporating AC drive and DC flux biasing to
realize a two-qubit gate. [68]

Having outlined the approaches to produce a two-qubit gate, it is clear that the coupling
strength must be determined to have an estimate of the gate time. This can be done
by starting from the three-pad CSFQ Lagrangian, and adding terms corresponding to
capacitances between the islands. The coupled qubit system goes from having two degrees
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q1c1
q1c2

q1c3

q2c1
q2c2

q2c3

Figure 4.5: A drawing of the coupled CSFQ device, with coupling capacitances indicated.
Each label refers to a pad on the CSFQ device, with each pad on the left qubit Q1 capac-
itively coupled to each pad on Q2.

of freedom to four degrees. Figure 4.5 shows a representation of the two-qubit coupled
CSFQs, with additional coupling capacitances indicated.

To determine the coupling strength, begin with the capacitance matrix Cij as shown in
equation 2.16 of Section 2.1, which incorporates the coupling terms. The terms coupling n
operators on qubits 1 and 2 can be separated, such that C−1 = C−1

1 + C−1
2 + C−1

int . C
−1
1 is

a block-diagonal matrix containing only elements in the upper-left 2x2 block of the 4 x 4
coupling matrix, C−1

2 is block-diagonal in the lower-right 2x2 block, and C−1
int contains the

off-diagonal element. The interaction Hamiltonian then has the form

Hint =
~2

2

(
n1,1 n1,2 n2,1 n2,2

)
C−1
int


n1,1

n1,2

n2,1

n2,2

 , (4.6)

where nk,m is the m number operator on qubit k. The coupling strength g01 can then be
determined by taking the matrix element 〈01|Hint|10〉. Coupling strengths can be deter-
mined this way for higher levels as well. To consider the coupling strength for σx ⊗ σx or
σy ⊗ σy interactions, this coupling strength g can be obtained through

g = tr ((σx ⊗ σx)Hint) . (4.7)
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A large coupling strength is desirable to speed up the two-qubit gate. However, the coupling
must also be much less than the detuning between the qubits for the SD gate to function.
In addition, the treatment of the coupling constant presented here presents the coupling
as a perturbation to the individual qubit states. If the qubits couple strongly, then the
eigenstates identified for the single qubit device will evolve too quickly in time to be
prepared or read out.

In addition to the coupling strength, the qubits themselves must be selected to avoid
collisions between certain frequencies. Firstly, the qubits must be detuned at their symme-
try point to reduce crosstalk between control on the two qubits. However, if the detuning
is too large, then SD will require a very large amplitude difference to implement the gate.
For qubits A and B coupled with a strength of g, the ratio

|ω01,A − ω01,B|
g

(4.8)

should be between 3 and 10. The lower bound exists so that the control and target qubit
can be distinguished in the device, and the upper bound exists so that the amplitude ratio
between the control and target drive in the SD gate is not too large, and thus difficult to
experimentally realize.

The other collision criteria involve the transition frequencies for the 01 and 12 transi-
tions, as well as the 02 two-photon transitions. These should be well-separated for the two
qubits to ensure that they can be addressed independently. Given fabrication uncertainties,
it is best for these transitions to be separated by at least 100 MHz.

Having discussed the parameters for the design, we now discuss the dimensions that
can be varied in the design. To keep the design symmetric, it was decided to keep the
scale factor common to both qubits, and rely on variations in junction design to change
the transition frequencies. In addition to k = 1.0 for the baseline qubit, a high-frequency
qubit with k = 0.6 was used to increase the transition frequency, and counteract the
transition frequency drop expected with adding additional capacitances to the individual
qubits. k = 0.8 was also chosen as a compromise scale factor between the two extremes.

The coupling strength was adjusted by increasing the spacing between the two qubits.
At a minimum distance of 10 µm between the qubits, g = 40 MHz. A piece of the ground
plane was kept between the qubits to avoid opening a large hole in the ground plane, and
reducing coherence. The width of this piece of ground plane sets the minimum distance
between the qubits, and was set to match the width of the gaps between CSFQ plates.
This way, the ground plane around each qubit is closed.

Finally, the design of the flux biasing on chip needs to be considered. Whereas the
single-qubit devices rely on a global magnetic field for the flux bias, the coupled qubits are
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too close together to bias the coupled qubits independently, as this would require a large
magnetic field gradient to be produced. Therefore, a local flux bias needs to be applied
to each qubit. This was accomplished by placing a transmission line near the qubit and
shorting it to the ground plane. Relevant dimensions include the distance of the flux line
from the qubit, and the length of the line. Having the flux line close to the qubit loop
increases the inductance, and so reduces the current required to bias the qubit. However,
the extra inductance also makes the qubit more susceptible to flux noise. The goal of
keeping a closed ground plane around the CSFQ also conflicts with having a thin section
of ground plane near a flux line, as this offers a return path for the bias current, reducing
the effectiveness of the line.

To evaluate the inductance of the flux line, the inductance was calculated using Fas-
tHenry. The central trace and gap on the flux line are the same size as the readout
resonators, in order to match the transmission line to 50 Ω. An S-turn was added to put
a section of ground plane at the corner of the qubit. From the FastHenry simulation, the
mutual inductance between the flux line and the qubit loop is 0.48 pH. This means that
4.23 µA will be needed to add a flux of 1 mΦ0 to the qubit. This is sufficient for fine
tuning. The worst-case loss through the flux line Γ is determined by

Γ =
ω01

π

(
MIp
φ0

)2
RQ

Z0

(4.9)

where M is the mutual inductance, Ip is the persistent current, φ0 is the flux quantum,
RQ = 6.4 kΩ is the resistance quantum, and Z0 is the impedance of the line. This gives
Γ = 3.1 KHz, which is much smaller than Γ through other noise sources.

With these design considerations in mind, Figure 4.6 shows the baseline variation of
the coupled qubit device. The frequency of the readout resonators are 7.3 and 7.5 GHz,
respectively. The critical currents are 172 nA and 132 nA, and the respective alphas are
0.60 and 0.62. The detuning is 6.14 times larger than the coupling strength of 40.2 MHz,
and the closest frequency collision of 270 MHz occurs between the 1 − 2 transition on
qubit 1, and the 2 − 3 transition on qubit 2. Variations on this device include qubits
with a 2 GHz transition frequency with k = 0.8, and 4 GHz transition frequency with
k = 0.6. The rationale for the 4 GHz devices was to raise the transition frequency as high
as possible, sacrificing anharmonicity for low ground state population, and faster two-qubit
gate performance. Features on the flux line include a tapered connector to keep the line
at 50 Ω impedance, and rounded corners ensure reliable transmission up to RF range.
This enables the flux bias to be altered during an experiment, on the timescale of qubit
transitions.
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Figure 4.6: A drawing of the baseline variation of the coupled CSFQ device. The two qubits
to be coupled are in the center of the device. Each qubit has a dedicated readout resonator,
control line, and flux line. Test structures are placed on the chip to check junction critical
current, and the quality of lithography. Alignment marks (blue and yellow structures) are
placed in the corners to ensure dimensional alignment during lithography.
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4.4 Conclusions

With the single qubit devices from Section 4.2, and the two-qubit devices from Section 4.3,
progress has been made toward the goal of producing a two-qubit gate with new CSFQs.
To do this, the design goals were considered against a desirable set of parameters for the
qubit, and the design dimensions were varied to understand their impact on the design pa-
rameters. Simulations helped to map the dimensions to design parameters, and variations
were selected for the single-qubit device. Some modeling was done on the coupling for the
coupled CSFQ device, and variations were selected in this device as well. The product is
a set of devices ready to be manufactured and studied experimentally.

The challenges in these designs were effectively filling the frequency spectrum, having
to design to a fabrication process, and determining coupling strengths between the qubits
and control lines. For filling the frequency spectrum, it was important to make sure that
each transition can be driven effectively, and to leave enough space between transitions so
that they are well-separated. This challenge was compounded by having multiple qubits on
a single chip, and by having to leave large gaps in the spectrum to account for fabrication
uncertainties. As more devices are added, the collision conditions will become stricter,
requiring more information to be known about variations in the CSFQ, and tighter control
over fabrication. This motivates the single-qubit design study, just as determining the
coupling strength and determining two-qubit gate strategies for coupled CSFQs motivates
the need for the two-qubit devices.

Nevertheless, the designs selected show promise as they are built on a proven CSFQ
design, on which high-fidelity qutrit control was demonstrated. This validates the model
for these devices, and paves the way for research into multi-qudit devices. The selective
darkening and cross-resonance gate techniques are also established, and give proven strate-
gies for implementing two-qubit gates. It is expected that the high anharmonicity persists
into this new round of devices, and the coherence time is to be retained. These features
will yield high-fidelity two-qubit gates.

The next steps for this design include manufacture, device characterization, and exper-
imentation. Test structures will be used in the fabrication run to determine the critical
current density, which will inform the corrections to the junction parameters. After this is
information is included into the design, and new devices are manufactured, the next step
will be spectroscopy experiments on single-qubit devices to determine transition frequen-
cies and anharmonicities. Rabi experiments will then establish the control parameters, and
coherence experiments including Ramsey interferometry will give the T1 and pure dephas-
ing rates. Cooling experiments will then be conducted to improve state preparation, and
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RB experiments will be used to characterize control on single-qubit devices. All this will
then be repeated on a separate cooldown with two-qubit devices, leading to two-qubit gate
experiments.
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Chapter 5

Conclusions

This thesis presented a qutrit randomized benchmarking experiment in Chapter 3, showing
that high-fidelity qutrit control can be performed on a three-pad capacitively-shunted flux
qubit. The experiment identified level shift correction and leakage suppression as future
directions for improving qutrit gate fidelity. Combined with the understanding of flux
qubits presented in Chapter 2, this motivated a new set of CSFQ devices to be designed.
Chapter 4 presented a single-qubit device on which control can be improved, as well as a
device for studying two-qubit gates. Candidates for two-qubit gates have been proposed.

From the qutrit RB experiment in Chapter 3, it was concluded that level shifts due to
off-resonant coupling to states outside the two-dimensional subspace of a Givens rotation
were responsible for most of the error. Leakage outside the qutrit space, and decoherence
also contributed to the experiment error. Nevertheless, the control scheme was capable
of synthesizing the qutrit Clifford group to an average fidelity of 99%, motivating further
development of qutrit control in this device.

From the design study in Chapter 4, a set of multiplexed one-qubit and a set of two-
qubit devices were produced, which are ready for fabrication. The CSFQ model presented
in Chapter 2, and confirmed by experiment in [10] and [11] was applied to a broad space
of possible qubit designs, and new qubit designs were selected based on this study. The
coupling strength between two CSFQs was also estimated, and used to inform device
designs to study two-qubit gates. The presented designs are ready for fabrication and
testing.

In summary, the three-pad CSFQ device has performed well so far as a candidate de-
vice for building a quantum computer. Single-qubit preparation, control, and readout
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have been demonstrated, as well as high-fidelity qutrit control. The next step is to under-
stand how multiple three-pad CSFQs couple together, and how to perform two-qubit gates
experimentally.

Future work on the CSFQ includes fabrication and study of single-qubit devices of the
type presented in Section 4.2. These devices are good test beds for varying junctions and
capacitive pad geometries to further improve coherence and quantum control. They are
also good test beds for studying single-qubit control. Variations on RB such as interleaved
RB and leakage RB can be used to identify different types of gate errors. New gate
decompositions, possibly extending [11], can then be tested, in order to find new qudit
control schemes for CSFQs. This work can then be taken to two-qubit devices to obtain
high-fidelity two-qubit gates, and so realize universal gate sets for quantum computing.
The next step will then be to integrate many CSFQs together, and compute on these
many-CSFQ devices.
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Appendix A

Numerical Simulations of Density
Matrix Evolution

The state of the circuit can be associated with a density operator ρ representing a classical
mixture of quantum states. For an ensemble with probabilities p(ψi) of being in the state
|ψi〉, the density operator is

ρ =
∑
i

p(ψi) |ψi〉〈ψi| (A.1)

The time evolution of ρ is given by the master equation

ρ̇ =
i

~
[ρ,H] + LiρL

†
i −

1

2

{
L†iLi, ρ

}
(A.2)

where H is the Hamiltonian. Li are the collapse operators of the system, which describe
memoryless relaxation processes such as ohmic dissipation in resistors. To solve equation
2.26 numerically, express the density operator ρ as a vector |ρ〉 using the column-stacking
convention ∑

ij

ρij |i〉〈j| →
∑
ij

ρij |i〉 |j〉 . (A.3)

Left multiplication of ρ by an operator A transforms as

Aρ→ (A⊗ I) |ρ〉 (A.4)

where I is the identity operator of the same dimension as A. Right multiplication of ρ by
an operator B transforms as

ρB → (I ⊗BT ) |ρ〉 , (A.5)
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and so the master equation becomes

˙|ρ〉 =

((
−1

2
L†iLi +

i

~
H

)
⊗ I + I ⊗

(
−1

2
L†iLi −

i

~
H

)T
+ Li ⊗ (L†i )

T

)
|ρ〉 . (A.6)

This master equation is of the form ˙y(t) = Hy(t). Combined with initial conditions, this
initial value problem can be solved by any ordinary differential equation solver.
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