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Abstract

This thesis considers four different aspects of quantum information, AdS/CFT duality, and
the interplay between them.

First, we study the holographic complexity conjectures in detail for rotating black holes.
We focus on a particular class of odd-dimensional equal-spinning black holes for which
considerable simplifications occur. We study the complexity of formation, uncovering a
direct relation between the complexity of formation and thermodynamic volume for large
black holes. We also consider the late-time growth of complexity, finding that at late times
the growth approaches a constant, and that Lloyd’s bound is generically violated.

Second, we generalize the Gao-Jafferis-Wall construction of traversable two-sided worm-
holes to multi-boundary wormholes in asymptotically AdS spacetimes in three dimensions.
By focusing on a particular limit of the geometries where the horizons are exponentially
close to each other, and with the three-boundary wormhole as our main example, we show
that traversability between any two asymptotic regions in a multi-boundary wormhole can
be achieved. We discuss how this construction differ from that of Gao-Jafferis-Wall and
comment on its generalization to the case with non-trivial topologies.

Third, we propose an experimental set-up that uses well-tested techniques in cavity
optomechanics to observe the effects of the gravitational interaction between two quantum
micro-mechanical oscillators on the interference pattern of cavity photons through shifts
in the visibility of interfering photons. We show that the gravitational coupling leads to
a quantifiable shift in the period and magnitude of the visibility whose observability is
within reach of current technology. We discuss the feasibility of the set-up as well as the
gravity-induced entanglement between the two oscillators.

Finally, we propose a new approach to variational quantum eigensolver algorithms using
the principles of measurement-based quantum computing. In contrast to the circuit-based
model, our approach uses entangled resource states and local measurements to do the
function evaluations. We illustrate this with two schemes. The first scheme shows how any
circuit-based variational quantum eigensolver can be translated to a measurement-based
one. The second scheme provides a new approach for constructing variational families that
has no immediate analogue in circuit-based quantum computing. We discuss how both
schemes offer problem-specific advantages in terms of the required resources and coherence
times.
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(a) The visibility pattern of the photon field in the cavity system of rod m
before coupling it to rod M, showing periodic behaviour whose period is
determined by that of the oscillator 77 = 27 /€2, and the strength of its drop
at every period depends on the optomechanical coupling between the rod
and the photon field. (b) The shift in the magnitude of visibility from the
case with no gravitational coupling as a function of time due to the combined
effect of the modified period of the oscillator, 27 /Q, — 27 /w, = T, and the
action of the coupled Hamiltonian on the state of the system, as calculated
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arrow). The variational optimization exploits a custom state that is obtained
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cles). Their measurement in rotated bases R(f) with variational parameters
f transforms the ansatz state |1b,) into the output state |thou). (b) Direct
translation of a VQE circuit into a MB-VQE, as explained in section 5.3.
Left: a VQE circuit consisting of Clifford gates (black) and single-qubit
parametric gates (‘knobs’). Right: the corresponding MB-VQE, where the
Clifford part of the circuit has been performed beforehand. The custom
state consists of output (white circles) and auxiliary (orange circles) qubits
only; the latter are measured in rotated bases and are related to the ‘knobs’
in the circuit. . . . . . . ..o

Set of gates in MBQC. (a) Measurement pattern for a general single-
qubit unitary operation U (01,605,05). Qubit 1 is the input qubit. (b) Mea-
surement pattern for the C'X gate. Qubits 1 and 9 are the input qubits
(control and target qubits, respectively). . . . . .. ...
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2.3

5.4

2.5

Schwinger model. (a) Ansatz state and VQE circuit for S = 4 qubits
and K layers. Each layer consists of C'X gates and local rotations (orange)
parametrized by angles ¢, (with rotation axis v = z,2; i = 1,...,4). (b)
MB-VQE custom state for K layers. White circles are output qubits. Aux-
iliary qubits (orange) are measured in rotated bases R(6). (c¢) The order
parameter (@) vs fermion mass p plot. The dashed line and dots repre-
sent exact diagonalization (ED) and MB-VQE results, respectively, with
the number of layers K used indicated in the legend. The inset shows the
infidelity 1 — F between the output state and the true ground state. (d)
Relative energy difference AE/FE between the output state of MB-VQE al-
gorithm and the true ground state for p = —0.7, versus the number of
iterations in the optimization procedure. The variational parameters are
initialized at zero, and J =w =11in (5.13). . . . . . .. ... ... ... ..

Toric code notation. (a) Toric code for N, = 4 and N, = 5. Qubits
exist on the edges of the lattice, and two of the generators A, and Bp are
explicitly represented. Since the lattice lies on a torus, periodic boundary
conditions are enforced, as shown by empty dots. Schematic representations
of the logical-X and logical-Z operators in the case N, = N, = 2 are given in
(b) and (c), respectively. In the whole figure, links colored in blue (orange)

~

represent the action of the X (Z) operator on the corresponding qubits. . .

Edge decoration. Schematic description of the edge-modification tech-
nique used for the perturbed toric code MB-VQE. The edge connecting a
linked pair (m,n) of vertices in |¢,) (shown in (a)) is modified by adding
two auxiliary qubits in an arbitrary state (shown in (b)). The corresponding
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Chapter 1

Introduction

The motivation to find a theory of quantum gravity goes beyond the aesthetics of having
a unified theory of the fundamental forces in physics. There are many phenomenon in
the universe whose understanding seem to require precisely such a theory, such as the
singularity at the beginning of the universe and the interior of black holes. Unlike other
fundamental theories of physics, there is no experimental input to guide the development
of any theory of quantum gravity. Ultimately, this is due to the fact that gravity is many
orders of magnitude weaker than all other forces of nature at accessible energy scales.
However, as Einstein taught us in formulating his theories of special and general relativity,
one can still make progress in theoretical physics by relying only on thought experiments
and theoretical considerations.

Black holes, besides being fascinating astrophysical objects in their own right, have
become the standard theoretical tool by which quantum gravity is studied. This is because
it stretches spacetime to an extent that allows Planck-scale dynamics to be relevant for low-
energy experiments. This phenomenon was first famously illustrated by Hawking [9, 10],
who showed, first, that it leads to black hole evaporation and, second, that this evaporation
process is inconsistent with unitary evolution of quantum mechanics. This is the famous
‘Black Hole Information Problem’, which has become the central problem in quantum
gravity research since Hawking first formulated it. Any theory of quantum gravity is
expected to provide a clear answer to this problem.

Another clue for quantum gravity came from the study of black hole thermodynamics.
The Bekenstein-Hawking entropy [! 1] indicates that the number of degrees of freedom in
a black hole is proportional to its area. This is surprising since, in most thermal systems,
the number of degrees of freedom is always proportional to the volume of the system. It



was proposed by 't Hooft [12] and Susskind [13] that this, in fact, is a feature of quantum
gravity, which came to be known as the holographic principle. This is the idea that, in any
quantum system that involves gravity, the degrees of freedom of the system are secretly
encoded at the boundary of the volume it occupies [14].

The holographic principle is backed by evidence from one of the leading approaches
to quantum gravity, namely string theory. Our best understood and defined aspect of
quantum gravity within string theory is the AdS/CFT duality [15, 16, 17], which is a
perfect realization of the holographic principle, as it shows that quantum gravity defined
in anti de Sitter (AdS) spacetime is dual to a conformal field theory (CFT) living on the
boundary of the spacetime. This provides a complete non-perturbative description of the
gravitational theory in terms of a quantum field theory, and any question on one side
should, in principle, have a well-defined and computable answer on the other one.

Ever since its discovery, the AdS/CFT duality has been at the centre of many recent
advances in quantum gravity research. A large part of this work has gone to understand-
ing the dictionary that encodes the geometry of spacetime as quantum information in the
boundary CFT state; see [18, 19, 20, 21, 22] for reviews on these advances. These devel-
opments have culminated recently in a remarkable series of calculations of the quantum
information content of evaporating black holes [23, 21, 25], which explicitly show that the
entropy of radiation of evaporating black holes follows the Page curve [20]. It was then
shown [27, 28] that these results can also be derived purely from the gravitational path
integral, without assuming asymptotically AdS spacetimes or holography (see [29] for a
review). This example best illustrates one of the reasons why studying quantum gravity
in an imaginary universe with negative cosmological constant is not a waste of time: more
often than not, the general lessons learned are applicable to other spacetimes, including
our universe.

A large part of this thesis is concerned with understanding several aspects that lie at
the interface between AdS/CFT duality and quantum information. Therefore, to provide
context for this content, we begin with a high-level introduction and overview to AdS
spacetime and the AdS/CFT duality, based on the discussions in [19, 20, 21, 22].

1.1 The anti de Sitter universe

AdS spacetime is the simplest maximally-symmetric solution of Einstein equations with
a negative cosmological constant. Its geometry is best illustrated by considering a (D +
1)-dimensional flat spacetime with two time directions, U and V. The metric for this



spacetime is then

The AdS spacetime is the D-dimensional hyperboloid embedded in this geometry with
constraints

U VP4 X2 4+ X =1 (1.2)
where £ is the AdS length, which is related to the cosmological constant A by
(D—1)(D—-2)
A=— . 1.
20? (13)

This hyperboloid can be conveniently covered by so-called global coordinates
U=+V+r2cos(t/l), V =vV2+r2sin(t/l), X;=ry (1.4)

where Y, /i = 1 and fi; represent the angular coordinates on a sphere. The induced metric
on the hyperboloid (1.2) in terms of these coordinates then becomes

ds* = — (1+72/0)dt* + (1 + r2/€2)_1d7’2 +72d3, (1.5)

where r € [0,00), t € (—00,00), and d2%_, is the standard line element on the (D — 2)-
dimensional unit sphere. Note that, for r/¢ < 1, the geometry manifestly resembles
Minkowski spacetime. However, as r/{ — oo, we start to see the interesting boundary
structure that distinguishes AdS spacetime. The easiest way to describe this is with a
Penrose diagram, which can be obtained by rewriting the metric after the coordinate
transformation r = £tan p

ds® =

—dt® + (*dp® + (*sin® p dQ7 1.6
cot p L7+ Cdp® + Esin® p d€Y, ] (1.6)
where p € [0,7/2). By conformal compactification, we can ignore the divergent prefactor
and draw the Penrose diagram shown in figure 1.1, including the boundary at p = w/2. We
see that the main feature of AdS spacetime is that it has a timelike boundary of topology
R x SP~2 where R is the time direction. To illustrate, consider the radial geodesic equation

in AdS spacetime
dr(t)\* r(r)?
—FE +1 =0. 1.7

( dr ) Tt 2 (1.7)
The constant F is the conserved energy associated with the Killing vector 0;. From this,

it is easy to see that the equation of motion for timelike geodesics is a simple harmonic
motion with period 27/

d*r(t) r
=0 (1.8)




t = —o00

Figure 1.1: The Penrose diagram for AdS spacetime. The left boundary is the origin
of polar coordinates at r = 0 and the right boundary is the timelike boundary of AdS
spacetime at r = oo. The proper time at » = 0 is equal to the time coordinate ¢. This
means that a particle sent from the origin to the boundary will return in a finite proper
time. Due to the gravitational potential, massive particles cannot reach the boundary of
AdS and they follow a similar path to the one shown as the dotted line. The spacetime
extends infinitely far in time in both directions.

This shows that AdS spacetime has a confining gravitational potential so that particles
released from the origin experience a restoring force that returns them to the origin after
mf proper time, regardless of the initial energy E of the particle.

The AdS spacetime is maximally-symmetric with D(D + 1) /2 Killing vectors that gen-
erate its isometry group SO(D — 1,2), which is large enough to send any point in the
spacetime to any other point. Note also that, because of its timelike boundary, AdS space-
time is not globally hyperbolic.

A spacetime is said to be asymptotically AdS if it has a timelike boundary of topology
R x SP=2 and if its geometry approaches that of AdS near r — co. Perhaps the strongest
motivation to study such spacetimes is the AdS/CFT duality, to which we now turn.



1.2 An overview of AdS/CFT duality

The AdS/CFT duality was originally derived in the context of string theory, where it was
shown that a type IIB string theory in AdSs x S° is equivalent to N' = 4 super Yang-
Mills theory on R x S? with an SU(N) gauge group [15]. Tt is generally believed that this
result is an example of a more universal statement: any CFT defined on R x SP~2 (i.e.
the boundary) is equivalent to a theory of quantum gravity in asymptotically AdSp x M
spacetime (i.e. the bulk), where M is some compact (possibly trivial) manifold. This is
an example of a strong/weak duality, since in the limit when the field theory is strongly
coupled and has a large number of degrees of freedom (i.e. taking the 't Hooft coupling
A = g3 N large while fixing gyyr), the gravitational theory becomes fully described by
classical general relativity. So, the strongly-coupled regime of field theories that is hard
to access perturbatively can now be studied with classical general relatively and its higher
curvature extensions [30, 31, 32].

Observables in the boundary and the bulk are related to each other via the AdS/CFT
dictionary. The first entry in this dictionary is that the Hilbert spaces of the bulk and
boundary theories are isomorphic, Hpux = Hpay. This means that the spectrum of the
Hamiltonian is the same on both sides, and the symmetry generators of SO(D — 1,2) in
the CFT are equal to the bulk symmetry generators of asymptotically AdS spacetime.
Furthermore, local bulk fields ® can be related to boundary primary operators O with
conformal dimension A by

lim r2®(t, r, Q) = O(t, Q). (1.9)

r—00

The most interesting CF'T theories are those with excitations. Boundary excitations induce
field perturbations that propagate from the boundary to the bulk. This is clearly seen by
writing the CF'T partition function in terms of the quantum gravity partition function

Zgravity [(I)] = <6Xp (/ dth_Qﬁ OQOQ) > (110)
CFT
with the understanding that ¢ is the boundary condition of the bulk field . In the large
N limit, the saddle point approximation can be used to evaluate the gravitational partition
function, which is the essence of the power of AdS/CFT duality.

The most well-studied entry in the AdS/CFT dictionary in terms of connections with
quantum information is the holographic entanglement entropy formula. Entanglement
entropy is a field theory quantity used to understand important phenomenon such as
quantum phase transitions [33, 3] and the dynamics of strongly correlated systems [35, 36].



For CFTs with well-defined gravitational duals, the entanglement entropy of a boundary
spatial region R is given in the bulk simply by

A(Er)
Sp = 1.11
R=1in s, (1.11)
where &g is the bulk surface homologous to R in the boundary and A(Eg) is its area. This
is the celebrated Ryu-Takayanagi formula [37, 18], which was soon updated to include
time-dependence and quantum corrections [38, 39, 40]. It currently reads
A€
SR 4(C;R) + Sbulk(WR) (112)

where £ is now the bulk surface that extremize the entropy and is homologous to R,
Wk is the entanglement wedge of R, and Syux(Wg) is the von Neumann entropy of bulk
fields in Wg. The entanglement wedge Wg is simply the bulk domain of dependence
of a partial Cauchy slice ¥g such that 0¥ = R U Er. The quantum extremal surface
formula (1.12) has led to many applications and results, and reviewing them all is outside
the scope of this thesis. However, we mention here only two results. First, it implied
that AdS/CFT dictionary satisfied the feature of subregion-subregion duality, which is the
idea that the boundary subregion R encodes all information that is in the bulk subregion

W [11, 42, 43]. This was both inspired and explained by the quantum error correction
interpretation of AdS/CFT [11, 15], which gave rise to the use of tensor networks as toy
models for AdS/CFT duality [10, 17]. Second, the quantum extremal surface formula
(1.12) was the basis on which the quantum information content of evaporating black holes
was calculated in AdS/CFT [23, 24]. The subsequent derivation of the Page curve from
the gravitational path integral [27, 28] implied that the quantum extremal surface formula

(1.12) is a general formula for the fine-grained entropy of quantum systems coupled to
gravity, and is independent of AdS/CFT duality where it was first proposed [29].

The simplest realization of AdS/CFT duality is that between two copies of CFTs (la-
beled L and R) prepared in the thermofield double state

ITFD) = > e PEPRIE) @ |E) g (1.13)

J—

and the two-sided (eternal) black hole geometry [18]. There are at least two remarkable
consequences of this proposal. First, if we interpret the individual terms in (1.13) in
gravity as two disconnected asymptotically AdS geometries, then the proposal implies
that the superposition of these disconnected geometries is a two-sided black hole with a
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smooth (non-traversable) wormhole connecting the two sides, called the Einstein-Rosen
(ER) bridge. This is a manifestation of the ER=EPR idea [19]. Second, if we consider the
constant time slice that passes through the bifurcation point of the black hole geometry and
calculate the entanglement entropy of either the left or right CF'T's, we see that the quantum
extremal surface formula (1.12) reduces to the Bekenstein-Hawking entropy formula

Apn
4Gy
This is consistent with the fact that, in the thermofield double state, the black hole entropy

is equal to the entropy of a single CFT subsystem (i.e. the entanglement entropy measuring
the entanglement of the two CFTs with each other).

St/r = SBH = (1.14)

Finally, it is worth pointing out that, though originally derived in the context of string
theory, it has been suggested that AdS/CFT duality is logically independent from string
theory. For example, [50] suggested that gauge/gravity dualities exist for any non-Abelian
gauge theory. Furthermore, it was argued in [51] that diffeomorphism invariance makes
quantum gravity in asymptotically AdS spacetimes holographic.

1.3 Plan of the thesis

The organization of the thesis is as follows:

First, we consider the complexity=volume [52] and complexity=action [53, 5] pro-
posals, which were developed as new entries in the AdS/CFT dictionary that relate the
quantum complexity of CFTs with the bulk geometry dual to it. Little success has been
achieved in studying these proposals in the context of non-static solutions (e.g. rotating
black holes) where, due to technical reasons, the computation of quantities of interest
becomes convoluted. In chapter 2, we show how these difficulties can be overcome for
a special class of odd-dimensional equally-rotating black holes. Based on this technical
advance, we carry out a detailed study of holographic complexity in rotating spacetimes
in light of the two proposals. We study the complexity of formation, uncovering a di-
rect relationship between the complexity of formation and thermodynamic volume. We
consider also the growth-rate of complexity, finding that at late-times the rate of growth
approaches a constant, but that Lloyd’s bound is generically violated. Our findings gener-
alize the holographic complexity results found for static black holes to the case when there
is no time symmetry.

In chapter 3, we generalize the Gao-Jafferis-Wall [55] construction of traversable two-
sided wormholes in asymptotically AdS spacetimes to multi-boundary wormholes. In our
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construction, we take the background spacetime to be multi-boundary black holes in AdSs.
To achieve this, we work in the hot limit where the dual CFT state in certain regions locally
resembles the thermofield double state. Furthermore, we show that the hot limit makes
the causal shadow exponentially small in these regions. Based on these two features of
the hot limit, and with the three-boundary wormhole as our main example, we show that
traversability between any two asymptotic regions in a multi-boundary wormhole can be
triggered using a double-trace deformation. In particular, the two boundary regions need
not have the same temperature and angular momentum. We comment on the generaliza-
tion of this protocol to wormholes with more than three boundaries or with non-trivial
topologies. We also discuss the non-trivial angular dependence of traversability in our
construction, as well as the effect of the causal shadow region.

In chapter 4, we shift gears and turn away from AdS/CFT duality to consider the ex-
perimental study of gravitational effects in quantum regimes. In all experiments conducted
so far on the effects of gravity in quantum systems, gravity can be described by classical
theories only. It has been suggested that detecting the gravitational field of a mass in
superposition state, or witnessing gravity-induced entanglement, would constitute the first
experimental proof for the quantum nature of gravity. To this end, we propose an ex-
perimental set-up that uses well-tested techniques in cavity optomechanics to observe the
effects of the gravitational interaction between two quantum micro-mechanical oscillators
on the interference pattern of cavity photons through shifts in the visibility of interfering
photons. We show that the gravitational coupling leads to a quantifiable shift in the period
and magnitude of the visibility whose observability is within reach of current technology.
We discuss the feasibility of the set-up as well as the gravity-induced entanglement between
the two oscillators.

In chapter 5, we propose a new approach to variational quantum eigensolver (VQE)
algorithms in quantum computation. VQEs are strong candidates to be the first practically
useful application of near-term quantum devices, as they combine classical optimization
techniques with efficient cost function evaluations on quantum computers. We propose a
new approach to VQEs using the principles of measurement-based quantum computation,
which is in contrast to the circuit-based approach that have been studied so far. This new
strategy uses entangled resource states and local measurements to do the function evalu-
ations. We present two measurement-based VQE schemes. The first one shows how any
circuit-based VQE can be translated to measurement-based VQE. The second one provides
a new approach for constructing variational families that has no immediate analogue in
circuit-based quantum computing. We discuss how both schemes offer problem-specific
advantages in terms of the required resources and coherence times.

Finally, we present some summarizing thoughts and future outlook in chapter 6.



Chapter 2

Holographic Complexity of Rotating
Black Holes

2.1 Introduction

The AdS/CFT duality [15] continues to be the basis of many interesting connections be-
tween quantum information and gravity. Entanglement properties of the boundary CFT
can be precisely related to geometric quantities in bulk AdS spacetime, most notably
through the Ryu-Takayanagi construction [56, 57]. Studies of the growth of the ER bridge
in AdS black holes have led to speculations of its duality to the growth of complexity of
the dual boundary state [52]. This was refined to new conjectured entries in the AdS/CFT
dictionary: the complexity=volume (CV) conjecture [58, 59] and the complexity=action
(CA) conjecture [53, 51].

Complexity of quantum states is a measure of how hard it is to prepare a particular
target state |¢r) from a given reference state 1)) and an initial set of elementary gates G

Vi = Gn--- 9190 (2.1)

where ¢g,...g, € G. The complexity of a state |¢r) is then defined as the minimum
number n of elementary gates that can approximate it according to some norm, starting
from a fixed reference state [1g)

Clr)) = arg min 1 [9r) = Va [r) | (2.2)



In addition to discrete circuit models, complexity can also be defined for systems with
continuous Hamiltonian evolution generated by

U(t) = ?exp [—i/OtH(t’)dt'] , H(t) = ZY’“(t)Mk (2.3)

with boundary conditions U(0) = I and U(1) = V,,, where My, are the basis Hermitian gen-
erators of the Hamiltonian, and Y*(t) are the time-dependent control functions specifying

the tangnt vector Y (t) of a trajectory in the space of unitaries [60]. The time-ordering op-

erator | ensures that earlier terms in the expansion of the evolution operator U(t) act on
the state before later terms — i.e. going from right to left. Thus, continuous Hamiltonian
evolution defines a path in the space of unitaries of the circuit whose length is [61, (2]

D(U) = /01 F(U(t), U(t))dt (2.4)

where the cost function F(U(t),U(t)) is a local functional of positions along U(t) in the
space of unitaries, with the overdot denoting a ¢ derivative.! Thus,

C(l¢r)) = minD(U) (2.5)
U(t)

An ongoing topic of active research is the extension of the concept of complexity to quantum
field theories using the above geometric formulation of complexity (for example, see [63, (4,
, 00, 67, 68]). The above definition of complexity clearly has many ambiguities [0, (9]
associated with the choice of reference states, basis operators, and cost function, which
is expected to be related to the ambiguities associated with calculating the action in CA

proposal [70].

Complexity was originally discussed in the context of holography as the dual to the
volume of the ER bridge in eternal black holes [52]. The eternal Schwarzschild-AdS black
hole is dual to two copies of the CFT prepared in the thermofield double state [18]. The
volume of the ER bridge continues to grow in time even after the system thermalizes,
suggesting that any putative CFT dual to this quantity must be something that continues
to evolve after equilibrium is reached [71, 72]. It was proposed that this growth captures
some notion of complexity for the CF'T state.

The idea that the growth of the black hole interior is connected to computational
complexity has come to be refined into a number of concrete proposals, the most studied

!The properties of the cost function and its possible forms are discussed in [60)].
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Figure 2.1: Penrose diagrams for the eternal two-sided black hole and the two holographic
complexity conjectures. Left: CA conjecture states that the complexity is given by the
gravitational action of the WDW patch (shown in green for the case —t; = tg = 0). Right:
CV conjecture states that the complexity is given by the maximal volume slice connecting
the two boundary slices (shown in green for a general ¢, and tg). Also shown are the
regulator surfaces in red dotted lines.

of which are the CV and CA conjectures (see figure 2.1). The CV conjecture proposed
that the complexity of the TFD state at boundary section T is equal to the volume of the
extremal /maximal spacelike slice B anchored at ¢, and tg at the boundaries [59]

Cy(T) = max [%} (2.6)
where R is a length scale associated with the bulk geometry (usually taken to be the AdS
length ¢) chosen to make the complexity dimensionless. This was generalized to the CA
conjecture?, where complexity depends on the whole domain of dependence of B — a region
called the Wheeler-DeWitt (WDW) patch [53]. Explicitly, the CA conjecture asserts that
the complexity of the CFT state is given by the numerical value of the gravitational action
evaluated on the WDW patch:

Ca(Y) = IV;%W . (2.7)

Both the CV and CA conjectures have received considerable attention and basic proper-
ties of each are now well-established. Initially, attention was given to the idea that, within

2For a discussion of the original motivation of the CA conjecture see [5]
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the CA proposal, the late-time growth of complexity for the Schwarzschild-AdS black hole
is 7C4q = 2M [53, 54]. This was a suggestive connection with Lloyd’s bound and was argued
to support the idea that black holes are the fastest computers in nature [73]. However,
subsequent careful analysis revealed that this late-time value is actually approached from
above rather than from below, as Lloyd’s bound would require [69]. Tt is now believed that
the assumptions required for Lloyd’s bound may be incompatible with holography [74, 75].
Nonetheless, there have been several rather interesting connections uncovered between
complexity and black hole thermodynamics in both proposals, but the situation is espe-
cially clear in the CA proposal. For example, in the CA proposal the late-time growth rate
of complexity for two-horizon geometries reduces to the difference in internal energies (or
enthalpies) between the inner and outer horizons:

Ca=U, —U_=(F, +T.5,)— (F_.+T.S_), (2.8)

where F'is the free energy, S the entropy, and 7' the Hawking temperature, while the +/—
corresponds to the outer/inner horizon, respectively. This relationship was first observed
in Einstein gravity in [54], and then argued to hold for general theories of gravity in [70],
and established rigorously for the full Lovelock family of gravitational theories in [77] (see
also [78]). Many other properties have been explored, e.g., the effects of topology [79, 80,

, 81]. If there are topological identifications in the spacetime then the complexity is
rescaled by a factor dependent on the identifications [65].

In many instances, the properties of complexity are qualitatively similar in both the
CV and CA proposals. For example, both proposals account for the expected linear time
dependence at late times [59, 54] and both exhibit the switchback effect, which is the
expected response of complexity to perturbations of the state at early times [59, 82, 83].
However, there are some situations in which the two proposals differ in their behaviour [84,

, 85, 86, 81, 87, 88]. Understanding universal and divergent aspects of the two proposals
is useful as there does not yet exist a first-principles derivation for complexity in the
holographic dictionary.

Besides the time-dependent complexity rate of growth, another quantity of interest is

the complexity of formation [64] of a black hole
1
AC4(T) = — [Iwpw(BH) — 2Iwpw(AdS)] (2.9)

which measures the additional complexity present in preparing the thermofield double state
in two copies of the CF'T compared to two copies of the AdS vacuum alone. The complexity
of formation was first defined and discussed in [64] for Schwarzschild-AdS black holes in
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various dimensions, where it was found that it grows linearly with entropy in the high-
temperature (equivalently, large black hole) limit — that is, AC4 ~ k4S5, for a constant
kq that depends on the (boundary) dimension d > 3. These considerations were extended
to charged black holes in [69] where it was found that the functional dependence of the
complexity of formation is more complicated, but its dependence on the size of the black
hole was still found to be controlled by the entropy in the limit of large black holes.

Our purpose in this chapter is to study various aspects of the holographic complexity
conjectures for rotating black holes. The study of rotating black holes in the context of
AdS/CFT was initiated in [89, 90, 91, 92, 93], where the thermodynamic properties of the
black holes were compared with those of the boundary CFT. This holographic picture was
further developed for astrophysical black holes with the “Kerr/CFT correspondence” [94],
which conjectures that quantum gravity near the horizon of an extremal Kerr black hole
is dual to a two-dimensional CFT (for reviews see [95, 96]). Rotating black holes are dual
to thermofield double states with an additional chemical potential

|1"TFD> = Z e_ﬁEn/Qe_ﬁan/Q |En7 Jn)L ® |Env Jn)R (210)

1

associated with the rotation, where p = gy +- - -+ (p-1)/2, and p; is the chemical potential
associated with the angular momentum J; along the ¢; circle, with Z(/,{p;}) the grand
canonical partition function. The time evolution of the state is modified by the chemical
potentials

rTFD(ty,tg)) = e i Hetnl)ti—ilHr+nIR)tn |y TED) (2.11)

where (Hyp, Jp) and (Hpg, Jg) are the Hamiltonians and angular momentum operators for
the left and right boundaries, respectively.

To date, there have been only a few studies focussing on the effects of rotation in the
context of complexity, and these studies are further limited to a derivation of the late-time
rate of growth. The late-time complexity growth of Kerr-AdS black holes in CA conjec-
ture was calculated in [97]. The effect of a probe string attached to a rotating black hole
on its complexity was studied in [98]. One reason that a more detailed analysis is not
straightforward is the more complicated causal structure of rotating black holes. In the
case of rotating spacetimes, carrying out a computation of the action for a WDW patch
(or of the volume of a spacelike slice) is a technically formidable task. The description of
null hypersurfaces is somewhat complicated even for 4 spacetime dimensions [3], and no
generalization to higher-dimensional cases presently exists. Fortunately there is a special
case that renders the computations tractable: Myers-Perry-AdS spacetimes in odd dimen-
sions with equal angular momenta in each orthogonal rotation plane. Compared to the
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most general Myers-Perry-AdS black holes, these solutions enjoy enhanced symmetry that
considerably simplifies the analysis of the causal structure. This particular configuration
has some similarities with the charged case [68, 99], however, we shall see that there are
interesting differences.

One of our main motivations for considering rotating black holes is to help develop an
understanding of how the CV and CA proposals behave for less symmetric spacetimes. In
the context of the AdS/CFT duality, understanding how a quantity responds to deforma-
tions of the state or the theory itself has been a fruitful approach in understanding which re-
lationships may be universal and which may be specific to the state or theory. For example,
this approach has been used with some success in the context of higher-curvature theories
of gravity. Those theories introduce additional parameters into the action, which can then
be used to discern between the various possible CFT charges. This method has also been
used to understand the limitations of the Kovtun-Son-Starinets bound [100], argue for the
existence of c-theorems in arbitrary dimensions [101, |, and generate conjectures for the
universal behaviour of terms in entanglement entropy or partition function [103, , 105].
Similarly, our hope here is that the more complicated metric structure of rotating black
holes will help to discern both universal features of and particular distinctions between the
CV and CA proposals.

Along these lines, one of the main results of this chapter concerns a connection be-
tween the thermodynamic volume of the black hole and the complexity of formation in
both the CV and CA proposals. The thermodynamic volume is a quantity that arises
naturally when one extends the definition of Komar mass from the asymptotically flat
to asymptotically AdS setting [100, |. It also appears in the first law of black hole
mechanics, governing the response of the mass to variations in the cosmological constant
which, in this case, is interpreted as a pressure. In general, the thermodynamic volume
is an independent thermodynamic potential. However in certain cases (such as those in-
volving spherical symmetry) the thermodynamic volume and entropy are simply related
via S oc VIP=2/(P=1) Tn some instances, the thermodynamic volume can be related to the
spacetime volume inside the black hole [107, |. This fact has motivated some authors
to consider its relevance in the context of holographic complexity. However, the results
so obtained have either involved new proposals for complexity [109, |, or have used
thermodynamic identities to understand results in terms of the thermodynamic volume for
interpretational reasons [70, , |. Our result is, to the best of our knowledge, the
first to draw a clear connection between thermodynamic volume and the original CV and
CA conjectures. Since the role of thermodynamic volume in holography has been little
understood to date (though see [113, , , , , , , 120] for progress in this
direction), this result may be viewed as an initial step toward that goal.
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This chapter is organized as follows. In section 2.2, the geometry and causal structure
of the Myers-Perry-AdS spacetimes is given. Section 2.3 describes the terms of the action
calculations that needs to be evaluated to calculate the complexity according to the CA
conjecture as well as the framework to calculate the extremal volume in CV conjecture.
In section 2.4, we calculate the complexity of formation of the state (2.10) in reference
to the vacuum AdS state, according to both the CA and CV conjectures. In section 2.5,
we present the full time evolution of complexity rate of growth in both the CA and CV
conjectures. We discuss the implications of our results and point toward possible future
directions in section 2.6. A number of technical details and supporting calculations are left
to appendix A.

2.2 Myers-Perry-AdS Spacetimes with Equal Angular
Momenta

2.2.1 Solution and global properties

The Myers-Perry-AdS solution in odd dimension D = 2N + 3 is a cohomogeneity-(N + 1)
metric with isometry group R x U(1)¥+1 described by its mass M and N + 1 independent
angular momenta J; [121]. In the special case in which all angular momenta J;, i =
1...N + 1 are equal, there are considerable simplifications and the metric depends only
on a single radial coordinate and on the parameters (m,a) [122]:

ds* = —f(r)?dt* + g(r)*dr® + h(r)? [d + A = Qr)dt]” + 1*gupda” dz’ (2.12)
where
2 = 2\ 1 2
9 r 2m=  2ma 9 9 2ma 2ma
g(T) = (1+€_2_7"2—N+7"2]V—+2) ) h(T) =T (1+7’2N+2> ) Q(?”): 7"2Nh,27
(2.13)
and ,
r a
= — E=1-—. 2.14

We take m > 0 and by sending ¢ — —t, we can without loss of generality always choose
a > 0. The metric § is the Fubini-Study metric on CPY with curvature normalized so
that Ric(§) = 2(N +1)§ and A is a 1-form on CP” that satisfies dA = 2.J where J is the
Kihler form on CPY. The isometry of the spacetime is enhanced to R x U(1) x SU(N +1).
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The metric g satisfies the Einstein equations G, + Ag., = 0 with a negative cosmological
constant, normalized such that A = —(D — 1)(D — 2)/2¢?* where / is the AdS length scale.
The field equations can then be simply expressed as

(D-1)
/2
The solution above describes the exterior region of a stationary, multiply rotating asymp-

totically AdS black hole. The basic example is in D = 5, in which case N = 1 and we have
CP! = S? with the metric

Rab = — Jab - (215)

1 1 1
g= 1 (d92 + sin? 0d¢2) , A= 5 c0s Odp = J = ~1 sin 6df A do. (2.16)

The asymptotic region is obtained in the limit » — 0o, where we recover the usual AdSoy 3
metric provided we periodically identify ¢ ~ 1)+ 27. The line element above is valid in the
exterior region of the spacetime; that is we also take t € R and r, < r < oo where 7y is
the largest positive root of g(r)~2. We will discuss below how the metric can be extended
beyond r, to all » > 0. As we will review below, the hypersurface r = r, is in fact a
smooth Killing horizon with null generator

0 0 2ma

£:§+QH%7 QH: IN+2

—_— 2.17
ey + 2ma? ( )

Horizons are located at the positive roots of g(r)~2. They can be more easily studied via
the polynomial P(r?) where

2N+2

— + 2N OMZEg + 2ma’. (2.18)
Since there are only two sign changes between adjacent coefficients we can apply Descartes’
rule of signs to argue there can be at most two real positive roots x; > x_ > 0 assuming
m > 0. Thus we expect the causal structure to be qualitatively similar to that of a charged
black hole, consisting of an outer (event) horizon and an inner Cauchy horizon. We will
show this explicitly below. We can eliminate (m,a) in terms of (1, a)

P14 2 02)

= ) 2.19
" 2(zr2 — a?) (2.19)

P(z) =

A similar formula holds for m with r_ replacing r,. Note that regularity of the event

horizon requires that
1 N2
QH<—\/1+(— (2.20)

A N+ 1)r2
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with the bound saturated when the black hole is extremal.

When a = 0 the solution is just Schwarzschild-AdS. Then there is one horizon and
beyond this the function ¢, < 0 and g; > 0. The set r = 0, which is a spacelike
hypersurface, is then a curvature singularity. We will focus on the case a > 0, for which
the set 7 = 0 is still a curvature singularity but now is timelike (i.e. |dr|* — +o00). As
r — 0, the geometry of the base CPY collapses. However, h(r)? ~ r=2N as r — 0 so the S*
grows to an infinite size. Meanwhile gy ~ 2mr=2" is also diverging (and 0; is spacelike).
The metric still has to be Lorentzian however, since det g = —r*¥*2 < 0. Thus, instead of
the singularity being a timelike worldline, it is a timelike cylinder (i.e. at constant ¢ it has
St topology).

The conserved charges corresponding to mass and angular momentum are [121, ]

2
Govm (L@ v gy (2.21)
47TGN

M = =
2 2@2 47TGN

where
27TN+1

Q = ———

2N+ T N1

is the area of a unit 2N + 1 sphere. Note that M > 0 imposes the constraint Zr2 —a? > 0
from (2.19). We emphasize that the single angular momentum J corresponds to equal

angular momenta J; = J/(N + 1) in each of the N + 1-orthogonal planes of rotation. Next,
since the volume associated with (CPY, §) is

(2.22)

N
Vol(§) = =——— 2.23
o) = Fx 5 (223)
we can read off the area of a spatial cross section of the event horizon at r = r
2h (7 )r2N pN+1
Ay = - = Qonirh(ro)ri. 2.24
H (N + 1) 2N+1 (7”+)7“+ ( )

It is easy to check that h(ry) = r3/y/Zr? — a?. Furthermore, the event horizon has surface
gravity

wp = W)y prye

27"+

_ h(L) ((N+ 1) (1 T 7) - _QQ(; - %2)) . (22)

2
T+

1 [4m?a® o Tt 2mE  2mad?
9t = "2 { AN (T + 2 N2 + 72N )} (2.26)
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one finds that there is an ergoregion since g; > 0 in a region exterior to the horizon,
although for sufficiently large r, g < 0. Note that the ergosurface is never tangent to the
event horizon.

2.2.2 Extended thermodynamics

In addition to the mass M, angular momentum J, and angular velocity 2y given above,
the black hole’s entropy and temperature are given by

Q2N+1h(’l"+)’f‘3_N 1 Ti 1
S = I'=—((N+1D(|1+—=)— . (2.27
4G N ’ 27h(ry) (N+D L+ (2 1—ad*(x+ ) (2:27)
+
Within the framework of extended thermodynamics (see, e.g. the review [124]) one asso-

ciates a thermodynamic pressure with the cosmological constant via

A (N+1)(2N +1)
P=_ - 2.2
87TGN 87T€2GN ( 8)

along with

Vo VEr: —a?Ay n draJ _ ri(NH)QgNH . draJ (2.29)
2(N+1) (2N +1)(N +1) 2(N+1) (2N +1)(N +1) '

which is its conjugate thermodynamic volume. One can then check that the following first
law of extended thermodynamics holds for the Myers-Perry-AdS family [107]

dM =TdS + QgdJ + VdP (2.30)
along with the Smarr relation

ONM = (2N + 1)(TS +QJ) — 2V P . (2.31)

In what follows, it will often be convenient to work in terms of the parameters (4, 7_)
rather than (m,a). To make the connection between these quantities and the physical
parameters of the black hole more explicit, in figure 2.2 we plot the mass and angular
momentum as functions of . /¢ for different values of the ratio r_/r,. The basic conclusion
is that, for large black holes, both the mass and angular momentum grow with increasing
ry /. However, for black holes closer to extremality, the growth is stronger. Although we
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Figure 2.2: Left: A plot of the mass as a function of horizon radius for several values of
r_/r,.. Right: A plot of the angular momentum as a function of the horizon radius for
several values of r_/ry. In each case, the lower dark blue curve corresponds to r_/ry =
1/100, and this value increases in increments of 1/8 as one moves vertically in the plot
(lines of decreasing opacity). Both cases are for D = 5.

show this pictorially only for five dimensions, the plots are qualitatively similar in higher
dimensions.

We show also in figure 2.3 the angular velocity of the horizon as a function of r /¢, again
for different values of the ratio r_/r,. In the left plot, the dashed black line corresponds
to the case where the black hole rotates at the speed of light with respect to an observer
situated at infinity. For a ratio r_ /r, sufficiently below unity, the angular velocity exhibits
a minimum for some intermediate value of r; /¢ and then increases. When this minimum
coincides with the critical angular velocity €25, = 1/¢, the minimum disappears and the
angular velocity is a monotonically decreasing function of the horizon radius, asymptoting
to Qf, = 1/¢ from above. The minimum of the angular velocity coincides with the critical

value when
o\ 2 .\ 2N
1-2 (—) + <—> =0. (2.32)
T+ 7"_|_

Although it is not possible to obtain a simple-closed form, for five-dimensions it occurs when

r_/re =V NG / V2 and decreases with increasing spacetime dimension, asymptoting
to r_/ry = 1/4/2 in the limit N — oco. All black holes with r_/r, above this threshold
rotate faster than light. Provided that r_ /r is less than the value corresponding to the
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Figure 2.3: Left: Here we show the angular velocity of the horizon as a function of r /¢ for
several values of r_ /r,. The curves correspond to r_/r, = 1/100 (dark blue, bottom) and
increase in increments of 1/8 from bottom to top. The dashed black curve corresponds to
the critical angular velocity Q9, = 1/¢. Right: A plot of the value of r /¢ at which the

black hole rotates superluminally. The vertical line corresponds to r_/ry = v/v/5 — 1/1/2.

solution of (2.32), the location of the minimum of the angular velocity occurs at

Ty y2 — y2N+2 + (y2 — 1) 1 — y2N o
vi \/ T 9,2 1 o where y = . (2.33)

The equally-rotating Myers-Perry-AdS black holes considered here are unstable to lin-
earized gravitational perturbations when they rotate faster than light [122]. The instability
is ‘superradiant’ in the sense that certain perturbations are trapped by the AdS potential
barrier and are reflected back to the black hole, creating an amplification process [91].
Note that extreme black holes in this class always rotate faster than the speed of light
and are hence unstable. The endpoint of these instabilities are expected to be stationary,
nonaxisymmetric black hole. Although it will not be particularly important for the con-
siderations we are interested in here, it would be interesting to investigate the relation of
our findings to known results on the dynamical stability of rotating, asymptotically AdS
black holes.

2.2.3 Causal structure

Next, let us discuss the global structure of the spacetime. In general, the causal structure
of spacetimes with nontrivial rotation is far more complicated than that of their static
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counterparts. The reason for this, at least partly, is because in general rotating spacetimes
the null hypersurfaces are no longer effectively two dimensional as they are in the static case.
However, for the special case of odd-dimensional rotating black holes with equal angular
momenta, some of these difficulties can be circumvented, as first emphasized in [$1]. Let us
illustrate this, following the methods of [125, 3, 1] (see also appendix A.6). For convenience
we will focus on the non-extreme case ry # r_.

Our task is to construct a suitable family of null hypersurfaces. We start with an ansatz
v="t+7r(r ) (2.34)

where 1); stands for the various angular coordinates and r* denotes a suitable ‘tortoise’
coordinate. We then demand that dv — the one-form normal to surfaces of constant v —
is null, i.e. ¢g7'(dv,dv) = 0. A direct computation reveals that this condition admits an
additively separable solution:

r* = R(r) + Z U, (1) . (2.35)

Using an appropriate choice of integration constants the dependence on the angular coor-
dinates can be eliminated, leaving

a_ gr) _ g(r?hir)
dr  f(r) r

or in other words, r* is a function only of the radial variable, somewhat akin to the
static case. These rotating black holes possess the “simplest” causal structure, and are
therefore natural candidates for a first foray into the properties of complexity in rotating
backgrounds.

(2.36)

Unfortunately, the tortoise coordinate cannot be obtained in a useful closed form and
numerical techniques are required for its evaluation. However, for later convenience, here
we note both the asymptotic form of the tortoise coordinate, and that the integral can be
massaged into a form much more amenable to numerical evaluation.

Working to the leading order at which differences between the tortoise coordinate for
the black holes differ from that for global AdS we find

N+l (—1)FF1g2R42 p2(g2 — 202

)= 2 G e T N g

+ O(r—2N=5y (2.37)

k=0
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Of course, the tortoise coordinate will exhibit logarithmic singularities at the event and
inner horizons. To better understand the behaviour of the tortoise coordinate it is useful
to define
(O — ) R—
(7 =7 =)

where G(r) > 0 will be completely regular at both horizons. We can series expand the
integrand in the vicinity of the horizon to obtain the behaviour near the poles. We find

(2.38)

dr G(ry)h(ry) N

dr— 2r2(r2 —r2)(r —ry) +0) BAEE (2.39)
" dr* G(ro)h(r-)

dr — 22(r2 =) (r—r_) +HO() as o7 (2.40)

Noting this behaviour, we can then perform a splitting of the integral, subtracting the
pole contributions from the integrand to leave a completely convergent integral, and then
handle the poles separately. We choose

dr* ([ G(h(r) Groh(rs)  G(ro)h(r)
dr‘(mr?—ri)(r?—ra*n( )2 — %) r(ri—r2><r2—ri))
__ GEIMr) Gk )
ro(ri —=r2)(r2—r2)  ro(ri —r2) (2 —1r2)"

(2.41)

where we have kept (72 — 72) in the denominator to ensure that, when integrated, these
terms converge also as » — 0o. Note that the term in parentheses is now completely regular
at r = r4. The integrals involving the divergent parts can then be evaluated directly and
we obtain

iy = Glrblee) | =l GAr) =
2r2 (r2 —r?) r+ry o 2ri(ri —r?) r4r_
N /OO rory(rt — ri)G(r)h(T) —rryG(ro)h(ro)(r? —r3) + rr_G(ry)h(ry)(r? —r?)

dr .
r(r2 —r2)(r2 —r2)(rt —r2)r_ry "

(2.42)

Here we emphasize that the integrand in the last term is completely regular at both hori-
zons. Furthermore, in so doing we have extended the integration at infinity, choosing
r* — 0 as r — oo. This form of the tortoise coordinate is much more amenable to
numerical evaluation.
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By expressing the surface gravities at the inner and outer horizons in terms of G(r) we
find

(2 )

ke =+ 2.43
== Fhe) G0 249
which allows us to write the tortoise function in the simple form
1 |r —ry| 1 |r —r_|
r) =R —1 1 . 2.44
) = R0) + gotos () o o (M (2.44)

where R(r) is a smooth function defined by the integral term in (2.42).

So far we have shown that the null sheets v =constant in the equal-angular momenta
Myers-Perry-AdS solution have a particularly simple form compared to the general situa-
tion. We next turn to investigating the causal structure of the solution. To begin, we will
construct horizon-penetrating ingoing coordinates adapted to these light sheets. We first
pass to corotating coordinates

T=t, Pt =1 — Qut, (2.45)

so that the null generator of the event horizon & = d7. Next, we introduce new coordinates
(v,7,UT) by setting

v=T 471" U =gt — (Qy — Q) (2.46)

so that the metric becomes

2.2

ds’ = — <:)j;<r)2 + hQ(:)dvdr )X AUT + A+ (Qy — Q(r))do)2 + 17, (247)
The metric is clearly smooth and non-degenerate at both horizons (i.e. at poles of g(r)).
The coordinates cover one exterior region, and can be continued through the event horizon,
beyond the inner horizon, and finally to the timelike singularity at r = 0. However, as in
the well-known Reissner-Nordstrom case, to determine the maximal analytic extension, the
ingoing coordinates are not sufficient. To construct the required Kruskal-like coordinates,
we first define a new chart (v, u, ¥") where u = v — 2r* to obtain the metric in ‘double
null coordinates’

2
Wdudv + h(r)? (AU + A+ (Qu — Q(r))dv))” + r(u,v)g, (2.48)
where 7* = (v — u)/2. The metric (2.48) is clearly degenerate at both the event and inner
horizons. As r — r, we see from (2.44) that r* — —oo whereas as r — r_, * — o0.

ds® = —
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Therefore in a neighbourhood of the event horizon as r — r, v — —o0 or u — oo at the

rate )
v—u— —log (M) (2.49)
li+ 27"+

which implies that |r — 7| — 2r e as r — r,. We next define coordinates
Ut = —e ™" <0, VTi=e" > 0. (2.50)
Therefore as we approach the event horizon,

2 4 4.2 _ .2 4 2
T udv -~ ) o gy = A g gyt (2.51)
h(r)?g(r) h(ry)?G(ry) Ry
Furthermore it is easily checked that (25 —Q(r))dv is smooth as r — 7. This demonstrates
that the metric

2

Qy — Q(r))dV+> +r2g

(2.52)
is smooth and non-degenerate at the event horizon in the (U, V* ¥*) chart and we can
analytically continue the chart through the event horizon (UT = 0 or V* = 0) to a new
region UT > 0, V" < 0so that the metric (2.52) is regular for r_ < r < oco. The chart covers
four regions (quadrants in the (U™, V) —plane) with a bifurcation S* at (U*, V) = (0,0).
The coordinate system breaks down near the inner horizon as » — r_ and there are radial
null geodesics that reach this null hypersurface in finite affine parameter. We can extend
beyond this coordinate singularity by reversing the above coordinate transformations to
return to the ingoing coordinates (v, r, U"), which are regular at both horizons. Define

2 rPe + 17+ 2 +

=
/€+V+

T~ = Ut 4 (Qy — Qr ) (2.53)

so that in the (v,r, ™) chart, the Killing field 9, is corotating with the inner horizon
r = r_. Introduce a second double null coordinate system (o, 4) with

U=, u=uv-—2r", (2.54)

so that in particular r* = (0 — @)/2. The metric in the (0,4, U~) coordinate chart will
resemble (2.48) with the obvious replacements and hence will be degenerate at r = r_. We
then introduce a second pair of Kruskal-like coordinates adapted to the inner horizon by
setting

U =—e""<0, V =-¢""<0. (2.55)
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By repeating the above computations we find the metric in the (V—,U~,¥~) chart is

2k _r*

dV—
k_V~—

ds® =

rie” SdU~dV™ + h(r)’ <d‘1’_ A+ Q) = a(r)

PR ) o, (250

which is indeed smooth and non-degenerate at 7 = r_ using the fact that (r —r_)e 2" —
2r_asr — r_and (Q(r-)—Q(r))/V~ = O(1). In this coordinate system, the inner horizon

corresponds to either U~ = 0 or V~ = 0 and we may analytically continue the metric in
this chart to allow U~ > 0 and V'~ > 0, corresponding to 0 < r < r_. This region
contains a timelike coordinate singularity at r = 0, or U~V ~ = €2~ R Since this region

is actually isometric to a region for which the event horizon lies to the future, we can
introduce new coordinates (U*, V) and analytically continue the metric into new exterior
regions r > r, that are isometric to the original asymptotically AdS regions described
by the (U*, V™) coordinate chart. We can repeat this procedure indefinitely both to the
future and past to produce a maximal analytic extension with infinitely many regions (see
figure 2.4 below), qualitatively similar to the familiar maximal analytic extension of the
non-extreme rotating BTZ black hole [120]. Note that in contrast to the Kerr black hole,
and generic members of the Myers-Perry(-AdS) black holes, one cannot continue into a
region of spacetime for which r? < 0.

2.3 Framework for Complexity Computations

2.3.1 Framework for Action calculations

Given a D—dimensional bulk region M, the gravitational action, including all the various

terms for boundary surfaces and joints [127], over this region is given by? [70]
1 (L-1)D-2)\ p 1 / D1
Loy = ——— vV—g| R d — [ \/|h|Kd
T = 16mGy /M g( - 2 T Sraw VI ‘
1 1
d\d” 20 / dP? adP 2z (2.57
+ 87TGN B ﬁl{ + 87TGN J \/Elr] T 87TGN N \/Ea o ( )

The first term is the Einstein-Hilbert bulk action with cosmological constant A, which from

(2.28) is

D —1)(D - 2)
202 ’

3Note that we follow the conventions of [34] with the minor correction pointed out in [32].

AE—(

(2.58)
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integrated over M. The second term is the Gibbons-Hawking-York boundary term [128,

] that contributes at spacelike/timelike boundaries 3. The convention adopted here for
the extrinsic curvature is that the normal one-form is directed outward from the region
of interest. The third term is the contribution of the null boundary surface B’ of M.
For a null boundary segment with normal k® the parameter x is defined in the usual
way: kPVgk® = kk®, while 7 is the determinant of the induced metric on the (D — 2)-
dimensional cross-sections of the null boundary and the parameter \ is defined according
to k* = 0x“/OAX. The fourth term is the Hayward term [130, 131] for joints J between
non-null boundary surfaces — these terms will play no role in our construction. The last
term is the contribution of joints J’ from the intersection of at least one null boundary
surface [127]. The parameter a is defined according to

timelike/null : @ = elog |t; - ko with € = —sign(t; - ko)sign(n; - ky), (2.59)
elog |k - ny| with € = —sign(k; - ny)sign(k; - t2), (2.60)
null/null : @ = elog|(k; - ko)/2|  with €= —sign(k; - ko)sign(k; - ko), (2.61)

null /spacelike : @

where k; is a null normal, t; is a timelike unit normal, and n; is a spacelike unit normal.
Additionally, depending on the intersecting boundary segments, auxillary vectors — in-
dicated with a hat — are required. These unit vectors are defined by the conditions of
living in the tangent space of the appropriate boundary segment and pointing outward as
a vector from the joint of interest.

The action as presented above is ambiguous when the spacetime region of interest
contains null boundaries. Namely, the action is not invariant under reparameterizations of
the normals to the null boundary segments. To ensure this invariance we add to the above
the following counterterm [70]:

It O log l.:O/7d\d"” 20 (2.62)

B 87TGN B

where [ is an arbitrary length scale and

© = Oy log /vy (2.63)

is the expansion scalar of the null boundary generators, which depends only on the in-
trinsic geometry of the null boundary surfaces. While this term is not required to have
a well-defined variational principle, it is known to have important implications for holo-
graphic complexity — for example, it is crucial for reproducing the switchback effect in
the complexity equals action conjecture [132, 82, 83].
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A further difficulty is that the gravitational action is divergent. To control these di-
vergences (and allow for appropriate regularization in the complexity of formation calcula-
tions) we introduce a UV cut-off 4 at the boundary CFT and integrate the radial dimension
in the bulk up to r = rpa(0) [133, 131]. When calculating the complexity of formation,
the choice of ryax(9) for the black hole spacetime should be consistent with that in vacuum
AdS. This subtlety can be resolved [6] by expanding the metrics of both geometries in the
Fefferman-Graham canonical form [135] and setting in both cases the radial cut-off surface
at z = 9. We discuss the Fefferman-Graham form of the rotating metrics in Appendix A.1.

To evaluate the complexity within the CA conjecture, we must evaluate the gravita-
tional action and counterterm on the Wheeler-DeWitt patch of spacetime. Using the boost
invariance of the spacetime, it is always possible to shift the WDW patch so that it in-
tersects the left and right boundaries at the same times: —t;, = tg = 7/2. We show the
structure of the WDW patch in figure 2.4, which has the same structure for all the rotating
black holes considered here. Of particular importance are the joints where the future/past
boundaries of the WDW patch meet.

Let us determine the past meeting points of the boundaries of the WDW patch. We
denote the future meeting point as r,,, and the past meeting point as r,,,. Consider first
the past meeting point, and denote its coordinates inside the horizon as (¢,,,,7m,). From
the right side of the Penrose diagram, this point lies along a u = constant surface, while
from the left it lies along a v = constant surface. These facts translate into two equations:

tmg + T*(Tm2> =1+ T’Zo ) tmz - T*(Tm2) =1lr — TZO ) (264>

where 1, and tgr denote the timeslices at which the lightsheets intersect the left and right
boundaries, respectively. Note that ¢,,, is the same in both equations as those points lie
in a common patch of the diagram. Eliminating ¢,,, from these equations we obtain

trR —tL +2 (1" (rmy) —75) =0. (2.65)
Upon noting that ¢, = —tg (which implies ¢,,, = 0) and setting tg = 7/2 we obtain
S+ () 7 = 0. (2.66)

An analogous derivation holds for r,,,, the only difference being a sign in the last two
terms:

% — 1" () + 75 =0. (2.67)

Note that here we have chosen to use the time 7 instead of ¢ to avoid possible confusion
of this quantity with the ¢ appearing in the metric (which, when considering the patches
outside of the horizon, would be either ¢, or tg).
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In general the values of r,,, , must be obtained numerically. However, let us note that it
is possible, starting from (2.42), to obtain an asymptotic form of this quantity valid for early
times in the limit r_/r, — 0. This can be obtained by evaluating the integral appearing
in (2.42) perturbatively in r_ /r . Here we note the result only in five dimensions:

m(r2 + )+ (ry JO/ P+ 12 (P + 22 )er 2
+ + =

Tm & T_ {1+exp

(2.68)
where the dots denote subleading terms and € = +1 for r,,, and —1 for r,,,,. This expression
reveals that, as r_ /r, — 0, the value of r,,, tends exponentially towards the inner horizon —
consistent with the discussion of charged black holes in [69], albeit with a slightly different
rate of approach.

2.3.2 Evaluating the Action
Bulk Action

The bulk contributions to the action are very simple in this case since the black holes are
vacuum solutions. In particular, we have

2DA
= 2.
R D—2) (2.69)
and thus A
—2A = ) 2.
R (D—2) (2.70)

The bulk action is then simply the spacetime volume of the WDW patch weighted by this
dimension-dependent prefactor:
A

Ly = ———— V—qgdPx . 2.71
bulk 4(D—2)7TG o ga-x ( )

To evaluate the bulk contribution, we recall that the determinant of the metric is

V=g =" dn . (2.72)

We then split the integration domain into three regions where the (¢,7) coordinates are
valid, as shown in figure 2.4. In region I, the integration over tg is between 0 (i.e. t,,,) and
T

2 + i —r(r). (2.73)

tr =
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|r=o00

Figure 2.4: Penrose diagrams for the rotating black holes in (2.12) with the WDW patches
corresponding to the TFD state at Left: —t;, =tz = 0 and Right: —t;, =t =7/2 > 0 as
the green shaded region. Joints contributing to the action terms are highlighted with red
diamonds. Also shown are three regions I, II, and 11 defined for the bulk contribution to
Iwpw. The vertical dotted red line divides the WDW patch into two symmetric parts and
define the regions I, II, and III. The curved dotted red line is the cut-off surface r = 7., (0).

In region II the integration over ty is between

tr = %—r;ojtr*(r), and tg = %—1—7’;—7"*(7"). (2.74)
Finally, the integration in region III occurs between
T
tr==+71(r)—rk (2.75)

2
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and 0. We then have

AQon 1 /r+ T
bulk 4(D _ 2)7TGN - r 2 + Too r (T) T, ( )
200 T
Z’II —_ &/‘ 2N+1 x % d 277
bulk D —=2)7Gy /.. r (ric —r*(r)) dr, ( )
AQ "+ T
[ _ 2N+1 / IN+1 (__ - ) dr . 2.78
bulk 4(D _ 2)7TGN s r 2 + Too r (7”) r ( )

The total bulk action is then twice the sum of these three terms.

Surface contributions

There are two cut-off surfaces at r = r.,, and each contribute a term

1
Iy = —— [ V/|h|KdP 'z . 2.79
GHY 87G N /B ! ! 'y ( )
The normal to the timelike surface r = ry.« 1S

n* = (0,49, 0,0) (2.80)

and the induced metric to the timelike surface of constant r = r.x has the determinant

_ Vg
V| = N (2.81)

The trace of the extrinsic curvature of the boundary surface is then

1 1
9, (V=gn") = ——8, ( ) . 2.82
0, (V=) = 0. (Vi 28
This gives a contribution for the two boundary surfaces at r = ry., of the form

sty D28 - )

K=V, n'=

rg(r)?  g(r)?

Note that this term is time-independent, so it does not contribute to the complexity rate
of change dC4/dr. Furthermore, it does not contribute to the complexity of formation
AC 4 because it is cancelled by the contribution made by the AdSp vacuum — as shown
explicitly in appendix A.2.

Ieny = (2.83)

T=Tmax
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Joint contributions

There are two different types of joint contributions that arise here. First, there are the
intersections of the null boundaries of the WDW patch with the regulator surface at r =
rmax- Lhere are four of these joints in total. Second, there are the intersections of the null
sheets of the WDW patch in the future and in the past. Let us begin with the first case.

Considering the future, right boundary of the WDW patch near the regulator surface
T = 'max, the relevant null normal is given by

kp=aldt+dr, (2.84)
while the outward pointing normal to the surface r = ry.y is
n=g(r)dr. (2.85)

We need also a vector ¢ that is a future-pointing unit time-like vector directed outwards
from the region. In this case the correct choice is

t=—f(r)dt (2.86)

where we have written it as a form, but the sign is chosen so that the corresponding vector
is outward directed. The relevant dot products are easily computed

a . a
kr-n=——, kp-t=——, 2.87
S (O RN [0 250
and since f(r) > 0 near the boundary we obtain € = —1. We have then
a
a=—log—— 2.88
) 25

from (2.60), yielding
Qo a7 Vh(r) f(r)?

I:rmax = ]_ 289
Jnt 167Gy RPN (2.:89)

where we have made use of the fact that
ﬁ = T2Nh(T>dQQN+1 (290)

on the joint. Note that by d{2yn.1 we mean the volume form on the usual, round 2N + 1
sphere — when integrated over the angles this gives

27TN+1

ARESIE (2.91)

Qoni1 = /dQ2N+1 =
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Figure 2.5: The joints in the WDW patch in figure 2.4 and the associated vectors needed
to calculate their contribution to Iwpw, according to (2.59)-(2.61).

An analogous computation for the remaining three joints can be shown to yield the same
answer as that presented here.

Next let us consider the joints at the future and past meeting points of the WDW
patch. The determinant of the induced metric at the intersection of the lightsheets is given
by

\/’7 = h(Tm)TanngN+1 s (292)

where 7, is the value of r at the point of intersection. At the future meeting point the
relevant null normals are

kE=aldt+drt], ki =a[—dt+ dr* (2.93)

where, in determining the relevant signs, it is important to recognize that ¢ increases from
left to right inside the future horizon and dr* points in the negative dr direction inside
the horizon. Note also that the dt appearing in these normals is the ¢ that appears in the
metric, not the boundary time. We need also k — anull vector, living in the tangent space
of the right sheet of of the WDW patch that is orthogonal to k%, and outward pointing as
a vector. In this case, a one-form that points in the negative k% direction yields a vector
with the correct properties. We take

k= —[dt +dr] . (2.94)
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We then find for the dot products

202 2c0
KE . kEF = —— kE = , 2.95
A e A (O (299
yielding € = +1 and from (2.61)
. | ()|
a=—log a—; . (2.96)

Putting this all together we obtain for the joint contribution at the future meeting point

V0 (1, ) Qo | (romy )|

IF _ (Tml) mi 2N+1 1 mi ) 297

It 87 N 08 o? ( )
A completely analogous calculation gives an identical form for the joint contribution at the

past meeting point, with r,,, — 7,,.

Null boundaries

Since the normals to the lightlike boundaries of the WDW patch are affinely parameterized,
the boundary term on these surfaces makes no contribution. Nonetheless, we consider here
the contribution from the counterterm for null boundaries that ensures the total action
does not depend on the parameterization used for the null generators.

Considering the future segment on the right of the Penrose diagram, we have
0 Q@ 0

—_——— 2.98
N  g(r)f(r)or’ ( )
which yields
_Ldrdyi 1 dd()) o [N 299)
VA dA dr R(r)r2N da dr fg(r)y v R '
We therefore have for the counterterm
TFR _ Qo1 /Tmax log ¢ @M dr (2.100)
ct 87tG N oy 8 Let dr ’ )

We can use integration by parts to express this object in terms of two contributions at the
joints and an integral independent of o and £.;:

Q Qo1 [T o
e SN+l on rmax _ SdaN41 ON o
I = S [N (r)log £,0] 7 — (2 /Tm PN h(r) g dr (2.101)
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where here we have used the shorthand ©" = d©/dr. It can easily be confirmed that the
counterterm evaluates to the same result for the future left segment. Additionally, the
result for the past segments is equivalent with the substitution r,,, — 7,,.

2.3.3 Framework for Complexity equals Volume calculations

We will compare our results obtained for the action with the results within the “Complexity
equals Volume” framework [58, 59].* According to the CV proposal, the complexity of a
holographic state at the boundary time slice T is related to the volume of an extremal
codimension-one slice B by

Cy(T) = max [ZEVB]%} : (2.102)

The fact that the CV conjecture requires an (arbitrary) length scale R was originally used
as an argument in favour of CA over CV. However, there is as yet no universally accepted
prescription for computing the bulk complexity, and useful information can be gleaned by
comparing different proposals.’®

To find the volume of the extremal codimension-one slice B, write the metric (2.12) in

ingoing coordinates x* = <v,r, ﬁ), and parameterize the surface with coordinates y* =

()\, ﬁ), where O are the angular coordinates.® Below, we choose the symmetric case of
boundary times —t;, = tg = 7/2. The induced metric on the codimension-one slice is then
oxt
oy
where g, is the MP-AdS metric (2.12). The volume functional of this slice can be shown
to be

(2.103)

_ uV
Oab = €4€LGu, €4

V= / Vield” e =Qp_y / h(r)rP =3/ —f(r)20% 4 2g(r) f(r)0r dX (2.104)
where v = v(\) and r = r(\). We assume’ a parametrization where

h(r)rP=3\/— f(r)202 + 2g(r) f(r)07i = 1. (2.105)

4A related proposal, called the complexity=volume 2.0, was put forward in [109], which suggests that
the complexity volume is the spacetime volume of the associated WDW patch.

5Moreover, it was subsequently realized that the CA proposal also possesses an ambiguous length scale,
namely the one associated with the counter-term for null boundaries.

6This choice is possible due to the enhanced symmetry of the equal-spinning black holes studied here.

"This is possible because the volume functional (2.104) is reparametrization-invariant — that is, it is
invariant under A — A()\).
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This Lagrangian is independent of v and hence there is a conserved quantity (analogous
to energy) given by

B = =98 = h(rr 0 (1) — gl (). (2106)

Furthermore, we have from (2.105) and (2.106)
h(r)_2r_2(D_3)E2 + flr)? = h(r)2r2(D_3)g(r)2f(T)27'“2. (2.107)

The volume of this extremal surface is obtained by integrating (2.104) on-shell:

(
T'max Tmax 2,.2(D-3)
V=20, , / o h(r)2r P 3g(r) (r)
e T _— \/h 2p2(D— 3 ( ) + B2

where we included a factor of 2 to include the left half of the surface. Here we wish to take
Tmax tO be infinity, but this will yield a divergent result in general. A finite result can be
obtained by studying the time derivative of the volume (as relevant for the growth rate),
or by performing a carefully matched subtraction of the AdS vacuum (as relevant for the
complexity of formation). Here rp,;, is the turning point of the surface, determined by the
condition 7 = 0:

(2.108)

2D E2 4 Frmm)? = 0. (2.109)

min

h(rmin)_27"

A simple calculation shows that 7, will be on or inside the (outer) horizon, and so we
have that, using (2.106), f(rmin)? < 0,9(Amin) > 0 = F < 0 and we recall that f(r)?> <0
in the region between the inner and event horizon.

2.4 Complexity of Formation

In this section, we study the complexity of formation for rotating black holes in both the
CA and CV conjectures. In both cases, we verify convergence to the static limit and study
the dependence of the complexity of formation on thermodynamic parameters near the
extremal limit and for large black holes.

2.4.1 Complexity Equals Action

Within the CA conjecture, the complexity of formation is given by the difference between
the action of the WDW patch and the action of the global AdS vacuum both evaluated at
the 7 = 0 timeslice.
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Let us now put together the various pieces accumulated so far. First, consider the
sum of the joint and counterterm contributions. As we know from the general arguments
in [70], this result must be independent of the parameterization of the null generators, i.e.
independent of a. We find that

ggte)(TmaX)Q ‘ f(rmaX)2 |

Q
R R {r” h(7max) log

nt jnt - m max 2
EOm I ] Qo [ oy, €
— (roy )M h(rpm,) log - 1042 : — 47TGJ;V /Tm1 TQNh(r)g dr .
(2.110)
Note that this expression is completely independent of @ — © is proportional to a and

thus all o dependence precisely cancels out. This is, of course, necessary, but it nonetheless
provides a consistency check of our computations. It can further be shown — assuming
the scale ¢, is the same for both the AdS vacuum and the black hole solutions — that the
first term evaluated at ry.. cancels precisely with the corresponding ones occurring in the
global AdS vacuum. A completely analogous computation holds for the past sheets of the
WDW patch yielding the same result as above with the substitution r,,, — 7,,,. However,
in this case we can further simplify matters by noting that, since 7 = 0 for the complexity
of formation, 7,,, = ry, = rm,. Noting that for the AdS vacuum we have

ON + 1
Onds = # (2.111)

and combining the above with the relevant background subtraction we obtain for the joint
and counterterms:®

)2N+1

(erO(rmo)*1f (rmo)?|

Q 0
A (I + ) = — v (g INEL () N By log

- 21GN(2N +1)  47Gy a?
Qant1 /Oo N o’

- — —+1 . 2.112
G ), Y [ h(r) ot dr ( )

where we have extended the range of integration to infinity in the last term since the
subtraction has made the integral convergent. Note also that 7,,, is obtained by solving
the equation

7 (Fmg) =15 = 0. (2.113)

[e.9]

8In obtaining this we have made use of the fact that the caustics at the future meeting point of the
WDW patch do not contribute for global AdS.
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Figure 2.6: A plot showing the value of 7, vs. r_/r, for several different values of r, /¢.
The curves correspond to ry /¢ = 5,10, 50, 100 in order from bottom to top.

For the case of the complexity of formation, additional simplifications occur for the
bulk integral. It becomes (including the necessary factor of two)

AQ2N+1 /T’max oN
Ly = ———"-—""— Fhpr g dr. 2.114
bulk 2N + 1)7rGN - r [Too r (7”)] r ( )

Since r* must be computed numerically, followed by a numerical evaluation of this integral,
it is actually more convenient to use integration by parts to eliminate the appearance of
r*(r) inside this expression, leaving only a single integral to evaluate numerically. Doing
so, we find that
AQQN+1 Tmax
Thu = PPN [ (o
P O(N +1)(2N + )Gy Iro = r(r)]

+/ T2N+1g(r)2h(r)dr

Tmg 0

(2.115)

Note that the evaluation of the first term at r,,, vanishes by virtue of the equation defining
Tmo- 1t can further be shown, using the asymptotic form of the tortoise coordinate, that
the evaluation at 7., cancels with the analogous one coming from the global AdS vacuum.
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Figure 2.7: A plot showing the complexity of formation in the action formalism for different
values of r, /¢ and for D = 5. The curves correspond to ry /¢ = 5,10, 50, 100, 200, 300 in
order from bottom to top in a vertical slice on the right side of the plot. Here we have set
gct - g

Taking this into account and performing the background subtraction we obtain the result
AQyn1a / * N r
AT I +1 2h R I
P TSN T DN 1 DGy |, 9y ) = e ) 4

Tmg 7,,2(N+1)
— —d 2.116
/0 1+ r2/0? r] ’ ( )

where we have extended the range of the first integral to » = oo since the subtraction has
made it convergent.

The most complicated aspect of determining the complexity of formation within the
action framework is computing the value of r,,, numerically. We show in figure 2.6 the
resulting curves for several values of r, /¢. The difficulty arises in determining accurate
results in the limit where r_/r, becomes small. As discussed previously, in this limit the
value of r,,, can be worked out perturbatively and, for five dimensions, reads

7_‘_6(7,,2 +£2) 7,2
Timg = T— {1+eXp(—r+(€2+—+2Ti)r—;r+'”)+“'} . (2-117)

Thus, as r_/r, — 0, the difference between 7,,, and r_ tends to zero like exp(—1/r%),
and so increasing numerical precision is required in this limit. For sufficiently small r_ /7
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the problem effectively becomes numerically intractable and we are forced to resort to
perturbative techniques.

In figure 2.7, we show the complexity of formation AC4 for five-dimensional rotating
black holes with different values of 7, /¢. There are a few noteworthy things here. The basic
structure of the curves is qualitatively similar for different values of r,/¢. A somewhat
strange feature is that there is a range of parameter values over which the complexity
of formation actually becomes negative. While strange, it must be kept in mind that
complexity of formation is a relative quantity: it is computed by subtracting one (infinite)
result from another. Moreover, in some cases, namely involving gravitational solitons, a
negative complexity of formation has been previously observed [79, 81], and so this result
in and of itself is not new. While there is an intermediate regime in which the complexity of
formation is negative, it is always positive at the two extremes of the plot: in the extremal
and nonrotating limits. That the former is true is obvious from the plot, but the static
limit is subtle and requires additional scrutiny.

The static limit is examined in detail in appendix A.3. Here, for conciseness, we will
present a discussion relevant to the five-dimensional case. In the static limit r_/r, — 0 all
contributions to the corner/joint term vanish except for the term involving the logarithm,

QQN—H 2N gzt@(rmo)2|f(rmo)2|
TGy o) hlrm ) log aQ . (2.118)

Using the perturbative expansion for r,,, shown above, we can work out that this term
yields a finite limit

O )2 f (T )| WQTi(ri + 62)3/2

QQN-‘r—l 2N
7 (Fng) 1
(o) {1y ) Lo ? TGN+ 2r2)

B 47TGN

(2.119)

and we reiterate that here we are considering the case of five dimensions (N = 1). This
result is ezactly half the contribution arising from the GHY terms on the future/past
singularity in the Schwarzschild-AdS geometry. A similar analysis can be carried out for
the bulk term, which in the static limit (see appendix A.3 for details) yields

lim Al = ALY (2.120)
r—/r4+—0
That is, the bulk contribution of the rotating black hole limits to exactly the bulk contri-
bution for the non-rotating black hole. As a result, there is an order of limits problem for
the action computation: taking the static limit of the action result gives an answer that
does not agree with the direct computation done for the Schwarzschild-AdS black hole.
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It is insightful here to consider how this limit compares with the analogous neutral
limit for charged black holes. Again, we consider this in full detail and in all dimensions
in appendix A.3. For the charged black hole, the joint term reduces to a fraction of the
Schwarzschild-AdS GHY term in the neutral limit, while the bulk action for charged black
holes reproduces the full Schwarzschild-AdS bulk action along with the remaining fraction
of the GHY term. Thus, for charged black holes, there is not an order of limits problem.
However, the manner in which the various terms conspire to give the neutral limit is rather
nontrivial. The main difference here in the rotating case is that the limit of bulk term does
not include an additional fraction of the GHY term. This can be traced, mathematically,
to the behaviour of the metric function A(r) in this limit.

It should be noted that while when a = 0 the metric is simply the usual static AdS
black hole, the limit considered here is different and this is the mathematical reason behind
the order of limits issue. Effectively, here we are simultaneously zooming in on the inner
horizon while taking the limit »_ — 0. In this limit the metric function h is not simply
r (as it would be for the static black hole), but instead it limits to a constant value. As
discussed in appendix A.3, this behaviour is the source of the order of limits issue, which
in general dimensions becomes:

]Schw
r_}'%ffio TACA = NG—:{LYl + AR £ g ACPY (2.121)

where the complexity of formation of the static black hole ACZ™ is the sum of the bulk

form
Afgffﬁ? and surface Ié%%v contributions.

There are (at least) two perspectives one could have on this issue. First, it could be
viewed as simply a genuine feature of the CA proposal. The CA proposal is highly sensitive
to the detailed causal structure of spacetime, and the order of limits issue found here is
not the first of its kind. For example the rate of growth of complexity for dilaton black
holes was found to be highly sensitive to the details of the causal structure [136]. Moreover
in the usual framework the complexity growth rate for magnetic black holes is precisely
zero [130, ], leading to an obvious order of limits problem (though it is possible to
remedy this case through the addition of an electromagnetic counterterm). Furthermore,
the growth rate of complexity for charged black holes in higher-curvature theories exhibits
an order of limits problem in the neutral limit [97, 77, ]. Thus there is precedent for
subtle behaviour of the CA conjecture, and it would be interesting to better understand
whether this is consistent with CF'T expectations.

An alternate perspective is that this order of limits issue is a problem that must be
resolved. One means to do so is to consider an alternative regularization scheme for the
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Figure 2.8: Comparing the complexity of formation near extremality normalized by the
thermodynamic volume (left) vs. the entropy (right) for D = 5 black holes. The curves
correspond to 1, /¢ = 50,100,200 corresponding to the blue, red dashed, and green dot-
dashed curves respectively. Here we have set £ = /.

WDW patch — which we explain in detail in appendix A.4. The basic idea is to introduce
space-like regulator surfaces cutting off the future and past tips of the WDW patch at
r = Tm, + Ar. This could be motivated from the perspective that the inner Cauchy
horizon is expected to be unstable to generic perturbations [139, , ], and therefore
this cutoff would encode some level of agnosticism of what happens precisely at the inner
horizon. This leads to a well-defined static limit to the complexity
lim  lm 7AC4 = Ig5N + ALY = mACR™ (2.122)
Ar—0r_/ry—0
but it must be noted that the limits do not commute. Moreover, for sufficiently small
Ar there is no appreciable effect of this term on the results when both r_ and r, are
sufficiently large, but it becomes important in the limit r_/r, — 0.°

Let us now leave aside this issue of limits and consider in more detail some further
interesting properties of the complexity of formation. Our focus here is primarily on the
scaling behaviour of complexity in the limit of large (r, /¢ > 1) black holes. For neutral
and charged static black holes this behaviour is governed by the entropy [0, (9], leading
to the idea that the complexity of formation is effectively controlled by the number of

9Tt is also worth noting that there appears to be no simple modification of the action proposal itself
that would account for the order of limits problem. For example, if one considers only the bulk action
as the relevant term then there would be no order of limits issue for rotating black holes, but it would
introduce one for charged black holes — see appendix A.3.
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degrees of freedom possessed by the system. We can schematically write this relationship
for charged black holes as:
harged K
ACZ aree T+N SlOg ? + f(El)S (2123)
!

where p is the chemical potential and ¢; represent various parameters that characterize the
state, such as p or T'. The function f(¢;) has a smooth, non-vanishing limit as ¢ — 0. The
relationship above is schematic and so neglects possible constant terms in the coefficients
and so on. However it conveys the important features: the complexity of formation exhibits
a logarthmic singularity near extremality and the general form is controlled by the entropy.

We consider the analogous problem in detail for rotating black holes in appendix A.5.
Again, there is a logarthmic singularity in the extremal limit that is controlled by the
entropy. However, the general behaviour is markedly different. The schematic form for the
complexity of formation for large rotating black holes takes the form

AC4 ~ Slog Qa Fle)V D1, (2.124)
1 T
where 1y is the angular velocity of the horizon, V' is the thermodynamic volume and
again f(e;) is some function of the ratio r_/r, (which could, of course, be reexpressed as
a function of Qg and T"). The implication of the above relationship is that, for sufficiently
large black holes, the complexity of formation is always controlled by the thermodynamic
volume rather than the entropy. The validity of this conclusion can be seen clearly in the
plots shown in figure 2.8 for five dimensions — see also figure A.7 in appendix A.5. We
emphasize that this observation is possible due to the independence of the thermodynamic
volume and the entropy for rotating black holes. In the case of static (charged or neutral)
black holes, these quantities are not independent and one is free to write the final result in
terms of either S or V' as the two quantities are related by
S ~ yP2AD-y (2.125)

static limit
We will return to discuss the implications of this result in the discussion.
2.4.2 Comparison with Complexity=Volume Conjecture

The complexity of formation in the CV proposal is straightforward to calculate. The
volume of the maximal slice in vacuum AdSp is

Thax  pD—2 r2
=Qp_ d =1+ —. 2.126
Vo D 2/0 0 r, o fo(r) + Iz ( )
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Figure 2.9: Here we show the complexity of formation within the CV proposal. Left: The
curves correspond to ry /¢ = 9/10,1,11/10 from bottom to top for D = 5. The complexity
of formation diverges in the extremal limit and tends to a constant (r /¢-dependent) value
as r_/ry+ — 0. Right: The same curves now plotted against the rotation of the boundary
CFT in the form of the ratio Qp/Qexy Where Qg is the angular velocity of the boundary
CFT and .y is the zero temperature limit of this angular velocity.

In the black hole geometry, we are interested in the maximal slice at 7 = 0. In this case
we have rpi, = 7, which gives F = 0 from (2.106). The complexity of formation is then

/rmax h(T)TD—:"g(r) dr — /Ormax r;O_(QT) dT] . (2127)

The integral can be evaluated numerically in a straightforward manner, and we show some
representative examples in figure 2.9. The qualitative structure of the curves is independent
of the value of r, /¢. Though, since ACy, is not a homogeneous function of r /¢, there is no
simple factor that collapses the different curves to a single line for all values of r, /¢. When
r_/ry. — 0, the complexity of formation tends to a constant value, whereas it diverges
in the extremal limit. This divergence is consistent with results obtained previously for
charged black holes [69].

V-2V, 20p,

A: p—
& GnR GnR

In the CA framework we encountered an order of limits issue when taking r_ /r, — 0.
Here there is no such issue, which is due to the fact that the CV proposal is less sensitive
to the detailed properties of the causual structure than the CA proposal. In the static
limit, the complexity of formation (2.127) reduces directly to that of the static black hole

ACEM™ [64] since .
IIIEI(I) h(T)g(T) = fSTW(T) (2128)
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Figure 2.10: Here we show the complexity of formation within the CV proposal near
extremality. Near extremality, the complexity of formation diverges logarithmically. In
the left plot, we compare with the thermodynamic volume, while in the right plot we
compare with the entropy. In each case we have defined ACy, = GyRACy, /¢ to simplify the
plot labels. In each case the curves correspond to r, /¢ = 50, 100,200 (solid blue, dashed
red, and dot-dashed green, respectively) for D = 5.

where f5%(r) is the metric function of the Schwarzschild-AdS spacetime.

It is interesting to further compare the general behaviour of the complexity of formation
of large black holes within the CV proposal to the CA proposal. The details of this analysis
are presented in appendix A.5, but the conclusion is the same. The complexity of formation
exhibits a logarithmic singularity near extremality that is controlled by the entropy, while
the non-logarthmic terms are controlled by the thermodynamic volume. Thus we once
again arrive at the result that for sufficiently large black holes the complexity of formation
is controlled by the thermodynamic volume:

D

0 . _
ACy |~ Slog —L + fe)V o1, (2.129)

+>1 T

N

The validity of this can be seen directly in figure 2.10 — see also figure A.6 in appendix
A5,

2.5 Growth Rate of Holographic Complexity

In this section, we use the CA and CV proposals to study the full time evolution of holo-
graphic complexity of the boundary state (2.11) dual to the MP-AdS black hole geometry.
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Our interest here will be in understanding the growth rate of complexity, and how this
quantity evolves in time.

2.5.1 Complexity Equals Action

As before, we begin our considerations with the action conjecture. The various terms
appearing in the computation were assembled in section 2.3, and here we proceed and use
these directly. Taking the time derivative of all action terms, we see that only the bulk
and joint terms contribute, giving

dr TG N2

dlwpw (D —1) xQp_y /rm2 P2NHL g

1
2

QD72 2N o 9N (fQ)/ der
h(r)) 1 — 22N p ()2 4ms
e {& (r*Yh(r)) log zerpz| (r) T2 M
Qp_s 9N a? N (f2) drpn,
+ &l [& (r*"h(r)) log R 2r*Mh(r) 7l (2.130)

The first line in the above is the time derivative of the bulk action, while the second
and third lines correspond to the time derivatives of the combined joint and counterterm
contributions at the future and past tips of the WDW patch. We recall that since © x «,
this result is actually independent of the parameterization of the null vectors normal to
the WDW patch, as it must be. From (2.66) and (2.67),

Army _ _Lf(rmy)  drmn, 1 ()

dr 2 9(Tm,)’ dr 29(rm,)’

(2.131)

and so once the values of r,,, and r,,, are known, it is possible to evaluate directly the
growth rate of complexity.

Just as in the case of the complexity of formation, the difficulty here arises in determin-
ing the values of r,,,, which is a numerically subtle problem. We show some representative
results in figure 2.11. While we show the results here for a particular value of r, /¢, this is
unimportant for understanding the general behaviour which depends much more strongly
on the value of r_/r,. We see from the top-left figure that, when r_/r, is a small value,
Tm, and 7,,, present a phase where they are effectively constant. The implication of this
is a period in the growth rate where the complexity effectively stalls and does not exhibit
significant dependence on time. As r_/r, increases, r,,, exhibit stronger time dependence,
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Figure 2.11: Here we show plots of r,,, (blue) and r,,, (red) as a function of time. In each
plot we have set r, /¢ = 10, while the different plots correspond to r_/r, = 1/20,1/10,3/4
(left to right).
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Figure 2.12: Here we show plots of the growth rate of complexity as a function of time.
In each plot we have set r, /¢ = 10, while the different plots correspond to r_/r, =
1/20,1/10,3/4 (left to right). We have set {.; = 1. The dotted black line shows the growth
rate of complexity in the limit 7 — oo.

but generally become “squished” in a smaller interval (since they must lie between r_ and
r4). In all cases, 1, and r,, asymptote to the inner and outer horizons, respectively.

Once the values of r,,, have been determined, it is straightforward to determine the
growth rate as a function of time. We show representative results in figure 2.12 for the
same cases for which we displayed 7,,, in figure 2.11. The results are qualitatively similar
to what has been previously observed for charged black holes (c.f. figure 10 of [69]). There
are some general features that can be remarked on. First, we note that in the limit of small
rotation (equivalently, small r_/r, ) the growth rate develops a minimum. As the rotation
is decreased, the minimum becomes sharper and deeper. Moreover, in the same case, the
growth rate exhibits a phase where it is close to zero before this oscillatory behaviour
manifests. These observations are consistent with the growth rate limiting to that of the
static black holes [09]. As the rotation is increased, both the late-time limit of the growth
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Figure 2.13: Here we show a plot of the growth rate of complexity for the parameter choices
ry /0 =10, r_/ry = 1/10 for the choices ¢, = 10,1,1/10 corresponding to red, blue, green
curves, respectively — or bottom to top. The dotted black line shows the growth rate of
complexity in the limit 7 — oo.

rate decreases and the transient oscillations become less significant. The ultimate limiting
case is the extremal limit, where the late-time growth actually goes identically to zero (this
will be justified below). While we have shown the growth rate for the particular choice
of ¢, = 1, the precise value of this parameter affects significantly only the early-time
behaviour — we show an example of this in figure 2.13.

Perturbative expansion at late times

Having presented numerical computations for the full time-dependent growth rate of com-

plexity, let us now turn to discuss some general features at late times. At large 7, using
(2.42), we can solve (2.66) and (2.67) perturbatively to find that

r2(ri — 7’%)7’:|) N
G(r-)h(r-)
ri(ri —r?

Py (T) = 71 (1 — cpexp [— Wh(rﬁ;]) +.. (2.132)

Ty (T) = 7 (1+cleXp {—
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where the dots indicate subleading terms in the large 7 expansion and

72 G(ry)h(ry)

ry — 1\ G nt) 2r2 (r3 —r?) /°° N
=9 ) H d
o =2(r) SR ALl

%G@_)h@_) 5 2( ) 2) -
—r_ rZ G(ro)h(ry) —
ey = 2(” " ) P exp {— #/ H() dr'] (2.133)
Ty +T- G(ro)h(ry) Jo,
where H(r) is the integrand of R(r) defined in (2.44). In the limit 7 — oo, it can be shown
that /
)M _L(Ti) — 27T, (2.134)
( ) 9(r) |, 2h(ry)

where we have introduced the notation G(r) = g(r) ">, T% is the temperature of the black
hole at the horizon ry given in (2.27), and

lim f(rmy) zgtt(rrm)

f(rm2> 1
3 —— 10
riny—=7— §(Timy) (2,0(rm,)

) 02" (1)
rmy =+ G(Tms)

0(r,)?

log

= 0. (2.135)

Expanding (2.130) in this limit using (2.132) gives

dIWDW _ d[WDW QD—2

dr dr | . 8mGy
PPHD = 3)h(r) k) [ rdt =)
( Gl )2h(ry ) ’ p{ G(r)h(r >]

(ri —r? )27'

P (D = 3)h(r_) + o b (r2)) r2(rd —r2)r
_ = e o 2.136
Gy e | - ey ) e @19
where the dots indicate subleading terms in the large 7 expansion, and
dIWDW B QD—Q iN+2 ,r,%N—i-Z N 2N+1g< ) T%N—Hg/(r_)
dr | . 8GN 2 2
Qp_o o 1 1
= 2 — — | (N+1
StGy [T2 T?J (N+1)
QD 2 2m 2m
2 N+1
87rGN ma [r2N+2 +2ma? AN 4 QmCLZ} (V+1)
(Q_—Q.)J. (2.137)
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It is easiest to see the equality of the second and third lines by writing the parameters
(m,a) in the bracket in the third term in terms of (ry,r_), which yields the second term.
Furthermore, this agrees with

T+
dl bulk

=M-TS-QJ
dr

(2.138)

T—00 T—

which is the difference in thermodynamic free energy between the outer and inner horizons,
and
Al

=T
dr o

T—00

(2.139)

T—

where we note that Sy is given by (2.27). Therefore, the late-time complexity rate of

growth is simply the difference in internal energy between the outer and inner horizons!'®
dC 4
WW = (F++T+S+) —<F_+T_S_> :U+—U_ (2140)
T—r00

where F} and UL are the free and internal energies, respectively, of the outer and inner
horizons. The second term in (2.136) was checked for various dimensions and found that it
is always positive and less than 1. This strongly suggests that the late-time limit of action
rate of growth (2.137) is always approached from above.

Using the fact that the Smarr relation (2.31) holds for both outer and inner horizons,
we can rewrite (2.140) as

WCiC_‘A
dr

- T+S+ - T_S_ —

T—00

A 2.141
2N +1 v ( )

where AV =V, — V_ is the difference between the thermodynamic volumes of the outer
and inner horizons. Interestingly, in the limit of large black holes, the T'S factors and PAV
term become proportional to each other and one can show that

2N +2
2N +1

AV. (2.142)

T—00

As will be shown below, a similar result also holds for the complexity rate of growth in CV
conjecture.

10This thermodynamic interpretation of complexity rate of growth was first noted in [76]. In [77] it
was shown to hold for charged black holes in Lovelock gravity. Thus, we expect that (2.138) and (2.139)
exhibit a universal feature of complexity growth in black holes with two horizons.
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2.5.2 Comparison with Complexity=Volume Conjecture

We will compare the complexity rate of growth according to the CV conjecture dCy,/dr with
the results found according to the CA conjecture. The volume of the extremal codimension-
one slice was found in (2.104). To relate to boundary time, note first that

Umaz = tR + T*(OO), Umin = ZSmm + r*<7amin) (2143)

where t,,;, = 0 by left-right symmetry (we have left-right symmetry because the functional
V is invariant under t — —t and a — —a), and r,,;, is defined by (2.109). Therefore,

VUmazx Tmax E
tr+ T*(OO) - r*(rmin) = / dv = / g(r)
Vimin Frvin f(r) \/h 272(D-3) f ( )2+ B2

+ 1| dr

(2.144)

where we used (2.106). Note that the integrand here is convergent at r = r... Finally, it is
easy to see that

V —/mmc o2 {\/h )272(D=3) f )2+E2+E} dr — E (tg + 1.(00) = 7:(Fmin)) -

2QD,2 T
(2.145)
Choosing the symmetric case —t; = tg = 7/2, it is straightforward to show using (2.109)

that
1
W 22 G (i) = W (i) (2.146)
QD_Q dr

where G(r) = g(r)~2. The complexity rate of change is then

i Qs
dr N GNR

min

W (Fomin)- (2.147)

To find its total dependence on time, one first notes that equation (2.144) can be written

Z R Tmax g(?”) W(Wm‘n)
5+ 7(00) = ru(rimin) /m f(r) [%—W(r)HW(rmm)Q

from which one can solve for r,,;,,(7). However, if we focus on the late-time limit lim 7,,;,,(7)
T—00

+1| dr (2.148)

Tmin, it can be shown that
fg;nzg’(fmm)

0 =W (Fin) = (D — 2)72=3 /=G (Frmin) — WA

mwn

(2.149)

ol



This is because, from (2.109), 7., is also the largest root of
— W (i) + E* =0 (2.150)

and as 7 — 00, |E| increases until the two roots meet at the extremum of W (r,,,).
Therefore,

dCV QD—Q ~
i = =W (Fin) - 2.151
dr | ..~ GyR (Fmin) (2151)
Numerical studies have shown that
dCV 8
li — = M —-Q — (M —Q_ ) 2.152
m "D [( +J) = ( J)] (2.152)

This reduces to the result [69] found for Schwarzschild-AdS black holes, which was 87 M., /(D —
2)1 since it is straightforward to show that

. D -1
rl,H—I}O (Q_ - Q+) J = mMsch. (2153)

For illustration, we will prove (2.152) in spacetime dimensions D = 3 and D = 5 below,
where generalization to other spacetime dimensions follows the same methods.

Late-time complexity growth in D =3

In this case, we can explicitly solve (2.149) and find that

2 _ 2 _ 2
_—_— V2me2 — 2ma2 — /¢ (2.154)

Tmin
V2

and

7"+ = \/fgmn + \/ffnln - 2ma2£27 r_ = \//’zTZYLZTL _ f;lnln _ 2ma2£2' (2155)

Y M,.p, is the thermodynamic mass of Schwarzschild-AdS black hole, given by taking the ¢ — 0 limit
2

of M in (2.21). Note that for the BTZ black hole with D = 3, we have M., = Séﬁ which is different

from the one naively obtained from the D — 3 limit of the blackening factor of Schwarzschild-AdS black
2 2

hole, giving M., = %. This is because for Schwarzschild-AdS black holes with D > 3 we implicitly

assume that the r; — 0 limit corresponds to the Neveu-Schwarz vacuum of AdSp with blackening factor

f(r) =1+ Z—z of the metric in Schwarzschild coordinates, whereas the ry — 0 limit of the BTZ black

hole corresponds to the Ramond vacuum of AdSs with blackening factor f(r) = Z—z of the metric in
Schwarzschild coordinates. For more details on this, see [142].
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Figure 2.14: The late-time rate of complexity growth dCy/d7r is shown as a function of
r4 /¢ for spacetime dimensions D = 3,5,7 (solid blue, dashed red, and dot-dashed green,
respectively). It is shown that the limit (2.152) is always approached from below. The fact
that the late-time dCy/dr can be expressed in this way in terms of the thermodynamic
quantities of the black hole only in the large r, /¢ limit shows one of its shortcomings com-

pared to dC,/dr, which can expressed at late-times in terms of thermodynamic quantities
of the black hole for all r /¢.

Using this, it is straightforward to show that

7 — 2ma?(? W (Fmin)
min 0O -0 _

W (Finin) = v (2.156)

from which we get (2.152) by setting R = ¢. In fact, as shown in figure 2.14, the late-time
rate of complexity growth dCy /dr is independent of r, /¢.
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Late-time complexity growth in D =5

In this case, the expression for 7,,, is considerably more complicated. However, we can
use it to expand the two sides of (2.152) as a series in large r, from which we get

T T 2 (r2 + (?) 1
QO —0,)J= 1 2 _ TPl -
( DI =g m Taay T Tagee - 9 <ri> ’

Qs 72, T[(V2-1)2 - 2-V2)r?] ,

Gt Tmin) = G V2G 2 "
w2 (2 +2r2) (4V2 = 5)* + 2(2v2 — 1)r?) 1
— . 2.1
+ — ro (). e

Expanding the ratio of these two expressions in the large r, limit gives

A 2 [rvE - vE2) v (L

o —0.)J X N 7 ) (2.158)

T+

which yields (2.152) as r, /¢ — oo. Interestingly, it also shows that the limit is always ap-
proached from below, which agrees with the behaviour of dCy,/d7 found for Schwarzschild-
AdS black holes [69].

2.6 Discussion

We have considered several aspects of the CA and CV proposals for holographic complexity
in the context of rotating black holes. While the behaviour of these proposals for numerous
static and/or spherically symmetric spacetimes has been thoroughly studied, their exten-
sion to rotating black holes is a somewhat nontrivial task. In large part, the difficultly
arises due to the comparative lack of symmetry in rotating solutions and therefore more
complicated causal structure. Here we have partly side-stepped this issue by considering
equal-spinning odd-dimensional rotating black holes, which enjoy enough additional sym-
metry to make the computations tractable, while still revealing a number of non-trivial
features. Here our focus has been devoted to understanding the complexity of formation
and also the time-dependent growth rate of complexity.

First, we introduced the Myers-Perry-AdS spacetimes with equal angular momenta in
odd dimensions and discussed the enhancement of symmetry and the associated causal
structure and thermodynamic properties. In studying holographic complexity, especially
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within the action proposal, it is necessary to have a thorough understanding of the causal
structure of the spacetime of interest. We have done this here by analysing the structure
of light cones in this geometry. The enhanced symmetry of the equal-spinning case allows
for us to choose SU(N + 1) x U(1) invariant hypersurfaces, effectively making the causal
structure two-dimensional as is the case for static, spherically symmetric black holes. This
represents a significant technical simplification over the most general case.'? Despite this
simplification, the solutions maintain the classical features associated with rotating black
holes (such as ergoregions, for example), which allow us to rigorously study holographic
complexity for rotating black holes for the first time.

Second, we studied the complexity of formation for rotating black holes in both the CA
and CV conjectures. As shown in detail in appendix A.3, there is an order of limits problem
when taking the static limit of AC4. We note that there have been previous investigations
where such order of limits problems have been observed for the growth rate in the CA
conjecture [130, , 97, 77, 138], however we believe this is the first observation of this for
the complexity of formation. This issue can be resolved by an alternative regularization
scheme where the future and past tips of the WDW patch are ignored near the singularity
and at the static limit (see appendix A.4). It would be interesting to explore more deeply
the implications of this alternative regularization, in particular the mechanism and/or
interpretation of the regulator itself.

Our most intriguing result concerns the role that the thermodynamic volume plays in
both the CA and CV conjectures. We have shown for the first time that the complexity
of formation of large black holes does not scale with thermodynamic entropy but rather
obeys the same scaling as the thermodynamic volume to leading order in ¢/r

AC = %,Cr <L) 4 (2.159)
Vads

where Vags = (P71, %, is a factor that depends on the specific metric, dimension, etc. (but
not on the size of the black hole), and C7r is the central charge of the CFT as computed

from Newton’s constant G. The thermodynamic volume has been conjectured [107] to
obey a ‘reverse’ isoperimetric inequality:
O (CE AR SR (2.160)
N Qp_o 4GNS - '

12For the most general rotating black holes the light cones can be defined using PDEs as discussed in
[125, 3, 4] (see also appendix A.6), though they must be solved numerically.
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The inequality is saturated by (charged) Schwarzschild-AdS spacetimes. Assuming the
relationship (2.159) is general, the reverse isoperimetric inequality becomes the statement

AC > BpS (2.161)

where (p is a positive constant that can be easily worked out from the above. This means
that the complexity of formation for large black holes is bounded from below by the entropy
(equivalently, the number of degrees of freedom).

Finally, we examined the time-dependent rate of complexity growth using both the CA
and CV conjectures. Previous studies have shown that the late time limit of complexity
growth in black holes with two horizons is bounded by the difference in internal energy
between the outer and inner horizons'?

dc

m—

S (F++T+S+)—(F,+T757) :U+—U,. (2162)

This surprising result seems to be of near universal scope and it suggests a deep connection
between complexity and black hole thermodynamics [1414, 87, 88]. In the CV conjecture, we
have shown that the complexity is a positive function of time whose late time rate of growth
saturates the bound (2.162) in the r; /¢ — oo limit, up to a constant that depends on the
spacetime dimension. We have also explicitly shown that the bound is always approached
from below as r, /¢ is varied. In the CA conjecture, the bound (2.162) is always saturated,
and we have shown that it is always approached from above as time is varied. Both of
these results agree with the behaviour found for the charged black hole [69]. Furthermore,
we found that the arbitrary length scale /., does not affect the late-time rate of complexity
growth but does affect its early behaviour, as shown in figure 2.13.

Going forward, there are a number of directions worth exploring. Perhaps the most
interesting one concerns the result (2.159). While we have not offered a definitive proof
of this relationship, it reduces to known results for static black holes, holds also for large
gravitational solitons [31], and we have provided robust evidence that it is obeyed in general
for large rotating black holes. It would be interesting to test the full range of validity of this
relationship, which could be done most effectively by studying other black hole solutions for
which the entropy and thermodynamic volume are independent and scale differently. Such
explorations could provide useful insight from which a general proof of the relationship
could be deduced, or a counter-example from which its limitations could be assessed. It
would also be interesting to explore this feature in light of the recently proposed first
law of complexity [37]. While the CFT interpretation of thermodynamic volume is yet

13Though see [143] for a recent example where the situation is more subtle.
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to be fully understood (though see [113, , , , , , , | for progress in
this direction), our results provide impetus to investigate in greater detail the holographic
interpretation of thermodynamic volume and its relationship to complexity.

It would be worthwhile to extend the analysis here to the most general class of rotating
black holes, though this may be a formidable task. Exploring the implications of the known
instabilities (e.g. superradiance) of rotating black holes for complexity would also be of
interest. Although our complexity calculations were done in the case of odd-dimensional
equal angular momenta in each independent plane of rotation, we expect that the general
family of Myers-Perry-AdS black holes should possess similar qualitative behaviour.
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Chapter 3

Traversability of Multi-Boundary
Wormbholes

3.1 Introduction

Wormbholes have long been of interest since the time of Einstein and Rosen [115]. Although
Einstein-Rosen bridges connect different asymptotic regions of spacetime, topological cen-
sorship [1106, ] forbids their traversability when only classical matter fields are present.
The same is of course true of their multi-boundary wormhole generalizations. However in
some cases, quantum matter fields can cause violations of the averaged null energy condi-
tion (ANEC). In such cases the arguments of [110, ] cannot be applied, so that such
ANEC violations might make the wormholes traversable. Recall that the ANEC is satisfied
when the integral of stress tensor along any complete null geodesic is non-negative,

/ Twk®kb > 0. (3.1)

~

In recent years, there have been many approaches to constructing traversable wormholes
from ANEC violations, see [55, , , , , , , |. In particular, in the
seminal paper by Gao, Jafferis and Wall [75], the authors construct a traversable wormhole
using a two-sided BTZ black hole as the background, where the dual CF'T state is the
thermofield double (TFD) state. With an appropriate sign of coupling, a double-trace
deformation that directly couples the two boundary CFTs can cause the violation of the
ANEC. Adding the coupling shifts the horizons so as to allow certain causal geodesics
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to travel from one asymptotic boundary to the other. In [I18], this construction was

generalized to rotating BTZ black holes. It is also interesting to recall that the transmission

of such signals was interpreted in [152] from the dual field theory perspective as being due

to enacting a quantum teleportation protocol between entangled quantum systems. This

connection with quantum information has been of great interest (see e.g. |
, 159, 160]) as a concrete realization of the ER=EPR idea [19].

9 ) Y

In this chapter, we generalize this construction to any pair of asymptotic regions in
certain (non-rotating or rotating) multi-boundary black holes!? in AdSs;. For a general
multi-boundary black hole, a finite-sized causal shadow separates the horizons of different
asymptotic regions, making the wormhole hard to traverse. In our construction, we focus
on the hot limit considered in [161], where the temperatures related to all horizons are
large. In that limit, for any two horizons, there exists a region where the causal shadow
between them is exponentially small. A double-trace deformation can then easily render
the wormhole traversable. As we will see, the hot limit will also give us convenience in
doing the calculations, which otherwise would be difficult to perform.

Our construction has several interesting features that differ from those of [75] and [118].
The first is that the pair of boundaries in our traversable wormhole construction is quite
general, and the associated horizons can have different temperatures and angular momenta.
Furthermore, our spacetimes have non-trivial angular dependence, and this can be seen in
features related to traversability. In particular, signals from a given asymptotic region will
be able to reach a second asymptotic region only when fired from appropriate regions of
the first boundary. Signals launched from other parts of the first boundary may instead
traverse to a third asymptotic region, or they may become stuck behind an event horizon.
It is a general feature of our construction that some such event horizon will remain even
though our wormholes are traversable. Again, this is associated with the lack of rotational
symmetry in our spacetimes.

The chapter is organized as follows: In section 3.2, we review the construction of multi-
boundary wormholes in AdSs; and their important properties that will be useful in later
sections. The geometry of these wormholes in the hot limit is also discussed, as well as the
entanglement structure of the dual CFT state. A general review of the Gao-Jafferis-Wall
construction is then given in section 3.3, where we emphasize a rather general form of the
coupling between boundaries that can induce traversability. Using these two ingredients,
we proceed to construct the multi-boundary traversable wormhole in section 3.4. We

4Note that, while there is some freedom in the use of such terms, our choice is to use “multi-boundary
black holes” when the context refers to the background spacetime, and use “multi-boundary wormholes”
when the context refers to traversable wormholes in particular.
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summarize our findings and discuss their implications and connections with recent work in
the literature in section 3.5. A number of technical details and supporting calculations are
left to appendix B.

Throughout this chapter, we use the AdS length as our unit of distance.

3.2 Multi-boundary black holes in AdS;

In this section, we will first review how to construct multi-boundary black holes by quo-
tienting empty AdSs with isometries, following an algebraic approach [162, , , ,

) ]'5. Then we discuss fixed points of those isometries, (renormalized) geodesic dis-
tances in different conformal frames, and how they behave in the hot limit. Those results
will be useful in our construction of multi-boundary traversable wormholes. Finally, we
briefly describe the CFT states that are dual to these geometries.

3.2.1 Quotients of AdS; space

In three-dimensional Einstein gravity, the Ricci tensor completely specifies the Riemann
tensor. The consequence of this is that all solutions of Einstein equations are locally
isometric to AdSs, which is the Lorentzian, maximally-symmetric spacetime with constant
negative curvature and isometry group SO(2,2) ~ SL(2,R) x SL(2,R). Besides pure AdSs,
other solutions to the equations of motion are locally AdS3 but differ globally from it and
can be obtained by quotienting AdS; by a discrete subgroup I' of SO(2,2). The spacetime
AdSs can be defined as the submanifold of

R = {p = (gié _UV—JFXY ) } , ds* = —det(dp) = fupdz"dz’, (3.2)

given by the hyperboloid det(p) = 1'% where we defined the 4-vector z* = (U, V, X,Y) and
metric 7y, = diag (—1, —1,1,1). In global coordinates, this hyperboloid is parametrized by
the intrinsic coordinates (¢,7, ¢) defined by

X =rcos¢p, Y =rsing, U=+vV1+r2cost, V =+v1+r2sint (3.3)

5For construction of these geometries using explicit forms of the Killing vectors, see [165].
164dp is the matrix defined by taking the differential of every element of the matrix p.
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which gives the induced metric

ds® = —(1+r?)dt* + + r?dg? (3.4)

14 r?
where t ~ ¢t + 277 and ¢ ~ ¢ + 27. The connected part of the group SO.(2,2) is
SL(2,R)®SL(2,R)/Zy. The group elements (g, gr) € SO.(2,2) act on a point p according
to

P = 9LbYn- (3.5)

From this, we see that the Z; symmetry correspond to the equivalence relation (9L, gr) ~
(—9r, gR) A convenient basis of generators {Ji, Jy, Js} x {Ji,Jo, J3} of the isometry
group SL(2,R) x SL(2,R) is

1 ~ 1

J) = 5 (Jxv —Jyv), J1= 5 (Jxu + Jyv)
1 ~ 1

Jo = D) (Jyuv+Jxv), J2= 5 (Jyv — JIxv) (3.6)
1 ~ 1

J3 = —5 (Juov —Jxy), J3= 3 (Juv + Ixy)

where the Killing vectors J,, = 7,0, — 70, obey the SO(2,2) algebra

[Jaba ch] = ﬁacjbd - 77ad<]bc - ﬁbct]ad + ﬁdeac (37)
In matrix representation, the generators are expressed as

1 1 1

J1 = —5M Jo = —502 Jy = 5B (3.8)

(3 0) (1) (0 h) e

and similarly for J;'9.

where!8

1"Usually the universal cover of ¢ is taken by unwrapping it, but as we will see, it is not necessary here
since the wormhole constructions will automatically remove closed timelike curves.

18Our matrix representation of p is different from that defined in [166, ], which causes the generators
to be slightly different.
19Tn matrix representation, .J; takes the same matrix form as J; = —2% but the infinitesimal transfor-

mations on p are different from those of J;’s, since J; : p — —f%p while J; : p — —fp%
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Figure 3.1: The group manifold of SL(2,R), which is also the Penrose diagram of AdSs.
The dotted lines represent the action of the group elements of SL(2,R) on the identity
element e placed at the origin of AdS;3 in global coordinates. The isometries of SL(2,R)
are classified depending on which region the element e is mapped to. Dashed lines represent
null rays.
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To understand the action of the group elements (gr, gr), we will describe AdS;3 as the
group manifold of SL(2,R), with the Penrose diagram shown in figure 3.1. The action of
group elements g € SL(2,R) on the identity element e is shown there, according to which
they are classified into conjugacy classes depending on where the point e — geg’ = gg'
lies,

Hyperbolic Trg > 2 g9t el

Hyperbolic Trg < —2 gt € I1
Elliptic I Trg| < 2 gg' € I11,1V

Parabolic | Trg| =2 gg" € light cones

We will focus on the action of subgroups I' C SO.(2,2) with Trg > 2 hyperbolic
elements, whose fixed points are on the boundary of AdSs;. This is because it ensures that
AdS;3 /T is free of conical singularities and closed timelike curves [162, 164]. Removing
from the spacetime the past and future of those fixed points yields the restricted spacetime
@ Where/t_ga action of the quotient on the spacetime is free of pathologies and 16@8\‘50 a
spacetime AdS;/I". We will illustrate this process by reviewing the construction of AdSz/T
in the case of BTZ black holes [169, 126] and three-boundary black holes [163, 162, 164].
We also discuss generalizations to n-boundary black holes with and without non-trivial
topologies [162, 164, 166]. A Cauchy slice of these geometries is a Riemannian manifold of
genus g and boundary number n. So, we can classify the black hole geometries by a 2-tuple
(n,g). In the non-rotating case, the number of parameters (or in other words, dimension
of the moduli space) needed to specify the (n,g) geometry is equal to 1 for (2,0) and is
6g — 6 + 3n otherwise. In the rotating case, this number is doubled.

Before reviewing the construction of these geometries, we will give general formulas for
calculating the geodesic distance. The group manifold representation allow us to easily

calculate the geodesic distances d(p, q) between two arbitrary points, p and ¢ [165]. In
particular, if p and ¢ are connected by a spacelike geodesic, then
T -1
d(p,q) = cosh™* (#) : (3.10)

With a timelike geodesic connecting p and ¢, the geodesic distance is

d(p,q) = cos™* (W) : (3.11)

When Tr (p~'q) < —2, there is no geodesic connecting p and q.

We now discuss various cases of (n, g) geometries in detail.
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BTZ black hole

In this case, the subgroup I' is generated by a single element

verz = (9L.BTZ: GR.BTZ) = (68&’3”, €£§R’BTZ) (3.12)

and a convenient choice for &1, prz and &g prz is

§o.rz = —J2, ErBrz = —J2 (3.13)

with ¢ = 2n(ry +r_) and ¢ = 2x(r, — r_) being two positive real parameters. In matrix
representation, this gives

[Ia
[ 1

)) cosh (2 sinh
s  Y9R,BTZ = ~
) sinh <§ cosh

The isometry v has two fixed points at the boundary given by t = 0,¢ = 7/2 and ¢t =
0, ¢ = 37/2. Removing the past and future regions of these fixed points gives the restricted

sinh (
) cosh (

N
NS0l
N—

)> . (3.14)

[CTENSIEN

_ (cosh
9dL.BTZ = sinh(

Do

space AdS;. Any two geodesics that are related by the isometry vgrz are identified, and
we can choose a region that is bounded by such a pair of geodesics as the fundamental
domain of A/d§3 /T, see figure 3.2. The minimal length between these two geodesics is
uniquely determined by r, and r_, and is the intersection of the geodesic connecting the
fixed points with the fundamental domain. This defines the two-sided BTZ black hole,
where each side is covered by the usual BTZ coordinates

r2 —r2) (r3 —r? r2 ror_ 2
as? — % +)2(B )dt2B—|— 3 dr%—i—r%(dqﬁB— — dtB>
B (TB - 7"+) (TB -7r2) B

(3.15)
where the subscript B means that we are using BTZ coordinates. The thermodynamic
quantities related to the black hole are [169]

M:ri—kﬁz 2+ 2 _ T 02—
8Gy  64m°Gy’ 4Gy G4m*Gy (3.16)
1 ri—r2 o r_ -1 .
5] 2mry. 2120+ 1) L
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Figure 3.2: A Cauchy slice of a BTZ black hole shown as a quotient of AdSs. The action
of v identifies the two blue geodesics, and the region between them is the fundamental
domain of the quotient. The minimal geodesic H separating the two coincides with the
event horizon of the black hole. In the non-rotating case, this slice is at ¢ = 0. But in the
case of rotation, there is a relative boost between the two identified geodesics.

By writing the point p in (3.2) in terms of the BTZ coordinates using the transformation

r3 —r? ry —r?
U= 5 5 cosh (rp¢p+r_tg), X = 5 5 cosh (rytg +r_¢p),
rt —r? ra —r?
(3.17)
r3 —r? rg —r2
V= 5 5 sinh (rytp +7r_¢p), Y = 5 sinh (ry¢p +r_tp)
ra —r? r3—r

one can show that the action of ygrz on p is simply to map ¢ — ¢p + 2m. The length
of the bifurcation surface (horizon length) generated by + can be found from (3.10) to be

[165]

[ R

T T
h = cosh™! (—r ng’BTZ> + cosh™t (—r g};’BTZ) (3.18)

ol
- = 27T7”+.

From (3.12), we see that this gives the expected horizon length of
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Figure 3.3: A Cauchy slice of the three-boundary black hole shown as a quotient of AdSs.
The action of 7, identifies the two blue geodesics while 7, identifies the two red geodesics.
The event horizons of the three boundaries Hy, Hy, and Hy = Hj U HY are also shown,
where each of them coincide with the geodesic connecting the fixed points of the isometries
Y1, Y2, and 73, respectively. Note that 3 has four fixed points instead of two, because
it defines the third asymptotic region as the union of two separate regions in the Cauchy
slice. In the case of no rotation, this slice is that of ¢t = 0.

Three-boundary black hole

The subgroup IT' in this case is generated by two elements v; = (g1, gir),? = 1,2. We
choose the first one to be the same as the isometry used to construct the BTZ black hole?

%1 = (12, 01r) = (1615 eh6im) (3.19)
where &1, = —Jp and &1 = —jg. The second element is given by
V2 = (9a1, gor) = (€%, 6525212) (3.20)

2ONote that, here, the choice of generators ~; is not unique. Other choices could be used, as long as
they fall in certain conjugacy classes. Our choice here is convenient for calculation, but as we will see, it
defines a conformal frame in which the third boundary region becomes vanishingly small in the hot limit.
In appendix B.1, we give an example of another construction of the same geometry and discuss how it
differs from the one used here.
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where &7 = —(Jocosha + Jssinh ) and & = —(jg cosh @& + Js sinh @). In matrix repre-
sentation, this is

By ac (f h “sinh (&
(2 ) e () ) e

These two isometries define the first and second asymptotic regions, with the event hori-
zons of these regions lying along the geodesics connecting the fixed points of v; and s,
respectively.

oS

The isometries that define the third asymptotic region are not independent of the above
two. They are 75 = —m% ' = (g5, 04r) = (—G1002, —G1rGg) and 75 = = 'ye =
(94, 9%%) = (=917 921, —91pg2r)?", corresponding to the two parts of the third boundary
region as seen from the covering space. The resulting spacetime is a black hole with three
asymptotic boundaries, as shown in figure 3.3. The spacetime in each asymptotic region
is isometric to the exterior region of a BTZ black hole. Hence, each asymptotic region can
be covered by the same metric (3.15) for rg > r,. The lengths of the horizons generated
by these isometries can be found from (3.18) to be

06+ 0 0y + 4. 03+ 0.
hy = 1+ 17 hy = 2+ 2’ and  hy — 3+ 37 (3.22)
2 2 2
where we have defined
T ~ T
(3 = 2cosh™ (%) , and (3= 2cosh™* (%) : (3.23)
The parameter o can in turn be expressed using ¢;,7 = 1,2, 3:
cosh & + cosh & cosh 2
cosha = 2 2 2 (3.24)

sinh % sinh %2

and similarly for &. Each asymptotic region can be associated with independent thermo-
dynamic parameters (3.16). The angular velocity associated to a horizon generated by an
isometry ~; can be given in terms of the isometry elements as [167]

o coh™ () — cosh ! (T
oo T () oo (TE)’

(3.25)

21 Although ~4 and ~4 are both isometries defining the third region, for simplicity of notation, later we
will refer to them collectively as 3.

67



which gives 3 3 3
by —1 by — 1 ly— 1
e Bl e o T Bk
O+ 4 ly 44y U3+ 1ls
for the three boundaries. From this and the fact that the horizon lengths h; are given by
27ry ;, we can relate the geometric parameters ¢; and ¢; for each boundary to the inner

and outer horizon lengths of the corresponding black hole. The resulting relation is

M (3.26)

e

- (3.27)

T+

for i = 1,2,3. We see that setting l;=0 corresponds to the extremal case??, while setting
¢; = {; corresponds to the non-rotating case. The unique feature of (3,0) geometry (and
any geometry (n,g) other than BTZ) is the existence of a region between the horizons
H,, H,, and H3 that does not intersect the causal past and future of the boundary of any
asymptotic region. This region is called the causal shadow of the spacetime [170], and it
will be important in our discussion of traversability below. The causal shadow region is
bounded by closed geodesics, which allow us to calculate its area using the Gauss-Bonnet
theorem, giving Acs = 2(n — 2 + 2g) 7 for general (n, g) spacetimes [161]. This shows that
the causal shadow region exists for all geometries except (2,0).

General (n, g) black holes

More general black hole geometries can be constructed following the same method as dis-
cussed above. For the case without rotations, general (n, g) geometries could be constructed
using a cut-and-paste procedure [162, |, and this could be easily generalized to cases
with rotations, as we review below.

The simplest way to see this is to note that any (n, g) black hole can be constructed
from 2g + n — 2 copies of the (3,0) geometry (so-called “pair-of-pants” geometry) through
a process of cutting, twisting, and gluing. Since the (3,0) geometry is everywhere locally
AdSj;, the geometry that results from a process of cutting, twisting, and gluing different
copies of it is also locally AdS3 and, therefore, is a solution of Einstein gravity. We will
illustrate this process in the case of n asymptotic regions and in case of genus g.

For instance, to construct the rotating (4, 0) geometry, we need two pairs of pants, each
having 6 parameters (i.e. the mass and angular momentum of each asymptotic region). We

22Here we have implicitly chosen a direction of spinning. For the other choice, ¢; = 0 would correspond
to an extremal black hole.
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(b)

Figure 3.4: Construction of the (4,0) and (1,1) geometries using two and one pairs of
pants, respectively. The dashed lines represent horizons of asymptotic regions. Note that
each pair of pants is constructed from the process shown in figure 3.3, but here the shape
of the Riemann surface is shown explicitly.

consider the Cauchy slices where both pairs are of the form shown in figure 3.3. As shown
in figure 3.4a, if we cut only one asymptotic region in each of the pair of pants and glue the
horizons together, this forces the lengths and orientations of the glued horizons to be equal
(the ¢’s and 0’s of the two glued regions) and introduces two new twist parameters. So, the
total number of parameters is 12, which is the correct dimension of the moduli space of the
rotating (4,0) geometry. From the resulting Cauchy slice, we can time evolve and obtain
the whole required geometry. Similarly, to construct general rotating (n,0) geometries, we
need n — 2 pairs of pants. By cutting 2n — 6 asymptotic regions and gluing them together,
we can construct a Cauchy slice of the rotating (n,0) spacetime from which the whole
geometry can be obtained by time evolution. One can easily check that the number of
parameters in the resulting geometry is the correct dimension of the moduli space, which
is 2 (3n — 6).
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In the case of non-zero genus, we consider the simple case of rotating (1, 1) spacetime,
which was first constructed in [166]. Using a Cauchy slice of a single rotating (3,0) ge-
ometry, we can cut two asymptotic regions and then glue their horizons together. The
remaining asymptotic region is now the exterior of a rotating BTZ black hole with the
topology of a torus behind the horizon, as shown in figure 3.4b. One can easily check that
this process gives the correct number of dimensions of the moduli space, which is 6 in the
case of rotating (1, 1) spacetime.

3.2.2 Fixed points and the conformal boundary

We now discuss the action of isometries v € I' on the conformal boundary of AdS3, following
the method discussed in [166]. Here we will be using the conformal frame

s opar = —dt? + d¢? (3.28)

which is naturally related to the global coordinates.

Taking r — oo for a bulk point p (3.2) gives a boundary point ps. Up to a diverging
factor, it is

u v

D X (cosqb +cost  sing —sint ) _9 (COS 5C0S5 —COSgsin 5) — o7t (3.29)

sing +sint —cos¢ + cost sinfcoss —sinssine

2 2 2 2

du' = U ® 4 is the outer product,

7= (CT)SZ) , d= < o 5u> (3.30)
S1n 5 — Sln b)

and v =t + ¢ and u =t — ¢ are the null coordinates at the boundary. The isometries of
interest v = (g1, gr) € I' are hyperbolic elements with their fixed points at the boundary
of AdSs. Being a fixed point amounts to

where

Po = grpagn = Uu' = grv(gri)’, (3.31)
where the equality holds up to an overall factor, since we are on the conformal boundary.

This means that we could find fixed points by finding eigenvectors of g and gr. In
general, g;, and gr each have two eigenvectors, and combinations of them give “corners”
of the “boundary diamond” of v where the action of v takes place. Next, we will illustrate
these notions for the BTZ black hole and the three-boundary black hole. Analysis of fixed
points for general (n, g) geometries could be performed in a similar manner.
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Figure 3.5: Boundary diamonds for the BTZ black hole, where ¢ ~ ¢ + 27. As we can
see, there are two diamonds, each containing one asymptotic boundary of the fundamental
domain.
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For the BTZ black hole, all elements of I' are integer powers of yprz. Both gr prz and
gr,Brz have two eigenvectors

= =y (3.32)

— 2 — —
grL.BTZU+ = € U+, JRrRBTZU+ = €

= % (il1> = % (ill) . (3.33)

As shown in figure 3.5, there are only two boundary diamonds for the BTZ black hole,
with their left and right corners at (¢t = 0,¢ = 7/2) and (t = 0,¢ = 37/2). Inside each
diamond, there are infinitely many copies of the fundamental domain, or in other words,
the fundamental domain and its images.

where

For the three-boundary black hole, we could find the fixed points and boundary dia-
monds in a similar manner. But in this case, we have infinitely many fixed points (and
diamonds) since the group I' not only contains elements like 4/, = 1,2 but also more
general “words” like y™y2~%... etc. For v;,1 = 1,2 we have

= +0;/2 - S )2
GiL-V+; = € /Ui;z, gir-U+; = € /U:t,i (3-34)

with ¢y ; and @y ; the same as those of the BTZ black hole, and

7 _;(@&) i —;Ged) (3.35)
S g\ 1) T Aras\ 1) |
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Figure 3.6: The fundamental diamonds of (3,0) geometry at the boundary of AdSj3 in
global coordinates. The fixed points p4 4 ;, p——;, P-4, and p;_; correspond to the corners
of the diamonds. The diamonds of regions 1, 2, and 3 are bounded by black, red, and blue
lines respectively. In (a), the parameters are ¢; = 0; = 3 for the non-rotating case, and in
(b) the parameters are f; = 3(; = 3 for the rotating case.

For the three-boundary black hole, the three asymptotic boundaries of the fundamental
domain are contained in the diamonds which we call “fundamental diamonds” generated
by 7,4 = 1,2,3. Other diamonds will be dubbed “image diamonds”. In figure 3.6, we
show the fundamental diamonds of the three-boundary black hole. The corners of the
fundamental diamonds can be found from

Do = U4plly ;5 Pyog=Upll; , Ppoyi=0_g,; , p_;=0_gi ;. (3.36)

where again i = 1,2, 3.

For any point py on the i asymptotic region of the fundamental domain, there are
two types of image points under the group action:

1. Points that are in the same fundamental diamond as py: these points are generated
by acting on py with isometries that only involve integer powers of ;;
2. Points that are in the image diamonds: these points are generated by acting with

other kinds of isometries on py.

Although it is hard to find the explicit locations of all of the image diamonds, they
must all lie between diamonds 1 and 2, and topological censorship guarantees that any
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pair of diamonds must be spacelike separated. The boundary distance from the left corner
of diamond 1 (p441) to the right corner of diamond 2 (p;4 ) is

dbdy (P1+,1, P4+,2) = \/|(U++,1 —Ugp2) (Vg1 — Vg 2)]

dnay (1 +.1,P1+.2) = (0d)? + O((ad)?). (3.38)

Given a choice of the boundary conformal frame, we can also define the regularized
geodesic distance through the bulk between boundary points. First, note that for any 2 x 2
matrix p with det p = 1 we have

p =R p'R), where R, = <(1) _01) (3.39)

Also, the elements of a matrix p of any bulk point scales linearly with r. So, in the limit
r — oo we find

Ay (1, p2) = cosh™! ( 5

ot (A1)
2

= log (7“2) + log (Tr (RlpglRipag)) + 0O (7“72)
—log (r2) +log (4T (Ry ()R (%) ) ) + O (r™?) (3.40)

To find the renormalized boundary geodesic distance, we subtract log (r?) then take the
r — oo limit, giving

5™ (pro, pao) = log (4 (i iz) (17.43)) | (3.41)

where
it =Ryi and Tt =R,7. (3.42)

Similarly, the renormalized geodesic distance between a bulk point p and a boundary point
qop = 2 Uil is given by

2 (p, qo) = log (Tr (p~"'q0)) = log (2 Tx (p~'vd")) . (3.43)
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An important question is finding the corresponding expressions to the renormalized geodesic
distances (3.41)-(3.43) for the boundary of an asymptotic region that is in the BTZ con-
formal frame ds%;, = —dt% + d¢%. This question is resolved in subsection 3.2.3.

3.2.3 Geodesic distances in the BTZ conformal frame

In this subsection, we calculate the renormalized geodesic distance from a bulk point p
to a boundary point gy that is in the BTZ conformal frame. We assume that gy is on
the boundary of the fundamental domain, so it is in one of those fundamental diamonds
defined in section 3.2.2. In that diamond, we choose the BTZ conformal frame, and the
renormalized distance we calculate here is compatible with that frame. We also assume
that p and gy are spacelike separated so that we use (3.10) rather than (3.11) to calculate
the distance.

First let us work out the conformal transformation between the AdS global conformal
frame and the BTZ frame. For simplicity, we first study a boundary diamond of the BTZ
black hole, as shown in figure 3.5. Then we convert our results to smaller diamonds using
isometries.

Recall that global AdS3 and the BTZ coordinates are related to the embedding coordi-
nates via (3.3) and (3.17). On the boundary where both radial coordinates go to infinity
one finds _ "

sinh =fustls sinh g—“BI op

Y/X =tan¢p = ——2"—  V/U = tant =

: (3.44)
cosh —ZUBI tvp

—lup+lvg’
cosh —£=8
where ugp =t — ¢, vg = tg + ¢p. Then, using null coordinates u =t —¢p and v =t + ¢

on the global AdS3 boundary, the above equations simplify to

0 ¢
u = tan" ' sinh %, v = tan" ' sinh %. (3.45)
m m

These observations allow us to compute the conformal transformation between the two
conformal frames,

dséloha1 = —dudv = Q*(—dupdvp) = Q202 (—dugdvg) = Q2Q2dspy, (3.46)

where the conformal factor Q? factorizes into the “left-moving” and “right-moving” con-
formal factors

12 1
Q2 = - = — Q2 =
“ 9rcosh e;_: 27 ot !

12 12
m = % COS V. (347)
2
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As we can see, when u = £7 or v = £7 either up or v will diverge and the conformal
factors vanish. This marks the boundary of the “boundary diamond” being considered.
Note also that the conformal factors reach their maximal value at the “center”of the dia-
mond where v = 0 and v = 0.

For any wormhole, each asymptotic region is isometric to the exterior of some BTZ
solution. So up to conformal transformations each boundary of any wormhole is identical
to the boundary diamonds just described. While this always yields another diamond, the
ranges Au and Awv for general boundary diamonds can differ from 7. But we can use the
appropriate conformal transformations to generalize the analysis above.

Indeed, for the construction described in section 3.2, the relevant conformal transfor-
mations are those induced by isometries of AdSs;. Recall that the generators of AdS;
isometries act on the boundary as

2J1 = — (JXU — Jyv) = sin v@v = 835, 2j1 = — (JXU + Jyv) = sinu@u = 8y, (348)

where we have defined v u
x = log tan 3 Y= log tan 5 (3.49)

These actions, written here as translations in x and y, change the size of the boundary
diamond. We analyze this in detail for v direction below, from which corresponding ex-
pressions for the u direction follow from the symmetry u <> v.

We first note that translating x by zy = logtan % changes the diamond boundaries
from v = £% to v = £wvp. Denoting the left-moving coordinate in the new diamond by v’
we have .

v v Vo
tan — = tan — tan —. 3.50
an - an g tan (3.50)

Here we assume vy < 7 and v =ty = i% are the boundaries of the new diamond given
by the images of v = £7. This relation implies
1 — cosv' cosw
dv' = °dv. (3.51)

sin vy

The left-moving conformal factor then becomes

0?2 — (icosv> (1—cosv’cosv0) B icosv’—cosvg (3.52)

v 21 sin vy 2T sin vy

Inside a diamond, it is bounded by

12 o 14 Av
02 < —tan— = — tan — 3.53
V=g Y T o M (3:53)
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where the equality holds at v = 0. When a diamond has a small size, this bound is

approximately

0?2 < fvo = tAv (3.54)

U™ Ar 8t

Also inside a diamond, when the point is close to one edge of the diamond (i.e. when v’ is
close to vpgy = vy or —1yp), 2 has the expansion

C o /
2 = 5 (10" = vuayl) + O(() = vuay)?). (3.55)

Similar relations hold for the u direction. Diamonds that are not centred at v = 0,u = 0
can of course be translated to this standard position using the boundary isometries 9, and
0, so that corresponding bounds and expressions apply.

As discussed in section 3.2.2, if we regulate a boundary point gy by moving it to a
finite global AdS; radial coordinate r, the geodesic distance between a bulk point p and a
boundary point ¢y is

T —1
dyu(p, q) = cosh™ (w)

= log(r) + log (Tr (p_lqa)) +0 (7’_2) .

(3.56)

To renormalize the distance in the BTZ conformal frame associated with a given asymp-
totic region of our wormhole, we should take the limit r — oo after subtracting log rg from
the above expression for a properly chosen radial coordinate rp associated to the boundary
diamond containing gg.

In Fefferman-Graham coordinates, when we transform between the global and BTZ
conformal frames, to leading order in z, we have zp = 2/|Q2]. Also, to leading order,
z~1/rand zg ~ 1/rp, so we have rg ~ r|Q| = r|Q,,|. A properly defined renormalized
geodesic distance is thus given by

A% (p, qp) = log (Tr (p'q0)) — log [2.82| = d2"(p, g5) — log 2,82, (3.57)

3.2.4 The hot limit of multi-boundary wormholes

In order to construct multi-boundary traversable wormholes in section 3.4, we will need
to take a limit that produces the following features: 1) two horizons are separated only
by an exponentially thin causal shadow over a sufficiently large region of those horizons,
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and 2) we can find a point gy on the boundary of the fundamental domain such that the
conformal factors Q% = Q20?2 associated with its non-trivial images under the group I are
exponentially small. For reasons that will be clear below, we use the term “hot limit” to
describe this limit for any (n, g).

For multi-boundary wormholes with trivial topologies, we choose to take a limit where
all ¢; and /; are large, with ¢;/¢; fixed (i.e. M;/J; fixed)?. In the case without rotation, this
is exactly the “hot limit” considered in [161]. In the case with rotation, this is also a limit
where the temperatures in all asymptotic regions are large. It also implies that all horizon
lengths are large compared to the AdS scale (although the converse is not necessarily true).
We explain the two advertised features below, using the three-boundary wormhole as our
main example.

First, we study the minimal distance between two neighbouring horizons. For non-
rotating (3,0) geometries, this has been computed in [161] by focusing on the half-plane
of the ¢ = 0 slice. The minimal distance d;; between horizons H; and H; depends on the
horizon lengths, and is given by

cosh (h;/2) cosh (h;/2) + cosh (hy/2)

coshd;; = (3.58)

Applying (3.58) to horizons H; and Hs in our construction, we have from (3.24) that
di» = a = a. (3.59)

In appendix B.2, we generalize (3.58) to the case with rotations, where the minimal distance
between horizons H; and H, was shown to be given simply by

d12 =

5 (3.60)
Other minimal horizon distances can be found from this expression by simple permutations.
It can be easily shown that a and & are exponentially small in the hot limit, and that d;; is as
well. As a special case, when all £; = ¢ and /; =  are large, we have o ~ 2¢~/* & ~ 2e~/4
and d;; ~ e % + ¢%/*. Furthermore, in this limit, it was found [161] that the distance
between the horizons is exponentially small over a large subset Dy of the angular domain,
for which the lateral extent along each horizon is large compared with the AdS scale. In

appendix B.2, we show that this feature also applies in the rotating case. In addition, we

ZFor wormholes with internal parameters (i.e. non-trivial topologies or with n > 3), the proper limit
will also involve taking certain internal parameters to be large, in addition to having £; and /; large, with
£;/¢; fixed. We will discuss this briefly in section 3.5.
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Figure 3.7: A schematic diagram of the t = 0 slice of a three-boundary black hole in the
hot limit. For any pair of horizons (dashed lines), there is a large region which we call D
(highlighted in green) where the horizons are exponentially close to each other. The causal
shadow is the region bounded by the three horizons.

show there that this is no longer the case when only one of ¢; or /; are taken to be large.
The latter limit makes the horizons large but the horizon temperatures remain bounded?*.

Similar results also hold in the case of a general n-boundary black hole. As discussed
in section 3.2.1, a general (n,0) spacetime with n > 3 can be constructed from n — 2 copies
of (3,0) geometry. Here we compute the minimal distance d;; between any two horizons
H; and H; that live in a single copy of (3,0) geometry, though we comment on the more
general case below. For n > 3 the third horizon Hy in this copy will become part of the
causal shadow of the new (n,0) geometry and its length hy will be one of the parameters of
the moduli space associated with the casual shadow region. Therefore, the same minimal
distance d;; between horizons H; and H; as in the (3,0) geometry will hold. Choosing
hi < h; + h; as in the hot limit above, d;; will again be exponentially small. In the more
general case® g # 0, or for two horizons in the (n,0) geometry which are separated by an
intervening extremal surface®® and thus which lie in distinct copies of the (3,0) geometry,
taking the hot limit for each copy of the (3,0) geometry allows us to write the separation

24This has some interesting consequences for the extremal limit that we briefly discuss in section 3.5.

25We have not yet discussed the case g > 0 in detail, but see section 3.5 for comments.

26Tn the case without time-symmetry, this means that the intervening extremal surface lies in the domain
of dependence of any partial (connected) Cauchy slice ¥ for which 0¥ = H; U H;.
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between H; and H; as the union of a fixed finite number of exponentially small separations.
Thus we find the separation between H; and H; to be exponentially small in the hot limit
for all n, g.

The other important feature of the geometry in the hot limit is that we can find points
¢o on the boundary for which the non-trivial image points ¢j"**® all have conformal factors
that are exponentially small. This property will be established below, but its important
consequence follows from equation (3.57) governing the renormalized distance between p
and qgmage in BTZ frame. From this it follows that

i (p, 45"*) = log (Tr (p’lqgnage)) — log [Q0,82] = d&™ (p, g5"*) — log [2,82,]. (3.61)
Here Q,, and , are the conformal factors associated with qiamage. So when we have a bulk
point p that is in the same asymptotic region as gy, in the BTZ frame, the exponentially
small conformal factors associated with the images require dit\”(p, qy"**) > dii”(p, q)
with their difference being linear in ¢; and /;.

To show for appropriate gy that the conformal factor associated with non-trivial images
is exponentially small in the hot limit, recall from section 3.2.2 that the image points are
classified into two types. We will take gy to lie in the fundamental domain (for which the
boundary diamond is not small). We first treat image points that lie in other boundary
diamonds (i.e. image diamonds). Recall from section 3.2.3 that the associated conformal
factors satisty
gAvimage

gAuimage
P2 = d @< —/— 3.62
YT 8r o Y7 8rm (3:62)
where Au'™38°¢ and Av™?28¢ determine the size of the diamond to which qém) belongs. Note

that since dpqy (p05, p™%) = AuimaseAyimage  equation (3.62) implies that 2,0, <

Lot 5 12,

Let us take the (3,0) geometry as our example. There all the image diamonds lie

between diamonds 1 and 2 and are spacelike separated from them. Then, using (3.38), we
have in the hot limit

oy (P15, M) < diay (gt 1, Dy 2) ~ Vi, (3.63)
Therefore ~
o
2 0202 ~
0F=Qi07 < 6120 (3.64)

In the hot limit, Q? is exponentially small. As a special case, when t; = £ and l; = 0 we
have 02 < e (974 and since d8°P* = O(1) we also have dB'% > ¢ 4 (.

ren ren
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The remaining case to consider occurs when g **° belongs to the same boundary di-

amond as qy. Let us take gy to lie at some fixed boundary location independent of /¢;, Ez
Then in the hot limit the analysis of section 3.2.3 requires g;"**° to be exponentially close
to one of the fixed points associated with the corners of the fundamental diamond. Recall
from (3.55) that when this is the case the conformal factors can be approximated as

Q22£

14
. (Jlu — upay|) and/or Qg ~ — (|v — Vpayl) , (3.65)

2m
where upqgy, Ubay are the coordinates of the relevant corner.

We will show that these conformal factors will be exponentially small and that the
renormalized distance to qiamage will be large. In the (3,0) geometry we may derive an
explicit expression by recalling the action of the quotient construction on boundary dia-
monds. In particular, the quotient of any such diamond is a cylinder. We may thus discuss
a ‘fundamental domain’ within the boundary diamond which we take to be an open set
that covers the cylinder precisely once (or, at least, up to a set of measure zero associated
with the boundary of the fundamental domain). We will also choose this domain to be

centered at the origin u,v = 0 and to have a simple form.

The details of such a fundamental domain were computed in [171] for the case where
the bulk is a non-rotating BTZ black hole. On the t = 0 slice, a corresponding fundamental
domain in the bulk may be taken to lie between the codimension-1 surfaces

¢ = 7+ sin! (tanh (7). (3.66)

As a result, the maximal boundary distance ds between the boundary limit of (3.66) and
the left /right corner of the diamond is

dy = cos™* (tanh (7)) . (3.67)

In the case of rotation, one can show that this expression generalizes to*’

dy = (COS_l tanh g) (cos—1 tanh g) (3.68)

2"The idea is to realize that, since ~vprz defined in (3.12) maps the two boundaries of the fundamental

domain to each other, then 'ygTQ 5 will map the boundary centre of the fundamental domain to one of the
boundary corners of the fundamental domain. This centre point, in global coordinates, is (t = 0,¢ = 7).

Acting on this point with 7113/:,21 4 gives the coordinates of the corner of the fundamental domain at the
boundary, from which we calculate dg.
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Note that this equation reduces to (3.67) when £ = £, using (3.18). In the hot limit we find
dy ~ 2e~+0/1 Since every domain of outer communication (i.e., every region outside the
black hole) is isometric to the domain of outer communication for some BTZ black hole,
the corresponding expressions will also hold for our multi-boundary wormholes.

Without loss of generality, we assume that ¢; < {5, /5 and 01 < Uy, 0. So, from (3.68),
the largest dy will occur for diamond 1, where it is given by (3.68) with ¢ and ¢ replaced by

¢y and £, respectively. In particular, if € is the distance between q(gm) and the fixed point
of the fundamental diamond, then ¢ < dy. Furthermore, from (3.65), we have Q2 ~ ¢2.

This provides a lower bound on dBr%(p, ¢3"*¢°) that in the hot limit yields

ren

dBTZ(p7 qgmage) > —log 02 ~ — log > — log d% 20+ 51 (3.69)

ren

This verifies explicitly that the conformal factors associated with qiamaLg

: ¢ are exponentially
small in the hot limit, whether ¢5"**° is in an image diamond or in the fundamental dia-

mond. As a consequence, d21%(p, ¢i"*%) > (4 1.

3.2.5 The CFT dual of (n,g) geometries

The bulk (n,g) spacetime is dual to a CFT state |X,,) € H1 ® --- ® H,, where H,; is
the Hilbert space of a CFT state on a circle. In the energy eigenbasis, this state can be
expressed as?®

[Sug) = D Anein 1)1 i),y (3.70)

U1 yeenyin

where the coefficient A;, ;. is a function of the 2(6¢g — 6 + 3n) moduli of rotating (n, g)
geometry. A Cauchy slice of (n, g) spacetime is a Riemann surface ¥,, , with n boundaries
and genus ¢g. Suppose that the state of the CFTs at the n boundaries is |¢y...¢,) €
Hi ® - ® H,. In the large temperature limit, the gravitational path integral over the
Euclidean Riemann surface with boundary conditions fixed by |¢;...¢,) is dominated
by the fully-connected bulk geometry, which by Wick rotation gives a Cauchy slice X, 4
that can give the full (n, g) spacetime by Lorentzian time-evolution - see [171, , ]
for details. Varying the moduli changes the dominant bulk geometry in the gravitational
path integral, which induces first-order phase transitions that generalize the Hawking-Page
transition [173] in the (2,0) spacetime. For example, for sufficiently large temperatures,

28Note that, for simplicity of notation, we are ignoring rotation for a moment. However, these equations
can easily be generalized to the case of rotation.
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the CFT state dual to the BTZ black hole is a thermofield double state and (3.70) becomes
[174]
Sa0) = Y e P20y, i), . (3.71)

In general, determining the coefficients A;, ;. from the path integral over an arbitrary
¥, is difficult. However, the CFT dual of ¥, in the puncture limit where h; < 1 was
investigated in [171]. It was found that in this case (3.70) becomes [171]

S0y = D Coge P2 e Bl i), (3.72)
1] 4eeyln

where (..., depend on the n-point function of the CFTs and the moduli parameters,

Bi = B; — logry — 2log 3, (3.73)
B; is the inverse temperature of the BTZ geometry in the exterior of the i*" asymptotic
region, and 74 is an undetermined constant that is independent from the moduli parameters
for (3,0) geometry but in general depends on the internal moduli for n > 3 (see [171]).

In the hot limit, the entanglement structure of |¥, o) was investigated in [I01]. In
particular, it was found that the bipartite entanglement between any two CFTs at different
boundaries, up to exponentially small corrections, is that of the thermofield double state
over a large region of AdS scale size?”. Thus, the CFT state dual to the local geometry in
this particular region (extending between the i*® and j* asymptotic regions through the
causal shadow) is well approximated by [¥20),; = [TFD),;. This result will be important
below in making hot multi-boundary wormholes traversable.

3.3 Traversability in BTZ black holes

In this section, we give a general review of the construction of traversable wormholes in
BTZ black holes via double-trace deformations [55], including the case with rotation [148]
and nontrivial dependence on the transverse coordinate (following [1419]).

In general, the perturbative construction of traversable wormholes is associated with
violations of the ANEC along generators of Killing horizon in some classical background
spacetime. We review the relation between such a violation and its perturbative backreac-
tion on the BTZ metric below. We will then review how a double-trace deformation can
cause such a violation.

29This is the same region denoted by D in section 3.2.4 where the distance d;; between the two horizons
H; and Hj is exponentially small.

82



3.3.1 Metric perturbation

The metric of a rotating BTZ black hole in the co-rotating coordinates is obtained by
substituting for the co-rotating transverse coordinate r = ¢ — :—;t into (3.15) to find®

r2—r2) (r2 =r2 r?
ds? = — ( +202( )dt2 + Ry )dr + r3(N(r)dt + dx)? (3.74)
where
ror?—r2
N(T) = E r2 . (375)

We can pass to Kruskal coordinates by defining the right- and left-moving null coordinates.
In the right exterior region, they are defined as

U=et, V=—er (3.76)

where © = (r3 — r2)/ry is the surface gravity, u,v = t & r, are the outgoing/ingoing
coordinates, and the tortoise coordinate r, is

2 _ _ 2 2.2
= \/r PV o (3.77)
\/7“2 —r2 /1t - rr
This gives the metric
1
ds® = (EG%E {-4dUAV + 4r_(UdV = VdU)dz + [ (1 = UV)* + 4UVr?] da”} .
(3.78)

Note that the asymptotic boundary in Kruskal coordinates is located at UV = —1.

To linear order, the geodesic equation implies that a null ray starting from the left
boundary in the far past (where V' =0 and U = —o00) satisfies

U U
_ 1
V(U) = — (QQUv(V = O)) 1/ dUhkk = Z/ dUhkk, (379)
where hyy, is the norm of k* = (9/0U)* after first-order backreaction from the quantum
stress tensor. To get hy, from the stress tensor, we use the linearized Einstein equations:

1
87TGN <Tkk> = — F [(7‘3 — 7“3_) hkk + 2r_8$hkk + 8§hkk (3 80)
+ .

+ (’l“z — 7"3_) BU (Uhkk) — 28U0xh;m + 0[2]hm] 5

30Tn sections 3.3 and 3.4, for simplicity of notation we use coordinates without subscripts for the BTZ
coordinates. Such coordinates should not be confused with the global AdS3 coordinates of section 3.2.
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where Ty, = Topk®k?. To find the shift AV at U = 400, one merely needs to integrate this
equation over all U. This yields

+00 1 +00
387G N / (Trr,) AU = 57 [(r2 —13) + 2r_0, + 07 / i dU, (3.81)
—00 7’+ —0o0
where asymptotic AdS boundary conditions have been used.
In [55, |, the authors consider boundary couplings that are independent of the

transverse coordinate for simplicity. In that case, hy; is independent of x, and equation
(3.81) can be simplified to take the form

r2 2
87TGN / <Tk;k> dU = + D) — /hkkdU, (382)
2ri
and the shift of V coordinate at U = 400 is
1 —+00 4 G 2
AV (+00) = / AUhgy, = -2+ / (Tyw) dU. (3.83)
—00 T+ —Tr-

More generally, we could consider a boundary coupling that has nontrivial dependence
on the transverse coordinate. Then we could solve (3.81) using a Green’s function H [119]

( / dUhkk> (z) = 87Gy / do'H (z — o) / AU (Tie) (') (3.84)

with
7(r+7r,)(x/7m) (r,+r+)(aclfa:)
rye rye I'>
N 1o 27070 Zn(r_+r)_ €T =z
H (x - ) - T+6(1',+$‘+)(27r7w+1'/) 7,+667(7‘+77',)(27r7:c+w/) ’ (385)
e2w(r,+r+)71 176727r(r+77-7) X S X
in position space where x, 2’ € [0,27). In Fourier space, H takes the form
. ’ 1 27’2
H(x—a)=) =g, H, = — * . 3.86
( ) Zq: 1 “2mr? — 2 = 2igr_ + ¢ (3.86)
If we are working with planar BTZ black holes, H takes the following form,
—(r—try)(@'—z) >
N ) Tye x>
H(‘T - CL’) - { T+€f(r+fr_)(xfz’) o <z, (387)

where x and 2’ can take value on the whole real axis, and in Fourier space one should just
adapt the sum in the compact case to an integral.
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Note that, in particular, the zero-mode Green’s function diverges in the extremal limit.
This means that our perturbation theory breaks down in that limit, although this still
suggests that the wormhole will be open for quite a long time, as will be shown below.

In contrast, the non-zero modes of H, remain finite at extremality. So in the extremal
limit, it suffices to study only the zero mode. Recalling that the BTZ temperature is given

2 2
by Ty = ;r—”‘, we have

TI'TH

r+
so that (3.79) gives the average shift AV (U) =V (U) — V(—o0) as

U 2
T AVierage (U) = 2Gnrs / / (Tie) dUda (3.89)
—00 J0

But in any case, we could use (3.79) and (3.84) to calculate the shift AV(U). In
particular, the shift at U = +o0 is given by

1 [e.9] [e.9]
AV (+o00) = Z/ dUhyy, = QWGN/dIE/H (x — .CL")/ AU (Ty) (') . (3.90)
By choosing the boundary conformal frame to be dsig;, = —dt* + d¢p* = —dt* +

2
(dx + %dt) , we can relate the boundary time with the V' coordinate via

t=——" _log (V). (3.91)

Here the sign is + for the left boundary and is — for the right boundary. The shortest
transit time ¢, from left to right boundary is realized by the geodesic that leaves the left
boundary at V' = —|AV|/2 and arrives at the right boundary at |[AV'|/2 so that

2 A
t,=———"_log (M) . (3.92)

2
ry—r2 2

We can also calculate the shift of the boundary angular coordinate between one end of the
null geodesic and the other. Since on the horizon of the unperturbed geometry we simply
follow a particular generator where x is constant, on the boundary the change in ¢ is

G = — 22T‘ 5 log <M> : (3.93)

ry—ro 2
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3.3.2 Violation of ANEC from a double-trace deformation
In AdS/CFT, the eternal BTZ black hole is dual to the thermofield double state

D) By 1)y | By T o - (3.94)

1
_ ¢ B B0 Q)2 |
V Z (57 QH) Zn:

Traversability is achieved by coupling the two boundaries using a double-trace deformation

48 = /dtdx h(t,z)Or (t,x) Of (—t,x) = — /dt 0H, (3.95)
where Op/p is a scalar operator living in the left/right CFT, and we choose its scaling
dimension to be A = ¢ — (5)2 + m? in order to have a relevant deformation [55]. The

boundary operator Oy g is dual to a bulk scalar field ®;,p with mass m?'. To make the
wormhole traversable, h(t, z) needs to be of some definite sign for a period of time, which
we denote as [to, tf].

We now show how such a boundary coupling leads to a violation of the ANEC. The
starting point is to evaluate the bulk two-point function along the horizon V = 0:

G(U,U") = (Pp(U,2)0p (U, 2)) . (3.96)

In a perturbative expansion in powers of the boundary coupling, the one-loop contribution
to the two-point function is [55]

t
G = QSin(ﬂ'A)/ dtydxy h(ty,x) KK ('t 2 —t1 + i8/2, 21) Ky (1,8, 581, 1) + (£ <> 1)

t

i (3.97)
where IC is the bulk-to-boundary propagator, and K, is the retarded bulk-to-boundary
propagator. Since the BTZ black hole is just quotiented AdSs, the propagators take the
same form as those in AdS3 but with a sum over images. The bulk-to-boundary propagator
in the right exterior region in rotating BTZ metric is [55, 1418]

A
2 2\2 o
re —7T -
(2 —r2) A
K(z,t,x;t), ) = BT E [—V/z — 1cosh (kt — r_dz,) + v/z cosh (r 6z,,)]
n=—oo
(3.98)
31Tt was shown in [175] that sufficiently small masses of the bulk field in general (n, g) geometries leads

to instabilities.
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where

Z=— —, ot=t—ty, Oxr,=1x—1x1+ 21N (3.99)
riy—
We may convert this to Kruskal coordinates in the right exterior region using the relations

1 U 1-UV\*
t—ﬂlog (_V>’ z= (1+UV) . (3.100)

Evaluated along V = 0, K becomes

[e%¢) U —A
> {—Uer—‘””n + cosh (r+5xn)] : (3.101)
1

n=—oo

The other ingredient in G}, is the retarded bulk-to-boundary propagator

Kot (2,8, 3381, 21) = |K (2,8, 2381, 21)| 0(68)0 (V'z — 1 cosh (k6t — r_dx) — \/z cosh (ro6z)) .
(3.102)
Now we are ready to write down G (U, U’):

27 1
G (U, U") COZ/ da:n/ Zgl (Og ),wn)
1

n=—0oo

— cosh (75453%))] 0+ (U( ; ;JB))

where Cjy = %mgw 0=10 (e7"=%U — U; cosh (r4dz)), and we have used the fact that

log(U).

[(e’"“sx" U,U’ + cosh (r4.0x,,)) (e’"“sa‘“" %
1

on the right boundary ¢t =

For planar BTZ black holes we would discard the image sum and extend the range of
the z; integral to the whole real axis [55]. But one should not forget the constraint imposed
by the 6-function in the retarded propagator, which requires

e~ ""U — U, cosh (ry6z) > 0. (3.104)
With the Green’s function at hand, the bulk stress tensor associated with the scalar field

1S

x—x/

1 1
(T,,) = lim (8#8,,G (x,x') — éguygm({)p&,G (x,x') — égm,mQG (x, X’)) ) (3.105)
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When evaluated along the horizon at V' = 0, the gyy component of the unperturbed metric
vanishes, so to leading order we have

(T = lim 00 (U V). (3.106)

Finally one can compute the opening of the traversable wormhole by inserting (3.103)
and (3.106) into (3.90). As shown in [55], the result is generally non-zero. So for the
right sign of the coupling function h it will give a time-advance that makes the wormhole
traversable.

3.4 Traversability of multi-boundary wormholes in AdS;

As shown in [161], for non-rotating multi-boundary wormholes in the hot limit, the bound-
ary state locally resembles the thermofield double state in region Dy discussed in section
3.2.4. This could be easily generalized to rotating wormholes by adding an angular poten-
tial. In regions that we call D, (since x is a more well-defined coordinate on the horizon in
the rotating case), the horizons are exponentially close to each other, and the corresponding
local state is exponentially close to a piece of the TFD

1
W) = Z e~ BrED(En—QrrDJn)/2 |En, Jn>L |En, Jn>R . (3.107)

\/Z (Brrp, Qrrp) <

Since our state is only locally TFD, the parameters Srpp and Q7pp can take any value
depending on the conformal frame. They thus should not be confused with the actual
black hole inverse temperature and angular velocity. In the hot limit, one expects that
such wormholes can be made traversable by the approach described in section 3.3. We
will show this below focussing on the three-boundary wormhole, and in particular on the
process of traversing from boundary 1 to boundary 2.

We will first set the stage by describing and justifying the planar BTZ coordinates to
be used below. In these coordinates, our calculations will be very similar to those of [55].
We will then show that, in the hot limit, the image sum in the Green’s function is well
approximated by the leading term. This greatly simplifies our calculation. Finally, we
calculate the wormhole opening with a double-trace deformation, which we require to be
larger than the local thickness of the causal shadow.
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3.4.1 Planar BTZ coordinates and the boundary coupling

Any BTZ black hole is locally isometric to AdS3, and thus also to planar BTZ. As a
result, in any contractible region D,, we may use planar BTZ coordinates to describe the
spacetime. Here, we use the following planar coordinates to describe both sides of the
wormbhole: ~2

ds* = — (7 — 7} )dt* +

) + 723’ (3.108)
We think of z as ranging over the entire real axis, though we are most interest in some
domain that corresponds to D,. The choice of 7 is arbitrary. The corresponding Kruskal
metric is !
ds?= — <—4dUd\7 (1 - UV)2daz~2> . (3.100)
(1+UV)?

Although there is a causal shadow between the two horizons in the hot limit, it is
exponentially small in ¢ and ¢ over large stretches of the horizons. So if we put the origin
of the Kruskal coordinates at the bifurcation surface of horizon 1 or 2 (or any place between
them) in the region where this separation is small, we make only an exponentially small
error if we then identify the above coordinates with natural BTZ coordinates in either
exterior. This justifies using the metric (3.109) for D,. We will come back to this in
section 3.4.3.

Note that, in the planar BTZ metric, the horizon size parameters can be scaled arbi-
trarily as long as we change the definition of coordinates accordingly. To be more concrete,
there are two kinds of coordinate transformations that we can make (they are expressed
in the ordinary angular coordinate ¢ for now and we will come back to the co-rotating x
later):

1. “Adjusting the temperature” (rescaling r, and r_ by the same amount):

-t ~ 0
r=A t=— = —. 3.110
r r? A ) ¢ )\ ( )
with the new horizon parameters 7+ = Ary;
2. “Changing the angular velocity” (changing the relative size of r, and r_):
(t, (;3) = (t coshy + ¢ sinhy, tsinh vy + ¢ cosh ) (3.111)

=147 =t
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with the new horizon parameters 7, = rycosh~y 4 r_sinh~vy and 7_ = r, sinhy +
r_coshy. As a special case, we could set #_ = 0 by choosing v = — tanh™* % In

this case we have
Ty o o 2 .2
(t,0) = (72"+t 27"_¢, re¢—r_t)/\/ri —1ri (3.112)

re=r"—r.

1 =2 .29
with 73 =ri —7rZ.

Note that we are not changing the actual temperature and angular momentum associ-
ated with any particular global BTZ horizon (which are uniquely determined by the bulk
geometry). The point is that the above description is valid only in a contractible domain
where the full global structure is not apparent. In that domain we have described the
system to good approximation as a planar BTZ black hole, for which the temperature and
angular velocity depend on the choice of the boundary conformal frame and are not fixed
by the bulk metric.

For simplicity, we would like to choose 7— = 0 and 7, be some fixed O(1) number
when the r ;’s become large. To clarify our notation, from here on, we use tildes to mark
quantities associated with the bulk planar BTZ coordinates (for which 7_ = 0), and we use
symbols without tildes to refer to quantities associated with the BTZ conformal frame in
some asymptotic region — perhaps with additional labels to denote the asymptotic region
of interest.

Combining (3.110) and (3.112), the coordinate transformations we will use on bound-
aries 1 and 2 are
(t,0) = (roiti —r— i, 4 ihi — r—iti) [T+

72 ri—r? (3.113)

f—2|—z T—Ql-,z' - rz,i7
where ¢ = 1,2 indicate different asymptotic regions. The above should be understood as
two different coordinate transformations, one for each value of i. As a result, the two
boundaries will naturally define distinct notions of ‘time advance’ AV} # AV, (and also
for similar quantities).

It will sometimes also be useful to consider the inverse transformation:

r ~ ~ ~ ~
(ti’ ¢Z) = —r2 _+ 7"2 (T+7it + T’_’Z'Qb, T’_’Z't + T’+’Z‘§b). (3114)
+,i —
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In terms of the co-rotating coordinates, the transformations and inverse transformations
for (¢t,z) and (¢, %) are

- ity —r_wy i ~
(AL S e NS (3.115)
Ty Ty
ty =+ (£+ r—‘:ﬁ) L o= tg (3.116)
K Ty Ty,

In particular, it will be convenient to take points on the horizons with z = 0, x; = 0 to lie
deep inside the domain D, where the separation between horizons is exponentially small.
The associated Kruskal null coordinates are related by

U=e ", V=", (3.117)

so that at £ = 0 (where z; = 0) we have U = U;,V =V;. One may interpret this as saying
that we have chosen all three sets of coordinates to be associated with the same reference
frame at z = 0.

From the planar coordinates we use, it is tempting to conclude that our setup can be
directly reduced to that of [55], reviewed in section 3.3. But, here, the subtlety is that
the boundary coupling is not naturally defined in the conformal frame related to our bulk
metric. To perform calculations, we need to first look at the conformal transformations
and how they act on boundary operators. To this end, we recall that the boundary metric
in the 7" asymptotic region is

72 ~
ds? = —d? + dgf = (—dz?? + d¢>2> . (3.118)

+7Z -

A general bi-local double-trace deformation coupling boundaries 1 and 2 will take the

form3?

0S = /dtldtgd.fﬂldiﬁg f(tl, tQ, Ty, .Z'Q)Ol (tl, x1)02<t2, l’g). (3119)
Local couplings, analogous to those used in [55] are obtained by taking f proportional to
a delta-function. But as opposed to the TFD case studied in [55], there is no preferred

natural way to identify points on boundary 1 with points on boundary 2. We must therefore
choose some diffeomorphism 7 from boundary 1 to boundary 2 and write

ft1,ta, @1, 39) = h(ty, 21) 6@ (%2 — n(x1)), (3.120)

32In contrast with section 3.3 (e.g. in (3.95)) we will take the boundary times to increase toward the
future on all boundaries.
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where x; = (t;,2;), ¢ = 1,2. Integrating out the delta function then expresses the coupling
in terms of a single set of boundary coordinates. For computational convenience, we will
choose the the functions A and 7 such that the double-trace deformation takes a simple
form when expressed in the conformal frame associated with the tilded bulk coordinates.
In particular, we take

~ ~ - 7"2 —7"2 AT T2 —7‘2 % ~ . ~ .
5Sz/dtd5: h(t, %) (“—‘1) (M) O, (1, 7)0s(1,%)  (3.121)

)
T+

where O, /2 is the quantity Oy, conformally transformed to the above frame. Note that
the expression (3.121) includes conformal factors from (3.118) to account for the transfor-
mations of boundary operators with conformal dimension A as well as for the Jacobian
associated with the change of integration variables.

We can also choose a simple explicit form of A(£, #) that turns on at some time #, and
turns off at some later time ¢;. For example, for every ¢ in between we could either choose
a constant (and in particular Z-independent) coupling,

h(t, &) = hA2724 (3.122)

or a Gaussian in # to make it localize near some angular position Z; i.e., for t; <t < t Iz
we may take

2 (5 m)\2
R, 7) = hAZ22 exp <—T+(5”0—2x°)) , (3.123)
where X is some fixed quantity with dimension of temperature and h is a small and dimen-
sionless parameter. Note that [50, ] both set A equal to the temperature of their BTZ
background. But there is no unique temperature associated with a general multi-boundary
black hole, as the temperatures of the three horizons can differ. This is not a problem.
We are free to choose A in any way we like, including to choose it independent of the
background, as long as it has the correct dimensions.

3.4.2 Image sum in the hot limit
We now show that the image sum in G}, can be well approximated by keeping only the

leading term. Since (G}, is built from two bulk-to-boundary propagators, it will be useful
to study them first.
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The extrapolate dictionary [176, | tells us that the bulk-to-boundary propagator in
the global AdS3 conformal frame can be obtained from the bulk two-point function via
K(p,qo) = lim r"2G(p,q) = lim 2G(r, t,z;7 ', z'). (3.124)
r' =00 r’—o0

Here p and ¢ are two points in the AdS; bulk. The coordinates of ¢ are those marked with
primes, and the unprimed coordinates are those of p.

In AdS;, the two-point function for a free scalar field is given by

Lo (Z + (7% - 1)1/2>1A , (3.125)

T 4r

G (pv Q) - GAdS3(Z)

where 7 = 1 + @ and o(p,q) is the (squared) distance between p and ¢ in the four
dimensional embedding space (sometimes called “chordal distance” [178]), and with all
fractional powers of positive real numbers defined by using the positive real branch. The
chordal distance is related to the geodesic distance d(p, q) in AdS space by

o(p,q) = 4sinh? (@) . (3.126)

When 7 is large, the two-point function has the expansion

Z2 (A 14+4A _
Gaasy (P a) = = — (21 St lro(Z 3)). (3.127)

In AdSs, the (unrenormalized) distance between a bulk point p and a boundary point gs
has the divergent part logr’, so Gags, (7,2') decays as (r')™2. But this decay is precisely
cancelled by the ()2 in the extrapolate dictionary (3.124). As a result, the bulk-to-
boundary propagator can also be obtained from the bulk-to-bulk propagator by inserting
into (3.125) an appropriately-renormalized (and thus finite) distance between p and g¢s.
According to the analysis of section 3.2.2, in the conformal frame associated with the
global coordinates, this renormalized distance is defined by subtracting logr’ from the
unrenormalized distance.

In a general conformal frame the extrapolate dictionary becomes

K= lim #2G(r,t, ;7 t' 2) (3.128)

7' —00

where 7 = 7/|Q| and Q2 is the conformal factor such that the boundary metric ds? satisfies
ds? = —dt* + d¢* = Q*ds?. Equivalently, we could obtain the correct bulk-to-boundary
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propagator by inserting into (3.125) an appropriately renormalized bulk-to-boundary dis-
tance associated with our conformal frame.

Since the three-boundary wormholes of section 3.2 are quotients of AdSs, their bulk-
to-boundary propagators are given by sums of AdS3 propagators over image points. In
particular, for points p and gy, we need to include AdS; propagators for the point pairs
(p, 9r.909%), where g;, and gr are any “words” formed from the left and right generators of
the quotient group I' used to construct the wormhole.

We would like to locate the image points grgag%k and find how they contribute to the
bulk-to-boundary propagator in the hot limit. Recall from section 3.2.2 that there are two
types of image points: 1) points inside the same boundary diamond as gy and 2) points
in other diamonds (i.e. outside the boundary diamond that g is in). As shown in section
3.2.4, when gy is taken to lie at a fixed location in the largest diamond non-trivial image
points in the same diamond must be exponentially close to one of the fixed points at the
left or right corners of the diamond. For those in other diamonds it suffices to note that
such non-trivial image diamonds are exponentially small in the hot limit.

Since all (AdS-)Cauchy slices of the wormhole spacetime lift to surfaces that run through
the left and right corners of each boundary diamond, and since any bulk point p can be
taken to lie on a spacelike (AdS-)Cauchy surface, p will have spacelike separation from
points close enough to these corners. This will in particular be true of the non-trivial
images of gy in the hot limit. This means that we use (3.10) rather than (3.11) to calculate
the geodesic length between p and those image points.

In section 3.2.3, we calculated the geodesic distance between spacelike separated bulk
and boundary points in the BTZ frame. Applying that result to our image points, we found
in section 3.2.4 that the geodesic distance is at least linearly large in (¢; + lZ) in the hot
limit. From (3.125) and (3.126) we then see that the contributions to the bulk-to-boundary
propagator from the image points are exponentially suppressed, and thus that they can be
ignored in the hot limit.

3.4.3 'Traversing the causal shadow

We now show in the hot limit that the |AV| induced by a fixed boundary coupling becomes
larger than the gap |AViog| between horizons associated with the existence of the causal
shadow region (see figure 3.8). Thus AViyu = |AV| — |AVes| becomes positive and
therefore the wormhole is traversable.
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Figure 3.8: The Penrose diagram of a black hole spacetime with causal shadow. In par-
ticular, this could represent the causal structure of a section that contains two asymptotic
regions in the three-boundary wormhole geometry. In the figure, we mark the two bifur-
cation surfaces H; and Hs, and AVgg caused by the causal shadow. In the hot limit that
we consider in the text, AVgg is exponentially small in ¢ and /in region D,.

From the above two subsections, the one-loop contribution to the Green’s function is

S ~ dU, - (1
G :O /dl’l/ Ul OgUl ~1
Up T—‘,—Ul +

(Uﬂ?’ + cosh (ﬁéf)) (ﬁg — cosh (ﬁéi))] N

1

(3.129)
where Uy = ¢+, §7 = 7 — #; and
A-1 Al ~ A1 A1 .
b 728 sin(TA) ( —7“2_71) 2 (7‘32 —7“372) T F(ri,—r2 )T (riy—ri,)e s1n(7rA)'
2 (257) 73 it 2 (287)?
(3.130)

The limits of the x integral above are set by the theta function (U% — cosh (f+5£)>.

We can use the above result to calculate the stress tensor:

(To) = lim 0p,0,G(U,T"). (3.131)
U'—U
If the background was exactly planar BTZ, then the shift of V coordinate at U = +oo
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would be

AV (%) = 2nGy / +OO di'H (i — &) ( /_ h dU(Tkk)) (@), (3.132)

where H(Z — #') is the Green’s function (3.87) for non-compact # and i’ when 7_ = 0,
H(i—i) =re &=l (3.133)

From our arguments above, using this result with (3.113) also gives the correct result in
our three-boundary wormhole up to two sorts of corrections. The first are due to errors in
(3.113) associated with the finite-but-small thickness of the causal shadow, and the second
comes from neglecting the sum over non-trivial images of gs. But both sorts of corrections
are exponentially small in the hot limit as discussed above. Thus to good approximation
in the coordinates related to the i*" boundary we find the shift AV} to be

AVi(z;) = e "% AV (%), (3.134)

To put this all together, recall that we are most interested in the region near z = 0
where the separation between the bifurcation surfaces is exponentially small. There V; ~ V,
and the three coordinate systems are all associated with the same frame of reference. In
particular, both bifurcation surfaces will have U; + Vi = constant and also Uy + V5 =
constant. Thus the exponentially small separation is also associated with exponentially
small sized Af/cs ~ AV cs = AV, g of the causal shadow in this region.

On the other hand, near x; = 0 the time advance AV; is not exponentially suppressed
at large ¢; and /;. Instead, it has at most a polynomial suppression. Thus at large ¢;, {; we
find AV; > AV, cg near £ = 0 and the wormhole becomes traversable in this region.

As a consistency check, we now show that the physical quantity AV, does not depend
on the fictitious parameter 7, that we have been using to simplify the calculations. Our

starting point is (3.129). We write Gj, = F + F’ where F is the term explicitly shown in
0 ~A
(Ulﬁ’ + cosh (ﬂﬁ:ﬁ)) (U_ — cosh (ﬂﬁfb))]

(3.129)
~ (1
C’O/dxl/ dUl ogU1 Nl
Uo T—i-Ul + 1
(3.135)

and F” is the term with U and U’ exchanged. Using this symmetry we may write <Tk;€> in
the form

(Tyr) =2 lim 9,05 F(U,U"). (3.136)

U'—U
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Next, we change the integration variables to make the dependence on 7, clear. First
we define a new integration variable y = cosh(7,0%) = cosh[ry (Z — Z;)] to write F as

- 20 o, (90 g log U7 . U
F( U) <Lo / @ Y Og 1 F (UlU/ + y) ~Z _y
o U1 N1 VY — Uy
(3.137)

where the limits of the y integral are determined by the theta function 6 (Ugl — cosh (f+5fc)> ,

—A

and the argument z; in the function h should be implicitly treated as a function of y.
As we can see from (3.130), all the 7, dependence in the prefactor 21% cancels out.
+
Recall also the relations (3.115)

7:+f = Ty, 7:_;,_7? = /{iti — T—;Z;, (3138)

so that on the horizon V = 0 we have

U = ™! = eritimr—izi, (3.139)
Similar relations hold for U, U’ and Uy in the integration limits, and they can be expressed
in terms of purely boundary quantities. Furthermore, we should avoid introducing any 7
dependence in h by hand. This means that, when choosing the form of h, the argument
t; and #; in h should both come with a factor of 7 7, since the combination r+t1 and 7, 7
can be converted by (3.138) to something that only involves parameters and coordinates
related to some boundary. In terms of the new variable y, this means that we must have
the combination (7,% — cosh™'y) independent of #,. Therefore, F is also independent of
To.
The physical observable AV; on one boundary is

457, =T+ -3 ( /_ Z 40 <Tkk>) (). (3.140)

No dependence on 7 is introduced in passing from F to [ dU (T k) and, from our previous
argument, [ dU(Tj) as a function of &’ should only depend on the combination 7,7'. As
we can see, all other parts involving tilded coordinates in (3.140) all come with a factor of
71, so the physical quantity AV; will not have any 7, dependence.

—+00

AVi(z;) = e "% 27TGN/

—00

3.4.4 Numerical results

We now present some numerical results in order to illustrate our construction. Here we
will take the boundary coupling to be turned on at t; = 0 and never shut off. We will
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Figure 3.9: For the case of constant coupling, the averaged null energy [ T dU (left) and
the horizon shift AV; at 7 = 0 (right). In both panels, we choose h =1, A =1, Gy =1,
Ty =100, r_9 =20 and r4; = 100.
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Figure 3.10: For the case of Gaussian coupling, the averaged null energy [ TidU at 21 = 0
(left) and its profile for general x; (right). In both panels, we choose h =1, A =1, Gy =1
ryo = 100, r_o = 20 and ;3 = 100, 0 = 0.2 and z¢p = 0. In the right panel we also
choose A = 0.6.
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Figure 3.11: For the case of Gaussian coupling, the shift of horizon AV} at x; = 0 (left)
and its profile for general x; (right). In both panels, we choose h = 1, A =1, Gy = 1
4o = 100, r_o = 20 and r;; = 100, 0 = 0.2 and Zy = 0. In the right panel we also
choose A = 0.6.
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consider two types of boundary coupling: 1) for every ¢ > 0 the coupling is constant, as
in (3.122) and 2) for every ¢ > 0 we take the coupling to be a Gaussian centered at some
point, as in (3.123).

We also take h = 1 and A = 1 in the boundary coupling, and G = 1 for simplicity.
Furthermore, without loss of generality, we only consider a subspace of the wormhole
parameter space defined by 7,5 = 100 , 7_5 = 20 and r;; = 100. We then study the
dependence of various quantities on the remaining parameters r_ ; (or equivalently the ratio

between angular momentum and mass J;/M; on boundary 1) and the scaling dimension
A.

The quantities studied here are the averaged null energy [ T dU and the shift of the
horizon AV; as measured on boundary 1. Note that here [ TrdU is not a physical quantity
since we could choose any kind of “tilded coordinates”, but we show it here because its
negativity is important for traversability. For convenience we choose 7, = 1.

Results for the case of constant coupling are shown in figure 3.9. There we show [ Ty dU
and AV at 7 = 0 (or equivalently & = 0) for different A and J;/M;. As we can see, both
quantities are negative and diverge near extremality.

For Gaussian coupling, we choose 0 = 0.2 and zy = 0. In figure 3.10, we show ffkkdU
at 1 = 0 (or equivalently Z = 0) and its angular dependence for some choices of parameters,
while results about AV are shown in figure 3.11.

3.5 Discussion

This chapter extended the Gao-Jafferis-Wall traversability protocol [55] to multi-boundary
wormholes. The main physical difficulty in achieving traversability in this case is the
existence of the causal shadow region between the horizons, and the main technical com-
plication in the analysis involves calculating the image sum in the Green’s function. Our
main result is that, in the hot limit, both of these difficulties can be circumvented and
traverseability can be demonstrated for appropriate couplings. As shown in section 3.2,
this is because for any pair of horizons there is a region whose extent along the horizons
is large in comparison with the AdS length where the horizons are exponentially close to
each other. The analysis in such regions thus reduces to that of [55]. In particular, in
this limit the distance between the global AdS3 images of appropriate bulk points bceomes
large, which exponentially suppresses all but one of the corresponding contributions to
the Green’s function relative to the largest such contribution. This greatly simplifies the
calculation of the Green’s function required to calculate the average null energy along the
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Figure 3.12: A Cauchy slice of the (2, 1) geometry showing the horizons (dashed lines) and
the two extremal surfaces (dotted lines) in the causal shadow region. In the hot limit, the
length of both types of surfaces have to be taken to be large so that, by the Gauss-Bonnet
theorem, there will be a large region where they are arbitrarily close to each other.

horizon. In a dual field theory description, the essential point is that the CFT state in this
region is approximately given by the TFD state [161].

Although we presented explicit calculations only for the three-boundary wormhole ge-
ometry, our work can be generalized to general n-boundary genus g wormholes (i.e. to
(n,g) geometries). The one subtlety in doing so is that, in addition to taking a hot limit
for the horizons, one must also take similar limits of certain internal moduli in order to
make the causal shadow exponentially small in certain regions. See figure 3.12 for the case
n = 2, g = 1, but similar issues arise even for ¢ = 0 when n > 3. Indeed, one can view
this as a result of the fact that a general (n, g) geometry can be made by sewing together
copies of (3,0) “pair of pants” geometries, but that in doing so some of the minimal cir-
cles that would have defined horizons in some given (3,0) geometry become cycles inside
the causal shadow of the final (n,g) geometry. Thus, the desired hot limit involves not
only taking limits of the parameters that define the final (n, g) horizons, but also requires
us to take limits of the parameters associated with the would-be (3,0) horizons that are
now inside the causal shadow. That this is possible in general was shown in [L(1] for the
static case, but those arguments can be generalized to allow rotation just as in section 3.2
above. Thus the traversability analysis reduces to exactly the same one we used for the
case without genus, and once again the CF'T dual to the bulk region where the horizons
are exponentially close together is well-approximated by the TFD state.

In the extremal limit, we showed in appendix B.2 that the minimal distance d;; between
the horizons diverges logarithmically. However, from (3.129) and (3.132), we see that the
time advance AV induced by the double-trace deformation diverges polynomially, which is
also illustrated in figures 3.9 and 3.11. For this reason, we expect that the wormhole is still
traversable in the extremal limit even though, as discussed in section 3.3, the perturbative
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analysis that allowed us to calculate AV will no longer be valid®3.

Recall that, in the ER=EPR proposal [19], entanglement between two (non-interacting)
quantum systems is geometrically realized by a non-traversable wormhole (i.e. Einstein-
Rosen bridge) connecting them. When the two systems are allowed to dynamically interact
with each other via a quantum interaction like the double-trace deformation, a quantum
teleportation protocol becomes possible and quantum information can be teleported be-
tween them through the wormhole that now becomes traversable. As pointed out in [55],
this is distinct from the standard quantum teleportation protocol where only classical in-
teractions are allowed between the two entangled systems (though see [155] for connections
with standard quantum teleportation). On the one hand, this provided a concrete mecha-
nism for recovery of quantum information via the Hayden-Preskill protocol [180] from the
Hawking radiation of old black holes [152]. One the other hand, it inspired a number of
experimental proposals (e.g. [157, ]) for quantum teleportation via quantum interac-
tions between two entangled systems?*. Looked at from this perspective, and although our
construction holds in the limit where the mulitpartite entanglement is ignored, our work
is a first step toward a generalization of the quantum teleportation protocol to quantum
systems with multipartite entanglement. Since the CFT state dual to a general (n, g) ge-
ometry is not known for general values of the moduli parameters, one can focus on the
hot limit where locally the entanglement is mainly bipartite and is approximately a TFD
state. It would be interesting to realize such a quantum state in the lab and perform the
quantum teleportation protocol on it. As discussed in this work, the main new features
in this case are the causal shadow region as well as the non-trivial angular dependence.
It would be interesting to understand how these features are realized in an experimental
set-up of quantum teleportation in the case of quantum circuits with multipartite entan-
glement. We expect that, in this case, the traversability protocol will occur on a mixed
TFD state and that the “size” of the causal shadow region will provide an upper bound on
the fidelity of the teleported state. See also [182] for a three-mouth traversable wormhole
where multipartite entanglement may play a larger role.

As discussed in [152], the experience of an observer passing through a two-sided traversable
wormbhole is that of a smooth free fall through a low-curvature spacetime. For an observer
entering a multi-boundary wormbhole, the experience will be similarly pleasant only for
particular angular domains. Entering the wormhole from other directions will require the
observer to become trapped inside the black hole and to reach the singularity. One should
thus be sure of the accuracy of one’s trajectory when entering such a wormhole.

33For further discussion on traversable wormholes in the extremal limit, see [179].
34The proposal [157] was experimentally realized in [131] using an ion trap quantum computer.
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There are several directions for future investigations. First, it would be interesting to
extend this work to higher dimensions, where gravity is more interesting than in three
dimensions. In addition, as discussed above, this work can be interpreted as a quantum
teleportation circuit with multipartite entanglement as a resource. Therefore, one can
extend the analysis of [157, , , | to this case and characterize how multipartite
entanglement affects the properties and conditions of teleportation.
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Chapter 4

Optomechanical Quantum Cavendish
Experiment

4.1 Introduction

One of the biggest difficulties in constructing a theory of quantum gravity is the lack of
experimental data. Unavailability of clean data from regimes where both quantum and
gravitational effects are present have cast a long shadow on the fundamental conceptual
problems that a theory of quantum gravity is expected to solve [185, |. Although
theories of both regimes have been successfully tested to extremely high degrees in their
respective domains of validity (i.e. large distances and massive bodies for general relativity
versus short distances and small masses for quantum mechanics), the disparities between
them, which stem from the weakness of gravity and decoherence of quantum states, have led
to the yet-unsurmounted task of designing experiments that can access regimes where both
theories predict effects of comparable degrees of observability. These experiments are of
two types: 1) those where the goal is to construct a measurement apparatus with increased
sensitivity to provide information about cosmological and astrophysical phenomena, or 2)
experiments where both the source of observations and the measurement apparatus need
to be constructed. The first type include observations of the primordial cosmic microwave
background (CMB) for information about the very early universe (i.e. a rare example of a
natural quantum gravity regime), and sensitive detection of gravitational waves from black
holes mergers as a possible source of information about the quantum degrees of freedom
inside black holes [187]. The second type was first proposed by Feynman [188], where he
suggested putting a massive object in superposition to test whether its gravitational field
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can also be put in superposition (i.e. is quantum in nature) or whether a gravity-induced
collapse of the wavefunction would prevent this from happening.

While a direct detection of the graviton (i.e. the quantum particle that mediates the
force of gravity) remains out of technological reach, there has been several proposals of low-
energy table-top experiments aiming at testing the effects of gravity in quantum regimes.
Milestone experiments include observing gravity-induced phase shifts in the wavefunction
of neutrons in a vertical interferometer [189], measuring the gravitational acceleration
using free-falling atoms [190], and observing quantum bound states of neutrons induced
by Earth’s gravitational field [191]. However, classical (Newtonian) gravity is sufficient to
interpret these experiments. Recently, several experimental proposals were put forward to
prove the quantum nature of gravity in table-top experiments. For example, the set-ups
of [192, , | aim at generating and detecting gravity-induced entanglement between
two masses, which is argued to be a witness to the quantum nature of gravity. Other
proposals were given that aim to generate a superposition state of the gravitational field
of test masses [195, , ]. While these proposals do not probe Planck scale physics,
they are important in expanding our experimental tools to regimes where gravity exhibits
quantum behaviour.

Optomechanics is the experimental field of using light to prepare quantum states of
mechanical oscillators. Advances in optomechanics [198] and atom interferometry [199]
have made the possibility of measuring the effects of gravity in table-top quantum systems
closer than ever. Proposals to observe the effects predicted by models of gravity that
modify quantum mechanics, such as gravitational decoherence models [200, , |, in
optomechanical settings have been considered before [203].

In this chapter, we propose an experiment that probe the mutual gravitational inter-
action between two quantum systems. In particular, we investigate the question: given
the gravitational interaction between two quantized systems in superposition, how can we
experimentally observe the effects of this interaction? To this end we propose an optome-
chanical set-up to observe the effect of the gravitational interaction between two quantum
micro-mechanical oscillators. A set-up involving superposing mirrors of order 10** atoms
was proposed in [202], and its application in observing the effects of gravitational decoher-
ence models was considered in [204]. Here, we assume that the (quantum) gravitational
interaction term is given by GyMm/|rf; — 75|, where 71 and 7y are position operators of
the gravitating masses, and perturbatively calculate its effect on the visibility pattern of
interfering photons in an optomechanical set-up. We find that the gravitational coupling
leads to a shift in the period and magnitude of the visibility of photons whose observability
is within reach of today’s technologies.

104



mirrors

Oscillating
Rod

(a) upper-view of the set-up (b) front-view of the oscillators

Figure 4.1: The proposed set-up consists of two freely-moving angular oscillators
suspended with vertical displacement h between them, and moving angularly in the
horizontal plane to which they are fixed, as shown in (b). At the centre of each oscillator
is a mirror that forms the oscillating part of a cavity system, whose other part is a fixed
mirror at distance d away. A focusing lens is used to reduce leakage of cavity photons due
to reflections from angularly oscillating mirrors. Photons with high radiation pressure are
put in a superposition of either entering the cavity with the movable end mirror or an
empty cavity with the same unperturbed length. The beams exiting each cavity are then
recombined and the resulting visibility pattern analysed, as in shown in (a).

The chapter is organized as follows: In section 4.2, we discuss the set-up to be used to
search for the model’s signatures, the parameters that will optimize between their strengths
and experimental feasibility, as well as the nature and magnitude of the signatures. In
section 4.3, we discuss the requirements to deal with environmental decoherence and sys-
tematic errors, comment on the gravity-induced entanglement between the oscillators, and
sum up our conclusions.

4.2 Experimental proposal

Figure 4.1 shows the experimental set-up. It consists of a mechanical component (figure
4.1b) formed by two oscillating rods with masses 2M and 2m, as well as an optical com-
ponent (figure 4.1a). For the mechanical component, two micro-rods of length 2L each are
suspended from their centre with a relative vertical separation h. Masses are fixed at the
end of each rod and mirrors are attached to its centre. Each oscillating mirror will form
one side of a high-finesse optical cavity.
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The optical component of the experiment has two similar parts, one for each of the
oscillating mirrors. Each part follows the scheme of [205], which makes use of a Michelson
interferometer to prepare a microscopic oscillator in a superposed state. For each part, an
input pulse will be generated using a high-radiation pressure photon source. The input
pulse will be split using a beam splitter into two paths, one going into the cavity with
the movable end mirror attached to the oscillating rod while the other passes through an
empty cavity. A lens will be placed in the oscillator cavity to focus the incoming beam
onto an edge of the mirror, so that the time needed to cross the length of the cavity is
much smaller than the period of the rod. Individually, the visibility pattern of the photon
from each part of the set-up can reveal that the associated mirror is in a superposed state,
as explained in [205]. However, the gravitational interaction between the two oscillating
rods will lead to a shift in the visibility patterns observed.

4.2.1 The cavity Hamiltonian

The Hamiltonian describing the interaction between the cavity modes with the mirrors is
given by [200]

H, = h/vuc(cicl + 0202) + hQuata — AthacJ{cl(aJr +a)
+ hwq(didy + didy) + hbTD — Ay Q! dy (b 4 b) (4.1)

where a and a (respectively b and b') are the creation and annihilation operators of the
mechanical modes of rod m (M), ¢; and ¢ (d; and d!) are the creation and annihilation
operators of photons in the path entering the cavity containing the mirror attached on
rod m (M) while ¢, and ¢} (dy and d}) are those of photons in the path not entering the
oscillator cavity. In addition, w, and w, are the frequencies of the two input pulses, 2, and
(), are the natural frequencies of the two rods of masses m and M, respectively, and

We h Wq h
m=od0. Vma, MY MMT o0\ M,

(4.2)

are the optomechanical coupling constants [205]. Note that the coupling between the
mechanical oscillator and cavity photons (third and sixth terms in (4.1)) represent external
and parametric driving of the oscillator by the cavity photons so that cavity photons can
create phonon excitations in the oscillator. The rods are assumed initially to be in coherent
oscillatory states

18;) Z ¢_|n j € {m, M}, (4.3)
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where |n) are the Fock eigenstates of the harmonic oscillator. The initial state of the total
system is

[¥(0)) = 7(|0 De+11,0).) 5m)
®\/—(|0 D+ 11,0)4) [Bu) (4.4)

where [1,0), = x1oy, |o, L, = X410 for x = ¢,d and where |0) is the vacuum state of
the cavity modes. The evolution of the combined oscillator-cavity system was analyzed in
[207], where it was found that, under the action of H; (without gravitational interaction),
the state [¢(0)) evolves according to

[9(0) = e f(0)) (45)
=7z (O Lel@om(D) + €270 11,0). 21 (1)
© (10,10, [ @0ar (1)) + O [1,0), |01 01 (1)))

V2

where

Do ;(t) = Bje "M,
Oy ;(t) = Bie M 4 Aj(1 — e7 ), (46)
¢](t) = A?(th — sin th) —+ A]Im[6]<1 _ e—iﬂkt)]’

and (7, k) € {(m,a),(M,b)}. The interferometric visibility pattern is directly measurable
from the statistics of photon detection and, therefore, it provides an important source of
information about the cavity system. The visibility is given by twice the absolute value
of one of the off-diagonal terms in the photon density matrix so that, for instance, if
pe is the reduced density matrix of the cavity photons coupled to rod m then V,.(t) =
2|Tr[po(t) 0,1),(1,0].]|. If the system evolves only according to H;, then the visibility
pattern of the photons in the two cavity systems will be

—A2 (1—cos Qqt)

Vo,c(t) e - m ,

Vo,d(t) = e*A?\/[(l*cos t)

(4.7)

The visibility is a measure of the distinguishability of photons in the two interfering paths.
The result (4.7) shows the independence of each cavity system from the other, and that
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the timescale of oscillation of the visibility pattern is set by the frequency of the oscillating
rod. At the beginning, the photons are maximally indistinguishable (i.e. the visibility is
maximum). The minimum visibility point occurs when the oscillator is at its maximum
extension. At the end of each period, the visibility returns to its maximum value. As will
be shown below, this behaviour is changed when the gravitational interaction between the
rods and environmental decoherence are taken into account.

4.2.2 The gravitational interaction

Our set-up is designed so as to maximize the effect of the gravitational interaction between
the two oscillators. Below, we will derive the total Hamiltonian of the system. First, note
that two classical harmonic oscillators will Couple via gravity according to

pm 292 1 212
H_2m+ IQQ 2M+ 10y + Hy (4.8)

where I,, = 2mL? and I); = 2M L? are the two moments of inertia for the two rods. For
two angular oscillators with masses at each end of a rod of length L and suspended with
vertical displacement h, the classical gravitational interaction will be

—GNMm

(h? + (2L sin(%u50))%)
—GNMm

h(L + (LB — 0,) /1))

H, =2 v

~ 2

o= G Mm (1 L (B~ gm))2>
h 2 h
_ —ZGZMm . GNif\g/[m(L(eM _ em))g
_ _QGZ Mm | GN]Z;”B (63 + 62, — 0010, — 0, 001) - (4.9)
Therefore, up to a constant term, the total Hamiltonian can be written as
H= % + %mwi@fm gﬁ + ;M 203, — mNh—WemeM (4.10)

where w, = 1/Q2 + GN M and w, = Q2 + GN ™. The frequency of a photon inside a cavity

of length d is
n o nm
e =2T— = — 4.11
"2d " d (4.11)
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where n = 1,2,3,.... When it couples to an angular oscillator with displacement 6, the
length of the cavity varies d — d + § for § << d, so that®

nm nm nm
. = = ~—(1—19/d). 4.12
We= T35 " dixejay a1 (4.12)
In our case, 6 = Lsinf =~ LO. So,
Lo
We — We — wcj. (4.13)
Introducing the annihilation operators for the two oscillators
I,w ?
— /2229 - 4.14
¢ 2h ( mt [mwapm) ’ (4.14)

. [Mwb 1
b= \/ oh (91\4 + IMwbpM> (415)

and substituting back in the total Hamiltonian to rewrite it in terms of the creation/anni-
hilation operators, including the photon cavity terms gives the quantized Hamiltonian of
the total system as

H= hwc(cicl + cécz) + hwyala — )\mhwacicl(aT +a)
+ hwg(didy + didy) 4 hwyb'b — AypFiopd! dy (b + )

+ hy(al + a)(b" + b) (4.16)
where
GN Mm
= —— 4.17
i 203\ w,wy ( )
is the gravitational coupling constant between the two oscillators. Below, we will denote
H, = hy(a' +a)(b' +b), (4.18)

and Hy is the first two lines of (4.16). We note also that the frequencies of the oscillators
and the optomechanical coupling constant are modified from the old Hamiltonian in (4.1)
due to the gravitational interaction according to

GNM GNm
e T (4.19)

We h Wy h
Ay — A = \/ , A Ay = \/ . 4.20
- 2wad | muw, M AM 2wpd N Mwy, ( )

35The linear expansion corresponds to the adiabatic approximation of the oscillator-cavity system in
which phonons of the oscillator cannot excite photons in the cavity.

Oy — wa =4/ 2+ Qp = wp =1/ +
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4.2.3 The shift in visibility

The visibility pattern of photons in the gravitationally coupled system will be different
from that of the uncoupled system given in (4.7). To calculate this shift, we switch to the
interaction picture in which the density matrix of the total system is

pr(t) = U()pr(0)U(2) (4.21)
where pr(0) = [¢(0)) (¢(0)], and

U(t) = Texp [—ﬁ /0 t dt’HI(t’)} , (4.22)

with 7 being the time-ordering operator. To derive the form of the interaction Hamiltonian
Hi(t) = eiHot/hng*iHot/h, recall from the BHC formula that, given operators A and B, we
have

e*Be ™ = B+ [A,B] + %[A, [A,B]] +.... (4.23)

iHot/h

The operator e~ was calculated to be [208]

. . . 2 .
6—zH0t/h — e—zwct(cfcl—&—c;—@)ez()\mcfcl) (wat—sin(wqt))

« e)\mc{rq(a*a—aa*)efiwattﬁa X [M], (4.24)

where @ = (1 — e~™at) and [M] here and below denotes the same part of the term as on
its left but under the isomorphic transformations

(‘)a,c,m - (')b,d,M’
a,c— b, d.
Using the BHC formula, the interaction Hamiltonian is
H[(t) — 6iH0t/ﬁng—iH0t/ﬁ
_ 6iHot/hh,y(aT + a)(bT + b)e—iHot/h

i T T *_ o1
_ h,yezwata ae)\mclcl(aa a a)(aT + a)

_ T *_qf —3 T
e Amejcr(aa*—a a)e iwgtaTa x [M]

= hye™ (ol 4 a4+ Apcley(a + af))e ™t 5 [M] (4.25)
= hy(ate™ ! 4+ ae™™t + N, clei(a + a*)) x [M]

= hy(ate™ ! 4+ ae™™t 4 2)\,,cler (1 — coswat)) x [M]

= fiy(aTe™et + ae™™t + 2\, cler (1 — coswat))

x (bt 4 pe= ™t 1 2\ dldy (1 — coswyt)).

110



The expectation value of any operator O is independent of the picture used to calculate
it. In the interaction picture, this is equal to

(O(t)) = Trlps (1) O (1))
= Tr[U(t)p; (0)UT (t)etHot/h O getHot/ 1]
= Tr[e " o217 (1) p (0)UT (1) ot/ Og] (4.26)

where Og is the operator in the Schrodinger picture.

The visibility of photons in the cavity of rod m due to the full Hamiltonian is therefore
Vie(t) =2[Tr[p1(t) 10, 1), (1,01 ]|, (4.27)

where . _
p1.e(t) = Trp pra [e_’Hot/hU(t)pI(O)UT(t)eZHOt/h} (4.28)

is the partial state of the photons in the cavity of rod m in the Schrodinger picture after
tracing out the two oscillators and the photons in the cavity of rod M. To calculate the
visibility from (4.28), we need to determine the action of e 0! {J(t) on p;(0). First, note
that

e—ZHot/ﬁaT — e—ZHot/haTeZHQt/ﬁe—lHot/ﬁ

T

—Amcicl (aa*fafa)efiwatafaa’[eiwatafa )\mcicl (aa*fafa)efiHot/h

= e €
_ Q*Amcicl (aa*fafa)a'fefiw,ltex\mciq (aa*faTa)efiHot/h
= (aF = Apclcpar)emiwatgmiHot/h (4.29)
and, similarly
e tHot/hg — (a — )\ch{cla)ei“’“te_iHOt/h. (4.30)
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This allows us to write, using the BHC formula, up to first-order in ~

. t
e_iHOt/hU(t) ~ e—iHot/ﬁ (1 . %/ dt/HI(t/))

0

t
= e tHot/h (1 — i'y/ dt'(afe™ + ge=™t 4 QAmcIcl(l — cosw,t')) X [M])
0

ot
= ¢~ HHot/h _ % / dt’ ((CLT — )\mciqa*)eiw“(t,_w + (a — Amcicla)e_iw“(t/_t)
0

+ 2>\mCJ{61(1 - Coswat’)) X [M]e—iHot/ﬁ

; t
19 ( atea'=1) | ge—iwa(t'~1)
hJo

+ Amcler(2 = 2 coswat’ — afee =1 — aeiw”(t't))) X [M]e~ ot/
Z’ t

=g / dt! (a*ei‘”a(t’” + e~
b Jo

+ Ancler(2 — 2coswet’ — 2cosw,(t' —t) + 2 cos wat’)) % [M]e~iHot/h

-0

t
> dt’ <aTei”“(t/t) + ae” a0 L o) cle (1 — cosw, (' — t))) X [M]e~tHot/h,
0

(4.31)

Using this relation, we can calculate the action of this operator on the initial state |1)(0)),
of the total system given in (4.5) perturbatively to be

. t
e~ MM (E) [(0)), = [(8)) — / dt!(ale™ "= 4 et
0
+ 2Amcter (1 = coswa(t — 1)) x [M]](t))
. t
= |¢(t)) — %/ dt'(afe™ =8 4 qe= =0 L 9N clei (1 — cosw,(t' —t)))
0

(b= 4 pe=in@=0 4 oxy dldy (1 — coswy(t' — ) [0(t))
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2 By
(bTeiwb(t’—t) + @07M<t)6_iwb(t/_t)))
|O7 ]‘>c |07 1>d |(I)0,m> |(I)07M>

. t
+ (1 _ % / dt/(aTeiwa(t/ft) + (I)()’m<t)efiwa(t/ft))
0

—iwct—iwgt ; t o oy
_ e [ (1 . ﬂ/ dt/(a/‘rezwa(t —t) + @(]Jn(t)eflwa(t *i))

(bte™ =0 1 @y gy (t)e =D L 2X ), (1 — coswy(t’ — t))))
¢ 010,1),[1,0) 4 |®o,m) [@1,01)

ot
+ (1 — %/ dt'(ate™* = £ (1) + 20 (1 — coswe(t' — 1))
0

(bTeiwb(t’—t) + (I)O7M(t)e—iwb(t’—t))>
@D 11,0010, 1) [@1,m) [Po.nr)

- t
+ (1 N ﬂ / dt/(aTeiwa(t’ft) + @, (t)efiw,l(t’ft)JrQ)\m(lfcoswa(t’ft)))
hJo "

(bte™ =8 1 @y gy (t)e =D 12X, (1 — coswy(t’ — t))))
e omWeioart |1.0) [1,0), |1 m) |P1ar)]- (4.32)

Tracing out the two oscillators and the photons in the cavity of rod M from the density
matrix formed by this state, keeping terms only to order O(7), and calculating twice the
absolute value of one of the off-diagonal terms gives the visibility (4.27) of photons in the
cavity of rod m to be

Vl,c(t) ~ G—Agn(l—coswat) %

2

_ N (-coswat) o Sin wyt _ WeSIn Wal — wp sin wpt

1+ i29Am[(280 — Anr)(

Wy w2 — w?
(4.33)

Quantum optomechanics allows coherent quantum control over mechanical objects
ranging from nano-sized devices of 1072 kg, to micro-mechanical structures of masses
107! kg, up to centimeter-sized suspended mirrors of several kilograms in mass for grav-
itational wave detectors [195]. Early breakthroughs in quantum optomechanics were with
1071% kg masses [209, ], followed recently by room-temperature regimes with masses
around 107!2 kg [211], and proposals for future experiments reaching 107° kg masses [212].
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Figure 4.2: (a) The visibility pattern of the photon field in the cavity system of rod m
before coupling it to rod M, showing periodic behaviour whose period is determined by
that of the oscillator 7" = 27 /), and the strength of its drop at every period depends on
the optomechanical coupling between the rod and the photon field. (b) The shift in the
magnitude of visibility from the case with no gravitational coupling as a function of time
due to the combined effect of the modified period of the oscillator, 27/, — 27/w, =T,
and the action of the coupled Hamiltonian on the state of the system, as calculated
perturbatively in (4.33).

We assume the masses attached to the end of the rods to be micro-mechanical structures
with masses M = m = 107'® kg and to be separated by a vertical distance h = 1078
m, each mounted on an oscillator with frequencies €, = 3 x 103 Hz, and €, = af), for
a = 0.9. The oscillators are assumed to be cooled down to near their ground states so
that By = ,, = 1. We propose to use light of frequency w, = wy = 450 x 10'2 Hz in both
cavities, each with cavity length d = 10 cm.

The pre-coupling visibility pattern V,.(t) and the shift in visibility induced by the
gravitational interaction V; .(t) — Vo (t) for photons of the cavity system of m are both
shown in figure 4.2. In figure 4.2a, we see that the visibility pattern of cavity photons in
the non-interacting system has the same period 27/€), as the oscillator, and at half that
period it reaches its minimum point at e A%, The drop in visibility in the middle of the
period is because oscillations of the rod contain which-path information about the position
of the superposed photons, dependent on the coupling strength \,, between the photon
field and the oscillator. When the oscillator returns to its original position after a full
period of oscillation, this which-path information is deleted and the visibility is restored
to its original value.

Figure 4.2b shows the shift in visibility as a function of time when the two oscillators are
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coupled to each other via gravity. The sources of this shift are twofold. The first is due to
the difference in frequencies between the coupled oscillators and their idealized uncoupled
state. This is observable as a shift in the frequency of the visibility pattern of photons of
magnitude wy — Q) =~ % ~ O(y), for (j,k) € {(m,a),(M,b)}. The second kind of
shift is due to the second term in (4.33), which oscillates around (yAnAar)*t2 ~ O(42) and
is observable as a growing variation in the shape of the visibility pattern from the one in
Voe(t). Recall also that Ay is the coupling parameter between the mirror in the cavity
of rod M and its cavity mode. From (4.33), we see that when this coupling is turned off
(Ay = 0), the shift in visibility is still that of figure 4.2b for small times. However the
effect of the coupling is an increase in the shift with time due to the Ay (t — M) term in
(4.33). The linear behaviour of the shift in visibility with ¢ is predicted from perturbation
theory for time scales below v~! ~ 853 s for the parameters used above. Maintaining the

coherence of the state for long enough times will therefore lead to more observable effects.

4.3 Discussion

4.3.1 Decoherence and systematic errors

In practice, due to environmental effects, an oscillator will be in a thermal mixture of
coherent states |3) (3]
1 2,
— | @?pe18I7/n 4.34
— [ e 3y ) (4.34)

where i = (e™a/k87 — 1)7" is the mean thermal number of phonon excitations at temper-
ature T and oscillator frequency w,. This will modify the visibility according to [205]

e—,\gn(lfcoswat) N e*)\gn(QﬁJrl)(l*COSWat) (435)

which causes a fast decay in visibility that is revived only after a full period. Note that n
depends on the ratio between the frequency of the oscillator w, and the average frequency
of thermal excitations kgT'/h (i.e. i decreases when this ratio increases, as expected). The

width of the visibility’s revived peak scales according to ~ - ;BT Increasing this
m hwgq

width constitutes one of the main experimental challenges to realize this proposal, and
requires a method to cool down the centre of mass mode of the oscillator to very near

36Note that, in general, 8 is a complex number. So, if we write 5 = |3le?’, then d?8 = d|3|db.
Furthermore, \ﬁ|2 = n is the average phonon number of the oscillator.
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their ground state [213]. Another experimental challenge is due to decoherence from the
mechanical damping of the oscillator and from dephasing with the environment, which
lowers the revived peak of visibility. In order to observe the shift in the period of the
oscillators, we need at least to be able to resolve one full period of the oscillation. If the
environment is modelled as an Ohmic thermal bath of harmonic oscillators and the damping
rate of oscillators is I',, then the dephasing rate due to the environment at temperature

T is Tp = TokpTm(Ax)® /B2, where Az ~ ,/miwa is the uncertainty in position of the

oscillator [202, ]. The condition for observing the shift in the period mentioned above
is then I'p < w,, which corresponds to

Q>kBTN

R T n (4.36)

where Q := w, /T, is the quality factor of the oscillator. Values of Q ~ 107 have been
achieved for suspended nanoparticles [215], which corresponds to having T' < 0.23 K for
the parameters of the set-up considered here.

Another source of systematic errors in the set-up proposed is the effect of gravitational
interaction with surrounding objects in the laboratory. If the rods are in a plane at half the
height of a cylinder with all surrounding objects having a mass distribution of cylindrical
symmetry, then the overall contribution would be a constant to the Hamiltonian that does
not affect the dynamics described above. Earth’s gravity would give an overall phase to the
states of the oscillators that does not affect the photons visibility patterns. If we suppose
that an inhomogeneity in the mass distribution surrounding the oscillators was due to a
mass M located at distance R from the centre of the two rods, then this adds terms of
the form Q%N_ /;jt"" + 2?}? _/\;:7]'\/[ to the classical Hamiltonian of the system, where 7, and 7, are
the position vectors of the masses from the centre. Expanding these terms to first-order in

distance and quantizing, this will add to the quantized Hamiltonian —Gg—zM Z—T(GT +a)—

GNM
R2

(b +b) in (4.16), we see that the condition for this inhomogeneity to have negligible effects

on the dynamics is to have N\ Aw, > G%—QM\/% , where N, is the number of photons
in the cavity associated with mass m, and N, is the same number for mass M. For the
parameters of our set-up, this correspond to % < 2.2x10°kg.m~2. Therefore, satisfying
this condition means that the systematic errors due to surrounding mass distribution is

negligible.?”

%J (b'+b), up to constant terms. Comparing with terms proportional to (a'+a) and

3"Environmental photons are also a major source of errors that we did not analyze in this work and
can lead to more stringent conditions on the experimental parameters.
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4.3.2 Entanglement generation

As mentioned in the introduction, the novel feature of our proposed scheme is the obser-
vation of effects arising from gravitationally interacting quantum systems (whereas most
previous studies are for a quantum test mass in the background gravitational field of the
Earth). It is also interesting to note that entanglement, albeit quite weak, is generated
due to this gravitational interaction. Denoting for convenience the system associated with
m system 1 (consisting of the oscillating mirror and the cavity modes) and that of M
as system 2, we see that the initial state [1(0)) (1(0)| in (4.4) is separable between the
two systems. Since the only coupling between systems 1 and 2 in the proposed scheme
is gravity, any resulting entanglement between the two systems can be attributed to the
gravitational interaction.

To quantify the amount of entanglement, we can use the linear entropy, defined as S :=
1—Tr(p?), where p; is the partial state of system 1. If we define A := ;—;L f(f dt' e Hot/h [ (") et Hot/h
then we note that it is Hermitian, and, from (4.29) and (4.30), it can be written as
A= ;—% fot dt'Hr(t' — t). The density matrix of the two systems: system 1 for oscillator of
mass m with its cavity photons and system 2 for oscillator of mass M with its cavity pho-
tons, can be written as a separable pure bi-partite state p = p1 ® pa =: |t1) (1] @ |102) (s
so that [1)1) [1)e) = |¥(t)), as given in (4.5). Furthermore, let

A= (o] A ), (4.37)
A21 = <¢2| A2 |¢2> . (438)

If we use the BCH formula in (4.23) and calculate up to second-order in ~y, then under the
action of the unitary U = e, the state in the Schrodinger picture evolves according to

o =UpUt
— A e A
=p+iy[A p] + % VA, [ivA, pl] + ...
=p+iv[A, p] — %Q(A% + pA? —2ApA). (4.39)
Tracing out system 2 will give
Py = p1+y[A, ;] — %Q(A21,01 + ;A% — 2A1p1 Ay). (4.40)

Squaring this and keeping terms only up to second-order in v will give

117



5.x107%F
4.x1o-9§
3.x10_95
2‘x10_95

1.x107°F

I I I I LoYyT
2 4 6 8 10

Figure 4.3: Plot of Linear Entropy, S, against ¢/T.

2
P2 = p? +iy[AL pl] — %(2A1P1Alp1 + 2 A1p1 A — 2A1p7 A1 — 2p1 Ay

+ p1A21p1 + p%A21 — 2p1A1p1A1 + Azlpf + p1A21p1 — 2A1/)1A1,01). (441)

Finally, taking the trace of this gives

2
Trpf=1-— 7?(4 Tr(A2%1p)) — 4Tr(A%p1))
=1—27*(Tr(A%p1) — Tr(AL%p1)) (4.42)

so that the linear entropy will now be

S=1-"Trp}
= 27%(Tr (A% p1) — Tr(A%p))). (4.43)

In figure 4.3, we plot the linear entropy for the set-up parameters considered here. Even
though the amount of entanglement generated for the period shown is small, we observe
an increase with time, similar to the shift in the visibility pattern. Since the visibility
is related to how much which-path information the position of the oscillator can reveal,
which in turn is dependent on the amount of entanglement between the oscillator and the
cavity photons, the increase in the amount of entanglement due to gravity shown in figure
4.3 means that, by monogamy of entanglement, the correlations between the oscillator and
the cavity photons will correspondingly decay. This causes the visibility pattern to have
a growth term as given in (4.33). We expect that an exact calculation will give a linear
entropy and visibility that are bounded from above.
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Note that, in our calculation of linear entropy (i.e. entanglement between the two
oscillators), we did not include the effects of the environment, which will lead to a reduction
of this entanglement.

4.3.3 Summary

Reminiscent of the experiment done by Cavendish [216] using suspended masses to measure
the gravitational interaction between them, a ‘Quantum Cavendish Experiment’ is one that
uses suspended masses in a quantized state to detect and measure gravitational effects in
quantum regimes so that the effects of Earth’s gravity cancel out. Such types of experiments
have been used before in sensitive verification of Newton’s inverse-square law at scales below
the dark energy length scale [217], and have been first incorporated in an optomechanical
set-up to approach the quantum limit of mechanical sensing in [218]. Recently, such a set-up
was used to measure the gravitational force of milli-gram masses [212] (see also [219]), and
proposals have considered its application in testing gravitational decoherence models [220)],
and its implementation using optically levitated nano-dumbbells [221]. Quantization of
suspended linearly moving mirrors whose dynamics is dominated by the radiation-pressure
of cavity photons has been achieved with masses ranging from 40 kg [222] to milli-grams

[223].

Our set-up requires forming coherent states of torsional mirrors of nanogram masses by
cooling them to their ground states, surpassing the standard quantum limit of detection
[224]. The suspended masses are coupled to a cavity field inside an optomechanical set-up,
and the effect of the mutual gravitational interaction between the masses is calculated on
the visibility pattern of cavity photons, whose observation is based on robust and well-
tested experimental techniques.

We found that the effects on the visibility are of two types: a shift in the period of

revival by an amount 07 = 2& — 2% and a change in the shape of the visibility pattern

Qa wq !
from the functional form e n(1=swat) that is of order O(42) for time scale t < 4~'. In
practice, it is easier to detect 671", which corresponds to 071" ~ 0.78 ns for the parameters
used above, than the shift in vertical magnitude that is of order 1076 in figure 4.2b.

To illustrate, suppose that the visibility at some time ¢ is drawn from an a priori
Gaussian distribution of variance 2. Then the error on the estimate of the visibility at

time t obtained by averaging over N data points is Oerror = \/U_N If 0opror ~ 1076 then

N ~ 10202, which is difficult to achieve. On the other hand, the accuracy of measuring
0T is dependent only on the time resolution available.
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Since our calculations assumed that the mechanical oscillators were in a state of su-
perposition (i.e. their gravitational fields are in superposition), an observation of the shift
in the period 0T of the visibility pattern would amount to an indirect evidence that the
gravitational field can exist in a state of superposition. On the other hand, this set-up can
also be used to study the gravity-induced collapse models [200, , |, which predicts
that the wavefunction of the oscillators would collapse and that no shifts in the period 67T
of the visibility pattern can be observed.

We also calculated the effect of gravity-induced entanglement in the set-up, showing
growth in the linear entropy between the two oscillators. Given the recent interest in
observing entanglement due to gravity [192, , |, it will be desirable to obtain an
entanglement witness that can experimentally verify the entanglement generated for this
scheme. One may also consider whether observable steady-state entanglement due to
gravity may be obtained similar to other optomechanical settings, for example in [225].
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Chapter 5

Measurement-Based Variational
Quantum Eigensolvers

5.1 Introduction

Variational methods are crucial to investigate the physics of strongly correlated quantum
systems. Numerical tools like the density matrix renormalization group [220, , , 229]
have been applied to several problems including real-time dynamics [230], condensed matter
physics [231], lattice gauge theories [232, 233, 234, 235], and quantum chemistry [236, 237].
Nevertheless, the classes of states that can be studied with classical computers is limited
[238]. VQEs were proposed to overcome this problem using a closed feedback loop between
a classical computer and a quantum processor [239, , , |. The classical algorithm
optimizes a cost function — typically the expectation value of some operator — which is
efficiently evaluated by the quantum hardware. The VQE provides an approximation to
the (low-lying) eigenvalues of this operator and the corresponding eigenstates. VQEs are

advantageous for a variety of applications [213, , , , , , | and have been
experimentally demonstrated in fields including quantum chemistry [219, ], particle
physics [251, , , ], and classical optimization [255, , .

Existing VQE protocols are based on the circuit model, where gates are sequentially
applied on an initial state [239]. These gates involve variational parameters whose opti-
mization allows the resulting output state to approximate the desired target state (e.g.
the ground state of some Hamiltonian). This chapter describes a proposal for a new ap-
proach to VQE protocols, based on the measurement-based model of quantum computation
(MBQC) [258, , , , , |. In MBQC, an entangled state is prepared and the
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computation is realized by performing single-qubit measurements. While the circuit-based
and measurement-based models both allow for universal quantum computation and have
equivalent scaling of resources [201], they are intrinsically different. The circuit-based
model is limited by the circuit size and the gates that can be performed, while MBQC is
limited by the size of the entangled state one can prepare. Moreover, for certain applica-
tions, the required coherence times [264, 265] and error thresholds [261, , , 265] are
much less demanding for MBQC.

In this chapter, we develop a new variational technique based on MBQC, that we
call measurement-based VQE (MB-VQE). Our protocols determine the ground state of a
target Hamiltonian, which is a prototypical task for VQEs with wide-ranging applications
[240, , , , , , 247]. The underlying idea behind MB-VQE is to use a tailored
entangled state called the ‘custom state’ that encodes some ansatz state and allows for
exploring an appropriate corner of the system’s Hilbert space (see figure 5.1a). This custom
state includes auxiliary qubits which, once measured, modify the ansatz state into some
output state. The choices of the measurement bases, and the corresponding variational
changes to the state, are controlled by a classical optimization algorithm. This approach
differs conceptually and practically from standard VQE schemes since MB-VQE shifts the
challenge from performing multi-qubit gates to creating an entangled initial state, which
can provide advantages for certain applications.

The chapter is organized as follows:

In section 5.2, we start by giving a brief review of MBQC. Then, we present the frame-
work for the MB-VQE developed for two specific schemes that are suited to different
problem classes.

In section 5.3, we introduce the first scheme: a direct translation of circuit-based VQEs
to MB-VQEs (see figure 5.1b). Here, the variational state family is the same for the circuit-
and the measurement-based approaches, but the implementation differs as the MB-VQE
requires different resources and is manipulated by single-qubit measurements only. We
exemplify this direct translation for the Schwinger model [265] and highlight the different
hardware requirements and the scaling of resources. As explained below, a translation
to MB-VQE is advantageous for circuits containing a large fraction of so-called Clifford
gates®®, as these are absorbed into the custom state.

In section 5.4, we introduce the second scheme: a novel method to construct variational
state families, illustrated using the toric code model with local perturbations [270]. As

38Intuitively, Clifford gates are defined as gates that transform Pauli strings into other Pauli strings.
See [269] for a more precise definition.
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(a) ansatz state custom state

oldNnseoa

i= Clifford gate (@)= Knob  [D= Measurement

Figure 5.1: MB-VQE schemes. (a) Variation of a problem-specific ansatz state by
‘edge-modification’, explained in section 5.4. An ansatz state [,) starts the MB-VQE in a
suitable corner of the Hilbert space (choice of green island). Next, the MB-VQE algorithm
explores the neighbourhood (runner on black arrow). The variational optimization exploits
a custom state that is obtained by decorating the edges of the ansatz state with auxiliary
qubits (orange circles). Their measurement in rotated bases R(f) with variational parame-
ters 6 transforms the ansatz state [, into the output state [tboy). (b) Direct translation of
a VQE circuit into a MB-VQE, as explained in section 5.3. Left: a VQE circuit consisting
of Clifford gates (black) and single-qubit parametric gates (‘knobs’). Right: the corre-
sponding MB-VQE, where the Clifford part of the circuit has been performed beforehand.
The custom state consists of output (white circles) and auxiliary (orange circles) qubits
only; the latter are measured in rotated bases and are related to the ‘knobs’ in the circuit.
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figure 5.1a shows, we start from an ansatz state [i,) in an appropriate corner of the
Hilbert space. To explore this neighbourhood using a classical optimization algorithm, we
introduce a custom state and apply measurement-based modifications of |¢,) that have
no direct analogue in the circuit-model. The resulting variational family is not efficiently
accessible with known classical methods and is more costly to access with circuit-based

VQEs.

Finally, we summarize our results and discuss their implications in section 5.5.

5.2 General framework

5.2.1 Measurement-based quantum computing

Here, we provide a brief review of MBQC, based on [261]. In particular, we review how a
universal set of gates can be realized in the MBQC framework.

The main resource of MBQC are so-called graph states [271, ]. A graph state |G),
associated with a graph G = (V, E), is a stabilizer state (an eigenstate with +1 eigenvalue)

of the operators
A N ~\Ta
K= %] (Zb> " (5.1)

beV

where a € V and T'y, is the adjacency matrix of the graph G, and X , Y, and Z are the
Pauli operators. When the graph G is a connected subset C of a simple cubic lattice Z¢,
d > 1, the graph state |G) is called a cluster state |C). Therefore, the cluster state is
defined by the condition

K,|C)=|C), VYaeV. (5.2)

A simple way to realize this state is as follows: start with the product state

+)e = &) [+ (5.3)

acV

then apply the sequence of unitary two-qubit operations

where



Therefore, X

C) = Scl+)c - (5.6)
It is easy to verify that this equation satisfy the condition (5.2). MBQC starts with the
preparation of the cluster state, followed by single-qubit measurements in a certain order
either in the eigenbasis of the Pauli operators X, Y, Z, or in the rotated basis R() = {(|0)=£
¢ [1))/+/2}. Depending on the measurement outcomes, the system is probabilistically
projected into different states. To make the computation deterministic, so-called byproduct
operators and adaptive measurements are required [201]. The former applies X and Z
operators to the output qubits depending on the measurement results, while the latter
involves adapting the measurement bases R(#) based on earlier measurement outcomes.
Consequently, adaptive measurements must be performed in a specific order.

In the following, we will give the procedure to implement a general one-qubit rotation
gate and a CX (i.e. CNOT) gate. We denote the measurement result on qubit a as (—1)%,
where s, € {0,1}. A generic single-qubit unitary gate (up to an overall phase factor) can
be written as

~ A~ A~ A

U(0y,0,,05) = U,(63)U,(02)U,(0,), (5.7)
which corresponds to a rotation with an arbitrary angle around an arbitrary axis, where
U,(0) = exp (—iQX/Q) and U, () = exp (—202/2). The cluster state required to im-

plement the general rotation gate U (01,05, 03) consists of 5 qubits, and the measurement
pattern realizing this gate is shown in figure 5.2a, where qubit 1 is the input state [¢;,)
and is measured in X basis, qubits 2, 3, and 4 are measured in the bases R(—(—1)*6)),
R(—(—1)*20,), and R(—(—1)%"%203), respectively, and qubit 5 is the output qubit. Mea-
suring the qubits in this order results in the final state of the output qubit being

‘wout> = Z?E,TU(GD 827 63) |¢in> ’ (58)
where the byproduct operator Ugy,, is
Us, = Xo2tosgzotss, (5.9)

This is an example of MBQC with adaptive measurements, since the measurement bases
of qubits 2, 3, and 4 depend on previous results and must be performed in a specific order.
By contrast, a C'X gate acting on two qubits corresponds to a non-adaptive measurement
pattern. In this case, the cluster state consists of 15 qubits and the measurements can
be performed in any order or simultaneously, as shown in figure 5.2b. The byproduct
operators for the C'X gate are

Us, ox :X;2+S3+35+56 Z?1+83+54+55+58+59+511+1

’ . . (5.10)
XS2+53+58+S10+812+814 ng+811+813

15 15 )
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1 2
(b)
1 2 3 4 5 6 7 O = output qubit
g . — measured in X
O — measured in ¥
9 10 11 12 13 14 15 O — measured in R(6)

Figure 5.2: Set of gates in MBQC. (a) Measurement pattern for a general single-qubit
unitary operation U (61, 6,03). Qubit 1 is the input qubit. (b) Measurement pattern for
the CX gate. Qubits 1 and 9 are the input qubits (control and target qubits, respectively).

and the output qubits are qubits 7 (control qubit) and 15 (target qubit).

While figure 5.2 shows how to implement individual gates in the MBQC formalism,
one can implement a sequence of gates by concatenating the corresponding measurement
patterns. To illustrate this, assume that A and B are two gates, corresponding to two
cluster states with input, output and auxiliary qubits. In order to perform the gate BAin
the MBQC framework, we combine the measurement patterns of A and B such that the
input qubits of B are the same as the output qubits of A. As a result, BA has the same
input qubits as A and the same output qubits as B. Let Ug A and 027 B be the respective
byproduct operators and assume that B is a Clifford gate. Then, the overall byproduct
operator is Uy, = UE,BU/E,A, where

UE7BBUZ’AA = UE,BO;)ABA, (511&)
UL 4 = BUs 4B". (5.11D)

If instead B is a rotation gate as in (5.7), the overall byproduct operator is Ug = UZ,B(A]E,A,
and

U&BBUZ,AA == UE7BUZ7AB/A, (512&)
B' = U4 BUs 4. (5.12b)

This modification of B affects the bases of the rotated measurements, which have to be
fixed following the protocol in [261]. With this, MBQC can simulate any sequence of CX
and single-qubit gates, which is equivalent to universal quantum computation [273].
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An advantage of MBQC is the possibility to simultaneously perform all non-adaptive
measurements at a single time step (see figure 5.1b). This corresponds to the Clifford part
of a circuit and includes single- and many-qubit gates [261]. This is independent of the
position of the gates in the circuit, and reduces the required overhead and coherence time.
Remarkably, this can be either done directly on the cluster state in the quantum hardware,
or on a classical computer before the experiment. In the latter case, the Clifford part of
the circuit can be efficiently performed on a classical computer using the Gottesman-Knill

theorem [274], which transforms the initial cluster state into a new graph state that is local-
Clifford equivalent to the quantum state obtained after all non-adaptive measurements are
performed [275]. This state can be directly prepared and used for the MBQC to perform the

remaining rotation gates, and it usually have dramatically fewer auxiliary qubits compared
to the initial cluster state.

5.2.2 Measurement-based VQE

First, we explain how VQE algorithms work [210]. For the prototypical task of finding the
ground state of some Hamiltonian H, the VQE algorithm generally works as follows

1. Prepare the variational state |1(4)) on the quantum computer, where 8 set the values
of adjustable gates or experimental parameters.

— —

2. Measure (¢(0)|H|1(0)) from the quantum hardware.

— —

3. The value of ()(0)|H | (0)) is sent to a classical optimizer that updates the parame-
ters 0 to decrease the energy of the variational state.

4. Tterate over this process until convergence in the value of energy is achieved, at which

—

point [ (6)) is the ground state of the Hamiltonian H.

That convergence to the ground state is possible rests on the variational theorem of
quantum mechanics, which states that, for any real-valued parameters 0, (¢(6)|H|y(6)) >
E,s, where E, is the ground state energy of the Hamiltonian [210]. This implies that there
exists some optimal 6% such that |¢(6%)) is (sufficiently close to) the ground state of the

Hamiltonian. However, it is crucial that the variational state family |¢)(6)) is chosen to be

suitable for the problem. For example, the VQE algorithm will not work if |¢/()) is chosen
to respect some symmetry that the ground state of the Hamiltonian is known not to have.

Furthermore, for the quantum computation to have an advantage, we need [1(#)) to be
difficult to simulate classically.
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We now explain how MBQC is used to design a MB-VQE. While the classical part
of the feedback loop is left untouched (though note that the best optimization algorithm
[276, , , , , ] is problem-dependent [252, ]), the MB-VQE is based on
the creation and partial measurement of a tailored graph state rather than the application
of a sequence of gates to create the variational state |¢(§)) Specifically, the quantum part
of a MB-VQE comprises an ansatz state |1),) that is transformed into a ‘custom state’, and
a measurement prescription. As schematically represented in figure 5.1a, |¢,) is a graph
state from which we start exploring the variational class of families attainable by the MB-
VQE. The custom state is then created by expanding |¢),) into a bigger graph state. This is
done by edge-modification, i.e. by adding new vertices and connecting them to pre-existing
sites in the ansatz state. According to a measurement prescription defined below, which is
the same at every iteration of the algorithm, the auxiliary qubits of the custom state are
then measured in rotated bases R(g), with 6 being the variational parameters over which
the optimization occurs. After the variational measurements of the auxiliary qubits, the
remaining qubits will constitute the output state |{out) = |@/J(§)> of the MB-VQE algorithm
(see figure 5.1a). The cost function to be fed into the classical side of the MB-VQE is then
measured from [1oy) (i.e. its energy), and the variational parameters g are updated by the
optimization algorithm. This process is repeated until convergence in the value of energy
is achieved.

Just like the circuit-based VQE, the custom state determines the success of our MB-
VQE. Generally, the more auxiliary qubits are measured in rotated bases R(g), the bigger
the available class of variational states that can be explored. However, an excessive number
of parameters 6 will make the algorithm’s convergence rate slower and the experimental
implementation harder. Therefore, it is important to tailor the custom state to the con-
sidered problem. As will be described below, the expansion of the ansatz state through
edge-modification, with the subsequent measurement of the auxiliary qubits, allows for
remarkable control over the desired ansatz state’s transformations. Not only can one ap-
ply gates — just like in a circuit-based VQE — by following MBQC prescriptions (see the
Schwinger model example in section 5.3), one can also identify completely new patterns of
auxiliary qubits, that transform the ansatz state in a way that would be expensive to sim-
ulate with the circuit formalism (see the toric code example in section 5.4). For instance,
a single auxiliary qubit measured in R(f) and connected to an arbitrary number of output
qubits {1,2,3,...}, acts ei32192082:8- onto them [260]. In a circuit, the same operation
requires a linear number of two-qubit gates®.

39 A simple way to get the same operation within the circuit framework is to use an ancilla qubit in place
of the auxiliary qubit in the graph, and act with CX gates between the ancilla and the output qubits.

128



5.3 From circuit-based to measurement-based VQE

Since MBQC can simulate a universal set of gates [201], one can create a MB-VQE by
directly translating the circuit-based VQE into its corresponding custom state and sequence
of measurements. As we discuss below, this strategy is advantageous if the number of
parametric adaptive measurements (i.e. the knobs in figure 5.1b) in the resulting MB-
VQE scheme is small.

As an example, we determine the ground state energy of the so-called Schwinger model
[268], a testbed used for benchmarking quantum simulations in high energy physics [251,
, ]. The Schwinger model describes quantum electrodynamics on a one-dimensional
lattice and can be cast in the form of a spin model with long range interactions [281, ,

J

J S—2 S-—-1 J S—1 n
H== S — k2,7 — = 2y z
nel hEn "= = (5.13)
S—1 " S .
+w 676, +HC)+Z —1)"Z,,
n=1 ( o ) 2 ;( )

1
2a’

the lattice spacing and the coupling strength, respectively, and 6 = (Xn + szn) /2.

. . . 2
where S is the number of fermions, y their mass, w = and J = %&*. Here, a and g are

For the VQE protocol, we assume the typical situation where parametric single-qubit
gates and fixed entangling gates (C'Xs) are used to create the variational state [287, 219].
We consider a generic VQE circuit, in which a sequence of ‘layers’ is applied [240], each
containing local rotations and entangling gates. As shown in figure 5.3a for S = 4, we
choose each layer to consist of the gates

S/2—1 S/2 S
H CX2n,2n+1 H CXQn—1,2n H Ux,n(‘gm,n)Uz,n(ez,n)a (514)
n=1 n=1 n=1

where (A]m(@,,,n) = exp (i@,,,nf/n/Q), and (v, ‘7) = (:U,X) or (v, V) = (z, Z) The circuit
for the VQE is created by concatenating K layers, where K is big enough to sufficiently
explore the relevant subsector of the considered Hilbert space. As described in section 5.2,
the MB-VQE custom state corresponding to a K-layer circuit is obtained by joining the
measurement patterns of the gates in (5.14), and performing all non-adaptive measurements
classically, which effectively removes the Clifford parts of the circuit. The resulting custom
state is shown in figure 5.3b. As ansatz state, we use [1,) = @°_,|+).
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Figure 5.3: Schwinger model. (a) Ansatz state and VQE circuit for S = 4 qubits and
K layers. Each layer consists of C'X gates and local rotations (orange) parametrized by
angles 0, (with rotation axis v = x,2; 7 = 1,...,4). (b) MB-VQE custom state for K
layers. White circles are output qubits. Auxiliary qubits (orange) are measured in rotated
bases R(f). (¢) The order parameter (O) vs fermion mass x plot. The dashed line and dots
represent exact diagonalization (ED) and MB-VQE results, respectively, with the number
of layers K used indicated in the legend. The inset shows the infidelity 1 — F between
the output state and the true ground state. (d) Relative energy difference AE/E between
the output state of MB-VQE algorithm and the true ground state for u = —0.7, versus
the number of iterations in the optimization procedure. The variational parameters are
initialized at zero, and J = w =1 in (5.13).
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The MB-VQE simulation results are shown in figure 5.3c for S = 4 and different val-
ues of K. We plot the order parameter (O) = m D il (1) Z) (1 + (=1 Z;))
against the fermion mass p and correctly observe a second-order phase transition around
p=—0.7 [288, , ]. As expected, increasing K improves the ground state approxi-
mation, as demonstrated by the inset in figure 5.3c and by figure 5.3d. The points near
the phase transition require K 2 3 layers (2 28 qubits), whereas K = 1 layer (12 qubits)
suffices for the easiest points. Note that allowing different gates as resources in (5.14)
generally leads to different convergence rates, as demonstrated by the results in [251].

Perfect platforms provided, both the circuit-based VQE and the MB-VQE give the same
result. However, the quantum hardware requirements are different for the two methods.
The circuit-based VQE requires S qubits, 2KS single-qubit operations, and K (S — 1)
entangling gates. For the corresponding MB-VQE;, a custom state of S(2K + 1) qubits and
2K S single-qubit operations (measurements) are required. Generally, translating a circuit-
based VQE into its corresponding MB-VQE is advantageous whenever the circuit involves
a large Clifford part compared to the number of adaptive measurements (i.e. knobs). In
this case, MB-VQE avoids the requirement of performing long gate sequences, which is
currently challenging due to error accumulation in circuit-based quantum computation.
This is especially interesting for platforms where entangling gates are hard to realize (e.g.
photonic setups) or in systems with limited coherence times.

5.4 MB-VQE by edge-modification

MB-VQEs are advantageous whenever a perturbation pr is added to a Hamiltonian H,
whose ground state, used as ansatz state [i,) below, is a stabilizer state (equivalent to
a graph state up to local Clifford operations [275]). Here, we illustrate the idea of MB-
VQE through edge-modification (first outlined in section 5.2) through the example of a
perturbed toric code model. First, we will provide a brief review of the perturbed toric
code model and the notation used to describe it. Then, we will present the MB-VQE
algorithm used to find its ground state.

5.4.1 Toric code and logical states
The toric code is a quantum error-correcting code defined on a two-dimensional rectangular

lattice with periodic boundary conditions [290] (see figure 5.4). On the lattice, the number
of columns (rows) of independent vertices is N, (NN,) and edges represent qubits. The
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toric code state is a stabilizer state of so-called star A, and plaquette Bp operators. For
any vertex s in the lattice, A, acts with Z on the four incident edges, while Bp acts
with X on the four edges in the p™ plaquette®®. The toric code Hamiltonian is then
Hy=— > A, — Zp Bp, and the ground state is stabilized by the plaquette Bp and star A,

operator. Since [, A, = I, Bp = 1, the toric code has 2N, N, — 2 independent stabilizers

(i.e. there are two more degrees of freedom than independent stabilizers), and Hy has
four degenerate ground states |r,t), (r,t = 0, 1), called logical states. To explicitly write
down these logical states, we add two extra stabilizers to the set of operators A, and Bp.
There are two common choices for the pair of extra stabilizers to be added, which are
called logical-X ()A(LJ and )A(L,g) and logical-Z (ZALJ and ZAL,Q) operators, and are shown
in figures 5.4b and 5.4c, respectively. Explicitly, Z L1 (Z L2) acts with Z on all horizontal
(vertical) edges of an arbitrarily chosen column (row). Similarly, X, 1 (X1 5) acts with X
on all horizontal (vertical) edges of an arbitrarily chosen row (column). Here, we choose
the logical operators to act on the first row and column of the toric code lattice. Both
logical-X and logical-Z operators commute with all the other plaquette Bp and star A,
operators, but do not generally commute between themselves. The logical state |r,t), can
then be defined as the unique ground state of Hy — (—1)"Zp1 — (=1)'Zp (r,t = 0,1).

The perturbation added to the toric code Hamiltonian is

2N, N,
Hy= Y \iZn, (5.15)
n=1

which corresponds to an inhomogeneous magnetic field. The task for the MB-VQE al-
gorithm is to find the ground state of Hy + lf[p for different choices of the perturbation
parameters {\,} and, for simplicity, we choose N, = N, = 2. As ansatz state for the
MB-VQE, we choose the highly entangled graph state |¢,) = |0,0),*', that approximates
the ground state of Ho+ ﬁp for small positive values of \,,. The graph state representation
of |0,0); can be determined efficiently classically [275] and is shown in figure 5.6b.

5.4.2 Algorithm and results

The quantum part of MB-VQE involves preparing the variational state at every iteration by
applying projective measurements on a custom state that is created from the ansatz state.

4ONote that this is opposite to the choice given in [290], where Z and X operators are exchanged.
However, the two are equivalent by a Fourier transform.

“INote that, for general perturbations, the ansatz state will be a superposition of different logical states
Dot Crtlr thn, with 37 e [? =1 (6 =0,1).
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Figure 5.4: Toric code notation. (a) Toric code for N, = 4 and N, = 5. Qubits exist
on the edges of the lattice, and two of the generators A, and B are explicitly represented.
Since the lattice lies on a torus, periodic boundary condltlons are enforced, as shown by
empty dots. Schematic representations of the logical- X and logical-Z operators in the case
N, = N, = 2 are given in (b) and (c), respectively. In the whole figure, links colored in
blue (orange) represent the action of the X (Z) operator on the corresponding qubits.

Here, we explain how to modify the edges of the perturbed toric code ansatz state |1,) (see
figure 5.6b) to obtain the custom state. The local perturbation term H, in (5.15) leads to
a reduction in the amount of entanglement in the ground state, as can be understood by
considering the ground state of ﬁp, which (for positive weights A,) is the tensor product
state @),,|1)n. Therefore, we need to modify the edges of |¢,) in such a way that, after
the measurement of the auxiliary qubits, we both fine-tune the amount of entanglement
between connected vertices and transform the state of the output qubits. This can be done
by following the protocol given in figure 5.5. The idea is to modify any edge connecting
two output qubits by adding two auxiliary qubits in an arbitrary state (green circles in
figure 5.5b), which are then measured in the X basis. If both these qubits are in the state
[4+) = (]0) + [1))/+/2, their measurement leaves the output qubits unaffected. However, if
both auxiliary qubits are either in |0) or |1), their measurement eliminates all pre-existing
entanglement between the original output qubits.

While it is possible to directly prepare the custom state with auxiliary qubits in arbi-
trary states, this does not create a graph state, and as such there are no known methods
to obtain a deterministic outcome after the measurement of all auxiliary qubits. A formal
MBQC protocol can be obtained by following the measurement patterns presented in sec-
tion 5.2.1 and [261]. Each of the auxiliary qubits to be used in the edge-modification is
substituted with five qubits, to be measured in a specific order following the MBQC imple-
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Figure 5.5: Edge decoration. Schematic description of the edge-modification technique
used for the perturbed toric code MB-VQE. The edge connecting a linked pair (m,n) of
vertices in |¢,) (shown in (a)) is modified by adding two auxiliary qubits in an arbitrary
state (shown in ()). The corresponding MBQC procedure uses the measurement pattern
presented in (¢). By classically removing Clifford operations, we reduce the number of
auxiliary qubits to be added to four, as shown in (d) and figure 5.6a. The arrows repre-
sent the temporal order in which the auxiliary qubits have to be measured. In (¢) and
(d), we explicitly indicate the angles 6; (i = 1,...,4) of the rotated bases in which the
corresponding qubits are measured.

mentation of a general rotation gate (see figures 5.2a and 5.5¢). In this case, an arbitrary
state can be prepared with only two measurements in rotated bases*? and, out of the ten
auxiliary qubits in figure 5.5¢, six can be eliminated by efficient classical computation [274].
The resulting graph state, presented in figure 5.5d, only contains four auxiliary qubits per
edge of the ansatz state.

To better understand the effects of our edge-modification, we look at the state |1, )
of the two output qubits n and m after the auxiliary qubits are measured. With the

42For an arbitrary input state, we need three measurements in rotated bases to implement a general
rotation gate (as shown in figure 5.2a). But, here, since we know that the ‘input state’ is fixed at |+),
only two measurements in rotated bases suffice to implement a general rotation gate so that the auxiliary
qubits shown in figure 5.5b can be in arbitrary states.
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parameters 0; (i = 1,...,4) introduced in figure 5.5, we find*?
[n.m) =[1 + cos 04 sin 6y sin B + cos 6 cos 5 sin Oy sin O, + cos Oy sin O3 sin O4) |0),,,|0),

0 1
+ |cos? 54 + 3 (=1 + cosfy) + sin 6 sin fy + i sin O, (cos Oy cos O3 — cos 01 sin Oy sin 63) | 0),,]1),

+ [cos Oy + sin O3 sin O, + i sin 05 (cos O cos 04 — cos O3 sin Oy sin b4)] |1),,]0),

+ [ cos by cos Oy — i cos By sin Oy + sin O, (—i cos O3 + sin Oy sin Oy sin 63)] [1) 1) 5,

(5.16)

which, for simplicity, is not normalized. From this equation, it is possible to see that for
0, =0 (6; = 7/2), Vi, we get the initial graph state |ty ) = CZ|+)|+)n (the separable
state [nm) = |+)m|+)n). For arbitrary angles 6;, the entanglement between the output
qubits is generally reduced, and their wave vector rotated according to (5.16). By taking a
deeper look on (5.16), it is possible to realize that the edge-modification technique presented
here does not allow for reaching an arbitrary output state |1, ,,). For instance, there is
no combination of the angles {61, ..., 604} such that |¢,, ) = [0),,|1),. This limitation can
be lessened or even removed in several ways. For instance, adding a third qubit in an
arbitrary state on the link connecting m and n allows for more control over the output
state |¢nm). Otherwise, after the auxiliary qubits are measured, one can rotate the states
of the two output qubits by acting with single-qubit rotations onto them, as explained in
section 5.2.1.

We remark that the number of auxiliary qubits can be further reduced by switching
from a deterministic to a probabilistic protocol. While the edge-modification procedure
presented in figure 5.5b does not resort to a graph state (i.e. it does not satisfy (5.2)), it
can still be used for a MB-VQE. From one side, this saves half the auxiliary qubits that
are needed for the creation of the custom state. On the other side, the loss of determinism
in the outcome forces us to repeat each iteration of the MB-VQE algorithm until a specific
measurement, outcome is obtained. The number of extra repetitions that one must perform
scales exponentially with the number of auxiliary qubits, making this probabilistic approach
useful for toy examples only.

The edge-modification procedure outlined above is applied to the ansatz state of the
perturbed toric code, which has a graph state representation shown in figure 5.6b, giving
the custom state shown in figure 5.1a. The auxiliary qubits are then measured in rotated

—

bases R(6) that are controlled by the variational parameters of the algorithm. Depending

43We are assuming that all measurement outcomes in figure 5.5¢ were +1. This is possible because
one can find a byproduct operator that ensures this output state (5.16) regardless of the actual individual
measurement outcomes.
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Figure 5.6: Perturbed toric code. (a) Edge-modification resource for the MB-VQE.
Four auxiliary qubits (orange circles), labelled (m,n); (i = 1,...,4), are added to two
connected output qubits m and n (white circles). (b) Graph state representation of the
ansatz state |0,0),. Additional Hadamard gates are applied to qubits with dashed lines.
(c¢) Relative difference between the MB-VQE results and the true ground state energy vs
the perturbation strength. We let A, in (5.15) be equal on all qubits (solid blue line),
or sampled from a normal distribution Pg of average A and variance 0.1\ (red squares).
Green triangles describe a perturbation acting strongly on A; and weakly on the other
qubits. Dotted and dashed lines are computed with respect to |0,0); (ansatz state) and
|1)®2NeNy (ground state of H,) for A, = A Vn.

vn]
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on 5, the entanglement between the qubits is modified, and the ansatz state is transformed
into the output state |[1hou) = [10(0)).

Numerical results for the MB-VQE are shown in figure 5.6c. The relative energy dif-
ference between the MB-VQE results and the true ground state (calculated via exact
diagonalization) is plotted against the perturbation strength. This is done with all A,
in (5.15) equal to A (solid blue line), with each A, drawn from a Gaussian distribution
Pg(j1, 0?) with mean p = X and variance 0 = 0.1\ (orange squares), and with A\; = \, A,
randomly sampled from Pg(p = 0.1,02 = 107%) for n # 1 (green triangles). A plot of the
infidelity resembles figure 5.6¢, with maximum infidelities for the blue curve, red squares
and green triangles being 6.2 x 1072, 6.5 x 1072, and 9.4 x 1073, respectively. Figure 5.6c
shows that the MB-VQE produces the ground state energy with high confidence when the
perturbation strength is very small or very large. Notably, the MB-VQE outperforms the
ansatz state (dotted black line) and the ground state of H, in (5.15) (dashed black line)
in all cases. If the perturbation only acts on one qubit, the chosen custom state allows the
MB-VQE to find the exact ground state energy within machine precision. This is also the
case if the perturbation acts on two disconnected qubits, provided we connect them and
add auxiliary qubits as in figure 5.6a. This suggests that the outcome of the MB-VQE can
be significantly improved by adding few extra auxiliary qubits.

5.5 Discussion

In this chapter, we merged the principles of measurement-based quantum computation and
quantum-classical optimization to create a MB-VQE that finds the ground state of some
target Hamiltonian. The framework rests on the creation of a custom state that consists
of the ansatz state with additional auxiliary qubits that are measured in rotated bases
controlled by the variational parameters of the algorithm. These measurements allow the
variational state to explore the Hilbert space of the problem in search of the desired ground
state. We presented two new types of variational schemes that are not restricted to our
specific examples and can be combined and generalized to other cases. We first showed
how to adapt any circuit-based VQE to become a MB-VQE, using the Schwinger model as
example**. The second approach applies when the ansatz state is a stabilizer state, which

44Note that, while we have presented the Schwinger model MB-VQE as a translation of the circuit-
based VQE that was studied in the literature before [251], it is also true that it falls under the principle
of MB-VQE by edge-modification. Indeed, as explained in section 5.2, the principle of creating variational
states through edge-modification underlies all MB-VQE methods.
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allow us to efficiently determine its corresponding graph state [275], as in the perturbed
toric code model.

Our scheme based on edge-modification provides a new way of thinking about state
variations in VQEs. In particular, the effects resulting from measuring only one or few en-
tangled auxiliary qubits can be challenging to describe with a simple circuit. The resulting
state transformations do not necessarily correspond to unitary operations and can affect
a large number of remaining qubits [260]. Accordingly, MB-VQEs can lead to schemes
in which few auxiliary qubits suffice to reach the desired state, while many gates would
be required in a circuit-based protocol. Just like circuit optimization in standard VQEs
[291], tailored edge-modifications can lead to a leap for MB-VQEs, with the custom state
optimized to the specific problem. The framework presented here provides a starting point
for designing VQEs whose properties are different and complementary to the standard
approach that is based on varying a state by applying gates.

Experimental proof-of-concept demonstrations of the idea of MB-VQE by edge-modification
can be explored by considering the smallest instance of the planar code [290], with per-
turbation on a single qubit as a first step. In this scenario, the MB-VQE requires as
few as eight entangled qubits instead of the 44 used above. Especially promising candi-
date systems include superconducting qubits and photonic platforms. The latter recently
demonstrated the capability to entangle several thousands of qubits [292, |, and to cre-
ate tailored graph states [294, , , |. When designing custom states for future
experiments, it will be important to understand the effects of decoherence and it will be
interesting to investigate whether MB-VQEs retain the high robustness of MBQC against
errors [2064, 2606, 265].

While the principles of MB-VQE outlined here are platform-agnostic, they open the
door for complex quantum computations in systems where long gate sequences or the
realization of entangling gates are challenging. In particular, MB-VQE offers new routes
for experiments with photonic quantum systems, thus enlarging the toolbox of variational
computations.
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Chapter 6

Final Remarks

This thesis considered four different aspects of quantum information, AdS/CFT duality,
and the interplay between them. In this final chapter, we reflect on the results presented in
each of these aspects, summarize what they have taught us, and point out some directions
for future investigations.

Chapter 2 made the first rigorous study of the holographic complexity conjectures for
rotating black holes. This was lacking previously due to the difficulty in describing the null
hypersurfaces in rotating spacetimes in a way that is amenable to the relevant calculations.
Our first contribution was to point out that there exists a special class of spacetimes where
these complications vanish: the odd-dimensional equal-spinning black holes. Based on this,
we carried out a detailed study of two quantities: the complexity of formation and the late-
time rate of growth of complexity for both the complexity=volume and complexity=action
conjectures. We verified that the late-time rate of complexity growth is a constant and
that the limit is approached from above for the CA conjecture and from below for the CV
conjecture, which agrees with the behaviour found for charged black holes. However, we
found that the complexity of formation for rotating black holes is different from charged
ones. For charged black holes, it was found [09] that the complexity scales with the entropy
for large black holes, AC ~ Sf(u/T) + Slog(u/T). Using a combination of analytical
and numerical arguments, we showed that, for rotating black holes, this relation instead
becomes AC ~ VP=2/(0=1) £(Qu /T) + Slog(Q/T). This distinction is possible only
because, in general, the thermodynamic volume V' and entropy S are independent functions
but that, in the case of static black holes, they are not independent, S ~ V(P=2/(P=1),
Therefore, our results generalize the behaviour found for static black holes to the case when
there is no time symmetry.
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Our argument for the role of thermodynamic volume in holographic complexity is a
bulk argument whose validity rests on the CV and CA conjectures. Although complexity is
ultimately a CF'T quantity, we have not presented a CFT argument for why thermodynamic
volume is relevant for complexity. The role of thermodynamic volume in holography is not
yet well understood (though see [113, , , , , , , ] for progress in this
direction). Our work provides a strong motivation to study this question in the future and
provide a CFT argument to either verify our results or show their limitations. Another
direction for future investigation is to go beyond the odd-dimensional equal-spinning class
of black holes, though we expect this task to be formidable.

In chapter 3, we considered general traversable wormholes in AdS3 spacetimes. Two-
sided traversable wormholes were first considered in the seminal paper of Gao-Jafferis-
Wall [55]. The difficulty in generalizing this protocol to multi-boundary wormholes is the
existence of the causal shadow region between the horizons of any two asymptotic regions.
Our first contribution was to point out that this difficulty can be overcome in the hot limit
of multi-boundary wormholes where the temperature in all asymptotic regions is large.
We explicitly showed in the three-boundary wormhole case that there exists a large region
where the causal shadow between any two asymptotic regions is exponentially small in the
hot limit. Furthermore, the local CFT state in these regions can be well approximated by
the TFD state. Based on these two results, we showed how the Gao-Jafferis-Wall protocol
can be applied to the case of multi-boundary wormholes to make them traversable. We
also discussed how multi-boundary wormholes with non-trivial topologies can be made
traversable.

It would be interesting to extend this work to higher dimensions where gravity is more
interesting. Furthermore, since the CF'T state dual to multi-boundary wormholes has mul-
tipartite entanglement, and since traversable wormholes are dual to quantum teleportation
circuits, it would be interesting to investigate how multipartite entanglement can be used
as a resource for quantum teleportation circuits, effectively extending the work presented
in [157, , , ] to understand how multipartite entanglement affects the properties
and conditions of teleportation.

Chapter 4 considered the experimental question of detecting non-classical effects of
gravity in quantum regimes. The difficulty in achieving this experimentally is that the
gap between the smallest mass whose gravitational effects can be detected and the largest
mass that can be put in a controlled quantum state is still quite large. To help overcome
this gap, we proposed an experimental set-up that uses cavity optomechanics to prepare
two quantum micro-mechanical oscillators in a superposition state and detect the effects
of the gravitational interaction between them. The observable from which the effects of
gravity can be studied is the visibility pattern of interfering photons in the cavity systems
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of the set-up. We quantified the shift that the gravitational interaction would induce on
the photons visibility pattern, and discussed the effects of errors in the set-up such as
thermal phonons and the gravitational effects of surrounding mass distributions.

We have not given a detailed account on how the experimental proposal can be realized
in the lab. We hope that experimentalists would take this question and improve on our
proposal. Furthermore, although we have showed that the gravitational interaction induces
entanglement between the two quantum micro-mechanical oscillators, we have not given
an entanglement witness that can experimentally verify this in our set-up. It would be
interesting to consider this in future investigations.

In chapter 5, we merged the principles of measurement-based quantum computation
with variational quantum eigensolver algorithms to find the ground state of some target
Hamiltonian. This problem has many applications in different fields and is expected to be
the first practical application of near-term quantum devices. To do this, we first showed
how any circuit-based VQE can be translated into a measurement-based VQE. That this is
possible is expected since MBQC is known to be a universal quantum computer. Further-
more, we introduced a new class of variational state families that are unique to MBQC and
have no immediate analogue in circuit-based VQEs. This second approach is suitable when
the ansatz state is a stabilizer state. We illustrated these two schemes with two examples:
the Schwinger model and the perturbed toric code model. These two approaches provide
a starting point for designing VQEs whose properties are different and complementary to
the standard approach that is based on varying a state by applying gates, and open the
door for new applications of VQE algorithms.

There are two directions for future investigations. First, we have not presented an
error analysis for our MB-VQE schemes. When designing variational states for MB-VQEs
for future experiments, it will be important to understand the effects of decoherence and
investigate whether MB-VQEs retain the high robustness of MBQC against errors [204,

, |. Second, we have not discussed the details of experimental implementation for
our schemes. It would be interesting to investigate this question in the future, particularly
for photonic platforms that are more suitable for MBQC.
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Appendix A

Appendices to chapter 2

A.1 Fefferman-Graham form of the metric

In computing the complexity of formation, it is important to justify equating the cutoffs
at large distance ry., in both AdS and the black hole spacetimes. To see that this is the
case, here we case the metric into the Fefferman-Graham form which will then allow us to
directly compare the differences in the fall off of the metric components.

We define a new coordinate p according to the relation
2 0 0,
godr® = ?dp : (A.1)
Directly solving this relation to obtain r as a function of p yields
2 N PME
dp (2N + 2)p2NH

r=p-— +0 (p_(2N+3)) . (A.2)

In terms of the coordinate p the metric now reads

62 d 2
ds* = p_2p + Ydatdz” (A.3)
with the metric 7,, approaching the metric on the boundary as p — oo, along with the
relevant corrections to this from the bulk. The specific form of this metric can be easily
worked out, but its exact form is not necessary here.
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With this expansion at hand it is now possible to directly compare the behaviour of r
for the global AdS metric with that for the black hole metric. The result is, placing a UV
cutoff at p = £2/4,

M=
_ AdS _ §2N+1 A4
Thus, for all positive N the difference in the cutoffs tends to zero in the limit where 6 — 0.
This justifies working directly with a cutoff 7., in both the AdS and black hole geometries.

A.2 Vanishing contribution of the GHY term

We will show that the GHY term (2.83) in the action does not contribute to the complexity
of formation AC 4 and is canceled by the contribution from vacuum AdSp. First, note that
the GHY term for vacuum AdSp is given by replacing g(r)™2 — fo(r) in (2.83), where
fo(r) is the blackening factor of vaccum AdSp. At r — oo, the difference Iopy — I&SS
depends only on the tortoise coordinates. Using (A.4), it is straightforward to show that

o) o0 1
e ) — (1 i) = [ I [T L
(S = 7" (rmax)) = (Moo = 70 (Timax)) ) raas fo(r)
_/ &dr- Ld?‘
rAdS  o(s2n+1) 9(T) rads fo(r)
= O(62V ), (A.5)

Furthermore, the factor multiplying this term is of order O(1/§?V*2). Therefore,
Iany — Igiy = O(9) (A.6)

which vanish in the limit § — 0.

A.3 Complexity of formation in the static limit

Here, we consider, in arbitrary dimensions, the behaviour of the complexity of formation
in the limit where r_ /r; — 0. We compare the result with the analogous limit for charged
black holes, and compare both with the results for the Schwarzschild-AdS black hole.
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A.3.1 Complexity of formation for Schwarzschild-AdS

The Schwarzschild-AdS metric in D spacetime dimensions reads

2
ds® = — fsene (7)dt* + L + 7r2dQ3, (A.7)
SChW(T)
where ) o1f
r
fSChW(T) = k? + 5_2 — m . (Ag)

(In the remainder of this section of the appendix we will drop the “Schw” subscript, but
will re-introduce it in later sections when confusion could arise.) Here we will consider the
complexity of formation for this geometry focusing on the £ = 0,41 cases, essentially re-
viewing the discussion of [61] but with a slightly different emphasis to allow straightforward
comparison with our results for the rotating black holes.*’

The calculation of the action on the WDW patch consists of a bulk term and a GHY
term at the past/future singularities. Additional contributions vanish when the result is
regularized by subtracting the contribution of two copies of global AdS. The calculation
is carried out by focusing on a single quadrant of the WDW patch, then multiplying by a
factor of four to obtain the full answer. Let us consider each of these contributions in turn.

Consider first the GHY term on the future singularity. It is straightforward to show
that in this case the extrinsic curvature takes the form
1 2(D — 2) fsehw(€)

K = WAy - féen(€) + .

The spacetime has a four-fold reflection symmetry along the lines t = 0, and so the compu-
tation can be performed by focussing on one quadrant of the diagram and then multiplying
by four. Focusing on the top-right quadrant of the Penrose diagram, the integration for ¢
is carried out between t = 0 and ¢ = 1§, o — T&n (€), Where the latter corresponds to the
future right boundary of the WDW patch. The idea is to send € to zero at the end of the
computation, yielding for the GHY term

(A.9)

[quadrant _ (D - ]')MQD—2 [ * Lk (O):|
GHY - 87TGN TSChW,OO T'Schw
A10
DV PR (4.10)
- 167TGN [TSChW,OO - TSChW(O)} )
45We avoid the case of hyperbolic black holes (i.e. k = —1) here as the causal structure in that case is

different and does not offer any useful insight for our interests here.
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where in the second equality we replaced the mass in terms of r,. This term must be mul-
tiplied by a factor of 4 to account for the GHY contributions in each quadrant. Generally
we will set 7§, oo = 0 by suitable choice of integration constant.

Next consider the bulk in the upper right quadrant, which takes the form

Q _ Tmax dI
Schw,quadran D—-2 Schw * *
IBul;k quadrant __ m/o { 7 (TSchw,oo_TSchW(O)) dr . (A.11)
where
7,,D—l
ISchw = - 2 . (Al?)

Note that, just as in the main text, we have cut the integration off at r = r .« since the
integral diverges otherwise. We will send r,,., — oo after subtracting the contributions
of the AdS vacuum, which will render the integral convergent. It is generally hard to
evaluate the tortoise coordinate, and so a simpler form for the bulk integral is obtained
using integration by parts:

Q _ Tmax I
Schw,quadrant _ °°D—2 / _Schw A.13
Bulk 87GN Jo fschw(T) g ( )

This can be further simplified by isolating and separately dealing with the pole contribution
at the black hole horizon. Doing this, writing

fSChw(T) - FSchw (T) (72 - Ti) s <A14)
we obtain
ISChW,quadrant _ QD*Q |: ISchW<T+) ‘7“ - 7"+| > + /Tmax ( ISchw (7”)
Bulk 8GN | 27y Fsenw (74) r+ry |, 0 Fsenw (r)(r2 — 12)

Teantr) o]

B Fsenw(r4)(1r? — 7&

_ Qp_y / fmax Tschw(T) B Tschw(r+)
87TGN 0

Fsam (1) (r2 —12)  Fan (14)(r2 — T3)> dr] . (A.1b)

In the first term involving the logarithm, we have extended the integration to infinity
since that term is convergent. The remaining integral is completely well-behaved at the
horizon and can easily be evaluated numerically. (It can be evaluated analytically in certain
dimensions, or in the case of planar k£ = 0 black holes [64].)
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The complexity of formation is then written as four times the sum of the GHY and
bulk terms studied above, along with a subtraction of two copies of global AdS. The final
result is

chw (D — 1)Qp_or 2 (k+12 /%) |
7-(-Acfsor}rln = - 47_[_51\[ x TSChW(O)

ot | s - e 1))
(A.16)

Here we have explicitly set 7§, ., = 0, which we will do also throughout the remainder of
this appendix.

A.3.2 Charged black holes & the neutral limit

Let us consider here the complexity of formation for charged black holes, as it will be
insightful to compare the results for charged solutions with the results for the rotating
solutions studied in this thesis. The charged solutions are given by the following metrics

d 2
ds® = — fo(r)dt® + szr) + 203, (A.17)
where ) o1f )
r q
for)=k+ 5% — 55+ 555 - (A.18)

We will be concerned here with the planar and spherical solutions, i.e. the £k = 0,1 ones.

Our objective is to understand how the complexity of formation for these solutions
behave in the limit ¢ — 0. The causal structure of the charged black holes is qualitatively
identical to the equal-spinning rotating holes considered in this work — see [09] for a full
discussion. Since here we are only interested in the neutral limit, we will not consider
the counterterm for null boundaries, as its contribution is subleading and vanishing in
that limit. Moreover, just as for the rotating solutions, a GHY term at large distances
is unimportant as it cancels when the subtraction relative to global AdS is performed.
Therefore the complexity of formation consists of two ingredients: the bulk action and two
corner terms where the past/future sheets of the WDW meet.

Let us consider first the corner terms. The analysis is qualitatively similar to that
performed already in the rotating case (and we refer the reader to [(9] for a full discussion

171



of these terms in the charged case), leading to the final result:

|fQ(Tm0)|

@ _ S pos
. =

jnt _87TGNrm0 lOg

, (A.19)

where we have included a constant « that keeps track of the parameterization of the null
geodesics normal to the sheets of the WDW patch. This accounts for the contribution of
the future joint, the joint term at the past meeting point is identical and so the above
should be multiplied by two when including it in the complexity of formation.

The parameter r,,, appearing in the above is the value of the radial coordinate where
the sheets of the WDW patch meet. It is obtained by solving the condition

T =1 () =0 (A.20)
where r* is the tortoise coordinate for the charged black hole. Here, introducing
falr) = Fo(r)(r* —ri)(r* —12), (A.21)

to allow the problematic pieces at the horizons to be isolated and treated separately, we
find it has the form
\ 1 r— 7y 1 r—r|

= 1 |
r(r) 2ry Fo(ry)(r2 —r2) 8 +ry 2r_Fgo(ro)(r2 —r2) & +r_

+ RQ(T)
(A.22)

where in the above we have chosen an integration constant such that r, = 0 and have
introduced

r 1 1

%)= [ | e~ e e
L 1d7"

Rl )=t =) |

+

Consider next the bulk contribution. After some manipulation, the bulk action for
charged black holes can be written in the form®°

o _ 9 o IQ(T‘)_IO(’I“) . Q T’”OIO(T)T
Min= 5 | lf@(r) fo(?“)]d e A TG CED

46Unlike the other solutions in this manuscript, the charged solutions are, of course, not vacuum. We
follow here exactly the conventions of [69] for the electromagnetic terms in the action.

’I“mO
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where

and the subscript “0” denotes this quantity and the metric for the AdS vacuum. Note that
since the AdS contribution has been subtracted here, making the integral convergent, we
have taken the limit of integration to infinity. The bulk term can be massaged in a manner
similar to the tortoise coordinate we considered early in the manuscript. We first write the
metric function as

falr) = Fo(r)(r* —r3)(r* = 12), (A.20)
as before. Then, the integrand of the bulk term can be split up according to
Zo(r) _ Zg(r) B Zo(rs) n Zo(r-
fr)y L) (r? =rf)(r? —r2)  Fo(ro)(r? —ri)(r} —r2) ~ Fo(ro)(r? —r2)(r} —r?)
Lo(rs) B Zo(r-)
R e s R o o [ A (420

This decomposition of the integral allows us to isolate the contributions at the horizons
which require special care. We can integrate these terms explicitly, and then arrive at the
following expression for the bulk:

Q

A9 — ( ) ] |7“m0—7’+|
Bulk ™ o0r Gy { 2r  Fo(ry)(rdk —r2) % Tmo + T4
Zo(r-) Tmy — 7-|
| 9 Jo(rm A28
+2r_FQ(7“_)(ri—7“3) 08 Tmo + T— +Jo(rm,) ( )

where we have defined

ey 2 To(r) To(r.)
R e e e R oy e e
(

IQ(T_) T :|d Q /Tmo T ’I")d
— r— T.
Fo(ro)(r2 —=r2)(r2 —r2)  folr) 227G N fo(r)

This term is convergent and completely regular, requiring no special treatment at the

horizons. It can be straightforwardly integrated numerically (or analytically in certain
special cases).

(A.29)

The complexity of formation then takes the final form

TACY

form

= AIS  +2I¢

jnt -

(A.30)
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We want to understand how this quantity behaves in the limit r_/r, — 0. For this we
must first understand the asymptotic behaviour of r,,, in this limit. In general dimensions,
writing r,,, = yr4(1 + €) we find that

yD72T+€2

W&)N—(D_wal+ﬁ)bg§+rgww) (A31)

where y = r_/ry and r§,,,(0) is the value of the tortoise coordinate for the static solution
at the origin (recall that we have set the integration constant so that r’ = 0). Explicitly,
this term takes the form

o fSChW(T) - FSChW (T—&-)(TQ B 7"3_) fSchw (T)
T (0) = dr, Fsaw(r)=—-—". A.32
SChW( ) 0 fSchw(r>FSChw(r+>(r2 - T’_%_) el ( ) 7’2 - 7’3_ ( )
We then deduce the asymptotic form of the meeting location®”
(D = 3)(kL* + 12) & (0)
Tme = YT+ ll + 2exp ( T . (A.33)

Using this asymptotic result along with the fact that near the inner horizon we have
|[fo(r)] = [fo(r-)[(r — r_) it is rather straightforward to show that

D —3)Qp_
£§%2IQ _ ! S D=3(R0% 4 1)1 (0) (A.34)

It ARGy "+

Comparing with the results for the neutral (A.10) case we see that

lirny~>0 2[J(it . D—-3
Iy D-1

(A.35)

Note that this limit is independent of the parametrization of the null normals to the WDW
patch, as indicated by the absence of « in the final expression.*®

4TThe factor of 2 in front of the exponential differs from [69], where this factor is unity. The difference
comes from the fact that we defined f(r) = F(r)(r? — r1)(r? — r2) whereas those authors defined f(r) =
F(r)(r—r4)(r —r_). The prefactor of the exponential is completely unimportant for the y — 0 limit, and
the same results are obtained for r,,, = yr+ (1 + Ae) for any choice of parameter A. It is the argument of
the exponential that is important.

48 As we mentioned earlier, inclusion of the counterterm for null boundaries changes the structure of the
joint term, but this addition has no effect on the y — 0 limit. For this reason, to keep the complexity of
the expressions at a minimum, we did not include that term in the analysis presented here.
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The limit of the bulk term is more difficult. It is easy to deal with the logarithm terms
in this limit — one of them simply vanishes, while the other yields a finite result. We have:

hm AIQ — QD_QTE_S(T-QF + k€2)r§chw(0)
y—0  Bulk 202G

+30(0). (A.36)

Determining the value of Jg(0) is the tricky part. However, after careful examination
of (A.29) it can be shown that this term can be expressed as

Qp_s l/oo < Tschw(T) Tschw(r+) IO(T)> ] Sch
Jo(0) = — — dr| = Algyy -
O =50 I \ Bt =7) ~ Foamr)2 =)~ Jol)
(A.37)
Thus, we conclude that the limit of the bulk action is
: Q 2[CS§?II§(V Schw
7},12% Algy = D_1 " Alggy - (A.38)
It can be further shown that
Q 3 T,Dflr* (O) 2]SChW
Schw __ “4D-2"4 Schw _ GHY _
A[Bulk = 27T€2GN = —m When k’ = O . <A39)

The conclusion is that, when k& = 0, the limit of the bulk part of the action Al]gulk vanishes
in all dimensions. This is consistent with the analysis of [09] where the D = 5 case was
studied. However, the bulk term Afgulk does not vanish when k = 1, as the equation just
above does not hold in that case. However, the way in which the particular terms combine
yields in general

li ACQ o D -3 Schw 2 ISChW A]Schw _ 7Schw A]Schw _ ACSChW A.40

ST A o = 5 auy T pfeny T Adpui = lany T A Buk = TACHm - (A.40)
Thus, in the charged case the y — 0 limit of the complexity of formation matches the
complexity of formation for the Schwarzschild AdS solution, irrespective of the horizon
topology. However, note the non-trivial way in which this limit is achieved, with the
corner term producing one fraction of the GHY term and the bulk action for the charged
solution producing the other fraction of the GHY term while at the same time giving the
full Schwarzschild-AdS bulk contribution.

A.3.3 Rotating black holes & the static limit

Let us finally consider in detail the static limit of the rotating black holes that have been
our focus here in this work. We are interested once again in determining the limit of the
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bulk and joint terms in the action in the limit y = r_/r;. — 0. We work in general (odd)
dimensions.

Consider first the joint term. The relevant part of this term is

Q2N 1
Ijnt = - 47TG—’]_V (rm0)2Nh(rm0) log |f(7nmo)2| . (A41)

Here we have neglected the term ¢% 02 /a? inside the logarithm for simplicity of presentation
as it will have no effect on our discussion as it is subleading. Note also that here we have
included the overall factor of 2 to account for both the past and future joints. Our objective
is to understand the behaviour of this term as r_/r, — 0.

In order to understand the behaviour of this corner term as y — 0 we need to understand
the behaviour of r,,,. Working in the limit of small y, and writing r = yr, (1 + €), it is
easy to show that the tortoise coordinate (2.42) behaves as

N+1

roly €
r=——"—"2_ 1o _+T*cw0' A .42

where 7§, (0) is the value of the Schwarzschild-AdS tortoise coordinate at the origin —
see (A.32). In deriving this expression it is useful to note that

£2T4 y2N+2 r /7.2 + £2
G(T’,) ~ €2+—|——7”2 and h(?“,> ~ %, <A43)
2 y

as y — 0. We can then deduce that the meeting point behaves as

27t (0) /2 F )

(A.44)

Tmg = T+Y
0 7”+€yN+1

1+26Xp<

in the limit y — 0.

Near the inner horizon we can expand

P2 (rmo) 2 (f*) (r=)(rmy — 1) - (A.45)

Subsituting this into (A.41) and taking the limit y — 0, we obtain the following result:

. Q .
lim e = =5 (4 1) (0). (A.46)
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Noting that D = 2N + 3 we see that

duhy I
D—-1 N+1’
This limit is different in structure than the limit in the charged case.*® The reason partly

has to do with the behaviour of h(r,,,) in the limit y — 0 which approaches a constant —
or blows up — rather than behaving ~ y in this limit (as it would for the charged solution).

(A.47)

hm [ t —
y—0 n

Next let us consider the behaviour of the bulk. Again, it is useful to split the bulk into
pieces, isolating the parts that are divergent at the horizon. Doing this we can write the
bulk term as

‘Tmo — T—|

2N B N
Alguk = Ao { o G(ry)h(ry) o |Tme — 2| T2VG(r_)h(r-) log

2(N +1)(2N + 1)7Gy 2(r2 —r2) Tmg + T+ 2(r2 —r?) Tmo + T—

< [ r2NHG(r)h(r) riNHG(TJr)h(nr) r NG (r_Yh(r_) r2N+2
+/Tm {( dr

L) TR ) R ) e

rmy p2N+2
— ——dr ;. A 48
/0 r2 4 (2 r} ( )

Again, the last integral is convergent and its argument completely regular. As in the
charged case, we can now easily study the limit of the logarithmic terms and then carefully
consider the remaining integral. As before, the logarithmic term involving r, vanishes in
this limit, and we must only consider the contribution from the logarithmic term involving
r_. However, here a crucial difference from the charged case arises. In the rotating case,
we have

r*NG(r_)h(r_)
2(r2 —r2)
from the limiting behaviour of G(r_) and h(r_) presented in (A.43) above. Meanwhile,
the logarithm goes like

~ Oy (A.49)

log(rpm, — ) ~ O(y_(N+1)) , (A.50)

based on the behaviour of r,,, presented in (A.44). We therefore see that the logarithmic
contributions to the bulk vanishes in the limit y — 0! We then must only consider the
remaining integral in the bulk. However, this term behaves just as it did in the charged
case, producing the following final limit for the bulk term:

Q2N+1 |:/°° ( ISchw(T) ISchw(T-i,-) Io(’f’)) :| Sch
Alpuic = 5 = - - dr| = ATy
PTGy Lo \Fsan(r) (2 =12)  Faaw(r ) =12)  folr) " (B Tk |
A.51

Though note that for the special case of D = 5 (i.e. N = 1) the limit of the joint term matches in
the two cases.
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The combined joint and bulk terms give

ISchw

lim 7 ACom = 10 + ALY # TACEE (A.52)

which is the order of limits problem in the rotating case.

A.4 Alternate regularization of the WDW patch

Here we consider an alternate regularization of the WDW patch to examine the limiting
behaviour of the complexity of formation as y = r_/r, — 0. We do so by cutting off the
future and past tips of the WDW patch at r = r,,, + Ar and introducing the appropriate
GHY and joint terms to accommodate this (see figure A.1). This amounts to introducing
two corner terms and one GHY term at the future tip of the WDW patch, and likewise at
the past tip.

Consider first the GHY term on the right side of the future cutoff surface. This can be
worked out to be

Qoni1 N 22N +1)

GHY 167TGN A (g ) (TA> + TA92(TA) r (TA) ( )
where we have denoted ra = r,,, + Ar. There are four contributions, all identical to this
one, and so the final result for the GHY contribution is

_ Qoni1  oni —2y/ 22N+ 1)1
Icny = 47rGNTA (g77) (ra) + rag?(ra) *(ra) . (A.54)

Consider next the corner terms that occur where the boundaries of the WDW patch
intersect the cutoff surface at ro. Focussing on the contribution on the right side of the
future boundary of the WDW patch, the relevant null normal is

kp = a(dt+dr"). (A.55)

To determine the relevant dot products appearing in the joint term we need the form of
the auxillary future/outward pointing unit vector s. In the present case § = \/|f?(ra)|dt
is the appropriate choice. We can then work out the sign ¢ appearing in the definition of
the joint term — see (2.60). We find here that e = +1. We then find the following result
for the joint term

[/2(ra)]

ra*h(ra)log —=2 (A.56)

o

FR _ Q2N+1
Jnt 167G N
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Figure A.1: The WDW patch with the alternative regularization scheme, where the future
and past tips are cut off and replaced with a regularization surface at r = Ar. This
introduces four new joints that are shown in the figure as red diamonds.

There are four joints of this kind, giving the total

2

Ling = —gi—f(v;;mmh(m) log Vé%)' (A.57)
The idea, then, is to replace the corner term appearing in section 2.4 with the combination
of joint and GHY terms shown above. Note for our purposes here we will not consider
the contribution of the null boundary counterterm. This is because we are interested in
the limit y = r_/r; — 0 and the null boundary counterterm vanishes in this limit. We
now examine this limit keeping 7 small but finite until after the limit y — 0 has been
performed.

The GHY term limits to precisely the GHY term in the static case,

: : __ 7Schw
A lim Jeny = Igmy , (A.58)
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while the joint term vanishes in the limit

lim lim [, = 0. (A.59)
Ar—0y—0
It must be emphasized that the order of limits here is important. The y — 0 limit must
be taken prior to taking the Ar — 0 limit. The entire issue associated with the order of
limits problem is that this limit does not commute. Said another way, effectively what
this conclusion means is that the future and past ‘tips’ of the WDW patch contain the

following amount of action:
N Schw

Tip = =57 famy
in a vanishing amount of volume. Interestingly, this is exactly the limit of the corner term
in the charged case. Thus, in this alternate regularization of the WDW patch the limit
agrees with the Schwarzschild-AdS result. Note that for any finite y the two approaches
will agree, as in that case the limits considered above will commute.

A.5 Behaviour of complexity of formation for large
black holes

Here we present the details for the behaviour of the complexity of formation in the limit
of large black holes. For the cases of charged black holes and also the rotating black holes
considered here there are two independent limits that are of interest. The first involves
holding fixed the size of the black hole, r /¢, while exploring the extremal limit r_ /ry — 1.
The second is to hold fixed r_/r, while examining the behaviour of the complexity of
formation for r, /¢ — oo.

In previous work that focused on five-dimensional charged black holes [09], it was
demonstrated that the entropy controls the behaviour of the complexity of formation in
either limit when the black holes are large enough. In particular, those authors found
that the complexity of formation diverges logarithmically as extremality is approached
with a prefactor proportional to the entropy when the black holes are large. Moreover,
the subleading terms in a near extremal expansion were also found to be related to the
entropy. Here we wish to examine those conclusions in more detail and extend them to
higher dimensions. We will then contrast them with the rotating case where it is found
that different thermodynamic potentials control the different limits.
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A.5.1 Charged black holes: complexity equals volume

To understand our results in the rotating case, it will be important to have an understand-
ing of how the relevant computations play out for charged black holes. In this case, the
complexity of formation is given by the following integral:

ACy =

Tmax Tmax D 2
(A.60)

2GNR Tmax_>oo [ Ty A /fQ 0 A /

To illustrate a particular example, we consider the five dimensional case. In five dimensions,
the above integrals can be worked out to be
2

2681 e, — g / x?’{ -
Qp-2 1 V@2 =11 +z—e)(-1+z+e)Vk+a2(2+2%+e(e—2))

1 Mt
- _ /2 2 _ \/
= a2$21 dx 3 [Zk + (o = 2k)Vk + 042] (A.61)

where we have defined . . ,

x_r+, =, e=1 . (A.62)
Our main objective here will be to try to understand how the resulting integral scales with
. While this is not so hard for these charged black holes, it will be considerably more
involved for the rotating ones. So we will use the simpler setting of charged black holes to

illustrate our ideas.

Although it is not our main focus, let us mention here the case of planar charged black
holes. For these solutions, the dependence of complexity of formation on the quantity
a = ry /0 completely factors out of the integral, leaving a result dependent only on € =
1 —7r_/r;. In five dimensions the remaining integral can be evaluated explicitly, giving the
final result:

k=0,D=5 __
AC, =

SU(1—e+e)(3—=3e+¢?) |:3—4€—|—262:| (A.63)

R 61/€(2 —¢€) e(e —2)
Here S is the black hole entropy, while F(X) refers to the elliptic integral of the first kind.
We see clearly here that, for planar black holes, the only dependence on the black hole size

is through the entropy. This property extends directly to all higher dimensions, though
the resulting integrals no longer yield such a simple final result.

From a heuristic examination of the integrals above, it is not too hard to become
convinced that as @ — oo the behaviour of the spherical (k = +1) black holes will match
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Figure A.2: A plot of the complexity of formation within the CV conjecture for five di-
mensional, spherical (k = +1) charged black holes. We have normalized the complexity of
formation by the entropy and the curves shown correspond to r, /¢ =1/2,1,10,50, 100 in
order from top to bottom. The last three curves are visually indistinguishable. Imposed
on the plot in a black curve is the complexity of formation for the planar £ = 0 charged
black hole. This curve coincides with the last three plots for the spherical charged black
holes.
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that of the planar black holes. We illustrate this with a numerical evaluation of the
complexity of formation in figure A.2. In this figure we have normalized the complexity of
formation by dividing by the entropy

3
. Qg?”+

S_4GN

(A.64)

and have shown the result as a function of r_/r, for several values of r, /¢. The plot
illustrates that when r /¢ is small the curves can be distinguished. However, as ry /¢
becomes large the results all converge to the planar case (shown here as the black curve).
This illustrates that, for large black holes at fixed € = r_/r, — 1, the entropy completely
controls the complexity of formation.

For charged black holes it is also not too difficult to confirm this conclusion analytically.
Expanding (A.61) in the large «v limit for five-dimensional spherical (k = +1) black holes
gives

ACy = AC"P=° 4 0(5%3). (A.65)

While an analytic study is possible in the charged case, it will turn out to be much more
difficult in the rotating case. For this reason we will discuss a numerical approach to
determine the dependence of the complexity of formation on the horizon radius for large
black holes. Suppose that

ACy ~ (14 /)7 (A.66)

for some power 7. A convenient way to determine the value of v is the following. We

consider the ratio
B RGNACy

BB == Jop

We then take the logarithm of this ratio treated as a function of both (r;/¢) and /. For
each value of 3, we compute R(f3) for several (large) values of r /¢ and fit the resulting
data to a linear model, and extract the slope of the numerical model. We explore the
parameter range until the slope determined in this way is zero. The value of § for which
the slope vanishes corresponds to the case 5 = ~, allowing us to extract how the complexity
of formation depends on the size of the black holes.

~ (ry /0P (A.67)

This scheme is illustrated in figure A.3 for five, seven, and nine dimensions. In each
case it is clear from the plot that the slopes vanish for 5 = 3,5, 7, respectively (but this can
be confirmed to much higher precision numerically). This numerical finding is consistent
with the results discussed above: In general dimensions, the complexity of formation for
large charged black holes is controlled by the entropy and nothing more.
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Figure A.3: The slope of the logarithm of the ratio R(f) for several dimensions. The curves
correspond to 5 dimensions (blue, left), 7 dimensions (orange, center), and 9 dimensions
(green, right). For each value of 5 the integrals have been evaluated for 500 points laying
between r, /¢ = 10,000 and r, /¢ = 20,000. The slope is extracted by performing a linear
fit to this data.

A.5.2 Rotating black holes: complexity equals volume

Let us now consider the rotating black holes, which are the main topic of our interest
here. Once again for ease of presentation we will present detailed equations only in the five
dimensional case and will comment how the situation plays out in higher (odd) dimensions.

The complexity of formation for rotating black holes according to the CV conjecture is

/max h(r)rP=3g(r) dr — /Ormax T;O(i) dr] . (A.68)

As in the charged case, there are two limits that are interesting to consider here. We
can consider holding the size of the black hole r, /¢ fixed and examine the extremal limit
e=(1—r_/ry) — 0 or vice versa. Let us first consider the former.

L 2Q0p_o
ACy= lm =R

To understand the leading behaviour in the extremal limit we split the integrand for

184



the black hole into two parts:

Tmax Tmax h
[ werrgmar = [ M VA,
T+ T+ \/ - T+ (rz - T )
Tmax |: G(T h/ G(T+)i|
o/
r V(2= )( —r2 )
In the first term we have isolated a part of the integral that will behave like ~ 1/(r — r,)
in the extremal limit, and so we expect a logarithmic singularity for this term. The second
term does not exhibit such behaviour in the extremal limit: the behaviour of the numerator

near r = r, will cancel the blow up due to the denominator. Therefore, near ¢ = 0, it is
the asymptotics of the first integral that we must understand.

dr.  (A.69)

The first integral converges when integrated between r, and oo, and so we extend
the integration domain r,,, — oo. The result can then be expressed in terms of elliptic
integrals:

= h(r)rP =Gl

o VO =)

where F is the elliptic integral of the first kind. The remaining integrals cannot be evaluated
in a simple closed form, but luckily this will not trouble us here (yet). Expanding this
expression near ¢ = 0 and noting that this will be the dominant contribution to the
complexity of formation in this limit, we find that in all dimensions

dr = h(ri)r™*/G(ri)E(1 —e) (A.70)

 Qpah(r )P G0

log§ + O(e, eloge). (A.71)
€

It is tempting to expand the prefactor appearing here to understand how it behaves for
large black holes. The behaviour is given by

Qp_oh(r )r? /G (ry) - 44/2 8 (A72)
GNR r4 /l—00 \/(N —+ 1)(N =+ 2) ‘

where S is the black hole entropy. So it is tempting to conclude that the complexity of
formation (at least near extremality) is controlled by the entropy. However, the situation
is more subtle. First, while the expansion just presented above holds provided ¢ — 0, it
does not follow that the subleading terms in the € expansion will always be subleading for
sufficiently large r, /¢. What is true is that, for fixed r, /¢, one can find an e that is small
enough such that the entropy will control the behaviour near extremality. However, in the
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Figure A.4: A plot of ACy normalized by the entropy in five dimensions. The graph
displays four curves corresponding to r, /¢ = 10°,10% 107, 10%. The curves are plotted as
a function of ¢ = 1 —r_/r,. The value of r, /¢ increases from the blue curve to the red
curve.

general situation the entropy does not control the complexity of formation, as we will now
explain.

The process of understanding the behaviour of the complexity of formation for large
black holes involves extracting the leading 7, /¢ dependence of the integrals presented
above. Despite a number of attempts, we have been unable to understand this problem
from an analytical perspective, and therefore we resort to numerics. In figure A.4 we show
the ratio of the complexity of formation normalized by the entropy for several large values
of . /0. Tt becomes clear that the entropy does not control the complexity of rotating
formation for large black holes. This figure should be compared with figure A.2 to see the
stark difference relative to the charged case.

Note that the entropy can be written as

2
G- Q2z+1 riNJrl\/(l + ;—;(e —1)2)P(e) (A.73)

where P(€) is a polynomial in € that becomes rather complicated in higher dimensions and
the general form is not important. This means that the entropy interpolates between two
different scaling regimes. In the limit of slow rotation (¢ — 1) the entropy scales as

s ()= () a
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Figure A.5: The slope of the logarithm of the ratio R(f3) for rotating black holes in several
dimensions. The curves correspond to 5,7, 9, 11 dimensions from left to right, respectively.
For each value of § the integrals have been evaluated for 500 points laying between r /¢ =
10,000 and r /¢ = 20,000. The slope is extracted by performing a linear fit to this data.
In all cases we have set € = 107! to probe close to extremality. Vertical dashed lines have
been added to aid in seeing where the slopes cross the horizontal axis.

for large black holes, while in the near extremal limit the entropy scales like

s ()= () e

for large rotating black holes. Although it is not immediately clear from figure A.4, the
entropy does match the scaling decently near r_/r, ~ 0 — which is expected since this
scaling holds for the Schwarzschild-AdS black hole [64] — but fails miserably closer to
extremality.

Using the same numerical scheme described in the previous section for charged black
holes we can understand how the complexity of formation behaves as a function of r, /¢ for
large black holes. The objective is to understand this scaling close to extremality where
the departure from entropic scaling is most severe. To briefly recap, the process involves

studying the ratio
ACy
R(B) = — 5 (A.76)
(r+/0)°
and numerically determining the value of § so that R(/3) exhibits no dependence on r /¢
(when 7, /¢ is large). We show a sample of this numerical scheme in figure A.5, and
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Dimension Numerical value of 3 Thermodynamic volume scaling V/(P=2/(P=1)

) 4.50000 9/2=45

7 6.66667 20/3 ~ 6.66667
9 8.75000 35/4 = 8.75

11 10.80000 54/5 =10.8

13 12.83333 77/6 ~ 12.83333
15 14.85714 104/7 =~ 14.85714
17 16.87500 135/8 ~ 16.87500
19 18.88889 170/9 ~ 18.88889
21 20.90000 209/10 = 20.9
23 22.90909 252/11 ~ 22.90909
25 24.91667 299/12 ~ 24.91667
27 26.92308 350/13 = 26.92308

Table A.1: Table of numerically calculated values of 8 compared with the scaling of the
thermodynamic volume V(P~2/(P=1 for large r, /¢. Here we have computed numerically
the values of  according to the method outlined in the text. The data is obtained by
evaluating the complexity of formation between r, /¢ = 10'° and r, /¢ = 10?° and we have
fixed e = 10710, so we are considering the situation very close to extremality. The numerical
values agree with the scaling of the thermodynamic volume to at least five decimal places
in all cases. By pushing the domain of r /¢ to large values, the agreement becomes even
better. Note that in all cases the scaling differs from the scaling of the entropy which
behaves like (r, /€)P~! for large r, /¢ at fixed € near extremality.
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tabulate the results up to 27 dimensions in table A.1. The conclusion is that in spacetime
dimension D the complexity of formation scales like

<r+ ) (D+1)(D-2)/(D-1)

A ~
Cy /

(A.77)

for large black holes near extremality.

It is obvious from table A.1 that the scaling of ACy is different from the scaling of the
entropy. The question then becomes whether or not there is a thermodynamic parameter
that does have this scaling. As already hinted in table A.1, the answer is that the thermo-
dynamic volume possesses this scaling for large black holes. Isolating the dependence on
r4, the thermodynamic volume can be written schematically as

V= 32\27]\7—:11) {riN+2H(€) T r+€2 (e - 1>2K(5)} (A.78)

where again H(e) and K(€) are messy polynomials in € whose form does not matter for
the information we need here. These polynomials vanish nowhere on the range € € [0, 1].
We therefore see that the thermodynamic volume also has two scaling regimes, behaving
as € — 1 like

r\2Nt2 op\ Dol
v () =) (A.79)
for large black holes, while near extremality it scales like
T\ <7«+>D+1
v e—0 ( 12 > N l . (ASO)

We then notice that a power of the thermodynamic volume has the appropriate scaling:

D-2
v/ (D=2)/(D-1) ~ <r_+> and V(P-2)/(D-1) ~ (T_JF (A.81)

(D—2)(D+1)/(D-1)
g 0) -

The scaling of the thermodynamic volume to this power interpolates precisely between
the two scaling regimes of the complexity of formation. We show this graphically for five
dimensions in figure A.6.

There are a few important things to note here:
e The power of thermodynamic volume is natural. Recall that the thermodynamic
volume has dimensionality [length]P~!, therefore to obtain a quantity that has the

correct dimensions of [length]”?~2 requires precisely this power.
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Figure A.6: A plot of ACy normalized by the thermodynamic volume to the appropri-
ate power in five dimensions. The graph displays four curves corresponding to r, /¢ =
10°,10%,107, 108, the same as those shown in figure A.4, but these curves cannot be dis-
tinguished from one another here. The curves are plotted as a function of e =1 —r_/r,.
The value of r, /¢ increases from the blue curve to the red curve.

e The scaling with thermodynamic volume is consistent with the entropic scaling ob-
served for charged black holes and the Schwarzschild black hole [64, 69]. This is
because those solutions satisfy

S ~ Y P=D/(D=1) (A.82)

In other words, for those solutions the thermodynamic volume and the entropy are
not independent and so the results can be written in terms of either quantity. For the
rotating black holes these quantities are truly independent and we observe that it is
actually the expression written in terms of the thermodynamic volume that prevails.

4

e The convergence to “volumetric scaling” is slower for rotating black holes than it is
for charged black holes. In the charged case the subleading terms die off at least as
fast as ¢/r,, while in the rotating case they die off like \/¢/r.

e To the best of our knowledge there is no a priori reason to expect that the thermo-
dynamic volume should be related to an extremal volume in a black hole spacetime.
However, deriving such a relationship could contribute to a proof of our relationship
for the complexity of formation in general situations.
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e The conjectured reverse isoperimetric inequality [107] bounds the entropy in terms
of the thermodynamic volume:

ro-z_ (D=DVNPE rap ) (A.83)
b 1G xS '

If our result is general, i.e. the complexity of formation generally scales with the
thermodynamic volume for large black holes, then the reverse isoperimetric inequality
can be interpreted as the statement that the entropy provides a lower bound for the
complexity of formation. This bound is saturated for static black holes, but more
complicated black holes have a larger complexity of formation than naively suggested
by their degrees of freedom (entropy).

A.5.3 Rotating black holes: complexity equals action

It is now natural to ask whether this scaling with the thermodynamic volume is universal to
both complexity proposals, or if it is a peculiar behaviour associated with the CV proposal.
Recall that, as shown in section 2.4.1, the complexity of formation in the CA conjecture is
given by

AN /OO 2N r /Tmo 2V
AC4 = +1 2h(r) — —— ) dr — A,
TACAZIN T @N + DG { _— AQRUC R sy 728 Kl N prwrey 7

QQN+1(7"m0)2N+1 QQN+1 ON 5 ) )
- - 1
G @N T 1) dnGy o) HTmo) 108 L O (o L (7o )
_ gifgjvl / s {h(r)%le] dr. (A.84)

The most difficult part of the CA computation is the determination of 7,,,. In some
instances, particularly in the limit r_/r, — 0, accurate determination of this parameter
requires hundreds of digits of precision in the numerics. This technicality has limited our
ability to probe the behaviour of the complexity of formation within the CA conjecture
as broadly as the CV conjecture. However, we show in figure A.7 the result of the action
computation in five dimensions. The plot makes clear that the thermodynamic volume
controls the scaling of AC4 for large black holes, just as in the CV conjecture. While
it was possible to compute the behaviour in various higher dimensions for the CV case,
this is more difficult in the CA scenario. Nonetheless, we have confirmed the scaling with

thermodynamic volume in seven dimensions, which suggests the same trend holds in general
for CA.
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Figure A.7: A plot showing the CA complexity of formation normalized by the thermody-
namic volume as a function of the ratio r_/r, in five dimensions. The plot shows curves
for fixed r, /¢ = 10,102,103, 10%,10°,10% and 107, however after r, /¢ = 1000 the curves
are visually indistinguishable. Here we have set (. = /.

A.6 Null hypersurfaces in Kerr-(A)dS spacetimes

As discussed in section 2.2, the study of holographic complexity in rotating spacetimes
require a proper understanding of the null hypersurfaces of the spacetime. We have partly
side-stepped this issue by considering equal-rotating odd-dimensional rotating black holes,
which enjoy additional symmetry that makes the computations tractable. The important
case of Kerr-AdS black hole remains to be fully studied and understood. In this section
of the appendix, which is based on [3, 4], we initiate the study of null hypersurfaces in
Kerr-AdS black holes and discuss a number of interesting implications for the formation
of caustics in the spacetime.

Null hypersurfaces of the Kerr geometry were first systematically studied in [125], where
a three-dimensional null slicing of the spacetime was obtained and its properties studied.
These hypersurfaces were found to possess no caustics, which make them ideal for studying
initial-value problems and wave propagation in Kerr geometry. This type of analysis has
never been extended to other rotating black holes, and our goal here is to address this
deficit by investigating null hypersurfaces for the Kerr-(A)dS black holes. We find that
a similar three-dimensional null foliation of Kerr-(A)dS spacetimes can be obtained and
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prove that it also develops no caustics. Furthermore, we comment on the difference in the
behaviour of light cones between rotating AdS, flat, and dS geometries. Besides the desire
for completeness, one application of these results motivating this study is understanding the
causal structure of Kerr-(A)dS spacetimes. Other applications include numerical general
relativity [298] and studying the propagation of wave-fronts [299] in rotating spacetimes
with a cosmological constant.

The plan for this section of the appendix is as follows: in subsection A.6.1, we provide
the most general solution for the null hypersurfaces ¢ + r* = const in Kerr-(A)dS space-
times in terms of elliptic integrals. In subsection A.6.2, and as a consistency check, the
m — 0 limit of the solution is taken and shown to correspond to light cones in vacuum
(A)dS spacetimes. In subsection A.6.3, a three-dimensional foliation of the Kerr-(A)dS
geometry is obtained and shown in subsection A.6.4 to possess no caustics for r > 0. As
an application, subsection A.6.5 constructs the Kruskal coordinates for the Kerr-(A)dS
spacetime. We summarize in subsection A.6.6.

Note that, in this section of the appendix, we use L to denote the (A)dS length.

A.6.1 Preliminaries

The Kerr-(A)dS metric of the (341)-dimensional rotating black hole in Boyer-Lindquist
coordinates is [300]

A, a . 2 32 2 AVES r? + a? 2
ds?® = ~3z (dt -z sin? 4 dqb) + A_,,dTQ + A—edQQ + 2—29 sin? (a dt — = d¢)
(A.85)
where
2 2 2 0052 0
A, = (1’ +a?) (1 - %) —2mr, Z= 1—:?, Ng = 1—%, Y2 =r*+a®cos® 0

(A.86)
where € = +1 for AdS and € = —1 for dS spacetimes, with A,(r;) = 0 defining the outer
horizon r, of the black hole. The inner and cosmological horizons are respectively defined
from A,(r_) = 0 and A,(r.) = 0, the latter being present only for ¢ = —1. The rotation
parameter is bounded by a < L. The relevant thermodynamic quantities are

a<1+:—:2t2)
M= J= = — )
GNE GNE rLta (A.87)

2 2 2

Ty Ty 1 1 T Ty
Tt (14 = - 1- ), 5=

27 ( * €L2> 2 +a?  dmrry ( €L2> ’ 4G N
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and are respectively the mass, angular momentum, horizon angular velocity, temperature,
and entropy [301]. The metric is regular everywhere away from the symmetry axis for AdS,
while it is regular and static only for » < L in dS. Below, we will assume that r > 0 for
AdS and r < L for dS, unless otherwise stated (i.e. in subsection A.6.4).

We want to find the null hypersurfaces ®(z) = const in the spacetime (A.85). Define
the ingoing/outgoing Eddington-Finkelstein coordinates by

v="t+r", u=t—r" (A.88)

where the (tortoise) coordinate r* will be defined below. The condition of the surfaces
defined by v = const being null translates to

9*P0,0050 = gt + g (9,1) + g% (Dgr*)* = 0. (A.89)

Thus, the problem of finding the null hypersurfaces reduces to solving the PDE (A.89) for
r*(r,0)°°. For the metric (A.85),

tt 9se [CLQAT sin® 0 — Ag(r? + a2)2 (A.90)
9= GttGpp — gf¢ B JANWAYY IR :

yielding

(r2+a?)®  a?sin®6
A, Ay

AL (0,7%)7 + Ng(Bpr™) = (A.91)

for the PDE (A.89). In the limit L — oo this reduces to the asymptotically flat case [125]

2 2)2
A(0,r*)? 4 (9pr*)? = % — a*sin® 0 (A.92)

where now A = lim A, =2+ a? — 2mr.
L—oo

This separable form allows us to easily guess an ansatz for r*(r, 0). First, define

[1]

Q%) = 2 |(* + )’ —aAa |
P?(0) = Z%a® [AAy — sin® 6] (A.93)

50Note that, in the case of odd-dimensional equal-spinning black hole, the angular dependence drops
and we have r*(r) only, which is considerably simpler and does not require solving PDEs.
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where )\ is an arbitrary constant. Then, it is clear that choosing

o Q) PO)

A.94

) s 0T ) ( 9 )

would satisfy (Agl) Hence a solution to (Agl) is obtained by solving the exact integral
—_— — — A'

dr* = d?"—l— 96[9 ( 95)

To find a general solution r*(r,0) of (A.91) that is independent of A\ we follow the
procedure in [125] and assume first that A is now a function of r and 6. In this case,
r* = p(r,0,\) where

dp = Agdr + A%de + % pay (A.96)
where O\p(r, 0, \) = %F(r 6,)), and
F(r,0,)) = / RS / L o, (A.97)
P QU A) o P02
The condition (A.95) implies that
F(r,0,)) =0 (A.98)

which fixes the dependence of A on (r,60) for any given choice of the function g[A(r,0)].
The explicit form of the general solution of (A.96) is then

p(r,0,\) / er+/ —d6’+—g (A). (A.99)

Once g(A) is chosen, the exact integrals in (A.99) and (A.98) are performed assum-
ing that A is a constant. Then, (A.98) is used to solve for A(r,#), which in turn is
substituted into the result obtained upon integrating (A.99). The net result is that
r*(r,8) = p(r,0,\(r,0)) can be explicitly obtained.

A.6.2 m — 0 limit: light cones in vacuum (A)dS metric
Here, we verify the expressions for the light cones above by taking the m — 0 limit

and showing that they reduce to light cones in vacuum (A)dS spacetime. We begin by
simplifying the metric (A.85) using the coordinate transformation [302]

t =t ¢ =2 2oy (A.100)
el?
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yielding

A P22 2
2 0 2 .2 2 2
ds® = ~2 A, Ay — a”sin 9(1+ﬁ) dt* + Edr
32 a  sinffr o, 50 2 .2 2
+A—d0 —f-ﬁ[(T —I—G)AQ—GATSIH 0:|d¢
0 =
Amralg sin® 0
=T

Taking the m — 0 limit now gives

ds® = —EA (1 4 T—Q) di® + > dr?
-0 el? (r2 4 a?) (1 + 2—22)

2
-+ i—d@2 + (7’2 + az) sin? d¢?.
0

This metric is just the vacuum (A)dS metric

2 2\ 1
2 r 2 r 2 2 192 2 .2 2
ds __(1+_€L2>dt +<1+_€L2) dr® 4 r*df* + r°sin” 0do

where the coordinate transformation from (A.103) to (A.102) is given by |

t — =t

2 __ a2cos?6 2 a2
r_)\/r (1 S )—l—a sin“ 6

—_
—
—

)

1 rVZ cos b
\/r2 (1 — %) + a2sin? 6
b — VEo.

0 — cos™

In the limit m — 0,

2
Q — Qo =24/ (r24+a?) [r2+a? — a?)\ 1+_r
el?
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and P remains the same. To simplify the integrals, we make the substitution

. av/1— Asiny (A.109)
A, — sin® y

where A, = gim Ay, from which it follows that
—X

d dx
a= \/ A\ —sin? xy — GQAECLOQSZ
The function F' in (A.97) becomes

0* / /
F(r,0,)) / ix a6

2y / 2 2 9/
\//\—sm)( a)\cos 0 a_\/)\ $in 8/_a)\cos0

(A.110)

+9g'(N)

d a d
-/ L+ ey
) \//\ - SlIl X a?Acos? x/ )\cos CL“\/)\ —si a?) cos

Il X T el
(A.111)
where =)
sin® 0" = ——— (A.112)
T el?

and the second term in (A.111) can be absorbed into ¢’()\) since it is independent of r and
6. Choosing g(\) such that the overall constant term in (A.111) is 0, the constraint F' =0
now gives

x(r,A) = 0. (A.113)
From (A.109), this fixes the function A(r, ) to be
(r? + a?)sin® §
r2Ag + a2sin®

A(r, 0) = (A.114)

Integrating (A.95) gives

7‘,)\) 2 /
= —d +/ e = / g dx /—de'
r a_\/)\ . SlH Y — 112/\0052

X(r,\) aZA(1 — \) \//\ —sin®y — & ’\?252
e dX/ + / < dX/
/0 ( A 0

. ] > > _a?Xcos? y/
— sin® ') \/)\ — sin? ' — “’\:% L2

(A.115)
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Figure A.8: The tortoise coordinate of (a) vacuum AdS, 7* = Ltan™ (+), and (b)
vacuum dS, r* = Ltanh™ = (%), compared with the numerical solution of (A.115) with
r1:a/L =0.15 (orange), ro : a/L = 0.35 (green), 3 : a/L = 0.85 (red) for 0 =
Convergence of (A.115) in the limit a — 0 is implied, as expected from the
transformation (A.104)-(A.107).

and upon substituting A(r,#) from (A.114) into the result gives r* = r*(r,0) for (A)dS
spacetime. The result of this integration in (A.115) can be written in terms of elliptic
integrals which, in the limit L — oo reduce to the flat space case [125)]

r* = Vr2+ a?sin®0 (A.116)

as we show in the appendix of [3], where A = sin 6, from (A.112). In the limit a — 0 the
expression for 7* reduces to the tortoise coordinate in vacuum (A)dS

e aas(r) = Ltan™ (). riueas(r) = Ltant™ () (A1)
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which we illustrate numerically in figure A.8.

Thus, the surfaces t +r* = const, with r*(r, 0) given by (A.115), are the null hypersur-
faces of vacuum (A)dS.

A.6.3 Properties of axisymmetric null hypersurfaces

The condition F' = 0 implies that dF' = 0, yielding

dr db
dA\=——+ — = —O\F A.118
[ otp A ( )
from (A.97). In conjunction with (A.95), this shows that lines of constant r* and A are
orthogonal, Vr*.VA = 0, with respect to the intrinsic 2-metric

(A.119)

do? — 32 [er dGQ}

5 TA
of the (¢, ¢) sections of the Kerr-(A)dS spacetime. This proves that r, and A are orthogonal

to one another on surfaces of constant (¢,¢). Since A is independent of ¢ and ¢, this in
turn implies that A is constant along the null generators in (A.88)

ON=0  nGuA=0 (A.120)

where (, = —0,v and n, = —0J,u, with (u,v) given in (A.88). This follows from the fact
that A is independent of the coordinates ¢ and ¢. Along with the integrability of (A.118),
this ensures that A is constant along these null generators, and is a good coordinate, where
asymptotically A is obtained from P — 0.

The 2-metric (A.119) can be written in (7%, \) coordinates instead of (7, #) coordinates.
It can easily be checked that

1

do® = =37 (A, Agdr™® + P2Q* 12 dN] (A.121)
where
— 999
R? =
sin® 6
_ Ag(r?+a?) — Aa®sin? 0

(A.122)
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We can rearrange (A.90) so that

g 9152¢ 1
tt — T T T
9oo 9"
9 1
gt — WBYgs = ﬁ’
A, — a?Agsin® 6 , JANWAY!
> + whR*sin® § = =g (A.123)
where
G Ng(r? + a?) — A, A
= _J% _ 124
wB g¢¢ “ 522R2 ( )
is the angular velocity [304] of inertial frame dragging, due to the rotation of the black

hole. This allows us to rewrite the Kerr-(A)dS metric (A.85) in (¢,7*, A, ¢) coordinates as

P2Q2

A A
- X =22 H

ds* = Sy oy (dr™ = dt*) + R*sin® 0(do — wpdt)® + 2dN’. (A.125)

This form of the metric has distinct advantages over (A.85): since the ingoing and outgoing
null generators, defined in (A.88), are constant (dv = du = 0), then dr? = dt*>. In these
coordinates, we can explicitly write the components of the null vectors ¢, and n, defined
in (A.120) as
ATAG ATAG
252R2AT 222R2AC

(o = 0,0 (A.126)

and
ne = [—A, A, 0,0 (A.127)

where A is an arbitrary constant, and we have imposed the normalization condition ¢.n =
—1. Using this, the induced metric on the associated null hypersurface is

or alternatively
P202 2
dh* = R*sin 0 (dp — wdt)” + %dﬁ (A.129)

which has one null and 2 spatial directions, and so has vanishing determinant. Even more
simply we have
h* = diag[0, 0, s*] (A.130)
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where
=2 R? 1

P2Q2u2" R2sin®6
is the inverse of the induced metric on a 2-dimensional constant u slice of the null hyper-
surface. The form of the hypersurface metric shows that the null generators are themselves
rotating with the ZAMO angular velocity w, relative to observers at infinity. This can also
be seen directly from the fact that ¢, = —0yv = 0 and ny = —0yu = 0. Also note that
inversion of the differentials (A.95) and (A.118) gives

5% = diag

(A.131)

EPYPRYdr = AQ [DNgdr* — PPud)]
EPYPR%d0 = NgP [Adr* + Q*pd)] . (A.132)

We pause to comment on the construction of quasi-spherical light cones. These surfaces

are those that reduce to the light cones of (A)dS spacetime as r — oo. We first note that
insertion of (A.114) into (A.112) yields

(r? + a?)sin® 6

r2 + a2sin’6

sin? 0* = (A.133)
which is the same relation as in the asymptotically flat case [125], and we have 6*(r —
00,0) = 0. Requiring this asymptotic condition and the relation (A.112) to hold in the
Kerr-(A)dS spacetime fixes the function ¢’(A) in (A.97) to yield the relation

e 1 o* 1
F(r,0,\) = ———dr’ — ———df'. A.134
0= [ o=, wan .
The equations of the quasi-spherical hypersurfaces are respectively given by v = t +
r*(r,0) = vy and u = t — r*(r,0) = wuy where (ug,vy) are both constants, and r* =

p(r, 0, X(r,0)), with the function A(r,#) determined by setting F' = 0.

A.6.4 The absence of caustics

The condition for caustic formation is where the determinant of the inverse induced metric
5% in (A.131) becomes singular
PQusinf — 0 (A.135)

where 1 is defined in (A.118). Interpreting the metric s, as describing the two-dimensional
surface along which a null ray moves, this metric will not be degenerate, i.e. will have a
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i 0.8 1.0 12 V2

00 02 04 06

(a) Kerr-AdS (b) Kerr-dS

Figure A.9: Projection of the path of null generators onto the Cartesian plane
(V22 +y2 = V12 + a2sinb, z = rcos 0) for (a) Kerr-AdS spacetime with
m =L =2a =1, and (b) Kerr-dS spacetime with m = 2a = 1 and L ~ 6.12372. In both
cases, the light sheets do not converge to form a caustic near the black hole. Also shown
are the various horizons of the spacetime r;, 1 = —, +, c.

nonzero volume, unless a caustic forms. This is precisely condition (A.135). In the limit
m — 0, the light cones in vacuum (A)dS spacetime have no caustics. Light cones in the
Kerr metric were shown to be free of caustics in [125]. Here, we show that the proof of
[125] also extends to Kerr-(A)dS spacetimes.

The proof proceeds by showing that each factor in (A.135) for m > 0 increases along
an ingoing null generator of fixed A and decreasing r, which proves that (A.135) will not be
satisfied in Kerr-(A)dS since it is not satisfied in its m — 0 limit. Initially, when r — oo, it
is clear from (A.109) that A > 0. From (A.118) and (A.93), P > 0 increases as r decreases
along the generator of fixed A. Also, from (A.93), it is clear that @ > Qo > 0.

The remaining task is to show that p and 6 both increase with increasing m, while r
and A are kept fixed, that is

06 0
(—) >0 (—“) >0 (A.136)
om A om A
provided r > 0 and 0, < 7/2. From (A.97) and the condition F' = 0, it is straightforward
to show that 56 - g
) =P / S Al
(8m)r,)\ ¢ r Q3(T/7)\7m) ( 37)
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Similarly, from (A.118) and (A.97),
oy _op  onl0h
om/, ~ Om 90\ Om A

_ 214 B /wL
2P? . Q3(r', A\, m)

3 4 [OrA(r ,m)dr!

2a*\ o R
TN e am)

(A.138)

Both expressions (A.137) and (A.138) are clearly positive regardless of the sign of the
cosmological constant. Therefore, the condition (A.135) is never satisfied in Kerr-(A)dS
and the null hypersurfaces (A.131) do not develop caustics when propagated toward r — 0.

In figure A.9, the A = const. curves were obtained for Kerr-AdS (figure A.9a) and
Kerr-dS (figure A.9b) spacetimes by numerically solving the evolution equations of the
null generators along ingoing null hypersurfaces

B dz®

@ =22 — _g498) A.139
- 9" pv ( )

where 7 is the affine parameter along the null path. In particular, (A.139) yield

. Q ; P

A (A140)
which we numerically integrate to plot the null paths in figure A.9. Also shown are the
spacetime horizons: r_, r,, and r. for Kerr-dS. Figure A.9 shows that no caustics are

formed in both spacetimes near the black hole singularity.

As in the asymptotically flat case, we find that if we extend the spacetime to r < 0,
then null rays moving inward toward the origin in the r > 0 sheet are deflected outward by
the ring singularity and defocused. Upon passing through the r = 0 disc they are refocused
and form a caustic in the r < 0 region.

A.6.5 Kruskal coordinates

Using the transformations

dU . dV o
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we can rewrite the metric (A.125) as

ANy dUdV wg (dV AU\ P*Q*
2 _ 2r=0 2 i 2 B 2 712
ds” = E2—R2/€2UV + R”sin 9<d¢ - % (7 - 7)) + 52—R2u d\ (A.142)
where k = k; is the surface gravity
A,
ki = dd_r |rzr, i=+4,—,c (A.143)
for the respective outer, inner, and (for e = —1) cosmological horizon as relevant. Since
UV = —e*" % = —e* (A.144)

it is clear that the first term in the metric is regular at the horizon surfaces U = 0 and
V = 0. However the second term in (A.142) is not regular on these surfaces. This defect
can be overcome by defining

oy =0+ a(r, ) o =¢—a(r,\) (A.145)

where

T /2+a2
a(r, A :a53{/ T Te g
(7. ) y A Q)
0
0

1 /
W CTECR AL (A.146)

Then, from (A.132), (A.124), and (A.93),

do = wpdr® — NdA (A.147)
where
_(7“2—1—@2)132—1—@2 a3E3 T 7"’2—|—a2 . /0 1 .
N = auz= — —d —db'|. A.148
o S2R2 2 L @ T, PN (A.148)

Hence, the metric (A.125) becomes

A Ay dUAV , P22
2 = 52—329 S R sin® 0(dios — wpdv + Nd\)? + =5 12d)\?2 (A.149)

EQ R2

ds
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or alternatively

s AN dUAV
T 2R KUV

P2Q2
=2R2 H

ds + R%*sin? 0(dp_ — wpdu — Nd))* + 2d\? (A.150)
depending on which sheet is of interest. For example, (A.149) is regular for the future
horizons for both outer and inner horizons of the black hole (or the future cosmological
horizon in Kerr-dS), where ¢, is constant along each ingoing generator and v is constant
along ingoing light sheets. Alternatively, (A.150) is regular for the past horizons for both
outer and inner horizons of the black hole (or the past cosmological horizon in Kerr-dS),
where ¢_ is constant along each outgoing generator and u is constant along outgoing light

sheets. In both cases the function N is regular.

A.6.6 Summary

We have described a three-dimensional foliation of Kerr-(A)dS spacetimes in terms of quasi-
spherical light cones, extending the construction in the asymptotically flat case [125]. We
find that both spacetimes are free of caustics for » > 0. The limit of zero mass of this
foliation was taken and we proved that it reduces to light cones in vacuum (A)dS spacetime,
which is an important consistency check. As an application, we derived a generalization of
Kruskal coordinates for Kerr-(A)dS based on these quasi-spherical light cones.

These results should prove useful in understanding the causal structure of Kerr-(A)dS
spacetimes, in numerical general relativity [295], and understanding wave propagation [299]
in rotating spacetimes with a cosmological constant. It is likewise natural to consider a
similar type of analysis to study the properties of light cones in more exotic rotating
spacetimes or in higher dimensions. Furthermore, this analysis of light cones may prove
useful in a numerical study of holographic complexity for Kerr-AdS black holes.

205



Appendix B

Appendices to chapter 3

B.1 An alternative construction of the three-boundary
black hole

We constructed a three-boundary black hole in section 3.2.1 by choosing some AdS3 isome-
tries and taking a quotient by the group I' that they generate. Although the representation
of the generators used there is convenient for calculation, it makes the third asymptotic
region (whose horizon is generated by v; 92 and 717, ') appear to be on a different footing
than the other two. In particular, as described in the standard AdSs; conformal frame the
coordinate size of this third region vanishes in the hot limit. To show that this is an artifact
of our choice of generators, we give an alternative representation below where the coordi-
nate size of the third boundary is non-vanishing in the hot limit. For simplicity, we focus
on the non-rotating case which is generated by a diagonal subgroup of isometries where
v = vr = 7. Dropping this diagonal restriction will give a generalized to the rotating
case.

We begin with the most general form of a SL(2,R) generator:
§=z1J1 + 12 Ja + 733, (B.1)

This generator is hyperbolic when x? + 2% — 22 > 0, which is equivalent to the requirement
Tref > 2. The length of horizon generated by v = €f is

T
¢ =2cosh™! % = /2% + 23 — 3. (B.2)
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It is thus natural to parametrize our generator as

=

¢ = {(cosh asin 5J; 4 cosh acos .y — sinh aJ3) = 4(a - J) (B.3)
where the generator is written as an inner product taken with signature (+ + —), where
d = (cosh asin 3, cosh v cos B, sinh «), and J = (Jy, Jo, J3).

To make a three-boundary wormhole, we choose two such generators

=

& = l1(cosh o sin B J; + cosh ay cos 51 Jy — sinh ay J3) = 41(ay - J) (B.4)
&y = ly(cosh a sin By J; + cosh g cos By Jy — sinh aig J3) = lo(ds - j), (B.5)
so that the corresponding group elements are v; = e and v, = €. Then the group
element related to the third asymptotic region is 73 = —7; '72. As a result, the horizon
length of the third region are related to our parameters by
14 1 l 14 14
cosh 53 = —cosh 51 cosh 52 + sinh 51 sinh 52(61 - dy). (B.6)

Note that our geometry depends only on the three parameters {1, {5, d;-ds}, or equivalently
{l1,0ls,05}. This gives the expected three-dimensional moduli space for a non-rotating 3-
boundary wormhole.

Our previous representation corresponds to the choice @; = (0, —1,0) and @, = (0, — cosh o, — sinh «).
These choices reproduce our previous results. In particular, our previous representation
does not involve Jj.

However, this choice is far from unique. The only real restriction on the form of the
generators is that the geometry not become the one-boundary torus wormhole described
in [166]. To make a (3,0) wormhole, the bulk geodesic connecting the fixed points of 7,
must not cross that connecting the fixed points of ~,, while they cross each other in the
(1,1) wormhole construction.

To be definite, let us choose generators with
T
] = —0y = (&, Bl = —62 = 5 = Z (B?)

This ansatz still allows the freedom to vary the horizon lengths by tuning ¢, ¢5, a. Then,
as we did in section 3.2.2, we could calculate the eigenvectors of the v;’s and analyze the
fixed points on the boundary in the hot limit, and those fixed points are also endpoints of
the horizons. For the non-rotating case, all the fixed points are on the ¢t = 0 slice, and here
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Figure B.1: The three-boundary wormhole in the hot limit under our alternative construc-
tion with oy = —ap = , 8y = =2 = B = 7, where Hy, H, and Hj are the three horizons.
The fixed points of distinct generators become close to each other in this limit, but each
asymptotic region remains a finite size.

we take ¢ € [0,27). As shown in figure B.1, in the hot limit the endpoints of H; approach
¢ = 37/2 and ¢ = m, while the endpoints of Hy approach ¢ = 37/2 and ¢ = 0, and
ethe ndpoints of H3 approach ¢ = 0 and ¢ = 7. Recalling that Hj is generally described
by a pair of geodesics in the AdS; covering space, we see that one of these geodesics still
shrinks to zero coordinate size along the boundary in this limit, though the other part of
H; remains of finite size.

B.2 Minimal distance between horizons in the hot
limit

We now generalize (3.58) to the case of the rotating (3,0) geometry. We focus on the dis-
tance dy5 between H; and H, since it is the simplest in our representation of the geometry.
Due to the symmetry of the construction, the point on H; that is closest to Hy sits at
the origin of global coordinates. Furthermore, if the point on H, that is closest to H; has
coordinates (t,, 'm, ®m), then t,, = 0 by left-right symmetry (see figure 3.6b) and we can
set the angular coordinate such that ¢,, = 0. Recall that any geodesic in AdS3 can be
viewed as the intersection of a plane in the embedding space (3.2) that passes through the
origin with the hyperboloid of AdS3. The idea here is to find the two vectors that span the
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plane defining H,, then use them to find r,,. Using the geodesic distance equation (3.10),
we can then find dys.

Suppose that the left and right corners of the diamond of Hy have coordinates (—tg, —¢y)
and (to, ¢o), respectively, at the boundary. Using (3.36) and (3.35), it is straightforward
to show that
~* —tan e @ (B.8)

$o =tan"te ™ +tan e 7. (B.9)

ty = tan"te

Then, in embedding space, the vectors v; = (X;,Y;,U;, V;) that point from the origin to
the points (—tg, —¢o) and (o, ¢) at the boundary can be found using (3.3) to be

U, = (cos ¢g, — sin ¢, costy, —sinty) and g = (cos ¢g, sin ¢g, costg,sinty) . (B.10)

The vector connecting the origin with (0, 7,,,0) is parallel to ¢, + ¥z. From this, it is easy

to show that
T'm _Cos ¢y

JItr2  costo

The matrix representation of (0,r,,,0) is

V1I+rE 4y 0
= m B.12
P ( 0 \/1+r72n—rm,) ( )

So, using (3.10), the minimal distance between H; and Hs is the geodesic distance between
Pm and the origin and is given by

T
dia = cosh™! ( r2pm> — cosh™! <\/ 1+ 7‘%) : (B.13)

Combining this with (B.11) gives

(B.11)

dlg = tanhfl <%> . <B14)
cos ty
After some algebra, this can be simplified to
dm:“;a' (B.15)

which implies that a,a > 0. As a consistency check, note that in the non-rotating case
where ¢; = /;, we have
a=a&=d; = o, <B16)
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which is precisely (3.59) as quoted in section 3.2.4. Other minimal geodesic distances (i.e.
dys and di3) can be obtained from (B.15) by simple permutations. This completes our
generalization of the minimal geodesic distance equation to the rotating case. That the
angular domain Dy over which d;s is exponentially small is also large compared with the
AdS length scale in the rotating case follows from the same analysis as in [161] through an
appropriate choice of the Cauchy slice on which the distance is calculated.

B.2.1 The large horizon limit near extremality

This is the limit where

;00 and 0;—0 < h;— oo and Ty; — 0. (B.17)
From (B.15), it is easy to see that the above requires

a—0 and a&a—o00 = dj— o0 (B.18)

This shows that the minimal geodesic distance between the horizons in the extremal
limit will diverge. In particular, one can show that the divergence is logarithmic d;; ~
log (2/7Ty) + O (T#). Note however that the hot limit studied in chapter 3 instead yields

l; >00 and 0, =00 & h;— oo and Ty — 00, (B.19)
implying that
a—0 and a—=0 = d;—0. (B.20)

Thus our hot limit implies large horizons, but near extremality large horizons do not imply
a hot limit. It also shows that the exponentially small local causal shadow region exists
only in the hot limit where a and & are both small.
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