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Abstract

In this thesis, we are concerned with the problem of characterizing noise associated with
implementations of quantum circuits. We first explore the notion of error rates of quantum
circuits and argue that the semantic distinction between process fidelity as “average error
rate” and diamond distance as “worst-case error rate” is wrong. To this end, we analyze
their worst-case and average analogies, and show they are proportional to their original
measures. We show that the non-unital contributions to the diamond distance are negligible
and the discrepancy between the process fidelity and diamond distance is primarily due to
unitary errors.

We then turn to a new analysis of cycle benchmarking, a randomized benchmarking-like
protocol to estimate the process fidelity of a cycle as engineered by randomized compiling.
Using this approach, we prove that gate-dependent noise on the randomized gates is de-
scribed by a single perturbation term that decays rapidly as long as the implementation is
close to a representation. We also comment on how the protocol can be extended to qudits,
what the cycle benchmarking decay actually measures, and how our analysis is amenable
to the Fourier analysis of randomized benchmarking. We end with a discussion of how the
gate-dependent cycle benchmarking process fidelity relates to gate-dependent randomized
compiling.
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Chapter 1

Introduction

Quantum computers and quantum information processing are poised to become efficient
and effective tools for solving novel problems in disparate fields, including simulation of
quantum systems [l, 2] and integer factorization [3]. Unfortunately, physical quantum
systems are prone to a much wider variety of errors than their classical counterparts, and,
in general, quantum computers will imprecisely implement any desired operation. For this
reason it is important to understand how to extract information about errors from quantum
systems and what error measures reliably predict the outcome of quantum computers.
Having this knowledge will allow for the development of error mitigation schemes and
quantum error correction codes that could lead to fault-tolerant quantum computing [].

While an error or noise associated with a quantum process can be fully characterized
via quantum process tomography [5] or gate set tomography [], these protocols can prove
costly as they require a number of measurements that scales exponentially with the system
size — even for a small number of qubits, this is intractable. Randomized benchmarking
(RB) experiments are a scalable, robust alternative to tomographic protocols that require
fewer measurements to extract relevant figures of merit (e.g., the process fidelity [7] or
the unitarity [3]). By cleverly sampling random quantum circuits whose components are
building blocks of actual quantum computations RB allows us to infer some partial infor-
mation about those components. Taking the expectation over the random circuits enacts
a twirling or averaging operator, forcing the error onto particular subspaces, and so the
measurement outcomes can be fit to an exponential decay when varying the length of the
circuits. The decay rate will have a simple relationship to a figure of merit based on the
set from which the circuits are sampled. Furthermore, RB is robust to state preparation
and measurement (SPAM) errors which are contained in the constant. The building blocks



are generally individual gates, but they could also be specific combinations of gates that
are frequently implemented in parallel.

The question, however, is how well the partial information of a figure of merit captures
the overall behaviour of a quantum circuit. Chapter 2 explores this question. Broadly,
there are two classes of measures to characterize how well a quantum circuit has been im-
plemented on a quantum computer. The first are fidelity based measures, which consider
the overlap of the action of an implemented quantum circuit on a state against that of its
ideal; the process fidelity is the figure of merit that can be efficiently extracted from stan-
dard RB experiments. The second class are based on the trace distance, which has a simple
relation to the difference between two probability distributions. Among its derivatives, the
diamond distance is frequently used in theoretical results as it has the desirable property
of being stable under tensor products, and can be directly related to the total variation
distance of an ideal quantum circuit to its noisy counterpart. While it would be ideal to
calculate the diamond distance directly, it is still prohibitively expensive to compute with
state of the art optimization techniques.

There is an idea proliferated through the quantum information literature that the pro-
cess fidelity captures the average performance of a quantum process, while the diamond
distance captures the worst-case performance. Here, we consider similar but alternative
fidelity-based and norm-based measures (namely, the minimum state fidelity! and an aver-
age version of the diamond norm) and show that, in general, they exhibit similar scalings
to their “average” and “worst-case” counterparts. We then use a polar decomposition of
the leading Kraus operator [9] of a quantum channel to demonstrate that the disconnect
between the two measures is actually due to the square root contribution of the unitary
part of a quantum channel, while there are only linear contributions from stochastic and
decoherent noise. While other celebrated bounds [10] already capture this information, the-
orem 9 shows exactly how this factorization of an arbitrary quantum channel contributes
to the bound, and is tight for both stochastic and unitary channels. We also present im-
proved bounds on the diamond distance in terms of the process infidelity and unitarity [3],
which quantifies how close a channel is to being unitary.

Chapter 3 presents a new formulation of cycle benchmarking (CB) [11] to prove its
robustness to gate-dependent errors on randomizing gates. CB is an efficient RB-style pro-
tocol developed to estimate the process fidelity of cycles of gates in randomized compiling
(RC) [12]. RC is a compilation technique that inserts redundant twirling gates to tailor
the destructive errors associated with noisy gates into stochastic errors. Between appli-
cations of the cycle of interest, the CB algorithm inserts randomized gates in a similar

IEquivalently, the maximum state infidelity.



fashion to RC to replicate and amplify the errors, which can then be isolated using specific
measurements. While CB enjoys many of the benefits of RB (including, but not limited
to, robustness to SPAM) as well as many of its own, its somewhat original presentation
made it difficult to adapt to an analysis of robustness to gate-dependence [13, 14]. Our
new formulation follows an approach that directly uses results from representation theory
as developed in [15], from which we prove a similar statement to [13]. We also note that
this new formulation is amenable to the methods used to improve the statistical analysis
and sample complexity of RB as developed in [16, 17].

In a sense, RC is the answer to the problems of unitary errors demonstrated in chapter
2 of this thesis, and as CB is used to benchmark gates in RC, it is the link between the
ideas explored in this thesis. We comment on its connection to CB for gate-dependent
randomizing errors in chapter 4. The rest of this chapter is dedicated to introducing
concepts that will be used throughout the remainder of the thesis.

1.1 A brief introduction to quantum computing

A quantum system is described by a Hilbert space H. For the purpose of this thesis, a
quantum computer is a triple (U, G, M) where ¥ is a set of states (vectors) that can be
initialized on the Hilbert space H, G C U(H) is a set of unitary transformations contained
within (and ideally approximating) the full unitary group, and M is a set of Hermitian
(or self-adjoint) measurement operators. A quantum computation is the preparation of a
state ¢ € U, the application of a series of unitaries {U;}!", C G, and a measurement in the
basis of an operator M € M, followed by a series of post-processing steps to reconstruct
a quantity of interest from the measurements. We restrict to finite-dimensional Hilbert
spaces (H = C?) for which U(#H) = U(d) is the group of d x d unitary matrices, and focus
on qubits (d = 2), though some results hold for qudits as well.

A pure state 1 can be represented as a unit vector or ket

d—1

) = a;]i) € C* (1.1)

=0

where {|i)}%=4 is an orthonormal basis for C¢, dubbed the computational basis. a; € C
are the probability amplitudes that satisfy Z?:_S |a;|> = 1. The dual of a ket is a bra,

which is its conjugate transpose (¢| = i)'



An observable A : C¢ — C4 is a self-adjoint operator (A = A'), and so has an eigenvalue
decomposition

A=)\ (1.2)

where \; are real numbers, II; is the projector onto the \; subspace, and the projectors
satisfy the relations

HZ‘HJ‘ = 51sz
dIm=1. (1.3)

The set {II;} is called a projection-valued measure (PVM). We could equally insist on hav-
ing a positive operator-valued measure (POVM) {F;} with each F; positive semi-definite
and > F; = I, and by Naimark’s dilation theorem this is equivalent to a PVM correspond-
ing to an observable A on a larger Hilbert space.

By the Born rule, measuring the observable A when the quantum system is in the state
|t)) returns an eigenvalue \; of A with probability

p(i) = ([ |¢) = Tr([¢ )] 1) (1.4)

and the linearity of the trace implies ) . p(i) = 1. From 1.4, we see that the probability
of measuring \; does not change under a global phase which is a transformation of the
form [¢)) — €% [1)). As the global phase of a state does not change measurement outcomes,
we can restrict to rank-1 projectors ¢ = |¢}¢p| € C¥¢ with Tr(y)) = 1 without loss of
generality. Considering states as operators also allows us to define mixed states

p= Zpi i) (1.5)

where ) . p; = 1 and the [1;)(¢;| are rank-1 projectors. The set of all states D, is called the
density operators — p € Dy is a Hermitian, positive semi-definite operator with Tr(p) = 1,
and we call p pure if and only if p = p?.

A gate set G is the set of unitary operations that can be performed on a quantum
computer. In general, we want G to be a finite dense subset of the unitary group U(d) so
we can approximate any unitary to arbitrary precision — we call such a gate set universal.
This choice allows for the selection of a small number of high quality gates that can
generate arbitrary elements of U(d). While there are many choices for G, for ¢ qudits of
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prime dimension, a common approach is to use the generalized Clifford group C(d?) and
a small number of non-Clifford gates [18]. The Clifford group is the normalizer of the
Weyl-Heisenberg group WH(d?), that is

C(d?) = {U € U(d) : UWH(d))U" = WH(d")}, (1.6)

and specifically for d = 2, ¢ = 1, WH(2) = P, the well known Pauli group. While we give a
more thorough description in section 3.1.1, the Pauli group P on one qubit is the identity
matrix, the Pauli matrices

01 0 — 1 0
O R I
along with a phase in {£1, £i}. The Pauli group on ¢ qubits P, is the tensor product of
q copies of P multiplied by a phase. We also consider the projective Pauli group is the
Pauli group (the group modulo the phase) and we say an element of the Pauli group is
normalized in some matrix representation if its Frobenius norm is 1. The Clifford group

on ¢ qubits C, is generated by local Hadamard H and phase R gates on each qubit, and
controlled-Z C'Z (or any other controlled) gates on pairs of qubits?

100 0
11 1 10 010 0

H‘EL —1] R‘{o z] “Z=1o 01 o0 (18)
000 -1

A common choice to make this set universal is T = V/R.

None of these gate operations will be perfect in practice, so instead of considering
unitary evolution of a quantum state we instead describe their evolution using quantum
channels. A quantum channel

E: ]D)d — ]Dd (19)

is a linear map that is completely positive (€ ® Zj is positive for all k, where Zj, is the
identity channel) and trace-preserving (Tr(E(p)) = 1), or CPTP. The CP constraint ensures
that the the state is mapped to a positive operator under the action of & whether coupled
to another quantum system or not. The trace-preserving constraint is used to preserve
probabilities and can be relaxed to trace-non-increasing (Tr(E(p)) < 1), which can also

2Though not necessarily all pairs.



be viewed as tracing out the unitary dynamics on a larger system by the Stinespring
factorization theorem.

The Choi matrix [19] of a quantum channel is defined as
Choi(€) = > Ey ® E(E) (1.10)
]
where F;; = el-e; and {e;} is the canonical orthonormal basis of C?. Importantly, as

Zij E;; ® E;; is positive and £ is positive, Choi(£) is positive semi-definite with a spectral
decomposition

Choi(€) = > vec(K;)vec! (K;) (1.11)

where vec : C9? — C* is the standard column stacking or vectorization map satisfying

the identity vec(ABC) = (CT ® A)vec(B).

By considering different isomorphisms of C%*?3  the action of a quantum operation
E: Dy — Dy on a state p € D can then be written in a Kraus operator decomposition as

d2
E(p) = KipK] (1.12)
=1

where the Kraus operators K; are the inverse vectorizations of those found in equation
1.11. The trace non-increasing constraint implies ) , K ZT K; <7, with equality if £ is trace
preserving. Kraus operators are not unique in general but are equivalent up to a unitary
transform. We will follow [9] and refer to the above choice from the Choi decomposition
as the canonical Kraus operators and order them according to their Frobenius norm as

K15 > ... > || Kell3 > 0. (1.13)
As the Kraus operators arise from a spectral decomposition and
vec(A)vec(B) = Tr(A'B), (1.14)

the Kraus operators as matrices are orthogonal with respect to the Hilbert-Schmidt inner
product,
vee(K;) vec(K;) = Tr( K] K;) = || K;||26;. (1.15)

3That is, C?%4 =~ ¥’ =~ Cd @ C4.



A similar construction is the Jamiotkowski-isomorphic state J(£) = (£ ® Z)(®P) which also
defines a one-to-one correspondence between states J(€) and quantum channels £, where
Q=3 ez, [77XkK]/d is a maximally entangled state of two systems.

In modelling errors associated with quantum errors we will consider unitary, stochastic,
and decoherent channels. A unitary channel has a single Kraus operator U which is unitary.
In general, this could be an under- or over-rotation of angle 6 around a given axis associated
with a Pauli P, that is

U(p) =UpU"
U =¢e"" = cosOI 4 isinOP. (1.16)

This can be relaxed to a mixed unitary channel with Kraus operators /p;U; where {U;}
is a set of unitaries and p a probability distribution. A channel is stochastic if it admits a
Kraus operator decomposition that is trace-orthogonal with respect to the Hilbert-Schmidt
inner product and contains a Kraus operator proportional to the identity — this implies
that all other Kraus operators are traceless. Examples of stochastic channels include the
depolarizing channel and Pauli channels.

A channel is decoherent if its largest (in Frobenius norm) canonical Kraus operators
is close to a multiple of the identity and positive semi-definite*. An example is the qubit
amplitude damping channel

E(p) = KipK] + KypK]

K = [é \/10__7] Ky = [8 ?} (1.17)

which describes a particle moving from an excited state to its ground state.

1.2 Distance measures

The output of a quantum computer can be thought of as a probability distribution de-
pendent on the input state, a unitary circuit, and a measurement. When any of these
components is noisy, the probability distribution will be perturbed. In this sense, given
a noisy quantum circuit, the difference between the noisy probability distribution and

1A more specific definition can be found in [J], but this will suffice for the purpose of this thesis.



the ideal probability distribution is the meaningful metric to characterize how well the
computation is performed. This is captured by the total variation distance

() = 5 3 Ipli) = 50) (119

where p, p denote the ideal and noisy probability distributions respectively, with ¢ associated
with event \;. Throughout this thesis we are motivated by the question of how close some
CPTP implementation U of a quantum gate or circuit is to its ideal ¢. In particular, we
want to characterize how close the CPTP error map £ = UUT associated with f is to the
identity channel Z. To build intuition about how to properly characterize these errors,
we can expand the equation 1.18 using the Born rule to isolate the contribution of the
implementation error to the total variation distance assuming an ideal PVM

(0.5) = 5 319~ (i)
=2 DI TH(IT) — Te(Tipy)|
= 33T - &)w)], (1.19)

where p, = £(¢) and ¢» = U(¢) for some prepared state ¢. If the pure state 1 is in
the basis of the measurement, then there is some j such that Tr(Il;¢)) = 1 and for i # j
Tr(IL;3)) = 0, so 1.19 reduces to

H(p.5) = (1~ THILEW)) + Y TH(ILE(W)

J#i
1 THEW)) (1.20)
where we have used ), Tr(ILE(¢)) = 1 for £ CPTP. The quantity
F(E9) = Tr(vE(Y)) (1.21)

is the i-state fidelity of £. In most applications of quantum computing, the state and
measurement will not be in the same basis, and we can instead apply a norm based bound
to the total variation distance. Applying von Neumann’s inequality and noting that the
ideal measurement operators have a singular value of 1 gives

(09) < 3 3 I = )W) = FIET - )W) (122



where m is the number of measurement outcomes. We could have considered the difference
between probabilities of individual events occurring instead. Here, ||Al|; is the trace or
Schatten 1-norm, which is equivalently the sum of the singular values of A or the trace of
the operator vV ATA. Dependent on the context of the quantum computation we will either
consider a fidelity or a norm-based distance measure, and as demonstrated in chapter 2 we
show that measuring in a slightly rotated basis induces errors to which the fidelity is not
sensitive. These errors are computationally relevant for a variety of algorithms including
Shor’s algorithm [3], where the ideal state is not in the support of the correct factors. Note
that these quantities can be related to the classical analogues for probability distributions,
namely the Bhattacharya overlap and the Kolmogorov distance [20].

From the i-state fidelity we define other fidelity-based measures. In the quantum
characterization and experimental literature, the average fidelity

fa() = / 0 Tr(E (1)) (1.23)

is ubiquitous as it is efficient to compute with RB (as discussed in section 1.4). The integral
is with respect to the Haar measure which is unitarily invariant — exploiting this we have

fa() = / 2 THUNWUE(UTGU)) = / 0 TH(SUE(UTU)U)
= /dqur(zpuogow(zp)) = fa(UEU) (1.24)

for any unitary channel &/. Analogous to the i-state fidelity, the average fidelity is the
average probability of measuring a state in its expected eigenbasis after being acted on by

E.
The process fidelity of a channel is
fe(€) = Tr(Pa(€ @ Zy)(Pa))- (1.25)
This quantity is linearly related to the average fidelity

(d+1)fa(€) -1
7 ,

fe(€) = (1.26)



and if £ has a Kraus decomposition with Kraus operators {K;} then following [21]

fe(€) = %Z I ERXI) [2) (1R (ll)

- %izjwuxm i
= ) 1]
:%Z (me |j>> (Z<‘|K*|'>)
ZTr ]Kh Tr(K]) = yo Z|Tr (1.27)

from the trace being basis invariant. We can also construct the maximum and minimum
channel fidelities

Far(€) = max (€. v)
F(€) = min f(&,0). (1.28

The norm-based distance measures we consider are built from the Schatten p-norms
1A, = Te(| AP, (1.29)

which reduce to the trace norm, the Frobenius norm, and the operator norm for p = 1,2, 0o
respectively. As we are interested in errors close to the identity, we consider the Schatten
p-distances from the identity

DyE.%) = I ~ D))l (130

The 1-distance is the trace distance bounding the total variation distance in equation 1.22.
We can then choose to average, maximize, or minimize over the input state to define a
distance measure. The common choice is the diamond distance from the identity

1
€(&) = 511 = Zll., (1.31)

10



where the diamond norm is
I€]|e = max ||E @ Z(p)]|1. (1.32)
pED ;2

While capturing the distance between probability distributions like the trace distance, the
diamond distance is also stable under tensor products

€(€) = €.(E @ TLy) (1.33)

for arbitrary k. By considering the action of the tensor product of the error channel
with the identity, the diamond distance and other stabilized distance measures not only
quantify how well the ideal operation is implemented but how much it is propagating errors
throughout the entire system if it only acts on a subsystem. The process fidelity fp is also
stable under tensor products, and provides an upper and lower bound on the diamond

distance
1= fp(&) S €(€) < dv/1— fp(€) (1.34)

where the lower bound is saturated for stochastic channels [22]. For general noise processes
that are close to the identity, the upper and lower bounds can differ by orders of magnitude.

1.3 Representation theory

In this section we introduce the representation theory used in chapter 3, and the vectorized
representations of quantum mechanics. We follow the notation set forth in [15], which pulls
heavily from [23]. A unitary representation ¢ of a group G on a vector space V' is a group
homomorphism from G to U(V)

¢:G—=UV)
gb(Gng) = ¢(G1)¢(G2), VGl, Gy € G.

A subrepresentation ¢y, of ¢ is a representation of a group on a vector subspace W of V/
such that the restriction of ¢ to W matches ¢y,. We then call a subrepresentation ¢y,

irreducible if it has no proper subrepresentation (proper meaning 7" C W for non-empty
T).

From the representation theory of finite groups (and by Maschke’s theorem we can also
extend to compact groups), every representation of a finite group G is a direct sum of
irreducible representations

®my

=@y . (1.35)

11



m, is the multiplicity of the representation ¢, in the direct sum, and we call a representation
multiplicity-free if my, = 1 for all i. Two representations ¢; : G — U(V}), ¢ : G — U(V])
are equivalent if there exists an isomorphism 7' : V; — V5 such that

To1(G) = ¢o(G)T, VG € G. (1.36)
The ¢-twirl of a linear map A: V — V is
To(A) = Eaecd(G)A(G)T, (1.37)

which commutes with ¢(G) VG € G. By Schur’s lemma, the twirl has a simple form for
multiplicity-free groups:

Lemma 1 (Schur’s lemma for multiplicty-free groups). Let G be a group with multiplcity-
free representation ¢ = ®xon over a vector space V. Then for all linear maps A -V —V
the ¢-twirl of A is

To(A) = %PA (1.38)

where Py is the projector onto the support of the irreducible representation ¢y.

The character x, of a representation ¢ of a finite group G over a vector space V' is

Xo:G—=C
Xo(G) = Tr (¢(G))

where the trace is implicitly over V. Characters are class functions. A class function o on
G is constant on the conjugacy classes of G

a:G—C
o(G) = a(HGH"), VG, H € G,

and the inner product of two class functions «, § is
(a, B) = Egeca(G)B(G).
The characters of the irreducible representations of G form an orthonormal basis for class

functions. We can then make use of the character projection formula to isolate irreducible
representations:

12



Lemma 2 (Character projection formula). Let G be a group and ¢ be a representation of
G with irreducible representation ¢y. Then

EaeaT(G)o(G) = ﬁa (1.39)

where Py is the projector onto all subrepresentations of ¢ equivalent to ¢,.

Throughout this thesis but especially in chapter 3 we will use vectorized representations
of quantum mechanics. While used in defining the Choi matrix in equation 1.11, we can
vectorize density matrices with the column stacking map so that conjugating by a unitary
or applying a CPTP map is then matrix multiplication of a vector. For a unitary channel
U and quantum channel £, we have

vec(U(p)) = vec(UpU') = U ® Uvec(p)

vec(E(p)) = VQC(Z KipK!) = (ZK ® KZ-) vec(p) (1.40)

which follows from the identity vec(ABC) = (CT ® A)vec(B). In this representation we
can identify ¢ with U ® U and &€ with (ZZK@) KZ-) and will refer to these objects as
superoperators. The same procedure can again be applied to noise channels to consider
operations on them, such as the twirl of an error via gates on either side of it.

The column stacking map is a specific choice of matrix basis for the Pauli-Liouville
representation, which associates each element of a matrix basis to a basis element of C".
Following the prescription in [13], the general approach is to let {e;}!; be the canonical
orthonormal basis of C™ and { B;}& | a trace-orthonormal basis of C%*¢, that is, Tr(B] B;) =

0i;. We then define the linear map

) s ¢! — (1.41)
A—|A) =D Tr(BlA)e; (1.42)

with adjoint map ((A] = |A)T that specifies the trace formula

(A|B)) = Tr(A'B) (1.43)

13



which is the Hilbert-Schmidt inner product. By considering the matrix representation of
a channel C : C¥*? — C%9  we have that for any A € C%*?

IC(A)) = ZTI“(B}C(A))%

=" Te(BlC(B)) Te(Bl A)e;

- Z C(B:)){(BilA))
_clay, (1.44)

with C =), |C(B;))){(B;| — this is the Liouville representation of a quantum channel.

We then have for two channels Ci,Cy and vector |A)), |C2(C1(A)))) = CoCi]A). In
particular for any two unitary channels U = ¢(U),V = ¢(V), we have

o(U)p(V)A) = [UV(A) = [UVAVIUT) = [WAWT)) = [W(A)) = ¢(W)|A)) (1.45)

where W = ¢p(W) = ¢(UV) = ¢(U)¢(V) is also a unitary channel. This implies that the
Liouville representation is a proper representation of unitary groups G C U(d).

For d = 29 we will choose the basis of C?*? to be the set of normalized Paulis on
q qubits where B; = 2792]. As this basis is Hermitian, the matrix representation of
all Hermiticity-preserving maps will be real-valued, which includes CPTP maps. When
referring to this choice of basis we will call the representation the PTM (Pauli-transfer
matrix) representation.

1.4 Randomized benchmarking

Randomized benchmarking (RB) is a protocol used to efficiently estimated the process
fidelity of quantum gates that is robust to SPAM errors. This is achieved by sampling
and applying sequences of quantum gates from a benchmarking group G and fitting the
output to a model that depends on the representation theory of G in some vectorized
form of quantum mechanics. We will restrict to the PTM for simplicity. Originally, G
was chosen to be a 2-design so that the process fidelity of a quantum channel could be
efficiently estimated by sampling from a finite subgroup. This property has been relaxed
to other compact subgroups that are not 2-designs or a weaker algebraic structure like an
approximate 2-design [21] but the general procedure remains the same. It is desirable for

14



the representation of G to be multiplicity-free to simplify the fitting procedure, but this
can also be relaxed as demonstrated in the appendix of [25].

Given a group G with multiplicty-free representation ¢(G) = @,¢(G), the associated
G-depolarizing channel is

D¢ = Ececd(G)ES(G)T = Z IrPy (1.46)

of a linear map £ where f, = Tr(P\€)/dy and d) = Tr(Py). This can be accomplished by
twirling £ via Schur’s lemma (lemma 1.38). We also have that

Tr(€)
fe(€) = —5 (1.47)
for the Liouville representation of £ [26]. This follows from noticing that averaging a

channel conjugated by a unitary over the unitary group results in a depolarizing channel.
As the trace (and the process fidelity) is linear and invariant under transformations of the
form & — ¢(U)EG(U)T for unitary channels ¢(U), we have

Te(€) = Te(Ececd(G)EG(G)') = Tr(Dg) (1.48)
giving X
fe(€) = ﬁzdxfx- (1.49)

We show how RB allows us to estimate all of the f), giving an estimate for fp(E).

We follow [15] to outline the fitting model of a general RB protocol when the ideal
representation of the group is finite and multiplicity free (though a similar idea was explored
for benchmarking with the dihedral group in [27]). Assuming we want to isolate f)(&), we
apply the following procedure:

1. Select n random gates {G;}!) from G.

2. Select G,, from (possibly a subgroup of) G.
3. Prepare p.

4. Apply the sequence of gates Gy, ..., Gp_1.
5. Apply GGl ... Gl _ .
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6. Measure ) and multiply by Yx(G,).

7. Repeat steps 1 through 6 sufficiently many times.

Given an implementation 6(G) = ¢(G)E where ¢(G) = @ o2 (G) is a representation of G
with irreducible representations ¢,, the expectation of the above protocol is

p(n,N) = Eq, cycecea (QINA(G)(GrGl ... GL_)EG(GR)E ... $(Go)E|p))

= (QI(Ec,enceXa(Gn)d(Gn)) (Ececd(G) EH(G))"|p) (1.50)
— (QIP\DEEp)
— A (1.51)

by Schur’s lemma 1.38 and the character projection formula 1.39 where Ay = (Q|P\E|p))
is the SPAM coefficient. p(n, \) is referred to as a decay within the literature as f € [0, 1],
and fitting p(n, A) to an exponential curve for varying n will allow us to extract fy. For n4

and ne we have that )
p(ng, /\) ) B
= | —= . 1.52

f/\ (p(nh A) ( )

The addition of step 2 and the character projection formula is to remove the need for
multi-exponential fitting if the group G has many representations — omitting these steps
equation 1.50 becomes p(n) = ), A\ f{ which is not ideal. Computing that character x
can be costly for large groups as it is the trace of potentially large matrix, but this presents
a trade off. If there are a lot of irreducible representations, each one corresponds to a small
subspace and so the characters will be efficient to compute, but if there are few irreducible
representations the number of distinct exponentials in the sum p(n) will be small and easy
to fit. This highlights the simplicity of the fitting model when using the Clifford group or
a 2-design as they have two irreducible representations. One corresponds to the identity
having quality parameter f; = 1 for trace-preserving noise, and thus p(n) = A; + A, f2
where o is the irreducible representation corresponding to mixing unitaries.

This Markovian gate-independent error model is not realistic as gates from the same
group may be implemented by different physical mechanisms with different pathologies.
By relaxing the assumption to allow &z to depend on the gate G being implemented, [13]
showed that this introduces perturbation to the fitting model of the form

p(n) = Ar + A 7 + e(n) (1.53)
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where under suitable assumptions on the noise maps £ the perturbation term €(n) decays
more rapidly than the exponential of f,, justifying neglecting it when n is big enough.
This analysis was extended in [15] to show that

p(n, \) = A\fl +€e(n, \) (1.54)

for multiplicity-free representations of finite groups. In this sense, RB is robust to gate-
dependent noise.

In chapter 3 we utilize this representation theoretic approach to RB in order to analyze
CB, and then show that it is also robust to gate-dependent noise on randomizing gates.

1.5 Randomized compiling

As demonstrated in equation 1.34 (and to be further explored in chapter 2), the diamond
distance scales much less favourably with unitary errors as opposed to stochastic errors.
Unitary errors are ubiquitous as they not only arise from outside sources affecting the
system, but also because of imperfect quantum control. This results in over or under
rotations when applying unitary transformations, or due to pulses addressing qubits they
should not when applied (referred to as crosstalk).

Randomization schemes like PAREC [258] and randomized decoupling [29] are effective
for the mitigation of coherent errors. By randomizing how a logical circuit is embedded in a
physical system with redundant gates, these schemes prevent the build up of unitary errors
along specific axes of rotation at the cost of additional circuit shots or samples. Similar

techniques have been employed in the design of unitary synthesis [30] and Hamiltonian
simulation [31].
The randomized compiling (RC) scheme introduced in [12] utilizes redundant twirling

gates to tailor arbitrary noise in a given circuit into stochastic noise. This is accomplished
by separating the gate set G into an easy group E, a twirling group T C E, and a hard
set H with the constraint that HTH' € E for T € G, H € H. The canonical breakdown is
setting T = P, E to be the group generated by T and the phase gate R, and H is the set
containing H, v/R, and controlled-Z C'Z gates.

The circuits
0(E,11)0(H,)...0(Hy)0(Ep) (1.55)

and
0(Dyy1)0(Hy) ... 0(Hy)0(Do) (1.56)
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are logically equivalent with D; = T,E,T¢,, T¢ = H,T/H], and T,,; = T¢, = I. The

(2
D; are referred to as dressed gates. If there are linear superoperators £, R such that

O(E) = LO(E)R for E € E for a representation ¢(F), then around each hard gate H;
0(D;)0(H;—1)0(D;—1) = LOH(D;)RO(H;—1)LH(Di—1)R.
Expanding D;, D;_; and averaging over the T;
Drc = By, erd(T]_))¢(H_ | YRO(H;_1)LS(Ti—1).
Selecting T = P, the above is a Pauli channel by Schur’s lemma

Dgc = Z Tr(¢p(H'YRO(H)LP,) Py

AEP,
=Y hh
AEP,
The RC fidelity of §(H) is then
1
fre(€) = fp(Dre) = 4—an,\ (1.57)

A

where the sum is over the subspaces corresponding to each normalized Pauli matrix. frc
can be efficiently estimated using CB as discussed in chapter 3. As this channel has been
made stochastic by RC, it saturates the lower bound of equation 1.34 so that the process
fidelity exactly measures the implementation error.
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Chapter 2

On error rates in quantum circuits

Currently, great experimental effort is being exerted to control quantum systems pre-
cisely enough to allow for scalable quantum error correction and to demonstrate quantum
supremacy, that is, perform some task on an experimental quantum computer that is not
viable on a conventional computer. For both of these efforts, it is inadequate to completely
characterize every circuit component in place, as this would be more difficult then simply
simulating a quantum computer directly, thus removing any possible computational advan-
tage. Consequently, one of the goals of quantum characterization is to provide figures of
merit and efficient methods of estimating those figures such that a sufficiently small figure
of merit guarantees that fault-tolerant quantum computation is possible and/or that the
total error in a circuit is sufficiently small.

There are several different metrics for quantifying the error in quantum gates that are
relevant to different tasks [20]. Proofs in quantum information theory and fault-tolerant
quantum computation typically appeal to the diamond distance from the identity [32, 33,

|. There is no known method for efficiently estimating the diamond distance.

A more common experimental figure of merit is the process (equivalently, average)
infidelity, because it can be efficiently and robustly measured by randomized benchmark-
ing [7, 35, 36, 37, 22]. Upper and lower bounds on the diamond distance can be obtained
from the fidelity [38]. For small error rates, the upper and lower bounds differ by orders of
magnitude and cannot be substantially improved [39]. There is a belief that the infidelity
captures the average “computationally relevant” error [36] and that the loose relation be-
tween the fidelity and the diamond norm is simply a difference between “average” and
“worst-case” performance—this belief is still prevalent in the literature, e.g. as seen in a
recent preprint [40)].
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In this chapter, we obtain upper- and lower-bounds on the diamond distance for general
noise in terms of functions that can be efficiently estimated, namely, the infidelity and the
unitarity [5], that differ by essentially a factor of d®2. The bounds here improve upon
similar bounds obtained for unital noise in Ref. [11] by a dimensional factor and hold for
general noise. To obtain these bounds, we also prove that a “worst-case” or maximum
version of the infidelity is proportional to the process infidelity and that the contribution
of the non-unital portion to the diamond distance due to generalized amplitude processes is
at most linear in the infidelity, and so does not introduce any significant difference between
the infidelity and the diamond distance. We then obtain upper- and lower-bounds on the
diamond distance that scale as /rp instead of rp if and only if there are significant coherent
contributions to the noise as quantified by the unitarity [8] (theorem 6). This is further
justified by using a leading Kraus approximation [9] to bound the diamond distance in
terms of the maximum infidelity, where the dominant source of error comes from unitary
contributions.

Non-stochastic noise will generically introduce coherence between the expected state
of the system and its orthogonal subspace, which results in some level of indeterminacy
in the state after applying a quantum process. This situation results in a basis mismatch
during measurement, and so it is not immediately clear whether or not infidelity is the
correct choice to quantify the error. Furthermore, in general applications of quantum
information, such as quantum computing, the measurement outcome is often expected to
be probabilistic even in the absence of noise, that is, measurements are expected to be in
a basis that does not contain the ideal state of the system!. Consequently, the coherent
contributions to the diamond and induced trace distances will be relevant.

We provide numerical evidence to substantiate this claim. We show that when measur-
ing and preparing states in the same basis with some small basis mismatch the total error in
a quantum circuit does not generically scale with the average infidelity, but instead scales
with either the infidelity or the diamond distance dependent on the magnitude of these
quantities and the severity of the basis mismatch. Furthermore, if the basis mismatch is
small the diamond distance can still be the dominating quantity, and so the more accurate
measure.

'For example, this arises in algorithms based on quantum phase estimation [12] when the phase to be
estimated multiplied by a power of 2 is not an integer.
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2.1 Preliminaries

We will make use of the Pauli-Liouville representation of a quantum channel

e= %) %, 2.)

which follows from equation 1.44, and we can characterize £ based on how it differs from
Z on each of these blocks. The survival rate S(€) € [0, 1] accounts for the loss of trace
induced by the channel, the nonunital vector &, € C¥~* describes how much the channel
distorts the identity, the unital block &, € C¥ =%~ represents the unitary action of the
channel, and finally &4 € Cxd*~1 ig the state-dependent leakage. If £ is CPTP then
S(€) = 1, which we will assume throughout this chapter, and are only concerned with
channels with E,4 = 0.

The average gate infidelity is the error rate reported in randomized benchmarking ex-

periments [37]. However, it is linearly related to the process infidelity by rp(€) = T2r4 (€)

and Tr(€) by equation 1.47, where the dimensional factors are substantially more con-
venient for the process infidelity. Consequently, we will state all results in terms of the

process infidelity. We also quantify the coherent part of a noise process using the unitarity

(4]

d

() = —— [ de Te(E(W)EW))

_ f
——— Tr(E[EL). (2.2)

Importantly, u(€) < 1 unless £ is unitary. The non-unital or decoherent part of a channel
& can be quantified by the non-unital vector &, and the non-unitality

a(€) = SEa) — Ll

1
= Il 23)

2.2 Analyzing the discrepancy between process infi-
delity and diamond norm

We are primarily interested in explaining the difference between the process infidelity and
the diamond distance, and determining which is more relevant dependent on context. A
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common explanation appeals to the different dependence on the input state. The process
infidelity is equivalent to the state infidelity averaged over input states acting on the system,
whereas the diamond distance is maximized over input states acting on a system and an
ancilla. As we now show, this difference can explain the dimensional factor, but not the
square root. For any d € N, orthonormal basis {|j) : j € Z4} of C¢, and CPTP map &, the
process infidelity satisfies [13]

2D ELKID <€), 2:4)

Consequently, the worst-case infidelity can exhibit the same dimensional scaling as the
diamond norm but is always proportional to the process infidelity.

Proposition 3. For any CPTP map &, the worst-case infidelity satisfies

dj‘ll—lrp(g) <ru(€) <drp(€). (2.5)

Furthermore, there exist CPTP maps such that

d27” P ((c: )
E)> —~. 2.6
Proof. The lower bound follows from the relation between the process infidelity and the
non-negativity of the v-infidelity. The upper bound follows from eq. (2.4) with the non-
negativity of the ¢-infidelity. Equation (2.6) can be obtained by setting & = U, where
Us = I+ (¢"* — 1) |0)0], which has process infidelity

|Tr Uy |? _ 2(d—1)(1 — cos(gb)).

wEmIT TR iz (2.7)
Evaluating the ¢-infidelity for |[+) = (|0) + |1))/v/2 gives
raUy) = Uy, |+X+]) = 1—CTOS(¢)
) ig—%; (28)
0O
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Proposition 3 demonstrates that the potential discrepancy between the O(,/7p) scaling
of the diamond distance and the process infidelity is not simply the difference between “av-
erage” and “worst-case”. The discrepancy only arises for channels that are not stochastic.
The primary examples of non-stochastic processes are relaxation and coherent processes,
whose contributions account for the difference between the diamond norm and the infi-
delity.

Relaxation to a ground state is a common physical process that cannot be described
as a stochastic channel. The canonical example is the single qubit amplitude damping
channel as in equation 1.17. For multiple qubits, the energy eigenbasis (including the
ground state) will generically be entangled relative to the computational basis after such a
process, and so will not be aligned with the measurement basis. To quantify this non-unital
behavior of a noise process, we consider the purity of the maximally mixed state after the
noise process is applied, with the known identity component subtracted off. While the
following proposition is stated in terms of the Schatten 2-norm, using the 1-norm instead
only introduces a dimensional factor as we are dealing with a finite-dimensional space.
Note that the following bound coincides with [38, Prop. 12] for d = 2 without a restriction
on 7p(E).

Theorem 4. For any CPTP map £ we have that
a(€) = EG1a) — $lall2 < V2rp(€). (2.9)

Proof. For any trace-preserving map £, we have

2 1 1 1

We want to relate the purity to the state fidelities averaged over a basis. Let {|j) : j € Z4}
be an eigenbasis of £(1;) with corresponding eigenvalues A\; = 1 — d;. We then have

1 1
J
1
:EZ@?_%
J

1
= ﬁZ@? (2.11)
J
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where we use
d G =d—TrEy) =0 (2.12)
J
for trace-preserving maps. We can relate the J; to the state fidelities by noting that
0; =1—{jlEa)|J)

— (&, 13)D) — (1 €(Ta— 13¥I1) 1)
— (&, 1)) — vy, (213)

using eq. (1.21), where we implicitly define v;. The J; terms represent the net flow out of
the state |7)(j| and satisfy

D v =30 GIEkK) 1)

J k#j

=33 GIEQRXED 1)
kE £k

R
= 3 rE LD, (2.14)

Therefore, noting that v;, (&, |7)(j]) > 0, we have

1 N2 1 2
< ﬁ(ZM& |J><J|) +E(ZU1>
J J
2 URY
= S (o rE 1)
J
< 2rp(€)?, (2.15)
where the final inequality follows from eq. (2.4). O

We now obtain lower- and upper-bounds on the diamond norm of a general linear map
T in terms of the purity of the Jamiotkowski-isomorphic state that differ by a factor of
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d®/?. We will then state upper and lower bounds on the diamond distance in terms of the
infidelity and the unitarity. In particular, u(£) € [p(€)?, 1] with u — p(€)* € O(r3(€))
giving a diamond distance that scales linearly with rp(€) if £ is stochastic where p(&) =
1 —d*rp(€)/(d* — 1) is the randomized benchmarking decay constant.

Theorem 5. For any linear map T : C¥*¢ — CI*4,
1Tl < Wl < 21T (T)]l2 (2.16)
where

7, = sup 17 @ Za(A)]l;- (2.17)

AeCd*xd?:|| Al =1
Proof. By [11, Thm. 6],

7, = sup dll(la® /p)J(T)La® Vo)l (2.18)

p,O'E G]D)d

noting that our convention of J(7) differs from Ref. [11] by a factor of d. The lower bound
can be obtained by setting p = 0 = I;/d and applying eq. (2.25). By Hélder’s inequality,

IABC[y < [[Allo | BC[x < [|Alloo | Bll2|Cl2 (2.19)

for arbitrary A, B,C' € C™*™. As p,o € Dy, they are positive semi-definite and have unit
trace and so ||I; ® /pllee < 1 and ||I; ® V/alls < Vd for all p,o € D,. (Note that the
bound in Ref. [38] uses ||BC||y < ||B|1||C||e instead, which, together with the Fuchs-van
de Graaf inequality [10], gives the bound in eq. (1.34).) O

Corollary 6. For any quantum channel &,
! J(A & a2 J(A 2.20
—_ < €<> < _— .

where A =& — L. In terms of the infidelity and unitarity,

% < e(&) < d\/dTC2 + TP(Qg)Q, (2.21)
where
C? = %(u(s) —2p(&) +1). (2.22)



Proof. First note the factor of 1/2 from the definition of €,(€) in eq. (1.34) and we obtain
the v/2 improvement from theorem 7 for trace-preserving maps &, so that Tr A(A) = 0 for
all A. By [8, Prop. 9],

d?>—1 a(€)?

p7 u(A) + ¥
d?>—1 a(€)?
=~ (&) = 2p(&) +1) + —
where we have used Tr A(A) = 0 for all A as £ is a trace-preserving map, and «(€) is
defined as in equation 2.3. The lower and upper bounds follow from the non-negativity of
norms and theorem 4 respectively. O]

17(A)]5 =

(2.23)

Lemma 7. For any traceless Hermitian matriz M € C%4,
V2| My < ||M]ly < V|| M|, (2.24)

Moreover, both these bounds are saturated.
Proof. For any Hermitian matrix M, writing M = UnU" where 7 is a diagonal matrix

whose entries are the eigenvalues {n;} of M and using the unitary invariance of the trace
and Frobenius norms gives the standard bounds

1M =

d d d
Do <Ml =)l < ([ dY o nE = Vd|[ M|, (2.25)
j=1 1 j=1

j=
by the Cauchy-Schwarz inequality.

To obtain a sharper lower bound for traceless Hermitian matrices, let

+
+ - n 0
= O —-n = B 2.26
n=n"&-n (0 n ) (2.26)

where @ denotes the matrix direct sum and n* are both positive semi-definite. Then

d
N N [mllf _ 1
00 = | D28 =\l + 13 < /1B + i 3 = 252 = —= 10
j=1
(2.27)
where we have used ||p*||; = 1||n||; which holds for traceless matrices. The above lower
bound is saturated when 7;; = 1, 1792 = —1 and all other eigenvalues are zero. O
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While the diamond distance can be interpreted as a bound on the maximum distance
between the ideal and actual distributions of the output of a component of a quantum
circuit [20], the performance of an individual gate within the circuit will generically be
better. To quantify the typical behavior, we define an average analogy to the diamond
distance.

For a non-trivial circuit, that is, Gy # Iz, My (=~ ]\7[k) and v, will be in different bases
that are fixed relative to each other and so contribution to the error from each individual
gate will typically be close to

tavg,m(g) = Ew,M|TrM:m,M2=M’<M7 5(¢) - w>|7 (228)

where m = Tr My. We now prove that this quantity is proportional to the diamond
distance, up to a dimensional factor and a factor that depends on the rank of M. For many
problems, such as Shor’s factoring algorithm, and for the measurements between rounds
of error correction, m € O(d*) and so the dimensional scaling between the following upper
and lower bounds is primarily a consequence of the corresponding dimensional factors in
theorem 6.

Theorem 8. For any quantum channel £ and m € N,
2m(m + 1)e,(€)
d3(d+1)?

< tavgm(E) < 265(E). (2.29)

Proof. The upper bound is trivial from the definition of €,(€) and theorem 6 (although
note the factor of 2). For the lower bound, let

tM, &, ) = [(M, A(y))] (2.30)

where A = & — 7, so that tugm(E) = By amm=mt(M,E,9). The absolute value in
eq. (2.30) makes evaluating the mean difficult. To circumvent this, we use the identity
a’ = a® a for a € R? and the distributivity of the tensor product to obtain

V = Ey vt m=maz=m[t(M, &, ¥)?]
= / de dU Tr [U(M)2A2 (5] (2.31)
Sa U(d)

To evaluate the integrals, let S =}, . [ij)(ji] be the two-qudit swap gate and let m,/; =

(Iz + S4)/2 be the projectors onto the symmetric and antisymmetric subspaces of Cce
respectively. For any Hermitian matrix M,

Tra, M Tra,M
/dUu®2(M): s e (2.32)

S
Tr m, Trm,
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by Schur-Weyl duality and so, with Tr S(A ® B) = Tr AB,

[avv = [avue)

o ]Idz + 9
2 4d
2m2 + 2m 2m?2 — 2m
dU U(M™)®2 = X . 2.33
/U(d) UM™) Prd T Te—qg " (2:33)

where ¢ is an arbitrary pure state. Substituting this into eq. (2.31) gives

m?+m

_ 2
V = m Tr [(HdQ —+ S)A® (]IdQ + S)}
m? +m 5
— mTI‘ [SA® (]Id2 + S)]
m?+m
= ——— (| J(A)]5 + [|A(L)]3
(d+1)2(H‘]( )|z + [[ALa)[I)
dm(m + 1)e,(€)?
2.34
- d3(d+1)? (2:34)
where we have used m,A%?(m,) = 0, [3, Prop. 3], the non-negativity of norms, and theo-
rem 6. Now note that
max t(M, E,v) < 2¢,(E), (2.35)
and so, with theorem 6 and the non-negativity of norms,
Eym[t(M 2
tavg(g) Z va[ ( 787w> ]
max t(M,E, )
2m(m + 1)e,(€)
2.
- dB(d+1)? (2.36)
[

2.3 A leading Kraus approximation of the diamond
distance

To demonstrate the scaling of the diamond distance, we now derive an upper bound on
the Schatten 1-norm of the difference between the action of a CPTP map £ on a state and
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the state itself. We are particularly interested in the case where £ is close to the identity.
In principle, there should then be a Kraus decomposition such that one of the operators
is close to the identity and the rest are negligible — this is similar to the leading Kraus
approximation [9]. As the diamond distance is the maximum sum of singular values of the
difference between two operators acting on a state, we show that it can be bound by the
singular values of its dominant coherent and decoherent contributions.

Theorem 9. Let {K;} be a Kraus operator decomposition of a CPTP map &£, K, = DU
be a polar decomposition of one of the Kraus operators with singular values satisfying
Omax (K1) < min{3omin(K1),1}. Then for any positive integer k,

max 3[|€ @ Z,(p) — plly < ru(D) + Vru(U). (2.37)

PED gk

Proof. Without loss of generality, we set k = 1, using the fact that {K; ® I} are Kraus
operators of £ ® T, for any k. Let p € Dy be an arbitrary state and p' = U(p) = UpUT.
By the triangle inequality, we have

I1E(p) = pllv < [1K1pKT] = o'+ 6" = pll + > I1K;pK] |3
j>1
< |lp' = pll + |1D'DT = Pl + > 1K pK ] |1 (2.38)
j>1
We will obtain upper bounds on the three terms on the right-hand-side of eq. (2.38) sepa-
rately.

By convexity, ||p’ — p||1 will be maximized when p is a pure state 1. By the Fuchs-van
de Graaf inequality [10], for any pure state 1) we have

|UYUT — |1 = 2/1 — Te(pUBUT) = 2¢/7(U, ) < 2¢/ru(U).

Applying corollary 20 to the term with D gives

IDp' DT = p'll1 < 1 — oin (K1)

We now obtain an upper bound on the sum on the right-hand-side of eq. (2.38). As
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K; pKJT is positive semi-definite for any K; and any p € Dy, we have

STl = 30T (KpK])

Jj>1 J>1

()

- Ty (K}Klp),

where we have used the cyclic invariance of the trace and _; K}K ; = I for any CPTP

map. As K IT K is positive semidefinite, we have

S K pK |l < 1= oin(K7)?

j>1

where a maximizing state is p = za' for any singular vector x of K, with singular value
Omin(K7). Therefore we have

max [[€(p) = plli < 2(1 = owin (K1)?) + max 2/rU, ). (2-39)

As the maximum infidelity of a unitary or Hermitian matrix is stable under tensor products
with the identity, the bound for k& > 1 follows. O]

Applying proposition 3 to the result gives a further upper bound in terms of the pro-
cess fidelity. Though the bound is not tight for decoherent channels, their contribution to
the trace distance will be linear, agreeing with theorem 4. This is implied by the appeal
to corollary 20, which can be seen as a statement about the equability of a channel as
proposed in [9]. Informally, this captures the idea that decoherent errors will affect sub-
spaces uniformly as opposed to having errors that, for example, have relaxation on a single
subspace but nowhere else.

For stochastic and unitary channels, however, the bound is tight; this highlights that
a unitary error of the same infidelity as a stochastic or decoherent error will result in a
larger diamond distance. We now demonstrate that for a family of mixed unitary channels
it is also nearly saturated in an appropriate limit. For distinct Hermitian n-qubit Pauli
operators P, (), define the channel

Epqpo(p) = pexp(—ifQ)pexp(i6Q) + (1 — p) PpP
= p(cos® Op + sin? 0QpQ — isind cos O[Q, p]) + (1 — p)PpP (2.40)
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where § € R and p € [0,1]. A Kraus decomposition of Epg g is

Ky = \/pexp(—i0Q)

Ky =+/1—pP, (2.41)
and we focus on the case where K is the dominant term (p > 1/2). This channel represents
a systematic rotation around a specific axis with a small probability of a Pauli error. The
polar decomposition of Ky = DU is D = /pI, U = exp(—if()) which correspond to
channels U, D with maximum infidelities

ra(U) = sin? 0
(D) =1—np. (2.42)
If P and @ anticommute then R = (iPQ)l = —iQP = iPQ is also Hermitian and 7 =
27"(I +iPQ) is a density operator with
2"(Epgpa(T) — T) = ipcos® OPQ — ipsin® OPQ — i(1 — p) PQ — iPQ — 2psin  cos HQ
=2i(p — 1 —sin?0)PQ — 2psin Q). (2.43)

By the strong unitary invariance of the Schatten norm and direct calculation

|€p@ps(r) = Tl = 27"|2i(p — 1 = sin® ) PQ — 2psin f cos Q|
=27""|(1 — p+sin® ) + ipsinf cos OP|,

- 2\/(1 — p+5sin? )2 + p2sin? 0 cos? § (2.44)

where we have used the fact that P has 2" ! eigenvalues of £1 each, scaling the matrix
scales the eigenvalues accordingly, and adding a multiple of the identity shifts the spectrum,
then noted that the singular values of the operator satisfy o; = \/AfA;. Setting p = 1 or
6 = 0 recovers a unitary or stochastic channel from €pg ;¢ and then the bound of theorem
9 is saturated for ry(U) and ry (D). Furthermore, for arbitrary p € [0,1] and 6 € R, we
have

(1 —p+sin®0)* + p?sin? @ cos® § = sin? A(sin? § + p* cos® §) + 2(1 — p)sin® @ + (1 — p)?
<sin? @ +2(1 — p)[sin 6] + (1 — p)°

= ((1=p) +[sinf])* = (ru(D) + Vru@))*  (2:45)

where we have used p? cos? < 1 and sin® 6 < |sin 6]
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A more rigorous argument can be applied by appealing to the singular values of the
(at most) rank-3 operator £(¢) — 1 by considering the trace formula of its characteristic
polynomial, resulting in a maximization over the sensitivity to the individual unitary and

stochastic errors. However, if we consider any pure state ¢ that is maximally sensitive to
both errors ({1, P} = {¢, Q} = 0), we have that

1€P@po() — ¥l = 2[[(p — 1 — sin )y — ipsin f cos OQY ||
<2|(p— 1 —sin?0)I — ipsin @ cos Q|| (2.46)

from submultiplicativity and ||1||; = 1 for pure states, and has the same value as 2.44 from
a similar argument.

2.4 FError scaling under unitary errors

To demonstrate the different characteristic error scalings in a quantum circuit C that
depend on the bases of state preparation and measurement in the presence of a unitary error
U, we evaluate the total variation distance of a single qubit system with state preparation
and measurement in the same basis, state preparation and measurement in different bases,
and state preparation and measurement in the same basis but with a slight basis mismatch.
We estimate the total variation distance 7 of the probability distribution of the quantum
circuit C to its noisy implementation C under unitary error U by sampling

7€,€) = 5 ST ) — {TL, 9] = |TTo, ) — (T, )

= [Tr (Tlo (U = Z) (¢))] (2.47)

with states ¢ and measurement 1y, II; = (I —Ilj) from the Haar measure. As the Haar
measure is unitarily invariant, without loss of generality the unitary channel U is the
conjugation of U, a diagonal matrix with eigenvalues e? and e,

Figure 2.1 demonstrates the difference of preparing and measuring in the same basis
or different bases. When in the same basis, the total variation distance between the
distributions is on the same order of magnitude as the process infidelity, while the total
variation distance is on the same order of magnitude as the diamond distance when in
different bases.

When there is a small basis mismatch between state preparation and measurement,
the distribution of the total variation distance is not the same as when measuring and
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Figure 2.1: Histogram of the logarithm of the total variation distance 7(Z,U) when mea-
suring and preparing in the same basis, measuring in preparing in the same basis with
a basis mismatch, and measuring and preparing in different bases. Here, the unitary U
corresponding to U has eigenvalues e where § = 0.01 (rp(U) ~ 107%), and the basis
mismatch is modelled by applying a Haar random unitary channel V' to the PVM element
while varying rp(V). We have omitted varying 6 as the ratio of 6 to rp()) determines the
behavior when both are small.
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preparing in the same basis and can be magnitudes higher dependent on the severity of the
mismatch. The process infidelity will underestimate the error in these cases, and dependent
on the severity of said error the diamond distance could be the appropriate measure.

This can be observed more clearly as follows: for the observable M = §- & and density
matrix p = % (I +d- ), where §,d € R? and & is the vector of traceless Pauli matrices,
the total variation distance is

T(Z,U) = |(82a, + 8ya,) sin?(0) + (s,a, — spa,)sin(0) cos()] (2.48)

TI,U) < |5 @ rp(U) + = |d@ x 5] o (U) (2.49)

where T is the identity channel. As rp(U) = sin?(#) and e,(U) = 2sin(#), we have

1

2
for small §. While the total variation distance scales with the process infidelity when
measuring and preparing in the same basis, dependent on the severity of the basis mismatch
(characterized by |@ x §]) and the magnitude of the average infidelity (and thus that of the
diamond distance), the diamond distance may be the dominating term for small . This
corresponds to varying rp()) as in the example of figure 2.1, where three intermediaries
between the extremes are displayed. The correct choice of measure will thus depend on

both the severity of the basis mismatch and the magnitudes of the diamond distance and
infidelity of U.

2.5 Conclusion

We have obtained improved bounds on the diamond distance in terms of the infidelity and
the unitarity [8], which can both be efficiently estimated. When noise is approximately
stochastic, the improved bound scales as O(rp). If the unitarity indicates that the noise
contains coherent errors, then the improved upper and lower bounds both scale as O(,/7p).

Furthermore, we have shown that the non-unital contribution to the diamond distance
from some generalized amplitude damping process is at most linear in the infidelity. Thus,
the primary cause for the discrepancy between the infidelity and the diamond distance is
due to the unital contributions of a noise process. Both of these notions are captured by
considering a polar decomposition of the leading Kraus operator for the diamond distance,
showing that the maximum decoherent contribution is linear as long as its singular values
are not spread too far apart.
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We have also shown that the diamond distance and infidelity are not “worst-case” and
“average” error rates in the same sense by constructing worst-case and average versions of
the infidelity and diamond distance respectively and showing that they are proportional
to the standard versions up to dimensional factors. An important semantic consequence
is that referring to the diamond distance as the worst-case error rate and the infidelity
as the average error rate is misleading because they quantify error rates in fundamentally
different ways.

By sampling the average total variation distance of a single qubit quantum circuit,
we demonstrate that even small systematic errors result in a total variation distance that
is qualitatively similar to state preparation and measurement in arbitrary different bases
when preparing and measuring in the same basis. For deterministic computations on a noisy
quantum processor, the average infidelity does not always give an average description of the
error, and instead practitioners should either appeal to bounds on the diamond distance
based on the unitarity, or reduce the unitary effects using randomized compiling or other
error mitigation procedures.
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Chapter 3

An analysis of cycle benchmarking
with gate-dependent noise

Cycle benchmarking (CB) [11] is a protocol used to characterize the performance of cycles
of a quantum computer. A cycle could be an individual gate or a sequence of gates run in
parallel that form of a common subroutine of an algorithm. CB is a successor to randomized
benchmarking in that it also samples random gates from a group and applies them between
rounds of a noisy cycle to decouple cycle errors from state preparation and measurement
errors. Furthermore, CB is efficient in the system size and can thus be used to characterize
and probe for crosstalk and correlated errors.

While there are similarities between CB and interleaved RB [15], CB does not require
the benchmarking group to contain the gate or cycle of interest. As typical interleaved RB
uses Clifford gates that can each require many native gates on a platform, the reported
process fidelity may not reflect actual performance of a quantum circuit or not correspond
to common sequences of gates used in algorithms. By loosening this restriction, the ran-
domizing group can be chosen with just enough structure to have a meaningful and simple
fit model, while also being simple to implement and sample with a meaningful interpreta-
tion. This was done simultaneously in the context of direct RB [24] and character RB [15],
where the former uses native Clifford gates to asymptotically converge to the standard RB
fit model and the latter suggests an example with the use of local Clifford gates. Like
randomized compiling, CB uses a group of local twirling gates that are normalized by the
cycle of interest, ensuring that the noise remains approximately local — this is not true of
character RB in general. While the stochastic channel learned has contributions from the
implementation errors of the cycle and the randomizing gate errors, this is similar to the
stochastic channels associated with the hard gates in randomized compiling [12].
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In this chapter, we present a new analysis of the original Clifford CB protocol that
we call simplified CB. Both protocols extract the same information and the difference is
mainly aesthetic. Where the original CB protocol selected specific Pauli observables to be
measured to isolate eigenvalues of the stochastic channel, simplified CB uses a character
projection formula on the randomizing Pauli gates similar to the approach of character
RB [15]. As the observable in standard CB is chosen to be a Pauli with the expected
state after applying the circuit as a +1 eigenvector, this projects the output onto the
specified Pauli. This is precisely what doing a character transformation to one of the
randomized Pauli gates does in expectation — in this sense, they fulfill the same role.
When generalizing Clifford CB to qudits using the Weyl-Heisenberg group in place of the
Pauli group, the observable approach will become more complicated. Instead, using the
character transform approach requires specifying an observable with non-trivial overlap
with the Weyl-Heisenberg operator of interest.

Unlike character RB, simplified CB does not require the compilation and sampling of
an additional gate into the final gate, which would result in requiring more circuit runs. It
still however requires an additional post-processing phase to calculate the characters, but
as we are dealing with the Pauli group the characters are phases and could be stored and
retrieved from a lookup table with ease. The measurement of a specific Pauli observable
can not generally be done natively and so standard CB needs a similar post-processing
step anyway.

The main impetus for this new approach to CB is to facilitate the application of tech-
niques developed for RB to CB, particularly the problem of robustness to gate-dependence.
As there are still variations in types and severity of errors from Pauli to Pauli, the ran-
domization may not project onto the error subspaces as desired. We show that these
perturbations accumulate orthogonally to the gate-independent fit model, and that under
the assumption that the noise induced by the joint implementation of the Clifford and a
Pauli is close to a stochastic Pauli channel, these perturbations are small and decay more
rapidly. Choosing long enough sequence lengths would then allow one to neglect the per-
turbations and fit to the gate independent model. We thus show that the simplified CB
protocol is robust to gate-dependent noise in the same way as RB [12].

Finally, we comment on how our analysis fits in with the Fourier analysis of RB pre-
sented in [, 16]. To this end, we show that CB can be viewed as a twisted convolution
by appealing to the Cliffords as the normalizer of the Paulis, which readily fits into the
perturbation theory of invariant subspaces used therein.
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3.1 Preliminaries

In this section, we discuss representation theory associated with the Pauli group in terms
of the PTM representation, as well as comment on the Clifford group in the same setting.
While we work with qubits, we note that all of this analysis carries over to qudits by using
the generalization of the Paulis to the Weyl-Heisenberg operators and using an appropriate
compatible generalized Clifford group.

For non-commuting products we will use the notation z,., = 2,241 ... Zp117 (as well as
for products (2;¥;)a:p = Tala - - - Tpys) When a > b or equal to the appropriate identity when
a < b. Throughout this chapter we will use calligraphic font for quantum channels in the
standard and Pauli-Liouville representation (C(p)) and the Pauli-Liouville representation
notation for unitary gates (¢(C)). For general linear maps, we will also use calligraphic
font (for example £ and R in theorem 16).

3.1.1 Representations of the Pauli group

We begin by showing how the Pauli group decomposes in the PTM representation. For
P,Q € P,, we have that PQ) = w(P,Q)QP, where w(P, Q) is the phase induced by com-
muting the elements. We now state and prove a result about the PTM representation of
the Pauli group as presented in [15].

Lemma 10. Let P, be the Pauli group on q qubits. The PTM decomposition for P € P, is

O(P) = @&xoa(P) (3.1)

where the subrepresentation ¢y is 1-dimensitonal and has associated projector given by Py =
IMN(A|, where X are the elements of the normalized projective Pauli group.

Proof. For some P € P, and A\, we have that
S(P)A) = [PAPT) = w(P,\)[APPT) = w(P, ) |A)).

As P was arbitrary and |\)) spans a l-dimensional subspace, |A)) spans an irreducible
representation of ¢ which we will denote by ¢,. By construction, the projector associated
with ¢y is Py = |A\){(A]. The character associated with ¢, is then

XA(P) = Tua(6(P)) = Tr(Pro(P)) = Te(IAMAI6(P)) = (AIPAPT) = w(P, \),
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which is the phase induced by commutation relations.

We now show that for A # o, the irreducible representations ¢, and ¢, are inequivalent
by showing the inner product between their characters

(X2 Xo) = Epep, Xa(P)Xo(P) = Epep,w (P, A)w(P, o) (3.2)
is 0. As A\ # o, we set = Ao # I, then
Pu = PA\o = w(P,\)A\Po = w(P,\)w(P,c)\c P = w(P,\)w(P,o)uP,
implying w(P, u) = w(P, \)w(P, o). This reduces equation 3.2 to

(X», Xo) = Epep,w(P, 1) =0

as a non-identity Pauli will commutes with half and anti-commutes with the other half,
which completes the proof. O

3.1.2 Clifford channels

We discuss the representation of ideal Clifford gates in the PTM representation. For an
arbitrary Hermitian matrix P and unitary U, (UPUY)! = UPTUT = UPU?', and thus
conjugation is Hermiticity preserving. Now, elements of the Pauli group are either Hermi-
tian (those with phase 1) or anti-Hermitian (those with phase +i). As conjugation by a
Clifford C' permutes elements of the Pauli group and this action is bijective, each of the
Hermitian basis elements of the PTM will be mapped to one other basis element up to a
sign. This implies the PTM representation ¢(C') of the channel C corresponding to C' will
be a signed permutation matrix.

When defining the Pauli channel learned by CB it will be useful to appeal to the orbit
O(C, P) = {C'PC" i > 0} of a Pauli P under the adjoint action of a Clifford C. For a
Clifford of order m we have |O(C, P)| < m, |O(C, P)| divides m, and O(C, P) = O(C, Q)
if and only if there exists j such that P = C7QC". The set of all distinct orbits is Q(C).

3.1.3 Simplified cycle benchmarking
We present a simplified version of the CB protocol described in [11] to benchmark an
implementation of a Clifford gate C'. The protocol is effectively the same except that

we use the character projection formula explicitly rather than estimating expectations of
specific observables to induce the desired character projection.
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1. Select a normalized Pauli \.
2. Select n + 1 random Pauli gates {P;}7,.

Prepare the state p.

= L

Apply the sequence of gates Py, C, Py, ..., C, P,.
5. Measure POVM {@Q, I — Q} and multiply by the character Xx(BP,CP,_; ...CP,C™).

6. Repeat steps 2 through 5 sufficiently many times.

The character x(P,CP,_; ...CPyC™) is efficient to compute as P,CP,_; ... CP,C™ € P,
is the product of Pauli and Clifford gates, and so is simply a phase. By proposition 11
the seemingly arbitrary character is equivalent to projecting the random Pauli onto the
subspace where it should be at that point in the circuit. Overall, this has the effect of
acting like the inverse in standard RB in that it tracks how close to its target ideal the
noisy circuit has reached.

Proposition 11. For (normalized, projective) Pauli A and Pe PZH, we have that
X)\(PnCPn—l ce CP()CTn) = H XC“()\)(Pn—i)- (33)
i=0

Proof. Let T = P,CP,_;...CPyC™. Then as )\ is a normalized projective Pauli and
T € P, we have

S(T)IA) = [TATT) = xa(T)|N)). (3.4)
We also have that

IRV

H(P,CP,_y...CP)C™)|\) = ¢(P,CP,_; ... PLCT""V)p(C"PyC™)|\)

= ¢(P,CP,_y ... PLCT )| (C"PyCT™AN(C™ P,CT™)1)

= ¢(P,CP,_, ... P,CT" Y |CcmP,CTrACm Pl CT™Y)

= Xcin() (Po)3(PaC Py ... LCT" 1) |A)). (3.5)

Using a simple inductive argument on the P; gives
o(T)|A) = (H XC“()\)(Pn—i)) AN, (3.6)
i=0
and comparing the above with equation 3.4 gives the desired result. O
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Proposition 11 can also be observed by recognizing that y, is a representation of the
Pauli group and the property that x\(CGCT) = xctae(G) for a Clifford C.

The choices of @ and p are specified so that the overlaps (Q|\) and (C™()\)|p)) are
large — in particular, we can measure in the eigenbasis of A and prepare a state that is a
+1-eigenvector of C'™(\). While we analyze the protocol for arbitrary n we choose n = km
in practice where m is the order of C' acting on A. This ensures C™"(\) = A\. We can also
choose n to be the length of the orbit of A under the adjoint action of C, as C™ = I on
this subspace.

Theorem 12. The expectation of a simplified CB experiment of length n with character
A\ under gate-independent noise such that 0(G) = L&(G)R for G € G = P, where ¢ is the

PTM representation is
p(n,A) = Ap (H fcfucz‘) (3.7)
i=1

where A, » is a SPAM constant that depends on n and \.

Proof. The expectation over all sequences of Paulis is

p(1,2) = Epcguin Xa(PuC Pocy - .. CRCTM){QIO(P,)0(C)0(Pys) . .. 0(C)O(Po)|p)
= Efenn i (Tn)(QIO(T.CT,_, CNO(C)O(T, -1 CT, _,CT) ... 0(C)(To) )
= Efeeun (QILXA(T)A(Tn) (o(C)(T) 6(C)NRO(C)L(T)),, o Rlo)
= (QILP (¢(C)De,)" Rlp))
where we have relabelled the Paulis as P, — T,CT, ,CT with T_; = I, used the gate-
independent assumption on the noise and ¢(G') = ¢(G)' for the PTM representation, then

applied the character projection formula and Schur’s lemma with Dp, = Ereco(T)T¢(C)RO(C)L(T)
a Pauli channel. As Py = [A){(\| and {\o(C) = (CTAC|,

Py (6(C)Dp,)" = (H fcmcz‘) ICTACT

where fy = Tr (Pxg(C)RO(C)L) = (Alo(C)RO(C)LIN). Setting A, x = (Q[LARcinrcn|p))
gives the desired result. O

Corollary 13. If n = km where m 1s the length of the Clifford orbit containing A, then
the expectation reduces to
alk, A) = Ay(\) (3.8)

where Ay = (Q|LARAlp) and p(N) =TI feincti.
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By choosing n1 = kym and ny = kom appropriately where m is the order of C' so as to
cancel the SPAM terms, we have that

m—1 ]{ZQ, A\ ﬁ
A) = g foixeti = (ZEIﬁ, )\3) (3.9)

and so can amplify () to achieve a multiplicative estimate [17]. The Pauli channel learned
by CB is not Dp, but rather

Deg = (¢(C)Dp,)" Z Py H Jeiretis (3.10)

where the constant H?Z)l foixeti 1s the same for each A in the same orbit. In this sense,
the CB protocol ambiguates all Pauli errors in a Clifford orbit — rather than being a
decay rate associated to an irreducible representation as in RB, CB calculates the decay
rate along an orbit. As we are interested in using this data to assess the quality of an
implementation in terms of the process fidelity, we use the inequality of arithmetic and

geometric means for non-negative numbers {z;}7

(3.11)
We then have that
1/m
o (D (H fcw,\cfz)
0(C)
> = fe(De,), (3.12)
A

and when frc(€) is close to 1, this bound is tight in the sense that
fen(€) = frc(€) = O([1 — frc(E)). (3.13)

The precision of the estimate of equation 3.9 needs to take the m'™ root into account,
however, as if we learn u(A) with an error of € then

V) +ex V) + M. (3.14)

As the function f(z) = zw ! goes to infinity as z — 0 and p()\) is a product of m fidelities
(numbers less than 1), Cliffords with large m will need a very high precision.
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3.2 Cycle benchmarking is robust to gate-dependent
noise

We now relax the assumption that the noise on the randomizing gates is the same across all
elements of the randomizing group. While for CB the randomizing gates are Paulis and are
generally well implemented, they are implemented using different physical processes. This
will result in different errors from Pauli to Pauli. Rather than considering implementations
of the form 6(G) = LH(G)R for linear maps £, R and a representation ¢(G), we instead
construct average error maps of §(G) in relation to a representation. We then perturb the
implementation around this average implementation to show that the fit model decouples
into a sum of two terms that decay exponentially, the first being the gate-independent
model and the second a perturbation term. If the implementation of both the randomizing
gates and the gate of interest are good!, then the perturbation will decay rapidly.

The analysis in this section is similar to previous gate-dependent distortion theorems
found in [13, 15], and relies on the fact that Cliffords normalize the Pauli group to apply
a virtual inverse. Note that we do not need to further vectorize the superoperator as the
irreducible representations of the Pauli group are 1-dimensional. This approach could also
work when a unitary U mixes the irreps of the twirling group G in a structured way — for
example, we could consider using the Clifford group as a randomizing group to benchmark
a gate in the second Clifford hierarchy, which is similar to [17].

Theorem 14. Let G = P, be the q qubit Pauli group with PTM representation ¢(G) =
D, o:(G), 0(G) its corresponding (CPTP) implementation, and 8(C) a (CPTP) imple-
mentation of a Clifford C' of order m. There exist linear superoperators L, R such that

Eeo($(CGICHRO(C)I(G)) = ¢<0>qu7z (3.15)
Ees(8(G)0(C)Lo(C'GIC)) = Lo(C)Dp, (3.16)
EGEG(qﬁ(GTCT)RH( )LH(G)) = Dp, (3.17)
Egea(6(GYRO(C)LH(CIGN) = 6(C)Dp,6(C)' (3.18)

where Dp, = Yy [aPa, Py is the projector onto the subrepresentation ¢y, and f\ chosen
such that for all X in a Clifford orbit the largest eigenvalue of the operator

[T () Eaec(écron (G16(G)) (3.19)

=1

18 H?ll fcz‘(/\) .

L As described in theorem 17.
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Proof. Multiplying equations 3.15 and 3.16 from the left and right respectively by Py and
noting that ¢(GT) = ©rpA(G)' gives

Ecec(¢et () (G) AAIRO(C)O(G)) = fer o PICTM)IR (3.20)

Ecec(0(G)O(C) LI A der (G)T) = HLICON A (3:21)

where these equations result in systems of 4" equations for R and L. Setting R =

DAPAR =3[R L=223 Ly =32, LA(A] gives

Ecec(der(n(G)RA(C)O(G)) = fernRern (3.22)
Egec(0(G)0(C)Ladeny(G)) = Hrlepy. (3.23)

As the irreducible representations ¢, of P, are 1-dimensional
RA(C)Eqes(dein(G)'0(G)) = feronRei (3.24)
Ecea(den (G)O(G)O(C) Ly = HLLley- (3.25)

We can turn the above equations into eigenvalue equations by repeatedly applying the
operator of the next (previous) Pauli in the Clifford orbit of A on the right (left) m — 1
more times

R H (0(C)Ecea(derin (G)'0(G))) = H (ferin) Ra (3.26)
H (Ecec(dein(G)10(G)0(C)) Ly = H (fei-1n) Lo (3.27)

As C(\) = C™~¥()) for all i, the value of the scalar in the two above equations is the
same. Furthermore, the above statement holds for all A in the same Clifford orbit with the
matrices shifted appropriately along the orbit, and as products of compatible matrices that
are cyclically permuted have the same eigenvalues, we choose the fy such that [[", Jeiony
is the largest eigenvalue of [T, ((C)Egec(dciin(G)'0(G))).

Equation 3.17 implies 3.18 by the transformation ¢(G) — ¢(CTGTC), so we focus our
attention on equation 3.17. We can scale the equation by selecting Pauli channels Dg and
Dy, then multiplying from the left by ¢(C)Dr¢(C) and to the right by Dy — this is the
same as setting R — DrR and L — LDy. We then apply P, and take the trace to find

Fr = Ecec(6r(G) (CNIRI(C)LIN)¢A(G)) = Ren(C) L. (3.28)

Choosing the entires of Dr and Dy, to satisfy the above equation completes the proof. [
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A notion of gate-dependence is codified in the superoperators £ and R. All G € P,
can be mapped to 0(G) = LH(G)R + Ag, and Ag can be viewed as the gate-dependence
associated with G for the implementation 6. Furthermore, by the following lemma, under
a convolution-like operation, LH(G)R and Ag are orthogonal. The gate sequence that
corresponds to this operation is precisely the one engineered by CB.

Lemma 15. Let £ and R be chosen as in theorem 14 for an implementation of a Clifford
0(C) and G = P,. Then for Gy = GCGICT for fized G

Eciec(d(Go)RI(C)Ag,)
Ec,ec(Aa,0(C)LH(G1))

0 (3.29)
0. (3.30)

Proof. We set ¢(Gy) — ¢(GCGICT) then expand the perturbation term so that the first
equation is

Ec,ec(6(G2)RO(C)Ag,) = Eg,ec(¢(GCGICHRI(C)(0(G1) — L&(G1)R))
= ¢(G)Eq,ec(d(CGICHRO(C)(0(G1) — L&(G1)R))
= ¢(G)(¢(C)Dp,R — ¢(C)Dp,R)
=0 (3.31)

where we have used equations 3.15 and 3.17. The second equation follows from the same
argument but by applying equations 3.16 and 3.18. [

Using the above lemma, we now prove the following gate-dependent robustness result
for cycle bencharmking.

Theorem 16. The expectation value over CB experiments with 0(C) a (CPTP) imple-
mentation of a Clifford C, {0(G) : G € P,} a (CPTP) gate-dependent implementation of
the Pauli group, A a Pauli to isolate, and n the sequence length is

p(”a )\) = An,)\f<n7 )\) + 6(”7 )\) (332>
where Ap\ = (QILARetnnlp), f(n,A) =TI, fetin, and the perturbation term satisfies
le(n, A)| < 0165 (3.33)

where 01 = [|Q|1]|pll[[maxpec||Aplle and 2 = Epcc||0(C)Ap|lo-
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Proof. We show that the expectation over sequences of gates P € G"! is the sum of two
exponentials. Rewriting the sum over the sequence of gates with the character associated
to Pauli A we have

P, ) = Epicguin X (Pa(CP)a10C™) (QIO(P.) (0(C)O(P), 1 10)
= Ereqen ()@ (§(T.CTLLCHOC))  o(Ty)lo) (3.34)

n:1

where P, = T,C'T, ,C' and identify T_, = I. Expanding 6(Ty) = Lo(Ty)R + Ag, where £
and R are chosen as in theorem 14, we break the sum into two parts with

p(n, A) = Apaf(n, A) + €e(n, \) (3.35)
Aupf(1,8) = B A(T)(QUOTCT, CN(C))na LO(To) R p)) (3.36)
€(n,2) = Efcguin (L) (QIO(T,CT ,CNO(C))na Ay | ). (3.37)

From here, the idea is to expand each subsequent 6(P;) in the expectation as 0(F;) =
Lp(P;)R+ Ap, and use the orthogonality lemma to show that the exponentials containing
¢ and A are also orthogonal to one another. We first evaluate 3.36 where for 2 < j < n
we have that

EicgriXa(Tn) (0P)O(C)) i Agyori i 0(CVLATiCT] ,CNR (0(C)LAH(PIR),;_p = 0
(3.38)

by applying lemma 15 to the central term containing 7);_;. Using this result on equation
3.36 starting from 7 = 2 to 5 = n we have

Annf (0, 0) = (QIL (B, caxx(Tn)(Th)) (Erecd(CTICHRO(C)LH(T))" Rlp)  (3.39)
= (Q[LPy (¢(C)DPq>nR|P>> = (QILARcinrcn|p) (H fcmcz') (3.40)

which is the gate-independent model obtained in theorem 12. The perturbation term 3.37
follows from the same logic — for 2 < j < n we have that

EfeG"+1K(Tn) (Q(Pi)g(c))n:j—l—l ﬁﬁb(TjCTjT4CT)RQ(C)ATj,lcTJLZcT (Q(C)Api)j—Z:O =0

(3.41)
where again we apply lemma 15 to the sum over the 7;_; terms. This results in
e V) = (QEfeere (T A car_ o1 (0O Apert 1) o)
= (QIEpcgniXa(PoCPoy ... CP,C™)Ap, (0(C)AR,),,_1.01P)- (3.42)
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Now, noting that x(G) = 1, we have that

€, A)| < Epegrin [(QAR, (0(C)AR)n-10[0)]
< QILllpIhE pegmsr | Ap, (B(C)Ap)n-10llo
< 1QlllellilmaxlAplle (Brecl0(C)Aplo)"

where we have used submultiplicativity of the diamond norm.

Setting 01 = ||Q]1]|p]]1||maxpec||Ap||o and do = Epeg||0(C)Ap||, completes the proof.
[

We now show that the perturbation term is small under the assumption that the imple-
mentation is close to a representation multiplied by stochastic Pauli noise on combinations
of randomizing and hard gates, providing a bound on the exponentiated portion of the
perturbation term, dy. In this sense, the following theorem is analogous to [13, theorem 3]
with 0(C)6(G) taking the place of §(G). We work in a gauge where R = 7 to facilitate
the analysis, reducing equation 3.17 to Egeg (¢(G1)0(C)¢(G)) = D and consider pertur-
bations of (C)0(G) around ¢(C)¢p(G)D. While we could instead consider the gauge with
L = T, due to the structure of the convolution we would need to consider perturbations
of §(G)6(C). This arises from having n + 1 applications of randomly chosen 6(G) and n
applications of #(C'), meaning the circuit can be considered the average over convolutions

of 0(G) with 0-(G) = 0(C)0(G) n times or O0c(G) = 6(G)0(C) n times with 0(G).

Theorem 17. Let G = P, and C a Clifford with associated (CPTP) implementations
0(G) and 0(C), and ¢(U) the PTM representation. There ezists a linear superoperator L
satisfying theorem 14 with R =T such that

[Ecec(9(C)0(G) — o(C)(G)D)]|

(3.43)

for any unitarily invariant norm.

Proof. As ¢(G) commutes with D for all G € G, for any unitarily invariant norm we have
that

[9(E)Ac] = 10(C)G) = 6(C) LG
< [19(C)0(G) = H(C)HG)D + [6(C)o(G)D = 0(C)Lo(G)]
= I11 +IICll (3.44)
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where G = 0(C)0(G) — ¢(C)d(G)D (which is dependent on G) and C = §(C)L — ¢(C)D.
Selecting £ and D to satisfy theorem 14 reduces equation 3.17 to

Eoea(6(GTCHO(C)LH(G)) = D. (3.45)
We now consider perturbations of the equation
Ecea (0(C)9(G)H(C)LH(CTGIC)) = 6(C)LH(C)D, (3.46)
which is equation 3.16 left multiplied by 6(C)). Expanding the right hand side gives
0(C)LH(C)D = (6(C)D +C) 6(C)D = (4(C)D)* + Co(C)D, (3.47)
while expanding the left gives
Eges (C)(GH(C)LHCIGTC)) = Eges ((6(C)o(G)D + GH(C)Lo(CTGIC))
— Egec (6(C)DY(G)O(C)LH(CIGIC)) + Eaeg (G0(C)LH(CTGIC))
— ($(C)D)? + Egec (gY)(C)cgb(CTGTC)) . (3.48)

Comparing equations 3.47 and 3.48, cancelling like terms, and then expanding the final
0(C)L term gives

Co(C)D = Eaec (GOC)LH(CIGIC))
= Eaee (G6(G1)) 6(0)D + Eaes (GCH(C1GTC) ) (3.49)
Right multiplying by D~'¢(C)! and applying the norm gives
€I < 1D ICEecliGll + [Eces (Go(G1) | (3.50)

and solving for ||C|| results in

|Ecec(Go(GT))l|

e < ey PZ IR
I — [P [Ececld]

(3.51)

Inserting the upper bound on ||C|| into equation 3.44 and then expanding G gives equation
3.43. ]

While the above analysis holds for any compatible unitarily invariant norm, the choice
will be the diamond norm as it is compatible with theorem 16.
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3.3 Fourier analysis of cycle benchmarking

In light of [I1, 10], we discuss how to analyze CB as a twisted convolution of matrix
functions. This approach is useful as it allows the use of a wide variety of techniques from
the Fourier analysis of finite groups as developed in [18]. We define the Fourier transform
F [0] of a function 6 : G — M, with respect to an irreducible representation o as

F 0] (o) =Egeco(G) ® 0(G). (3.52)
CB is based on a twisted convolution of an implementation map with itself
0 xc 0(G) = Epecf(GCHCNH(H) (3.53)
where C' is in the normalizer of G. We have the twisted convolution identity

Fl0xc0)(0) =Eqeco(G) @ 0 xc 0(G)
=Ea.neco(G) @ 0(GCHICHI(H)
= Eg uect(GCHCT) @ 0(G)0(H)
= Eg,neco(G)oci (H) ® 0(G)0(G)
= Ececo(G) ® 0(G)Epecocr @ 0(H)
= F0] (o) F 0] (oct) (3.54)

by using the normalized relabelling trick and the fact that o is a representation, and then
introduced the notation o¢, the C-twisted irreducible representation of o defined by its
action on elements G € G as o¢(G) = o(CGCT). This can be extended to n-fold twisted
convolution by a simple inductive argument as

n

F107¢] (o) = [ F 10 (ocr). (3.55)

1=0

While this formula holds for any irreducible group representation and element of its nor-
malizer, we restrict to the case where G = P, and C' a Clifford (or an Abelian group and its
normalizer) — this vastly simplifies the Fourier transform as the irreducible representations
of P, are 1-dimensional, so the tensor product is scalar multiplication. As the characters
are isomorphic to the group elements, we see that the Fourier transform is a character
projection formula onto the irreducible representations, that is

Fl0](0) = Egeco(G) ® 0(G) = Egecxo(G)0(G). (3.56)
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Set (G) = ¢(CG) where ¢ is the PTM representation. Then the average over CB gate
sequences is ¢ x¢ 0*¢(G) with Fourier transform

n

F {¢ *c ec] (0) = F (4] (o) [[ F [0 (oc10)- (3.57)

i=1

We could then apply the perturbation theory of invariant subspaces used in [10] to show
that the ideal outcome of the circuit is orthogonal to perturbations in Fourier space (which
is equivalent to theorem 16), and that said perturbations are small in diamond norm
(equivalent to theorem 17).

3.4 Conclusion

In this chapter, we have adapted CB to the representation theory framework used in
[13, 15] to prove its robustness to gate-dependent noise. We have described how the CB
“decay rate” is actually the decay rate along a Clifford orbit, and how this quantity can be
efficiently learned to a given precision with typical RB estimators as long as the Clifford
is not of high order. This framework also makes adapting CB to qudits simple.

By considering the expectation of the randomizing gates applied between the cycle
of interest, we constructed average error maps such that the implementation of the ran-
domizing gates is the same under a convolution-like operation as a representation of the
randomizing gates with the average error. Due to the convolution-like structure, the fit
model decouples into the gate-independent CB decay and a perturbation term — from [11],
this is a statement about the two terms being orthogonal in a Fourier space. Furthermore,
we showed that if the composite error on the hard gate and randomizing gate is close to a
representation multiplied by a stochastic Pauli channel, then the perturbation term decays
much more rapidly than the ideal decay. This justifies neglecting the perturbation term if
long enough sequences are chosen.

An open problem for the gate-dependent analysis of CB is the interpretation of the CB
decay and process fidelity as they relate to RC. We touch on these topics in the following
chapter.
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Chapter 4

A preliminary exploration of
randomized compiling with
gate-dependent noise

In the previous chapter, we showed that CB with gate-dependent noise estimates the
process fidelity of a composite error on an easy and hard gate. The choice of how to
consider an average error on the easy gates in RC with gate-dependent noise to relate it
back to this estimate is unclear, however. Perturbing around average easy gates in RC
results in a stochastic channel from the approximate twirl that is different than the one
estimated by CB. If instead we consider perturbations of the easy gates by inserting the
average error maps constructed from CB into the RC circuit, we show with a toy model
that this also results in a different stochastic channel regardless of the choice of gauge.

Gate-dependence in RB has been discussed extensively in the literature. A notion of
weakly gate-dependent noise was first analyzed in [22] that derived a first-order correction
to the standard RB fitting model. This approach was shown to have issues in [19] as the
average gate set infidelity of a group of gates was demonstrated to have contributions not
only from the noise itself but also based on the choice of representation of those gates.
While the analysis of Wallman [13] settles this issue by arguing that the output of RB
experiments can always be fit to a decay that corresponds to the process fidelity!, the
question of whether this number corresponds to a meaningful quantity in arbitrary circuits
made of those randomizing gates remains. The CB process fidelity corresponds closely to
the process fidelity of a hard gate in RC, and so we consider this question specifically as it

!The analysis of CB in chapter 3 does similar.
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pertains to the error rate estimated by CB for use in RC when both have gate-dependent
errors on their randomizing gates.

Here, we will work with a simple toy model where the easy gates are E = P, and the
hard gates are a subset of the Clifford group H C C,. For RC with gate-independent errors
on the easy gates §(P) = L¢(P)R, randomly compiling a circuit gives

Car(H) = Epepy10(Pa)0(Ho1)0(Poo1) ... 6(Ho)0(Fy)
PeP"+1£¢(Pn RO(Hp—1)LOH(Pr-1)R ... 0(Ho) LO(Fo)R
)
(

)
— L(O(H,)E pep, (9(P) 6(H,) ROH,) Lo(P))n-10R
— LO(H, Do, (Ho1) ... 6(Ho)Dp, (Ho)R (4.1)

by a simple application of Schur’s lemma, where HeHis a sequence of hard gates and
Dp,(H;) = Epep,(¢(P)¢(H;)"RO(H;)LAH(P)T). As the linear maps £, R are independent
of the randomizing gate and the hard gates, the stochastic channels Dp_ align with the
approximation from CB as shown by theorem 12. This implies gate-independent CB gives
an accurate estimation of the process fidelity of a hard gate in gate-independent RC.

Moving from gate-independent to gate-dependent noise on the randomizing gates makes
this interpretation much less clear, however, as the average error maps used to prove CB’s
robustness to gate-dependence in chapter 3 not only depend on the randomizing gates but
also on the gate or cycle they are characterizing. At each step in CB, we are amplifying
the same composite error which gives an operational understanding to the perturbation
analysis: we are perturbing around the average composite error of randomized gates and
a hard gate. On the other hand, with randomized compiling we consider arbitrary circuits
with different hard gates at each step, and so there is no single composite easy-hard error
from which to perturb.

This can be illustrated by considering this as a problem of gauge. We can repre-
sent a quantum information processor as a group of quantum gates G with corresponding
implementations 0(G), a set of states {p;}, and a POVM {F;} [19, 50]. In the PTM rep-
resentation, given an initial state p;, a sequence of gates G e G", the Born rule gives that
the probability of measuring F; is

PG, py) = (F1O(Gi)nalps)- (4.2)

Given an invertible linear map M, the representation

(Fil = (FIM7Y 0(G) = MOG)M ™, |p;)) — Mlp;) (4.3)
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preserves the probabilities of equation 4.2. This type of transformation is called a gauge
transformation [19, 50]. While the probabilities will be conserved, note that the choice of
M could lead to a situation where §(G) are not CPTP maps, {p;} are not density matrices,
or {F;} is not a POVM, but we will not pursue this issue further.

Given an implementation of a Clifford §(H), under gate-dependent noise on the ran-
domizing gates, CB learns the noise associated with the operator ¢(H)"Rcpf(H)Lcp where
Rep, Lep are the average error maps constructed from theorem 14 with 6(H). By theo-
rem 17, in the gauge where Rcp = Z the perturbation term Ag(H) is small for each G
in the randomizing group. This gauge is obtained by setting M = Raéz, and we could
equally consider inverting L¢p instead. In this setting, we are amplifying the average error
associated with implementations

0(H)0(G) = 0(H)Lcpd(G) + 0(H)Ac(H) (4.4)

by inserting a virtual inverse with the normalized relabelling trick.

For RC, the choice of average error maps in the presence of gate-dependence is less
clear. In view of the gate-independent model, we would like to represent the randomizing
gates as

0(G) = Lrco(G)Rre + Ag (4.5)

where the error maps have no dependence on hard gates, and we could again select a
gauge transformation to eliminate either the left or right error map. By applying theorem
14 without a hard gate (equivalently, setting §(H) = Z) we can construct error maps that
corresponds to the noise between the Pauli gates, RrcLrc, which for the toy model is
the natural choice as it captures information across all the Paulis. If inserted into the RC
circuit the noise between gates is

O(H;)"Rrcb(H;) Lre # ¢(H;) " Repb(H;)Lop. (4.6)

This also prevents us from availing of the orthogonality lemma (lemma 15).

An alternative choice is to select a different set of average noise operators for each Pauli
that correspond to the hard gate on the left, right, or the corresponding error map for the
hard gate on either side. By the following theorem, however, this is not a good choice.

Theorem 18. Given a desired unitary U that can be decomposed into Clifford gates He C
with implementations 0(H;), the expectation when randomly compiling in a CPTP imple-

2If Rcp is not invertible, it can always be made invertible with an arbitrarily small perturbation
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mentation of the Pauli gates {0(P;}) is

Cap(H) = Epepper (0(Pa)0(Hy1)0(Pas) ... 6(Ho)O(Fy)) (4.7)

= L(6(H:) D, (H;))n-10Ro + > 0;(H

where

5Pq(Hi) = Epep,¢(P)¢(H;) " Ri10(H,) Li(P)T, (4.8)
§;(H) = Epeppet (0(P)O(Hi1))njs2Ap, O(H;) NG, (0(H;) Li)(P)R:) 10,

LiRi, and A% are the gate-dependent left and right error maps and gate-dependent per-
turbation for 0(H;) respectively, with L, = L,_1, Ry = Ru_1.

Proof. We sequentially expand the 0(P;) = L;¢(P;)R; + A% from i = 0 to n — 1 by using
the error maps £; and R; constructed for §(H;) in theorem 14 respectively. In particular,
this gives

Can(H) = Epeppn0(Po)0(Hy1)0(Pa1) ... 0(Ho) (Lod(Po)Ro + Afy)
= EﬁePnJrl(Q(P')G(Hi—l))n:1£0¢(P0)R0 + Eﬁepg“(9(B>8(Hi—1))n:1A%o
= Co(H) + do(H) (4.10)
This process proceeds on for all j =1...n — 1 by expanding 6( J+1)
C;(H) = Epeppr1 (0(F)0(Hi—1))nij+10(Py1) (0(H:) Lip(P)Ri) o

(
= Cjpa(H) + 6,41 (H)
Cir(H) = Epepper (0(P)O(Hi1))nijr2Ls118(Pri1 )Ry 41 (O(H:) Lid(PYR) o,
(

—

0541(H) = Epcpnir (0(P)O(Hio1))ng2 N5 (0(H) Lo (PR o (4.11)

The randomly compiled circuit is then

Cap(H) = Cosa(H) + > 6:(H), (4.12)
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where we then expand the edge term 0(F,) = L£,¢(F,)R,+ A} but choosing L, R, from
theorem 14 with 6(H,_1), apply lemma 15 to remove the final perturbation term, then
sum over the Paulis with the transformation P, = T;4 HiﬂTH;r

Co1(H) = Bpeppr0(Pa)0(Hn 1) Lo 16(Pat) R 1 (0(H:) Lid(P)R:)n 20
= Eﬁepg‘H£n0<Pn)Rn(G(Hz)‘cz(b(laz)nz)nfl0
= L, (¢(H;)Dp (H;))n-10R0. (4.13)

Finally, the perturbation terms can shown to be second order by considering a different
perturbation point. For §; we can expand (F;41) around the maps constructed for 6(H;)
to get

0;(H) = Bpepnr (0(P)O(Hi 1) )nejra(Li6(P)) R, + AL VO(H;) A (0(H:)Li¢(P)R:)j-10
= Epeppet (0(P)0(Hi1))ijrop,, 0 (H) A, (0(Hi) Li6(P)Rs)- 10, (4.14)

completing the proof. O

The stochastic channels ﬁp , in theorem 18 now have a dependence on error maps from
distinct hard gates which is certainly not well estimated by CB, and furthermore, as the
L; and R; for each §(H;) are distinct, there is no gauge transformation to remove all of
their dependence simultaneously. Similarly, setting £;, R; according to theorem 14 for
0(H;41),0(H;) respectively ensures that the channels align with the CB channels, but at
the cost of having a meaningful relation to the perturbation term and orthogonality lemma.
We note that the perturbation terms are second order in the A%, however, implying there
is some error suppression.

To remedy this situation, a starting point is to consider the RC error maps Lgrc, Rrc
as perturbations from the CB error maps Lcg, Rep at each step (or vice versa), as this
would allow the use of an approximate orthogonality relation to track and suppress the
evolution of these perturbations. Ideally, this would lead to a stability theorem for terms of
the form ||Lcs — Lrello, [[Res — Rrello- While we do not expect to see a full decoupling of
the perturbation term from the fit model, this will likely result in a proper interpretation
for the gate-dependent process fidelity.

Moving back to a universal gate set from the toy model further complicates the problem.
In addition to obfuscating easy and hard errors, the easy gates will now have non-Paulis
or a fixed Pauli compiled in — while the number of different possible easy gates at each
step will not change, the maps Lrc, Rrc will also depend on this choice which could be
even further away from the CB average error maps.
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We posit that this is a mathematical issue to be resolved as opposed to being indicative
of a wider disconnect between the two protocols. The RB process fidelity is proportional
to the exponential increase in the probability of error when increasing the depth of a
circuit as described by the gate set circuit fidelity [51]. We believe that the CB process
fidelity captures the same information about RC circuits — this aligns with what has been
observed in RC experiments [52].
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Chapter 5

Conclusion and Future Work

In this thesis, we began by considering the appropriate, context-dependent use of distance
measures for quantum channels. Besides the semantic consequences implied by the bounds
contained in chapter 2, we also demonstrate the destructive nature of coherent errors in
quantum circuits, as well as the (relative) benignity of stochastic and decoherent errors.
This highlights the necessity of error mitigation techniques for coherent errors like random-
ized compiling. A similar approach to analyzing the total variation distance in section 2.48
with synthesized unitaries could be used to explore the effectiveness of these mitigation
protocols.

Many of the bounds considered therein do not have ideal dimensional scaling. The
space of all CPTP maps is not representative of small implementation error maps, and
so restricting our attention based on reasonable physical assumptions can lead to tighter
bounds in terms of dimension. As many quantum computers do not have arbitrary cou-
plings between constituent systems, arbitrary bleed-through of pulses is not likely to occur.
Considering channels generated by k-local pulses would facilitate this.

We then proved that CB is robust to gate-dependent noise. A natural extension of
CB that we are currently developing is a protocol to learn the exact stochastic channel
associated with an implementation of a cycle, which provides a intermediary between RB
and gate set tomography. As CB learns an approximation to the actual channel that
arises in RC that lower bounds the process fidelity, it would be beneficial for applications
like error mitigation and control to have more fine-grained information about the channel.
Although this has already been developed and shown to be efficient under specific sparsity
conditions on the noise [53] for implementations of the Pauli group without interleaved
gates, the degeneracy caused by the Clifford orbits in CB would need to be broken to learn
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this information for an interleaved gate.

By extending the group of randomizing gates between application of the Clifford gate
to include deterministic gates to accumulate errors outside of the subspaces determined by
the Clifford orbits, we can learn a system of channels to isolate or approximate individual
Pauli fidelities using only local gates. The gate-dependent analysis for CB is immedi-
ately inherited by said approach, as well as CB for non-Clifford gates with some minor
adjustments.

While there are gate-dependent results presented in the original randomized compiling
paper [3], we plan to apply this type of analysis coupled with the Fourier analysis developed
in [10]. Finally, we have initiated a discussion about the relationship of the gate-dependent
process fidelity in CB to the stochastic channels in RC. Connecting the two is a non-trivial
problem, especially when considering a randomly compiled universal gate set.
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Appendix A

A bound on differences of Kraus
operators

In this appendix, we prove a bound on terms that appear when taking differences between
CPTP maps. We begin with a general inequality and then use it to bound the difference
between a ‘decoherent’ Kraus operator and the identity channel.

Proposition 19. For any operators A, B, and C,

|ACA" — BOB'|; < [|A = Bl A + Bllss[IC]l1-
Proof. First note that

ACA'— BCB'= - ((A+ B)C(A—B)' + (A— B)C(A+ B)").

DN | —

Therefore by the triangle inequality, we have
|ACAY — BCB'|, < §[[(A+ B)C(A = B)!|l + 51I(A = B)C(A + B)1||..
As the Schatten 1-norm is Holder-dual to the Schatten oo-norm, we have

I(A+ B)C(A = B)' |y < [|[A+ Bll[IC(A = B)'|l
< [[A+ BlloollA = BllooIC]1,

where we have used || M'||o, = || M]|s. The same argument holds for ||(A— B)C(A+ B)'|1,
proving the general statement. O
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Corollary 20. Let K € C¥™? be a positive operator such that omax(K) < min{3ou,im(K), 1}.
Then

max | KpK' — plly = 1 — gmin(K)*.
pEDy

Proof. By the triangle inequality,

IKpE" = plli < [ KpK' = Nplli + |(A* = Dpl
<|[KpKT— Ny +1— A%

By theorem 19 with A = K, B = A and C = p € Dy,
IKpKT = Xplls < [ K = Alllso| K + AT|oc-

Choosing A < (0min(K) + omax(K))/2 so that the eigenvalue of K — A\l with the largest
modulus is positive, we have

IEPET = Xplli < (s K) = N)(0rmax () + A) = G (K )2 = N2

and so
”KPKT —plh <1+ UmaX(K)Z —2)%
Setting
\/O-max(K)2 - Umin(K>2
A p—
V2
_ Umin(K) + O-max(K)\/E Jmax(K) - Umin(K)
2 O-max(K) + Umin(K)

completes the proof, provided A < (opin(K) + omax(K))/2, that is, provided

UmaX(K) - 30min<K) S 0.
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