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Abstract

This thesis outlines the development of a constitutive model and the modelling tech-
niques required to accurately model steels that exhibit transformation induced plasticity
over a wide range of strain-rates and temperatures. A novel thermodynamically consistent
rate-dependent crystal plasticity formulation incorporating stress-induced transformation
is first developed from the existing models in the literature. In this baseline model, plastic
slip and martensitic transformation are governed by thermodynamically derived driving
forces that account for various physical mechanism (e.g. temperature, crystal orientation,
stress, and martensite surface energy). Thermodynamic arguments are used to derive a
physics driven temperature evolution law. Both plastic slip and transformation kinetics are
described by power law type rate-dependent evolution. Homogenization of retained austen-
ite (RA) and transformed martensite is considered implicitly using the plastic slip kinetics
law. The constitutive model is implemented into a thermo-mechanical Crystal Plasticity
(CP) Finite Element Method (FEM) formulation to study the bulk material properties of
QP1180 steel. The initial material microstructure is characterized using Electron Backscat-
ter Diffraction (EBSD) and Scanning Electron Microscope (SEM) data. A new method for
incorporating thermal boundary conditions in CPFEM models is proposed. The consti-
tutive model is calibrated using experimental stress-strain and martensite evolution mea-
surements characterized using in-situ High Energy X-Ray Diffraction (HEXRD) uniaxial
tension experiments. Numerical experiments are conducted to study the effect of thermal
and mechanical boundary conditions. Results are presented for a range of temperatures,
strain-rates and thermal boundary conditions.

Building on the the initial framework, a generalized constitutive model is proposed
that avoids several limiting assumptions of the baseline model. Thermodynamic argu-
ments are again used to derive plastic slip and transformation driving forces that account
for various physical mechanisms, as well as a constitutive law governing temperature evo-
lution. Homogenization of RA and transformed martensite is considered explicitly using
a modified Taylor homogenization law to determine strain partitioning while accounting
for transformation. The mechanical thermo-elasto-viscoplastic behaviour is explicitly and
separately modelled in RA and transformed martensite. The model is calibrated and
validated for a QP3Mn alloy over a large range of temperatures (−10 °C – 70 °C) and
strain-rates (5× 10−4 s−1 – 200 s−1). The fully calibrated model is compared to a model
recalibrated without strain-rate dependent transformation, demonstrating that capturing
strain-rate dependent transformation may be necessary even for materials where no direct
experimental strain-rate dependence. The calibrated model is used to conduct plane strain
and equibiaxial tension simulations, showing that increasing triaxiality results in increased
transformation.
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1 Introduction

Government mandates for greenhouse gas emissions have been a driving factor for
recent improvements in fuel economy standards across the automotive industry [1]. Vehicle
lightweighting has been a proven strategy that automakers have employed to reduce fuel
consumption and energy requirements during the operation of a vehicle. This requires
automakers to develop innovations in design technologies [2, 3] and lightweight materials
(e.g. aluminum [4–6], magnesium alloys [7, 8], and advanced high strength steels [9–13]) to
accomplish this goal. However, these lightweight structures must also satisfy the evolving
standards in vehicle performance and safety. In particular, new requirements for anti-
intrusion protection present a unique challenge to automakers to minimize entry into the
occupant cell using these lightweight solutions.

The utilization of advanced high strength steels (AHSS) in these critical components is
a solution that has been employed by the automotive sector [12]. In particular, Quenched
and Partitioned (QP) steels are a new generation of AHSS that show promise in anti-
intrusion applications due to their high strength and ductility with relatively low alloying
cost [12, 14, 15]. This high strength and ductility are achieved through alloy composition
and the quench and partitioning heat treatment process that partially stabilizes austenite
at room temperature [16]. As the material deforms, this retained austenite (RA) trans-
forms to martensite, which adds significant hardenability and ductility [17]; this is known as
transformation-induced plasticity (TRIP) phenomenon. Martensitic transformation during
deformation depends on temperature [18], stress-state [19, 20], strain-rate [21] and crystal
orientation [22]. The temperature rise due to latent heat released during transformation
has a suppressing effect on martensitic transformation at elevated strain-rates [23]. De-
pendence on crystal orientation suggests that material texture may cause anisotropy in
the transformation behaviour. As such, designs incorporating QP steels must account for
martensitic transformation and its dependence on temperature, stress-state, strain-rate
and orientation.

Automakers strive to complete the design process primarily in a virtual environment
using computer simulations to reduce the time and cost of bringing their product to mar-
ket. This includes simulation of forming processes to determine the manufacturability of
the vehicle [24, 25], and performance during normal operation and crash events [4, 26]. Ex-
perimental measurements and testing are then used to provide initial material parameters
and validate the final design iterations. These computer simulations require a constitutive
model that can accurately describe the deformation behaviour of the material. Therefore,
the successful implementation of QP steel into future automotive structures requires a con-
stitutive model that captures the material’s complexities mentioned above. Furthermore,
forming and crashworthiness simulation require the constitutive model to be accurate over
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a wide range of temperatures and strain-rates with varying dynamic conditions.

Constitutive models can be divided into two broad categories: phenomenological and
mechanistic models. Phenomenological models aim to describe the deformation behaviour
of the material without needing to capture the underlying deformation mechanisms. These
models are often appropriate for a crash and forming simulations due to low computational
time and ease of use. However, some accuracy is sacrificed due to an inability to capture
evolving anisotropy from microstructural evolution at large strains [27]. Mechanistic mod-
els aim to capture the deformation mechanisms of the material of interest directly. For
metallic materials, crystal plasticity provides a good balance between capturing underly-
ing physical mechanisms while retaining predictive capability for bulk material properties
[28]. This is achieved by modelling the crystal deformation kinematics while neglecting the
underlying atomic interactions that govern plasticity. The composite behaviour of poly-
crystalline metals is then calculated from the behaviour of the constituent crystals using
a numerical method or homogenization scheme to handle inter-grain interactions. Using a
representative sample of the crystals in metals, crystal plasticity can reproduce the mate-
rial’s bulk properties with high accuracy and fewer calibration experiments than required
for phenomenological models [29], at the cost of increased simulation time. For use in
engineering applications, each model category’s advantages can be combined using crystal
plasticity models as an intermediate step to calibrate phenomenological models [29].

This thesis aims to develop a crystal plasticity constitutive model and the supporting
technologies required to simulate steels with deformation-induced martensitic transfor-
mation, including QP steels, over a wide range of temperatures and strain-rates. This
constitutive model will capture the various aspects of martensitic transformation, such
as stress and strain-induced transformation, along with a numerical scheme to accurately
partition the deformation components. While various models exist in the literature that
captures relevant physical mechanics individually, no model has yet been presented that
captures all of the mechanics necessary to achieve this objective. This new model will ex-
plore the various properties of martensite transformation on bulk deformation of QP steels
for these different loading conditions. As part of this work, a novel method will be pro-
posed for incorporating thermal boundary conditions into representative volume element
crystal plasticity simulations that allow the proper representation of thermal conditions
under realistic loading situations. The ability to incorporate thermal boundary conditions
is essential for designers to understand how the material can behave during forming oper-
ations. By tailoring and optimizing their thermal boundaries, this constitutive model and
accompanying modelling technologies can serve as a numerical tool to allow these designers
to achieve next-generation lightweight QP steel structures.

The thesis is structured in the following manner: in Chapter 2, the current understand-
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ing of QP steel mechanical behaviour and modelling is presented. A literature review is
presented summarizing the motivation for developing QP steels and the associated manu-
facturing process. A review on the experimental understanding of the thermo-mechanical
deformation behaviour of steels exhibiting the TRIP effect is presented. A review of the
state-of-the-art constitutive modelling methods is presented. Chapter 3 presents the re-
search strategy employed throughout this work. Chapter 4 and Chapter 5 present the
research results of this thesis. These chapters are derived from a published and under-
review peer-reviewed manuscript, respectively. Each of these chapters will introduce the
problem, method of solution, predicted results, discussion, and conclusions. Chapter 6
presents a summary of the key contributions and conclusions. Future work to improve on
this constitutive framework is presented.
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2 Literature Review

2.1 Advanced High Strength Steels

Figure 2.1 shows the tensile strength vs. uniform elongation for several classes of steel
[17]. Conventional steels, such as mild and high strength low alloy (HSLA) steels, have
relatively low strength. First-generation AHSS uses more complex chemical compositions
and processing technologies to achieve fine control of phase properties. These include
transformation-induced plasticity (TRIP), dual-phase (DP) and complex-phase (CP) steels
and have improved strength and ductility relative to conventional steels. Second-generation
AHSS, such as the austenitic stainless and twinning induced plasticity (TWIP) steels,
employ significant alloying elements to improve material properties at greatly increased
costs. QP steels are considered a third-generation AHSS, with material properties and
cost between first and second-generation AHSS.

Fig. 2.1: Tensile strength vs. uniform elongation for various classes of steel [17].

2.2 Processing of QP Steel

The quenching and partitioning heat treatment premise, first introduced by Speer et al.
[16], is to partially form martensite using an initial quenching step followed by carbon
enrichment of the remaining austenite using a partitioning step. This carbon enrichment
improves austenite stability at room temperature. Figure 2.2 shows a schematic of a full
austenization, two-step QP process. In general, the QP process can begin with either
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intercritical annealing or full austenization (i.e. temperature greater than AC3). If full
austenization does not occur, then some ferrite will remain in the final microstructure [17].
Next, the material is quenched to a temperature (TQT ) between the martensite start (Ms)
and martensite finish (Mf ) temperatures, such that the austenite partially transforms to
martensite with a volume fraction of MQT . Then, a partitioning step is used to allow
carbon to diffuse from martensite to the RA, tempering the martensite phase. In a single-
step QP process, the partitioning temperature is TQT , whereas, in a two-step process, the
temperature is raised to TPT . Lastly, a final quench is conducted to bring the material
to room temperature. If TQT is relatively high, then MQT will be too low to contain
sufficient carbon to stabilize the RA phase fully. In this case, the final quench will form
fresh martensite. Additionally, the QP process can be tailored to produce bainitic phases.

When first developed, QP steels used TRIP steel chemistries as a base composition.
This included Si and Al to suppress carbide formation and C and Mn to promote austen-
ite stability [30–32]. However, carbide formation in QP steels must be suppressed with
alloying elements that maximize the diffusion of C into the RA phase [33]. Si effectively
suppresses the formation of carbides, and Mo effectively increases the retained austenite
volume fraction (RAVF) [34]. While Al effectively suppresses carbide formation, it also re-
duces the RAVF [34]. Finally, Mn significantly enhances austenite stability and suppresses
the formation of ferrite, bainite and pearlite [35]. Overall, the phases in QP steels generally
include ferrite, lower-carbon tempered martensite, and relatively high-carbon RA [36].

Fig. 2.2: Schematic of QP process [17]
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2.3 QP Steel Mechanical Behaviour

The bulk deformation properties of QP steel are a consequence of the microstructural
morphology and each crystal’s deformation properties. The microstructural morphology
encompasses statistical information regarding the grain sizes, shapes, and crystal orienta-
tions of the grains within each phase of the material and the relative spatial distribution of
each phase. This is generally characterized using one of two methods. The first method is
X-Ray diffraction (XRD), wherein the material acts as a 3D diffraction grating for X-Ray
light directed at it. In the simplest version, this only allows for the characterization of the
orientation distribution of each phase [15]. Recently proposed advanced versions allow for
characterization of all microstructural information throughout a volume of material if the
material’s grain size is sufficiently large [37]. The second technique is electron backscatter
diffraction (EBSD), wherein the surface of a material is polished and bombarded with elec-
trons using a scanning electron microscope (SEM). The diffraction pattern generated by the
backscattered electrons is sufficiently specific to identify both the phase and orientation of
a specific point on the polished surface. Repeating the procedure across many points on the
surface generates a 2D map of the crystal phases and orientations [38]. In practice, the sim-
ple XRD is used to characterize bulk properties, such as phase and orientation distribution,
and EBSD is used to characterize general microstructural information. For single-phase
materials, a 3D representative microstructure can be reconstructed using EBSD images
taken on three orthogonal planes [39]. The mechanical behaviour of individual crystals in
QP steels results from two distinct deformation mechanisms: crystallographic slip in all
phases and martensitic transformation in austenite.

2.3.1 Crystallographic Slip

Each crystal in a metal is composed of repeating arrangements of atoms called a crystal
lattice. Figure 2.3 shows common crystal lattices of engineering metals: hexagonal close-
packed (HCP), face-centred cubic (FCC), body-centred cubic (BCC) and body-centred
tetragonal (BCT). Each of the crystal structures shown in Figure 2.3 is invariant to certain
symmetries: for example, BCC and FCC are invariant to 90° rotations and mirroring along
each axis as well as central inversion. QP steels generally consist of FCC austenite (γ),
BCC ferrite and BCT martensite (α′) [40], where the c⁄a ratio of BCT martensite is a
function of carbon content [41]. In QP steel, the c⁄a ratio of tempered martensite is very
close to one due to reduced carbon content [41]. The tempered martensite can, therefore,
be approximated as a BCC phase. In general, it is difficult to distinguish between BCC
ferrite and BCT martensite in steels using only an EBSD because of the similarity in
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(a) HCP [44] (b) FCC [45] (c) BCC [46] (d) BCT [47]

Fig. 2.3: Schematic crystal lattice unit cells.

the crystal structures and consequent diffraction patterns [40]. Some steels exhibiting
the TRIP effect also contain HCP ε-martensite [20, 42]. Figure 2.4, taken from Hu et
al. 2017 [40], shows a representative example of a QP steel microstructure with ferrite
(α), tempered α′ martensite (α′T ), and austenite (γ) present. As is common in QP steel
[40, 43], the austenite is observed in both blocky (γB) and film-like (γL) morphologies.
Blocky austenite is generally equiaxed with a grain size greater than 1 µm and is often
surrounded by proto-eutectic ferrite [43]. In contrast, film-like austenite generally has a
thickness on the order of 100 nm, a very high length to thickness ratio, and is surrounded
by laths of tempered martensite [43].

In most engineering metals, plastic deformation occurs primarily via crystallographic
slip, defined as the aggregate motion of dislocations along specific planes and directions
[48]. These are called the slip planes and slip directions and are collectively called slip
systems. Dislocations are a type of line defect in a crystal lattice and can be either edge,
screw or mixed type [48]. Edge dislocations can be visualized as an insertion of a half-plane
of atoms relative to a perfect lattice, as shown in Figure 2.5(a). Screw dislocations are
instead represented by a shift in atomic alignment along a half-plane, forming a helical path
about the line defect, as shown in Figure 2.5(b). Mixed dislocations are a combination of
both dislocation types [48]. The vector required to close a loop around the dislocation is
called the Burger’s vector and gives both the direction and magnitude of dislocation motion
[48]. Bulk plastic deformation is initiated when there is sufficient stress to create or move a
significant number of dislocations through the crystal. In general, the critical resolved shear
stress to cause dislocation motion is governed by the mean free path of dislocation motion
before interference with a pinning obstacle, such as a solute atom, grain boundary, particle,
or second dislocation. As such, hardening occurs primarily due to increased dislocation
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(a) Optical micrograph (b) SEM micrograph

Fig. 2.4: Example QP steel microstructure [40].

density causing a reduction in the dislocation mean free path. Since dislocation motion is
thermally activated [49], the stress required to activate dislocation motion must depend
significantly on temperature and strain-rate [50].

For low strain-rates or high temperatures, the diffusion rate of solute atoms can be
similar to the dislocation velocity. This dynamic strain ageing (DSA) effect causes repeated
pinning and unpinning of dislocations, manifesting as significant serrated flow in the stress
vs. strain curve. In severe cases, this can result in propagative instabilities known as
Portevin-Le Châtelier (PLC) bands. In Fe-Mn-C steels such as QP, this is driven by C-Mn
pair reorientation [51] and has been observed for several different alloys [51, 52] including
QP steels [53]. At high temperatures and low strain-rates, the movement of dislocations
near a grain boundary can allow adjacent grains to move relative to each other. This grain
boundary sliding is important for accurate modelling of creep and creep fracture [54, 55].
When strain gradients are present, additional dislocations are necessary to accommodate
the geometry change. These geometrically necessary dislocations (GNDs) act as additional
dislocation obstacles that contribute to the inverse correlation between material strength
and grain size [56].

Plane normals and directions in a crystal are denoted using Miller indices (hk`) and
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(a) Edge type

(b) Screw type

Fig. 2.5: Schematic of crystal lattice containing dislocations [57].

[hk`], where h, k, and ` are translated into a vector using the crystallographic basis of the
lattice b1, b2, and b3, which is shown below as

ghkl = hb1 + kb2 + `b3 (2.1)

An overbar is used to indicate a negative value of h, k, or l. The family of all planes and
directions, which are equivalent to (hk`) and [hk`] using the crystal symmetry, are denoted
by {hk`} and 〈hk`〉. Slip systems along which the majority of dislocations move are called
active slip systems. In FCC, the active slip system family is {111}〈110〉 [48]. In BCC,
{110}〈111〉 and {112}〈111〉 [48] are active at room temperature and {123}〈111〉 becomes
active at elevated temperatures [58]. Figure 2.6 illustrates the dominant slip family in FCC
materials, where blue planes are the slip planes, the red arrows normal to the planes are
the slip normals, and the red arrows along the planes are the slip directions.

Two methods can be used to measure the slip resistance of the material directly. The
first method is to measure elastic crystal lattice strains from XRD measurements and
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Fig. 2.6: FCC slip planes and directions [59].

convert the measurement to crystal lattice stress using crystal elasticity assumptions. Hu
et al. [15] used this technique in conjunction with numerical experiments to show that some
plastic slip must occur in transformed martensite to match the lattice strains correctly.
A second method is a nano-indentation test where a nano-indenter impact a micropillar
created using ion beam milling. Recordings of impact force, grain orientation, slip plane
angle, and the number of active slip planes is then used to characterize the slip resistance
of individual slip systems [60].

2.3.2 Martensitic Transformation

Figure 2.7(a) shows Gibb’s free energies of austenite and martensite. Figure 2.7(b)
shows a schematic of the critical stress required for martensitic transformation as a func-
tion of temperature [61]. Below the Ms temperature, the difference in Gibb’s free energy
between austenite and martensite (∆G(γ→α′)) provides a sufficient driving force for marten-
site to form spontaneously at pre-existing nucleation sites in the austenite. Above the Ms

temperature, an additional mechanical driving force (U ′) is needed to initiate transforma-
tion. Stress-assisted transformation occurs between Ms and Mσ

s and is initiated by stress
from elastic deformations. Strain-induced transformation occurs between Mσ

s and Md,
where the stress required to initiate transformation is larger than the yield stress. Trans-
formation in this regime occurs due to stress-assisted transformation at existing martensite
nucleation sites and spontaneous transformation at potent nucleation sites at the intersec-
tion of deformation-induced shear bands [18]. Stress-assisted and strain-induced marten-
sitic transformation are collectively called deformation-induced martensitic transformation
(DIMT). Above the Md temperature, austenite is stable against martensitic transformation
because the stress is too low to induce transformation before fracture.

Martensitic transformation is an athermal process for most steels, wherein transfor-
mation occurs as soon as the driving force exceeds a critical value [32]. Figure 2.8 shows
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(a) Austenite and martensite Gibb’s free energy (b) Critical austenite transformation stress

Fig. 2.7: Temperature dependence of transformation properties [61].

the microstructure of a Fe-1.8C steel alloy as a cooling-driven transformation process pro-
gresses. In this figure, the light background is the austenite phase, and the dark needle-like
shapes are transformed martensite structures. The martensitic transformation is accompa-
nied by a lattice rotation, plastic dilation and plastic shear [62], with specific values varying
depending on alloy and heat treatment [62]. This deformation occurs because the interface
between austenite and martensite, called the habit plane, is left undeformed and unrotated
[62]. Due to the induced plasticity, DIMT is also known as the transformation induced
plasticity (TRIP) effect. The deformation due to transformation is often conceptualized
with two components: an unconstrained transformation strain and the strain required to
maintain the undeformed and unrotated habit plane. Figure 2.9 shows a schematic of
this transformation process, where the dashed lines represent the habit plane: (a) rep-
resents the undeformed crystal, (b) represents the free transformation deformation, and
(c) and (d) show two different physical modes for accommodating the strain to maintain
the habit plane [32]. These two modes (plastic slip and deformation twinning) correspond
to martensite formation with lath and twinned type morphologies, respectively [32]. The
twinned martensite morphology is known as plate martensite because it tends to form in
a plate-like shape. Richman [63] and Roberts and Owen [64] showed that the morphology
type is dependent on the initial carbon content of the parent austenite. They showed
that low carbon steel (less than 0.4wt%C) formed lath martensite, whereas high carbon
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(a) (b) (c)

Fig. 2.8: Cooling driven athermal transformation in Fe-1.8C alloy after cooling to (a)
24 °C, (b) −60 °C and (c) −100 °C. Reproduced from Krauss [32].

(a) (b) (c) (d)

Fig. 2.9: Schematic of (a) initial austenite, (b) freely transformed martensite, and (c)
slipped and (d) twinned constrained martensite lattices. Modified from Krauss
[32].

steel formed twinned morphology. In QP steels, the initial martensite is primarily of lath
type [65] whereas the transformed martensite primarily develops a twinned morphology
[40, 43, 65].

Table 2.1 summarizes a selection of common orientation relationships (OR) used to
describe lattice rotations. The notation {hk`}γ//{h′k′`′}α′ means that the {hk`} family of
planes in the initial austenite crystal is parallel to {h′k′`′} family in the martensite crystal.
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Table 2.1: Common orientation relationships.

Number of Variants Orientation Relationship

Bain and Dunkirk [66] 3 {001}γ//{001}α′ 〈100〉γ//〈110〉α′

K-S [67] 24 {111}γ//{110}α′ 〈110〉γ//〈111〉α′

N-W [68, 69] 12 {111}γ//{110}α′ 〈112〉γ//〈110〉α′

Pitsch [70] 12 {100}γ//{100}α′ 〈011〉γ//〈111〉α′

Similarly, the notation 〈uvw〉γ//〈u′v′w′〉α′ indicates the 〈uvw〉γ family of directions in the
initial austenite crystal is parallel to the 〈u′v′w′〉 family of directions in the martensite
crystal. This means that parent austenite could transform into several distinct martensite
variants, each with different orientations. Bain and Dunkirk [66] first proposed an OR based
on the theoretical transformation between the FCC and BCT lattice structures of austenite
and martensite. However, experimental observations by Kurdjumov and Sachs [67] (K-S)
on mild steel and by Nishiyama [68] and Wassermann [69] (N-W) on Fe30%Ni showed
significant deviations from Bain’s theory. Their works suggested that the mesoscopic OR is
governed by effects other than the atom-level austenite to martensite lattice transformation.
To avoid the confounding influence of the surrounding matrix on transformation OR in bulk
metals, Pitsch [70] used X-Ray diffraction on thin-film austenite to determine another OR.
Figure 2.10 summarizes these OR as a stereographic pole figure of {100}α′ projected onto
the {111}γ [71].

DIMT results in significant work hardening caused by the increased yield stress of trans-
formed martensite relative to austenite [17], local compatibility constraints inducing plastic
strain in both the matrix and the transformed martensite [72], and reductions in effective
austenite grain size. This enhancement in the work hardening rate increases uniform elon-
gation and thereby improving formability. Additionally, the TRIP effect improves fracture
toughness due to delayed crack initiation and reduced crack propagation [14]. Studies have
shown that insufficiently stable RA will lower formability and fracture resistance due to
premature transformation exhausting the RA. In contrast, RA that is too stable will also
lead to lower fracture toughness due to lower microcracking resistance [14] and easier void
formation [73].

Due to its significant effect on mechanical behaviour, the RA evolution’s characteriza-
tion is paramount for understanding QP steel. Several methods have been proposed for
characterizing this evolution, including the use of electron backscatter diffraction (EBSD)
[74] measurements and X-Ray diffraction [53]. Recently, in-situ high-energy X-ray diffrac-
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Fig. 2.10: Stereographic pole figure of {100}α′ poles projected onto {111}γ plane for
Bain and Dunkirk, K-S, N-W and Pitsch OR [71].

tion (HEXRD) uniaxial tension tests have been used to simultaneously capture both stress
and RA evolution responses during mechanical testing. Extensive research has been con-
ducted on the mechanical stability of austenite in steels. Serri [75] showed that higher
triaxiality resulted in higher transformation rates in TRIP steel because the plastic dila-
tional strain of transformation must do work against hydrostatic pressure, independent of
the level of deviatoric stress. Wu et al. [12] stamped a T-shaped component using a medium
manganese TRIP steel, observing a more complicated strain path dependence wherein uni-
axial tension had the most transformation followed by biaxial then plane strain. Yang
and Bhadeshia [76] concluded that decreasing austenite grain size increases the stability
of austenite against DIMT. Xiong et al. [43] studied the effects of austenite morphology
in QP steel. They found that despite lower carbon content (0.64wt%C vs. 1.14wt%C),
film type austenite was significantly more stable than blocky austenite against DIMT.
They suggested two possible explanations for this: (1) that the high strength martensite
surrounding the film austenite reduces the strain acting on it, or (2) the residual stress
in the surrounding martensite exerts a hydrostatic pressure on the film austenite, thereby
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suppressing transformation. Oliver et al. [22] studied TRIP steel and observed a preference
for transformation along the 〈100〉 family of directions.

Particular focus has been placed on studying the effect of strain-rate and temperature
on RA stability. Dan et al. [77] and Durrenberger et al. [78] studied uniaxial deformation
of room temperature TRIP800 steel at several strain rates, demonstrating that increasing
strain-rate reduces the transformation rate while increasing the overall stress. Rusinek
and Klepaczko [79] studied quasi-static uniaxial deformation of TRIP800 steel at several
temperatures, finding that overall stress is reduced as the temperature is increased. They
conducted an additional room temperature test at 10 s−1 where a temperature rise of nearly
50 K was recorded at the ultimate tensile strength (UTS). Additional analysis showed that
the latent heating of transformation contributed significantly to this heating. Olson and
Cohen [18] studied 304 stainless steel, demonstrating that temperature increases signifi-
cantly suppressed austenite transformation. Poling [53] conducted a detailed experimental
analysis of QP3Mn and TRIP7Mn over a wide range of strain rates and temperatures.
Figure 2.11 shows martensite transformation results of Poling [53] for QP3Mn and Dan
et al. [77] for TRIP 800 steel for several strain-rates. Unlike TRIP800, no clear correlation
is observed between transformation rates and the applied strain-rate in QP3Mn steel. Fig-
ure 2.12 shows the stress response of Poling for QP3Mn and Durrenberger et al. [78] for
TRIP 800 steel for several strain rates. As before, the QP3Mn steel does not exhibit the
strain-rate dependence observed in TRIP 800. As in Rusinek and Klepaczko [79], Poling
observed a significant temperature rise when QP3Mn was deformed at moderate strain-
rates. The impact of strain-rate on transformation is hypothesized to be due to its effect
on shear band evolution [21, 80, 81].

Figure 2.13 shows results from Poling for QP3Mn and TRIP7Mn for several temper-
atures. As in austenitic stainless [18] and TRIP steels [9, 53], increasing temperature
heavily suppressed DIMT. Figure 2.14 shows the stress vs. strain results from Poling for
QP3Mn and TRIP7Mn for the same temperatures. Despite having similar DIMT tem-
perature dependence in both alloys, the stress response of the QP3Mn shows significantly
less temperature dependence than in TRIP7Mn. This suggests that the martensitic trans-
formation in QP3Mn causes significantly less bulk hardening than the transformation in
TRIP7Mn. The temperature dependence of transformation is proposed to be due to its
impact on chemical stability and shear band evolution [18, 53, 82]. The observed tempera-
ture dependence of DIMT in QP3Mn combined with the increased temperature rise at high
strain-rate should act to suppress martensitic transformation. Since this is not observed,
increasing strain-rate for a fixed temperature would probably promote transformation.
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(a) QP3Mn [53] (b) TRIP 800 [77]

Fig. 2.11: Experimental strain-rate dependent martensite transformation (adapted from
Poling [53] and Dan et al. [77]).

(a) QP3Mn [53] (b) TRIP 800 [78]

Fig. 2.12: Experimental strain-rate dependent stress vs. strain (adapted from Poling [53]
and Durrenberger et al. [78]).
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(a) QP3Mn [53] (b) TRIP7Mn [53]

Fig. 2.13: Experimental temperature dependent martensite transformation (adapted from
Poling [53]).

(a) QP3Mn [53] (b) TRIP7Mn [53]

Fig. 2.14: Experimental temperature dependent stress vs. strain. (adapted from Poling
[53]).
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2.4 Constitutive Modelling

Modelling of QP steel requires the incorporation of both plastic slip and the TRIP ef-
fect. These effects can be modelled using either phenomenological or mechanistic models.
Phenomenological models capture macroscopically observed physical behaviour without
capturing the underlying mechanics and are frequently used to model austenitic stainless
[83–86] and TRIP steels [9, 85, 87]. These models are used in lab-scale component analysis
[9, 83–87], due to improved computational efficiency relative to mechanistic models. How-
ever, phenomenological models require a relatively large number of calibration experiments
to characterize the material behaviour. In contrast, mechanistic models focus on incorpo-
rating the underlying physics to enable higher modelling accuracy with fewer required
experiments, with a proportional reduction in computational efficiency. This high accu-
racy is essential for crash and forming simulations, where significant sensitivity to material
anisotropy is observed [88, 89]. Recently, mechanistic models have received considerable
attention [27, 29, 90] for applications in multiscale modelling, where mechanistic models
are used to generate calibration data for phenomenological models. This mitigates both
models’ disadvantages because fewer experiments are required for calibration, but the final
model has the desired computational efficiency for lab-scale components. This work will
focus on mechanistic models due to (1) higher accuracy, (2) fewer calibration experiments
and (3) necessity as the first step of multi-scaling models.

Several types of mechanistic models can be used to model the behaviour of QP steel.
Molecular dynamics (MD) uses numerical approximations to model the atomic-level in-
teractions within a unit cell [91]. Discrete dislocation dynamics (DDD) directly models
dislocations as an elastic inclusion embedded in an elastic medium. Crystal plasticity (CP)
is a model that attempts to capture the aggregate motion of dislocations on the crystal’s
slip systems. Figure 2.15 shows the length and time scales that are achievable with current
computational capabilities for each of these mechanistic models [92]. MD and DD cannot
capture the length and time scales needed to simulate bulk material properties, leaving
only crystal plasticity suitable for this work. However, the crystal plasticity constitutive
laws only capture a single crystal. Modelling techniques must be used to aggregate the
behaviour of many single crystals to capture a polycrystalline metal’s material behaviour.

2.4.1 Polycrystalline Modelling

Two general approaches exist for aggregating polycrystalline behaviour from single-
crystal responses: direct numerical solution and homogenization. In direct numerical so-
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Fig. 2.15: Achievable length and time scales of mechanistic models [92].

lution, a solution to the partial differential equations (PDEs) that govern the interaction
between grains is approximated numerically using the finite element method (FEM)[93],
or fast Fourier transforms (FFT)[94]. In either case, boundary conditions are applied to a
representative volume element (RVE) that is assumed to repeat in an infinite tessellation
in all three directions. As such, the RVE boundary conditions must be periodic, and the
RVE must be a representative sample of the real material orientation distribution, phase
volume fraction and phase morphology. FEM with CP has been used frequently for QP
steels [40, 41, 95] with most assuming that the material is isothermal [40, 41]. In the work
of Lee et al. [95], the temperature was assumed to vary adiabatically with different strain
rates producing different heating rates by modifying the ratio of plastic work to heat gener-
ation. This simplification does not allow for the incorporation of general thermal boundary
conditions, which can significantly affect formability in TRIP steel alloys [10]. No work has
proposed a method for incorporating general thermal boundary conditions in RVE models,
as may be necessary for QP steel.

In homogenization, inter-grain interactions are solved analytically for a limited case,
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which is used to approximate the homogenous bulk material response. The simplest mod-
els for polycrystalline materials are the Taylor [96], and Sachs [97] models that assume
all crystals in a material have the same applied strain or stress, respectively. The Taylor
model has often been used to predict bulk properties and localization in aluminum, mag-
nesium and steel alloys [98–100]. However, care must be taken to ensure that the stress
differential between grains is not too large, as the Taylor model does not rigorously en-
force stress equilibrium. The Sachs model is rarely used because it does not enforce strain
compatibility. To account for both strain compatibility and stress equilibrium, Eshelby
[101] determined a homogenous analytical response for an elastic material with small, dif-
fuse elastic inclusions embedded inside. This is useful for materials with a small volume
fraction of inclusions, where the inter-inclusion interactions can be neglected. For the case
of polycrystals, where no matrix phase can be directly defined, Hill [102] proposed the
self-consistent (SC) scheme. In this scheme, all grains are modelled as inclusions within a
matrix phase that behaves identically to the homogenized material. Molinari et al. [103]
generalized the SC scheme to viscoplastic behaviour by proposing linearization of the ma-
terial response over a time increment. Lebensohn et al. [104] showed that the specific
choice of linearization scheme has a significant effect on homogenized material properties.
They then derived a second-order self-consistent scheme that accounts for stress variations
within each grain that produced more accurate results and reduced sensitivity to the cho-
sen linearization scheme. Self-consistent schemes have often been used to model QP steels
under isothermal conditions [15, 40]. For non-isothermal conditions, there has been little
work using homogenization schemes because the self-consistent does not account for the
variation of temperature and thermal strains throughout the material.

2.4.2 Slip Plasticity

Rate-independent crystal plasticity was first proposed by Asaro and Rice [105] to model
localization in single crystals. Slip was assumed to occur on a subset of the possible active
slip families with the amount of slip governed by a hardening law. In this model, slip rates
could only be uniquely defined if exactly five slip systems were active. Based on physical
principles, Bishop and Hill [106] proposed using the set of slip systems leading to max-
imum plastic work. Asaro and Needleman [107] proposed a visco-plastic rate-dependent
crystal plasticity wherein the slip rate on all possible slip systems is governed by the ra-
tio of resolved shear stress to a critical resolved shear stress (CRSS), a viscosity and a
rate exponent. This CRSS was assumed to evolve with increasing strain. This model had
the additional advantage of not requiring any assumption regarding the choice of active
slip systems. Recently, there has been significant interest in temperature-dependent and
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thermodynamically consistent crystal plasticity-based constitutive models to better sim-
ulate materials where the temperature has a significant effect on the underlying physics
and deformation mechanisms [108, 109]. The first such model for plastic slip was Clayton
[108] who proposed modifications to the kinematics such that the deformation gradient is
decomposed into elastic (Fe), thermal (Fθ) and plastic (Fp) components

F = FeFθFp (2.2)

where deformation and rigid body rotation from the plastic slip are contained in Fp, thermal
expansion is contained in Fθ and elastic deformation and all other rigid body rotation is
contained in Fe. The velocity gradient is decomposed additively

L = ḞF−1 = ḞeF
−1
e + FeḞθF

−1
θ F−1

e + FeFθḞpF
−1
p F−1

θ F−1
θ (2.3)

The strain-rate (D) and spin-rate (Ω) tensors are decomposed into elastic, thermal and
plastic parts

D =
L + LT

2
= De + Dθ + Dp (2.4) Ω =

L− LT

2
= Ωe + Ωθ + Ωp (2.5)

where the thermal spin-rate (Ωθ) is zero, and the thermal strain-rate is given by

Dθ = Aθ̇I (2.6)

where A is the linear thermal expansion coefficient, θ̇ is the rate of change of temperature
and I is the second-order identity tensor. Plasticity occurs by slip on each slip system.
These slip systems are assumed to deform and rotate with the elastic and thermal defor-
mation gradients, such that

s(α)
e = FeFθs

(α) (2.7) m(α)
e = m(α)F−1

θ F−1
e (2.8)

where s
(α)
e and m

(α)
e are the deformed slip direction and slip system normal on slip system

α and s(α) and m(α) are the slip direction and slip system normal on slip system α at the
beginning of the simulation. The plastic strain-rate and spin rate tensors are calculated as
a function of the slip rate (γ̇(α)) on each slip system α using

Dp =

Np∑
α=1

γ̇(α)P(α)
p (2.9) Ωp =

Np∑
α=1

γ̇(α)W(α)
p (2.10)
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whereNp is the number of slip systems and P(α)
p and W(α)

p are symmetric and antisymmetric
slip system tensors given by

P(α)
p =

s
(α)
e ⊗m

(α)
e + m

(α)
e ⊗ s

(α)
e

2
(2.11) W(α)

p =
s

(α)
e ⊗m

(α)
e −m

(α)
e ⊗ s

(α)
e

2
(2.12)

The overall stress is calculated using a hyper-elastic law as given below

O
τ ij = Fe(ia)Fe(jb)Fe(kc)Fe(ld)CabcdDe(kl) =

[
Fe · Fe · C · FT

e · FT
e

]
: De (2.13)

where
O
τ is any objective stress rate of the Kirchoff stress, C is an elastic tensor that is

generally calculated using crystal elasticity [107, 110]. In crystal elasticity, the specific form
of C is dependent on the symmetry of the crystal lattice of the material. For materials
with cubic symmetry (e.g. FCC and BCC), the crystal elasticity C is given in Voigt form
by

{C} =




κ1 κ2 κ2 0 0 0
κ2 κ1 κ2 0 0 0
κ2 κ2 κ1 0 0 0
0 0 0 κ3 0 0
0 0 0 0 κ3 0
0 0 0 0 0 κ3




(2.14)

where κ1, κ2 and κ3 are independent material constants. To calculate the slip rates, most
rate-dependent crystal plasticity models assume that dislocation motion occurs according
to the Schmid law [107], where slip occurs when the resolved stress on a slip system exceeds
a critical resolved shear stress (CRSS). Mathematically, this is given by

γ̇(α) = f(τ (α), g(α), c,d) (2.15) τ (α) = P(α)
p : τ (2.16)

where f is a kinetics function that determines the magnitude of slip, τ (α) and g(α) are
the resolved and critical resolved shear stress on slip system α, c is a vector of material
parameters, and d is a vector of other state variables. Various functions have been proposed
for use as f , including primarily power-law type behaviour [27, 29, 107] and exponential
behaviour inspired by dislocation kinetics theory [111]. Power-law behaviour, due to its
simplicity and history, is the most commonly used and is given by

γ̇(α) = f(τ (α), g(α), ȧ0,m) = ȧ0 sign
(
τ (α)

) ∣∣∣∣τ (α)

g(α)

∣∣∣∣
1
m

(2.17)
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where ȧ0 is a reference slip rate, and m is a parameter determining the strain-rate depen-
dence of the material. The evolution of g(α) is then described by

ġ(α) =

Np∑
β=1

h (γa) qαβγ̇
(β) (2.18) γa =

Np∑
α=1

∫ t

0

∣∣γ̇(α)
∣∣ dt (2.19)

where h(?) is the hardening function, qαβ is the latent hardening matrix, and γa is the
total absolute shear. Common models for h(?) and qαβ include Chang-Asaro [112] and
Asaro-Needleman [107]. To ensure that the model is thermodynamically consistent, it is
assumed that Helmholtz free energy follows the form Ψ = Ψ (Ee, θ, β) where Ee is the
elastic Green-Lagrange strain, θ is the temperature, and β is a measure of the stored
strain-energy surrounding dislocations. The first and second laws of thermodynamics are
then given in the forms

ρė+ ∇ · q− σ : D = ρr (2.20) ρη̇ ≥ −∇ ·
(q

θ

)
+
ρr

θ
(2.21)

where ρ is the density, ė is the rate of change of internal energy, q is the heat flux vector,
η̇ is the rate of change of entropy, and r is the volumetric heat generation rate. Using
the Legendre transformation Ψ = e − θη and using the results of Coleman and Noll [113]
regarding irreversible thermodynamic systems, the following Helmholtz free energy function

ρΨ =
1

2
Ee : C : Ee +

1

2
κµβ2 − ĉθ ln

(
θ

θ0

)
(2.22)

where κ is a dimensionless scalar relating internal energy to the internal microstrain metric,
µ is the shear modulus, ĉ is the specific heat capacity, and θ0 is a reference temperature.
This is then used in combination with the above equations to derive the temperature
evolution law

ρĉθ̇ =

Np∑
α=1

τ (α)γ̇(α) − ρ
(
∂Ψ

∂β
− θ ∂

2Ψ

∂θ∂β

)
β̇ + ρθ

∂2Ψ

∂θ∂Ee

: Ėe −∇ · q + ρr (2.23)

Several numerical formulations have been proposed for integrating the crystal plasticity
equations. Asaro and Needleman [107] used the rate tangent scheme, a type of forward
gradient integration algorithm, which produced good results. Raphanel et al. [114] pro-
posed a Runge-Kutta scheme for use with crystal plasticity. Rossiter et al. [7] proposed an
explicit Euler integration algorithm for use with explicit dynamic finite element models.
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2.4.3 Martensitic Transformation

Whether used with phenomenological or mechanistic plastic slip models, most TRIP
models proposed in literature follow a mechanistic formulation. This is due to the difficulty
of capturing the material behaviour without including the underlying physics. Significant
work has been conducted on mechanistic modelling of the TRIP effect, which will be
summarized in the next subsections. The following model lineages will be summarized:

• Stringfellow et al. Model Lineage [9, 10, 18, 19, 21, 83]

• Cherkaoui et al. Model Lineage [42, 115–117]

• Turteltaub et al. Model Lineage [109, 110, 118, 119]

• Lee et al. Model Lineage [18, 83, 95]

• Ma and Hartmaier Model Lineage [91, 120, 121]

• Park et al. Model Lineage [41, 122, 123]

To avoid confusion, variables defined in each subsection are specific to the subsection and
do not overlap with the other models.

2.4.3.1 Stringfellow et al. Model Lineage

Mechanistic modelling of martensitic transformation originated with the work of Olson
and Cohen [18], who observed that martensite nucleated at shear band intersection sites.
This was later extended by Stringfellow et al. [83], Tomita and Iwamoto [21], and Iwamoto
et al. [19] to better account for strain-rate, stress state and temperature. In this model,
the rate of transformation of martensite (fα′) is given by

ḟα′ = fγ

[
pḟ isb + f isbṗH(ṗ)

]
(2.24)

where fγ is the RAVF, p is the probability of a shear band intersection site transforming,
f isb is the volume fraction of shear band intersection sites and H(?) is a Heaviside function.
The shear band intersection volume fraction is related to the volume fraction of shear bands
(fsb) and an effective slip rate in the austenite ( ˙̄εpslipγ ) using
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f isb = η (fsb)
n (2.25) ḟsb = am (1− fsb) ˙̄εpslipγ (2.26)

where η and n are calibration constants and am is given by

am =
(
am,1 + am,1T + am,1T

2 − am,1Σ
)(

1− am,1
(

˙̄ε

ε̇0

))
(2.27)

Σ =
tr(σ)

3σ̄
(2.28)

where am,1 − am,6 are calibration parameters, T is temperature, Σ is stress triaxiality, ˙̄ε
is an effective strain rate, ε̇0 is a strain-rate normalization factor, and σ̄ is the von Mises
equivalent stress. The probability of transformation is given by

p =
1√

2πσs

∫ g

−∞
exp

(
−(g′ − g0)2

2σ2
s

)
dg′ (2.29)

g = −T + g1Σ (2.30)

where g0 and σs are the mean and standard deviation of the distribution of critical driving
forces required to cause transformation at a shear band intersection site, g is the transfor-
mation driving force g1 is the dependence of the driving force triaxiality. Hardening due
to transformation is handled by homogenization of stresses in austenite and transformed
martensite.

This model was used by Kohar et al. [9] with an advanced phenomenological slip plas-
ticity model to analyze TRIP800 crush behaviour. They showed that adiabatic heating at
high strain-rates suppressed martensite generation, thereby limiting the energy absorption
capacity of TRIP 800 steel. The model was then used by Connolly et al. [10] to study the
formability of TRIP 800 steel, showing that temperature had a significant impact on forma-
bility and that thermal boundary condition control could result in significantly improved
formability.

2.4.3.2 Cherkaoui et al. Model Lineage

Cherkaoui et al. [115, 116] and Kubler et al. [117] proposed the first constitutive model
incorporating transformation within a crystal plasticity framework. In their work, each
martensite variant was modelled as an ellipsoidal inclusion in an austenitic matrix. The
macroscopic strain rate (Ė) is decomposed according to
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Ė = Ėe + Ėp + Ėtr = 〈ε̇e〉+ 〈ε̇p〉+ 〈ε̇tr〉 (2.31)

where Ėe, Ėp and Ėtr are the macroscopic elastic, plastic slip and transformation induced
strains and ε̇e, ε̇p and ε̇tr are the corresponding local strains, and 〈?〉 = 1

V

∫
V

(?) dV
indicates a volume average. The macroscopic strains are given by

Ėe =
[
CA
]−1

:
O
Σ (2.32) Ėp = (1− f) ˙̄εAp +

NT∑
I=1

fI ˙̄εMI
p (2.33)

Ėtr =

NT∑
I=1

ḟ IεIT (2.34)

where CA is the austenitic elasticity tensor,
O
Σ is the macroscopic Jaumann stress rate,

f =
∑NT

I=1 fI is the total volume fraction of martensite, f I , εIT and ˙̄εMI
p are the volume

fraction, total transformation strain and average local plastic strain rate of martensite
variant I, ˙̄εAp is the average local strain rate in the austenite phase, and NT is the number

of active martensite variants. The macroscopic rotation rate (Ω̇) is decomposed using

Ω̇ = Ω̇e + Ω̇p + Ω̇tr = 〈ω̇e〉+ 〈ω̇p〉+ 〈ω̇tr〉 (2.35)

where Ω̇e, Ω̇p and Ω̇tr are the macroscopic elastic, plastic slip and transformation induced
rotation rates and ω̇e, ω̇p and ω̇tr are the corresponding local rotation rates. The inelastic
rotation rates are given by

Ω̇p = ˙̄ωAp −
NT∑
I=1

fITI : CA :
(

˙̄εMI
p − ˙̄εAp

)
(2.36)

Ω̇tr =

NT∑
I=1

ḟIω
I
T (2.37)

where ˙̄ωAp is the average local plastic rotation rate of the austenite, and T I and ωIT are the
antisymmetric Eshelby tensor and the total transformation rotation of martensite variant
I. The elastic rotation rates are determined from the applied macroscopic rotation rate
and the inelastic rotation rates. The plastic slip strain and rotation rates are given by
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˙̄εAp =

NA
s∑

α=1

γ̇αAP
(α)
A (2.38) ˙̄ωAp =

NA
s∑

α=1

γ̇αAW
(α)
A (2.39)

fI ˙̄εMI
p =

N
MI
s∑
α=1

γ̇αMI
P

(α)
MI

+ ḟI
(
ε̄Ap − ε̄MI

p

)
(2.40)

where γ̇αA are the austenite slip rates, P
(α)
A and W

(α)
A are the symmetric and antisymmetric

austenite Schmid tensors, γ̇αMI
and P

(α)
MI

are the slip rates and symmetric Schmid tensors
of martensite variant I, and NA

s and NMI
s are the number of slip systems in the austenite

phase and martensite variant I. The Schmid tensors are defined by slip systems as in
standard crystal plasticity. The stresses in austenite (σA) and martensite variant I (σMI )
are given by

σA = Σ−
NT∑
I=1

fICA : (I− SI) :
(
ε̄Ap − ε̄IT − ε̄MI

p

)
(2.41)

σMI = σA
NT∑
I=1

fICA : (I− SI) :
(
ε̄Ap − ε̄IT − ε̄MI

p

)
(2.42)

where I is the fourth-order identity tensor and SI is the symmetric Eshelby tensor for
martensite variant I. Finally, the Coleman and Noll [113] procedure is used to derive

driving forces for plasticity in austenite (F
A(α)
p ) and martensite variant I plasticity (F

MI(α)
p )

and transformation (F I)

FA(α)
p = σA : P

(α)
A (2.43) FMI(α)

p = σMI : P
(α)
MI

(2.44)

F I = σA : εIT −B(T − T0)− 1

2
(εIT : CA : (I− SI) : εIT

+ κ

NA
s∑

α=1

εIT : CA : (SI − Sd) : P
(α)
A γ

(α)
A +

1

2

ḟI
fI

(εIT : CA : ṠI : εIT )

(2.45)

where T and T0 are current and reference temperature, B is the dependence of energy
on temperature, κ is a calibration constant, and Sd is the symmetric Schmid tensor for a
transforming plastic defect. A consistency rule is then established from the driving force
and a hardening law, giving a complete set of equations for slip and transformation rates.
This model was used to model 304 stainless steel by Petit et al. [42], showing that with
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a suitable choice of transformation system, the stress vs. strain curve and transformation
kinetics can be captured accurately. However, this work also showed that to capture the
texture evolution properly, it was necessary to account for the formation of ε martensite
plates as an intermediary to the formation of α′ martensite.

2.4.3.3 Turteltaub et al. Model Lineage

Turteltaub and Suiker [110, 118] proposed a stress-based transformation model for use
with shape memory alloys and with some steel applications. Tjahjanto et al. [119] and
Yadegari et al. [109] extended the model to include thermal and plastic slip deformation
modes. The deformation kinematics are given by a multiplicative decomposition of the
deformation gradient

F = FeFθFpFtr (2.46)

where Fe, Fθ, Fp and Ftr are the elastic, thermal, plastic slip and TRIP deformation
gradients. The thermal, plastic slip and TRIP components are defined by

Fθ = I +
1

det (Ftr)

(
ξAAA + (1 + δT )

NT∑
α=1

ξ(α)A(α)

)
(θ − θ0) (2.47)

Ḟp =

[
Ns∑
i=1

γ̇(i)s(i) ⊗m(i)

]
Fp (2.48) Ḟtr =

[
NT∑
α=1

ξ̇(α)b(α) ⊗ d(α)

]
(2.49)

where I is the identity tensor, ξA and AA are the volume fraction and thermal expansion
tensor of austenite, ξ(α) and A(α) are the volume fraction and thermal expansion tensor of
martensite variant α, NT and Ns are the number of variants and slip systems, θ and θ0

are the current and reference temperatures, γ̇(i), s(i) and m(i) are the slip rate, direction
and normal vectors for slip system i, and b(α) and d(α) are the transformation direction
and habit plane normal for transformation system α, and δT = b(α) · d(α) is the volumetric
expansion during transformation for all martensite variants. The entropy density (η) is
decomposed additively, according to

η = ηe + ηm + ηp + ηtr (2.50)
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where ηe, ηm, ηp and ηtr are the thermal, thermo-mechanical coupling, plastic and trans-
formation induced parts of the entropy density. These are defined by

ηe =

(
ξAhA +

NT∑
α=1

ξ̇(α)

)
ln

(
θ

θT

)
+ ηT (2.51)

η̇p = det (Ftr)
Ns∑
i=1

γ̇(i)φ(i) (2.52) η̇tr =

NT∑
α=1

ξ̇(α)λ
(α)
T

θT
(2.53)

ηm =
1

ρ0

det (Fθ) FT
θ FθSF−1

θ :

(
ξAhA + (1 + δT )

NT∑
α=1

ξ(α)A(α)

)
(2.54)

where hA and h(α) are the specific heat capacities of austenite and the martensite variant α,
θT and ηT are the temperature and transformation entropy density where transformation
occurs spontaneously without applied stress, φ(i) is the entropy per unit slip in slip system
i, ρ0 is the initial density, S is the second Piola-Kirchoff stress, and λ

(α)
T is the latent heat

of transformation for martensite variant α. Stress is updated according to

S =

(
JAθ CA −

NT∑
α=1

J
(α)
θ (1 + δT )C(α)

)
: Ee (2.55)

where CA and JAθ are the elasticity tensor and volumetric thermal expansion of the austen-

ite phase, C(α) and J
(α)
θ are the elasticity tensor and volumetric thermal expansion of

martensite variant α and Ee = (FT
e Fe − I)/2 is the elastic Green-Lagrange strain. A

microstrain metric (β) is then defined as

β̇ =
Ns∑
i=1

w(i)γ̇(i) (2.56) w(i) =
1

cAµANs

Ns∑
j=1

H
(j,i)
A (2.57)

where cA is a dimensionless scaling factor, µA is the elastic shear modulus of the austenite,
and H

(j,i)
A is the hardening matrix of the austenite. The initial microstrain is given by β0.

Using the Coleman and Noll [113] procedure, the following slip and transformation driving
forces are derived
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F
(α)
tr = det (FθFtr)

[
FT
p FT

θ FT
e SF−Tθ F−Tp F−Ttr

]
:
(
b(α) ⊗ d(α)

)
+ ρ0

λ
(α)
T

θT
(θ − θT )

+ ρ0

(
hA − h(α)

)(
θ − θT − θ ln

(
θ

θT

))
+
χ

`0

(
2ξ(α) − 1

)
+ det (Ftr) FT

e FeSF−Tθ :
(

(1 + δT ) A(α) −AA

)
(θ − θ0)

+
1

2
Ee :

(
JAθ CA − J (α)

θ (1 + δT )C(α)
)

: Ee

+
ωA
2

(
JAθ µA − (1 + δT ) J

(α)
θ µ(α)

)
β2

(2.58)

F (i)
p = det (Fθ) FT

θ FT
e SF−Tθ :

(
s(i) ⊗m(i)

)
+ ρ0θφ

(i) − ωAµAβw(i) (2.59)

where ωA relates the internal energy to the microstrain metric, χ is the interface energy
between martensite and austenite per unit are and `0 a length scale for the martensitic
interface. The transformation and slip rates are then given by

ξ̇(α) =

ξ̇0 tanh
(
F

(α)
tr −f

(α)
cr

νf
(α)
cr

)
F

(α)
tr > f

(α)
cr

0 F
(α)
tr ≤ f

(α)
cr

(2.60)

γ̇(i) =


γ̇0ξ

(0)

det (Ftr)

((
F

(i)
p

s
(i)
A

) 1
n

− 1

)
F

(α)
p > s

(i)
A

0 F
(α)
p ≤ s

(i)
A

(2.61)

where ξ̇0 is the maximum transformation rate, f
(α)
cr is the critical transformation force, ν

is a dimensionless parameter, γ̇0 is a reference slip rate, ξ(0) is the current RAVF, s
(i)
A is a

critically resolved shear stress and n is a dimensionless rate exponent.

2.4.3.4 Lee et al. Model Lineage

Lee et al. [95] proposed a strain-induced transformation model with applications to
204M stainless steel sheet. Transformation was modelled as a shear-band intersection
mediated process, building on the work of Olson and Cohen [18] and Stringfellow et al.
[83]. The shear band (fsb) and shear band intersection (f isb) volume fraction rates are
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ḟ isb = αCf r−1
sb (1− fsb) ˙̄εaus (2.62) ḟsb = α (1− fsb) ˙̄εaus (2.63)

˙̄εaus =

∑Ns
i=1 τ

(i)γ(i)

σ̄aus
(2.64)

where α determines shear band evolution, C and r represent the relationship between shear
band and shear band intersection volume fraction, ˙̄εaus and σ̄aus are the effective von Mises
strain-rate and stress of the austenite phase. The initial shear band fraction is zero, and
the initial shear band intersection volume fraction (f isb,0) is a calibrated parameter. The
transformation rate is given by

ḟβ = fA
αKMαδrf

r−1
sb (1− fsb)

(
∆G+ Uβ

)
NT∆S

˙̄εaus − fA
0.011 (1 + δf rsb)

NT∆S

[
d

dt

(
∆G+ Uβ

)]
×
[
H

(
− d

dt

(
∆G+ Uβ

))] [
H
(

∆GC −∆G− Uβ
)] (2.65)

where fA and fβ are the volume fractions of austenite and martensite variant β, αKM is
a calibrated constant, ∆G is the chemical driving force for transformation, Uβ = σA : εβT
is the mechanical driving force of transformation, σA is the austenite Cauchy stress, εβT
is the transformation strain of martensite variant β, NT is the number of transformation
systems, ∆S is the entropy change of transformation, H(?) is a Heaviside function, ∆GC

is the critical driving force of transformation and δ = C/f isb,0. The two terms in the trans-
formation rate represent strain-induced and stress-induced transformation, respectively.
Thermal dependence is then accounted for using

α = K exp (−bT ) (2.66) ∆G = ∆GC + ∆S (T −Ms) (2.67)

where K and b are empirical parameters, T is the current temperature, and Ms is the
martensite start temperature. The deformation kinematics are given by

F = FeFp (2.68) ḞpF
−1
p = fAL̄p (2.69) L̄p = L̄

A
p + L̄

M
p (2.70)

where Fe and Fp are the elastic and plastic deformation gradients, L̄p is the normalized

plastic velocity gradient, L̄
A
p and L̄

M
p are the plastic velocity gradients in the austenite and

martensite phases. Standard rate-dependent crystal plasticity is used to calculate L̄
A
p from

σA. The martensite plastic velocity gradient is given by

L̄
M
p =

NT∑
β=1

Rβ

[
ḟβsb
fβ

I + ḟβM

] [
Rβ
]−1

(2.71)
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where Rβ represents the rotation between the FCC and martensite variant bases and M is
the transformation deformation in the variant basis. The stress update is then given by

SA = CA : Ee (2.72) Sβ = Cβ : Ee (2.73)

σ = fAσA +

NT∑
β=1

fβσβ (2.74)

where σ is the bulk Cauchy stress, SA and CA are the second Piola-Kirchoff stress and
elasticity tensor of austenite, σβ, Sβ and Cβ are the Cauchy stress, second Piola-Kirchoff
stress and elasticity tensor of martensite variant β and Ee = (FT

e Fe − I)/2 is the elastic
Green-Lagrange strain.

This model accurately captures martensite volume fraction, stress and temperature
evolution of 204M stainless steel under uniaxial tension for several strain rates. Instead
of applying thermal boundary conditions, a coefficient was specified for each strain-rate
to control the ratio of work to temperature change to match the temperature evolution.
The transformation strain rate dependence was shown to be a consequence of temperature
dependence, given different temperature evolution profiles for each strain rate.

2.4.3.5 Ma and Hartmaier Model Lineage

Ma and Hartmaier [120] proposed a second mechanistic model based on shear band
intersection kinetics. The kinetics law for transformation includes strain-based nucleation
and stress-based growth of martensite, inspired by the work of Sinclair and Hoagland [91]
on martensitic nucleation. This work used MD to investigate the nucleation mechanism
proposed by Olson and Cohen [121], wherein martensite nucleates at the intersection of
〈121〉 {111} type fault bands. This MD analysis shows that the transformation OR is
close to NW. Decomposition of the deformation gradient and variant I martensite volume
fraction (ηI) is given by

F = FeFtrFp (2.75) ηI = η0
I + ηstrainI + ηstressI (2.76)

where Fe, Ftr and Fp are the elastic, transformation and plastic deformation gradient and
η0
I , η

strain
I and ηstressI are the initial, strain-induced and stress-induced martensite volume

fractions for martensite variant I. The plastic and transformation deformation gradients
are then given by
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ḞtrF
−1
tr =

NT∑
I=1

η̇stressI (bI ⊗ dI) (2.77) ḞpF
−1
p =

Ns∑
α=1

γ̇(α) (sα ⊗mα) (2.78)

where bI and dI are the initial configuration transformation direction and habit plane for
martensite variant I, sα, mα are the initial configuration slip direction and normal of slip
system α, and γ̇(α) is the slip rate on slip system α. The stress update is then given by

S =

[
]

(
1−

NT∑
I=1

ηI

)
CA +

NT∑
I=1

ηICI

]
:

(
FT
e Fe − I

)
2

(2.79)

where CA and CI are the elastic tensors of austenite and martensite variant I. Using
energy methods, the plastic slip driving force (ζ

(α)
p ) is given by

ζ(α)
p = τ (α) −

(
τ (α)
p + τ

(α)
t

)
sign

(
τ (α)

)
(2.80)

τ̇
(α)
t = cmhd µ

NT∑
I=1

η̇I (2.81)

where τ (α) and τ
(α)
p are the resolved and critical resolved shear stresses calculated using

the Schmid tensor and a hardening law as in standard crystal plasticity. Lamellar harden-
ing (τ

(α)
t ) is incorporated to handle transformation hardening, where cmhd is a calibrated

constant, and µ is a shear modulus. The rate-dependent equation then gives the plastic
slip rate is

γ̇(α) = γ̇0

∣∣∣∣∣ζ(α)
p

τ0

∣∣∣∣∣ sign
(
τ (α)

)
(2.82)

where τ0 is the initial yield stress. The strain-induced transformation driving force is
derived using energy methods as

ζstrainI = −
[
cdwp

(
2ηI − 6η2

I + 4η3
I

)]
−
[
12∆G

(
η2
I − η3

I

)]
(2.83)

where cdwp is a calibrated parameter. The strain-induced transformation rate is given by

η̇strainI = cnuc

(
1−

NT∑
J=1

)
H ′′IβH

′
βαζ

strain
I γ̇(α) (2.84)
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where cnuc is a calibrated parameter, H ′βα projects slip onto shear bands and H ′′Iβ calcu-
lates the shear band intersection from the shear bands. The stress-induced transformation
driving force is derived using the energy method as

ζstressI = det (F)σ :
FebI ⊗ dIF

−1
e + F−Te dI ⊗ bIF

T
e

2
+ ζstrainI (2.85)

The stress-induced transformation rate is given by

η̇stressI = cgro
(
η0
I + ηstrainI

)(
1−

NT∑
J=1

ηJ

)
ζstressI (2.86)

where cgro is a calibration parameter.

This was then used to simulate an artificially generated microstructure containing ferrite
and austenite under tension and compression. This showed significant tension-compression
asymmetry in both the transformation and stress vs. strain curves.

2.4.3.6 Park et al. Model Lineage

Park et al. [41] modelled QP steel using a novel constitutive model. The RA and
transformed martensite phase are considered separately, with a Taylor approximation used
to determine strain partitioning. This is given by

ε̇kα′ = ε̇γ (2.87)

where ε̇kα′ and ε̇γ are the local transformed martensite variant k and RA strain-rate tensors
expressed in the lattice coordinate system. This work uses the K-S orientation relationship,
giving 24 possible martensite variants. Additive decomposition of these strain-rates gives

ε̇kα′ = ε̇
k(e)
α′ + ε̇

k(slip)
α′ (2.88) ε̇γ = ε̇eγ + ε̇slipγ + ε̇MT

γ (2.89)

where ε̇
k(e)
α′ and ε̇

k(slip)
α′ are the elastic and plastic slip components of martensite variant k,

and ε̇eγ, ε̇
slip
γ and ε̇MT

γ are the elastic, plastic slip and transformation components of the RA
strain-rate. This work therefore assumes that all transformation strain is accommodated
within the austenite phase. As in rate-dependent crystal plasticity, the plastic slip strain-
rates for all local phases are governed by
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ε̇slip = Dslip =
N∑
α=1

γ̇(α)P(α) (2.90)

where γ̇(α) and P(α) are the slip rates and symmetric Schmid tensor for the phase in
question. Using the results of Zamiri and Pourboghrat [122], a plastic yield potential f(σ)
is defined such that the plastic slip strain-rates are defined by

Dslip = λ
∂f(σ)

∂σ
(2.91)

where λ is a plastic multiplier defining the amount of strain and σ is the Cauchy stress
tensor. The plastic yield potential is given by

f(σ) =
1

ρ
ln


N∑
α=1

exp

 ρ
m


∣∣∣σ : P(α)

∣∣∣
τ

(α)
y

− 1

 (2.92)

where ρ and m are calibration coefficients defining the closeness of the yield condition and
the yield surface shape, and τ

(α)
y is the critical resolved shear stress for slip system α. Using

this equation, the slip-rates are given by

γ̇(α) = λ

sign (σ:P(α))
τ
(α)
y

exp

[
ρ
m

(
|σ:P(α)|
τ
(α)
y

− 1

)]
m
∑N

α=1 exp

[
ρ
m

(
|σ:P(α)|
τ
(α)
y

− 1

)] (2.93)

The plastic multiplier can then be found using standard methods for phenomenological
plasticity, such as the cutting plane algorithm [124, 125]. The transformation strain-rates
are given by

ε̇MT
γ =

N∑
k=1

ḟkα′ε
MT,k (2.94)

where εMT,k and ḟkα′ are the deformation transformation and transformation rate of a
martensite variant k. The total transformation rate ḟα′ is given by the phenomenological
Beese and Mohr [123] law

ḟα′ = (fmaxα′ − fα′)nD (Dε̄)n−1 ˙̄ε (2.95)
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where fmaxα′ is the maximum allowed transformation martensite volume fraction, fα′ is the
current transformed martensite volume fraction, n and D are material parameters, and ε̄
is the von Mises equivalent plastic strain. The material parameter D is given by

D(η, θ̄) = D0 +Dηη +Dθ̄θ̄ (2.96)

where D0, Dη and Dθ̄ are calibration parameters, η is the stress triaxiality, and θ̄ is the
Lode angle. Stress triaxiality and Lode angle are given by

η =
tr(σ)

3σ̄
(2.97)

θ̄ = 1− 2

π
cos−1

(
27 det (σ − tr (σ))

2σ̄3

)
(2.98)

where σ̄ is the von Mises effective stress. The transformation rates of a martensite variant
k are then given by

ḟkα′ =

ξ̇
∣∣∣σ:εMT,k

ωcr

∣∣∣ 1p σ : εMT,k > 0

0 σ : εMT,k ≤ 0
(2.99)

where p and ωcr are parameters to control the relative activation of different martensite
variants and ξ̇ is a scaling factor to ensure that the condition

∑N
k=1 ḟ

k
α′ = ḟα′ is met.

This ensures that only the martensite variants that minimize the plastic work energy are
activated. Finally, the stress update in the material co-rotational frame is given by

σ = (1− fα′)σγ +
N∑
k=1

fkα′σ
k
α′ (2.100)

where σγ and σkα′ are the local phase stresses of RA and the martensite variant k. The
local phase stresses are then related to the local elastic strain-rates using Hooke’s law.

The model was then calibrated using experimental data for QP980 steel and QP1500
steel. Parametric studies were conducted on constituent phase volume fraction, resulting
in significant reductions in yield stress, UTS and elongation. The formability of a tailored
microstructure was analyzed, suggesting possible methods for formability improvement.
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2.4.3.7 Model Comparison

Table 2.2 summarizes the material behaviours captured by each mechanistic transfor-
mation model. This shows that all models, except Park et al. [41], can capture temperature
dependence of transformation. In contrast, only the Stringfellow et al. and Turteltaub et
al. model lineages address the dependence of transformation on strain-rate. Since the ki-
netics law proposed in the Turteltaub et al. model lineage has a maximum transformation
rate, it can only capture this strain-rate dependence at low rates. All models capture the
stress-state dependence of transformation; however, this effect is only partially captured
in the Stringfellow et al. model lineage because it neglects the Lode angle parameter. Ex-
cept for the Stringfellow et al. model lineage, all models incorporate multiple martensite
variants and, consequently, account for orientation dependence of transformation through
the resolved stress on the transformation system. The Stringfellow et al., Cherkaoui et
al. and Park et al. model lineages all capture hardening due to differing strength in the
austenite and martensite phases using volume averaging of separately modelled austenite
and martensite phases. Each of these models also incorporates transformed martensite
plasticity, as this allows the model to capture better the local deformation of this phase
[15]. The Turteltaub et al. model lineage can partially capture this hardening effect by
incorporating the RAVF into the plasticity kinetics law. However, the relatively small
value of n (n = 0.02 in Yadegari et al. [109]) in the plasticity kinetics results in the RAVF
having a little impact when RAVF is significantly greater than zero. This problem is ex-
plored in further detail in Section 4.5.4. Furthermore, this method implicitly assumes that
the transformed martensite is fully elastic, which is not the case for all steels exhibiting the
TRIP effect [15]. Both the Cherkaoui et al. and Ma and Hartmaier model lineages capture
local hardening due to the accommodation of transformation strain with plastic slip. The
Cherkaoui et al. model lineage incorporates this hardening directly using the homogeniza-
tion mechanism. The Ma and Hartmaier model only incorporates this hardening indirectly
with a lamellar hardening term. The Stringfellow et al., Lee et al., and Turteltaub et al.
model lineages each outline a constitutive equation that governs temperature evolution.
Yet, the Lee et al. model is only approximate because it does not include the latent heat
of transformation. Only the Lee et al., Ma and Hartmaier, and Cherkaoui et al. model
lineages incorporate stress-induced and strain-induced transformation mechanics, whereas
all other models focus on only one approach. In the Cherkaoui et al. model lineage, strain-
induced transformation is only partially accounted for by reducing the critical stress for
transformation with increasing strain. Only the Cherkaoui et al., Turteltaub et al., and Ma
and Hartmaier model lineages propose a model that is guaranteed to be consistent with
the first and second laws of thermodynamics. Finally, only the Turteltaub et al. model
lineage includes thermal strains in the model. No model has been proposed that captures
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all relevant mechanics to allow robust crystal plasticity simulations of steel exhibiting the
TRIP effect.

Table 2.2: Model comparison chart.

Aspect present in model

Aspect partially present in model

Aspect not present in model
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Plasticity in transformed martensite

Hardening due to local plasticity when
accommodating transformation strain

Temperature evolution

Stress-induced transformation

Strain-induced transformation

Thermodynamically consistent

Includes thermal strain
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2.5 Summary of Deficiencies in Literature

Several authors [9, 10, 83, 84, 86, 95] have shown that modelling TRIP steel in both
crash and formability applications require constitutive models that are thermally depen-
dent and applicable over a range of strain-rates and temperatures. For a model to be
usable in crystal plasticity, it must correctly account for the orientation dependence of
transformation. As presented in Section 2.4.3.7, no model in the literature can simultane-
ously account for the orientation dependence, thermal dependence and rate-dependence of
transformation. Given the importance of thermo-mechanical coupling in modelling TRIP
steels, general thermal boundary conditions must be incorporated into RVE modelling
techniques. While some works simplify the thermal behaviour, such that no boundary
conditions are needed, no method has yet been proposed for incorporating these thermal
boundary conditions. Hu et al. [15] showed that it is also essential for a constitutive model
to include both martensite plasticity and homogenization of RA and transformed marten-
site for the lattice strain evolution of each phase to be correctly captured. It is essential
to include both the stress and strain-induced martensitic transformation regimes because
this will broaden the scope of temperatures at which the model is applicable. Finally, to be
physically consistent, it is crucial that the constitutive model satisfies the first and second
laws of thermodynamics and includes thermal strains.
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3 Research Scope and Objectives

This research aims to develop an advanced constitutive model and the supporting mod-
elling technologies of steels exhibiting the TRIP effect, such as QP steels, over a wide range
of temperatures and strain-rates. As such, the research hypothesis is:

“The development of an advanced constitutive model and supporting modelling
technologies will allow accurate simulation of steels exhibiting the TRIP effect
over a wide range of temperatures and strain-rates.”

The proposed constitutive model must capture elastic, thermal, plastic slip and transforma-
tion plasticity deformation modes during stress-induced and strain-induced transformation
to achieve this goal. Beyond capturing strain-rate and temperature dependence, the con-
stitutive model must also capture realistic martensite variant formation along with the
stress-state and orientation dependence on transformation. The constitutive model must
provide a framework that accounts for the local plasticity due to strain accommodation
during transformation and martensite plasticity in a consistent thermodynamic framework.
By accounting for all these phenomena, designers will fully exploit these materials in fu-
ture applications of metal forming and crashworthiness applications. The Turteltaub et al.
model lineage is used as the basis of this work because it captures the most transformation
mechanics while still incorporating rate-dependent plastic slip.

3.1 Research Objectives

The objectives of this research are to:

(1) Develop a baseline model that incorporates stress-induced transformation.

(2) Develop a method to capture general thermal boundary conditions for RVE models.

(3) Extend the baseline model to include homogenization of austenite and transformed
martensite, martensite plasticity and rate-dependent strain-induced transformation.
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3.2 Summary of Contributions Towards Objectives

The work completed to achieve the research objectives is presented in the next two
chapters. Research objectives (1) and (2) are completed in Chapter 4. Research objective
(3) is completed in Chapter 5. These chapters are based on the following published or
under review manuscripts:

Chapter 4 D. S. Connolly, C. P. Kohar, W. Muhammad, L. G. Hector Jr., R. K. Mishra,
K. Inal, A Coupled Thermomechanical Crystal Plasticity Model Applied to
Quenched and Partitioned Steel, International Journal of Plasticity 103 (2020),
39-66.

Chapter 5 D. S. Connolly, C. P. Kohar, K. Inal, A Novel Crystal Plasticity Model Incor-
porating Transformation Induced Plasticity for a Wide Range of Strain Rates
and Temperatures, Under Review at Journal of the Mechanics and Physics of
Solids (MPS-D-21-00101) on January 27, 2021.

In addition to these publications, the following publications have been written as a result
of this current research. However, these works do not have a direct impact on the overall
research objectives of this thesis and are referenced only as supporting work:

• D.S. Connolly, C.P. Kohar, R.K. Mishra, K. Inal, A New Coupled Thermome-
chanical Framework for Modeling Formability in Transformation Induced Plasticity
Steels, International Journal of Plasticity, 103 (2018), 39-66.

• D.S. Connolly, C.P. Kohar, L.G. Hector Jr., R.K. Mishra, K. Inal, Simulation of
TRIP Steel Formability using Thermo-mechanical Crystal Plasticity Finite Element
Modeling. International Conference on Plasticity, Damage & Fracture 2019, Panama
City, Panama, January 3-9, 2019.

• D.S. Connolly, C.P. Kohar, R.K. Mishra, K. Inal, Impact of Thermal Conditions
on Predicted Formability of TRIP Steelers, The 12th International Conference and
Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (NU-
MISHEET 2022), Toronto, Ontario, Canada, July 10, 2022.
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3.3 Limitations of Proposed Work

The constitutive models derived in the current study are limited to material that ex-
hibits continuous deformation driven solely through the motion of plastic slip and trans-
formation of RA to plate-like BCT α′-martensite. As such, neither DSA nor propagative
instabilities (e.g. PLC bands) are considered. Grain boundaries are assumed to be contigu-
ous with no grain boundary sliding because grain boundary sliding primarily occurs in very
high temperatures and creep applications [54, 55]. Transformation to HCP ε-martensite
is neglected because it is primarily observed in high Mn and austenitic steels, rather than
QP steel [126]. The derived constitutive models neglect the effects of strain-gradients on
material behaviour and hardening [56]. The model is assumed to have no initial stresses
throughout the material due to the difficulty of determining the initial internal stresses and
consequent lack of experimental data. Finally, all grains of the same phase are assumed to
have the same chemistry and material properties. As such, no distinction is made between
film and blocky RA grains.

This research is expected to apply to QP steels under realistic temperatures and strain-
rates. While this can include temperatures between −40 °C and an underhood temperature
of 150 °C [127], this work will be restricted to −10 °C and 85 °C where experimental data
exists for QP materials [53]. This work will also be restricted to strain rates between
5× 10−4 s−1 and 200 s−1 where QP steel experimental data exists [53]. Finally, the model
is calibrated solely to uniaxial tension testing data due to the availability of experimental
data [53].
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4 A Coupled Thermomechanical Crystal Plasticity

Model Applied to Quenched and Partitioned Steel1

4.1 Introduction

Various crystal plasticity constitutive models for steels incorporating the TRIP ef-
fect have been proposed. Cherkaoui et al. [115, 116] and Petit et al. [42] developed a
rate-independent crystal plasticity framework that used a stress-based, thermodynami-
cally consistent transformation criteria and an Eshelby [101] homogenization scheme with
an evolving volume fraction to model the TRIP effect. Turteltaub and Suiker [110, 118],
Tjahjanto et al. [119, 128], and Yadegari et al. [109] proposed an alternate rate-dependent
framework where the TRIP effect is again modelled using a stress-based, thermodynami-
cally consistent transformation criteria. Lee et al. [95] developed a rate-dependent model
where the TRIP effect is captured via a probability of transformation at shear band in-
tersection sites where the accumulated slip on slip planes determined the shear band in-
tersection volume fraction. Ma and Hartmaier [120] developed a model where the TRIP
effect is assisted by stress and strain using thermodynamic arguments, including additional
terms for the TRIP hardening. Park et al. [41] proposed a rate-independent framework
wherein the TRIP effect is modelled via an empirical evolution law, which also focused
on a single temperature. While these last three frameworks offer exceptional promise, no
work has been presented which has demonstrably captured temperature dependence of
transformation and provides a constitutive equation for temperature evolution.

The interactions between different grains and phases in the complex microstructure
present in TRIP and QP steels can be either approximated using homogenization tech-
niques or directly captured using a representative volume element (RVE) solved with the
finite element method (FEM) [40]. While the microstructural morphology is significant for
QP steel [43], many works which use FEM simulations neglect the morphology, instead as-
signing orientations and phases randomly such that bulk microstructural information (e.g.,
the texture of each phase and phase volume fraction) is well captured [41, 120, 129–131].
While some RVE based models have incorporated aspects of thermal modelling [95, 120], to
the author’s knowledge, no method for incorporating general thermal boundary conditions

1The contents of this chapter have been adapted from:

D. S. Connolly, C. P. Kohar, W. Muhammad, L. G. Hector Jr., R. K. Mishra, K. Inal,
A Coupled Thermomechanical Crystal Plasticity Model Applied to Quenched and Par-
titioned Steel, International Journal of Plasticity 103 (2020), 39-66, available online at
https://doi.org/10.1016/j.ijplas.2020.102757
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into RVE models have been proposed. This is not trivial because the thickness of the RVE
is not necessarily identical to the full specimen.

In this chapter, the stress and martensitic transformation response of a QP1180 steel
alloy are characterized using in-situ High Energy X-ray Diffraction (HEXRD) uniaxial ten-
sion experiments. The initial microstructure is characterized using Electron Backscatter
Diffraction (EBSD) and Scanning Electron Microscope (SEM) data. A novel thermo-
dynamically consistent rate-dependent crystal plasticity formulation simulates the large
deformation behaviour of QP steels that exhibit the TRIP effect. The TRIP effect is cap-
tured through a martensite variant selection and evolution scheme governed by a driving
force that accounts for various effects (e.g. applied stress, orientation temperature, stress
state, and martensite surface energy). This proposed model will be one of the first con-
stitutive models, if not the first, suitable for a range of strain-rates and temperatures,
which also includes coupling between plastic slip and transformation. A thermodynam-
ically consistent constitutive model is presented for the ferrite and tempered martensite
phases to allow for a unified model to capture multi-phase materials, such as QP steel.
These constitutive models are implemented into a thermo-mechanical Crystal Plasticity
(CP) Finite Element Method (FEM) formulation to study the effect of texture, phase mor-
phology and temperature on the bulk material properties of QP1180 steel. A new method
for incorporating thermal boundary conditions in CPFEM models is proposed. Interrupted
mechanical conditions are used to emulate the regular pauses in experimental deformation
during in-situ uniaxial tension HEXRD experiments. This FEM model is used in con-
junction with the experimental data and constraints on thermal behaviour to calibrate the
constitutive model. Non-interrupted models are generated using isothermal, adiabatic, and
general thermal boundary conditions. These models are used to analyze, for the first time,
the effect of thermal boundary conditions on thermo-mechanical behaviour and to compare
interrupted and non-interrupted mechanical conditions. Additional non-interrupted cases
are simulated for elevated strain-rates and initial temperatures for adiabatic, isothermal,
and general thermal conditions to analyze these effects on the predicted stress, RA, and
temperature evolution.

4.2 Experimental Characterization

A commercially available QP1180 sheet metal alloy with a nominal thickness of 1.14mm
was characterized to generate the experimental data necessary for calibrating the numerical
model. Table 4.1 lists the chemical composition of the as-received material.
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Table 4.1: Chemical composition (wt. %) of as-received QP1180 sheet metal alloy.

C Mn Si Al Cr Ni Mo P N S Fe

QP1180 0.19 2.74 1.67 0.05 0.007 0.004 0.002 0.0006 0.0003 0.0001 Bal

The bulk stress and RA evolution response were characterized using an in-situ uniax-
ial tension test with HEXRD using the 11-ID-C beamline at the Advanced Photon Source
(APS) at Argonne National Laboratory. Sub-sized dog-bone shaped tensile specimens with
a gauge section of 10 mm × 3.18 mm were tested under uniaxial tension with a constant
crosshead speed of 10 µm s−1, which corresponds to a nominal strain rate of 8× 10−4 s−1.
Detailed specimen geometry can be found in [40]. Compliance correction of the load-
crosshead displacement was used to calculate the true stress vs. true strain response [15].
The experiment was interrupted at 100 µm increments of crosshead displacement to record
Debye rings and load measurements. Following the techniques outlined in Hu et al. [40]),
the Debye rings were post-processed to obtain the retained austenite vs. true strain re-
sponse. Three repeats were performed in the rolling direction (RD) and transverse direction
(TD). Fig. 4.1(a) presents the stress-strain response for all experiments. This showed ex-
cellent repeatability under uniform elongation with a standard deviation of 7.1 MPa (0.5%)
and 7 MPa (0.5%) for RD and TD experiments at 15% strain. Minimal stress anisotropy
is observed, with a difference of 23 MPa (1.6%) between average RD and TD responses.
Fig. 4.1(b) presents the RA evolution response for all experiments. This showed excellent
repeatability under uniform elongation with a standard deviation of 0.21% RA and 0.17%
RA for RD and TD experiments at 15% strain. Minimal transformation anisotropy is
observed, with a difference of 0.1% RA at 8% strain and 0.8% RA at 15% strain. The
RA evolution response measurements began to diverge after uniform elongation ( 15%
true strain) because the photon beam could not always be centred around the localization
region.

Next, electron backscatter diffraction (EBSD) measurements using a field emission
Nova NanoSEM equipped with a TSL EBSD camera were used to characterize the initial
microstructure. An overall scan area of 75 µm× 75 µm with a step size of 100 nm and was
used for the EBSD measurements. Fig. 4.2(a) and Fig. 4.2(b) show the EBSD orientations
and phase map, respectively. Phases in Fig. 4.2(b) are categorized into face-centred cubic
RA and body-centred (BC) groups. However, it is difficult to distinguish between body-
centred cubic (BCC) ferrite, body-centred tetragonal (BCT) martensite, and any bainite
present in the material. Nevertheless, the initial volume fraction of RA measured via EBSD
and HEXRD was approximately 12.9% and 14.3%, respectively. The discrepancy between
these two methodologies can be attributed to the difficulty in fully resolving film-type
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(a) (b)

Fig. 4.1: (a) Stress vs. strain and (b) retained austenite vs strain response for all
experiments of QP1180 sheet.

RA from EBSD measurements [53] and the HEXRD method’s ability to resolve the RA
variation through the thickness [132]. Fig. 4.3(a) and Fig. 4.3(b) present the recalculated
RA and BC pole figures, which were generated from the EBSD data using the MTEX
analysis software [133]. Both the RA and BC pole figures show low intensities (1.3 and 2.1
max intensity), which indicates that the material should have very little anisotropy; this
is consistent with the low stress and transformation anisotropies observed from the in-situ
HEXRD experiments shown in Fig. 4.1. Distinguishing the BCC phases’ distribution on
the EBSD can be determined through scanning electron microscopy (SEM) measurements
in conjunction with an EBSD Image Quality (IQ) map. First, the phase volume fraction
can be experimentally obtained by performing SEM measurements of the material. Each
sample was prepared using standard metallography techniques and etched using a 3% nital
solution. Fig. 4.4 presents the SEM image obtained for the material. This figure shows
distinct phases of ferrite, blocky RA, and a mixture of film-type RA and martensite. No
bainite phase was observed. Through image analysis techniques, a ferrite volume fraction
of 20% was obtained for this material, which agrees well with existing literature [132, 134].

Following the methodology presented in Petrov et al. [135] and Santofimia et al. [136],
the EBSD IQ map, shown in Fig. 4.5(a), was used to distinguish the BC phases in the
EBSD map in Fig. 4.2(b). Fig. 4.5(b) shows the processed EBSD phase map with FCC
RA, BCC ferrite, and BCT martensite. After normalizing the IQ, a cut-off value of 0.37
was chosen to ensure that the EBSD phase map yielded the 20% ferrite volume fraction

46



(a) (b)

Fig. 4.2: (a) EBSD orientation and (b) EBSD phase map of QP1180 sheet.

Table 4.2: Experimental SEM phases.

Ferrite Austenite Martensite

QP1180 Phase Fractions [%] 20.0 12.9 67.9

obtained from the SEM measurement. Table 4.2 summarizes the volume fraction of the
individual phases measured in the QP1180 sheet.

4.3 Constitutive Model Formulation

This section details a constitutive model formulation used to simulate the evolution in
temperature, stress, and RA fraction for a QP steel. This model will apply to both room
temperature and elevated temperatures and at any strain rate. The constitutive model
follows a thermodynamically consistent formulation where deformation modes (crystal-
lographic slip and transformation) are conceptualized as thermodynamic fluxes with an
associated driving force [108, 109, 137, 138]. These thermodynamic fluxes are then related
to the driving forces through constitutive relationships formally called the kinetics func-
tions. RA’s crystal lattice structure is a face-centred cubic (FCC) structure, while ferrite
has a body-centred cubic (BCC) structure. Although tempered martensite generally fol-
lows a body-centred tetragonal (BCT), low carbon concentration in tempered martensite
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(a)

(b)

Fig. 4.3: (a) Retained austenite and (b) body-centred pole figure of QP1180 sheet.

structure caused by diffusion in RA results in tempered martensite having a BCC struc-
ture. Nevertheless, transformed martensite from RA has a BCT structure caused by the
high carbon concentration in RA. Given the different lattice structures and consequent ma-
terial behaviours, each phase requires its own distinct calibrated constitutive model. The
derivation and incremental formulation of the constitutive model used in this work are
presented in five sections. Section 4.3.1 outlines a general framework for the deformation
kinematics and governing elastic constitutive equation for a material with the austenite
to martensite transformation plasticity mechanism. Deformation is assumed to occur due
to thermal, elastic, and inelastic stretching. Inelastic stretching comprises plastic motion
of dislocations along slip planes (plastic slip) and transformation along transformation
systems. The Asaro and Needleman [107] formulation that describes plastic slip as the
shearing along slip systems is employed in this study. Each crystal structure has its own
set of active slip systems, α, that are defined by a shear plane normal, m(α) and shear
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Fig. 4.4: SEM image of QP1180 sheet.

(a) (b)

Fig. 4.5: (a) EBSD Image Quality and (b) processed EBSD phase map.

direction s(α) for each slip system. A list of the shear plane normal and directions are
presented in Appendix A. Section 4.3.2 combines the deformation kinematics and elastic
constitutive equation with thermodynamic arguments to derive driving forces for plastic
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slip and transformation. This formulation follows the thermodynamic framework outlined
in Turteltaub and Suiker [110], Tjahjanto et al. [119], and Yadegari et al. [109]. Sec-
tion 4.3.3 provides specific details about modelling the retained austenite to transformed
martensite phase and the choices of transformation and slip systems, kinetics functions,
and the elastic constitutive equation. Section 4.3.4 details a BCC constitutive model that
is a simplification of the general constitutive framework presented in Sections 4.3.1 and
4.3.2, which is a commonly used model for ferrite and tempered martensite [41, 139, 140].
Fig. 4.6 gives a flowchart summarizing this derivation. Finally, Section 4.3.5 derives an
incremental formulation based on the rate-tangent scheme [141], which is appropriate for
large time increments.

Fig. 4.6: Flowchart of constitutive model derivation.

4.3.1 Deformation Kinematics and Elastic Constitutive Model

Following Clayton [108], a multiplicative decomposition of the deformation gradient,
F, is assumed

F = FeFθFin (4.1)

where Fe, Fθ, and Fin represent the kinematics of elasticity and rigid body motion, thermal
deformation, and all inelastic deformation, respectively. Fig. 4.7 illustrates this decom-
position where B0, Bin, Bθ and B are the undeformed, inelastically deformed, thermally
deformed, and fully deformed configurations, respectively.
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Fig. 4.7: Deformation gradient decomposition.

The velocity gradient, L, is defined by the deformation gradient and can be decomposed
into an elastic, Le, thermal, Lθ, and inelastic, Lin, velocity gradient respectively, such that

L = ḞF−1 = Le + Lθ + Lin (4.2)

Le = ḞeF
−1
e (4.3)

Lθ = FeḞθF
−1
θ F−1

e (4.4)

Lin = FeFθḞinF
−1
in F−1

θ F−1
e (4.5)

Kalidindi [142] first proposed that the velocity gradient could be decomposed into individ-
ual components representing each constituent inelastic deformation mode. He used this
assumption to describe the deformation behaviour of twinning in magnesium for crystal
plasticity calculations. Lee et al. [95] proposed a similar approach to represent the defor-
mation of transformation-induced plasticity in steel. These modes are slip plasticity and
transformation induced plasticity, represented by Lp and Ltr respectively, such that
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Lin = Lp + Ltr (4.6)

This is justified by the underlying assumption that deformation from slip and transforma-
tion deformation should be defined in the crystal basis, and therefore contribute to the
same velocity gradient component.

The velocity gradient, L, can also be decomposed in symmetric and skew-symmetric
components D and Ω, which in turn can be decomposed into elastic, thermal, dislocation
plasticity and transformation plasticity strain rate components

D =
1

2

(
L + LT

)
= De + Dθ + Dp + Dtr (4.7)

Ω =
1

2

(
L− LT

)
= Ωe + Ωθ + Ωp + Ωtr (4.8)

The thermal strain and spin rates are defined as

Dθ = AA(ξ)θ̇I (4.9) Ωθ = 0 (4.10)

where θ̇ is the rate of change of temperature, I is the 2nd order identity tensor, and AA
is the thermal expansion coefficient that is a function of the vector of martensite volume
fraction, ξ. The thermal expansion coefficient is given by

AA(ξ) = ξ(0)A
(0)
A +

Ntr∑
α=1

ξ(α)A
(α)
A (4.11)

where ξ(α) is the volume fraction of a martensite variant α, Ntr is the number of martensitic
variants, ξ(0) is the RAVF given by ξ(0) = 1 −

∑Ntr
α=1 ξ

(α), A
(0)
A is the austenite thermal

expansion coefficient and A
(α)
A is the thermal expansion coefficient for martensite variant

α.

As mentioned earlier, slip plasticity is assumed to occur solely due to plastic shearing
along slip systems [107]. Each shear plane normal and direction can be distorted, such
that

s(α)
e = FeFθs

(α) (4.12) m(α)
e = s(α)F−1

θ F−1
e (4.13)

where s
(α)
e and m

(α)
e are the fully deformed configuration of the shear plane direction and

normal, respectively. As in Yadegari et al. [109], plastic slip is assumed not to occur in
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newly transformed martensite. The plastic strain and spin rate from dislocation plasticity
are given by

Dp =

Np∑
α=1

γ̇(α)P(α)
p (4.14) Ωp =

Np∑
α=1

γ̇(α)W(α)
p (4.15)

where γ̇(α) is the plastic shear rate on slip system α, Np is the number of slip systems, and
P(α)
p and W(α)

p are the symmetric and skew-symmetric slip system tensors defined by

P(α)
p =

s
(α)
e ⊗m

(α)
e + m

(α)
e ⊗ s

(α)
e

2
(4.16) W(α)

p =
s

(α)
e ⊗m

(α)
e −m

(α)
e ⊗ s

(α)
e

2
(4.17)

Transformation induced plasticity is assumed to occur solely by plastic deformation
along transformation systems that are characterized by a normalized deformation vector,
b(α), and habit plane normal, d(α), for each transformation system α. Unlike dislocation
plasticity, b(α) and d(α) are not orthogonal, resulting in significant inelastic volumetric
strain. Similar to the plastic slip, the transformation systems are subjected to thermal,
elastic and rigid body deformations, such that

b(α)
e = FeFθb

(α) (4.18) d(α)
e = d(α)F−1

θ F−1
e (4.19)

where b(α)
e and d(α)

e are the fully deformed configurations. The transformation plasticity
strain rate, Dtr, and spin rate, Ωtr, tensors are defined as

Dtr =
Ntr∑
α=1

ξ̇(α)P
(α)
tr (4.20) Ωtr =

Ntr∑
α=1

ξ̇(α)W
(α)
tr (4.21)

where ξ̇(α) is the transformation rate, Ntr is the number of transformation systems, and
P

(α)
tr and W

(α)
tr are the symmetric and skew-symmetric transformation system matrices on

the transformation system α defined by

P
(α)
tr = γ̂tr

b(α)
e ⊗ d(α)

e + d(α)
e ⊗ b(α)

e

2
(4.22) W

(α)
tr = γ̂tr

b(α)
e ⊗ d(α)

e − d(α)
e ⊗ b(α)

e

2
(4.23)

where γ̂tr is the total deformation magnitude equal for all transformation systems. The
kinetic functions for plastic shear rate on a slip system, γ̇(α), and the transformation rate,
ξ̇(α), are defined as a function of a thermodynamic driving force and critical driving force,
such that
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γ̇(α) = γ̇(α)
(
f

(α)
p(A), g

(α)
p(A), ξ

(0)
)

(4.24) ξ̇(α) = ξ̇(α)
(
f

(α)
tr , g

(α)
tr , ξ

(0)
)

(4.25)

where f
(α)
p(A) and g

(α)
p(A) are the thermodynamic driving force and critical driving force for

plastic slip and f
(α)
tr and g

(α)
tr is the thermodynamic driving force and critical driving force

for transformation. Coupling between plastic slip and transformation can be incorporated
as part of these kinetics functions. Since γ̇(α) and represent the total slip and transformation
rates in the aggregate, they must be the product of the slip and transformation rates in the
RA phase and the current fraction of RA in the aggregate. The thermodynamic driving
forces are presented in Section 4.3.2.

The kinematic formulation outlined above is chosen instead of a multiplicative de-
composition of the deformation gradient (F = FeFθFpFtr ) used in Yadegari et al. [109]
and others to ensure the correct evolution of transformation systems with applied strain.
In this multiplicative decomposition scheme, the transformation velocity gradient (Ltr =
FeFθFpḞtrF

−1
tr F−1

p F−1
θ F−1

e ) implies that the transformation systems in the updated con-

figuration (b(α)
e = FeFθFpb

(α) and d(α)
e = d(α)F−1

p F−1
θ F−1

e ) must convect with plastic slip
in addition to elastic and thermal strains. This is unrealistic because the transformation
systems are expected to convect with the crystal lattice, and plastic slip strain does not
result in changes to the crystal lattice. Next, stress is assumed to follow a hyper-elastic
constitutive law

Se = CA (ξ) : Ee (4.26)

where Se is the second Piola-Kirchhoff stress, Ee is the elastic Green-Lagrange strain given
by Ee = (FTFe − I)/2, and CA is the 4th order elastic moduli tensor. The elastic moduli,
CA, are assumed to be a function of the martensite volume fractions ξ because transformed
martensite has different elastic properties than the parent austenite [110]. Eq. (4.26) is
expressed at the thermally deformed configuration. The elastic moduli, CA, are given as a
function of the overall thermal and transformation Jacobians Jθ and Jtr, such that

CA (ξ) =
C′A (ξ)

JθJtr
(4.27)

where the Jacobians evolve according to J̇θ = Jθtr (Lθ) and J̇tr = Jtrtr (Ltr), and

C′A (ξ) = J
(0)
θ ξ(0)C(0) + (1 + δtr)

Ntr∑
α=1

J
(α)
θ ξ(α)C(α) (4.28)
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where ξ(0) is the RAVF, ξ(α) is the martensite volume fraction, C(0) is the 4th order elastic
moduli of austenite, C(α) is the elastic moduli for a transformation system α, and δtr is the
volumetric dilation of complete martensite transformation given by δtr = b(α) ·d(α). Next,
the total time derivative of Eq. (4.26) is rearranged, giving the elastic Jaumann derivative
of the Kirchhoff stress

O
τ e = τ̇ + τΩe −Ωeτ

= CA(e) (ξ) : De +
Ntr∑
α=1

(
Fe

[(
J

(α)
θ (1 + δtr)C(α) − J (0)

θ C(0)
)

: Ee

]
FT
e

)
ξ̇(α)

(4.29)

where CA(e) is the elastic moduli tensor in the fully deformed configuration defined by

CA(e)(abcd) = C′A(ijkl)Fe(ai)Fe(bj)Fe(ck)Fe(dl) (4.30)

It is assumed that τ : D and D : τ are small relative to τ̇ . The total Jaumann rate of the
Kirchhoff stress is

O
τ = τ̇ + τΩ−Ωτ =

O
τ e −

Np∑
α=1

B(α)
p γ̇(α) −

Ntr∑
α=1

B
(α)
tr ξ̇

(α) (4.31)

where

B(α)
p = W(α)

p τ + τW(α)
p (4.32) B

(α)
tr = W

(α)
tr τ + τW

(α)
tr (4.33)

Substituting Eqs. (4.7), (4.9), (4.14), (4.20), and (4.29) into (4.31) yields

O
τ = CA(e) (ξ) : De − AA(ξ)θ̇

[
CA(e) : I

]
−

Np∑
α=1

R
(α)
p(A)γ̇

(α)

−
Ntr∑
α=1

(
R

(α)
tr − Fe

[(
J

(α)
θ (1 + δtr)C(α) − J (0)

θ C(0)
)]

FT
e

)
ξ̇(α)

(4.34)

where R(α)
p and R

(α)
tr are given by
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R(α)
p = CA(e) (ξ) : P(α)

p + B(α)
p (4.35) R

(α)
tr = CA(e) (ξ) : P

(α)
tr + B

(α)
tr (4.36)

The four terms in Eq. (4.34) represent an elastic trial stress and the thermal, plastic slip,
and martensitic transformation correction terms.

4.3.2 Thermodynamic Driving Forces

As presented in the previous section, the rate of plastic slip and transformation is
governed by thermodynamic driving forces derived from an energy balance law. The energy
balance law in the undeformed configuration is presented as

ρ0ė+ ∇ · q− ρ0r − S : Ė = 0 (4.37)

where ρ0 is the density of the material in the undeformed configuration, ė is the internal
energy density rate of change, ∇ · q is the divergence of the heat flux, r is any applied
volumetric heating (e.g., electromagnetic), S is the second Piola-Kirchhoff stress and Ė
is the Green-Lagrange strain rate. These terms represent the change in internal energy
of the material, the energy change due to heat flux, the energy change due to volumetric
heating, and the energy change due to external work. The second law of thermodynamics
is satisfied by enforcing that the energy dissipation rate, D, is everywhere non-negative
[110]

D = −ρ0ė+ ρ0θη̇ + S : Ė− ∇θ · q
θ
≥ 0 (4.38)

where η̇ is the rate of change of entropy density, and θ is the temperature. The dissipation
rate can be decomposed into three components

D = −ρ0ė+ ρ0θη̇ + S : Ė− ∇θ · q
θ

= Dp + Dtr + Dθ ≥ 0 (4.39)

where Dp, Dtr, and Dθ are the dissipations associated with dislocation motion, transfor-
mation, and heat conduction, respectively. These are given by

Dp =

Np∑
α=1

fpγ̇
(α) (4.40) Dtr =

Ntr∑
α=1

ftrξ̇
(α)γ̇(α) (4.41) Dθ = −∇ · q

θ
(4.42)

where f
(α)
p and f

(α)
tr are the driving forces for dislocation plasticity and transformation
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plasticity, respectively. These kinetics functions are assumed that the material is strongly
dissipative, i.e.

Dp ≥ 0 Dtr ≥ 0 Dθ ≥ 0 (4.43)

The entropy density can be separated into four components

η = ηe + ηtr + ηp + ηm (4.44)

where ηe is the thermal part of the reversible entropy density, ηtr is the transformation
entropy density, ηp is the dislocation motion entropy density and ηm is the thermomechan-
ical coupling part of the reversible entropy density. The thermal component of reversible
entropy density is defined as [110]

ηe = hA (ξ) ln

(
θ

θT

)
+ ηT (4.45)

where hA is the specific heat capacity of the aggregate material, θT is the temperature at
which transformation spontaneously occurs in the absence of applied stress or transforma-
tion energy barriers, and ηT is the entropy density of the material at the transformation
temperature θT . The aggregate specific heat capacity is calculated as

hA (ξ) = h(0)ξ(0) +
Ntr∑
α=1

h(α)ξ(α) (4.46)

where h(0) is the specific heat capacity of austenite and h(α) is the specific heat capacity
of transformation system α. The rate of the transformation entropy density component is
defined as [110]

η̇tr =
Ntr∑
α=1

ξ̇(α)λ
(α)

θT
(4.47)

where λ(α) is the latent heat of transformation for transformation system α. Next, the rate
of the entropy density dislocation motion component is [119]

η̇p =

Np∑
α=1

γ̇(α)φ
(α)
A (4.48)
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where φ
(α)
A is the entropy change per unit slip on the slip system α and is assumed to be

constant. Now, the mechanical coupling component of the reversible entropy density is a
function of the elastic Green-Lagrange strain Ee, the thermal component of the reversible
entropy density ηe and the volume fractions of martensite variants ξ, such that ηm =
ηm(Ee, ηe, ξ). The specific formulation of the mechanical coupling component of entropy is
derived through additional constraints on the dissipation rate. Using the decomposition of
entropy and the Legendre transformation between the internal energy and the Helmholtz
free energy, defined by Ψ = e− θηe, the dissipation rate can be rewritten as

D = −ρ0Ψ̇ + ρ0θ̇ηe + ρ0θη̇m + ρ0θη̇p + ρ0θη̇tr + S : Ė− ∇θ · q
θ

(4.49)

The Helmholtz free energy and total time derivative can be separated into four contribu-
tions, such that

Ψ = Ψm + Ψth + Ψs + Ψd + Ψ∞ (4.50)

where Ψm is the contribution of bulk elastic strain energy, Ψth is thermal energy, and Ψs

is the free energy associated with the creation of interface surfaces between the marten-
site variants and the RA. In Yadegari et al. [109], Ψd is defined as the defect energy that
is related to the microstrain, βA, that is generated from dislocation accumulation in the
austenite/martensitic regions in the material, such that βA = βA(γ). However, an ad-
ditional defect is produced from the Greenwood-Johnson [72] effect, where an additional
plastic strain is generated during transformation in both austenite and the newly formed
martensite due to accommodation of the local stress field. As such, this work assumes that
the microstrain is a function of both plastic slip and martensite volume fraction, such that
βA = βA(γ,σ). Finally, Ψ∞ is the free energy contribution not categorized as surface or
defect-free energy. Substituting the total time derivatives of the Helmholtz free energy Ψ,
the microstrain measure βA and the mechanical coupling component of entropy density,
Eqs. (4.45), (4.47), and (4.48) into Eq. (4.49), rewriting S : Ė in terms of τ and D, and
using Ėe = FT

e DeFe gives Eq. (4.51).
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D =− ρ0

[
Fe

∂Ψ

∂Ee

FT
e : De +

∂Ψ

∂θ
θ̇ +

∂Ψ

∂βA

(
Np∑
α=1

∂βA
∂γ(α)

γ̇(α) +
Ntr∑
α=1

∂βA
∂ξ(α)

ξ̇(α)

)]

+ ρ0θ

[
Fe
∂ηm
∂Ee

FT
e : De +

∂ηm
∂ηe

∂ηe
∂θ

θ̇ +
Ntr∑
α=1

[
∂ηm
∂ξ(α)

+
∂ηm
∂ηe

∂ηe
∂ξ(α)

]
ξ̇(α)

]

+ ρ0θ

[
Ntr∑
α=1

ξ̇(α)λ
(α)

θT

]
+ ρ0θ

[
Np∑
α=1

γ̇(α)φ
(α)
A

]
− ρ0θ̇

[
hA (ξ) ln

(
θ

θT

)
+ ηT

]
+ τ : [De + Dθ + Dp + Dtr]−

∇ · q
θ

(4.51)

where w
(α)
p(A) = ∂βA

∂γ(α)
and w

(α)
tr = ∂βA

∂ξ(α)
. Substituting Eq. (4.9), (4.14) and (4.20) into Eq.

(4.51) and isolating for De, θ, γ and ξ gives

D =

[
τ − ρ0Fe

∂Ψ

∂Ee

FT
e + ρ0θFe

∂ηm
∂Ee

FT
e

]
: De

+

[
AA (ξ) [τ : I]− ρ0

∂Ψ

∂θ
+ ρ0θ

∂ηm
∂ηe

∂ηe
∂θ
− ρ0

[
hA (ξ) ln

(
θ

θT

)
+ ηT

]]
θ̇

+
Ntr∑
α=1

[
τ : P

(α)
tr + ρ0θ

[
∂ηm
∂ξ(α)

+
∂ηm
∂ηe

∂ηe
∂ξ(α)

]
+ ρ0θ

λ(α)

θT
− ρ0

∂Ψ

∂βA
w

(α)
tr

]
ξ̇(α)

−
Ntr∑
α=1

[
ρ0

∂Ψ

∂ξ(α)

]
ξ̇(α) +

Np∑
α=1

[
τ : P(α)

p + ρ0θφ
(α)
A − ρ0

∂Ψ

∂βA
w

(α)
p(A)

]
γ̇(α) − ∇θ · q

θ

(4.52)

The five terms contained in Eq. (4.52) represent the elastic, thermal rate, transformation,
plastic slip, and heat transfer dissipation rates. An exact dissipation rate requires exact
forms of the Helmholtz free energy Ψ and the thermomechanical coupling entropy ηm
is required to determine the plastic slip and transformation driving forces. Following the
Coleman and Noll [113] procedure, the terms multiplied by De and θ̇ must vanish, resulting
in the following additional constraints

ρ0
∂Ψ

∂Ee

= JtrJθSe + ρ0θ
∂ηm
∂Ee

(4.53)
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ρ0
∂Ψ

∂θ
= AA (ξ) [τ : I] + ρ0θ

∂ηm
∂ηe

∂ηe
∂θ
− ρ0

[
hA (ξ) ln

(
θ

θT

)
+ ηT

]
(4.54)

Integrating Eq. (4.53) with respect to the elastic Green-Lagrange strain Ee yields the bulk
strain energy contribution

Ψ =
C′A (ξ) :: (Ee ⊗ Ee)

2ρ0

+ θηm + Ψth + Ψs + Ψd + Ψ∞ (4.55)

where the remaining terms are dependent only on temperature θ, martensite volume frac-
tions ξ, and microstrain βA. Substituting Eq. (4.54) into Eq. (4.55) and simplifying
gives

ηm =
AA (ξ)

ρ0

(τ : I)−
[
∂Ψth

∂θ
+ hA (ξ) ln

(
θ

θT

)
+ ηT

]
(4.56)

Next, the thermomechanical coupling entropy density, etam, should disappear when no
stress is applied. This constraint implies that

∂Ψth

∂θ
+ hA (ξ) ln

(
θ

θT

)
+ ηT = 0 =⇒ ∂Ψth

∂θ
= −hA (ξ) ln

(
θ

θT

)
− ηT = −ηe (4.57)

Therefore, the thermomechanical coupling part of the entropy density is given by

ηm =
AA (ξ)

ρ0

(τ : I) (4.58)

Now, integrating Eq. (4.57) for temperature, θ, leads to

Ψth = −hA (ξ) θ

(
ln

(
θ

θT

)
− 1

)
− ηT θ = −ηeθ + hA (ξ) θ (4.59)

where Φs,Φd and Φ∞ are the Helmholtz free energy components dependent only on marten-
site volume fractions ξ and microstrain βA. Tjahjanto et al. [119] showed that under certain
assumptions that Ψd is given by

Ψd =
ωAµ

′
A (ξ)

2ρ0

β2
A (4.60)

where ωA is a scalar relating changes in microstrain to changes in internal energy and
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µ′A (ξ) is the overall elastic shear modulus of the crystal given by

µ′A (ξ) = J
(0)
θ ξ(0)µ

(0)
A + (1 + δT )

Ntr∑
α=1

J
(α)
θ ξ(α)µ

(α)
A (4.61)

where µ
(0)
A and µ

(α)
A are the elastic shear moduli of the austenite phase and the martensite

variant α, respectively. Next, the surface energy, Φs, is represented as

Ψs =
Ntr∑
α=1

χ

`0ρ0

(
1− ξ(α)

)
ξ(α) (4.62)

where χ is the interfacial energy per unit area and `0 is the ratio between the mean initial
volume and surface area of the martensite variants. Finally, the remaining free energy
contribution, Ψ∞, represents the energy barrier for transformation at the transformation
temperature θT with no applied stress, microstrain or pre-existing martensite, such that

Ψ∞ =
Ntr∑
α=1

λ(α)ξ(α) − hA (ξ) θT (4.63)

Therefore, the total free energy is defined as

Ψ =
C′A (ξ) :: (Ee ⊗ Ee)

2ρ0

+
AA (ξ)

ρ0

θ (τ : I) +
ωAµ

′
A (ξ)

2ρ0

β2
A

+
Ntr∑
α=1

[
χ

`0ρ0

(
1− ξ(α)

)
+ λ(α)

]
ξ(α) − ηeθ + hA (ξ) (θ − θT )

(4.64)

Thus, the driving force for plastic slip is defined as

f
(α)
p(A) = τ : P(α)

p − ωAw
(α)
p(A)µ

′
A (ξ) βA + ρ0θφ

(α)
A (4.65)

The driving force for transformation is defined as
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f
(α)
tr =τ : P

(α)
tr + θAA (ξ)

(
Fe

[(
J

(0)
θ C(0) − (1 + δT )J

(α)
θ C(α)

)
: Ee

]
FT
e

)
: I

+
χ

`0

[
2ξ(α) − 1

]
+ θ

[
A(0) − A(α)

]
(τ : I) + ρ0

λ
(α)
T

θT
[θ − θT ]

+ ρ0

[
h(0) − h(α)

] [
θ − θT − ln

(
θ

θT

)
θ

]
+
ωA
2

[
J

(0)
θ µ(0) − J (α)

θ µ(α)
]
β2
A

− ωAw(α)
tr µ

′
A (ξ) βA

(4.66)

Finally, the temperature evolution is obtained by substituting Eq. (4.64) into Eq. (4.37),
using the Legendre transformation and rearranging to produce

ρ0hA (ξ) θ̇ = ρ0r −∇ · q−Me(A) : De +

Np∑
α=1

M
(α)
p(A)γ̇

(α) +

Np∑
α=1

M
(α)
tr ξ̇

(α) (4.67)

where

Me(A) = 4θAA (ξ) τ + θAA (ξ) Fe [I : C′A (ξ)] FT
e (4.68)

M
(α)
p(A) = τ : P(α)

p − ωAw
(α)
p(A)µ

′
A (ξ) βA (4.69)

M
(α)
tr(A) =τ : P

(α)
tr + θAA (ξ)

(
Fe

[(
J

(0)
θ C(0) − (1 + δT )J

(α)
θ C(α)

)
: Ee

]
FT
e

)
: I

+
1

2

[
J

(0)
θ C(0) − (1 + δT )J

(α)
θ C(α)

]
:: [Ee ⊗ Ee] +

χ

`0

[
2ξ(α) − 1

]
+
ωA
2

[
J

(0)
θ µ(0) − J (α)

θ µ(α)
]
β2
A + θ

[
A

(0)
A − A

(α)
A

]
(τ : I)

− ωAw(α)
tr µ

′
A (ξ) βA − ρ0λ

(α)
T + ρ0

[
h(0) − h(α)

]
[θ − θT ]

(4.70)

4.3.3 RA to Martensite Specific Constitutive Functions

4.3.3.1 Martensite Variant Selection

The RA transformation systems are modelled using the theory of martensitic transfor-
mation [143, 144], initially proposed for use in crystal plasticity by Turteltaub and Suiker
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[110, 118]. This theory assumes that three possible BCT martensite sub-variants combine
to form 24 possible twinned martensite variants. It is well suited for modelling QP steels
because twinned martensite is the primary martensite morphology formed during transfor-
mation in QP steel [40, 43, 65]. Each twin is made of two sub-variants where the volume
fractions and orientations of each twin sub-variant are determined by satisfying compati-
bility conditions between the sub-variants. Compatibility between the sub-variants is

R(α)U(β1) −U(β2) = a(α) ⊗ n(α) (4.71)

where U(β1) and U(β2) are the stretch tensors of sub-variants β1 and β2 relative to the
RA phase, R(α) is the relative orientation between sub-variants β1 and β2 for transfor-
mation system α, and a(α) and n(α) are the twin shear vector and twin plane normal for
transformation system α. Note that the stretch tensors U(β1) and U(β2) are defined in an
intermediate martensitic basis related to the austenite basis by a Bain rotation. Next,
compatibility between the twinned structure and the RA phase is governed by

R
(α)
(
λ(α,β1)R(α)U(β1) − λ(α,β2)U(β2)

)
= b

(α) ⊗ d(α) (4.72)

where R
(α)

is the orientation between the twinned structure and the austenite phase, λ(α,β1)

and λ(α,β2) are the volume fraction of sub-variants β1 and β2 for transformation system α,

and b
(α)

and d(α) are the deformation vector and habit plane normal of transformation
system α. The volume fractions λ(α,β1) and λ(α,β2) are related to each other using volume
conservation given by λ(α,β1)+λ(α,β2) = 1. The magnitude of the deformation vector is γ̂tr =

‖b(α)‖ and the normalized deformation direction b(α)/γ̂tr. To solve these compatibility
equations, it is necessary to specify the stretch tensors of each sub-variant relative to the
parent RA phase. The stretch tensors of each sub-variant relative to the parent RA phase
is defined by

Uβ =

(√
2
aM

aA

)
I +

(
cM

aM
−
√

2
aM

aA

)
e

(β)
A ⊗ e

(β)
A (4.73)

where aM and cM are the lattice parameters of the BCT martensite sub-variant, aA is the

lattice parameter of the parent RA, and
{

e
(β)
A

}3

β=1
is an orthonormal basis aligned with

the cubic axes of the RA phase. It should be noted that the lattice parameters, aM , cM

and aA are dependent on the carbon content of the RA phase in the alloy, and thus are
alloy dependent.
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4.3.3.2 Elastic Constitutive Model for Transformed Systems

The coefficients of the elasticity tensors associated with each transformation variant
α, as expressed in the austenitic basis, can be found from the elasticity tensors of the
constituent martensite sub-variants using

C(α)
A(abcd) =λ(α,β1)E(β1)

ijkl Q̂
(α,β1)
ai Q̂

(α,β1)
bj Q̂

(α,β1)
ck Q̂

(α,β1)
dl

λ(α,β2)E(β2)
ijkl Q̂

(α,β2)
ai Q̂

(α,β2)
bj Q̂

(α,β2)
ck Q̂

(α,β2)
dl

(4.74)

where E(β1)
ijkl and E(β2)

ijkl are the coefficients of the elasticity tensors for sub-variants of a

transformation system β1 and β2, and Q̂
(α,β2)

and Q̂
(α,β1)

are the rotations between the
austenitic basis and the bases of sub-variants β1 and β2, as calculated for transformation
system α. The sub-variants rotation tensors in the austenitic basis are defined as

Q̂
(α,β1)

= R
(α)

R(α)R(β1)
? (4.75) Q̂

(α,β2)
= R

(α)
R(β2)
? (4.76)

where R(β)
? represents the rotation between the austenite basis and an intermediate

basis defined by the Bain rotation β. The rotation tensors Q̂
(α,β1)

and Q̂
(α,β2)

differ by
the rotation tensor R(α), which is the rotation between the martensite sub-variants. These
Bain rotations [66] are given by

R(1)
? =


1 0 0

0
√

2
2
−
√

2
2

0
√

2
2

√
2

2

 (4.77) R(2)
? =


√

2
2

0
√

2
2

0 1 0

−
√

2
2

0
√

2
2

 (4.78)

R(3)
? =


√

2
2
−
√

2
2

0
√

2
2

√
2

2
0

0 0 1

 (4.79)

Now, the elasticity tensor of an FCC RA crystal, C(0), and the BCT sub-variants, E(i),
are presented in Voigt notation
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E(1) =



κS4 κS3 κS3 0 0 0

κS3 κS1 κS3 0 0 0

κS3 κS2 κS1 0 0 0

0 0 0 κS6 0 0

0 0 0 0 κS5 0

0 0 0 0 0 κS5


(4.80)

E(2) =



κS1 κS3 κS2 0 0 0

κS3 κS4 κS3 0 0 0

κS2 κS3 κS1 0 0 0

0 0 0 κS5 0 0

0 0 0 0 κS6 0

0 0 0 0 0 κS5


(4.81)

E(1) =



κS1 κS2 κS3 0 0 0

κS2 κS1 κS3 0 0 0

κS3 κS3 κS4 0 0 0

0 0 0 κS5 0 0

0 0 0 0 κS5 0

0 0 0 0 0 κS6


(4.82)

C(0) =



κA1 κA2 κA2 0 0 0

κA2 κA1 κA2 0 0 0

κA2 κA2 κA1 0 0 0

0 0 0 κA3 0 0

0 0 0 0 κA3 0

0 0 0 0 0 κA3


(4.83)

where κS1 –κS6 are the elastic coefficients of the sub-variants and κA1 –κA3 are the elastic
coefficients for austenite.

4.3.3.3 Kinetics Functions for Dislocation Plasticity and Transformation

The dislocation plasticity kinetics function follows the power-law formulation [145]

γ̇(α) = ȧp(A)ξ
(0)sign

(
fp(A)

) ∣∣∣∣∣f
(α)
p(A)

g
(α)
p(A)

∣∣∣∣∣
1

mp(A)

(4.84)

where ȧp(A) is the reference dislocation plasticity shear rate, g
(α)
p(A) is the critical driving

force for dislocation plasticity on slip system α, and mp(A) is the dislocation plasticity
strain rate exponent. Yadegari et al. [109] proposed the following kinetic law

ξ̇(α) = ȧtr tanh

(
〈f (α)
tr − g

(α)
tr 〉

vtrg
(α)
tr

)
(4.85)
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where ȧtr is the reference transformation rate, g
(α)
tr is the critical driving force for trans-

formation, vtr is a viscosity-like parameter, and Macaulay brackets are used to prevent
reverse transformation. The primary disadvantage of this model is that the hyperbolic
tangent function saturates, ensuring that the maximum transformation rate under any
loading condition is ȧtr. This is in direct conflict with the experimental observations from
QP steels, wherein transformation rate scales with the applied strain-rate [53]. To address
this, a transformation kinetics function is proposed, in analogy to the work of Kalidindi
[142] and Lévesque et al. [99] (for modelling twinning in magnesium and titanium). This
law exhibits power-law type rate-sensitive behaviour and is given by:

ξ̇(α) = ȧtrξ
(0)

〈
f

(α)
tr

g
(α)
tr

〉 1
mtr

(4.86)

where ȧtr, g
(α)
tr are defined as in eq. (4.85) and mtr is the transformation rate exponent.

Since reversible transformation is not considered in this work, Macaulay brackets are used
to prevent transformation when f

(α)
tr is less than zero.

The dislocation plasticity critical driving force is defined using an initial value g0
p(A) for

all slip systems and governed by a rate of change law defined by

ġ
(α)
p(A) =

Np∑
β=1

q
(αβ)
p(A)hp(A)

∣∣γ̇(β)
∣∣+

Ntr∑
β=1

q(αβ)
c hcξ̇

(β) (4.87)

where q
(αβ)
p(A) and q

(αβ)
c are the dislocation plasticity and transformation latent hardening

matrices, and hp(A) and hc capture the dependency of the critical driving force on plastic
slip and transformation, respectively. Similar to the work presented in Ma and Hartmaier
[120], the transformation dependency term hc is introduced to capture the hardening of the
RA phase due to transformation induced RA plasticity caused by the Greenwood-Johnson
effect [72] and increased dislocation obstacles. The slip dependency function, hp(A), follows
a Chang-Asaro type hardening law [112]

hp(A) = hsp(A) +
(
h0
p(A) − hsp(A)

)
sech2

(
h0
p(A) − hsp(A)

gsp(A) − g0
p(A)

γa

)
(4.88)

γa =

Np∑
α=1

∫ t

0

∣∣γ̇(α)
∣∣ dt (4.89)
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where h0
p(A) and hsp(A) are the initial and saturation hardening rate, gsp(A) is the saturation

critical driving force, and γa is the accumulated absolute slip. The coupling of trans-
formation to slip hardening functions, hc, is also assumed to follow a Chang-Asaro type
hardening law

hc = hsc +
(
h0
c − hsc

)
sech2

(
h0
c − hsc
gsc − g0

c

ξa

)
(4.90)

ξa =
Ntr∑
α=1

∫ t

0

∣∣∣ξ̇(α)
∣∣∣ dt = 1− ξ(0) (4.91)

where h0
c and hsc are the initial and saturation hardening rate, g0

c and gsc are the initial
and saturation critical driving forces, and ξa is the amount of RA that has transformed.
The dislocation plasticity latent hardening matrix, q

(αβ)
p(A), assumes that the slip systems are

arranged with coplanar slip system sets {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, such that

q
(αβ)
p(A) =


A qp(A)A qp(A)A qp(A)A

qp(A)A A qp(A)A qp(A)A
qp(A)A qp(A)A A qp(A)A
qp(A)A qp(A)A qp(A)A A

 (4.92)

where and A is a 3×3 matrix of ones and qp(A) is the dislocation plasticity latent hardening

parameter. Next, it is assumed that q
(αβ)
c is an Np×Ntr matrix of ones. In a similar manner,

the critical transformation driving force uses an initial value g0
tr for all transformation

systems and a rate of change law

ġ
(α)
tr =

Ntr∑
β=1

q
(αβ)
tr htrξ̇

(β) (4.93)

where q
(αβ)
tr is the transformation latent hardening matrix, htr is the transformation critical

force hardening rate and q
(αβ)
tr is an Ntr × Ntr matrix of ones. The hardening rate htr is

governed by

htr = hstr +
(
h0
tr − hstr

)
sech2

(
h0
tr − hstr
gstr − g0

tr

γa

)
(4.94)

where h0
tr, h

s
tr, and gstr are the transformation initial hardening rate, saturation hardening
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rate, and saturation critical driving force, respectively.

Finally, a specific definition of the microstrain, βA, is given by [108, 119]

cAµ
′
A (ξ) βA =

1

Np

Np∑
α=1

g
(α)
p(A) (4.95)

where cA represents the interaction effect between dislocations. It should be mentioned
that this formulation differs from Yadegari et al. [109] by incorporating the dependence

of the critical driving force g
(α)
p(A) on the martensite volume fractions ξ. Thus, the specific

definitions of the derivatives of the microstrain function w
(α)
p = ∂βA

∂γ(α)
and w

(α)
tr = ∂βA

∂ξ(α)
are

given by

w(α)
p =

1

cAµ′A (ξ)Np

Np∑
β=1

q(αβ)
p hp(A)sign

(
γ̇(β)

)
(4.96)

w
(α)
tr =

1

cAµ′A (ξ)Np

Np∑
β=1

q(αβ)
c hc (4.97)

4.3.4 BCC Specific Constitutive Functions

The BCC crystal plasticity framework can be conceptualized as a simplification of the
RA crystal plasticity model where ξ = ξ̇ = 0 and ξ(0) = 1. The kinematics simplify such
that Lin = Lp and the thermal expansion coefficient becomes constant, AB. The total
Jaumann rate of the Kirchhoff stress becomes

O
τ = CB(e) : D− AB θ̇

[
CB(e) : I

]
−

Np∑
α=1

R
(α)
p(B)γ̇

(α) (4.98)

where CB(e)(abcd) = CB(ijkl)Fe(ai)Fe(bj)Fe(ck)Fe(dl), the elasticity matrix CB in Voigt notation

is related to κB1 , κB2 and κB3 as in Eq. (4.83), and R
(α)
p(B) is a simplification of Eq. (4.35).

Repeating the thermodynamic procedure in Section 4.3.2, the driving force for dislocation
slip is given by

f
(α)
p(B) = τ : P(α)

p − ωBw
(α)
p(B)µ

′
BβB + ρ0θφ

(α)
B (4.99)
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where µ′B is a constant input. The thermal change is given by

ρ0hB θ̇ = ρ0r −∇ · q−Me(B) : De +

Np∑
α=1

M
(α)
p(B)γ̇

(α) (4.100)

where Me(B) and M
(α)
p(B) are related to the BCC variables such that

Me(B) = 4θABτ + θABFe [I : CB] FT
e (4.101)

M
(α)
p(B) = τ : P(α)

p − ωBw
(α)
p(B)µ

′
BβB (4.102)

The kinetics function and the rate of change in the critical driving force ġ
(α)
p(B), which is

initially given by g0
p(B), is given by

γ̇(α) = ȧp(B)sign
(
fp(B)

) ∣∣∣∣∣f
(α)
p(B)

g
(α)
p(B)

∣∣∣∣∣
1

mp(B)

(4.103)

ġ
(α)
p(B) =

Np∑
β=1

q
(αβ)
p(B)hp(B)

∣∣γ̇(β)
∣∣ (4.104)

where the latent hardening matrix q
(αβ)
p(B) is given by [146]

q
(αβ)
p(B) = qp(B) +

(
1− qp(B)

)
δαβ (4.105)

where qp(B) is the latent hardening coefficient for the BCC material. Finally, the hardening

rate hp(B), microstrain βB and partial derivative w
(α)
p(B) can be related to the BCC variables

as in Eqs. (4.88), (4.95) and (4.96), respectively.

4.3.5 Incremental Formulation Derivation

This section provides a derivation of the incremental numerical formulation of the RA
constitutive model implementation. The BCC constitutive model is derived from this
implementation by removing superfluous sections when ξ = 0. The constitutive model
is implemented using an extension of the rate tangent algorithm [141] initially used for
crystal plasticity Peirce et al. [147]. This algorithm provides a higher-order estimate of the
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plastic slip vector increment ∆γ and the volume fraction vector increment ∆ξ to facilitate
the use of larger time steps in the LS-Dyna Implicit solver and is derived as follows. These
parameters are estimated using

∆γ = ∆γ(α) =
[
(1− Λ) γ̇(α) (t) + Λγ̇(α) (t+ ∆t)

]
∆t (4.106)

∆ξ = ∆ξ(α) =
[
(1− Λ) ξ̇(α) (t) + Λξ̇(α) (t+ ∆t)

]
∆t (4.107)

where Λ is an integration scheme parameter. When Λ = 0, this algorithm reduces to a
first-order forward Euler method. In this work, Λ = 0.5, which has been found to give
good results in most cases. The rate terms at time t + ∆t are estimated using a Taylor
expansion

γ̇(α) (t+ ∆t) = γ̇(α) (t) +
∂γ̇(α) (t)

∂ξ(0)
∆ξ(0) +

∂γ̇(α) (t)

∂g
(α)
p

∆g(α)
p +

∂γ̇(α) (t)

∂f
(α)
p

∆f (α)
p (4.108)

ξ̇(α) (t+ ∆t) = ξ̇(α) (t) +
∂ξ̇(α) (t)

∂ξ(0)
∆ξ(0) +

∂ξ̇(α) (t)

∂g
(α)
tr

∆g
(α)
tr +

∂ξ̇(α) (t)

∂f
(α)
tr

∆f
(α)
tr (4.109)

where the derivatives ∂γ̇(α)(t)

∂ξ(0)
and ∂ξ̇(α)(t)

∂ξ(0)
and the increment ∆ξ(0) are given by Eqs. (4.110),

(4.111) and (4.112).

∂γ̇(α) (t)

∂ξ(0)
=
γ̇(α) (t)

ξ(0)
(4.110)

∂ξ̇(α) (t)

∂ξ(0)
=
ξ̇(α) (t)

ξ(0)
(4.111)

∆ξ(0) = −
Ntr∑
α=1

∆ξ(α) (4.112)

Partial derivatives with respect to the driving force and critical driving force are given by
Eqs. (4.113) to (4.116).

∂γ̇(α) (t)

∂g
(α)
p

= − γ̇(α) (t)

g
(α)
p (t)mp

(4.113)

∂γ̇(α) (t)

∂g
(α)
tr

= − γ̇(α) (t)

g
(α)
tr (t)mtr

(4.114)

∂γ̇(α) (t)

∂f
(α)
p

= − γ̇(α) (t)

f
(α)
p (t)mp

(4.115)

∂γ̇(α) (t)

∂f
(α)
tr

= − γ̇(α) (t)

f
(α)
tr (t)mtr

(4.116)
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The critical driving force increments, shown in Eq. (4.119) and (4.120), are derived using
approximations (4.117) and (4.118).

∆γ(α) ≈ γ̇(α)∆t, ∆ξ(α) ≈ ξ̇(α)∆t (4.117)

∆g(α)
p ≈ ġ(α)

p ∆t, ∆g
(α)
tr ≈ ġ

(α)
tr ∆t (4.118)

∆g(α)
p =

Np∑
β=1

q
(αβ)
p(A)hp(A)sign

(
γ̇(β)

)
∆γ(β) +

Ntr∑
β=1

q(αβ)
c hc∆ξ

(β) (4.119)

∆g
(α)
tr =

Ntr∑
β=1

q
(αβ)
tr htrsign∆ξ(β) (4.120)

The driving force increments, shown in Eqs. (4.122) and (4.123), are derived using the
approximations (4.117) and (4.121). To simplify the presentation of the equation, the

intermediate variables H
(α)
c1 , H

(αβ)
p1 , H

(αβ)
t1 , R

′(α)
tr , H

(α)
c2 , H

(α)
p2 , and H

(α)
t2 are introduced.

∆f (α)
p ≈ ḟ (α)

p ∆t, ∆f
(α)
tr ≈ ḟ

(α)
tr ∆t (4.121)

∆f (α)
p = R(α)

p : D∆t+H
(α)
c1 ∆t−

Np∑
β=1

H
(αβ
p1 ∆γ(β) +

Ntr∑
β=1

H
(αβ)
t1 ∆ξ(β) (4.122)

∆f
(α)
tr = R

′(α)
tr : D∆t+H

(α)
c2 ∆t−

Np∑
β=1

H
(αβ
p2 ∆γ(β) +

Ntr∑
β=1

H
(αβ)
t2 ∆ξ(β) (4.123)

The intermediate variables used in the dislocation plasticity driving force increment are
given by Eqs. (4.124) to (4.126)

H
(α)
c1 =

[
ρ0φ

(α) − AT (ξ) R(α)
p : I

]
θ̇ (4.124)

H
(αβ)
p1 = R(α)

p : P(β)
p + ωAw

(α)
p w(β)

p µ′ (ξ) (4.125)

H
(αβ)
t1 = R(α)

p : P
(β)
tr + ωAw

(α)
p

[
(1 + δT )J

(α)
θ µ(α) − J (0)

θ µ(0)
]
βA + ωAw

(α)
p w

(α)
tr µ

′ (ξ) (4.126)

The intermediate variables used in the transformation driving force increment are given by
Eqs. (4.127) to (4.130)
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R
′(α)
tr =R

(α)
tr − θAA (ξ) [4Ee + I] :

[
Fe

(
(1 + δT ) J

(α)
θ C(α) − J (0)

θ C(0)
)

FT
e

]
− θ

[
A

(α)
A −A

(0)
A

] (4.127)

H
(αβ)
p2 =P

(α)
tr : Ce : P(β)

p −
[
P

(α)
tr τ − τP

(α)
tr

]
: W(β)

p + ωAw
(β)
p w

(α)
tr µ

′ (ξ)

− θAA (ξ) [4Ee + I] :
[
Fe

(
(1 + δT ) J

(α)
θ C(α) − J (0)

θ C(0)
)

FT
e

]
: P(β)

p

− θ
[
A

(α)
A −A

(0)
A

] [
4τ + Fe

[
I : C′ (ξ)

]
FT
e

]
: P(β)

p

+ ωAw
(β)
p

[
(1 + δT )J

(α)
θ µ(α) − J (0)

θ µ(0)
]
βA

(4.128)

H
(αβ)
t2 =P

(α)
tr : Ce : P

(β)
tr + ωAw

(β)
tr

[
(1 + δT )J

(α)
θ µ(α) − J (0)

θ µ(0)
]
βA

− θAA (ξ) [4Ee + I] :
[
Fe

(
(1 + δT ) J

(α)
θ C(α) − J (0)

θ C(0)
)

FT
e

]
: P

(β)
tr

+ θ
[
A

(α)
A −A

(0)
A

] [
(1 + δT )J

(α)
θ µ(α) − J (0)

θ µ(0)
]

: [Ee ⊗Ee + Ee ⊗ I]

+ θ
[
A

(β)
A −A

(0)
A

] (
Fe

[(
(1 + δT )J

(α)
θ C(α) − J (0)

θ C(0)
)

: Ee

]
FT
e : I

)
+
[
W

(α)
tr τ − τW

(α)
tr

]
: P

(β)
tr −

2χ

`0
δαβ + ωAw

(β)
tr w

(α)
tr µ

′ (ξ)

− θ
[
A

(α)
A −A

(0)
A

] [
4τ + Fe

[
I : C′ (ξ)

]
FT
e

]
: P

(β)
tr

(4.129)

H
(α)
c2 =ρ0

λ
(α)
T

θT
θ̇ −AA (ξ)

(
Fe

[(
(1 + δT ) J

(α)
θ C(α) − J (0)

θ C(0)
)

: Ee

]
FT
e : I

)
θ̇

+ ρ0

[
h(α) − h(0)

]
ln

(
θ

θT

)
θ̇ −

[
A

(α)
A −A

(0)
A

]
(τ : I) θ̇ − θ̇AT (ξ)

[
P

(α)
tr : Ce

]
: I

+ θAA (ξ) [4Ee + I] :
[
Fe

(
(1 + δT ) J

(α)
θ C(α) − J (0)

θ C(0)
)

FT
e

]
: [AA (ξ) I] θ̇

θ
[
A

(α)
A −A

(0)
A

] [
4τ + Fe

[
I : C′ (ξ)

]
FT
e

]
: [AT (ξ) I] θ̇

(4.130)

Eqs. (4.106) to (4.130) are combined and simplified, resulting in a set of implicit equations
for ∆γ and ∆ξ as shown in Eqs. (4.131) and (4.132). As before, several intermediate
variables have been introduced to simplify the presentation.

Np∑
β=1

G
(αβ)
p1 ∆γ(β) +

Ntr∑
β=1

G
(αβ)
t1 ∆ξ(β) =

(
G

(α)
c1 + Q(α)

p : D
)

∆t (4.131)
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Np∑
β=1

G
(αβ)
p2 ∆γ(β) +

Ntr∑
β=1

G
(αβ)
t2 ∆ξ(β) =

(
G

(α)
c2 + Q

(α)
tr : D

)
∆t (4.132)

The intermediate variables used in Eq. (4.131) are given by Eq. (4.133) to (4.136).

G
(αβ)
p1 = δαβ +

γ̇(α) (t) Λ∆t

g
(α)
p mp

q
(αβ)
p(A)hp(A) sign

(
γ̇(β)

)
+
γ̇(α) (t) Λ∆t

f
(α)
p mp

H
(αβ)
p1 (4.133)

G
(αβ)
t1 =

γ̇(α) (t) Λ∆t

ξ(0)
+
γ̇(α) (t) Λ∆t

g
(α)
p mp

q(αβ)
c hc +

γ̇(α) (t) Λ∆t

f
(α)
p mp

H
(αβ)
t1 (4.134)

G
(α)
c1 = γ̇(α) (t) +

γ̇(α) (t) Λ∆t

f
(α)
p mp

H
(α)
c1 (4.135) Q(α)

p =
γ̇(α) (t) Λ∆t

f
(α)
p mp

R(α)
p (4.136)

The intermediate variables used in Eq. (4.132) are given by Eq. (4.137) to (4.140).

G
(αβ)
p2 =

ξ̇(α) (t) Λ∆t

g
(α)
tr mtr

H
(αβ)
p2 (4.137)

G
(αβ)
t1 = δαβ +

ξ̇(α) (t) Λ∆t

ξ(0)
+
ξ̇(α) (t) Λ∆t

g
(α)
tr mtr

q
(αβ)
tr htr +

ξ̇(α) (t) Λ∆t

f
(α)
tr mtr

H
(αβ)
t2 (4.138)

G
(α)
c2 = ξ̇(α) (t) +

ξ̇(α) (t) Λ∆t

f
(α)
tr mtr

H
(α)
c2 (4.139) Q

(α)
tr =

ξ̇(α) (t) Λ∆t

f
(α)
tr mtr

R
′(α)
tr (4.140)

Eq. (4.141) shows a single set of linear equations for ∆γ
∆t

and ∆ξ
∆t

found by combining Eqs.
(4.131) and (4.132). This equation can be solved using standard techniques, resulting in
Eq. (4.142). [

Gp1 Gt1

Gp2 Gt2

] [
∆γ/∆t
∆ξ/∆t

]
=

[
Gc1 + Qp : D
Gc2 + Qtr : D

]
(4.141)

[
∆γ/∆t
∆ξ/∆t

]
=

[
yc1 + Yp : D
yc2 + Ytr : D

]
(4.142)

Substituting the rates ∆γ
∆t

and ∆ξ
∆t

into Eq. (4.34) in place of γ̇ (t) and ξ̇ (t) yields Eq. (4.143)
to (4.145), which better approximates stress evolution over a single timestep allowing the
use of larger timesteps.
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O
τ = C : D− σ̇ (4.143)

C =CA(e) (ξ)−
Np∑
α=1

R(α)
p ⊗Y(α)

p

−
Ntr∑
α=1

[
R

(α)
tr − Fe

[(
J

(α)
θ (1 + δtr)C(α) − J (0)

θ C(0)
)]

FT
e

]
⊗Y

(α)
tr

(4.144)

σ̇ =

Np∑
α=1

R(α)
p y(α)

p + AA(ξ)θ̇ [Ce : I]

+
Ntr∑
α=1

(
R

(α)
tr − Fe

[(
J

(α)
θ (1 + δtr)C(α) − J (0)

θ C(0)
)]

FT
e

)
y

(α)
tr

(4.145)

To utilize the LS-Dyna implicit formulation, the tangent modulus L = ∂
O
τ

∂D
must be pro-

vided to the solver. For this integration scheme, the tangent modulus is given by Eq.
(4.146)

L =
∂
O
τ

∂D
= C (4.146)

4.4 Finite Element Modelling

Finite element (FE) simulations are constructed to simulate the bulk material response
of the QP1180 sheet metal alloy under the conditions applied during the in-situ uniaxial
tension HEXRD experiment. The constitutive modelling framework outlined in Section 4.3
is implemented as a user-defined material subroutine (UMAT) into a non-linear coupled
thermo-mechanical implicit formulation of the commercial finite element software, LS-Dyna
[148]. The implementation details are provided in Section 4.4.1. Fig. 4.8(a) presents the
schematic of the FE model boundary conditions. Fig. 4.8(c) and Fig. 4.8(c) present the
assigned phases and material orientation for the mesh. The FE model utilized eight-node
hexahedral elements (*ELFORM=2) with an element size of 0.375 µm×0.375 µm×0.25 µm
to generate a 200 × 200 × 1 element mesh. The initial length, L0, and thickness, t0, of
the FE model is 75 µm and 0.25 µm, respectively. Each element was assigned the material
properties of the EBSD point closest to the element centroid. The X1, X2 and X3 axes are
assumed to coincide with the sheet’s rolling, transverse, and normal directions, respectively.
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All surfaces of the FE model are constrained to remain planar. The thermal and mechanical
boundary conditions on the FE model are as follows

u1 = u2 = u3 on X1 = X2 = X3 = 0

q = u1 = 0 on plane X1 = 0

q = u2 = 0 on plane X2 = 0

q = q (T ) , u̇3 = 0 on plane X3 = 0

q = 0, u̇1 = u (t) on plane X1 = L0

q = 0, u̇2 = given by planar constrain on plane X2 = L0

q = q (T ) , u̇3given by planar constrain on plane X3 = t0

(4.147)

where the planar constraint is calculated such that surfaces X2 = L0 and X3 = t0 remain
planar, without any net force applied to the plane.

Fig. 4.8(d) shows the applied velocity boundary condition u (t). This condition is an
interrupted velocity profile with a maximum velocity of 60 nm s−1, resulting in a maximum
nominal strain-rate of 8× 10−4 s−1. Velocity pulses are composed of a 2.5 s ramp function,
8.5 s at a constant velocity, and a 2.5 s ramp down, which are separated by 10 s pauses
to simulate the experimental conditions during the HEXRD test. These pauses must be
included due to their potential implications on temperature evolution and the resultant
mechanical response. Overall, each pulse results in 0.88% strain, which matches the aver-
age strain per pulse found experimentally after compliance correction. The FE model is
deformed until a final bulk true strain of approximately 15% is achieved in the model; the
simulation time is 460 s to achieve the final bulk true strain.

The initial temperature was assumed to be 293 K and the heat flux q (T ) was derived to
obtain the same average internal energy density evolution in the RVE as in a hypothetical
full specimen. The average internal energy density evolution for the bulk sample and RVE
is given by

1

Vsamp

∫
Vsamp

ρ0ė dV =
1

Vsamp

∫
Vsamp

ρ0r + S : Ė dV − 1

Vsamp

∮
Ssamp

q · n dA (4.148)

1

VRV E

∫
VRV E

ρ0ė dV =
1

VRV E

∫
VRV E

ρ0r + S : Ė dV − 1

Vsamp

∮
SRV E

q · n dA (4.149)

Given that the RVE should be representative of the bulk behaviour, this implies that the
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(a) (b)

(c) (d)

Fig. 4.8: (a) Schematic of FE boundary conditions, (b) assigned FE phase, (c) assigned
FE orientation and (d) applied velocity profile.
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internal energy of the bulk sample and the RVE are equal, such that

1

Vsamp

∫
Vsamp

ρ0ė dV =
1

VRV E

∫
VRV E

ρ0ė dV (4.150)

1

Vsamp

∫
Vsamp

ρ0r + S : Ė dV =
1

VRV E

∫
VRV E

ρ0r + S : Ė dV (4.151)

These together with (4.148) and (4.149) implies that

1

Vsamp

∮
Ssamp

q · n dA =
1

VRV E

∮
SRV E

q · n dA (4.152)

Assuming a wide prismatic sample and an RVE with areas of Asamp and ARV E, and thick-
nesses of tsamp and tRV E, the heat flux into the volume is given by∮

Ssamp

q ·n dA = 2

∫
Asamp

q̂ (T ) dA (4.153)

∮
SRV E

q ·n dA = 2

∫
ARV E

q (T ) dA (4.154)

where q̂ (T ) and q (T ) are the average specific heat fluxes on the sample and RVE normal
surfaces, respectively. Substituting Eqs. (4.153) and (4.154) into (4.152) gives

1

Asamptsamp

∫
Asamp

q̂ (T ) dA =
1

ARV EtRV E

∫
ARV E

q (T ) dA (4.155)

For this to be true for any sample and RVE dimensions, the following relationship must
hold:

q̂ (T )

tsamp
=
q (T )

tRV E
(4.156)

Following Connolly et al. [10], the sample heat flux should include convection with a co-
efficient of 15 W m−2 K−1 and radiation with an emissivity coefficient of 0.8. Therefore,
given the full thickness of 1.14 mm and the RVE thickness of 0.25 µm, the heat flux con-
vection coefficient and emissivity coefficient used in the RVE model is 3.28 mW m−2 K−1

and 1.7516× 10−4 respectively.
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4.4.1 LS-Dyna Implementation Overview

This section provides an overview of the incremental numerical formulation into LS-
Dyna Implicit. The LS-Dyna Implicit coupled thermo-mechanical FEM solver used in this
work uses sequentially coupled implicit linear thermal and implicit non-linear mechanical
solvers. Fig. 4.9 shows a flowchart outlining this algorithm. To implement the numerical
model, both thermal and mechanical subroutines must be provided. The thermal user-
defined material in LS-Dyna must define the:

(1) Heat generation rate

(2) Specific heat capacity

The heat generation rate Q is derived from Eq. (4.67) using

Q = ρ0r −Me(A) : De +

Np∑
α=1

M
(α)
p(A)γ̇

(α) +
Ntr∑
α=1

M
(α)
tr ξ̇

(α) (4.157)

To calculate the increment in material properties, the kinematic and stress equation must
be presented in incremental form. The incremental kinematic equation are given by

L(n+1) =
∆F

∆t
F−1

(n) (4.158)

D(n+1) =
L(n+1) + LT

(n+1)

2
(4.159) Ω(n+1) =

L(n+1) − LT
(n+1)

2
(4.160)

where subscript (n) and (n + 1) indicate variables in timestep n and n + 1, respectively.
The incremental form of the stress update is given by

τ̃ (n+1) = τ (n) + τ (n)Ω(n+1)∆t−Ω(n+1)τ (n)∆t (4.161)

τ (n+1) = τ̃ (n+1) + C(n) : D(n+1)∆t− σ̇(n)∆t (4.162)

The increments in plastic slip and transformation are calculated using Eq. (4.142). These
are then used to update the total slip and absolute slip on each slip system and the
transformed volume fractions using
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γ
(α)
(n+1) = γ

(α)
(n+1) + ∆γ(α) (4.163)

ξ
(α)
(n+1) = ξ

(α)
(n+1) + ∆ξ(α) (4.164)

γa(n+1) = γa(n) +

Np∑
α=1

∣∣∆ξ(α)
∣∣ (4.165)

ξ
(0)
(n+1) = ξ

(0)
(n+1) −

Ntr∑
α=1

∆ξ(α) (4.166)

The incremental update of the critical plastic slip and TRIP driving forces is given by

g
(α)
p(n+1) = g

(α)
p(n) +

Np∑
β=1

q(αβ)
p hp∆γ

(β) (4.167) g
(α)
tr(n+1) = g

(α)
tr(n) +

Ntr∑
β=1

q
(αβ)
tr htr(n)∆ξ

(β)

(4.168)

The incremental update of the plastic slip systems and the TRIP systems are given by

s
(α)
e(n+1) =

[
I + ∆FF−1

(n) −
Np∑
α=1

P(α)
p ∆γ(α) −

Ntr∑
α=1

P
(α)
tr ∆ξ(α)

]
s

(α)
e(n)

m
(α)
e(n+1) = m

(α)
e(n)

[
I + ∆FF−1

(n) −
Np∑
α=1

P(α)
p ∆γ(α) −

Ntr∑
α=1

P
(α)
tr ∆ξ(α)

]−1 (4.169)

b
(α)
e(n+1) =

[
I + ∆FF−1

(n) −
Np∑
α=1

P(α)
p ∆γ(α) −

Ntr∑
α=1

P
(α)
tr ∆ξ(α)

]
b

(α)
e(n)

d
(α)
e(n+1) = d

(α)
e(n)

[
I + ∆FF−1

(n) −
Np∑
α=1

P(α)
p ∆γ(α) −

Ntr∑
α=1

P
(α)
tr ∆ξ(α)

]−1 (4.170)

Pseudocode for this algorithm, including the implementation of the thermal and me-
chanical subroutines, is presented in Alg. 1

79



Solve Mechanical Timestep

 

Solve Thermal Timestep

 

Initialize defined values for each
integration point of each element

While simulation 
time not exceeded End Simulation

If new thermal
step needed

Use thermal user defined
material for each integration

point to calculate:
(1) heat generation rate
(2) specific heat capacity

Determine global heat
generation rate, conductivity

matrix and specific heat
capacity

Calculate updated
temperatures

Calculate thermal
timestep

Use mechanical user defined
material for each integration

point to calculate: 
(1) element stresses

Calculate deformation
gradient

Recalculate new
displacements using

implicit solution algorithm

Calculate nodal force
and mass matrices

Use mechanical user defined material
for each integration point to: 

(1) recalculate stresses
(2) calculate tangent modulus

Calculate mechanical
timestep

Estimate new
displacements

Recalculate deformation
gradient

Recalculate nodal force
and mass matrices

If convergence 
criteria is met

False

True

True

True

False

False

Fig. 4.9: LS-Dyna solver flowchart.
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Algorithm 1 Constitutive model integration.

1: procedure Thermal Subroutine . Calculate heat generation and heat capacity
2: Q← Calculate Heat Generation() . Use Eq. (4.157)
3: hA (ξ)← Calculate Heat Capacity() . Use Eq. (4.46)
4: return Q, hA (ξ)
5: end procedure
6: procedure Mechanical Subroutine
7: L(n+1), D(n+1), Ω(n+1) ← Kinematics() . Use Eqs. (4.158) to (4.160)
8: τ̃ (n+1) ← Jaumann() . Use Eq. (4.161)
9: fp(n), f tr(n) ← Driving Forces() . Use Eqs. (4.65) and (4.66)

10: γ̇(n), ξ̇(n) ← Rates() . Use Eqs. (4.84) and (4.86)
11: yc1, yc2, Yp, Ytr ← Rate Tangent() . Use Eqs. (4.124) to (4.142)
12: ∆γ, ∆ξ ← Increments() . Use Eq. (4.142)
13: τ (n+1), C← Stress() . Use Eqs. (4.143) to (4.145)
14: γ(n+1), γa(n+1), ξ(n+1) ← Update Kinetics() . Use Eqs. (4.163) to (4.166)
15: gp(n+1), gtr(n+1) ← Update Critical Force() . Use Eqs. (4.166) and (4.168)
16: se(n+1), me(n+1) ← Update Slip Systems() . Use Eq. (4.169)
17: be(n+1), de(n+1) ← Update TRIP Systems() . Use Eq. (4.170)

18: return τ (n+1), C, γ(n+1), γa(n+1), ξ(n+1), gp(n+1)

19: return gtr(n+1), se(n+1), me(n+1), be(n+1), de(n+1)

20: end procedure

4.5 Results and Discussion

In this section, the experimental RA and stress evolution data are used in conjunction
with physically derived parameter constraints and the described FEM model to calibrate
the constitutive parameters. The local deformation behaviour of the calibrated model
and the orientation dependence of transformation are analyzed. Elevated temperature
studies are conducted to explore the effect of temperature on bulk stress and transformation
responses and the local deformation response.

4.5.1 Model Calibration and Analysis

The material coefficients used for the crystal plasticity model of QP1180 were obtained
by the method of inverse analysis where the FE model was simultaneously calibrated to the
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experimental stress-strain and austenite evolution responses (Fig. 4.1). It is assumed that
the calibrated model should have the same ratio of transformed martensite to initial RA
content as the experimental data. The model is calibrated to the normalized RA fraction
to ensure this criterion is satisfied as defined by

Normalized RA Fraction =
RA (t)

RA (0)
=
ξ

(0)Exp
i

ξ
(0)Exp
1

(4.171)

Several model parameters were obtained from the literature to reduce the burden of the
calibration process. In this section, retained austenite, ferrite, tempered martensite, and
transformed martensite are denoted by the subscripts A, F, M, and S, respectively.

4.5.1.1 Parameters Obtained from Literature

Table 4.3 presents the coefficients taken from literature, which are used to model the
QP1180 sheet metal alloy. The elasticity, specific heat capacity, thermal expansion, surface
energy, and latent heat of transformation coefficients are collected from Yadegari et al. [109].
The lattice parameters of the transformed martensite sub-variants, aM , cM , and the parent
RA phase, aA, in Eq. (4.73) are dependent on the carbon concentration, pc, of the RA
phase. Similar QP steels in the literature have observed a carbon content of approximately
1.4wt% in the blocky RA [65, 149]. Accordingly, this model assumes that the QP1180
sheet alloy study has a carbon content of pc = 1.4wt%. These lattice parameters, in Å,
are empirically related to the RA carbon concentration, in wt%, through Turteltaub and
Suiker [118]

cM = 2.861 + 0.116(pc) (4.172) cM = 2.861− 0.012(pc) (4.173)

cM = 2.861 + 0.044(pc) (4.174)

4.5.1.2 Parameters Calibrated from Experiments

The remaining model parameters are obtained by minimizing an error function com-
prised of the stress-strain and austenite evolution response from the FEM model and the
experimental measurements. The mean squared error, MSE, function that is used as the
error function is defined as

82



Table 4.3: Model parameters obtained from literature.

Elastic Moduli [GPa]

κA1 = 286.8, κA2 = 166.4, κA3 = 145
κS1 = 372.4, κS2 = 345, κS3 = 191, κS4 = 508.5, κS5 = 201.9, κS6 = 229.5

κF1 = 233.5, κF2 = 135.5, κF3 = 118
κM1 = 233.5, κM2 = 135.5, κM3 = 118

Defect Energy
Parameters

µ
(0)
A = 67.5 GPa, µ

(α)
A = 98.4 GPa, cA = 0.5

µ
(0)
F = 55 GPa, cA = 0.5

µ
(0)
M = 98.4 GPa, cA = 0.5

Thermal Parameters
h(0) = 519 mJ g−1 K−1, h(α) = hM = hF = 450 mJ g−1 K−1

A
(0)
A = AF = 2.1× 10−5 K−1, A

(α)
A = AM = 1.7× 10−5 K−1

ρ = 7.8× 10−3 g mm−3

Transformation
Parameters

χ = 2× 10−4 mJ mm−2, `0 = 5× 10−5 mm, λ(α) = −50 500 mJ g−1

Lattice Parameters cM = 3.0234�A, cM = 2.8442�A, cM = 2.9226�A

MSE =
n∑
i=1

(
1
E

∑E
e=1 σ

FEM
i,e − σExpi

σExpi

)2

+

(
1
E

∑E
e=1 ξi, e

(0)FEM

1
E

∑E
e=1 ξ1, e

(0)FEM
− ξ

(0)Exp
i

ξ
(0)Exp
1

)2

(4.175)

where n is the number of experimental measurements, and E is the number of elements
in the FE model. The remaining model parameters were manually varied until the error
function reached an acceptable tolerance. Table 4.4 presents the calibrated coefficients
for the QP1180 sheet metal alloy. During calibration, it was determined that a constant
plastic slip to transformation coupling coefficient (hc) was sufficient, and thus, h0

c and hsc are
identical. The following approach was adopted for the calibration process; Two constraints
were imposed during the calibration process to yield physically relevant parameters: A
thermal constraint was imposed to ensure that thermally driven transformation does not
occur above the martensite start temperature, Ms. The martensite start temperature is
empirically related to the carbon concentration, pc, in the alloy through [118, 150]

Ms = 768− 355(pc) = 271 K at pc = 1.4% (4.176)
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For transformation to activate at the θ = Ms, the driving force and critical activation force
must be approximately equal, g0

tr ≈ f
(α)
tr , when τ = γ = ξ = 0 (note that in this condition,

f
(α)
tr is equal for all martensite variants α). From Eq. (4.66), this criterion yields

g0
tr ≈ f

(α)
tr =− χ

`0

+ ρ0
λ

(α)
T

θT
[Ms − θT ]− ωA

∑Np
β=1 q

(αβ)
c hc

cAµ′A (ξ)Np

µ′A (ξ) βA

+ ρ0

[
h(0) − h(α)

] [
Ms − θT − ln

(
Ms

θT

)
Ms

]
+
ωA
2

[
J

(0)
θ µ(0) − J (α)

θ µ(α)
]
β2
A

(4.177)

Next, an additional constraint was imposed to ensure that the Taylor-Quinney coefficient
(ζ) varies between approximately 0.80 and 1.00 without the presence of transformation [79].
In the absence of martensitic transformation, the Taylor-Quinney coefficient is defined by

ζ =

∫
V

Q̇p
Ẇp

dV

V
=

∫
V

∑Np
α=1M

(α)
p(A)

γ̇(α)∑Np
α=1 τ :P

(α)
p γ̇(α)

dV

V
(4.178)

where V is the volume of the FE model. This constraint is achieved by performing a
simulation where transformation was deactivated. This constraint places limits on the
dislocation energy coefficients ωA, ωF and ωM and is enforced separately for each phase to
ensure that the behaviour of each phase is physical.

Table 4.4: Calibrated coefficients for QP1180 sheet metal alloy.

Hardening [MPa]

g0
p(A) = 265, gsp(A) = 350, h0

p(A) = 3720, hsp(A) = 357

g0
p(F ) = 216, gsp(F ) = 254, h0

p(F ) = 52, hsp(F ) = 10.5

g0
p(M) = 523, gsp(M) = 550.5, h0

p(M) = 118, hsp(M) = 15

g0
tr = 90, gstr = 91, h0

tr = 930, hstr = 3.5, h0
c = hsc = 1163

Defect Energy ωA = 0.5, ωF = 18, ωM = 16

Kinetics Law
ȧp(A) = ȧp(F ) = ȧp(M) = ȧtr = 1× 10−3 s−1

mp(A) = mp(F ) = mp(M) = 0.02, mtr = 0.05, θT = 370 K
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4.5.1.3 Comparison Between Simulations and Experiments

Fig. 4.10(a) and Fig. 4.10(b) present the calibrated and experimental stress and
normalized RA fraction vs. strain responses, while Fig. 4.10(c) presents the average tem-
perature evolution for the bulk material. These comparisons are conducted as far as the
experimental ultimate tensile stress because the RVE model assumes planar surfaces for
all faces and is therefore unable to capture the substantial localized deformation beyond
that point. The simulated response shows good agreement between experimental and
calibrated stress-strain and normalized RAVF responses. The temperature evolution is
non-monotonic, with heating and cooling occur during loading and when loading is inter-
rupted, respectively. This forms a quasi-equilibrium wherein the amount of heating during
loading is equal to the cooling during the paused phase. The impact of the thermal bound-
ary conditions on thermal and mechanical response is analyzed in further detail in Section
4.5.2.

4.5.1.4 Analysis of Deformation Behaviour Under Uniaxial Tension

Fig. 4.11(a) and Fig. 4.11(b) show the local distribution of the equivalent (von Mises)
stress and strain, respectively, in the final deformed configuration. In Fig. 4.11(a), the
low strength ferrite is presented in blue, the medium strength tempered martensite is pre-
sented in green, and the RA elements containing high strength transformed martensite are
presented red. This figure shows that the high carbon RA that transforms into martensite
acts as embedded particles that strengthen the material during deformation. The morphol-
ogy of the low-strength ferrite creates islands of low stress throughout the model. These
high-strength RA particles combined with the soft ferritic islands result in significant shear
banding in the ferrite phase. Fig. 4.12 summarizes the statistical distribution of the vari-
ability in martensite transformation using a box and whisker plot as a function of strain.
The central line and dot of the box and whisker plots represent the median and mean nor-
malized RA fraction. The limits of each box represent the 25th and 75th percentile data,
and the endpoints of the whiskers represent the overall data range. The transformation
rate varies significantly throughout the mesh of the specimen. Some elements transformed
entirely within the first 4% bulk strain, while other elements transform less than 3% in
15% bulk strain. As measured by the interquartile range, the variance in the normalized
RA fraction significantly increases as a function of strain, indicating a sustained variance
in the transformation rate.

Fig. 4.13 shows the dependence of the RA fraction on crystal orientation at 5% strain in-
crements during the simulation. A value of 1.0 indicates an element that is fully austenitic,
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(a) (b)

(c)

Fig. 4.10: (a) Stress vs. strain, (b) normalized RA fraction vs. strain and (c)
temperature vs. effective strain.

while a value of 0.0 corresponds to a fully transformed martensite element. The (100) pole
figure shows three high transformation bands, with transformation occurring readily when
the (100) direction is aligned near the rolling direction or near the TD-ND plane. The (111)
pole figure shows two high transformation bands when the (111) direction is aligned ap-
proximately halfway between the RD and the TD-ND plane. The (110) shows a less defined
pattern, wherein there is slightly less transformation when the (110) direction is aligned
with the RD or along the ND plane. The orientation effect appears to thoroughly explain
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(a) (b)

Fig. 4.11: (a) Equivalent stress and (b) equivalent strain distribution in the final
deformed configuration of QP1180 sheet metal alloy.

the transformation’s variability, with clear band patterns forming in both the (100) and
(111) pole figures. These results indicate preferential transformation near the 〈100〉 crystal
direction, which is consistent with experimental observations of orientation dependence for
several TRIP alloys [22, 151].

This orientation dependence is primarily a result of the favourability of the transforma-
tion of different orientations at constant equivalent stress, as measured by the maximum
generalized TRIP Schmid factor

str = max

(
τ : P

(α)
tr

σvm

)
(4.179)

where the Schmid factor is normalized by the von Mises equivalent stress, σvm. Fig.
4.14 shows the orientation dependence of the maximum generalized TRIP Schmid factor.
This correlates directly with the orientation dependence of transformation, showing that
orientation dependence of transformation is primarily driven by the transformation systems
and is unrelated to the orientation dependence of the stress magnitude.
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Fig. 4.12: Box and whisker plots of normalized RA fraction vs. strain.
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(a)

(b)

(c)

Fig. 4.13: Orientation dependence of RA fraction at (a) 5%, (b) 10% and (c) 15% strain.
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(a)

(b)

(c)

Fig. 4.14: Orientation dependence of the max generalized TRIP Schmid factor at (a) 5%,
(b) 10% and (c) 15% strain.
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4.5.2 Analysis of Thermal Boundary Conditions

Since martensitic transformation is known to be temperature-dependent [18, 53, 82],
this study aims to determine the impact of thermal boundary conditions on thermo-
mechanical behaviour predicted by the outlined RVE model. This section will also compare
the influence of interrupted and non-interrupted conditions on the mechanical response.
This is accomplished by simulating the calibrated model with a constant strain-rate and
isothermal, adiabatic, and general thermal boundary conditions. The constant strain-rate
condition is imposed by modifying the applied velocity from the interrupted condition to
u̇1 = L0ε̇ exp (ε̇t) where L0 = 75 µm is the sample length, ε̇ = 8× 10−4 s−1 is the applied
strain-rate, and t is time. Fig. 4.15 compares the bulk stress, RA, and temperature evo-
lution for the adiabatic, general, and isothermal conditions compared to the calibrated
model and experimental results. Fig. 4.16 shows the equivalent stress and strain distri-
butions for the re-simulated isothermal, general, and adiabatic conditions at the end of
the simulation. Major differences are observed between the temperature evolution pro-
files of the non-interrupted and interrupted (calibrated) general conditions, where the final
temperature rise and retained RA predictions were 72% and 16.7% higher. This result
is attributed to the pauses that allow for significant cooling, resulting in a much lower
asymptotic temperature than in the general condition. Additionally, the predicted final
RA value of the adiabatic and isothermal conditions varied by 14% and -43% from the
non-interrupted general condition. This result means that neither isothermal nor adia-
batic conditions accurately approximate the non-interrupted general condition. The final
RA value of these conditions also differed by 33% and -33% from the interrupted general
condition, meaning neither condition could accurately approximate the interrupted general
condition, either. The differences between adiabatic, isothermal, and general conditions
result from the noticeable differences in the predicted temperature evolution. The final
temperatures of the adiabatic and isothermal conditions were 338 K and 293 K, compared
to the interrupted and non-interrupted general final temperatures of 308 K and 319 K. De-
spite the significant variance in predicted temperature and RA evolution, the predicted
stress evolution variance was relatively low. As such, the localization variation is mini-
mal because the difference in either the stress and RA distribution in the microstructure
is minimal. Yet, this study suggests two considerations for experimental design: first,
the behaviour observed during interrupted testing, such as in-situ HEXRD tests, may not
represent non-interrupted material behaviour. Next, the stress vs. strain response may
be insufficient to verify that all mechanical behaviour is identical between the tests. To
control this behaviour, it is recommended that possible discrepancies between interrupted
and non-interrupted mechanical tests be investigated in greater detail.

91



(a) (b)

(c)

Fig. 4.15: (a) Calibrated stress vs. strain, (b) calibrated normalized RA fraction vs.
strain and (c) temperature vs. effective strain.

4.5.3 Effect of Temperature on Deformation

Since martensitic transformation is known to have coupled temperature and strain-
rate dependence [18, 21, 53, 82], the aim of this section is to analyze the effect of initial
temperature, strain-rate and thermal boundary condition on predicted stress, RA and
temperature evolution. The non-interrupted model that was presented in Section 4.5.2
is repeated for initial temperatures of 293 K, 330 K, 360 K and 390 K and strain-rates of
8× 10−4 s−1, 8× 10−3 s−1 and 8× 10−2 s−1, each under adiabatic, isothermal, and general
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(a) (b) (c)

(d) (e) (f)

Fig. 4.16: (a) Adiabatic, (b) and (c) equivalent stress and (d) adiabatic, (e) general, and
(f) isothermal equivalent strain distribution in the final deformed configuration
of QP1180 sheet metal alloy.

thermal boundary conditions. Fig. 4.17 shows contour plots of the final RA fraction, stress
and temperature rise vs. the initial temperature, and applied strain-rate. This shows that
RA fraction increases with initial temperature and strain-rate. In the isothermal case, the
RA fraction increased from 0.2 to 0.36 at room temperature as strain-rate increased from
8× 10−4 s−1 to 8× 10−2 s−1. For the non-interrupted general and adiabatic cases at room
temperature, increasing strain-rate also leads to an increasing temperature rise, thereby
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increasing the rate of suppression of transformation. This matches experimental observa-
tions for many steel alloys [9, 18]; however, recent experiment analysis demonstrates that
some steels exhibit more complex strain-rate dependence of transformation [152]. For the
non-interrupted general case, the RA fraction increases from 0.35 to 0.52 as strain-rate in-
creased from 8× 10−4 s−1 to 8× 10−2 s−1. For the isothermal case, it increased from 0.4 to
0.6 under the same conditions. Finally, at a temperature of 410 K, the transformation was
entirely suppressed in all cases. Since the increase in RA fraction with strain-rate occurs
even in the isothermal case, this effect cannot solely be due to increases in temperature
at elevated strain-rate. For all cases, stress increases with strain-rate and decreases with
initial temperature. As the initial temperature increases, the final stress is reduced due to
a reduction in hardening as transformation is suppressed. At the lowest strain-rate, this
results in a decrease of 25%, 18%, and 16% in stress for the isothermal, non-interrupted
general and adiabatic conditions. The reductions for the non-interrupted general and adi-
abatic conditions are less than the reduction for isothermal conditions because there is less
transformation in those conditions, and therefore less transformation hardening to remove.
Reduced hardening due to reduced transformation from increased temperature matches the
majority of observed trends for TRIP steels [53, 79]. The exception is the QP3Mn studied
by Poling [53], which did not exhibit significant bulk stress temperature dependence de-
spite RA transformation depending significantly on temperature. This may indicate that,
unlike other TRIP steels, the martensitic transformation may not significantly contribute
to bulk hardening in QP3Mn steel. At room temperature, the stress increases by 6%,
6.3%, and 8% as strain-rate increases. This occurs due to the inherent rate dependence of
the chosen crystal plasticity formulation. The increase of stress with strain-rate matches
existing results for TRIP steels, but not for all QP steels [53, 78].

Significant temperature rise is observed in both non-isothermal conditions. A mini-
mum temperature rise of 30 K was observed at a rate and temperature of 8× 10−4 s−1 and
293 K for the non-interrupted general condition. A maximum temperature rise of 55 K
was observed at a rate and temperature of 8× 10−2 s−1 and 293 K. As the rate increases,
the difference between the adiabatic and non-interrupted general conditions becomes sub-
stantially smaller. To understand when the difference is negligible, Fig. 4.18 shows the
ratio of temperature rise in the non-interrupted general and adiabatic thermal boundary
conditions. This shows that the adiabatic condition is a good approximation at or above
ε̇ = 8× 10−2 s−1, but a poor approximation otherwise. This matches the results of Poling
[53] that found that an adiabatic approximation was accurate at ε̇ = 1× 10−1 s−1.
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Fig. 4.17: Simulated final RA, von Mises effective stress and temperature rise as a
function of strain-rate and initial temperature for isothermal, non-interrupted
general and adiabatic conditions.

4.5.4 Model Comparison and Limitations

Table 4.5 shows a comparison between the previously existing works and the consti-
tutive model derived in this chapter(referred to as Connolly Model #1). This shows that
Connolly Model #1 is the first model to capture temperature and strain-rate sensitivity
of transformation while also incorporating martensite variants and the orientation depen-
dence of transformation. Furthermore, hardening due to local plasticity during accommo-
dation of transformation strain has been implicitly accounted for using the transformation
dependency term hc of the critical plastic slip driving force evolution.

There are two main limitations to the constitutive model presented in Section 4.3.
The first is the implicit assumption that transformed martensite is fully elastic. This is
highlighted in Fig. 4.19, which presents the statistical distribution of the variability of
σ11 using a box and whisker plot as a function of strain. The bounds are defined as in
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Fig. 4.18: Simulated ratio of non-interrupted general to adiabatic temperature rise as a
function of temperature and strain-rate.

Fig. 4.12 with the limits of each box representing the 25th and 75th percentile data, and
the endpoints of the whiskers representing the complete data range. The high maximum
stress results from the transformed martensite’s elastic deformation behaviour and results
in stresses that are much higher than observed experimentally [15]. While the proposed
constitutive model can accurately capture the bulk deformation properties, it is unlikely to
accurately capture local deformation mechanics. Furthermore, the relatively small value
of mp(A) in the plasticity kinetics results (Eq. (4.84)) in the RAVF having little impact
when RAVF is significantly greater than zero. This can be explored conceptually using
a hypothetical case where plastic slip rates are constant as the RAVF changes, which is
approximately correct as long as the plastic stiffness is much lower than the elastic stiffness.
In this hypothetical case, the stress ratio between two models that are identical except for
different RAVF can be derived using

σt
σu
≈
f

(α)
p(A)(t)

f
(α)
p(A)(u)

=

∣∣∣ γ̇(α)
a0ξ

(0)
t

∣∣∣mp(A)

gp(A)∣∣∣ γ̇(α)
a0ξ

(0)
u

∣∣∣mp(A)

gp(A)

=

∣∣∣∣∣ξ(0)
u

ξ
(0)
t

∣∣∣∣∣
mp(A)

(4.180)

where σt and ξ
(0)
t represent the stress level and RAVF in a partially transformed case and σu

and ξ
(0)
u = 1 represent the stress level and RAVF in the untransformed case, and where fp(A)

is determined by rearranging Eq. (4.84). This equation shows that 50% transformation
results in a 1.4% increase in stress and 90% transformation results in a 4.7% increase in

96



Table 4.5: Model comparison chart.
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Transformation temperature sensitivity

Transformation strain-rate sensitivity

Transformation stress-state dependence

Incorporates martensite variants

Transformation orientation dependence

Hardening due to stress homogenization

Plasticity in transformed martensite

Hardening due to local plasticity when
accommodating transformation strain

Temperature evolution

Stress-induced transformation

Strain-induced transformation

Thermodynamically consistent

Includes thermal strain

stress. This stress increase is much lower than expected in practice. For example, Lai et al.
[153] performed experiments to study the effect of martensite volume fraction on quenched
and tempered (QT) DP steel a 15% stress increase for 11% martensite and a 95% increase
for 35% martensite for QT-740. Rectifying this limitation requires implementation of a
general homogenization scheme and plasticity in the transformed martensite, as discussed
in Chapter 3.
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Fig. 4.19: Box and whisker plots of true X stress vs. strain.

The second limitation of the proposed constitutive model arises from the kinetics law’s
specific choice (Eq. (4.86)). While this type of kinetics law has been used for similar
deformation modes, it does not capture the TRIP effect’s strain-induced transformation
mode. Furthermore, the method for introducing rate sensitivity into the kinetics equation
is fundamentally justified only for deformation modes with a thermal activation mode
(e.g. plastic slip) and conflicts with the athermal mechanics of martensitic transformation.
This is illustrated by resimulating the interrupted simulation with a strain-rate of zero
(i.e. no applied deformation). To test the predicted effects on long-term storage, the
simulation time is also extended to 7 days. This is equivalent to allowing the material to
sit at room temperature for 460 s and 7 d, respectively. The RAVF vs. time response for
these simulations are reported in Fig. 4.20. This shows that throughout the interrupted
simulation 1.7% of the total RA transforms solely due to the thermal driving force at room
temperature and that over one week approximately 16% of the total RA would transform.
This is significant because the athermal nature of martensitic transformation requires no
transformation under these conditions in practice. This limitation may be corrected by
using a kinetics law that correctly captures strain-induced transformation and the athermal
nature of martensitic transformation.
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(a) 460 s simulation (b) 7 d simulation

Fig. 4.20: Normalized RA fraction vs. strain at constant temperature without applied
deformation

4.6 Chapter Conclusion

This chapter presented a novel thermodynamically consistent constitutive model based
on rate-dependent crystal plasticity. The model accounts for temperature, strain-rate, and
orientation-dependent transformation and includes new terms to capture the hardening
in the RA phase due to the accommodation of plastic strain from transformation. This
constitutive model was implemented into an implicit UMAT version of the commercial FE
software, LS-Dyna, to simulate the local deformation of QP steels with the TRIP effect.
A novel method was proposed for incorporating thermal boundary conditions into RVE
models. The constitutive model and thermal boundary condition method presented here
enable for the first time rigorous coupled thermo-mechanical crystal plasticity simulations
of steel exhibiting the TRIP effect. SEM, EBSD, and in-situ uniaxial tension HEXRD
experiments were conducted to characterize the initial microstructure and bulk deformation
behaviour of a commercially available QP1180 steel alloy to demonstrate the capabilities
of this model. FE models were constructed from the initial microstructure data and used
in conjunction with the experimental bulk response to calibrate the constitutive model.
Several analyses were carried out, with specific conclusions as follows:

• A significant variance in RA transformation was observed, with the final RA content
of the elements varying between 0% and 98.9%. This was primarily explained by
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the dependence of the transformation rate on crystal orientation and was consistent
with experimental observations of preferential transformation along the 〈100〉 crystal
direction.

• Simulation of non-interrupted vs. interrupted conditions predicted that the final
temperature was 11 K higher, resulting in 16.7% less martensitic transformation.
These differences were not detectable solely using the stress vs. strain curve. This
suggests that in-situ uniaxial tension HEXRD experiments may not have the same
transformation rate as standard uniaxial tension tests, despite similar stress vs. strain
curves.

• Neither isothermal nor adiabatic conditions accurately captured room-temperature
quasi-static behaviour, as predicted using the interrupted general thermal conditions.
Isothermal conditions predicted 33% more RA, while adiabatic conditions predicted
33% less RA than non-isothermal interrupted conditions.

• Increased initial temperature decreased both the amount of transformation and the
bulk stress, which matches the majority of existing literature for steels exhibiting
the TRIP effect. At 390 K, martensite transformation was entirely suppressed, and
final stress decreased by approximately 25%. Final RA fraction and equivalent stress
increased by 80% and 6% as strain-rate increased from 8× 10−4 s−1 to 8× 10−2 s−1

at room temperature. This matches results for TRIP steels, but not all QP steels.

• Predicted temperature evolution for non-interrupted general and adiabatic cases are
nearly identical for a strain-rate of 8× 10−2 s−1.

Two primary limitations of the proposed model were presented. These are:

• The assumption of elasticity in the transformed martensite phase introduces difficulty
in capturing the deformation behaviour of individual phases.

• The kinetics law does not capture strain-induced transformation or the athermal
nature of martensitic transformation.
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5 A Novel Crystal Plasticity Model Incorporating

Transformation Induced Plasticity for a Wide Range

of Strain Rates and Temperatures1

5.1 Introduction

As highlighted in Chapter 4, Connolly et al. [154] recently proposed a stress-assisted
transformation model with rate-dependent plastic slip that built upon the work of Yadegari
et al. [109]. Transformation driving forces were derived from thermodynamic arguments,
and novel kinetics laws were proposed to capture the rate dependence of transformation
better. While each of the model lineages outlined in this thesis, including Connolly Model
#1 as proposed in Chapter 4, offer distinct advantages and have shown great utility, to
the author’s knowledge, no crystal plasticity model has been proposed that incorporates
strain-induced transformation that is dependent on strain-rate and temperature. A few
models incorporate transformed martensite plasticity or a direct homogenization model
needed to most accurately account for transformation hardening. Furthermore, to the
author’s knowledge, no model presents rigorous homogenization of the thermodynamic
equations. Correctly incorporating thermodynamic homogenization better captures the
underlying physics and results in a higher fidelity transformation driving force. In partic-
ular, the baseline Connolly Model #1 does not incorporate homogenization, plasticity in
the transformed martensite, or strain-induced transformation. Furthermore, the hardening
due to local plasticity is not fully captured. To achieve the objects outlined in Chapter 3,
these limitations must be addressed.

This chapter presents a novel thermo-mechanically coupled constitutive model incor-
porating rate and temperature-dependent strain-induced transformation. RA and trans-
formed martensite mechanical thermo-elasto-viscoplastic behaviour is explicitly modelled,
and a modified Taylor homogenization law is proposed to determine strain partitioning
while accounting for transformation. This homogenization approach is generalized to the
thermodynamic behaviour, which is then used to derive driving forces that account for
various physical mechanisms (e.g. applied stress, temperature, crystal orientation, stored

1The contents of this chapter are adapted from:

D. S. Connolly, C. P. Kohar, K. Inal, A Novel Crystal Plasticity Model Incorporating
Transformation Induced Plasticity for a Wide Range of Strain Rates and Temperatures,
Under Review at The Journal of the Mechanics and Physics of Solids (MPS-D-21-00101).
Submitted on January 27, 2021.
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dislocation energy). The thermodynamic behaviour is further used to derive a constitu-
tive law governing temperature evolution. The model is then calibrated and validated
for a QP3Mn alloy over a large range of temperatures (−10 °C – 70 °C) and strain-rates
(5× 10−4 s−1 – 200 s−1) using experimental observations for a QP3Mn alloy that were
presented in Poling [53]. The evolution of the Taylor-Quinney coefficient and the orienta-
tion dependence of transformation are then analyzed. The model is recalibrated without
strain-rate dependent transformation compared to the validated model to determine the
necessity of the strain-rate dependence incorporated in this work. Finally, plane strain and
equibiaxial tension simulations are conducted to analyze the strain-path dependence of the
validated model’s mechanical behaviour.

5.2 Constitutive Model

The constitutive model presented here is developed to capture the aggregate behaviour
of a steel polycrystalline aggregate with an initial microstructure consisting of a com-
bination of austenite, ferrite and martensite grains. Since austenite can transform into
martensite under applied thermo-mechanical loading, this model must incorporate the
constitutive behaviours of the initial austenite phase, the transformed martensite phase,
and the transformation process. The derivation of this constitutive model is collected into
several sections. In brief, these sections:

• Present a micromechanical representation of transformation;

• Derive the deformation kinematics for the polycrystalline aggregate;

• Present stress evolution law for the polycrystalline aggregate;

• Derive plastic slip and transformation thermodynamic driving forces and a temper-
ature evolution law;

• Present the kinematics for plastic slip and transformation.

The proposed model’s primary novel aspects are the modified Taylor homogenization law
for capturing TRIP strain and transformation hardening, rigorous homogenization of the
governing thermodynamic equations, and the proposed transformation kinetics law.
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5.2.1 Micromechanics

This work focuses on thin-plate twinned martensite because it is the primary type that
forms in high carbon RA, such as in QP alloys [40, 43, 65]. This is modelled using the
phenomenological theory of martensite transformation [143, 144] and was first proposed
for use in crystal plasticity by Turteltaub and Suiker [110, 118]. Fig. 5.1 presents the
twinned microstructure of thin-plate martensite at several relevant length scales (modified
from Turteltaub and Suiker [110]). In order of highest level to lowest, these lengths scales
are the mesoscale, upper microscale, lower microscale, and lattice scale. At the mesoscale,
only the homogenized behaviour of the austenitic aggregate can be observed. At the upper
microscale, the individual austenite and transformed martensite phases can be observed. At
the lower microscale, an alternating twinned structure can be seen within each martensite
plate. Finally, at the lattice scale, the individual orientations of the martensite variants
can be seen within each of the martensite twins.

Fig. 5.1: Austenite and martensite microstructure at several length scales. Modified from
Turteltaub and Suiker [110].

These martensite variants have a body-centred tetragonal (BCT) structure at the lattice
scale, which may be one of three possible variants that correspond to three axes along which
the lattice may stretch. Each martensite variant ζ of the austenite grain α′ is related to
the austenite lattice through the stretch tensor U(α′,ζ), given by
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U(α′,ζ) =

(√
2
aM

aA

)
I +

(
cM

aA
−
√

2
aM

aA

)
e

(α′,ζ)
ζ ⊗ e

(α′,ζ)
ζ (5.1)

where aM and cM are the lattice parameters of the BCT martensite, aA is the lattice param-

eter of the austenite and
{

e
(α′,ζ)
i

}3

i=1
is an orthonormal basis aligned with the tetragonal

axes of the martensite variant ζ of the austenite grain α′. These basis vectors of the
martensite variant β are related to the austenite lattice through

e
(α′,ζ)
i = R(ζ)

? e
(α′)
i (5.2)

where R(α′,ζ)
? is a rotation tensor relating the lattice vectors and

{
e

(α′)
i

}3

i=1
is an orthonor-

mal basis aligned with the cubic axes of the austenite phase. The rotation tensors R(ζ)
? are

defined in the austenite basis by

R(1)
? =


1 0 0

0
√

2
2
−
√

2
2

0
√

2
2

√
2

2

 , R(2)
? =


√

2
2

0
√

2
2

0 1 0

−
√

2
2

0
√

2
2

 , R(3)
? =


√

2
2
−
√

2
2

0
√

2
2

√
2

2
0

0 0 1

 (5.3)

When forming the twinned structure, the martensite variants undergo additional ro-
tations to maintain material compatibility. First, compatibility between the martensite
variants in a twinned relationship is enforced using

R
(β)

U(α′,ζβ1 ) −U(α′,ζβ2 ) = a(α′,β) ⊗ n(α′,β) (5.4)

where R
(β)

represents the relative rotations between the twinned martensite variants ζβ1
and ζβ2 of the martensite plate orientation β, and a(α′,β) and n(α′,β) are the twin shear vector
and the twin shear plane normal for the martensite plate orientation β of the austenite
grain α′. The compatibility between the austenite phase and martensite variants is enforced
using

JFK(α′,β) = R̂
(β)
(
λ(ζβ1 )R

(β)
U(α′,ζβ1 ) + λ(ζβ2 )U(α′ζβ2 )

)
− I = γ̂trb

(α′,β) ⊗ d(α′,β) (5.5)
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where JFK(α′,β) represents the jump in deformation gradient between the austenite and

martensite plate orientation β of the austenite grain α′, R̂
(β)

is the rotation of the twinned

martensite structure and the austenite phase, λ(ζβ1 ) and λ(ζβ2 ) are the volume fractions
of the twinned martensite variants ζβ1 and ζβ2 within the martensite plate orientation β,
γ̂tr is the total shear during transformation, and b(α′,β) and d(α′,β) are the transformation
shear direction and habit plane normal for martensite plate orientation β of the austenite
grain α′. Since there are two twinned martensite variants, the volume fractions obey

the identity λ(ζβ1 ) + λ(ζβ2 ) = 1. Overall, there are 24 unique solutions to Eqs. (5.4) and
(5.5). This results in 24 unique martensite plate orientations and 48 unique martensite
variants (i.e. two unique variant orientations per plate orientation) per austenite grain.
The transformation shear direction b(α′,β) and habit plane normal d(α′,β) for a martensite
orientation β transformed from austenite grain α′ are defined in terms of the austenite
grain α′ basis by

b(α′,β) = b
(β)
i e

(α′)
i (5.6) d(α′,β) = d

(β)
i e

(α′)
i (5.7)

where b
(β)
j and d

(β)
j are components that are independent of the specific austenite grain

orientation. Combining Eqs. (5.4) and (5.5) gives the following orientation relationship
between the austenite basis and martensite variant bases of martensite plate orientation β
of austenite grain α′

e
(α′,ζβ1 )
i = Q̂

(ζβ1 )
e

(α′)
i , e

(α′,ζβ2 )
i = Q̂

(ζβ2 )
e

(α′)
i (5.8)

where Q̂
(ζβ1 )

and Q̂
(ζβ2 )

are rotation tensors between austenite and martensite variants ζβ1
and ζβ2 of martensite plate orientation β of austenite grain α′. These are given by

Q̂
(ζβ1 )

= R̂
(β)

R
(β)

R
(ζβ1 )
? , Q̂

(ζβ2 )
= R̂

(β)
R

(ζβ2 )
? (5.9)

Specific values of the austenite and martensite lattice parameters, rotation matrices, and
transformation systems are given in Appendix B.

Throughout the rest of this work, it is convenient to refer to martensite variants using
a single variable α when referring to single crystal behaviour and using the tuple (α′, ζβi )
when referring to transformation behaviour. Since (α′, ζβi ) refers to a unique transformed
martensite variant, there is a one to one mapping between α and (α′, ζβi ) and the terms
will be used interchangably.
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5.2.2 Deformation Kinematics

The velocity gradient 〈L〉 is given by a volumetric average of the local velocity gradients
(L) throughout the aggregate material, as shown by

〈L〉 =

Ng∑
α=1

ξ(α)L(α) + Ltr (5.10)

where ξ(α) and L(α) are the grain volume fraction and local velocity gradient of the grain
α, Ng is the number of grains present in the aggregate, Ltr is the velocity gradient from
martensitic transformation at the boundaries between austenite and transformed marten-
site plates, and the notation 〈?〉 = 1

V

∫
V

(?) dV indicates a volume average. Since the
volume fractions of the variants i within a martensite orientation β are not independent,

an additional variable ξ
(α′,β)

representing the volume fraction of the martensite orientation
β transforming from the austenite grain α′ is defined as

ξ(α
′,ζβi ) = λ(ζβi )ξ

(α′,β)
(5.11)

The volume fraction ξ(α′) of an austenite grain α′ is related to the volume fractions ξ(α
′,ζβi )

of the variant ζβi of martensite plate β transformed from austenite grain α′ and to the

volume fraction ξ
(α′,β)

of the martensite orientation β transformed from austenite grain α′

through

ξ(α′) = ξ
(α′)
0 −

24∑
β=1

2∑
i=1

ξ(α
′,ζβi ) = ξ

(α′)
0 −

24∑
β=1

ξ
(α′,β)

(5.12)

where ξ
(α′)
0 is the initial volume fractions of the austenite grain α′. The local velocity

gradients are then determined using a modified Taylor [96] assumption, wherein the local
velocity gradient in each grain is identical

〈L〉 − Ltr = L(α) ∀α (5.13)

The use of the Taylor assumption is common in crystal plasticity-based models incorpo-
rating the TRIP effect [118], including In this work, austenite is modelled as a face-centred
cubic (FCC) phase, ferrite is modelled as a body-centred cubic (BCC) phase, and the BCT
martensite phases are approximated as body-centred cubic (BCC) for elastic, thermal and
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plastic slip deformations. This assumption is common in crystal plasticity modelling of
martensite [41, 140, 154].

Following Clayton [108], the local deformation for each grain α is given by a multiplica-
tive decomposition of the deformation gradient

F(α) = F(α)
e F

(α)
θ F(α)

p (5.14)

where F(α), F(α)
e , F

(α)
θ and F(α)

p are the total, elastic, thermal and plastic slip deforma-
tion gradients for grain α. Fig. 5.2 illustrates this decomposition, where B0, Bp, Bθ

and B are the undeformed, plastically deformed, thermally deformed and fully deformed
configurations respectively.

Fig. 5.2: Deformation gradient decomposition.

The velocity gradient can then be calculated as

L(α) = Ḟ
(α)
[
F(α)

]−1

= L(α)
e + L

(α)
θ + L(α)

p (5.15)

where L(α)
e , L

(α)
θ and L(α)

p are the elastic, thermal and plastic slip velocity gradients given
by

L(α)
e = Ḟ

(α)

e

[
F(α)
e

]−1

(5.16a)

L
(α)
θ = F(α)

e

[
Ḟ

(α)

θ

[
F

(α)
θ

]−1
] [

F(α)
e

]−1

(5.16b)
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L(α)
p = F(α)

e F
(α)
θ

[
Ḟ

(α)

p

[
F(α)
p

]−1
] [

F
(α)
θ

]−1 [
F(α)
e

]−1

(5.16c)

The thermal velocity gradients are given by

L
(α)
θ = A(α)Iθ̇ (5.17)

where A(α) is the linear thermal expansion coefficient for grain α, I is the second order
identity tensor and θ̇ is the rate of change of temperature. In this work, all grains α are
assumed to have the same temperature. The plastic slip velocity gradients are given by

L(α)
p =

N
(α)
p∑
i=1

γ̇(α,i)
[
s(α,i)
e ⊗m(α,i)

e

]
(5.18)

where N
(α)
p is the number of slip systems for grain α, γ̇(α,i) is the slip rate for slip system

i of grain α, and s
(α,i)
e and m

(α,i)
e are the slip system direction and normal plane of the

slip system i for grain α in the fully deformed configuration. The slip system direction
and normal vectors for austenite, ferrite, and pre-existing martensite in the fully deformed
configuration are related to the undeformed configuration by

s(α,i)
e = F(α)

e F
(α)
θ s(α,i) (5.19) m(α,i)

e = m(α,i)
[
F

(α)
θ

]−1 [
F(α)
e

]−1

(5.20)

where s(α,i) and m(α,β) are the slip system direction and normal plane of the slip system
β for grain α in the undeformed configuration. These are expressed in terms of the cubic
basis of the grain α by

s(α,i) = s
(i)
j e

(α)
j (5.21) m(α,i) = m

(i)
j e

(α)
j (5.22)

where s
(i)
j and m

(i)
j are components that are independent of the specific grain orientation

and where
{

e
(α)
j

}3

j=1
is the cubic basis of grain α. The specific values of the slip directions

and normals in the undeformed configuration are given in Appendix A.

However, the slip system orientations in a newly transformed region of transforming
martensite grains may not be the same as in the existing transformed material. This is
because the orientation in a newly transformed region is dependent on the parent austenite
orientation, whereas the orientations in the existing transformed material may have evolved
independently. In this case, the change in slip system orientations is determined as a
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function of the newly transformed slip system orientations and the change in orientation
in the existing transformed grain. This gives

∆
(
ξ(α)s(α,i)e

)
= ∆ξ(α)s(α,i)e + ξ(α)∆s(α,i)e = ∆ξ(α)ŝ(α,i)e + ξ(α)

[
L(α)
e + L

(α)
θ

]
s(α,i)e ∆t

∆
(
ξ(α)m(α,i)

e

)
= ∆ξ(α)m(α,i)

e + ξ(α)∆m(α,i)
e = ∆ξ(α)m̂(α,i)

e − ξ(α)m(α,i)
e

[
L(α)
e + L

(α)
θ

]
∆t

(5.23)

where ŝ(α,i)‘
e and m̂(α,i)

e are the slip system directions and normals in the newly transformed
material. These are defined by

ŝ(α,i) = ŝ((α′,ζβl ),i) = s
(i)
j ê

(α′,ζβk )
j = s

(i)
j Q̂

(ζβl )
jk e

(α′)
k

m̂(α,i) = m̂((α′,ζβl ),i) = m
(i)
j ê

(α′,ζβl )
j = m

(i)
j Q̂

(ζβl )
jk e

(α′)
k

(5.24)

Taking the limit and rearranging for the slip directions and normals gives

ṡ(α,i)
e = ṡ(α,i)

e

ξ̇(α)

ξ(α)

[
ŝ(α,i) − s(α,i)

e

]
+
[
L(α)
e + L

(α)
θ

]
s(α,i)
e

ṁ(α,i)
e =

ξ̇(α)

ξ(α)

[
m̂(α,i) −m(α,i)

e

]
−m(α,i)

e

[
L(α)
e + L

(α)
θ

] (5.25)

While similar relationships also hold for other internal variables (e.g. dislocation density,
elastic strain, and plastic strain), this work assumes that the newly transformed internal
variables have the same value as in the existing transformed material. As such, this effect
is not explicitly included for other internal variables.

The presence of plastic slip in a grain α results in the accumulation of the dislocations,
as measured by the dislocation density ρ

(α)
d . The initial dislocation density is given by ρ

(α)
d,0

and the rate of change ρ̇
(α)
d is given by

ρ̇
(α)
d =

N
(α)
p∑
i=1

[
1

b(α)k
(α)
1

√
ρ

(α)
d − k

(α)
2 ρ

(α)
d

] ∣∣γ̇(α,i)
∣∣ (5.26)

where b(α) is the Burger’s vector of grain α and k
(α)
1 and k

(α)
2 are calibration coefficients

for grain α. In this equation, the first term represents the dislocation generation and the
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second term represents dynamic recovery of dislocations. Unlike in Connolly et al. [154],
it is assumed that the dislocation density is independent of the grain volume fractions as
the impact of transformation strain is instead captured through homogenization (as in Eq.
(5.10)).

Following the work of Cherkaoui et al. [115], the transformation velocity gradients are
given by

Ltr =
1

V

Na∑
α′=1

24∑
β=1

∫
S(α′,β)

[[
∂u

∂x

]]
w · n dS(α′,β) (5.27)

where V is the volume of the polycrystal aggregate, Na is the number of austenite grains,
S(α′,β) represents the transformation surface from austenite to martensite plate orientation
β of austenite grain α′, J?K represents the jump across the surface S(α′,β) at a point along
the surface, and where ∂u

∂x
, n and w are the jump in displacement gradient associated

with complete transformation from austenite to a martensite variant, the surface normal
vector and the velocity of the transforming boundary at a point on the surface S(α′,β). This
equation is independent of the specific shape or size of the transformed martensite grains.
The jump in the deformation gradient across the transforming boundary is given by

[[
∂u

∂x

]] ∣∣∣∣∣
S(α′,β)

≈ JFK(α′,β) = γ̂trb
(α′,β)
e ⊗ d(α′,β)

e (5.28)

where b(α′,β)
e and d(α′,β)

e are the transformation direction and the transformation habit
plane in the fully deformed configuration. Next, the surface integral of the normal velocity
over the surface S(α′,β) is directly related to the transformation rate of martensite plate
orientation β of austenite grain α′ through

1

V

∫
S(α′,β)

w · n dS(α′,β) = ξ̇
(α′,β)

(5.29)

Combining Eqs. (5.27), (5.28), and (5.29) gives

Ltr =
Na∑
α′=1

24∑
β=1

ξ̇
(α′,β) [

γ̂trb
(α′,β)
e ⊗ d(α′,β)

e

]
(5.30)

matching the derivations in Connolly et al. [154]. Since the jump in deformation gradient
due to transformation (JFK(α′,β)) is defined in terms of the austenite lattice at the time of
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transformation, the transformation systems must convect with the austenite lattice such
that

b(α′,β)
e = F(α′)

e F
(α′)
θ b(α′,β) (5.31) d(α′,β)

e = d(α′,β)
[
F

(α′)
θ

]−1 [
F(α′)
e

]−1

(5.32)

5.2.3 Governing Equations for Stress

The Cauchy stress and Cauchy stress rate for the overall aggregate are given by

〈σ〉 =

Ng∑
α=1

ξ(α)σ(α) (5.33)

〈σ̇〉 =

Ng∑
α=1

ξ(α)σ̇(α) +
Na∑
α′=1

24∑
β=1

ξ̇
(α′,β)

[
2∑
i=1

λ(ζβi )σ(α′,ζβi ) − σ(α′)

]
(5.34)

where σ(α) and σ̇(α) are the volume averaged Cauchy stress and Cauchy stress rate of the

grain α, σ(α′,ζβi ) is the volume averaged Cauchy stress in variant i of martensite plate β
transforming from austenite grain α′ and σ(α′) is the volume averaged Cauchy stress in the
austenite grain α′. Stress is governed by a hyper-elastic law

S(α)
e = C(α) : E(α)

e (5.35)

where S(α), C(α) and E(α)
e are the second Piola-Kirchoff stress, elasticity tensor and the

elastic Euler-Green tensor for grain α. In Voigt form, the elasticity tensor is represented
as

{
C(α)

}
=





c
(α)
11 c

(α)
12 c

(α)
12 0 0 0

c
(α)
12 c

(α)
11 c

(α)
12 0 0 0

c
(α)
12 c

(α)
12 c

(α)
11 0 0 0

0 0 0 c
(α)
44 0 0

0 0 0 0 c
(α)
44 0

0 0 0 0 0 c
(α)
44




(5.36)

where c
(α)
11 , c

(α)
12 and c

(α)
44 are the elastic coefficients for grain α.
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Since Eq. (5.35) is defined in the thermally deformed configuration, the elastic Jaumann
rate of the Cauchy stress can be derived as

O
σ(α)
e = σ̇(α) + σ(α)Ω(α)

e −Ω(α)
e σ

(α) = C(α)
e : D(α)

e (5.37)

where D(α)
e and Ω(α)

e are the symmetric and antisymmetric part of the elastic velocity

gradient L(α)
e and C(α)

e is the elastic tensor in the fully deformed configuration, given by

C(α)
e(ijkl) = F

(α)
e(ia)F

(α)
e(jb)F

(α)
e(kc)F

(α)
e(ld)C

(α)
abcd (5.38)

As a result of using the Jaumann rate, it is assumed that σ(α)D(α)
e , D(α)

e σ
(α) and σ(α)tr

(
D(α)
e

)
are small relative to σ̇. The elastic Jaumann rate of the Cauchy stress given in Eq. (5.37)
can be related to the total Jaumann rate of the Cauchy stress using

O
σ(α) = σ̇(α) + σ(α)Ω(α) −Ω(α)σ(α) =

O
σ(α)
e −

N
(α)
p∑
i=1

B(α,i)γ̇(α,i) (5.39)

where B(α,i) represents the plastic rotation in grain α from slip system i. This is given by

B(α,i) = W(α,i)σ − σW(α,i) (5.40)

where W(α,i) is the antisymmetric part of the slip system matrix given by

W(α,i) = asym
(
s(α,i)
e ⊗m(α,i)

e

)
(5.41)

Similar to Eq. (5.37), the Jaumann rate assumes that σ(α)D(α), D(α)σ(α) and σ(α)tr
(
D(α)

)
are small relative to σ̇, where D(α) is the symmetric part of the velocity gradient L(α).
Combining Eqs. (5.15), (5.17), (5.18), (5.37), and (5.39) gives the total Cauchy rate as a
function of the symmetric part of the velocity gradient for grain α

O
σ(α) = C(α)

e : D(α) − A(α)θ̇
[
C(α)
e : I

]
−

N
(α)
p∑
i=1

R(α,i)γ̇(α,i) (5.42)

where D(α) is the symmetric part of the velocity gradient for grain α and R(α,i) is given by

R(α,i) = C(α) : P(α,i) + B(α,i) (5.43)
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where P(α,i) is the symmetric part of the slip system matrix. This is given by

P(α,i) = sym
(
s(α,i)
e ⊗m(α,i)

e

)
(5.44)

5.2.4 Thermodynamic Equations

The first law of thermodynamics is enforced using the energy balance in the undeformed
configuration, given by

ρ〈ė〉+ ∇ · q− ρ〈r〉 − 〈σ : D〉 = 0 (5.45)

where ρ is the current material density, 〈ė〉 is the current rate of change of the internal
energy, ∇ · q is the divergence of the current heat flux, 〈r〉 is the energy source per unit
mass, 〈σ : D〉 is the volume averaged external work applied and D is the symmetric part
of the velocity gradient L. In this work, the density ρ is assumed to be constant for all
phases. The second law of thermodynamics is enforced through the energy dissipation law

D = −ρ〈ė〉+ ρθ〈η̇〉+ 〈σ : D〉 − ∇θ · q
θ
≥ 0 (5.46)

where D is the energy dissipation rate which must be greater than 0 and 〈η̇〉 is the volume
averaged internal entropy generation rate. The volume averaged entropy can be related to
the entropy in each grain through

〈η〉 =

Ng∑
α=1

ξ(α)η(α) (5.47)

where η(α) is the entropy for grain α. The volume averaged entropy and local grain entropy
can be decomposed according to

〈η〉 = 〈ηI〉+ 〈ηe〉+ 〈ηm〉+ 〈ηp〉 (5.48) η(α) = η
(α)
I + η(α)

e + η(α)
m + η(α)

p (5.49)

where 〈ηI〉 and η
(α)
I are the average and local grain α entropy associated with the unde-

formed crystal at reference temperature θT , 〈ηe〉 and η
(α)
e are the average and local grain

α reversible entropy due to temperature change from θT , 〈ηm〉 and η
(α)
m are the average

and local grain α reversible entropy due to thermo-elastic coupling, and 〈ηp〉 and η
(α)
p are

the average and local grain α entropy generated during plastic slip. For convenience, the
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reference temperature θT is chosen to be the temperature at which transformation will
occur spontaneously without any applied stress or transformation energy barriers.

The volume average and local entropies are related through

〈ηI〉 =

Ng∑
α=1

ξ(α)η
(α)
I (5.50) 〈ηe〉 =

Ng∑
α=1

ξ(α)η(α)
e (5.51)

〈ηm〉 =

Ng∑
α=1

ξ(α)η(α)
m (5.52) 〈ηp〉 =

Ng∑
α=1

ξ(α)η(α)
p (5.53)

Using Eq. (5.48) and the Legendre transformation between the volume averaged internal
energy 〈e〉 and a volume averaged Helmholtz free energy 〈Ψ〉, defined by 〈Ψ〉 = 〈e〉−θ〈ηe〉,
the dissipation rate given in Eq. (5.46) can be rewritten as

D = −ρ〈Ψ̇〉 − ρθ̇〈ηe〉+ ρθ〈η̇m〉+ ρθ〈η̇p〉+ ρθ〈η̇I〉+ 〈σ : D〉 − ∇θ · q
θ
≥ 0 (5.54)

where 〈η̇m〉, 〈η̇p〉 and 〈η̇I〉 are the volume averaged rates of change of the thermomechanical
coupling part of the reversible entropy density, the plastic slip entropy density, and the
initial undeformed crystal entropy density.

The volume-averaged Helmholtz free energy and the rate of change of the Helmholtz
free energy are related to the internal variables in grain α through

〈Ψ〉 =

Ng∑
α=1

ξ(α)Ψ(α) (5.55) 〈Ψ̇〉 =

Ng∑
α=1

ξ̇(α)Ψ(α) + ξ(α)Ψ̇(α) (5.56)

where Ψ(α) and Ψ̇(α) are the local Helmholtz free energy and rate of change of the Helmholtz
free energy for grain α. The local Helmholtz free energy is assumed to follow the form

Ψ(α)
(
E(α), θ, ρ

(α)
d

)
where ρ

(α)
d is the dislocation density for grain α. Since Ψ(α) is indepen-

dent of the grain volume fractions ξ, any changes in the surface energy of grain boundaries
is neglected.

The rate of change of the local Helmholtz free energy can then be written as

Ψ̇(α) =
∂Ψ(α)

∂E(α)
e

Ė
(α)

e +
∂Ψ(α)

∂θ
θ̇ +

∂Ψ(α)

∂ρ
(α)
d

ρ̇
(α)
d (5.57)
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For simplicity, the rate of change of the dislocation density is represented as

ρ̇
(α)
d =

N
(α)
p∑
i=1

w(α,i)
p γ̇(α,i) (5.58)

where w
(α,i)
p is the dependence of dislocation density on the plastic slip rates given by

w(α,i)
p =

[
1

b(α)k
(α)
1

√
ρ

(α)
d − k

(α)
2 ρ

(α)
d

]
sign

(
γ̇(α,i)

)
(5.59)

Using Ė
(α)

e =
[
F(α)
e

]T
D(α)
e F(α)

e and Eq. (5.58), then Eq. (5.57) can be rewritten as

Ψ̇(α) = F(α)
e

∂Ψ(α)

∂E(α)
e

[
F(α)
e

]T
: D(α)

e +
∂Ψ(α)

∂θ
θ̇ +

∂Ψ(α)

∂ρ
(α)
d

N
(α)
p∑
i=1

w(α,i)
p γ̇(α,i) (5.60)

The local thermal component of the reversible entropy density is given by

η(α)
e = h(α)ln

(
θ

θT

)
(5.61)

where h(α) is the specific heat capacity of the grain α. The volume averaged rate of change
of the thermomechanical coupling part of the reversible entropy density is given by

〈η̇m〉 =
N∑
α

ξ̇(α)η(α)
m + ξ(α)η̇(α)

m (5.62)

where the local thermomechanical coupling part of the reversible entropy density for grain
α is assumed to take the form

η(α)
m = η(α)

m (Ee, ηe) (5.63)

This is congruous with previous work [154] because the dependence of the thermome-
chanical coupling part of the reversible entropy density in that work arose from homog-
enization of a multiphase material, whereas here the grain α is a single material. Using

Ė
(α)

e =
[
F(α)
e

]T
D(α)
e F(α)

e , the rate of change of the local thermomechanical coupling part

of the reversible entropy density can be written as
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η̇(α)
m = Fe

∂η
(α)
m

∂E(α)
e

FT
e : D(α)

e +
∂η

(α)
m

∂η
(α)
e

∂η
(α)
e

∂θ
θ̇ (5.64)

The volume-averaged rate of change of plastic slip entropy density and undeformed initial
crystal entropy density is given by

〈η̇p〉 =

Ng∑
α=1

ξ̇(α)η(α)
p + ξ(α)η̇(α)

p (5.65)

〈η̇I〉 =
Na∑
α′=1

24∑
β=1

ξ̇
(α′,β)

[
2∑
i=1

λ(ζβi )η
(α′,ζβi )
I − η(α′)

]
(5.66)

Since the undeformed initial crystal entropy is defined at the reference temperature θT , the
jump in initial crystal entropy can be related to the latent heat of transformation through

λT
θT

=
λ

(α′,β)
T

θT
=

2∑
i=1

λ(ζβi )η
(α′,ζβi )
I − η(α′) (5.67)

where λT = λ
(α′,β)
T is the latent heat of transformation for a martensite plate β transformed

from an austenite grain α′, which is assumed to be equal for all austenite grains and
martensite plates. Combining Eqs. (5.66) and (5.67) gives

〈η̇I〉 =

Ng∑
α′=1

24∑
β=1

ξ̇
(α′,β)λT

θT
(5.68)

The local rate of change of entropy generation from plastic slip is given by

η̇(α)
p =

N
(α)
p∑
i=1

∣∣γ̇(α,i)
∣∣φ(α,i) (5.69)

where φ(α,i) is the rate of entropy generation per unit slip strain in slip system i of grain
α.

Following the derivation of Cherkaoui et al. [115], where perfect compatibility is as-
sumed across the transformation surface interface such that Jσ · nK = 0, and using the
symmetry of the Cauchy tensor, the volume-averaged external mechanical work can be
related to the local grain behaviour through
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〈σ : D〉 =

Ng∑
α=1

σ(α) : D(α) −
Na∑
α′=1

24∑
β=1

∫
S(α′,β)

σ :

[[
∂u

∂x

]]
w · n dS(α′,β) (5.70)

Using Eqs. (5.28) and (5.29) and assuming an average stress σ(α′,β) along the interface
S(α′,β) given by

σ(α′,β) =
1

S(α′,β)

∫
S(α′,β)

σ dS(α′,β) =
1

2

[
2∑
i=1

λ(ζβi )σ(α′,ζβi ) + σ(α′)

]
(5.71)

the volume averaged external mechanical work can be rewritten as

〈σ : D〉 =

Ng∑
α=1

ξ(α)
[
σ(α) : D(α)

]
+

Na∑
α′=1

24∑
β=1

1

2

[
2∑
i=1

λ(ζβi )σ(α′,ζβi ) + σ(α′)

]
: D

(α′,β)
tr (5.72)

where D
(α′,β)
tr is the symmetric part of the transformation velocity gradient L

(α′,β)
tr , given

by

D
(α′,β)
tr = P

(α′,β)
tr ξ̇

(α′,β)

(5.73) P
(α′,β)
tr = γ̂tr sym

(
b(α′,β)
e ⊗ d(α′,β)

e

)
(5.74)

where P
(α′,β)
tr is the symmetric part of the transformation deformation. Substituting Eqs.

(5.15), (5.17), (5.18), (5.51), (5.56), (5.60) – (5.63), (5.65) – (5.69), and (5.72) into (5.54)
and collecting terms gives the expanded dissipation equation

D =

Ng∑
α=1

ξ(α)
[
D(α)
e +D(α)

θ +D(α)
p

]
+

Na∑
α′=1

24∑
β=1

D(α′,β)
tr +Dθ ≥ 0 (5.75)

where D(α)
e , D(α)

θ and D(α)
p are the dissipation associated with elastic strain, temperature

change, and dislocation evolution, D(α′,β)
tr is the dissipation due to transformation into

martensite plate orientation β from austenite grain α′ and Dθ dissipation from heat con-
duction dissipation. These are given by

D(α)
e =

[
σ(α) − ρFe

∂Ψ(α)

∂E(α)
e

FT
e + ρθFe

∂η
(α)
m

∂E(α)
e

FT
e

]
: D(α)

e (5.76)
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D(α)
θ =

[
A(α)

[
σ(α) : I

]
− ρ∂Ψ(α)

∂θ
− ρh(α)ln

(
θ

θT

)
+ ρθ

∂η
(α)
m

∂η
(α)
e

∂η
(α)
e

∂θ

]
θ̇ (5.77)

D(α)
p =

N
(α)
p∑
i=1

[
σ(α) : P(α,i) − ρ∂Ψ(α)

∂ρ
(α)
d

w(α,i)
p + ρθφ(α,i)sign

(
γ̇(α,i)

)]
γ̇(α,i) (5.78)

D(α′,β)
tr =ρθ

[
2∑
i=1

λ(ζβi )η
(α′,ζβi )
m − η(α′)

m

]
ξ̇

(α′,β)

− ρ

[
2∑
i=1

λ(ζβi )Ψ(α′,ζβi ) −Ψ(α′)

]
ξ̇

(α′,β)

− ρ

[
2∑
i=1

λ(ζβi )ξ(α
′,ζβi )∂Ψ(α′,ζβi )

∂ξ(α
′,ζβi )

− ξ(α′)∂Ψ(α′)

∂ξ(α′)

]
ξ̇

(α′,β)

+ ρθ

[
λT
θT

]
ξ̇

(α′,β)

+
1

2

[
2∑
i=1

λ(ζβi )σ(α′,ζβi ) + σ(α′)

]
: P

(α′,β)
tr ξ̇

(α′,β)

+ ρθ

[
2∑
i=1

λ(ζβi )η
(α′,ζβi )
p − η(α′)

p

]
ξ̇

(α′,β)

(5.79)

Dθ = −∇θ · q
θ

(5.80)

In this work, the material is assumed to be strongly dissipative such that

D(α)
e ≥ 0 D(α)

θ ≥ 0 D(α)
p ≥ 0 D(α′,β)

tr ≥ 0 Dθ ≥ 0 (5.81)

The Coleman and Noll [113] procedure then implies that

ρFe
∂Ψ(α)

∂E(α)
e

FT
e = σ(α) + ρθFe

∂η
(α)
m

∂E(α)
e

FT
e (5.82)

ρ
∂Ψ(α)

∂θ
= A(α)

[
σ(α) : I

]
− ρh(α)ln

(
θ

θT

)
+ ρθ

∂η
(α)
m

∂η
(α)
e

∂η
(α)
e

∂θ
(5.83)

Integrating Eq. (5.82) with respect to Ee allows the Helmholtz free energy to be written
as
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Ψ(α) =
1

2ρ
C(α) :

[
E(α)
e ⊗ E(α)

e

]
+ θη(α)

m + Ψ
(α)
1

(
θ, ρ

(α)
d

)
(5.84)

where Ψ
(α)
1

(
θ, ρ

(α)
d

)
is an integration constant representing the dependence of Helmholtz

free energy on temperature and dislocation density. Taking the partial derivative of Eq.
(5.84) with respect to temperature and substituting into Eq. (5.83) gives

η(α)
m =

1

ρ
A(α)

[
σ(α) : I

]
−

[
∂Ψ

(α)
1

∂θ
+ h(α)ln

(
θ

θT

)]
(5.85)

Since ηm should disappear (ηm = 0) when no stress is applied (σ(α) = 0), then

η(α)
m =

1

ρ
A(α)

[
σ(α) : I

]
(5.86)

∂Ψ
(α)
1

∂θ
= −h(α)ln

(
θ

θT

)
= −η(α)

e (5.87)

Integrating Eq. (5.87) with respect to temperature, Ψ
(α)
1 can be written as

Ψ
(α)
1 = −η(α)

e θ + h(α)θ + Ψ
(α)
2

(
ρ

(α)
d

)
(5.88)

where Ψ
(α)
2

(
ρ

(α)
d

)
is a constant of integration representing the dependence of Helmholtz

free energy on the dislocation density. Following Tjahjanto et al. [119], this dependence
can be written as

Ψ
(α)
2

(
ρ

(α)
d

)
= Ψ

(α)
d

(
ρ

(α)
d

)
+ Ψ

(α)
3 (5.89)

where the change in surface energy due to transformation is neglected, Ψ
(α)
d

(
ρ

(α)
d

)
rep-

resents the dependence of the Helmholtz free energy on dislocation density and Ψ
(α)
3 is a

constant representing the Helmholtz free energy of grain α with no elastic strain or dis-
location density and at the reference temperature θ = θT . The dependence of Helmholtz
free energy on the dislocation density is then given by

Ψ
(α)
d =

1

2ρ
ω(α)µ(α)

[
b(α)
]2
ρ

(α)
d (5.90)
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where ω(α) is the coefficient representing the impact of dislocation density on energy for
grain α, and µ(α) is the shear modulus for grain α. In this work, it is assumed that
µ(α) = c

(α)
44 .

Combining Eqs. (5.84), (5.87), (5.89) and (5.90) gives the Helmholtz free energy as

Ψ(α) =
1

2ρ
C(α) :

[
E(α)
e ⊗ E(α)

e

]
+ θη(α)

m − η(α)
e θ + h(α)θ

+
1

2ρ
ω(α)µ(α)

[
b(α)
]2
ρ

(α)
d + Ψ

(α)
3

(5.91)

Following the terminology of Onsager (see, e.g. Callen [155]), the plastic slip and transfor-
mation dissipation can be written as the product of driving forces and the corresponding
fluxes, such that

D(α)
p =

N
(α)
p∑
i=1

f (α,i)
p γ̇(α,i) (5.92) D(α′,β)

tr = f
(α′,β)
tr ξ̇

(α′,β)

(5.93)

where f
(α,i)
p is the driving force of the slip rate γ̇(α,i) of slip system i of grain α and f

(α′β)
tr

is the driving force of martensitic transformation ξ̇
(α′,β)

of martensite plate β transformed

from austenite grain α′. Note that the volume fraction rates ξ̇
(α′,β)

must be used instead

of the rates ξ̇
(α′,ζβi )

because the rates ξ̇
(α′,ζβ1 )

and ξ̇
(α′,ζβ2 )

are not independent. The plastic
slip driving force f

(α,i)
p is given by

f (α,i)
p = f

(α,i)
p,1︸ ︷︷ ︸

Resolved Stress

+ f
(α,i)
p,2︸ ︷︷ ︸

Dynamic recovery

− f
(α,i)
p,3︸ ︷︷ ︸

Dislocation Generation

+ f
(α,i)
p,4︸ ︷︷ ︸

Entropy Generation

(5.94)

where the included terms represent the resolved stress, dynamic recovery, dislocation gen-
eration, and entropy generation. In this work, it has been assumed that sign

(
γ̇(α,i)

)
=

sign
(
f

(α,i)
p,1

)
such that the driving force components are given by

f
(α,i)
p,1 = σ(α) : P(α,i)

p (5.95)

f
(α,i)
p,2 =

1

2
ω(α)µ(α)

[
b(α)
]2
k

(α)
2 ρ

(α)
d sign

(
f

(α,i)
p,1

)
(5.96)
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f
(α,i)
p,3 =

ω(α)µ(α)b(α)

2k
(α)
1

√
ρ

(α)
d sign

(
f

(α,i)
p,1

)
(5.97)

f
(α,i)
p,4 = ρθφ(α,β)sign

(
f

(α,i)
p,1

)
(5.98)

The transformation driving force f
(α′,β)
tr is given by

f
(α′,β)
tr = f

(α′,β)
tr,1︸ ︷︷ ︸

Resolved Stress

+ f
(α′,β)
tr,2︸ ︷︷ ︸

Latent Heating

+ f
(α′,β)
tr,3︸ ︷︷ ︸

Plastic Entropy
Jump

− f
(α′,β)
tr,4︸ ︷︷ ︸

Internal Thermal
Energy Jump

− f
(α′,β)
tr,5︸ ︷︷ ︸

Elastic Distortion
Energy Jump

− f
(α′,β)
tr,6︸ ︷︷ ︸

Dislocation
Energy Jump

(5.99)

where the included terms represent the resolved stress on the transformation system, the
latent heating, and the jumps in plastic entropy, internal thermal energy, elastic distortion
energy, and stored dislocation energy between the austenite and martensite plate orienta-
tion β transformed from austenite grain α′. These terms are then given by

f
(α′,β)
tr,1 =

1

2

[[
2∑
i=1

λ(ζβi )σ(α′,ζβi ) + σ(α′)

]
: P

(α′,β)
tr

]
(5.100)

f
(α′,β)
tr,2 = ρ [θ]

[
λT
θT

]
(5.101)

f
(α′,β)
tr,3 = ρ

[
2∑
i=1

λ(ζβi )η
(α′,ζβi )
p − η(α′)

p

]
θ (5.102)

f
(α′,β)
tr,4 = ρ

[
2∑
i=1

λ(ζβi )h(α′,ζβi ) − h(α′)

] [
θ − ln

(
θ

θT

)
θ

]

+ ρ
2∑
i=1

λ(ζβi )Ψ
(α′,ζβi )
3 − ρΨ

(α′)
3

(5.103)

f
(α′,β)
tr,5 =

2∑
i=1

1

2
λ(ζβi )C(α′,ζβi ) :

[
E

(α′,ζβi )
e ⊗ E

(α′,ζβi )
e

]
− 1

2
C(α′) :

[
E(α′)
e ⊗ E(α′)

e

]
(5.104)
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f
(α′,β)
tr,6 =

2∑
i=1

λ(ζβi ) 1

2
ω(α′,ζβi )µ(α′,ζβi )

[
b(α

′,ζβi )
]2

ρ
(α′,ζβi )
d − 1

2
ω(α′)µ(α′)

[
b(α′)

]2

ρ
(α′)
d (5.105)

Since the driving force for transformation should be zero by definition with vanishing

dislocation density

(
ρ
(α′,ζβi )
d = 0

)
and elastic strain

(
E

(α′,ζβi )
e = 0

)
at the reference tem-

perature θ = θT , the value of the base Helmholtz free energy Ψ
(α)
3 can be restricted through

f
(α′,β)
tr = 0 = ρ

[
h(α′)θT + Ψ

(α′)
3

]
− ρ

2∑
i=1

λ(ζβi )
[
h(α′,ζβi )θT + Ψ

(α′,ζβi )
3

]
+ ρλT (5.106)

which gives a relationship between the base martensite grain α and austenite such that

2∑
i=1

λ(ζβi )Ψ
(α′,ζβi )
3 −Ψ

(α′)
3 = λT −

2∑
i=1

[
λ(ζβi )h(α′,ζβi ) − h(α′)

]
θT ∀α′ ∀β (5.107)

Substituting Eq. (5.107) into Eq. (5.99) and rearranging gives new latent heat and internal
thermal energy components of the driving force, given by

f
(α′,β)
tr,2 = ρ [θ − θT ]

[
λT
θT

]
(5.108)

f
(α′,β)
tr,4 = ρ

[
2∑
i=1

λ(ζβi )h(α′,ζβi ) − h(α′)

] [
θ − θT − ln

(
θ

θT

)
θ

]
(5.109)

Finally, combining Eqs. (5.15), (5.17), (5.18), (5.45), (5.51), (5.52), (5.53), (5.55), (5.61),
(5.68), (5.69), (5.72), (5.86), and (5.107) gives the constitutive equation for the evolution
of material temperature
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ρ

[
Ng∑
α=1

ξ(α)h(α)

]
θ̇ =−

Ng∑
α=1

ξ(α)M(α)
e : D(α)

e +

Ng∑
α=1

N
(α)
p∑
i=1

ξ(α)M (α,i)
p γ̇(α,i)

+
Na∑
α′=1

24∑
β=1

M
(α′,β)
tr ξ̇

(α′,β)

−∇ · q

(5.110)

where M(α)
e and M

(α,i)
p represent the change in internal energy due to elastic stretching and

plastic slip if grain α and M
(α′,β)
tr represents the energy dissipated during transformation

of martensite plate β form austenite grain α′. These terms are given by

M(α)
e = 4θA(α)σ(α) + θA(α)F(α)

e

[
I : C(α)

] [
F(α)
e

]T
(5.111)

M (α,i)
p = f

(α,i)
p,1 + f

(α,i)
p,2 − f

(α,i)
p,3 (5.112)

M
(α′,β)
tr = f

(α′,β)
tr,1 − f (α′,β)

tr,5 − f (α′,β)
tr,6 − ρλT −

2∑
i=1

θλ(ζβi )A(α′,ζβi )
[
σ(α′,ζβi ) : I

]
+ θA(α′)

[
σ(α′) : I

]
− ρ

[
2∑
i=1

λ(ζβi )h(α′,ζβi ) − h(α′)

]
[θ − θT ]

(5.113)

5.2.5 Kinetics Relations

Thermodynamic fluxes are related to the driving forces through kinetic relations. For
plastic slip, the rate of plastic shearing is related to the plasticity driving force through

γ̇(α,i) =

a
(α)sign

(
f

(α,i)
p,1

) ∣∣∣∣∣f (α,i)
p

g
(α)
p

∣∣∣∣∣
1/m(α)

f
(α,i)
p,1 + f

(α,i)
p,2 + f

(α,i)
p,4 > f

(α,i)
p,3

0 f
(α,i)
p,1 + f

(α,i)
p,2 + f

(α,i)
p,4 ≤ f

(α,i)
p,3

(5.114)

where a(α), m(α) and g
(α)
p are the reference rate, rate coefficient and critical plastic slip

driving force for grain α. The critical plastic slip driving force can be related to the
dislocation density in grain α through
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g(α)
p = g

(α)
p,0 + c(α)µ(α)b(α)

√
ρ

(α)
d (5.115)

where g
(α)
p,0 is the initial critical driving force for grain α and c(α) is the interaction coefficient

between dislocation in grain α.

Based on the work of Olson and Cohen [18] and Stringfellow et al. [83], the transfor-
mation rate is given by

ξ̇
(α′,β)

= ξ(α
′)νmṄ

(α′,β)
t

= ξ(α
′)νm

 P (α′,β)
n Ṅ (α′)

n︸ ︷︷ ︸
Transformation at new

nucleation sites

+ R
(
Ṗ (α′,β)
n

)
N (α′)
n︸ ︷︷ ︸

Transformation at deformation
induced nucleation sites

+ R
(
Ṗ (α′,β)
o

)
No︸ ︷︷ ︸

Transformation at original
microstructure nucleation sites


(5.116)

where νm is the average volume of a newly transformed martensitic unit, Ṅ
(α′,β)
t is the rate

of change of the number of transformed martensite units with orientation β per unit volume

of austenite grain α′, P
(α′,β)
n is the probability of a strain-induced martensite nucleation

site in austenite grain α′ transforming into martensite plate orientation β, N
(α′)
n is the

number of strain-induced martensite nucleation sites per unit volume of austenite grain

α′, P
(α′,β)
o is the probability of a nucleation site in the original microstructure in austenite

grain α′ transforming into martensite plate orientation β, No is the number of martensite
nucleation sites in the original microstructure per unit austenite volume (assumed constant
for all grains), and R(?) = max(0, ?) is a ramp function. The original microstructure and
strain-induced martensite nucleation sites are treated separately because the probability
of transformation may be different for each type of nucleation site. The first and second
terms in Eq. (5.116) represent the transformation due to the formation of strain-induced
nucleation sites, and due to the increase in transformation driving force at the existing
strain-induced nucleation sites, respectively. The third term represents transformation due
to the increase in transformation driving force at martensite nucleation sites in the original
microstructure. The number of martensite nucleation sites per unit austenite volume is
related to the volume fraction of shear band intersections through

N (α′)
n =

f
(α′)
I

νI
(5.117)

where f
(α′)
I is the volume fraction of shear band intersections in austenite grain α′ and
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νI is the average volume fraction of a shear band intersection site. Following Stringfellow
et al. [83], the volume fraction of the shear band intersection sites is related to the volume
fraction of shear bands through

f
(α′)
I = κI

(
f

(α′)
sb

)nI
(5.118)

where κI and nI are power law calibration coefficients and f
(α′)
sb is the volume fraction of

shear bands in austenite grain α′. Combining the approach of Stringfellow et al. [83] and
Ma and Hartmaier [120], the shear band volume fraction evolution is related to the strain
projected onto the shear band systems by

ḟ
(α′)
sb =

(
1− f (α′)

sb

)
a

(α′)
sb γ̇

(α′)
sb (5.119)

where γ̇
(α′)
sb is the total absolute rate of plastic shearing projected on the shear band system

i in austenite grain α′ and a
(α′)
sb determines the rate of shear band formation in austenite

grain α′. Building on the approach of Kohar et al. [9], this coefficient is modelled as a
function of the temperature and strain-rate by

a
(α′)
sb =

(
a1 + a2θ + a3θ

2
)(

1− a4

(
γ̇

(α′)
sb

a(α′)

)a5)
(5.120)

where a1–a5 are calibration coefficients and a(α′) is the reference rate used in the plastic
slip kinetics equation for the austenite grain α′.

As in Kim et al. [131] and Zhang et al. [13], the total absolute shear rate on the shear
bands is related to the slip rate on the slip systems through the projection

γ̇
(α′)
sb =

Nsb∑
i=1

N
(α′)
p∑
j=1

H(α′,i,j)
∣∣∣γ̇(α′,j)

∣∣∣ (5.121)

where Nsb is the number of shear band systems and H is the absolute value of the projection
matrix from the slip systems onto the fault bands in the same plane. In this work, the
absolute value of the projection matrix from the slip systems onto the fault bands in the
same plane is defined by
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H(α′,i,j) =


∣∣[s(α′,i) ⊗m(α′,i)

]
:
[
s(α′,j) ⊗m(α′,j)

]∣∣ m(α′,i) = m(α′,j)

0 m(α′,i) 6= m(α′,j)
(5.122)

where s(α′,i) and m(α′,i) are the shear band direction and normals related to the cubic axes
of austenite grain α′ through

s(α′,i) = s
(α′,i)
j e

(α′)
j (5.123) m(α′,i) = m

(α′,i)
j e

(α′)
j (5.124)

The shear band systems are defined using the 〈211〉 ⊗ 〈111〉 family, enumerated in Table
5.1.

Table 5.1: Shear band systems.

i s
(α,i)
j m

(α,i)
j i s

(α,i)
j m

(α,i)
j i s

(α,i)
j m

(α,i)
j i s

(α,i)
j m

(α,i)
j

1 〈211〉 〈11̄1̄〉 4 〈21̄1〉 〈111̄〉 7 〈211̄〉 〈11̄1〉 10 〈2̄11〉 〈111〉
2 〈121̄〉 〈11̄1̄〉 5 〈1̄21〉 〈111̄〉 8 〈121〉 〈11̄1〉 11 〈12̄1〉 〈111〉
3 〈11̄2〉 〈11̄1̄〉 6 〈112〉 〈111̄〉 9 〈1̄12〉 〈11̄1〉 12 〈112̄〉 〈111〉
‘

Using this shear band family, the projection matrix H is the absolute value of the projection
matrix used in Ma and Hartmaier [120], Kim et al. [131] and Zhang et al. [13]. Using this
projection matrix, Eq. (5.121) can be rewritten as

γ̇
(α′)
sb =

Nsb∑
i=1

N
(α′)
p∑
j=1

H(α′,i,j)
∣∣∣γ̇(α′,j)

∣∣∣ =
√

3

N
(α′)
p∑
j=1

∣∣∣γ̇(α′,j)
∣∣∣ (5.125)

Combining Eqs. (5.116), (5.117), (5.118), (5.119), (5.120), and (5.121) gives the final
transformation kinetics equation

ξ̇
(α′,β)

=
√

3ξ(α′)κP (α′,β)
n nI

(
f

(α′)
sb

)nI−1 (
1− f (α′)

sb

)
a

(α′)
sb

N
(α′)
p∑
j=1

∣∣∣γ̇(α′,j)
∣∣∣+

ξ(α′)κR
(
Ṗ (α′,β)
n

)(
f

(α′)
sb

)nI
+ ξ(α′)R

(
Ṗ (α′,β)
o

)
fo

(5.126)
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where without loss of generality, the variables κI , νm, νI and No have been replaced with
the calibration coefficients κ and fo such that

κ = κI
νm
νI

(5.127) fo =
νmNo

κ
=
νINo

κI
(5.128)

The transformation probabilities are calculated as a function of the driving force by
assuming the resistance to the transformation of the austenite phase follows a Gaussian
distribution [18]. For martensite transformation at strain-induced nucleation sites, this is
given by

P (α′,β)
n =

1√
2πσtr,n

∫ f
(α′,β)
tr

−∞
exp

(
−g
′ − gtr,n
2σ2

tr,n

)
dg′ =

1

2

(
1 + erf

(
f

(α′,β)
tr − gtr,n√

2σtr,n

))
(5.129)

where gtr,n and σtr,n are the mean and standard deviation of the critical transformation
driving force required for transformation in strain-induced nucleation sites. The rate of
change of the probability of transformation in the strain-induced and pre-existing nucle-
ation sites are given by

Ṗ (α′,β)
n =

1√
2πσtr,n

exp

−(f (α′,β)
tr − gtr,n√

2σtr,n

)2
ḟ (α′,β)

tr (5.130)

Ṗ (α′,β)
o =

1√
2πσtr,o

exp

−(f (α′,β)
tr − gtr,o√

2σtr,o

)2
ḟ (α′,β)

tr (5.131)

where gtr,o and σtr,o are the mean and standard deviation of the critical transformation
driving force required for transformation of nucleation sites in the original microstructure.

5.3 Numerical Model

This section provides a complete numerical model for simulation of the thermo-mechanical
behaviour of steel exhibiting the TRIP effect. Section 5.3.1 gives an overview of the overall
thermo-mechanical model boundary conditions used in this model. Section 5.3.2 provides a
detailed rate-tangent [141] formulation used to integrate the plastic slip in each crystal for
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constitutive model derived in Section 5.2. Finally, Section 5.3.3 provides the overall incre-
mental formulation and an outline of the integration algorithm used to solve the coupled
thermo-mechanical problem.

5.3.1 Thermo-Mechanical Model and Boundary Conditions

This work incorporates the constitutive model into a single integration point coupled
thermo-mechanical model. If L11 is aligned with the loading direction, then uniaxial tension
boundary conditions can be summarized by

〈L11〉 = ε̇app

〈L12〉 = 〈L21〉 = 〈L13〉 = 〈L31〉 = 〈L23〉 = 〈L32〉 = 0

〈σ22〉 = 〈σ33〉 = 0

(5.132)

where ε̇app is the applied strain-rate for a simulated case. General biaxial tension boundary
conditions are given by

〈L11〉 = ε̇app

〈L22〉 = P 〈L11〉
〈L12〉 = 〈L21〉 = 〈L13〉 = 〈L31〉 = 〈L23〉 = 〈L32〉 = 0

〈σ33〉 = 0

(5.133)

where P is a proportionality constant where P = −0.5 approximately represents uniaxial
tension, P = 0 represents plane strain tension and P = 1 represents equibiaxial tension.
The thermal integration point is defined using a rectangular prismatic control volume,
which encloses the entire cross section of the uniaxial tension sample, but only a small por-
tion of the length. Temperature within the control volume is assumed to be approximately
spatially invariant (constant throughout the volume at any point in time) such that the
thermal boundary conditions are governed by

∫
V

ρ

[
Ng∑
α=1

ξ(α)h(α)

]
θ̇dV = w`tρ

[
Ng∑
α=1

ξ(α)h(α)

]
θ̇ = Qgen −Qbound (5.134)

where w, ` and t are the width, length and thickness of the control volume, Qgen is the
total volumetric heat generation and Qbound is the heat lost to the thermal boundary. The
total heat generation is further decomposed into elastic (Qe), plastic slip (Qp) and TRIP
(Qtr) components such that
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Qgen = Qe +Qp +Qtr (5.135a)

Qe = −
∫
V

Ng∑
α=1

ξ(α)M(α)
e : D(α)

e dV = −w`t
Ng∑
α=1

ξ(α)M(α)
e : D(α)

e (5.135b)

Qp =

∫
V

Ng∑
α=1

N
(α)
p∑
i=1

ξ(α)M (α,i)
p γ̇(α,i) dV = w`t

Ng∑
α=1

N
(α)
p∑
i=1

ξ(α)M (α,i)
p γ̇(α,i) (5.135c)

Qtr =

∫
V

Na∑
α′=1

24∑
β=1

M
(α′,β)
tr ξ̇

(α′,β)

dV = w`t

Na∑
α′=1

24∑
β=1

M
(α′,β)
tr ξ̇

(α′,β)

(5.135d)

The thermal boundary heat loss per is then decomposed into conduction (Qcond) and con-
vection (Qconv) components, where conduction occurs on the two faces attached to the rest
of the uniaxial tension specimen and convection occurs on all surface exposed to air (i.e.
all other surfaces). These heat flux components are defined by

Qbound =

∫
V

∇ · q dV = Qconv +Qcond

Qconv = 2(w + t)`h(θ − θ∞)

Qcond = 2wtRcond(θ − θ∞)

(5.136)

where h is the convection coefficient between the air and the control volume, Rcond is a
coefficient governing conduction from the control volume into the rest of the sample, and
θ∞ is the temperature of the thermal boundaries (i.e. the air and the gripping mechanism
for the sample). The coefficient Rcond includes the effect of conduction into the gripping
mechanism as well as convection from the rest of the sample into the air. Since the convec-
tion and conduction coefficients are difficult to define and because the thermal boundary
temperature for both effects are identical, a single effective heat transfer coefficient can be
defined using

Qbound = AtotReff (θ − θ∞) (5.137)

where Atot = 2(wt+w`+ `t) is the total surface area of the control volume and Reff is an
effective heat transfer coefficient given by

129



Reff =
2wtRcond + 2(w + t)`h

Atot
(5.138)

Due to the difficulty of calculating the effective heat transfer coefficient analytically, it will
instead be determined directly from the experiments during model calibration. Directly
capturing convection and conduction into the gripping mechanism can be achieved using
finite element modelling, which is beyond the scope of this work.

5.3.2 Incremental Constitutive Formulation

This section provides a derivation of a rate-tangent scheme [141, 147] used to integrate
the plastic slip rates for each crystal in the polycrystalline aggregate. This algorithm
provides a higher-order semi-implicit estimate of the plastic slip vector increment ∆γ to
facilitate the use of larger time steps when integrating the polycrystalline aggregate. The
change in plastic slip is estimated using

∆γ(α,i) =
[
(1− Λ)γ̇(α,i)(t) + Λγ̇(α,i)(t+ ∆t)

]
∆t (5.139)

where Λ is an integration parameter determining the dependence on the estimated next
timestep. When Λ = 0, the algorithm becomes a first-order forward Euler method. This
work uses Λ = 0.5, which gives good results in most cases. The rate term at time t + ∆t
is estimated using a Taylor expansion

γ̇(α,i)(t+ ∆t) = γ̇(α,i)(t) +
∂γ̇(α,i)(t)

∂f
(α,i)
p

∆f (α,i)
p +

∂γ̇(α,i)(t)

∂g
(α,i)
p

∆g(α,i)
p (5.140)

where the derivatives ∂γ̇(α,i)(t)

∂f
(α,i)
p

and ∂γ̇(α,i)(t)

∂g
(α,i)
p

are given by

∂γ̇(α,i)(t)

∂f
(α,i)
p

=
γ̇(α,i)(t)

f
(α,i)
p m(α)

(5.141)

∂γ̇(α,i)(t)

∂g
(α,i)
p

= − γ̇(α,i)(t)

g
(α,i)
p m(α)

(5.142)

The increment in the plastic slip driving force is given by
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∆f (α,i)
p ≈ ḟ (α,i)

p ∆t = R(α,i)
p : D(α)∆t+K(α,i)

c ∆t−
N

(α)
p∑
j=1

K(α,i,j)
p ∆γ(α,j) (5.143)

where K
(α,i)
c and K

(α,i,j)
p are intermediate variables. For non-transforming phases, K

(α,i)
c is

given by

K(α,i)
c = −A(α)R(α,i)

p : Iθ̇ −R(α,i)
p : Dtr + ρφ(α,i)sign

(
τ (α,i)
p

)
θ̇ (5.144)

For transforming austenite, K
(α,i)
c is given by

K(α,i)
c = −A(α)R(α,i)

p : Iθ̇ −R(α,i)
p : Dtr − 2

ξ̇(α)

ξ(α)
σ(α) : P(α,i)

p + ρφ(α,i)sign
(
τ (α,i)
p

)
θ̇ (5.145)

For transforming martensite, K
(α,i)
c is given by

K(α,i)
c = −A(α)R(α,i)

p : Iθ̇ −R(α,i)
p : Dtr − 2

ξ̇(α)

ξ(α)
σ(α) : P(α,i)

p + ρφ(α,i)sign
(
τ (α,i)
p

)
θ̇

+
ξ̇(α)

ξ(α)
σ(α) :

[
ŝ(α,i)
e ⊗ m̄

(α,i)
e + m̄

(α,i)
e ⊗ ŝ(α,i)

e

2

]

+
ξ̇(α)

ξ(α)
σ(α) :

[
s̄

(α,i)
e ⊗ m̂(α,i)

e + m̂(α,i)
e ⊗ s̄

(α,i)
e

2

] (5.146)

For all grains, K
(α,i)
p is given by

K(α,i,j)
p = R(α,i)

p : P(α,j) +

ω(α)µ(α)b(α)

4k
(α)
1

√
ρ

(α)
d

[ 1

b(α)k
(α)
1

√
ρ

(α)
d − k

(α)
2 ρ

(α)
d

]
sign

(
f

(α,i)
p,1 f

(α,j)
p,1

)

−
[

1

2
ω(α)µ(α)

[
b(α)
]2
k

(α)
2

][
1

b(α)k
(α)
1

√
ρ

(α)
d − k

(α)
2 ρ

(α)
d

]
sign

(
f

(α,i)
p,1 f

(α,j)
p,1

) (5.147)
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The increment in the critical plastic slip driving force is given by

∆g(α,i)
p =

N
(α)
p∑
j=1

h(α,i,j)
p ∆γ(α,j) (5.148)

where the hardening matrix h
(α,i,j)
p is given by

h(α,i,j)
p =

c(α)µ(α)

2

N
(α)
p∑
i=1

[
1

k
(α)
1

− b(α)k
(α)
2

√
ρ

(α)
d

]
sign

(
γ̇(α,i)

)
(5.149)

Combining these equations gives

N
(α)
p∑
j=1

G(α,i,j)
p ∆γ(α,j) =

(
G(α,i)
c + Q(α,i) : D(α)

)
∆t (5.150)

where G
(α,i,j)
p , G

(α,i)
c and Q(α,i) are intermediate derivatives given by

G(α,i,j)
p = δ(i,j) − Λ∆t

∂γ̇(α,i)(t)

∂g
(α,i)
p

h(α,i,j)
p sign

(
f

(α,i)
p,1

)
+ Λ∆t

∂γ̇(α,i)(t)

∂f
(α,i)
p

K(α,i,j)
p (5.151)

G(α,i)
c = γ̇(α,i)(t) + Λ∆t

∂γ̇(α,i)(t)

∂f
(α,i)
p

K(α,i)
c (5.152)

Q(α,i) = Λ∆t
∂γ̇(α,i)(t)

∂f
(α,i)
p

R(α,i) (5.153)

Equation (5.150) can then be solved using standard techniques to produce

∆γ(α,i)

∆t
= y(α,i) + Y(α,i) : D(α) (5.154)

Finally, ∆γ(α,i)

∆t can be substituted in place of γ̇(α,i) in Eq. (5.42) to produce the effective Jaumann
rate over one timestep

O
σ(α) = C(α)

: D(α) − ˙̄σ(α) (5.155)

where the effective stiffness C(α)
is given by
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C(α)
= C(α)

e −
N

(α)
p∑
i=1

R(α,i) ⊗Y(α,i) (5.156)

and the effective visco-plastic stress ˙̄σ(α) is

˙̄σ(α) = A(α)θ̇
[
C(α)
e : I

]
+

N
(α)
p∑
i=1

R(α,i)y(α,i) (5.157)

5.3.3 Numerical Implementation

In this section an overall integration algorithm for solving the coupled thermo-mechanical
problem will be outlined. At the beginning of each timestep n the transformation driving forces
and transformation rates are calculated as in Eqs. (5.99) and (5.126). However, to simplify the
implementation the derivative of the driving force is approximated using a first order approxima-
tion:

ḟ
(α′,β)
tr(n) ≈

f
(α′,β)
tr(n) − f

(α′,β)
tr(n−1)

∆t
(5.158)

where ḟ
(α′,β)
tr(n) is the derivative of the transformation driving force at timestep n, f

(α′,β)
tr(n) is the

transformation driving force at timestep n, f
(α′,β)
tr(n−1) is the transformation driving force at timestep

n− 1 and ∆t is the timestep estimated using the method outlined in van der Giessen and Neale
[156].

Next, the plastic slip driving forces and plastic slip rates are calculated using Eqs. (5.94)

and (5.114). The rate tangent matrices y(α,i) and Y(α,i), the effective stiffnesses C(α)
, and the

viscoplastic stresses ˙̄σ(α) are then calculated using Eqs. (5.150), (5.156) and (4.145). The bulk
stress update is derived from Eq. (5.34) using

〈Oσ(n)〉 =

 Ng∑
α=1

ξ
(α)
(n)C

(α)
(n)

 : 〈D(n)〉 −

 Ng∑
α=1

ξ
(α)
(n)C

(α)
(n)

 : Dtr(n) −
Ng∑
α=1

ξ
(α)
(n)

˙̄σ
(α)
(n)

+

Na∑
α′=1

24∑
β=1

ξ̇
(α′,β)

[
2∑
i=1

λ

(
ζβi

)
σ

(
α′,ζβi

)
− σ(α′)

] (5.159)

The bulk stress equation given in Eq. (5.159) is then combined with the boundary conditions
outlined in Section 5.3.1 and solved to determine the unknown bulk strain and stress rates. Once
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the bulk strain rate tensor 〈D〉 is fully known, the individual crystal strain rates D(α) and the
plastic slip increments ∆γ(α,i) can be calculated using Eqs. (5.33) and (5.154). The individual
crystal stresses are updated using the incremental form of Eq. (5.155)

σ
(α)
(n+1) = σ

(α)
(n) + σ

(α)
(n)Ω

(α)
(n) −Ω

(α)
(n)σ

(α)
(n) + C(α)

(n) : D
(α)
(n)∆t− ˙̄σ

(α)
(n)∆t (5.160)

The dislocation density within the crystal is updated using the incremental form of Eq. (5.26)

ρ
(α)
d(n+1) = ρ

(α)
d(n) +

N
(α)
p∑
i=1

[
1

b(α)k
(α)
1

√
ρ

(α)
d(n) − k

(α)
2 ρ

(α)
d(n)

] ∣∣∣∆γ(α,i)
∣∣∣ (5.161)

The lattice orientation update for transforming martensite phases are given by

s
(α,i)
e(n+1) =

ξ
(α)
(n)s

(α,i)
e(n) + ∆ξ(α)ŝ

(α,i)
e(n) + ξ(α)

[
I + L

(α)
(n)∆t−

∑N
(α)
p

i=1 P
(α,i)
p ∆γ(α,i)

]
s

(α,i)
e(n)

ξ
(α)
(n) + ∆ξ(α)

m
(α,i)
e(n+1) =

ξ
(α)
(n)m

(α,i)
e(n) + ∆ξ(α)m̂

(α,i)
e(n) + ξ(α)m

(α,i)
e(n)

[
I + L

(α)
(n)∆t−

∑N
(α)
p

i=1 P
(α,i)
p ∆γ(α,i)

]−1

ξ
(α)
(n) + ∆ξ(α)

(5.162)

The lattice orientation update for all other phases is given by

s
(α,i)
e(n+1) =

I + L
(α)
(n)∆t−

N
(α)
p∑
i=1

P(α,i)
p ∆γ(α,i)

 s
(α,i)
e(n)

m
(α,i)
e(n+1) = m

(α,i)
e(n)

I + L
(α)
(n)∆t−

Np∑
i=1

P(α,i)
p ∆γ(α,i)

−1
(5.163)

For austenite phases, the transformation systems are updated using

b
(α′,i)
e(n+1) =

I + L
(α′)
(n) ∆t−

N
(α′)
p∑
i=1

P(α′,i)
p ∆γ(α′,i)

b
(α′,i)
e(n)

d
(α′,i)
e(n+1) = d

(α′,i)
e(n)

I + L
(α)
(n)∆t−

Np∑
i=1

P(α′,i)
p ∆γ(α′,i)

−1
(5.164)
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Volume fractions are updated using

ξ
(α)
(n+1) = ξ

(α)
(n)ξ̇

(α)
(n)∆t (5.165)

The temperature is updated using

θ(n+1) = θ(n) +
Qe(n) +Qp(n) +Qtr(n) −Qbound(n)

w`tρ
[∑Ng

α=1 h
(α)
] ∆t (5.166)

where Qe(n), Qtr(n) and Qbound(n) are calculated as in Eqs. (5.135b), (5.135d) and (5.137) and
Qp(n)∆t is given by

Qp(n)∆t = w`t

Ng∑
α=1

N
(α)
p∑
i=1

ξ(α)M (α,i)
p ∆γ(α,i) (5.167)

Finally, the total bulk stress is updated using Eq. (5.33). The complete procedure is implemented
as in Alg. 2.

Algorithm 2 Constitutive model integration.

1: procedure Integrate(dt, tend) . Calculate final stress and strain
2: Init Variables()
3: while t ≤ tend do
4: t← t+ dt
5: for all Austenite crystals α′ do
6: for all Martensite plates β do

7: f
(α′,β)
tr(n) ← TRIP Driving Force() . Use Eq. (5.99)

8: ξ̇
(α′,β)
(n) ← TRIP Rates() . Use Eq. (5.126)

9: end for
10: end for
11: for all Crystals α do . This includes all phases
12: for all Slip systems i do

13: f
(α′,β)
p(n) ← Slip Driving Force() . Use Eq. (5.94)

14: γ̇(α,i) ← Slip Rates() . Use Eq. (5.114)
15: end for
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16: y(α), Y(α) ←Rate Tangent Inter() . Use Eqs. (5.150)

17: C(α)
, ˙̄σ(α) ←Rate Tangent Stress() . Use Eqs. (5.156) and (5.157)

18: end for
19: 〈D〉 ←Mech BC() . Use Eq. (5.159) and Mech. B.C.s
20: for all Crystals α do . This includes all phases
21: for all Slip systems i do
22: ∆γ(α,i) ←Increment() . Use Eq. (5.154)
23: end for
24: ρ

(α)
d(n+1) ←Update dislocation density(α) . Use Eq. (5.26)

25: σ
(α)
(n+1) ← Update Crystal Stress(α) . Use Eq. (5.160)

26: if Crystal α is Austenite then
27: for all Martensite plates β do
28: b

(α,β)
e(n+1), d

(α,β)
e(n+1) ← Update TRIP Systems() . Use Eq. (5.164)

29: end for
30: end if
31: for all Slip systems i do
32: if Crystal α is Transforming Martensite then
33: s

(α,i)
e(n+1), m

(α,i)
e(n+1) ← Update Slip Systems() . Use Eq. (5.162)

34: else
35: s

(α,i)
e(n+1), m

(α,i)
e(n+1) ← Update Slip Systems() . Use Eq. (5.163)

36: end if
37: end for
38: ξ

(α)
(n+1) ←Update Volume Fractions() . Use Eq. (5.165)

39: end for
40: θ(n+1) ←Update Temperature() . Use Eqs. (5.166) and (5.167)
41: 〈σ(n+1)〉 ← Update Bulk Stress() . Use Eq. (5.33)
42: end while
43: end procedure

5.4 Results and Discussion

In this section, the provided constitutive model is calibrated, validated, and analyzed for a QP
alloy. First, the experimental QP3Mn thermo-mechanical response data presented in Poling [53]
is summarized. Next, the simulated conditions and thermal evolution behaviour are described.
The model is then calibrated and validated against the reported experimental data. The evolution
of the plastic Taylor-Quinney coefficient and the orientation dependence of transformation are
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analyzed. The model is then recalibrated without rate-dependent transformation and compared
to the complete calibrated model’s response to determine the importance of this effect. Finally,
the thermo-mechanical response is analyzed for a range of strain paths.

5.4.1 Summary of Experimental Data

In this work, the numerical model is calibrated using the experimental data reported by Poling
[53] for a 0.3C-3Mn-1.6Si wt% (QP3Mn) sheet alloy with a thickness of 1.1mm. Details regarding
the heat treatment and manufacturing of the QP3Mn alloy are presented in Poling [53]. First,
electron backscatter diffraction (EBSD) and X-Ray diffraction (XRD) tests were completed to
characterize the material’s initial microstructure. It was determined that the material initially
consists of approximately 14.5% RA and 85.5% tempered martensite. While the presented con-
stitutive framework can well capture additional phases such as ferrite, none were detected in the
QP3Mn alloy. The EBSD results are reported in Fig. 5.3. Pole figures representing the RA
and tempered martensite phases are reported in Figs. 5.4 and 5.5, respectively. These textures
show a highly anisotropic texture without any symmetry, which is not expected of a rolled sheet
material. Nevertheless, this work assumes that the presented EBSD and texture are sufficiently
representative for this analysis.
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(a) Orientation map (b) Phase map

Fig. 5.3: QP3Mn EBSD from Poling [53].

Fig. 5.4: QP3Mn RA texture.

Uniaxial tensile tests were conducted over a wide range of strain-rates and temperatures.
A spot cooler and infrared heat lamp was used for reduced and elevated temperature testing,
respectively. The temperature was measured using a K-type thermocouple, and the strain was
measured using an extensometer. RAVF was measured using XRD at various strain levels. The
test matrix representing the tested conditions and recorded data are reported in Table 5.2. This
range was chosen by Poling [53] because it well represents the range of temperatures and strain-
rates expected in industrial automotive applications [127, 157]. The symbols S, R and T represent
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Fig. 5.5: Tempered martensite texture.

Table 5.2: Summary of reported experimental data.

T0 = −10 °C T0 = 23 °C/26 °C T0 = 40 °C T0 = 55 °C T0 = 70 °C T0 = 85 °C

ε̇ = 5× 10−4 s−1 S R S R T S R S R S R S R
ε̇ = 1× 10−3 s−1 S T
ε̇ = 1× 10−2 s−1 S T
ε̇ = 1× 10−1 s−1 S R T
ε̇ = 1× 100 s−1 S
ε̇ = 1× 101 s−1 R S R R
ε̇ = 1× 102 s−1 S R
ε̇ = 2× 102 s−1 S

reported stress, RAVF and temperature vs. strain curves at the given testing condition. Only
reported data with complete curves are included. Due to differences in room temperature, high
strain-rate tests have an initial temperature of T0 = 26 °C instead of T0 = 23 °C. The elevated
temperature tests at ε̇ = 0.0005 s−1 are immersed in an oil bath to maintain a high temperature.
Low-temperature tests are conducted using a spot cooler, and high-temperature tests with high
strain-rates are heated using infrared (IR) heat lamps. All other tests are conducted in room
temperature air. Table 5.3 gives a summary of these thermal testing conditions. Fig. 5.6
shows the reported true stress vs. true strain results, which demonstrates low strain-rate and
temperature dependence. Fig. 5.7 shows the reported RAVF vs. strain response demonstrating
a significant reduction in martensitic transformation with increasing temperature but low strain-
rate dependence at any given temperature.

The T0 = 85 °C, ε̇ = 5 · 10−4s−1 experiment in Poling [53] contains a major plateau region,
which is attributed to dynamic strain aging (DSA). In high Mn steels (e.g. QP alloys), DSA is
frequently attributed to the reorientation of C-Mn couples in dislocation cores resulting in the
pinning and unpinning of mobile dislocations [51, 158]. Modelling of DSA requires incorporating
C-Mn reorientation physics, the corresponding hardening behaviour and full field modelling of
the uniaxial test sample [158, 159]. This is beyond the scope of this work and therefore the
T0 = 85 °C, ε̇ = 5 · 10−4s−1 experiment is not used. The T0 = 70 °C, ε̇ = 10 s−1 experiment
seems to exhibit an unusually large experimental error with RAVF increasing by 1% from 2.5%
true strain to 4% true strain. Since reverse transformation is not physical for steels near room
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Table 5.3: Summary of thermal testing conditions.

T0 = −10 °C T0 = 23 °C/26 °C T0 = 40 °C T0 = 55 °C T0 = 70 °C T0 = 85 °C

ε̇ = 5× 10−4 s−1 Spot Cooler Air Oil Bath Oil Bath Oil Bath Oil Bath
ε̇ = 1× 10−3 s−1 Air
ε̇ = 1× 10−2 s−1 Air
ε̇ = 1× 10−1 s−1 Air
ε̇ = 1× 100 s−1 Air
ε̇ = 1× 101 s−1 Spot Cooler Air IR Heater
ε̇ = 1× 102 s−1 Air
ε̇ = 2× 102 s−1 Air

temperature, this results from experimental error or poor repeatability. As such, this experiment
will be used only as a validation test.

Fig. 5.8 shows the reported temperature vs. strain results, which shows a significantly higher
temperature rise at higher strain-rates. The difference in temperature rise between strain-rates of
ε̇ = 1× 10−2 s−1 and ε̇ = 1× 10−1 s−1 is relatively low, which combined with temperature mea-
surements at the ultimate tensile strength (UTS) indicates that thermal conditions at 1× 10−1 s−1

is approximately adiabatic (see Poling [53] for details).

The combination of negative temperature sensitivity of transformation and increasing tem-
perature at higher strain-rates suggests that transformation should be suppressed at elevated
strain-rates. The absence of observed strain-rate dependence may be due to the concurrent
changes in strain-rate and temperature in the conducted experiments. In this case, the negative
temperature dependence of transformation is balanced by a positive strain-rate dependence, re-
sulting in zero observed strain-rate dependence in the experimental strain-rate tests (where both
temperature and strain-rate change). This hypothesis is tested in Sections 5.4.2 and 5.4.3.

5.4.2 Model Calibration and Validation

Three hundred tempered martensite and retained austenite grains (600 total) are sampled
from a uniform orientation distribution, as shown in Figs. 5.9 and 5.10. Using the orientation
relationship derived in Appendix B, a total of 14,400 orientations may be generated during the
transformation of the austenite grains. Uniaxial tension boundary conditions are applied using a
constant strain-rate in the applied loading direction, zero shear strain, and zero transverse and
normal stresses using Eq. (5.132). The simulation is continued to a maximum strain of 11.1%,
which is slightly larger than the highest strain reported at the UTS over all reported experimental
conditions. For all cases submerged in an oil bath, the temperature is assumed to remain constant
with time. In all other cases, temperature is modelled as in Section 5.3.1 with w = 6.35 mm,
` = 6.35 mm and t = 1.1 mm.

The available experimental data are divided into calibration and validation data sets as shown
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(a) Varying strain-rate (b) Varying temperature

Fig. 5.6: Reported stress vs. strain curves [53].

in Table 5.4. This split uses the minimum number of calibration experiments while maintain-
ing three strain-rates to characterize stress evolution, RAVF and temperature and three initial
temperatures to characterize stress evolution and RAVF. Furthermore, the model is only cali-
brated to the experimental ultimate tensile strength because this model does not incorporate any
localization or damage, and therefore, cannot capture strain softening.

Table 5.4: Calibration and validation experimental data set.

Calibration Validation

−10 °C 5× 10−4 s−1 40 °C 5× 10−4 s−1

23 °C 5× 10−4 s−1 55 °C 5× 10−4 s−1

70 °C 5× 10−4 s−1 23 °C 1× 10−2 s−1

23 °C 1× 10−3 s−1 26 °C 1× 100 s−1

23 °C 1× 10−1 s−1 −10 °C 1× 101 s−1

26 °C 1× 102 s−1 26 °C 1× 101 s−1

70 °C 1× 101 s−1

26 °C 2× 102 s−1

The model coefficients are determined through a manual calibration process using a mean squared
error (MSE) metric given by
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(a) Varying strain-rate (b) Varying temperature

Fig. 5.7: Reported RAVF vs. strain curves [53].

MSE =

Nσ∑
i=1

(
σSimi − σExpi

σExpi

)2

+

Nθ∑
i=1

(
θSimi − θExpi

θExpi

)2

+

Nξ∑
i=1

(
ξSimi − ξExpi

ξExpi

)2

(5.168)

where Nσ, Nθ and Nξ are the number of experimental points for stress, temperature and RAVF
evolution respectively, σSimi , θSimi and ξSimi are the simulated stress, temperature and RAVF

points, and σExpi , θExpi and ξExpi are the experimental stress, temperature and RAVF points. To
reduce the number of calibrated parameters, the coefficients shown in Table 5.5 are taken from
literature [154].

The calibrated plasticity and transformation coefficients are summarized in Tables 5.6 and 5.7,
respectively. The Burger’s vectors for each phase are calculated in Appendix A. The effective heat
transfer coefficient is also calibrated to ensure correct temperature evolution and is determined
to be Reff = 25.98 W

m2 K
.

Fig. 5.11 compares the calibrated model to the experimental calibration data. Fig. 5.12 com-
pares the calibrated model to the experimental validation data. Figs. 5.11(a) and 5.12(a) show
that the low strain-rate and temperature dependence of the stress evolution are well captured.
Figs. 5.11(b) and 5.12(b) show that the variation in temperature evolution with strain-rate is
well captured. It should be pointed out that even the small decrease in temperature due to elas-
tic cooling is well captured for all strain-rates. Finally, Figs. 5.11(c) and 5.12(c) show that the
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Fig. 5.8: Temperature vs. strain for various strain rates [53].

Fig. 5.9: Tempered martensite orientations.

temperature and strain-rate dependence of the RAVF evolution is generally well captured. The
RAVF validation case with the highest discrepancy is the T0 = 70 °C, ε̇ = 10 s−1 case where the
final RAVF is approximately 1.5% overpredicted. This discrepancy may be a result of the rela-
tively high variance present in this experiment. To the author’s knowledge, this is the first time
that a crystal plasticity model incorporating the TRIP effect has been calibrated and validated
over a wide range of strain-rates and temperatures. Fig. 5.13 shows the evolution of the average
plastic Taylor-Quinney coefficient χ, defined by the equation
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Fig. 5.10: Retained austenite orientations.

Table 5.5: Coefficients obtained from literature.

Tempered
Martensite

Retained
Austenite

Transformed
Martensite

Elastic Moduli [GPa]
c11 = 233.5 c11 = 286.8 c11 = 233.5
c12 = 135.5 c12 = 166.4 c12 = 135.5
c44 = 118 c44 = 145 c44 = 118

Hardening Law [GPa] µ = 118 µ = 145 µ = 118

Thermal Parameters
h = 519 J

kg K
h = 519 J

kg K
h = 519 J

kg K

A = 17 · 10−6 K−1 A = 21 · 10−6 K−1 A = 17 · 10−6 K−1

ρ = 7.8 · 103 kg
m3 ρ = 7.8 · 103 kg

m3 ρ = 7.8 · 103 kg
m3

Transformation
Parameters

λT = −50 500 J
kg

χ =
Q−Qtr
Wp

=

Ng∑
α=1

N
(α)
p∑
i=1

ξ(α)M
(α,i)
p γ̇(α,i) −

Ng∑
α=1

ξ(α)M
(α)
e : D

(α)
e

Ng∑
α=1

N
(α)
p∑
i=1

ξ(α)σ(α) : P
(α,i)
p γ̇(α,i)

(5.169)

where Wp is the plastic work and Q and Qtr are the total heat generation and the TRIP heat
generation, respectively defined by

Q = ρ

 Ng∑
α=1

h(α)

 θ̇ (5.170) Qtr =

Na∑
α′=1

24∑
β=1

M
(α′,β)
tr ξ̇

(α′,β)
(5.171)

For low strains (less than 1%), the predicted Taylor-Quinney coefficient is primary driven by the
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(a) (b) (c)

Fig. 5.11: Comparison of experimental and simulated response for (a) true stress, (b)
temperature, and (c) RAVF vs. true strain for the calibration data set.

(a) (b) (c)

Fig. 5.12: Comparison of experimental and simulated response for (a) true stress, (b)
temperature, and (c) RAVF vs. true strain for the validation data set.
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Table 5.6: Calibrated plasticity coefficients.

Tempered
Martensite

Retained Austenite
Transformed
Martensite

Hardening

gp,0 = 446 MPa gp,0 = 662 MPa gp,0 = 815 MPa
c = 0.389 c = 0.304 c = 0.221
k1 = 37.8 k1 = 54.6 k1 = 33.6
k2 = 8.70 k2 = 38.5 k2 = 49.5

ρd,0 = 10.0 m−2 ρd,0 = 10.0 m−2 ρd,0 = 10.0 m−2

Driving Force
ω = 40.0 ω = 55.0 ω = 58.2

Φ = 0 Φ = 0 Φ = 0

Kinetics
a = 1 · 10−3 s−1 a = 1 · 10−3 s−1 a = 1 · 10−3 s−1

m = 1 · 10−3 m = 1 · 10−3 m = 1 · 10−3

Table 5.7: Calibrated transformation coefficients.

θT = 650 K κ = 0.103 nI = 1.39 a1 = −8.29 a2 = 7.79 · 10−2

a3 = −1.49 · 10−4 a4 = −0.150 a5 = 0.100 gtr,n = 0 MPa σtr,n = 515 MPa
fo = 0.0750 gtr,o = 371 MPa σtr,o = 40.4 MPa

elastic cooling and is therefore well below zero. Once plastic slip is initiated, the Taylor-Quinney
coefficient increases rapidly to approximately 0.925, further increasing to nearly 0.95 over the rest
of the simulation. Despite not being explicitly calibrated, this matches well with the trends found
in the existing experimental characterization of TRIP-assisted steels [79], which showed that the
Taylor-Quinney coefficient increases from between 0.88 and 0.92 at 2% strain to approximately
0.98 at 10% strain.
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(a) Calibration simulations (b) Validation simulations

Fig. 5.13: Taylor-Quinney coefficient vs. true strain.

Fig. 5.14 shows the final RAVF of each austenite grain for the T0 = 23 °C, ε̇ = 5 · 10−4 s−1

simulation as a function of austenite orientation. This figure shows that transformation occurs
preferentially when the austenite 〈100〉 is aligned with the loading axis. This result is represen-
tative of all other simulations and matches the existing simulated [154, 160] and experimental
results [22, 151].

Fig. 5.14: Orientation dependence of final RAVF in 23 °C, 5 · 10−4 s−1 simulation
austenite grains.
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(a) Calibration simulations (b) Validation simulations

Fig. 5.15: RAVF vs. true strain with (dashed) and without (solid) rate dependence.

5.4.3 Evaluation of Rate-Dependence on Transformation

To test the importance of rate-dependence on the transformation behaviour, the model is
recalibrated with strain-rate dependent transformation neglected (a4 = 0). All parameters are
left the same, except a1, a2, and a3. These are changed to

a1 = −8.2890, a2 = 7.7940 · 10−2, a3 = −1.4885 · 10−4 (5.172)

The stress and temperature evolution were predicted equally well and are not reported here
for brevity. Fig. 5.15 compares the RAVF evolution for the simulations with the rate-dependent
transformation to the simulation with no rate dependence for the calibration and validation data
sets. The conditions with varied temperature at ε̇ = 5 · 10−4s−1 are predicted equally well.
However, the elevated strain-rate cases overpredict the final RAVF by 0.5% – 1% relative to the
complete calibrated model. Therefore, it is necessary to incorporate strain-rate-dependent trans-
formation even when little strain-rate dependence is observed experimentally. This is necessary
to balance with the reduced transformation resulting from increased temperature rise at elevated
strain-rates.
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5.4.4 Evaluation of Strain-Path Dependence of Transformation

To test the model’s ability to capture strain-path dependent transformation, plane strain
and equibiaxial tension simulations are conducted and compared to the simulated T0 = 23 °C,
ε̇ = 5·10−4s−1 uniaxial tension case. The boundary conditions for the plane strain and equibiaxial
tension cases are given by Eq. (5.133) with P = 0 for plane strain and P = 1 for equibiaxial
tension. Both new simulations are continued to a final inelastic work level of 163 mJ mm−3, where
the inelastic work (WI) at time t is given by

WI(t) =

Ng∑
α=1

∫ t

0
ξ(α)

[
σ(α) : D(α)

p

]
dt+

Na∑
α′=1

24∑
β=1

∫ t

0

1

2

[
2∑
i=1

λ

(
ζβi

)
σ

(
α′,ζβi

)
+ σ(α′)

]
: D

(α′,β)
tr dt

(5.173)
This is equal to the final inelastic work level in the uniaxial tension simulation. The thermal
control volume geometries for the plane strain and equibiaxial tension simulations are assumed
to be identical to the uniaxial tension simulation, such that identical thermal boundary conditions
are applied. The Hosford [161] effective stress is used to compare stresses in each strain path.
The yield exponent a = 6 was chosen because it follows observations for other existing steels
with a predominantly BCC composition [41, 106, 161, 162]. Fig. 5.16 shows the predicted
equivalent (Hosford) stress, temperature, and RAVF evolution vs. inelastic work as a function
of strain path. Fig. 5.16(a) shows that the equivalent (Hosford) stress well captures all strain
paths, with small deviations resulting from the transformation, the multiphase nature of the
material and texture evolution. This matches well with existing experimental and numerical
analyses [41, 161]. Fig. 5.16(b) shows that the temperature rise increases as the triaxiality
increases. This matches expectations because the applied work per unit time is higher for higher
triaxialities, resulting in increased heating. Fig. 5.16(c) shows that increasing triaxiality results
in increased transformation (reduced final RAVF), despite increased temperatures and having a
nearly constant effective strain-rate. This matches well with experimental and numerical results
from some steels exhibiting the TRIP effect [9, 13, 120], but conflicts with others [12, 41, 75, 163].

Figs. 5.17 and 5.18 show the final RAVF of each austenite grain for the plane strain and
equibiaxial tension cases, respectively. These show reduced orientation dependence of transfor-
mation with increasing triaxiality, resulting from better average alignment between grains and
the loading stress. This indicates that the orientation dependence of transformation primarily
causes the increasing transformation. To capture strain-path dependence of alloys that do not
follow the trend predicted by this model, a straightforward modification of Eq. (5.120) can be
used to improve predictions. This modified shear band evolution coefficient equation is a common
approach in literature [9, 10, 41], and is given by
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(a) (b) (c)

Fig. 5.16: Simulated strain path dependent (a) stress, (b) temperature and (c) RAVF
evolution vs. true strain.

Fig. 5.17: Orientation dependence of final RAVF in plane strain 23 °C, 5 · 10−4 s−1

simulation austenite grains.

a
(α′)
sb =

(
a1 + a2θ + a3θ

2 + a4Σ
)(

1− a6

(
γ̇

(α′)
sb

a(α′)

)a5)
(5.174)

where a4 is a calibrated coefficient and Σ is the triaxiality of the applied loading.

150



Fig. 5.18: Orientation dependence of final RAVF in equibiaxial tension 23 °C, 5 · 10−4 s−1

simulation austenite grains.

5.4.5 Model Comparison

Table 5.8 shows a comparison between the previously existing works, the constitutive model
presented in Chapter 4 and the constitutive model derived in this chapter (referred to as Con-
nolly Model #2). This shows that Connolly Model #2 is the first model to capture all relevant
physical mechanisms highlighted in Chapter 3. In particular, Connolly Model #2 can capture the
transformation strain-rate sensitivity, temperature evolution, strain-induced transformation and
thermal strain that the Cherkaoui model lineage did not. Furthermore, Connolly Model #2 can
capture the stress homogenization, transformed martensite plasticity, local plasticity hardening,
and strain-induced transformation that were not captured by Connolly Model #1.

To demonstrate the improvements relative to Connolly Model #1, the analysis presented in
Section 4.5.4 is completed again using Connolly Model #2 calibrated to QP3Mn. Fig. 5.19 shows
the statistical distribution of the variability of σ11 using a box and whisker plot as a function of
strain. The bounds are defined as in Figs. 4.12 and 4.19, with the limits of each box representing
the 25th and 75th percentile data, and the endpoints of the whiskers representing the complete
data range. Note that the box and whisker plot does not take the volume fraction of grains into
account, and as such is highly biased towards the stress evolution of the martensite phase. The
volume-averaged stress at the same strain values is additionally plotted for comparison. This
figure shows that the stress variation is much lower than predicted using Connolly Model #1,
well within the range expected of a QP steel [15, 41]. Fig. 5.20 presents the evolution of the
normalized RA fraction (as defined in Section 4.5.1) at 23 °C with no applied deformation. This
shows that no evolution occurs, as expected for athermal martensitic transformation.
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Table 5.8: Model comparison chart.

Aspect present in model
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Fig. 5.19: Box and whisker plots of true X stress vs. strain.

Fig. 5.20: Normalized RA fraction vs. strain at constant temperature without applied
deformation over 7 days
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5.5 Chapter Conclusions

This chapter presented a novel thermodynamically consistent constitutive model based on
rate-dependent crystal plasticity. This model directly homogenized single crystal behaviour of
both initially present and transformation generated grains using a modified Taylor-type homog-
enization law to account for transformation strain. The deformation mechanics of individual
grains incorporated plastic slip and thermal deformation. A thermodynamic derivation was used
to determine the plastic slip and transformation driving forces. Plastic slip and transformation
kinetics laws were proposed to account for the temperature, strain, and orientation-dependent
mechanical behaviour. The thermodynamic derivation was additionally used to derive a consti-
tutive equation governing the evolution of temperature. Finally, a thermal numerical model was
proposed for a control volume with spatially invariant temperature.

The derived model was then calibrated and validated using available literature data for a
QP3Mn alloy. This data included temperature, RAVF, and stress evolution over a wide range of
industrially relevant strain-rates and temperatures. Calibration and validation were conducted
using six and eight experiments, respectively. Simulated and experimental stress, temperature and
RAVF evolution responses exhibited very good agreement for both calibrated and validation cases.
To the author’s knowledge, this is the first time that a crystal plasticity model incorporating the
TRIP effect has been calibrated and validated over a wide range of strain-rates and temperatures.
This validated model was then used for several analyses, with the following specific conclusions:

• Despite not being explicitly calibrated, the plastic Taylor-Quinney coefficient matched well
with the existing experimental trends.

• Transformation was observed to occur preferentially when the retained austenite 〈100〉
direction is aligned with the loading direction, matching the existing numerical and exper-
imental trends.

• The numerical model was recalibrated assuming no rate-dependence in transformation,
producing a significantly higher error for RAVF evolution in high strain-rate cases. This
indicates that strain-rate-dependent transformation must be incorporated when the trans-
formation is temperature-dependent, even if no strain-rate dependence is observed experi-
mentally.

• Additional plane strain and equibiaxial tension simulations were conducted at room tem-
perature and the lowest experimental strain-rate using the original calibrated model. This
study showed that transformation increases with increasing triaxiality, despite temperature
increasing with triaxiality and nearly constant stress evolution.

• It was demonstrated that the increase in transformation occurs due to better alignment
between loading and the preferential transformation orientation with increasing triaxiality.
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This trend matches some experimental and numerical observations but conflicts with others.
For cases with differing trends, a straightforward model extension can better capture strain
path dependence.

• The newly developed Connolly Model #2 was compared with Connolly Model #1. This
showed that stress homogenization, transformed martensite plasticity, local plasticity hard-
ening, and strain-induced transformation are now fully captured. Furthermore, it was
demonstrated that the high stress and transformation without deformation highlighted in
Section 4.5.4 are no longer present.
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6 Conclusions and Future Work

6.1 Key Conclusions

The objective of this thesis was to develop a crystal plasticity-based constitutive model for
steels exhibiting the TRIP effect, suitable for a wide range of strain-rates and temperatures.
A baseline model was developed to meet this goal that captured temperature and strain-rate-
dependent transformation while also partially capturing local hardening due to plastic defor-
mation when accommodating transformation strain. A new method for incorporating thermal
boundary conditions was proposed to simulate the coupled thermo-mechanical behaviour of a
CP FEM RVE model. Finally, the baseline model was extended using a modified Taylor homog-
enization scheme to enable plastic slip in the transformed martensite phase and fully capture
hardening due to stress homogenization and local plasticity when accommodating transforma-
tion strain. Additionally, the transformation kinetics law in the extended model was modified
to incorporate strain-induced transformation to capture the athermal nature of transformation.
This extended model was then calibrated and validated against a range of temperatures and
strain-rates. To the author’s knowledge, this is the first time that a crystal plasticity model
incorporating the TRIP effect has been calibrated and validated over a range of strain-rates and
temperatures. The key conclusions from the work presented in this thesis are as follows:

6.1.1 A Coupled Thermomechanical Crystal Plasticity Model
Applied to Quenched and Partitioned Steel

• Simulation of non-interrupted vs. interrupted conditions predicted 16.7% less martensitic
transformation in the interrupted condition, despite little difference in stress vs. strain
curve. This suggests that there may be unexpected differences in RA evolution between
in-situ uniaxial tension HEXRD and standard uniaxial tension experiments.

• Neither isothermal nor adiabatic conditions accurately captured room-temperature quasi-
static behaviour, as predicted using the interrupted general thermal conditions.

• Increased initial temperature decreased both the amount of transformation and the bulk
stress, which matches the majority of literature for steels exhibiting the TRIP effect.

• Predicted temperature evolution for non-interrupted general, and adiabatic cases are nearly
identical for a strain-rate of 8× 10−2 s−1.
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6.1.2 A Novel Crystal Plasticity Model Incorporating Transfor-
mation Induced Plasticity for a Wide Range of Tempera-
tures

• A crystal plasticity model incorporating the TRIP effect was calibrated and validated over
a range of temperatures (−10 °C – 70 °C) and strain-rates (5× 10−4 s−1 – 200 s−1) for the
first time.

• Despite not being explicitly calibrated, the plastic Taylor-Quinney coefficient matched well
with the existing experimental trends.

• The numerical model was calibrated with and without transformation rate-dependence,
demonstrating that it must be incorporated when the transformation is temperature-
dependent, even if no strain-rate dependence is observed experimentally.

• Additional plane strain and equibiaxial tension simulations were conducted, demonstrating
that predicted transformation increases with increasing triaxiality. For cases with differing
trends, a straightforward model extension can better capture strain path dependence.

6.2 Future Work

In Section 3.3, several limitations of the proposed model are highlighted. A logical extension
to the current thesis would be to address these limitations:

• Incorporate DSA and modelling of propagative instabilities to enable modelling of higher
elevated temperatures (e.g. QP3Mn at 85 °C).

• Incorporate ε-martensite transformation mechanics to improve the range of materials the
model can capture.

• Incorporate strain-gradient plasticity into the crystal plasticity mechanics to better capture
the impact of small grain size in QP steel.

• Incorporate initial internal stresses due to QP heat treatment process to capture the impact
of backstress on transformation, particularly for comparing austenite morphologies.

• Model film and block austenite separately to capture statistical differences in chemistry
and transformation behaviour.

Additional extensions to the constitutive model beyond those highlighted in the limitations section
include:
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• Develop modified VPSC homogenization model to more accurately account for strain par-
titioning between grains while still capturing transformation strain.

• Calibrate and validate the model using all the above data and individual phase lattices
strain to ensure local deformation behaviour is fully captured.

• Calibrate and validate using all the above data and non-uniaxial (e.g. shear, plane strain,
equibiaxial tension) and non-linear strain-paths, modifying the model as necessary to cap-
ture the material behaviour.

Finally, the developed constitutive model can be used to provide direct insight into improving
the design of lab-scale components. Several avenues exist for exploring engineering applications:

• Apply the model to formability prediction applications as in Connolly et al. [10].

• Apply the model to a lab-scale component, either directly or with multi-scale modelling,
to study differential transformation throughout a component during forming or crash ap-
plications.

• Use the constitutive model in conjunction with fracture modelling to study the impact of
transformation on component fracture.
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[87] L. Durrenberger, Analyse de la pré-deformation plastique sur la tenue au crash d’une struc-
ture crash-box par approaches expérimentale et numérique, University of Metz, 2007.

166

http://dx.doi.org/10.1016/j.commatsci.2006.11.006
http://dx.doi.org/10.1115/1.2772327
http://dx.doi.org/10.1016/j.matdes.2008.04.048
http://dx.doi.org/10.1016/j.matdes.2008.04.048
http://dx.doi.org/10.1142/S0217979208051479
http://dx.doi.org/10.1016/j.ijplas.2011.08.004
http://dx.doi.org/10.1016/S0020-7403(01)00026-1
http://dx.doi.org/10.1016/0956-7151(92)90114-T
http://dx.doi.org/10.1016/0956-7151(92)90114-T
http://dx.doi.org/10.1016/j.ijmecsci.2005.02.001
http://dx.doi.org/10.1115/1.2931146
http://dx.doi.org/10.1007/s12289-011-1057-4


[88] P. Dasappa, K. Inal, R. Mishra, The effects of anisotropic yield functions and their material
parameters on prediction of forming limit diagrams, International Journal of Solids and
Structures 49 (2012) 3528–3550. doi:10.1016/j.ijsolstr.2012.04.021.

[89] C. P. Kohar, M. Mohammadi, R. K. Mishra, K. Inal, The effects of the yield surface
curvature and anisotropy constants on the axial crush response of circular crush tubes,
Thin-Walled Structures 106 (2016) 28–50. doi:10.1016/j.tws.2016.04.021.

[90] K. Zhang, B. Holmedal, O. S. Hopperstad, S. Dumoulin, J. Gawad, A. Van Bael,
P. Van Houtte, Multi-level modelling of mechanical anisotropy of commercial pure alu-
minium plate: Crystal plasticity models, advanced yield functions and parameter identifi-
cation, International Journal of Plasticity 66 (2015) 3–30. doi:10.1016/j.ijplas.2014.
02.003.

[91] C. W. Sinclair, R. G. Hoagland, A molecular dynamics study of the fcc→bcc transformation
at fault intersections, Acta Materialia 56 (2008) 4160–4171. doi:10.1016/j.actamat.2008.
04.043.

[92] O. Cazacu, Multiscale Modeling of Heterogenous Materials: From Microstructure to Macro-
scale Properties, John Wiley & Sons, 2013.

[93] S. R. Kalidindi, C. A. Bronkhorst, L. Anand, Crystallographic texture evolution in bulk
deformation processing of fcc metals, Journal of the Mechanics and Physics of Solids 40
(1992) 537–569. doi:10.1016/0022-5096(92)80003-9.

[94] R. A. Lebensohn, A. K. Kanjarla, P. Eisenlohr, An elasto-viscoplastic formulation based
on fast fourier transforms for the prediction of micromechanical fields in polycrystalline
materials, International Journal of Plasticity 32–33 (2012) 59–69. doi:10.1016/j.ijplas.
2011.12.005.

[95] M.-G. Lee, S.-J. Kim, H. N. Han, Crystal plasticity finite element modeling of mechanically
induced martensitic transformation (mimt) in metastable austenite, International Journal
of Plasticity 26 (2010) 688–710. doi:10.1016/j.ijplas.2009.10.001.

[96] G. I. Taylor, Plastic strain in metals, J. Inst. Metals 62 (1938) 307–324.

[97] G. Sachs, Z. Ver. Dtsch. Ing. 72 (1928) 734.

[98] K. Inal, P. D. Wu, K. W. Neale, Instability and localized deformation in polycrystalline
solids under plane-strain tension, International Journal of Solids and Structures 39 (2002)
983–1002. doi:10.1016/S0020-7683(01)00246-3.

167

http://dx.doi.org/10.1016/j.ijsolstr.2012.04.021
http://dx.doi.org/10.1016/j.tws.2016.04.021
http://dx.doi.org/10.1016/j.ijplas.2014.02.003
http://dx.doi.org/10.1016/j.ijplas.2014.02.003
http://dx.doi.org/10.1016/j.actamat.2008.04.043
http://dx.doi.org/10.1016/j.actamat.2008.04.043
http://dx.doi.org/10.1016/0022-5096(92)80003-9
http://dx.doi.org/10.1016/j.ijplas.2011.12.005
http://dx.doi.org/10.1016/j.ijplas.2011.12.005
http://dx.doi.org/10.1016/j.ijplas.2009.10.001
http://dx.doi.org/10.1016/S0020-7683(01)00246-3
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Appendix A Model Slip Systems

In this work, austenite and ferrite have FCC and BCC lattice structures, and martensite is
assumed to be BCC for the purposes of plastic slip [154]. Fig. A.1 illustrates the FCC and BCC
lattices and example slip systems.

(a) (b)

Fig. A.1: (a) FCC and (b) BCC Crystal Latices (Modified from Kohar [164]).

For FCC phases, this work assumes that dislocation motion is solely accommodated via the
〈011〉 ⊗ 〈111〉 family of slip systems [95, 131, 140, 165]. The Burger’s vector associated with this

slip system is b = aA

2

√
12 + 12 + 02 = 2.507�A. The 〈011〉 ⊗ 〈111〉 slip family is enumerated in

Table A.1.

Table A.1: FCC slip systems.

i s
(i)
j m

(i)
j i s

(i)
j m

(i)
j i s

(i)
j m

(i)
j i s

(i)
j m

(i)
j

1 〈011̄〉 〈11̄1̄〉 4 〈011〉 〈111̄〉 7 〈011〉 〈11̄1〉 10 〈011̄〉 〈111〉
2 〈101〉 〈11̄1̄〉 5 〈101〉 〈111̄〉 8 〈101̄〉 〈11̄1〉 11 〈101̄〉 〈111〉
3 〈110〉 〈11̄1̄〉 6 〈11̄0〉 〈111̄〉 9 〈110〉 〈11̄1〉 12 〈11̄0〉 〈111〉

For BCC phases, this work assumes that dislocation motion is solely accommodated via the
〈111〉⊗〈110〉 and 〈111〉⊗〈211〉 families of slip systems. For tempered martensite, it is assumed that
the carbon content is approximately 0 [149], giving lattice parameters of aM = cM = 2.861�A. This

gives a Burger’s vector of b = aM

2

√
12 + 12 + 12 = 2.477�A. For freshly transformed martensite,

the Burger’s vector is given by b = 1
2

√
(aM )2 + (aM )2 + (cM )2 = 2.507. These 〈111〉 ⊗ 〈110〉 and

〈111〉 ⊗ 〈211〉 slip families are enumerated in Table A.2.
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Table A.2: BCC slip systems.

i s
(i)
j m

(i)
j i s

(i)
j m

(i)
j i s

(i)
j m

(i)
j i s

(i)
j m

(i)
j

1 〈111̄〉 〈011〉 7 〈11̄1〉 〈011〉 13 〈111̄〉 〈21̄1〉 19 〈11̄1〉 〈211̄〉
2 〈111̄〉 〈101〉 8 〈11̄1〉 〈101̄〉 14 〈111̄〉 〈12̄1̄〉 20 〈11̄1〉 〈121〉
3 〈111̄〉 〈11̄0〉 9 〈11̄1〉 〈110〉 15 〈111̄〉 〈112〉 21 〈11̄1〉 〈11̄2̄〉
4 〈11̄1̄〉 〈011̄〉 10 〈111〉 〈011̄〉 16 〈11̄1̄〉 〈211〉 22 〈111〉 〈21̄1̄〉
5 〈11̄1̄〉 〈101〉 11 〈111〉 〈101̄〉 17 〈11̄1̄〉 〈121̄〉 23 〈111〉 〈12̄1〉
6 〈11̄1̄〉 〈110〉 18 〈11̄1̄〉 〈11̄2〉 12 〈111〉 〈11̄0〉 24 〈111〉 〈112̄〉
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Appendix B Transformation Kinematic Properties

B.1 QP1180 Properties

Following Turteltaub and Suiker [118], QP1180 is assumed to have a carbon concentration of
1.4wt%. For completeness, the kinematic properties presented in Turteltaub and Suiker [118] are
repeated here. The austenite and transformed martensite lattice parameters are calculated from
the carbon concentration using [118]

cM = 2.861 + 0.116(pc) = 3.0233�A (B.1)

aM = 2.861− 0.013(pc) = 2.8428�A (B.2)

aA = 3.548 + 0.044(pc) = 3.6096�A (B.3)

Using these lattice parameters and the analytic approach presented in Hane and Shield [144],
the compatibility Eqs. (5.4) and (5.5) are solved to give the transformation shear magnitude,
transformation systems, internal twin and martensite plate rotation matrices, and martensite
variant volume fractions.

The transformation shear magnitude is

γ̂tr = 0.1809 (B.4)

Table B.1 presents the martensite variants ζβ1 and ζβ2 , martensite variant 1 volume fraction

λ(ζβ1 ), and the transformation direction b
(β)
i and normal components d

(β)
i for martensite plate

orientation β.
Table B.1: QP1180 transformation systems.

β (ζβ1 , ζ
β
2 ) λ(ζβ1 ) b

(β)
i d

(β)
i

1 (1,2) 0.3998
[
−0.1906 −0.6311 −0.7520

] [
0.1711 0.5666 −0.8060

]
2 (1,2) 0.3998

[
0.1906 0.6311 −0.7520

] [
−0.1711 −0.5666 −0.8060

]
3 (1,2) 0.6002

[
−0.6311 −0.1906 −0.7520

] [
0.5666 0.1711 −0.8060

]
4 (1,2) 0.6002

[
0.6311 0.1906 −0.7520

] [
−0.5666 −0.1711 −0.8060

]
5 (1,2) 0.3998

[
0.1906 −0.6311 −0.7520

] [
−0.1711 0.5666 −0.8060

]
6 (1,2) 0.3998

[
−0.1906 0.6311 −0.7520

] [
0.1711 −0.5666 −0.8060

]
7 (1,2) 0.6002

[
−0.6311 0.1906 −0.7520

] [
0.5666 −0.1711 −0.8060

]
8 (1,2) 0.6002

[
0.6311 −0.1906 −0.7520

] [
−0.5666 0.1711 −0.8060

]
9 (1,3) 0.3998

[
0.1906 0.7520 −0.6311

] [
−0.1711 0.8060 0.5666

]
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Table B.1 (Continued)

β (ζβ1 , ζ
β
2 ) λ(ζβ1 ) b

(β)
i d

(β)
i

10 (1,3) 0.3998
[
−0.1906 0.7520 0.6311

] [
0.1711 0.8060 −0.5666

]
11 (1,3) 0.6002

[
−0.6311 0.7520 0.1906

] [
0.5666 0.8060 −0.1711

]
12 (1,3) 0.6002

[
0.6311 0.7520 −0.1906

] [
−0.5666 0.8060 0.1711

]
13 (1,3) 0.3998

[
0.1906 −0.7520 0.6311

] [
−0.1711 −0.8060 −0.5666

]
14 (1,3) 0.3998

[
−0.1906 −0.7520 −0.6311

] [
0.1711 −0.8060 0.5666

]
15 (1,3) 0.6002

[
−0.6311 −0.7520 −0.1906

] [
0.5666 −0.8060 0.1711

]
16 (1,3) 0.6002

[
0.6311 −0.7520 0.1906

] [
−0.5666 −0.8060 −0.1711

]
17 (2,3) 0.3998

[
−0.7520 −0.1906 0.6311

] [
−0.8060 0.1711 −0.5666

]
18 (2,3) 0.3998

[
−0.7520 0.1906 −0.6311

] [
−0.8060 −0.1711 0.5666

]
19 (2,3) 0.6002

[
−0.7520 0.6311 −0.1906

] [
−0.8060 −0.5666 0.1711

]
20 (2,3) 0.6002

[
−0.7520 −0.6311 0.1906

] [
−0.8060 0.5666 −0.1711

]
21 (2,3) 0.3998

[
−0.7520 0.1906 0.6311

] [
−0.8060 −0.1711 −0.5666

]
22 (2,3) 0.3998

[
−0.7520 −0.1906 −0.6311

] [
−0.8060 0.1711 0.5666

]
23 (2,3) 0.6002

[
−0.7520 0.6311 0.1906

] [
−0.8060 −0.5666 −0.1711

]
24 (2,3) 0.6002

[
−0.7520 −0.6311 −0.1906

] [
−0.8060 0.5666 0.1711

]
Table B.2 presents the rotation matrix between martensite variants 1 (ζβ1 ) and 2 (ζβ2 ) of

martensite plate orientation β.

Table B.2: QP1180 rotation between twinned martensite variant ζβ1 and ζβ1 .

β R
(β)

β R
(β)

1

 0.9607 −0.2775 0
0.2775 0.9607 0

0 0 1

 13

 0.9607 0 −0.2775
0 1 0

0.2775 0 0.9607


2

 0.9607 −0.2775 0
0.2775 0.9607 0

0 0 1

 14

 0.9607 0 −0.2775
0 1 0

0.2775 0 0.9607


3

 0.9607 −0.2775 0
0.2775 0.9607 0

0 0 1

 15

 0.9607 0 −0.2775
0 1 0

0.2775 0 0.9607


4

 0.9607 −0.2775 0
0.2775 0.9607 0

0 0 1

 16

 0.9607 0 −0.2775
0 1 0

0.2775 0 0.9607


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Table B.2 (Continued)

β R
(β)

β R
(β)

5

 0.9607 0.2775 0
−0.2775 0.9607 0

0 0 1

 17

1 0 0
0 0.9607 0.2775
0 −0.2775 0.9607


6

 0.9607 0.2775 0
−0.2775 0.9607 0

0 0 1

 18

1 0 0
0 0.9607 0.2775
0 −0.2775 0.9607


7

 0.9607 0.2775 0
−0.2775 0.9607 0

0 0 1

 19

1 0 0
0 0.9607 0.2775
0 −0.2775 0.9607


8

 0.9607 0.2775 0
−0.2775 0.9607 0

0 0 1

 20

1 0 0
0 0.9607 0.2775
0 −0.2775 0.9607


9

 0.9607 0 0.2775
0 1 0

−0.2775 0 0.9607

 21

1 0 0
0 0.9607 −0.2775
0 0.2775 0.9607


10

 0.9607 0 0.2775
0 1 0

−0.2775 0 0.9607

 22

1 0 0
0 0.9607 −0.2775
0 0.2775 0.9607


11

 0.9607 0 0.2775
0 1 0

−0.2775 0 0.9607

 23

1 0 0
0 0.9607 −0.2775
0 0.2775 0.9607


12

 0.9607 0 0.2775
0 1 0

−0.2775 0 0.9607

 24

1 0 0
0 0.9607 −0.2775
0 0.2775 0.9607



Table B.3 presents the rotation matrix between austenite and the aggregate martensite plate
orientation β, in the martensite variant 2 (ζβ2 ) basis.
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Table B.3: QP1180 rotation between austenite and martensite plate β in martensite
variant basis.

β R̂
(β)

β R̂
(β)

1

 0.9935 0.1109 0.0249
−0.1127 0.9902 0.0826
−0.0155 −0.0849 0.9963

 13

 0.9935 −0.0249 0.1109
0.0155 0.9963 0.0849
−0.1127 −0.0826 0.9902


2

 0.9935 0.1109 −0.0249
−0.1127 0.9902 −0.0826

0.0155 0.0849 0.9963

 14

 0.9935 0.0249 0.1109
−0.0155 0.9963 −0.0849
−0.1127 0.0826 0.9902


3

 0.9826 0.1666 0.0826
−0.1691 0.9853 0.0249
−0.0772 −0.0385 0.9963

 15

 0.9826 0.0826 0.1666
−0.0772 0.9963 −0.0385
−0.1691 0.0249 0.9853


4

 0.9826 0.1666 −0.0826
−0.1691 0.9853 −0.0249

0.0772 0.0385 0.9963

 16

 0.9826 −0.0826 0.1666
0.0772 0.9963 0.0385
−0.1691 −0.0249 0.9853


5

 0.9935 −0.1109 −0.0249
0.1127 0.9902 0.0826
0.0155 −0.0849 0.9963

 17

 0.9963 −0.0155 0.0849
0.0249 0.9935 −0.1109
−0.0826 0.1127 0.9902


6

 0.9935 −0.1109 0.0249
0.1127 0.9902 −0.0826
−0.0155 0.0849 0.9963

 18

 0.9963 0.0155 −0.0849
−0.0249 0.9935 −0.1109

0.0826 0.1127 0.9902


7

 0.9826 −0.1666 0.0826
0.1691 0.9853 −0.0249
−0.0772 0.0385 0.9963

 19

 0.9963 0.0772 −0.0385
−0.0826 0.9826 −0.1666

0.0249 0.1691 0.9853


8

 0.9826 −0.1666 −0.0826
0.1691 0.9853 0.0249
0.0772 −0.0385 0.9963

 20

 0.9963 −0.0772 0.0385
0.0826 0.9826 −0.1666
−0.0249 0.1691 0.9853


9

 0.9935 0.0249 −0.1109
−0.0155 0.9963 0.0849

0.1127 −0.0826 0.9902

 21

 0.9963 0.0155 0.0849
−0.0249 0.9935 0.1109
−0.0826 −0.1127 0.9902


10

 0.9935 −0.0249 −0.1109
0.0155 0.9963 −0.0849
0.1127 0.0826 0.9902

 22

 0.9963 −0.0155 −0.0849
0.0249 0.9935 0.1109
0.0826 −0.1127 0.9902


11

 0.9826 −0.0826 −0.1666
0.0772 0.9963 −0.0385
0.1691 0.0249 0.9853

 23

 0.9963 0.0772 0.0385
−0.0826 0.9826 0.1666
−0.0249 −0.1691 0.9853


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Table B.3 (Continued)

β R
(β)

β R
(β)

12

 0.9826 0.0826 −0.1666
−0.0772 0.9963 0.0385

0.1691 −0.0249 0.9853

 24

 0.9963 −0.0772 −0.0385
0.0826 0.9826 0.1666
0.0249 −0.1691 0.9853



B.2 QP3Mn Properties

Recent atom probe tomography [149] results for a quenched and partition (QP980) indicate
RA carbon concentration of 1.12wt%. The austenite and transformed martensite lattice param-
eters are calculated from the carbon concentration using [118]

cM = 2.861 + 0.116(pc) = 2.990 92�A (B.5)

aM = 2.861− 0.013(pc) = 2.846 44�A (B.6)

aA = 3.548 + 0.044(pc) = 3.597 28�A (B.7)

Using these lattice parameters and the analytic approach presented in Hane and Shield [144],
the compatibility Eqs. (5.4) and (5.5) are solved to give the transformation shear magnitude,
transformation systems, internal twin and martensite plate rotation matrices, and martensite
variant volume fractions.

The transformation shear magnitude is

γ̂tr = 0.1886 (B.8)

Table B.4 presents the martensite variants ζβ1 and ζβ2 , martensite variant 1 volume fraction

λ(ζβ1 ), and the transformation direction b
(β)
i and normal components d

(β)
i for martensite plate

orientation β.
Table B.4: QP3Mn transformation systems.

β (ζβ1 , ζ
β
2 ) λ(ζβ1 ) b

(β)
i d

(β)
i

1 (1,2) 0.4024
[
−0.2011 −0.6286 −0.7523

] [
0.1793 0.5616 −0.8078

]
2 (1,2) 0.4024

[
0.2011 0.6286 −0.7523

] [
−0.1793 −0.5616 −0.8078

]
3 (1,2) 0.5976

[
−0.6286 −0.2011 −0.7523

] [
0.5616 0.1793 −0.8078

]
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Table B.4 (Continued)

β (ζβ1 , ζ
β
2 ) λ(ζβ1 ) b

(β)
i d

(β)
i

4 (1,2) 0.5976
[

0.6286 0.2011 −0.7523
] [
−0.5616 −0.1793 −0.8078

]
5 (1,2) 0.4024

[
0.2011 −0.6286 −0.7523

] [
−0.1793 0.5616 −0.8078

]
6 (1,2) 0.4024

[
−0.2011 0.6286 −0.7523

] [
0.1793 −0.5616 −0.8078

]
7 (1,2) 0.5976

[
−0.6286 0.2011 −0.7523

] [
0.5616 −0.1793 −0.8078

]
8 (1,2) 0.5976

[
0.6286 −0.2011 −0.7523

] [
−0.5616 0.1793 −0.8078

]
9 (1,3) 0.4024

[
0.2011 0.7523 −0.6286

] [
−0.1793 0.8078 0.5616

]
10 (1,3) 0.4024

[
−0.2011 0.7523 0.6286

] [
0.1793 0.8078 −0.5616

]
11 (1,3) 0.5976

[
−0.6286 0.7523 0.2011

] [
0.5616 0.8078 −0.1793

]
12 (1,3) 0.5976

[
0.6286 0.7523 −0.2011

] [
−0.5616 0.8078 0.1793

]
13 (1,3) 0.4024

[
0.2011 −0.7523 0.6286

] [
−0.1793 −0.8078 −0.5616

]
14 (1,3) 0.4024

[
−0.2011 −0.7523 −0.6286

] [
0.1793 −0.8078 0.5616

]
15 (1,3) 0.5976

[
−0.6286 −0.7523 −0.2011

] [
0.5616 −0.8078 0.1793

]
16 (1,3) 0.5976

[
0.6286 −0.7523 0.2011

] [
−0.5616 −0.8078 −0.1793

]
17 (2,3) 0.4024

[
−0.7523 −0.2011 0.6286

] [
−0.8078 0.1793 −0.5616

]
18 (2,3) 0.4024

[
−0.7523 0.2011 −0.6286

] [
−0.8078 −0.1793 0.5616

]
19 (2,3) 0.5976

[
−0.7523 0.6286 −0.2011

] [
−0.8078 −0.5616 0.1793

]
20 (2,3) 0.5976

[
−0.7523 −0.6286 0.2011

] [
−0.8078 0.5616 −0.1793

]
21 (2,3) 0.4024

[
−0.7523 0.2011 0.6286

] [
−0.8078 −0.1793 −0.5616

]
22 (2,3) 0.4024

[
−0.7523 −0.2011 −0.6286

] [
−0.8078 0.1793 0.5616

]
23 (2,3) 0.5976

[
−0.7523 0.6286 0.2011

] [
−0.8078 −0.5616 −0.1793

]
24 (2,3) 0.5976

[
−0.7523 −0.6286 −0.2011

] [
−0.8078 0.5616 0.1793

]
Table B.5 presents the rotation matrix between martensite variants 1 (ζβ1 ) and 2 (ζβ2 ) of

martensite plate orientation β.

Table B.5: QP3Mn rotation between twinned martensite variant ζβ1 and ζβ1 .

β R
(β)

β R
(β)

1

 0.95744 −0.28862 0
0.28862 0.95744 0

0 0 1

 13

 0.95744 0 −0.28862
0 1 0

0.28862 0 0.95744


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Table B.5 (Continued)

β R
(β)

β R
(β)

2

 0.95744 −0.28862 0
0.28862 0.95744 0

0 0 1

 14

 0.95744 0 −0.28862
0 1 0

0.28862 0 0.95744


3

 0.95744 −0.28862 0
0.28862 0.95744 0

0 0 1

 15

 0.95744 0 −0.28862
0 1 0

0.28862 0 0.95744


4

 0.95744 −0.28862 0
0.28862 0.95744 0

0 0 1

 16

 0.95744 0 −0.28862
0 1 0

0.28862 0 0.95744


5

 0.95744 0.28862 0
−0.28862 0.95744 0

0 0 1

 17

1 0 0
0 0.95744 0.28862
0 −0.28862 0.95744


6

 0.95744 0.28862 0
−0.28862 0.95744 0

0 0 1

 18

1 0 0
0 0.95744 0.28862
0 −0.28862 0.95744


7

 0.95744 0.28862 0
−0.28862 0.95744 0

0 0 1

 19

1 0 0
0 0.95744 0.28862
0 −0.28862 0.95744


8

 0.95744 0.28862 0
−0.28862 0.95744 0

0 0 1

 20

1 0 0
0 0.95744 0.28862
0 −0.28862 0.95744


9

 0.95744 0 0.28862
0 1 0

−0.28862 0 0.95744

 21

1 0 0
0 0.95744 −0.28862
0 0.28862 0.95744


10

 0.95744 0 0.28862
0 1 0

−0.28862 0 0.95744

 22

1 0 0
0 0.95744 −0.28862
0 0.28862 0.95744


11

 0.95744 0 0.28862
0 1 0

−0.28862 0 0.95744

 23

1 0 0
0 0.95744 −0.28862
0 0.28862 0.95744


12

 0.95744 0 0.28862
0 1 0

−0.28862 0 0.95744

 24

1 0 0
0 0.95744 −0.28862
0 0.28862 0.95744


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Table B.6 presents the rotation matrix between austenite and the aggregate martensite plate
orientation β, in the martensite variant 2 (ζβ2 ) basis.

Table B.6: QP3Mn rotation between Austenite and Martensite plate β in Martensite
variant basis.

β R̂
(β)

β R̂
(β)

1

 0.9929 0.1161 0.0273
−0.1181 0.9893 0.0856
−0.0171 −0.0882 0.9960

 13

 0.9929 −0.0273 0.1161
0.0171 0.9960 0.0882
−0.1181 −0.0856 0.9893


2

 0.9929 0.1161 −0.0273
−0.1181 0.9893 −0.0856

0.0171 0.0882 0.9960

 14

 0.9929 0.0273 0.1161
−0.0171 0.9960 −0.0882
−0.1181 0.0856 0.9893


3

 0.9813 0.1725 0.0856
−0.1754 0.9841 0.0273
−0.0795 −0.0418 0.9960

 15

 0.9813 0.0856 0.1725
−0.0795 0.9960 −0.0418
−0.1754 0.0273 0.9841


4

 0.9813 0.1725 −0.0856
−0.1754 0.9841 −0.0273

0.0795 0.0418 0.9960

 16

 0.9813 −0.0856 0.1725
0.0795 0.9960 0.0418
−0.1754 −0.0273 0.9841


5

 0.9929 −0.1161 −0.0273
0.1181 0.9893 0.0856
0.0171 −0.0882 0.9960

 17

 0.9960 −0.0171 0.0882
0.0273 0.9929 −0.1161
−0.0856 0.1181 0.9893


6

 0.9929 −0.1161 0.0273
0.1181 0.9893 −0.0856
−0.0171 0.0882 0.9960

 18

 0.9960 0.0171 −0.0882
−0.0273 0.9929 −0.1161

0.0856 0.1181 0.9893


7

 0.9813 −0.1725 0.0856
0.1754 0.9841 −0.0273
−0.0795 0.0418 0.9960

 19

 0.9960 0.0795 −0.0418
−0.0856 0.9813 −0.1725

0.0273 0.1754 0.9841


8

 0.9813 −0.1725 −0.0856
0.1754 0.9841 0.0273
0.0795 −0.0418 0.9960

 20

 0.9960 −0.0795 0.0418
0.0856 0.9813 −0.1725
−0.0273 0.1754 0.9841


9

 0.9929 0.0273 −0.1161
−0.0171 0.996 0.0882

0.1181 −0.0856 0.9893

 21

 0.9960 0.0171 0.0882
−0.0273 0.9929 0.1161
−0.0856 −0.1181 0.9893


10

 0.9929 −0.0273 −0.1161
0.0171 0.996 −0.0882
0.1181 0.0856 0.9893

 22

 0.9960 −0.0171 −0.0882
0.0273 0.9929 0.1161
0.0856 −0.1181 0.9893


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Table B.6 (Continued)

β R
(β)

β R
(β)

11

 0.9813 −0.0856 −0.1725
0.0795 0.996 −0.0418
0.1754 0.0273 0.9841

 23

 0.9960 0.0795 0.0418
−0.0856 0.9813 0.1725
−0.0273 −0.1754 0.9841


12

 0.9813 0.0856 −0.1725
−0.0795 0.996 0.0418

0.1754 −0.0273 0.9841

 24

 0.9960 −0.0795 −0.0418
0.0856 0.9813 0.1725
0.0273 −0.1754 0.9841


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