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Abstract

The monitoring, reporting, and verification (MRV) of forest plots, especially their tree-
trunk diameters, is critical to achieving both forest protection and reforestation goals.
Today’s MRV processes are mostly manual, error-prone, and costly to carry out. In this
thesis, we design and implement an app running on a smartphone equipped with a time-
of-flight sensor that allows efficient, low-cost, and accurate measurement of tree trunk
diameters. The core focus is on designing an algorithm to identify, segment, and compute
the diameter of a target tree trunk in a depth image of a forest scene, even in the face of
natural leaf and branch occlusion. The algorithm runs in real-time on the phone, allowing
user interaction to improve the quality of the results. We evaluate the app in realistic
settings and find that in a corpus of 55 sample tree images, it estimates trunk diameter
with mean error of 7.8%. We also explore a newly released alternative to the time-of-flight
sensor, Google’s ARCore Depth API, which uses a depth-from-motion algorithm based
on a monocular phone camera and accelerometer sensors. We conclude that this API is
currently inadequate for the proposed application and offer suggestions for its improvement.
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Chapter 1

Introduction

1.1 Overview and Motivation

Carbon sequestration in trees can play a key role in decarbonizing the atmosphere and
averting catastrophic climate change. In its 2018 report, the Intergovernmental Panel on
Climate Change (IPCC) highlights that all pathways to limit global warming to 1.5°C rely
on active removal of atmospheric carbon dioxide, with most published plans incorporating
forest carbon sequestration as a key component of this removal [36]. However, strategies
to achieve reforestation and anti-deforestation goals, whether through policy- or market-
based incentives, face a technological challenge: they require monitoring, reporting, and
verification (MRV) of forest plots in situ to measure the actual degree of sequestration
achieved [24][17][29].

Current forest MRV is based on a standardized, manual inventory process that involves
mapping out sample plots with ribbon or rope, then using tape measures or calipers to
find the diameter of each tree trunk in the plot [31]. This labor-intensive process has four
negative consequences. First, it limits sample size; thus only a tiny fraction of forested
land has been sampled. Second, it limits the number of data points that can be collected
per tree. Third, manual measurements are challenging to carry out in dense, diverse forests
such as the tropics, where significant undergrowth may surround trunks. Finally, it places
an onerous administrative burden on small-scale reforestation efforts.

Terrestrial Laser Scanning (TLS) has been proposed and used to address some of these
problems. In this approach, surveying LiDAR instruments, sometimes purpose-built for
forestry applications, create precise point clouds of forest scenes at a range of 50-100 me-
ters. However, these instruments are expensive (as costly as $200K USD), complex to
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operate, and bulky. They also produce a point cloud data format that requires complex,
often vendor-specific software, lengthy offline computation times, and sometimes man-
ual intervention during post-processing. In contrast, we explore the use of novel infrared
time-of-flight (depth) sensors, along with a depth-based image segmentation algorithm, to
measure tree trunks in near real-time in natural forest settings. Specifically, we obtain
depth images using a commodity smartphone, segment the images, that is, separate the
trunk from the foreground and background, and then automatically estimate the trunk
diameter. We compare this to the results obtained manually through the traditional ap-
proach and find that our approach is around four times faster, while incurring a small error
of < 8%.

Although we are not the first to use smartphones for forest plot inventories, prior
attempts assume that tree trunks are well-spaced, brightly lit, relatively small, and have
minimal occlusion [12][13]. In practice – particularly in the natural forest environments
that carbon sequestration incentive schemes should hope to foster – these conditions are
unlikely to hold. In contrast, we are able to accurately measure tree trunk diameter
(scientifically referred to as Diameter at Breast Height, DBH) under complex and realistic
field conditions.

Our ultimate goal is to enable small-scale landowners to benefit from policy incentives
for healthy, naturally-managed, biodiverse forests, despite low-lying vegetation, climbing
vines, and fallen branches. MRV systems for carbon credits should not be limited to
well-resourced groups or those with large plots of land to reforest. The MRV process
should scale down as well as up, incentivizing reforestation on any small plot of underused
land. Existing technological solutions are either prohibitively expensive or require highly
favorable forest conditions. Our approach provides measurement tools that facilitate good
climate policy.

1.2 System Requirements

In the interest of the goals discussed above, we have the following specific requirements for
our system and its associated algorithm:

• Accessible: The image-acquisition system should be low-cost, and the computational
cost of the algorithm should be low as well. The system should be useable on multiple
platforms, and those platforms should be accessible to a relatively non-specialized
user.
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• Accurate: The algorithm should be accurate.

• Real-time: The algorithm should complete with a low-enough delay that the user can
correct errors in collected data immediately and seamlessly during fieldwork. Ideally,
a real-time system should also provide guidance to users to improve data collection.

• Single image: The algorithm should not require multiple images of a tree from differ-
ent vantage points, since these may significantly slow data collection and be difficult
to obtain in dense or tropical forests.

• Handles reasonable occlusion: The algorithm should not assume that the trunk image
is unoccluded.

1.3 Contributions

Our work meets the above requirements, improving the MRV process for small-scale forest
carbon sequestration projects by using depth sensor-enabled mobile phones to make forest
inventories easier to perform, more efficient, and more accurate. Specifically, we make the
following contributions:

• We design an algorithm that exploits a low-cost smartphone time-of-flight sensor to
estimate DBH from a single image, even with naturally-occurring occlusion, and in
poor lighting conditions.

• We implement our design and build it into an app on a Huawei P30 Pro Smartphone,
demonstrating that the algorithm has low enough computational cost to run on this
accessible commodity platform in near real-time.

• We evaluate our app in realistic forest settings and find that in a corpus of 55 sample
tree images, it estimates DBH with an RMSE of 4.1 cm (7.8%). These results are
unfortunately affected by a single outlier; we discuss the appropriate modifications
to our algorithm to avoid its cause in the future and note that without this sample,
the RMSE drops to 2.5 cm (7.5%).

• We incorporate real-time user feedback through our app UI, increasing trunk detec-
tion to 100% in our tested forest without requiring high user expertise.
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• Recognizing that even time-of-flight sensors are somewhat specialized hardware, we
port our algorithm to Google’s ARCore Depth API, which can acquire depth on
commonly-used mobile phones equipped only with a monocular camera. We offer
specific suggestions for the improvement of ARCore depth-from-motion to allow it
to be usable in a forest MRV context.

4



Chapter 2

Background

In this chapter, we present additional context for our work, especially for readers unfamiliar
with current developments in forest science.

2.1 Traditional Forest Inventory

Forest surveying is a well-established field, practiced in both managed timber forests and
partially-managed or unmanaged natural growth forests. The United Nations’ Intergovern-
mental Panel on Climate Change (IPCC) collected peer-reviewed practices in their Land
Use and Forestry report [31], offering a global standard for forest carbon measurement.
Similar detail is provided in the UK’s Woodland Carbon Code (WCC) [45]. The WCC
lays out a more explicit bureaucratic process as well, including reporting spreadsheets
for forest carbon projects that allow them to earn credits and payment from government
programs. Both specifications follow the same general process: the land is first divided
into relatively homogenous strata, and the strata divided into equally sized plots along
a uniform grid. Plot size varies based on the density of trees in the stratum; the WCC
recommends targeting around twenty trees per plot. Due to time and resource constraints,
not every plot is measured in the field, but instead a subset of plots are sampled and their
characteristics extrapolated to the other plots in the stratum.

In the field, the plots are typically marked out by hand, using a GPS device, tape
measure, and rope or ribbon; a laborious and time-consuming process. Within each plot,
foresters measure the diameter at breast height (DBH) of each tree, and may also record
species and total tree height information. DBH measurements are performed either by
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measuring tree circumference and dividing by π, or by using specialized calipers that fit
around the trunk [37]. Height can be calculated with trigonometry using only a meter
stick, but surveyors often use technical equipment such as a hypsometer. Top-of-the-line
all-in-one-devices cost around $2000, though there are cheaper models for around $300
USD.1 The appropriate species identification is done manually by field experts.

Following the forest inventory, estimated carbon sequestration is derived using allomet-
ric equations, which relate measured tree features to tree biomass. These equations are
often specific to a species or other classification of tree (e.g. hardwood, etc.), to account
for differing wood density and growth characteristics. Some allometric equations include
tree height as an independent variable, but many use only tree classification and DBH,
since height is not always easy or possible to determine, especially in dense forests where
individual tree tops are not visible. These statistical models are developed based on tree
measurement followed by destructive harvesting : cutting down the tree to precisely calcu-
late its biomass. Further equations relate biomass to an estimate of a tree’s carbon storage,
which is aggregated into an estimate of total forest carbon stock. Finally, re-measuring the
same trees or plots year after year results in an estimate of carbon sequestration rate. For
an example of the practices used to develop these models across a given classification of
tree, see Singh et al. [40].

Though this process is well-established, it has several key limitations. First, it is both
time- and cost- intensive. Carrying equipment into the forest, marking out plots, and
measuring each tree individually all take time. Second, a relatively high level of expertise
is required to correctly place sample plot boundaries, measure trees quickly and accurately,
and identify tree species. The time and expertise both translate to costs that small-scale
reforestation efforts may not be able to meet. Finally, the entire process yields only a few
data points per tree (such as species, DBH, height) – and not rich datasets, such as images,
that could provide additional information after the surveyors have left the forest or serve
as an auditable trace of the data collection process.

The high barrier to entry also impacts the overall accuracy of the process. The greater
the time, cost, and expertise required, the less total land can be easily surveyed, meaning
that surveyors have to rely more heavily on statistical sampling methods to extrapolate
carbon stock estimates [31]. It also leads to under-representation of forests that are dense,
diverse, and hard-to-reach, such as tropical forests.

1Sample devices can be found at forestrytools.com.au
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2.2 Terrestrial Laser Scanning

One relatively widespread technology for automatic ground-based forest inventories is Ter-
restrial Laser Scanning (TLS). Forest ecologists use medium-range surveying LiDAR as
well as some purpose-built LiDAR instruments to collect point cloud representations of
forest plots [50]. Their results have been impressive, speeding up the forest inventory pro-
cess and leading to direct improvements in allometric equations for biomass estimation [27].
In particular, TLS can estimate biomass without destructive harvesting, by using the full
point cloud to estimate tree and branch volume for the entire tree. As a result, TLS has es-
pecially improved allometric models for larger, older trees and trees in remote or protected
areas, such as tropical rainforests [10] [42].

However, TLS instruments have direct trade-offs between signal noise and range and
sensor cost, and instruments with the high-end specifications used in existing forest surveys
are quite expensive. One detailed study, published in 2018 but with field work done in
2015, used LiDAR costing 100K-200K USD per instrument [9]. The authors mention
that their instruments are at the upper end of TLS scanner cost, with a range of 700
m and a pointing accuracy of millimeters at that range. Several authors mention that
TLS scanners can cost closer to 10K USD, but their research actually uses an instrument
costing over 50K USD [9] [50]. Wilkes et al. note that instrument weight can also be an
issue, given that many sensors are over 10 kg and “can be heavy and awkward to carry
through dense vegetation” [50]. Finally, the processing of forest TLS point clouds requires
a combination of complex, often vendor-specific software for aggregation and segmentation,
the full pipeline of which is not standardized nor professionally packaged. For these reasons,
TLS seems suitable primarily for well-funded research groups, and to our knowledge has
not been widely adopted either in government MRV programs or small-scale reforestation
efforts.

2.3 Satellite and Aerial Approaches

Outside of terrestrial approaches, foresters and forest ecologists also work with Aerial Laser
Scanning (ALS): LiDAR sensors mounted on planes, helicopters, and Unmanned Aerial
Vehicles (UAVs). An aerial forest view can also be obtained from satellite data, which is
increasingly available from private and public sources [33]. Moreover, aerial and terrestrial
approaches do not need to be mutually exclusive; researchers are discussing using TLS
data to improve satellite and aerial estimates of above-ground biomass [41].
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Aerial approaches enjoy the advantage of being extremely fast, and are able to cover a
wide area of ground, even in locations that might otherwise be difficult to access. However,
they naturally cannot obtain data below the forest canopy, and so tend to underestimate
forest biomass. Understory trees, or trees whose tops do not reach the outer canopy, are a
particular source of error [8]. In addition, aerial approaches are less suited to smaller-scale
projects: ALS can be quite expensive (even more so than TLS) because of equipment and
flight costs, though cheaper versions are becoming available through the use of drones.
Satellite data, on the other hand, is still not available at high enough resolution and
frequency to measure carbon storage in individual forest projects. We therefore limit our
evaluation to comparisons with terrestrial methods only.

2.4 Depth Measurement on Mobile Phones

Mobile phone software for creating depth images is rapidly becoming more widespread.
Apple released depth capabilities in its ARKit in June 20172, Huawei offers depth through
AREngine3, and Google published its long-awaited Depth API as part of ARCore in June
20204. As the package names suggest, the target use case of depth data on mobile phones is
Augmented Reality (AR), which allows the user to interact virtually with their real-world
environment. The Apple and Google software packages provide depth data on a subset of
compatible phones even without a specialized depth sensor, using Structure from Motion
(SfM) [38] or stereo vision techniques from multiple rear-facing cameras. However, higher
resolution, acquisition speed, and responsiveness can be achieved with a dedicated sensor,
and thus far Huawei, Apple, and Samsung have all released flagship devices equipped with
an infrared time-of-flight (ToF) sensor.

Time-of-flight sensors are low-cost, short-range depth sensors that offer millimeter ac-
curacy for depth measurements at a range of up to 4 m [28]. The sensor emits infrared
waves and measures the round-trip time for the waves to bounce off of objects in the envi-
ronment and return to the sensor. Straightforward velocity calculations convert the time
measurement to distance. In Android APIs, the images produced by the depth sensor are
formatted in a standard DEPTH16 format, with each pixel containing a 13-bit depth mea-
surement (in mm) and a 3-bit confidence value [15]. However, the Android documentation
does not specify what the confidence value should represent, and we found that it was used
inconsistently or not at all by different vendor implementations.

2https://developer.apple.com/augmented-reality/arkit/
3https://developer.huawei.com/consumer/en/hms/huawei-arengine/
4https://developers.google.com/ar/develop/java/depth/overview
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Time-of-flight sensors are known to be less effective under certain conditions, such as in
bright sunlight and when measuring pure black objects. However, we have not encountered
this issue in a shady, naturally forested environment. In fact, since time-of-flight sensors
emit their own infrared light, they work very well in low light conditions.

2.5 Image Segmentation

Image segmentation, or grouping the pixels that belong to different objects in an image, is
an established area of computer vision and a key requirement for automatic forest inventory
tools. In this section, we offer a general (non-comprehensive) background on segmentation
techniques. We discuss forest-specific approaches to point cloud and image segmentation
in Section 3.1.

One basic image segmentation problem is to assign a label to each pixel according
to whether it is in the foreground or background of an image. Some well-established
approaches to this problem include k-means segmentation [34], and region growing [1].
K-means segmentation seeks to assign pixels to clusters such that the sum of squared
differences between pixels and the mean of their assigned cluster is minimized. In region
growing techniques, the algorithm begins with sets of seed pixels from the foreground
and/or background of the image. These seeds are grown by iteratively adding connected
pixels that are sufficiently similar to their neighbors already in the seeded region.

A more challenging problem is semantic segmentation, which attempts to identify the
objects contained in an image and label each pixel with its corresponding object. Neural
networks have been applied to this task, most notably ResNet [19]. The above algorithms
were designed with RGB images, though some could be adapted to depth (or RGB+depth)
images as well. In addition, some dedicated research has been done on RGB+D image
segmentation through convolutional neural networks and other approaches, though this
area is relatively newer[18][39].

In our work, we seek a combination of basic and semantic segmentation. We do not
need to label every object in the image, but we do need to find the exact boundary between
one chosen foreground object (the tree trunk) and the rest of the image. Small errors in the
boundary, while not well-represented in the typical Mean Intersection Over Union (MIOU)
error metric for semantic segmentation neural networks [19], may translate to large errors
in DBH estimation. To our knowledge, there is no existing neural network for finding trunk
DBH from RGB or RGB+D images of trees, nor is there an existing dataset of phone-based
RGB+D images large enough to train one.
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Chapter 3

Related Work

We now present prior work on using mobile technology to assist with forest inventories. We
first discuss the image segmentation problem, then three competing automated approaches
to estimate trunk DBH. Finally, we discuss the possibility of using generic mobile tools to
tackle the problem.

3.1 Image Segmentation for Forest Measurement

As discussed in Section 2.5, image segmentation is necessary to distinguish trees from the
surrounding understory, vegetation, and other trees in the background (see Figures 5.1,
5.2, 6.1, and 6.4 for examples from our dataset). This is a complex task due to occlusions,
variegated light conditions, and overall similarity of green and brown shades in the image.

In TLS, some researchers have used specialized dual-wavelength LiDAR to separate
leaves from branches [26]. Another approach is to carry out inventories in winter, in the
absence of leaves [42]. Of course, relying on leaf-off conditions is not always possible and
limits inventories to deciduous forests. A third approach, taken by Bauwens et al., is to
clear nearby vegetation by hand during the survey and then use additional manual data
processing after the fact [4].

Unlike these more heavy-handed approaches, software-based point cloud segmentation
has been studied by Piermattei et al., who make use of the Forest Analysis Inventory Tool,
FAIT, developed at TU Wein [32]. The tool itself, as well as the Structure from Motion
pre-processing they use to derive tree point clouds, require substantial computational time
and power, and are not suitable for use during field operations. For forest TLS, one
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software package widely used for segmentation is treeseg, developed by Burt et al [6]1.
Like FAIT, this software is run offline after data collection. It separates trunks by looking
for neighborhoods of the point cloud that share similar surface normal vectors and are
therefore likely to belong to the same surface. Since these tools require extensive offline
processing, it is not possible to use them in real-time, which prevents them from being
integrated into a system that offers user interaction in the field. More specifically, they
cannot prompt users to retake a scan in case of errors in the software processing or final
result.

3.2 Structure from Motion (SfM)

Other researchers have also sought cheaper, more accessible automated forest inventory
methods than TLS. Some researchers have used Structure from Motion (SfM) algorithms
on mobile platforms to estimate the DBH of all trees in a plot [21][32]. Here, users are
asked to follow a specific path when moving around the plot perimeter and throughout
the plot, in order to ensure coverage of all trees with enough overlap between photos to
correlate images. Piermattei et al. keep a 1 m mean baseline between adjacent camera
images, and ultimately capture and process about 300-800 images for each plot containing
45-110 trees. Piermattei et al. also note that “additional photos were acquired [. . . ] to
avoid occlusions by stems, branches, twigs, and leaves” in denser areas of the plots. The
authors captured their images with a Nikon digital SLR camera and performed offline
processing with PhotoScan Pro to derive dense point clouds [32].

This approach is less expensive than TLS and may require less expertise. However,
it requires users to walk a pre-specified path covering the entire plot, which may not be
possible in the presence of undergrowth. It also requires numerous photographs both to
perform SfM and to handle occlusion. Finally, SfM requires extensive post-processing of
images and cannot provide real-time operator feedback, for example to suggest that another
image be acquired due to too much occlusion. Indeed, Piermattei et al. report a trunk
detection rate as low as 65% in a plot classified as “difficult” based on the density of trunks
and degree of occlusion.

In contrast, our work based on a ToF sensor typically requires only a single photograph
per tree to accurately estimate DBH. We are able to perform all of the processing in near
real-time on the phone itself, and supply useful messages to allow users to adjust and

1https://github.com/apburt/treeseg
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correct recorded data while still on-site to ensure trees do not go undetected. Thus, our
work simultaneously improves data accuracy and reduces acquisition time.

3.3 Mobile Phone Apps

3.3.1 Generic Mobile Phone Measurement Apps

Before examining purpose-built mobile tools for DBH estimation such as those discussed
below, we also identified and tested some generic mobile phone apps that might be accom-
plish the same task, such as CamToPlan [43] and Google Measure [16]. These are freely
available apps that measure the length of flat surfaces. Typically, the user is asked to hold
the phone so that the object is displayed in the camera preview, and then tap or draw
the edge or line that they wish measured. We experimented with these apps to measure
tree DBH in the field, but found that they were unable to obtain consistent or accurate
measurements in almost all cases. We discuss our experiments with these apps further in
Section 6.3, where we conclude that because of large inconsistencies (up to 42 cm) between
measurements of the same tree, they are not currently robust enough to meet the accuracy
requirements of a trusted forest MRV system.

3.3.2 Project Tango

Other silvicultural researchers have used mobile phones with depth sensors and AR software
to estimate DBH. For example, Fan et al. used Project Tango [13], a purpose-built AR
phone from Google2, to estimate DBH, height, and the position of each tree trunk in their
target setting. They achieve an impressively low Root Mean Square Error (RMSE) of 1.26
cm and mean error (or bias) of 0.33 cm for DBH measurements. However, silvicultural
research focuses on highly-managed forests, such as those used for timber and commercial
purposes or found around urban areas, which tend to have well-spaced trees with only
one or two age classes, and no weeds or ground cover (especially near the tree base). The
authors did not respond to a request for their code, so we were not able to test their system
ourselves, but close analysis of their paper reveals ways that this environment dramatically
simplifies the computational problem of identifying and measuring trees.

To get some sense of the different environments used, consider Figure 3.1. On the top
row, we show two images from the evaluation environment used by Fan et al. The left image

2This line of AR phones have since been discontinued.
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Figure 3.1: Comparison of forest conditions between Fan et al. and our work. Top: Figures
7 and 8 from the work by Fan et al. [13]. The top right image shows the RGB part of an
RGB+depth image used in their evaluation dataset. Bottom left: A picture of two cedar
trees, which was taken in the Van Cortlandt Forest used in our evaluation. Bottom right:
RGB part of an RGB+depth image of one of the cedars, which we used in our evaluation
dataset. This image was taken with the phone held just inside the outer canopy.

gives additional context for the forest (it is from a section of the paper unrelated to DBH,
and so has other markings over it); the right image is the RGB part of an RGB+depth
image used to determine tree diameter. On the bottom left, we show two cedar trees that
exemplify the difficult occlusions that occur in our dataset.3 Though the trunk is not
visible at a distance, by holding the phone just underneath the tree canopy, we capture
an RGB+depth image from which we determine diameter; the RGB part is shown on the

3Additional sample images from our dataset can also be found in Figures 5.1 and 5.2.
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Figure 3.2: Comparison of RGB and depth images between Fan et al. and our work.
Top: Figure 8 from the work by Fan et al. [13], showing a sample RGB and depth image
from their dataset. Bottom: RGB and depth image for one of the cedar trees used in our
dataset.

bottom right of the figure.4

In Figure 3.2, we show the RGB and depth images from the example image in Fan et
al. and from one of the two cedar trees. The reader may notice the difference in depth
images particularly, with the image from Fan et al. showing only the tree trunk, while our
sample has many depths that correspond to leaves and branches. Since the depth sensor
has a limited range of only a few meters, depth images taken in a forest with well-spaced
trees and no low-hanging branches or undergrowth will naturally capture only the target
tree trunk, as occurs in the sample image from Fan et al. The depth image therefore

4Incidentally, densely canopied cedars are also a good example of where our algorithm performs well
compared to manual forest inventories; we discuss this further in section 6.2.
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Figure 3.3: Comparison of depth cross-sections between Fan et al. and our work. Top:
Figure 12 from the work by Fan et al. [13], showing a sample RGB image with the depth
image cross-section from which they estimate tree diameter. The green line shows the
estimated diameter line where the cross-section was taken. Bottom: Sample RGB image
and depth cross-section from our dataset. The green line shows where the cross-section
was taken, along a line that our algorithm has identified as a possible place to measure the
diameter of the tree (though we do not use a single cross-section to estimate diameter).

offers a straightforward segmentation algorithm: the tree is the set of pixels with non-
zero depth values. Indeed, Fan et al. do not mention in their paper how they handle
occlusion or identify the tree trunk to measure, whereas our algorithm required robust
image segmentation as its first step.
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Fan et al. also seem to have faced a simpler computational problem when estimating
trunk diameter. In Figure 3.3, we show a figure from Fan et al. on the top row, in which
the authors demonstrate their method for estimating diameter by fitting a circle to a
breast-height cross-section of trunk in their captured depth image (the slice is highlighted
in green in the RGB image on the left). On the bottom row, we attempt to recreate this
figure with the cedar sample, highlighting in green a cross-section in the middle of the
captured trunk. Notice that the depth points from the trunk shown by Fan et al. form a
rough circle. In the cedar, by contrast, this cross-section of the tree does not look circular,
because of the branch on the left side sloping away from the camera and the branch on the
right side sloping towards it. Obtaining an accurate diameter estimate by fitting a circle to
the points shown in this cross-section would not necessarily be straightforward, even if we
attempted to remove the points that we believed corresponded to the branches and leaves.

Notably, a system designed for a silvicultural context is unsuitable in environments that
are of most significance from a climate perspective, i.e., naturally-managed forests, which
offer ecosystem services such as improved biodiversity and increased habitat for native
species. Our system prioritizes climate and sustainability by addressing MRV of natural
and naturally-managed forests in situ.

3.3.3 Katam

Outside of the academic research community, there is a commercially available mobile
phone app, Katam, which proposes to measure forest trees automatically [22]. Katam is
mostly a black box in terms of code, methods, and documentation, but we experimented
with it in a forest setting to test its capabilities. It appears to use SfM running on the
phone, asking the user to take a continuous video as they walk through 20 meters of forest,
holding the phone horizontally. The user can optionally place a reference sign (ordered
from www.katam.se) halfway along the path to increase precision, presumably by helping
the system recalibrate its position. Once the video is complete, Katam processes the video
fully on the phone, identifying tree trunks and computing their diameters along with other
parameters, such as total basal area.

There are three key problems with this approach. First, like the work from Fan et al.,
Katam does not support forest areas with branch or vegetation occlusions. Their web-
site states that their method is designed for “production-oriented” forest environments
(well-thinned timber stands), adding that “if the lower part of the tree is obstructed by
undervegetation or dense branches, the system may not be able to identify the tree cor-
rectly.” Their user guide displays the examples shown in Figure 3.4 for reference. In our
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Figure 3.4: Screenshot from the Katam app user guide, showing acceptable forest environ-
ments

own tests on an area with dense underbrush, Katam was unable to find any trunks. (See
§5.5.3 for further details.) Second, Katam does not continuously process the recording;
instead it processes each video after it is taken, which it states can take up to 30 minutes.
A new video cannot be taken until the first has been processed, leading to potentially
significant delays and downtime while in the field. Third, Katam offers no mechanism for
users to correct the mistakes made by its algorithm. Since the video is taken continuously
and processed afterwards, a single mis-recorded trunk requires re-taking and re-processing
the entire video. In another of our tests, which took place in a largely unoccluded forest
setting in leaf-off conditions, Katam identified a trunk where there was none; we could find
no way to correct this mistake without redoing the entire section of forest.

That said, the app has an excellent UI and can directly export spreadsheet data files. In
general, we do not envision Katam’s work as entirely independent of ours, and imagine that
our algorithm, which can handle occluded forest conditions (as well as offering real-time
feedback and allowing users to correct mistakes) might be integrated into a commercially
available app.
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Table 3.1: Summary of related work

Capability TLS SfM Tango Katam Measure- ToF
ment Apps

Real-time 7 7 3 7 3 3

Uses single image 7 7 3 7 3 3

Handles some occlusions 3 3 7 7 7 3

Accessible 7 3 7 3 3 3

Accurate 3 3 3 7 7 3

3.4 Summary

Referring back to the system requirements that we laid out in Section 1.2, we summarize
prior approaches for DBH measurement in Table 3.1. Here, TLS refers to Terrestrial Laser
Scanning, SfM to Structure from Motion as tested by Piermattei et al. [32], Tango to the
Google Tango-based system proposed by Fan et al. [13], Katam to the app discussed in
§3.3.3, Measurement Apps to Google Measure and CamToPlan, and ToF to our work. In
short, we are not aware of prior work that meets these requirements.
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Chapter 4

Design and Implementation

This chapter describes the design and implementation of our proposed system, and is laid
out as follows. We offer a brief overview in Section 4.1, followed by details of the mobile
phone hardware and software we chose to work with in Section 4.2. In Section 4.3, we
discuss the core design of our unassisted algorithm. Readers may wish to refer to Figure
4.1 for an overview. In Section 4.4, we discuss the adaptations made to incorporate user
feedback into our work. In Section 4.5, we discuss limitations of our design, and finally in
Section 4.6 we describe porting our work to an alternative platform.

4.1 System Overview and Design Challenges

We propose a system running on a mobile phone equipped with a depth sensor that can
efficiently measure tree DBH, meeting the design goals discussed in Chapter 1. We use
the depth sensor both to estimate real-world diameter with high accuracy and to segment
the trunk from the surrounding forest. Our algorithm uses estimation techniques that are
robust to measurement error and accounts for some occlusions, maintaining high accuracy
in a variety of forest conditions. The input to our algorithm is a single depth image,
and we use processing techniques with low computational complexity so that it runs in
near real-time. The app that runs our algorithm gives feedback to users and allows them
to correct mistakes on the spot. The depth sensor that we use is relatively cheap and
built into a commodity smartphone, and we consider adapting our designed app to yet
more generic hardware in §4.6. The algorithm uses only standard statistical libraries and
image analysis algorithms provided by the OpenCV library [5], which has been ported to
numerous platforms.
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We overcome several challenges when identifying and segmenting a tree trunk from
an RGB or depth image. Due to occlusion from leaves and branches, the trunk will not
always appear as a single connected object in the depth image. Branches frequently divide
sections of the trunk, and the depth sensor widens these gaps, unable to detect waves
returning from behind a small area surrounding the occluding object. The depth sensor
is, however, able to handle scenes that are difficult to segment using RGB images alone,
such as mottled trunk coloring, dim lighting, or climbing vines. In addition, typical edge
detection techniques for RGB images are difficult in the frequent case where a second
trunk is partially aligned in the background, with the boundary between the two almost
indistinguishable in the RGB image.

4.2 Mobile Phone Hardware and Software

We chose to work with the Android OS since that allowed us a wider choice of mobile
phones, compared to iOS. We used a Huawei P30 Pro phone, which, at the time of purchase,
retailed for around 1100 USD (but has since fallen to a little under 600 USD). We chose
this platform because it offered direct access to raw ToF sensor data through both the
Android Camera2 API [14] and the Huawei AREngine API [20]. Samsung, the other
main manufacturer producing Android phones with a ToF sensor, only allowed ToF use
through existing Samsung apps at the time our research began, though it now offers similar
flexibility. The P30 has three rear-facing cameras (40, 20, and 8 MP), one rear-facing TOF
sensor, and a front-facing camera (32 MP). It is also equipped with 128 GB of SSD storage,
6 GB of RAM, an 8-core CPU and a separate GPU.

Huawei does not publicly disclose the full specifications of its ToF sensor, though inves-
tigative teardowns of the phone reveal that the sensor uses Lumentum’s flood illuminator
to emit Infrared light, and Sony’s integrated circuit image sensor [2][52]. The sensor has
a resolution of 180 × 240 pixels. In line with other ToF sensors [28], we found it to have
a maximum range of around 3-4 meters. In our system, we direct users to take images at
around 1-2 meters from the tree. ToF sensors generally report sub-centimeter accuracy in
many conditions [28]. Since the sensor works by emitting infrared light, it can be affected
by strong natural light. Also, as with other sensors that emit waves and analyze their
return patterns as they bounce off of objects in the surrounding environment, ToF sensors
perform less well on surfaces nearly parallel to the direction of emitted waves. This is
because such surfaces will tend to deflect waves away from the ToF sensor. They may
return by indirect paths when they hit other objects in the environment, or not at all.

Initially, we accessed the raw ToF sensor data directly through the
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android.hardware.camera2 API. This is usable for depth data alone, but does not (as
of this writing) allow the user to issue two simultaneous (or near-simultaneous) capture
requests to the depth and RGB cameras. Android does offer a multicamera API, with which
multiple physical cameras that face the same direction can be combined into a single logical
camera at the software layer, with capture requests dispatched to each. However, this API
does not support combining a depth sensor with an RGB camera. An Android development
guide states, “We can expect that, in most cases, new devices launching with Android Pie
will expose all physical cameras (the exception being more exotic sensor types such as
infrared) along with an easier to use logical camera.” [48] Indeed, when we attempted to
use this API to combine the ToF sensor and RGB camera, the ToF sensor results no longer
corresponded to correct depths. We suspect that this is a software problem, given that we
were able to obtain the two images together through other APIs.

Instead, we used Huawei’s AR Engine SDK. The Huawei SDK uses an ARFrame Java
object with functions acquireCameraImage() and acquireDepthImage() to allow the
developer to work with the RGB and ToF cameras simultaneously. The Huawei depth
data retrieved through this API is pre-calibrated with the RGB image, so the two can
be rescaled to the same height and width and then overlaid directly. The returned image
from acquireDepthImage() is a buffer of unsigned shorts in DEPTH16 format. The
buffer is directly accessible in C++, so an app written in that language would not need
to modify the buffer, but the Huawei Java API does not account for the fact that in Java
the endianness is reversed. In our app, the two bytes representing each depth pixel must
therefore be reversed before they can be parsed as DEPTH16.

In the time since we began this work, Google also released its own Depth API as
part of its ARCore SDK.1 This API has an acquireDepthImage() method as well, but
it does not offer direct access to the raw ToF sensor results. Instead, ARCore opaquely
combines depth-from-motion from the monocular RGB camera with the depth sensor input
(if available). We discuss integration with this API separately in Section 4.6.

The DEPTH16 format reserves 3 bits of each pixel for a confidence value indicating
the correctness of the measurement [15]. However, the documentation does not describe
how this confidence value should be computed nor what, specifically, it represents, and we
were unable to use the values in either the Huawei AREngine or Google ARCore APIs. For
Huawei, in a typical unoccluded outdoor image at a 2 m range, almost all observed depths
have 0% confidence; a scattering of those on nearby objects may have 15% confidence.
Note that since the confidence values are represented by 3 bits, there are only 8 confidence
values available, split evenly among the range from 0-100%. Thus, 15% is the smallest

1https://developers.google.com/ar

21



possible non-zero confidence value for a DEPTH16 pixel. In depth images returned by
ARCore, all pixels have a 100% confidence value.

4.3 Image Processing Algorithm

We now turn to the core image processing algorithm that we developed for identifying
trunks and measuring their diameters, which is automatically invoked when the user taps
the app’s “Capture Image” button. (We discuss the app design and user assistance in
Section 4.4.) For the purposes of this algorithm, we assume that trunks consist of a single,
roughly cylindrical stem; we discuss this and other assumptions in more detail in Section
4.5. Figure 4.1 shows a high-level overview of the algorithm. In Figure 4.3, we demonstrate
each step of the algorithm on a sample tree image, shown in Figure 4.2, with considerable
occlusion.

4.3.1 Step 1: Identify Approximate Trunk Depth

The first step is to identify the tree trunk. In this regard, the depth image is easier to work
with than an RGB image, because it does not have a continuous background of pixels.
The sensor can only detect points within a range of approximately 4 m, so in an outdoor
setting many of the pixel depths are set to zero: there are no objects in close range along
that direction. An RGB image, by contrast, would have a continuous forest background.
Thus, the depth sensor itself gives us a crude segmentation, as we can see from the depth
image shown in Figure 4.3 (right image).

In this version of our algorithm, we are attempting to identify the trunk automatically,
with the natural assumption that the photographer will attempt to center the tree trunk
in the image. We slice the image vertically into thirds, and consider depths in the center
third of the image as potentially belonging to the trunk. We expect the trunk be a large set
of points with broadly consistent depth (unlike vegetation or branches, which will either
be of relatively inconsistent depth or small size). Thus, we bucket the depth values in the
center third of the image into 3 cm ranges and take the mode bucket as the approximate
trunk depth, δm. A sample histogram is shown in Figure 4.3b. We then filter the image
for pixels whose depth value is within ±10% of this approximate trunk depth. This forms
a rough segmentation, or labeling of the image pixels, Is.

2It was somewhat coincidental that the algorithm captured the intended trunk from the two in this
image. However, if it had not, the user can easily correct the mistake, as discussed in §4.4 and §5.4.
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Figure 4.1: Overview of the process for isolating and measuring a tree trunk from a depth
image. The RGB image is used to display results to the user, and is not required for the
core processing algorithm. We discuss improving the image segmentation based on the
RGB image in §6.5.
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Figure 4.2: Sample image on which we demonstrate the steps of our algorithm. Left: RGB
image. Right: RGB image with depth values, in meters, overlaid. The user intended to
measure the leftmost of the two trunks captured in this image.2

4.3.2 Step 2: Segment Trunk

Is may include some leaves and branches that happen to match the trunk depth, while
omitting portions of the trunk that are obscured by closer leaves and branches, as seen in
Figure 4.3a. Conceptually, we now want to find a tight boundary for the trunk that will
omit these outliers while still containing (“filling in”) the missing portion. The distance
between the left and right boundary will then correspond to the diameter of the trunk.
We also need to find the orientation of the trunk, because the diameter must be measured
perpendicular to this orientation.

Initially, we attempted to use the Quickhull algorithm [3] to find a convex hull for
the pixels remaining in the center third of the image. This simple approach easily fills in
the missing portions of the trunk obscured by occlusions, but is overly sensitive to small
protrusions around the edge of the trunk, for example the beginning of lower branches.
Instead, we begin by finding the orientation of the trunk, as discussed next, then we rotate
the image so that the trunk is vertically aligned and search inward along vertical scan lines
to find the appropriate trunk boundaries.

Notably, we use two different versions of the same image for each of these two stages.
For reasons described below, the process for identifying the trunk orientation requires a
highly filtered image, If , which may be missing some of the true trunk pixels. To fit trunk
boundaries, we use Is, the roughly segmented image that may include some non-trunk
pixels.
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(e) Binary version of If with eigenvectors (f) Final trunk boundaries based on Is

Figure 4.3: Algorithm steps performed on a sample image.
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Step 2a: Orient image

Overall, the pixels in Is are typically dominated by trunk pixels, which form a rough oblong
cluster. We follow the approach described by Rehman et al. [35] for automatically aligning
such images, finding the principal axis of the trunk using Principal Component Analysis
(PCA). PCA is sensitive to outliers, but is able to identify the principal axis relatively well
even with a small subset of the trunk pixels missing. As a result, we prefer to over-filter
the image, ensuring that few non-trunk pixels remain, even at the possible cost of losing
some true trunk pixels. We call this highly filtered input to PCA If .

To obtain If , we remove two main sets of outlier pixels: small clusters of pixels corre-
sponding to individual leaves or small elements in the environment that happen to share
the trunk depth, and substantial objects (e.g. shrubs, large branches, additional trunks)
that share the trunk depth. We begin by parsing Is into its connected components [51], an
example of which can be seen in Figure 4.3c. To filter out small clusters, we remove all con-
nected components below a threshold number of pixels, α = 300 pixels. This thresholding
is analogous to the pre-PCA filtering performed by Rehman et al. [35].

We also remove substantially sized objects, as they will affect the axis found by PCA.
Our goal is to keep a set of pixels that represents the majority of the trunk and maintains
its general shape and orientation. Depending on the level of occlusion, the trunk may
be split across multiple connected components, as is the case in Figure 4.3c. Since the
underlying trunk is a large, oblong shape, the set of connected components that represent
the trunk should, intuitively, form a dense cluster in the image. Here, we define the density
of a set of connected components as the ratio of the area of the components to the area
of the convex hull around those components. Large components that represent leaves and
branches tend to extend beyond the convex hull around the trunk components, because
they are far from the main trunk or point in a different direction. Including them in the
trunk subset will therefore result in a low density measurement.

The algorithm searches for this dense subset of components by removing components
one by one in a given order (discussed below) until the image contains only a set of compo-
nents above a threshold density. We found through empirical trials that a threshold value
of β = 0.60 works well.

3In Subfigures 4.3c and 4.3d, the colors are only to distinguish connected components and do not
represent depths.
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The detailed algorithm for finding the trunk components is shown below:

Input:
components: Connected components of the image and their areas;
image: N ×M depth image, with background pixels set to zero;

Output:
N ×M filtered depth image, with outlier pixels set to zero;

1 components ← SortByHeuristic(components);
2 totalArea ← Sum(components.area);
3 while length(components) > 1 do
4 hull ← ConvexHull(image);
5 density ← totalArea / hull.volume;
6 if density < β then
7 removed ← components.pop();
8 image ← SetComponentPixelsToZero(image, removed);
9 totalArea ← totalArea - removed.area ;

10 else
11 return image
12 end

13 end
14 return image

The first step of the algorithm, in line 1, is to sort the components. The order in which
the components are removed will have an effect on the final result, and we tested two
different heuristics for performing this sorting step. Conceptually, both heuristics try to
order components by how much they stretch the convex hull away from the correct trunk
components.

• Sort the components by the percent of their pixels that lie within a target range
where we expect the true trunk to lie. Without user assistance, a reasonable choice
is the center third of the image.

• Sort the components by how far their horizontal center of mass is from a target
location in the image. In the version of the algorithm with no user assistance, we set
the target location to be the horizontal center of mass of the largest non-background
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component in Is, which is assumed to be part of the trunk (see §4.4 for alternatives).
Specifically, the horizontal center of mass, mi, of a set of pixels, i, is the mean x-
coordinate of those pixels. We then sort the components by mi −mt, where t is the
target (largest) component.

The first heuristic frequently removed too many components, leaving only a small com-
ponent that happened to be contained entirely within the target range. We found the
second heuristic to work quite well in practice. We discuss images on which the algorithm
performs poorly in Section 6.1.

In theory, with a large number of components to remove, this algorithm could be
computationally expensive. However, because we begin by filtering out all small connected
components, there are usually fewer than ten components remaining in the image. We also
minimize the complexity by sorting the components first, and then removing them in a
fixed order. We considered a more complex approach, computing a convex hull for each
possible set of n− 1 components and removing the component whose removal resulted in
the highest density convex hull. However, because of the additional time complexity, it
makes sense to use this approach only if no other, faster, heuristics are successful.

After completion of this algorithm, we have a highly filtered version of the image, If .
A sample If can be seen in Figure 4.3d. To perform PCA, we use a list of the pixel
coordinates where If is non-zero. PCA computes the eigenvectors of the covariance matrix
of these data points, which indicate the direction of maximum data spread. Based on these
eigenvectors, we can identify the principal axis of the trunk and orient the image so that
the trunk is vertical. We say that the eigenvector, e, of the principal axis sits at some
angle to the horizontal, θ, generally defined by θ = arctan( e1

e0
), where e0 and e1 are the

components of e. We align the image by rotating it 90− θ degrees.

There are two subtleties in translating the eigenvector output of PCA to θ. First, we
are using the eigenvector to define an axis, but adding 180 degrees also identifies the same
axis. Therefore, we set θ′ ≡ θ mod 180. (The tree always points “up,” though it may lean
left or right.) Second, PCA yields two eigenvectors: one pointing along the principal axis
of the trunk, and the other perpendicular to it. Notably, the weight of the eigenvalues is
not guaranteed to identify the correct eigenvector for this application of PCA [23][35]. We
must therefore assume that the tree is relatively upright, and that the correct eigenvector
is within 45 degrees of vertical. This is analogous to the approach taken by Kour et al. [23].
A sample of the eigenvectors found can be seen in Figure 4.3e. The sample image we are
using is mostly vertical, so in Figure 4.4 we also show an example of the eigenvectors we
find on a more tilted trunk. We can see that the eigenvectors identify the principal axis of
the trunk relatively well.
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Figure 4.4: Eigenvectors identified by PCA on a tilted trunk. Left: RGB image. Right:
Binary version of Is, with eigenvectors overlaid as black arrows.

Step 2b: Fit trunk boundaries

With the trunk oriented vertically, we return to Is, the minimally filtered image (now
rotated), to search for the trunk boundaries. Recall that Is contains only depth values
within ±10% of the approximate trunk depth, and is zero elsewhere. We do not use If ,
since the filtering required to give PCA a clean image may also have removed some of the
true trunk pixels. We use a two-pass algorithm to iterate through vertical scan lines of a
binary version of Is.

4 In the first pass of the algorithm, we move inward from the left and
right edges of the rotated image, stopping at the first vertical scan line at which the ratio
of nonzero pixels to zero pixels exceeds a high threshold, Thigh = 0.6. The high threshold
ensures that we continue iterating, even over somewhat large non-trunk objects, to a scan
line inside the trunk.

If the algorithm stops here, it tends to underestimate the trunk diameter. Intuitively,
this is because the first pass continued until it reached a scan line that was almost certainly
inside the trunk, but may not be a good representation of the boundary of the trunk, where
we would expect to see fewer nonzero pixels due to irregularities in the bark and ToF sensor
measurement error near the trunk edge. Quantitatively, stopping after the first pass with
a threshold Thigh resulted in a strong negative bias in the overall results. We therefore
add a second pass, which iterates back outwards to the first scan line at which the ratio
of nonzero pixels to zero pixels falls below a low threshold, Tlow = 0.5. We select the scan

4The binary version is 0 where Is = 0, and 1 otherwise.
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line immediately before this one as the trunk boundary. The final segmentation consists
of all the pixels in Is that lie within this boundary, as shown in Figure 4.3f.

4.3.3 Step 3: Estimate Diameter

Finally, we translate the trunk boundaries and depth pixel values into a diameter estimate.
Throughout this section, we will use the subscript p to denote a quantity in pixels and m to
denote a quantity in meters, in order to better keep track of units in equations containing
only variables.

Simple Diameter Approximation

The depth sensor has an intrinsic calibration constant, γ1p , which is the width, in pixels,
of a 1 meter object at a distance of 1 meter. This calibration constant can be obtained
through the AREngine API. We define γkp as the width, in pixels, of a 1 meter object at
a depth of k meters. Based on the principles of camera optics, we have the relationship

γkp =
γ1p
km
· 1.0m (4.1)

We can use this equation to obtain a simple approximation of the diameter as follows.
The left and right boundary lines can be defined as the lines x = lp and x = rp, respectively.
The distance between these two lines then gives a rough estimate of the trunk diameter in
pixels, dp = rp − lp. Using the estimated trunk depth δm from §4.3.1, which was defined
there as the modal depth in the center third of the image, we can approximate the diameter
of the trunk, dm, in meters, as

dm =
dp · δm
γ1p

(4.2)

We show the intuition behind this approximation on the left side of Figure 4.5.

The simple approximation given in the above formula tends to consistently underesti-
mate the trunk diameter, especially for large trees. One reason for this is shown on the
right side of Figure 4.5. The boundaries represented by rp and lp are not at the same depth
as the approximate trunk depth δm, as was assumed in the simple approximation. The
trunk is curved towards the sensor, so the mode depth δm found in §4.3.1 is somewhere
in the blue region depicted in the figure, closer than the points along the boundaries of
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𝛿m
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lp rp

Figure 4.5: Diagram showing different methods of approximating tree diameter. Left:
Bird’s-eye-view diagram representing a simple approximation of the ToF sensor (colored
orange) pointed at a tree. The left and right boundary lines determined in §4.3.2 are
pointing straight up out of the page at the points labeled lp and rp. We can approximate
the tree diameter in pixels, dp, as the number of pixels between them. In this simple
approximation, we assume that the diameter line is at a distance δm from the sensor,
where δm is the approximate trunk depth calculated in §4.3.1. Right: Modified bird’s-eye-
view diagram of the ToF sensor pointing at a trunk. Since the tree is three-dimensional
and roughly cylindrical, the left and right boundary lines found in §4.3.2 lie on a cylinder
(shown here as a circle) around the trunk. dp, the distance between the left and right
boundaries, is not the diameter of this cylinder, Dm, but rather the length of a chord
slightly closer to the ToF sensor than the true diameter. This is because of the field of
view of the ToF sensor (represented by dotted lines). δm, the approximate depth of the
trunk found using the mode depth in the center third of the image (§4.3.1), does not
correspond to ∆m, the depth of the chord dp, but instead to a smaller depth somewhere in
the blue region at the front of the cylinder.
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Figure 4.6: Possible geometric method to compute diameter of a circle given the distance
from an external point to two tangent points.

the trunk where we are estimating dp. This effect is most significant in larger trees. Also,
the ToF sensor will not actually capture pixels at the widest part of the trunk (along
Dm). Rather, the depth pixels on the boundary of the trunk occur on the line tangent to
the trunk perimeter that intersects the time-of-flight sensor, shown in dashed lines in the
figure. This effect will be more noticeable the larger the tree and the closer it is to the
sensor.

Geometric Approaches

It may be intuitive to try to approach this problem mathematically, by imagining the
measured depth points to approximate a circle and using trigonometry and other geometric
methods to find the diameter of the circle defined by these points.

For example, we might approach this problem by considering the diagram in Figure
4.6. Without any reference to γ or any assumptions about where the boundary points lie
on the circle, we have the following equation:

a2 + r2 = (b+ r)2 (4.3)

Solving for 2r, which is the diameter, in meters, of the circle (Dm), we have:

2r =
a2 − b2

b
(4.4)
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However, the problem with this and other similar approaches is that individual depth
points returned by the sensor do not tend to lie along a circle. Moreover, because the ToF
sensor does not perform as well on surfaces nearly parallel to it, depth measurements along
the boundary of the tree – key to a good approximation of the curvature of the circle –
tend to be less robust. Huawei does not quantify the accuracy or sensitivity of the ToF
sensor on different surfaces, but in Figure 4.7, we plot the middle cross-section of various
trees from our dataset. We can see that using a subset of points along these cross-sections
to approximate a circle could result in vastly different diameter estimates depending on
which points are chosen.

Moreover, depending on the occlusions in front of the trunk, how accurately offshoot
branches have been filtered out, and the presence of burls or other trunk irregularities,
it may also be difficult to accurately fit a circle to the cross-section as a whole. This is
particularly apparent from the example in the bottom row of Figure 4.7 and from Figure
3.3.

Improved Diameter Approximation

The boundary lines found in Section 4.3.2 actually provide a relatively robust understand-
ing of the width of the tree, because we estimate them based on the entire visible length of
the tree, and because they do not rely heavily on the precise depth values at the edge of the
tree – only that the values are non-zero. Looking again at Figure 4.5, we also notice that
small changes in the location of the tangent points l and r have a small effect on dp, as long
as the tangent points are roughly near the true diameter line of the trunk. (The width of a
circle changes most slowly near its diameter.) We make the simplification, therefore, that
dm, the distance in meters corresponding to dp, is roughly equal to Dm, the true diameter.

By contrast, changes in δm will have a linear effect on our estimated DBH (as the simple
approximation in Equation 4.2 shows). Therefore, we cannot make the approximation that
δm, the mode trunk depth, equals ∆m, the depth at which the boundary lines are measured.
Instead, we estimate ∆m as a correction to our measured depth δm by adding some fraction,
1
c
, of the (unknown) true diameter of the tree.

∆m = δm +
Dm

c
(4.5)

where 0 < 1
c
< 1

2
. (Dm

c
can be at most the radius of the tree, Dm

2
: in this case δm was

measured at the closest point on the tree to the sensor, and the ToF sensor was infinitely
far from the trunk so that dp was an image of the true diameter of the tree.)
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Figure 4.7: Left, RGB images with green line indicating diameter cross-section. Right,
cross-section of filtered depth points with green line indicating the width and depth of our
estimated diameter. An additional example is shown in Figure 3.3.
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Then we rewrite Equation 4.2 in terms of ∆m, with the approximation discussed above
that dm = Dm:

Dm =
dp ·∆m

γ1p
(4.6)

Solving these two equations for Dm, the diameter of the tree, we get

Dm =
dp · δm
γ1p −

dp
c

(4.7)

Based on analysis of sample tree cross-sections, we found that in more regularly shaped
trunks our estimated depth δm tends to lie around halfway between the front of the tree
and the approximate depth of the boundary lines. This leads us to set 1

c
= 1

4
, halfway

through the possible range of c.

It is worth discussing the major concern with this equation, namely: what happens
when γ1p −

dp
c
→ 0. If γ1p = dp

c
, consider what it means for the physical system. γ1 is

the number of pixels of a 1.0 meter object at one meter away. When γ1p = dp
c

, this means
some fraction 1

c
of the observed trunk diameter appears indistinguishable from a 1.0 m

wide object viewed by a ToF sensor 1.0 m away. In other words, the full trunk diameter
would look like a c meter wide object at a distance of 1.0 m. Even taking c to be as small
as possible (c = 2), this gives us a trunk diameter of 2.0 m viewed from a distance of 1.0 m
– which is to say, the picture we have is indistinguishable from that taken by a ToF sensor
placed directly on the trunk.

Alternatively, we could take a much simpler approach, and perform a standard bias
correction on our naive diameter approximation from Equation 4.2, multiplying each di-
ameter estimate by a fixed percent. In Section 5.3, we compare the effect of standard bias
correction with the approximation proposed in Equation 4.7 on our evaluation results.

4.4 User Assistance

4.4.1 Motivation

The above algorithm has a relatively small computational footprint and can run on the
mobile phone directly. This provides a major benefit in comparison to TLS, prior work
with SfM, and Katam: the results can be shown to the user in near real-time, allowing
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the user to immediately correct any problems without significantly slowing fieldwork. For
example, without user feedback, we found that some trunks were not detected, especially
small ones (≤ 8cm) at a distance ≥ 2m away. This is similar to results for SfM reported
by Piermattei et al. [32], who find that the average diameter of undetected trunks is 12
cm. Allowing the user to correct problems with undetected trunks does not require any
changes to the designed algorithm; we need only modify the app UI to present our results
to the user. We discuss this in §4.4.2.

We did not find it necessary to implement additional user interaction in this version
of our app beyond presenting our results to the user and allowing the user to re-capture
the tree trunk. In the future, though, we might also consider incorporating user input
into the algorithm directly, before image capture takes place, for example by allowing the
user to tap the intended trunk on the screen. This could replace the first processing step,
described in Section 4.3.1, of identifying the approximate trunk depth. The user tap could
also be used to select a target trunk component in pre-PCA filtering, described in Section
4.3.2.

4.4.2 App Design

In order to present results to the user and guide them to capture usable images, we design
the app as follows.

The main screen shows a continuous preview from the RGB camera, as shown in Figure
4.8a. We considered showing the user the depth map instead, but it was sometimes difficult
to understand what the camera was pointing at in the real world based only on the depth
map. The preview includes a capture button and two guiding lines splitting the image
into thirds, to help the user center the tree trunk in the image. Once the user taps
“Capture,” the app pins the next RGB and depth image frames in memory and passes
them to the processing algorithm. In addition to computing an approximate trunk depth
and diameter, the algorithm also returns a visual representation of the results to display
to the user. Specifically, it takes the RGB image and overlays the left and right boundary
lines, rotated by 90−θ (see Section 4.3.2 for an explanation of this angle). The app displays
this result to the user and asks the user to select “Redo” or “Save” depending on whether
the algorithm found the trunk boundaries appropriately, as shown in Figure 4.8b.

In addition, errors in the algorithm are diagnosed and displayed for the user. For
example, if no depth points are found in the center third of the image, the tree is likely out
of range of the ToF sensor. We therefore display a pop-up (the Android term is “Toast”)
message to the user, asking them to step closer, as shown in Figure 4.8c. Currently, other
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(a) Example of main camera preview

(b) Example of algorithm result display

(c) Example of error for phone too far from tree

(d) Example of warning for improper capture

Figure 4.8: Screen captures from the app.
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errors are simply shown using a display message asking the user to retake the image, as seen
in Figure 4.8d, but one could easily provide error messages with more detailed suggestions
for different cases.

4.5 Discussion

In this section, we discuss the assumptions made in the design of our algorithm, some of
which may be limitations on the environments in which our system can be used.

• The tree is within ±45 degrees of vertical : PCA yields two perpendicular eigenvectors,
whose order is not guaranteed to be related to the true principal axis of the trunk.
We therefore assume that the correct eigenvector is within 45 degrees of vertical. We
could make our design more flexible by testing both eigenvectors and choosing the
one whose rotation results in a “plausible” tree image based on existing checks in
our algorithm (e.g., the centerline between the two boundary lines contains a high
portion of non-zero depth values in Is), but overall this assumption seems reasonable.

• The tree does not lean steeply towards or away from the camera: If the tree is leaning
towards or away from the camera, rather than on a plane perpendicular to it, we
will not be able to successfully find the orientation of the tree. This will affect the
angle of the diameter line and may cause errors fitting a vertical boundary to the
trunk. Moreover, we will filter out too many of the true trunk points in the 10%
filter. Though it is not straightforward to detect that an image has this problem, we
can instruct the user to take pictures in which this is not the case.5

• The trunk is roughly cylindrical : We assume that the trunk is roughly cylindrical
both when fitting boundaries to it and when estimating the DBH, though we can
handle some amount of irregularity, such as the large burls found on some of our
evaluation samples. The IPCC standard manual measurement techniques also make
this assumption. However, we believe that the ideal system should not rely heavily
on this assumption, and we discuss extending our system to handle such trees in
Section 6.5.

5Interestingly, we realized this limitation only after both evaluation datasets had been collected, and
none of the images had this problem. It may be somewhat unnatural to stand under or over a steeply
leaning tree in order to take a picture of it, though user studies would be required to confirm this.
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• The tree has one trunk : We only measure one trunk per image. It would be primarily
a UI change to allow multiple trunks for a single tree sample, giving the user an option
to “add a trunk to this sample” after saving their image of the first trunk.

• The tree is small enough to fit within camera frame at 2-3 meters away : At 2 meters
away, the camera frame can capture a trunk of roughly 2.7 meter diameter. This
nearly three times the maximum tree diameter that we were able to test on. If larger
trunks are required, some of the same approaches used to address non-cylindrical
trunks could also be used in this context.

4.6 Alternative Design: ARCore SfM

Partway through the development of our work, Google released a Depth API with its
ARCore package, giving depth capabilities to Android phones without a ToF sensor. Their
Depth API requires only a monocular RGB camera, and uses Structure-from-Motion along
with information from the phone’s accelerometer and gyroscope to estimate depth as the
user moves their phone in relationship to their surroundings [11]. The ARCore Depth API
is therefore preferable to Huawei’s AREngine for our use case, because it does not require
specialized hardware, and is compatible with a much broader range of phones.6

In theory, the Depth API is also able to incorporate data from a ToF sensor if one is
present on the mobile phone. It therefore offers the possibility of improving our existing
system, because SfM complements the weaknesses of a ToF sensor in several key areas.
For example, SfM works well in bright sunlight, which is a tricky environment for the ToF
sensor [30]. We therefore adapted our app to integrate with ARCore 1.22.0 and compared
the two systems. The Depth API is largely standardized between AREngine and ARCore,
making it relatively easy to port our code from one software package to the other. We
discuss our findings in Section 5.6.

6A full list can be found at https://developers.google.com/ar/discover/supported-devices
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Chapter 5

Evaluation

We evaluated our work in two distinct forest environments using the Huawei P30 Pro
phone. The evaluation section is laid out as follows. In Section 5.1 we discuss the evaluation
environments and the procedure we used to carry out our evaluations. In Section 5.2 we
present our overall results for each dataset separately and in combination. In Sections 5.3
and 5.4, we consider the impacts of two aspects of our design, namely depth correction and
user assistance. In Section 5.5, we examine which variables in our dataset had an effect on
the measured error. Finally, in Section 5.6, we discuss the results of our integration with
ARCore.

5.1 Evaluation Environment and Procedure

We performed our first evaluation during the summer, in the Laurel Creek and Avon
forests of Waterloo, Canada. Both are Carolinian forests [49] with a mixture of broadleaf
and conifer species. The former is part of a larger nature preserve, and both are naturally
managed forests with multiple northern tree species and age classes. Midsummer leaf-
on conditions resulted in significant natural trunk occlusion from leaves and branches
across the samples. This forest was relatively young, with measured tree trunks ranging in
diameter from 8 - 33 cm. We show sample images from this dataset in Figure 5.1. At this
time, the app had no interactive capabilities. Users could see an RGB camera preview on
the screen and click “capture,” but they were unable to view the captured images or see
the results of the algorithm until they had left the site. The algorithm itself was run on a
computer, and was not integrated with the phone app. The summertime sample included
28 images of 14 trees, with an image of each tree taken at 1 m and 2 m away.

40



Figure 5.1: Sample RGB images from the summer dataset, all taken from roughly 2 m
away. The images in the left column are categorized as “low” occlusion because they have
few to no branches and leaves in front of the trunk. The images in the right column
were categorized as “medium” or “high” occlusion. In addition to occlusion, the branches,
shrubs, and leaves also make it difficult to walk all the way around the tree in order to
obtain enough images to perform SfM.
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Our second evaluation was performed in late winter in the Van Cortlandt Park Preserve
in New York City. The preserve includes old growth forest and some wetlands, with a
diverse array of black oak, sweetgum, red maple, and other, mostly deciduous, native
northeastern species [46]. It is under active ecological restoration to remove non-native
species such as oriental bittersweet, a vine that strangles native trees, and Rosa multiflora,
a shrub that grows in large thickets and smothers native plant growth. [44]. Currently,
even in the winter, these climbing vines and dense underbrush make for significant trunk
occlusion in many areas. The forest is, in places, much older than the Canadian sample,
with measured trunk diameters ranging from 6 - 105 cm. We show sample images from this
dataset in Figure 5.2. At the time this evaluation was performed, the algorithm was fully
integrated with the phone app, running on the phone in real-time and allowing the user
to view captured images and results, as well as redo poorly captured trunks. The app also
prompted the user to move closer to the tree if necessary. The wintertime sample included
53 images of 29 trunks, with more images per trunk when the first images were rejected
by the user. We discuss the specific procedure for saving and re-doing these images below.

In both samples, we established ground truth my measuring the circumference of each
tree with a tape measure and to computing the reference DBH to the nearest centimeter,
measuring each tree three times and taking the average. For the summertime sample with
the non-interactive app, we simply captured two images of each tree, one at 1 m away, and
the other at 2 m away. For the wintertime sample with the interactive app, we used the
following procedure for capturing images:

1. Stand roughly 1.5 meters from the tree, at a comfortable distance according to the
conditions of nearby undergrowth and the need to capture the entire trunk in the
frame. The resulting sample included trunks at distances between 1 and 2 meters.

2. Capture one image of the tree, immediately saving the results (even if the algorithm
does not appear to have successfully measured the trunk, or warning messages are
shown). Note that finding no depth points at all is considered an error in this version
of the app, and no image can be saved.

3. Capture additional images of the tree, selecting “redo” instead of “save” until the
displayed results showing the computed trunk boundaries appear to line up with the
sides of the trunk. If warning messages are shown, follow the on-screen instructions
(e.g., step forward, move slightly to avoid occlusion, etc.).

4. If the boundaries do not appear to line up after four capture attempts, simply save
the final image.
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Figure 5.2: Sample RGB images from the winter dataset, all of which correspond to the
last (the “successful”) image of a trunk based on user interaction. The images in the left
column are categorized as “low” occlusion because they have few to no leaves or branches
in front of the target trunk. The images in the right column were categorized as “medium”
or “high” occlusion. In dense areas, we have added a red dot to highlight the target trunk.
These do not appear in the original image.
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Figure 5.3: Summary of error distribution

The wintertime procedure allows us to compare the results on the same set of trees with
and without user assistance, as we do in Section 5.4.

5.2 Summary of Results

The summer sample included 28 images of 14 trees. In one of the samples, the camera was
unable to obtain any depth points. This would have been an error in the later version of
the app. In another sample, some depth points were captured, but they did not correspond
to the tree trunk. This would have been a warning in the later version of the app. As in
the evaluation of Structure from Motion by Piermattei et al. [32], we omit these samples
from our error evaluation below, and report our detection rate in the sample as 93%.

The winter sample included a total of 53 saved images for 29 trees. For the purposes of
this section, we consider only the last image saved for each tree – this is the “best attempt”
image, which the user believed based on app feedback had successfully captured the trunk.
(For an evaluation considering the first attempt for each tree, see Section 5.4.) Our results
are therefore reported on 29 images for 29 trees. In no case was the tree undetected; our
detection rate among the “best attempt” images was 100%.

In this section, we use the depth correction described in Section 4.3.3. For a comparison
to the results without any depth estimate correction as well as a comparison to a standard
bias correction, see Section 5.3.
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Table 5.1: Summary of error distribution

Dataset No. Samples RMSE (cm) Mean absolute Bias (cm) Mean % error
error (cm)

Summer 26 2.2 1.5 0.3 8.2
Winter 29 4.7 2.8 0.7 7.6
Combined 55 3.7 2.2 0.5 7.9

Winter∗ 28 2.8 2.2 1.4 7.2
Combined∗ 54 2.5 1.9 0.9 7.7

∗ With the outlier discussed in Section 6.1.3 removed.

In Figure 5.3, we show the distribution of errors in the summer sample, the winter
sample, and both samples combined. In our dataset overall, the RMSE was 3.7 cm, with
a bias value (mean error) of 0.5 cm. The mean percent error was 7.9%. The RMSE was
significantly affected by an outlier in the winter dataset: a 1.04 meter diameter tree with
−24 cm of error (23%). We discuss the outlier sample further in Section 6.1.3 and analyze
the cause of the error. If we omitted this sample in the combined dataset, the overall
RMSE would drop to 2.5 cm, with a bias of 0.9 cm. We show the precise numerical results
in Table 5.1.

5.3 Impact of Diameter Estimation Method

In Section 4.3.3, we discussed three possible approaches for estimating the final diameter of
the tree, given a segmented image. We first proposed a simple approximation in Equation
4.2:

dm =
dp · δm
γ1p

(5.1)

We argued that this basic approach would tend to underestimate diameter, with an
effect more noticeable in larger trees. We proposed a better approximation in Equation
4.7:

Dm =
dp · δm
γ1p −

dp
c

(5.2)
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Figure 5.4: Error distribution for different diameter estimation methods1

Finally, we noted that the derivation of this second approximation was somewhat com-
plex, and that it might suffice to simply perform a standard bias correction on our original
estimate:

dm =
dp · δm
γ1p

· (1 + b) (5.3)

In Figure 5.4, we show the combined summer and winter results based on each of these
three approaches. We omit the outlier sample in these graphs, because the underestimation
in that case was primarily caused by the ±10% filter (see §6.1.3 for details) and its presence
obscures the overall patterns in the graph. For the standard bias correction, we increase
all basic estimates by 1.8%, the mean (signed) percent error of the dataset overall without
this outlier.

We observe that the simple diameter approximation, as expected, tends to underes-
timate trunk diameter across the board, with the effect worsening as trunk diameter in-
creases. A standard bias correction centers the error of smaller trees around zero, but the
error still trends downward as the trees get larger. (The choice of bias correction has some
effect on the data, but not the overall trend. There are many more small tree samples than
large tree samples, so we may consider 1.8% to be an underestimate of the appropriate
bias correction. However, increasing the correction to 10% does not change the curve: we

1We expect to see the centimeter error widen overall as diameter increases, simply because the tree is
getting larger. However, a good diameter estimation method should still roughly center the error around
zero.

46



Figure 5.5: Error distribution with and without user assistance in the winter dataset. The
box lines show the 25th, 50th, and 75th percentiles of the distribution. The plot whiskers
show 1.5 times the interquartile range, and outliers are data points that lie outside of this
range. Outliers highlighted in red are those in which the algorithm failed to find the trunk.2

then tend to overestimate the diameter of the smaller trunks, while still slightly underes-
timating the diameter of the largest trunks.) The second diameter approximation, on the
other hand, manages to appropriately “straighten out” the error, centering it around zero
on both large and small trees.

5.4 Impact of User Assistance

We have two ways of considering the importance of user assistance in our designed system.
First, we compare the results in the summer and winter datasets, since the summer dataset
was taken using a version of the app that did not allow the user to even view captured
images. In the summer dataset, the tree detection rate was only 93%, while in the winter

2We consider the algorithm to have failed to find the trunk when at least one of the identified boundary
lines does not correspond to the trunk in any way. This happens either when it corresponds to the boundary
of another tree in the image, or because the threshold for stopping the iteration of vertical scan lines (see
§4.3.2) was never reached. In the latter case, the boundary line corresponds to the left or right edge of
the image. Such mistakes result in an enormous estimate for tree diameter; hence the errors of up to 140
cm. If user assistance had not proven capable of eliminating such errors entirely, we might have focused
on reducing these errors (e.g., by adjusting the algorithm to return 0 diameter when certain sanity checks
fail, so that the error is at least bounded by the size of the tree). We instead rely on user assistance, and
do not make these adjustments.
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dataset the system achieved 100% detection. While the RMSE was lower in the summer
than the winter (2.2 cm vs 4.7 cm), the trees measured were also much smaller (with
maximum diameter of 33 cm vs 105 cm), and the mean percent error was much more
similar (8.2% in summer vs 7.6% in winter). Moreover, the winter dataset mean was heavily
affected by a single large tree that exposed a weakness in our algorithm (see Section 6.1.3).
Dropping that sample, the summer and winter datasets had more similar RMSEs, and
the summertime percent error remained only slightly higher than winter (2.2 cm, 8.2% in
summer vs 2.8 cm, 7.2% in winter).

However, the conditions and forests between winter and summer samples were also
dissimilar, so there are other confounding variables in the comparison. In Figure 5.5 we
compare the results for each winter tree measurement between the first captured image and
the last. In 8 of 29 trees (28%), the first image was considered a satisfactory measurement
– in these cases, the first and last captured image are the same. We can see that the 25th

and 75th percentile error bars are slightly wider in the unassisted sample, but the most
important impact of user assistance is in improving trunk detection. In the unassisted set,
4 images had well over 20 cm of error because the tree trunk was not found at all or an
incorrect object was identified as the trunk. In the assisted set, the tree trunk was found
in all images; the image with around -24 cm of error was the outlier sample in which the
trunk was correctly identified but its diameter estimated incorrectly. User assistance also
gives us the opportunity to improve even this sample in future work, analyzing what went
wrong to provide better guiding messages to the user.

5.5 Variables Affecting Error

In this section, we discuss the impact of several variables on measurement error. All graphs
are shown for the combined winter and summer datasets using diameter correction (see
Section 5.3). In the case of the winter dataset, we use the last image saved for each tree
(i.e. fully user assisted: see Section 5.1).

5.5.1 Trunk Diameter

We examined whether the trunk diameter was correlated with the measurement error.
First, we considered the correlation between trunk diameter and and centimeter error. We
expect to see some correlation here, with centimeter error increasing simply because the tree
itself is larger, and indeed a Pearson correlation coefficient test found moderate correlation
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Figure 5.6: Error distribution vs distance to tree trunk, colored by approximate trunk
diameter.

(r = −0.38). (For the original diameter estimate with no correction, the Pearson test
found strong correlation, r = −0.73.) Next, we considered the correlation between trunk
diameter and (signed) percent error. Here, a Pearson test found a weak linear correlation
between percent error and trunk diameter (r = −0.17).

5.5.2 Distance to Trunk

We also considered whether the distance at which the image was taken has an effect on
measurement error. We note that trunk diameter may be a confounding variable here,
since the user may need to stand further from large trunks in order to fit the girth of
the tree into the frame. However, a Pearson test shows weak linear correlation for both
centimeter and (signed) percent error (r = 0.02 and r = 0.12, respectively). We show the
centimeter error distribution in Figure 5.6, which is colored by trunk diameter.

5.5.3 Degree of Occlusion

Finally, we categorized our images by the degree of occlusion (low, medium, or high). We
had 16 images categorized as “low,” with little to no occlusion; 25 images categorized as
“medium,” with a moderate amount of occlusion; and 13 images categorized as “high”, with
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Figure 5.7: Error distribution categorized by level of image occlusion. The box lines show
the 25th, 50th, and 75th percentiles of the distribution. The plot whiskers show 1.5 times
the interquartile range, and outliers are data points that lie outside of this range.

severe occlusion. A one-way ANOVA test on this small sample did not find a statistically
significant difference in the mean error of the three groups (F = 1.51, p = 0.23). However,
given the subjectivity of classifying the images and the relatively small number of samples
in each group, additional evaluation is needed. We show side-by-side percent error boxplots
for each category in Figure 5.7.
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5.6 ARCore Depth API Evaluation

As discussed in Section 4.6, we also adapted our app to integrate with Google’s ARCore
Depth API, to attempt to make our system available on an even broader range of phones.
In this section, we describe our ARCore tests and findings.

5.6.1 Testing Setup

The ARCore Depth API offers only two configuration options: AUTOMATIC, which
opaquely combines SfM and the ToF sensor, if one is present; and DISABLED, which
turns off all depth data. As a result, we were unable to compare ARCore SfM (alone) to
the ToF sensor (alone) on the same Huawei device. Instead, our three test systems were:

1. Huawei P30 Pro using AREngine (depth sensor alone)

2. Huawei P30 Pro using ARCore (ToF sensor and SfM automatically and opaquely
combined)

3. Pixel 4a using ARCore (SfM alone, as the Pixel 4a has no ToF sensor)

For a basic test, we took images of completely unoccluded trees at distances of 1.5 - 2 m.

5.6.2 Findings

ARCore begins with a blurry uniform depth image, gradually improving its per-pixel depth
estimates over time as the user moves the phone. We found that this tends to leave shadowy
artifacts extending well beyond the boundary of the tree that do not seem to correspond to
real depth values. In Figure 5.8, these artifacts can be seen as blue shadows to the left and
right of the trunk in the ARCore results (top two images) in the second column. The right-
side artifacts may correspond to the smaller trunk in the background, but it is not clear
what the artifacts on the left side of the trunk represent. Additionally, though ARCore
continually refines its depth estimates, it does not provide a signal to the developer as to
when the estimates could be considered “good enough” for a given precision or confidence.
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Figure 5.8: Sample images from ARCore and AREngine. “Limited movement” indicates
moving the phone left, right, up, and down slowly one time. “Additional movement”
indicates moving the phone around in all directions, including walking a few steps, until
capturing an image of the trunk with our app appears to show roughly accurate tree
diameter lines.

52



The DEPTH16 image format provides 3 bits per pixel to express a confidence value, but as
of the time of writing, ARCore always sets these bits to 0, indicating 100% confidence.34

Moreover, we found that even when a ToF sensor was available, the data did not appear
to be used to its fullest extent. The most obvious indication of this was that ARCore
consistently provided lower resolution than the ToF sensor, even when the ToF sensor was
available. The returned image was 120× 160 on the P30 Pro and 90× 160 on the Pixel 4a,
in comparison to 180 × 240 available resolution for the ToF sensor. In addition, in brief
tests indoors, we found that ARCore does not seem to use the ToF sensor to overcome
known limitations of SfM (e.g., providing a detailed depth map on white walls, in low
lighting, for moving objects, or before the phone moves). We did not find the P30 Pro
using ARCore to be a noticeable improvement over the Pixel 4a.

Overall, we determined that we cannot yet use ARCore for our proposed application.
The most pressing problem is the continual refinement of depth estimates. The developer
has no signal as to the quality of the depth estimates and as a result cannot incorporate this
information into a processing algorithm or guide the user to move the phone to improve
the quality of the image. For our use case, the continual refinement manifests as the object
appearing to “grow” over time as more edge depths are added. This can be seen in Figure
5.8 by examining the ARCore results (top two images) in the third column. With additional
movement, the depth values slowly “fill in” towards the edges of the tree, compared to the
image captured with limited movement. This is not suitable for measuring trees, since we
cannot distinguish between a small tree and a low-quality image. A confidence value would
be necessary for integration.

We have reported our findings to the ARCore team and have filed bugs where appro-
priate for minor Depth API issues.

3This behavior is documented at https://developers.google.com/ar/reference/java/com/

google/ar/core/Frame#acquireDepthImage()
4Huawei’s confidence values are not usable for this purpose either (see Section 4.2), but we were able

to achieve good results without them.
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Chapter 6

Discussion

In this chapter, we discuss our proposed system and algorithm in further detail. In Section
6.1, we discuss the strengths and weaknesses of our algorithm, devoting particular attention
to analyzing the cause of the major outlier in the winter dataset. In Section 6.2, we discuss
data collection time and ease of use, and in Section 6.3, we compare our work to the prior,
closely related work of Piermattei et al. [32] and Fan et al. [13]. Finally, in Section 6.5,
we offer conclusions and suggestions for future work.

6.1 Strengths and Weaknesses

6.1.1 Examples of correct performance

One area of the Van Cortlandt Forest, where we collected the winter dataset, suffered
severe overgrowth from rosa multiflora. Rosa multiflora is considered an invasive species
in eastern North America, and in this area it covered the ground densely with thick thorny
stems. Even in wintertime leaf-off conditions, this made it difficult to move around in
the area. We show images of the conditions in Figure 6.1. We attempted to measure
this section of woods with Katam (see Section 3.3.3), and Katam was unable to identify
a single trunk. Our system was not only able to capture all four of the trees in this area,
but it also allowed us to measure the trees from further away than manual measurements
did, reducing the challenges of reaching the most densely overgrown areas and speeding up
measurement.
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Figure 6.1: Two sample RGB images of trunks in an area with dense undergrowth.

6.1.2 Examples of incorrect performance

Our algorithm does not always successfully filter out occlusion. In some cases, it performs
poorly when there are large occluding objects in the foreground, such as large leaning
branches or smaller trunks. We show an example of processing such an image in Figure
6.2. A smaller trunk splits the target trunk into multiple disconnected components in the
depth image, as seen in subfigures 6.2c and 6.2d. Due to large gaps are between these
components, the algorithm removes one of the components of the tree from If during its
more aggressive filtering stage, as seen in subfigure 6.2e. While this does not affect which
points are included in the final search for trunk boundaries, it causes the algorithm to
incorrectly rotate the trunk based on only a subset of its depth points. It is worth noting
that this example comes from the summer dataset. We did not see this problem in the
winter dataset’s user-assisted samples, because it was clear during data collection that the
app had incorrectly measured the trunk, and the user could move slightly to the left or
right and redo the image. In the summer dataset, a second image of the same tree in
Figure 6.2, taken from further away, did not have the same problem.

6.1.3 Notable Outlier

There was one significant outlier in our dataset: a 1.04 m diameter tree in Van Cortlandt
forest. We show the processing of this image in Figure 6.3. The trunk was the largest
measured in our dataset (though the second-largest came close at 99 cm), and it had
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(a) Original image with depth overlaid (b) Histogram of depth values

(c) Is, roughly segmented image (d) Connected components of Is

(e) If , filtered image with fitted convex hull (f) Final trunk boundaries based on Is

Figure 6.2: Example of weak performance on a tree “split” by an occluding stem.
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No. trees Manual (s) App (s) Speedup

3 246 58 4.2x
2 119 35 3.4x
2 100 37 2.7x
2 179 39 4.6x
3 255 73 3.5x
2 129 38 3.4x
3 189 61 3.1x

Table 6.1: App measurement speedup

several irregularities unusual in smaller trunks. It had four large burls on the right side
of the trunk, and curved sharply away from the camera on the left, as can be seen in
subfigure 6.3b. The first step of our proposed algorithm, filtering for depths within ±10%
of the mode trunk depth, was not designed based on examples of large, irregular trunks,
and proved too crude for the purpose. We can see in subfigure 6.3d that one of the burls
and a long section on the left side of the trunk were outside of this strict range. This threw
off both the rotation of the image and the estimation of trunk boundaries, resulting in a
severe under-estimation of the trunk width (by 24 cm, or 23%).

In order to handle large, irregular trunks like this one, a more flexible first step of the
algorithm is required. For example, we might consider incorporating the RGB image into
the initial (rough) segmentation, which we did not otherwise find necessary. Alternatively,
we could search specifically for edges in the depth image, rather than depths within a
particular range. Exploring such alternatives is a highly appropriate direction for future
work.

6.2 Data Collection Time and Ease of Use

One key strength of our designed system is the speedup for measuring trees in the field.
In a separate trip for wintertime data collection in Van Cortlandt Forest,1 we timed the
manual and app-based measurement of trees in sets of two to three nearby trees at once,
and found that the app reduced measurement time by up to a factor of 4.6, as shown in
Table 6.1. Indeed, we may achieve an even more significant reduction with a production

1This data set was unfortunately unusable for DBH evaluation due to a bug in the app that did not
affect timing data.
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(a) Original RGB image
(b) Original image with depth overlaid

(c) Histogram of depth values (d) Is, roughly segmented image

(e) If , filtered image with fitted convex hull (f) Final trunk boundaries based on Is

Figure 6.3: Processing steps for the significant outlier in the winter dataset.
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Figure 6.4: Left, a small stand of cedars. Right, image taken by phone held just under the
tree canopy.

system measuring many trees consecutively. Some of the time saved was in avoiding walking
through underbrush from one tree to the next, since the user could traverse less distance
and stand in more convenient locations when using the app. When timing the measurement
of more trees consecutively, we may see a more significant effect.

There was one particular sample that highlighted the ease and efficiency of our sys-
tem: measuring a small stand of northern white cedars (Thuja occidentalis) in the Van
Cortlandt Forest. The cedars are depicted in Figure 6.4. The trunks are impossible to
see or reach directly from the exterior of their canopies, meaning that in order to measure
their circumference manually, we had to find an appropriate gap in the branches and crawl
underneath to reach around the trunk with a tape measure. By contrast, with the designed
app, we simply held the phone just inside the outer canopy and captured the trunk within.
The measurement of two cedars took around 2.5 minutes manually (by a relatively small
individual, once an appropriate crawlspace near the ground had been identified). It took
less than 30 seconds with the app (three images of the first cedar were required to get a
successful measurement, since the trunk was so heavily occluded) and required no search
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Plot difficulty Detection rate Mean DBH of undetected
(%) trunks (cm)

Easy 98 9.7
Difficult 65 17.7
Medium 83 12.6
Difficult 91 7.5

Table 6.2: Trunk detection rate reported by Piermattei et al. [32]

for a suitable place to approach the trunk.2

6.3 Comparison to Prior Work

We now discuss our work and results in comparison with that reported in the literature for
the most closely related work: SfM from Piermattei et al. [32] and the Google Tango system
by Fan et al. [13]. We were unfortunately unable to redo the evaluation of their systems
on our own forest plots, due to the inability to obtain their source code or measurement
tools despite requesting it. While we are unable to make a head-to-head comparison, we
find that overall our results are comparable to theirs, with an RMSE of a few centimeters
and small bias. Across four different plots, Piermattei et al. report RMSEs between 1.2
- 5.1 cm, and biases between -2.1 - 0.7 cm. Fan et al. report an RMSE of 1.26 cm and a
bias of 0.33 cm.

There are two key differences between the data sets used by Piermattei et al. and
Fan et al. and our own. First, they both evaluate their systems in an environment with
minimal occlusions, with Fan in particular showing photographs taken immediately in front
of an entirely unoccluded tree. Piermattei et al. include two plots that they classify as
“difficult” based on the degree of occlusion and trunk density. In one of these “difficult”
plots, their trunk detection rate falls to 65%, with a 17.7 cm average DBH for undetected
trunks. The detection rate and average DBH of undetected trunks for each plot evaluated
in their paper is shown in Table 6.2. Second, Piermattei et al. and Fan et al. only consider
much smaller trees than those in our dataset. The maximum trunk diameter evaluated by
Piermattei et al. was 63.9 cm, while the maximum trunk diameter from Fan et al. was

2We timed the measurement of these two trees during the collection of the winter dataset discussed in
§5.1. They are not included in the timing-only data collected in Table 6.1.
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only 34.5 cm. Even for trees in this small diameter range, Fan et al. already report the
effect of increased negative bias for larger trees [13].

Finally, while Fan et al. do not report information about the processing or data col-
lection time for their system, Piermattei et al. report that in their “difficult” plot, image
acquisition requires more time than manual DBH measurement due to the need to ac-
quire many additional images, and post-processing requires between 22 hours and 85 hours
depending on the computer used [32].

We also compare our work to two solutions from non-academic sources: generic mea-
surement apps and Katam [22]. In both of the generic apps we tested, CamToPlan [43]
and Google Measure [16], multiple measurements of the same 25 cm diameter tree dif-
fered by as much as 16 cm (CamToPlan) and 42 cm (Google Measure), barring them from
consideration for a more comprehensive evaluation. We conclude that these apps are not
sufficiently robust to use in a forest context at this time. Katam, as discussed above, may
offer a strong option in a production-oriented forest. However, it does not advertise itself
for use in forest environments with occlusion. Indeed, in our tests, it was unable to find
any trees when dense understory was present, and in clearer areas it sometimes added trees
where none existed, with no way to correct the problem.

6.4 Ground Truth and Error Measurement

We report our error measurements according to the conventions in the literature [13][32][50],
documenting the RMSE, bias, and percent error of our DBH measurements as compared to
those found by a manual forest inventory. However, it is worth discussing the limitations
of such a comparison and placing these per-tree DBH errors into the broader context of
forest carbon measurement. Manual measurements of tree DBH are not “ground truth”
in the traditional sense of the word. Trees do not have a single true diameter, even at a
specific height, with standard manual methods for approximating DBH assuming that the
tree trunk is roughly cylindrical.

Manual measurements are still a meaningful baseline for new work, however, because
they form the basis of established allometric equations that relate DBH to estimates of
biomass and stored carbon. These allometric equations are statistical relations between
easily observable features such as DBH (as measured by manual methods) and above-
ground biomass (as measured by destructive harvesting: cutting down and weighing the
tree). To serve as a useful input to allometric equations, then, our work seeks to approxi-
mate the measurements on which those equations were calibrated.
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Several studies have attempted to quantify the error in allometric equations, for ex-
ample by quantifying the relative contributions of prediction error (error associated with
uncertainty in the estimated parameters of an allometric equation, as well as the variance in
biomass between trees with the same measured attributes) and measurement error (error
associated with uncertainty in the measurements of tree attributes) [7][47]. Measurement
error for manual measurements is related to the variance of these measurements; in a future
evaluation of our system we therefore recommend measuring and reporting on the variance
of our measurements across multiple samples of the same tree. If this variance falls within
the accepted variance of manual measurements, it would provide additional evidence of
the reliability of our DBH estimates as an input to allometric equations.

6.5 Future Work

There are several promising avenues for future work. First, there are opportunities to im-
prove our existing app and algorithm in order to make them more robust to different forest
conditions. As discussed in Section 6.1.3, the initial filtering step for depths with ±10%
of the estimated trunk depth does not perform well on large and substantially irregular
trunks. Future work may seek to improve the robustness of this step by incorporating
information from the RGB image or from edge-finding algorithms (on either the RGB or
depth image).

Entirely new approaches to measuring the trunk from an RGB+D image, such as using
neural networks for more advanced image segmentation, should also be explored. In this
work, we designed a relatively simple segmentation technique that worked well overall.
However, based on their success in similar tasks, we believe that convolutional neural
networks would also be well-suited to identify tree trunks in RGB+D images. Of course,
this approach would require a large, labeled image dataset that would take substantial
work to create, but it could yield better results.

In addition, there are opportunities to make forest inventory data sets richer than
those that can be collected by hand. In a manual forest inventory, it is only feasible for
the surveyor to record a few data points per tree (DBH, height, species, position). Though
our app does yield RGB and depth images, the ToF sensor paired with an RGB camera
is also capable of recording a complete RGB+depth point cloud as the user moves around
the tree, which could be far more informative. Existing AR technology running on mobile
phones is able to create such continuous 3D maps as the user moves, and there are many
opportunities to use such a rich dataset. For example, several of the limitations discussed
in Section 4.5 could be overcome if the user obtained a 3D point cloud representation that
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could flexibly deal with multiple trunks (as with yew trees) or non-cylindrical buttressed
trunks (as with banyans). There is some trade-off here, though, since a dense 3D point
cloud would require more than one image per tree, taken from different locations around
the trunk.

Beyond obtaining better measurements of the tree trunk, the final integration step
to obtain a per-tree carbon estimate is to deduce the species or general type of tree, in
order to select the appropriate allometric equation. The simplest approximation could
be obtained by using the phone GPS to estimate the general location of the forest and
selecting an allometric equation suited to trees of that region. For more precision, the RGB
photographs could be used to detect tree species. Reference [25] has already investigated
identifying tree species from individual photos of leaves or bark using neural networks, and
that work could be integrated with our own to provide a complete carbon estimate.

Moreover, with precise position information the terrestrial perspective from the phone
could be correlated with other data sources, such as satellite or aerial data, to provide a
more complete picture of the forest as a whole: its range, canopy, and understory. Doing
so would require precise geographic coordinates as the user moves throughout the forest,
which is not straightforward with a dense canopy overhead limiting GPS signal strength.

6.6 Conclusions

In this work, we examine the use of smartphones equipped with depth sensors to estimate
the trunk diameter of trees in forest plots. In the natural forest context, trunk images
can be occluded, lighting conditions can be challenging, and it may not be easy to walk
all the way around each tree. Unlike manual processes or prior work based on SfM or
TLS, our approach is fast, low-cost, and allows real-time user interaction. Unlike previous
research into using mobile phones, our work considers dense undergrowth, large trees, and
natural occlusion as a primary use case. We incorporate our algorithm into an interactive
mobile phone app and evaluate our system in realistic, naturally-managed forest settings.
We find that in a corpus of 55 sample tree images, it estimates trunk diameter with mean
error of 7.8%. This is comparable to the results achieved by prior approaches but, unlike
prior work, our solution is capable of getting results in a dense, leafy understory. Finally,
recognizing that even a depth sensor is somewhat specialized hardware, we port our app
to Google’s ARCore Depth API, which makes use of only a monocular RGB camera. We
find that this system is not yet robust enough for a forest MRV context and offer specific
suggestions for its improvement.
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Overall, we believe that our proposed system is a promising direction for research in
the use of sophisticated smartphone technologies for the important problem of monitoring,
reporting, and verification of tree diameters in forest plots. Moreover, we believe that
future research into mobile AR systems such as ARCore should consider outdoor and even
forested environments, as well as object measurement, as a primary use case.
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