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Abstract 

Snow is a critical component of the earth’s overall energy budget and it contributes 

significantly to water resources especially in mountainous regions, coining the term the “water 

towers” for downstream communities (Viviroli et al., 2006). Studies have shown an increase in snow 

cover variability due in part by climate change. Most evident throughout the research is an earlier 

freshet period throughout the northern hemisphere, elevation-dependent warming in mountainous 

regions and regional climate models indicating transitions from snow to rain dominated basins (Pepin 

et al., 2015; Rangwala & Miller, 2012).  Studies throughout British Columbia have shown evidence 

of earlier peak runoff from river gauges, a decrease in snow duration and increases in temperature by 

1.4ᵒ (Shrestha et al., 2012; Kang et al., 2014; Islam et al., 2017). The Thompson Okanagan region is a 

semi-arid snow dominated region located in the southern portion of British Columbia (Kang et al., 

2014). The spring freshet in Thompson Okanagan is affected by large atmospheric systems as well, 

including the Pacific North American Pattern (PNA), the Pacific Decadal Oscillation (PDO) and the 

Oceanic Nino Index (ONI).  

This research focuses on identifying variations in snow cover during the spring freshet (April 

1st-June 30th) in Thompson Okanagan with remote sensing observations from 2003-2019. Snow cover 

mapping is achieved using visible-infrared observations of snow.  High albedo is easily 

distinguishable in the visible spectrum; however, cloud contamination impedes analysis using visible 

infrared observations. Steps to mitigate the impact of cloud cover adopted a multi-step methodology. 

This improved the ability to characterize snow cover extent variability during the spring freshet. The 

methodology includes: i) a daily combination of Terra/Aqua (from 2003-2012) and VIIRS (from 

2012-2019) observations; ii) an adjacent temporal deduction (ATD) technique which replaces cloud 

pixels with non-cloudy pixels from +/-2 adjacent days; iii) a spatial filter to interpolate snow in 

cloudy pixels; iv) and the identification of a regional snowline elevation above which cloud-labelled 

pixels are classified as snow, and cloud pixels below the elevation for no-snow are classified as no-

snow. This methodology significantly reduced cloud cover from an average of 71.5% to 1.6% 

annually.  

Using stratified random sampling approach, reference points were gathered for a range of 

elevation bands for four watersheds within the region to test the snow mapping accuracy. The last day 

of snow (LDS) was extracted for each point from 2003-2019. Large scale atmospheric patterns 

(Pacific Decadal Oscillation (PDO), Pacific-North American (PNA) teleconnection pattern and 
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Oceanic Nino Index (ONI)) were analyzed using simple and multiple linear regression to assess the 

variability within the LDS dataset that could be explained by these patterns. This analysis showed that 

the PNA did not significantly account the variability, but the PDO did with an R2 value reaching 64%, 

with a significance level of >95%. The simple linear regression models showed that the ONI 

explained 78% of the LDS variation during the March-April-May (MAM) months, with p>95%; this 

was more than any other 3-month interval studied. Also, the ONI R2 value decreased as elevation 

increased. Overall, El Nino years showed snow disappearance of ~23 days earlier than La Nina years 

at low elevation, ~18 days sooner at mid elevation and ~13 days sooner at high elevations. Earlier 

snow melt-out during El Nino phases have implications for water resources in the region, for 

residential and crop use as well as economic impacts for tourism (Westering, 2016; Winkler et al., 

2017). This also contributes to area burned in forest fires and rapid melting snow can cause flooding 

in surrounding urban areas within Thompson Okanagan. Extending the study period into the future 

could allow further insights on potential effects of climate change within the region.  
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Chapter 1 

Introduction 

Snow is a crucial resource for sustaining human life; an estimated sixth of the world’s 

population relies on snow melt for freshwater resources (Sturm & Goldstein, 2017). 

Snowmelt patterns affect ecology, hydrological patterns, and water availability during the 

spring and summer in mid-latitudes (Lehning et al., 2011; Smith et al., 2008). Snow cover 

influences the earths overall energy balance by reflecting solar radiation and keeping air 

temperatures cool and acting as an insulator (Metsamaki et al., 2018; Liston, 1999). Snow 

cover variability is especially crucial in mountain environments where variations in 

temperature can lead to natural hazards like avalanches and flash flooding (Brown & Mote, 

2008, Marty & Blanchet, 2012). Climate change studies have shown decreases in snow 

extent throughout the northern hemisphere, specifically in the off season and duration of 

snow throughout the winter season (Derksen et al., 2014; Hori et al., 2017; Hernandez-

henriquez et al., 2015). Mountain regions show patterns of elevation-dependent warming, as 

lower elevations are more affected by temperature variations (Pepin et al., 2015; Rangwala & 

Miller, 2012). Long term remote sensing observations have been instrumental in helping us 

to understand the impacts of climate change on snow cover.  

 Climate modeling in mountain regions have predicted a decrease in snow cover 

during the springtime, specifically below 2000 meters above sea level (m.a.s.l.) (Mote et al., 

2005; Pepin et al., 2015; Marty & Blanchet, 2012). A potential shift from snow dominated to 

rain dominated regions has also been modelled, especially in semi-arid regions such as the 

western interior of Canada (Islam et al., 2019; Shrestha et al., 2015). These changes directly 

impact water resource management as seasonal reserves begin to diminish with earlier 

snowmelt (Dedieu et al., 2014). Impacts of increasing temperatures in western Canada 

influence the ongoing forest degradation via pine beetle infestation, as well as potentially 

increasing variability and spatial extent of forest fires (Shrestha et al., 2015; Shrestha et al., 

2012; Winkler et al., 2015). However, human-induced climate change is not the only cause of 

snow cover variability in mountain regions, it also affects large atmospheric circula tion 

patterns which in turn impacts these regions as well (Harder et al., 2015). El Nino and La 
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Nina events have been shown to dramatically affect wintertime temperature and precipitation 

patterns in western Canada, directly impacting snow cover (Bevington et al., 2019).  

1.1 Motivation 

Snow cover extent (hereafter termed “SCE”) during the spring freshet is vital for a 

multitude of reasons. The spring freshet is defined as the period when snow begins to melt 

and contribute to the surrounding water systems, the timing of these events varies depending 

on latitude (Kienzle et al., 2011). Studies to analyze snow cover dynamics (extent, duration, 

seasonality) have included observations form visible infrared, radar remote sensing, in situ 

data collection and modeling including both hydrological, land surface and climate modeling 

(Wang et al., 2018; Dong, 2018, Dedieu et al., 2014). However, visible infrared satellite 

remote sensing observations have finer resolution than models and thus can produce more 

reliable results (Dong, 2018). Although they are often hindered by the presence of cloud 

cover, which is a major limitation to visible-infrared remote sensing. This study is focused on 

estimating snow cover dynamics during the spring freshet in the Thompson Okanagan region 

located in southern interior British Columbia (BC), Canada. The study adopts a multistep 

methodology to reduce the impact of cloud cover in the analysis. The developed snow cover 

dataset is then used to estimate the freshet period information that can be correlated with 

teleconnection indices to further our understanding of snow cover during the freshet period 

and the impacts of teleconnections on snow off-date variability. The Thompson and 

Okanagan watersheds are diverse in landcover types, topography, human activity and 

contribute significantly to the economy via natural resources such as fishing, logging, and 

tourism activities (Rayne & Forest., 2016). This region has been underrepresented in the 

literature with respect to spring freshet dates which govern the runoff and water levels in 

surrounding tributaries and ground water levels as well (Kang et al., 2013). Climate modeling 

studies show that this region is highly sensitive to climate change and could exhibit 

substantial changes from small variations in temperature (Islam et al., 2017). Slight increases 

in temperature have been shown to increase inter-seasonal melting periods, reducing peak 

flow during the spring freshet, and reducing flows during the summer (Islam et al., 2017). 

These changes create drier conditions during the spring and summer, leading to increased 
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risk of water scarcity, reduction in crop yield, and potential increases in forest fires (Winkler 

et al., 2015; Islam et al., 2017). Given the importance of the spring freshet in this region with 

respect to water availability for agriculture, human use, and aquatic ecology as well as its 

connection with forest fires, further investigation on snow cover during the freshet is 

required.  

1.2 Aims & Objectives  

The overall goal of this thesis is to examine snow cover variability during the spring 

freshet (April 1st-June 30th) in Thompson Okanagan watershed region and explore how much 

of the variability in snow off-dates can be explained via large-scale teleconnection patterns. 

In order to accomplish this, a multi-step cloud reduction methodology is developed using 

multiple daily satellite observations, an adjacent temporal deduction (ATD) of +/- 2 days 

followed by a spatial filter (SF) and lastly the implementation of the Regional Snowline 

method (SNOWL) to remove maximum cloud cover. The aims and objectives are 

summarized as follows:  

Aims: 

I. Measure and analyze snow cover changes during the spring freshet in Thompson 

Okanagan region from visible infrared remote sensing methods from 2003-2019 (April 

1st-June 30th) to determine the nature of snow cover change (Winkler et al., 2017); 

II. Identify whether teleconnections play a role in explaining variability identified, 

including the Pacific Decadal Oscillation (PDO), Pacific North America Pattern (PNA) 

and the Oceanic Nino Index (ONI) using linear regression models 

Objectives: 

I. Combining multiple satellite products, MODIS Terra/Aqua and VIIRS; 

II. Mitigating maximum cloud cover from visible remote sensing imagery with multi-step 

methodology; 

III. Evaluate uncertainties of cloud mitigated snow mapping in a mountain environment 

through agreement with high resolution data for each step in the methodology;  
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IV. Quantifying cloud cover mitigation strategies with each additional method as well as 

with the addition of VIIRS 

1.3 Thesis Structure  

The remainder of this thesis is organized into the following chapters. Chapter 2 

provides a background on snow dynamics, mountain snow hydrology and applications of 

snow cover. It includes an overview of methods to measure snow cover with visible infrared 

remote sensing as well as the uncertainties with these methods and insights on snow 

climatology from remote sensing observations in general and specific to the study region. 

Cloud mitigation strategies are also presented in this chapter. Chapter 3 describes the study 

region. The methodology used in this research including methods to conduct analysis are 

presented in Chapter 4. Chapter 5 presents results of the proposed method. Chapter 6 

analyzes and discusses the findings. Chapter 7 summarizes main findings, their importance, 

and conclusions, including potential future research.  
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Chapter 2  

Snow Cover and Remote Sensing 

This chapter is made up of seven sections, first going through snow dynamics and properties. 

Secondly, an overview of snow hydrology in mountainous regions. Third being the 

applications of snow cover, and then moving into MODIS approaches to snow cover 

mapping. The fifth section summarizes remote sensing of snow in a climatological sense. 

The sixth section provides an overview of potential limitations with remote sensing 

approaches and the last section is an overview on cloud mitigation methodology most used 

with visible-infrared remote sensing throughout the literature. 

2.1 Snow Dynamics  

Snow plays a role as a climatic control variable, with high reflectivity, low thermal 

conductivity, and thermal inertia (Xu et al., 2015, Barry & Carleton, 2001). Fresh snow has 

an albedo of 0.8-0.9, for ice it is 0.6, 0.3-0.4 for melting ice containing debris and ponds of 

melt water and 0.25-0.4 for snow covered forests (Table 2.1) (Barry & Carleton, 2001). 

Snow is a complex substance in terms of its physical properties and its relationship with the 

atmosphere and the hydrological cycle, which can be seen in table 2.1 with the discrepancy 

between albedo of fresh snow and melting/old snow from 0.87 to 0.77 respectively (Table 

2.1). This divergence of albedo can reduce the reliability of snow detection algorithms 

depending on seasonality (Pomeroy & Brun, 1990). Snowfall typically occurs when 

temperatures in the atmosphere reach 0ᵒ C, water droplets will reach a supercooled state and 

will begin to form snowflakes by attaching to particles in the atmosphere (Pomeroy & Brun, 

1990). Contacting warm air around falling snow can cause evaporation of the snowflake and 

a direct cooling effect of the air around it (Carey & Pomeroy, 2009). For falling snow to 

survive to the ground, the air temperature and the ground temperature must be at or below 

0ᵒC (Derksen et al., 2012). As snow accumulates on the earth’s surface, it continuously 

changes its structure with changing weather patterns. Blowing snow causes sublimation and 

redistribution of snow, rain on snow events can also change the internal structure of a 
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snowpack through latent heat exchange (Liston & Elder, 2006). Surface sublimation occurs 

when air temperature warms enough to evaporate the surface of the snowpack, and liquid 

runoff from the ground-snow interface also change the structure (Niwano et al., 2012).  

Table 2.1: Surface type albedo’s in the winter and summer (Barry and Carleton, 2001) 

 

Snow cover creates an albedo feedback mechanism; as snow cover decreases an 

increased amount of bare earth is exposed to direct solar radiation which will absorb solar 

heat energy (Hernandez-henriquez et al., 2015, Minder et al., 2016). This absorbed heat 

increases overlying air temperatures through turbulent heat transfer (Wang et al., 2017). 

Snow is also an efficient natural insulator with a low thermal conductivity that creates a 

barrier between the energy exchange from the ground surface and the atmosphere (Niwano et 

al., 2012). This barrier is critical for maintaining soil temperatures, permafrost and vegetation 

throughout the winter season depending on the region (Debeer et al., 2016). Snow cover is 

very sensitive to radiation; net radiation, latent heat and sensible heat are the most important 

variables in snowmelt energy balance (Kim et al., 2017). Even slight changes in incoming 

solar radiation change the internal structure of a snowpack, as well as the presence of 

vegetation which cause changes in spatial distribution of snowmelt on a small scale through 

plant-snow energy interactions (Kormos et al., 2014). These characteristics make snow cover 

extremely variable, even on an hourly scale, during snowmelt periods. The snowmelt energy 

balance equation is given in equation 1 and figure 2.1 shows a visual representation of the 

energy exchange and water balance of a snowpack (Zeinivand & Smedt, 2010). Internal 

snow energy and the surface layers of frozen soil is U, net shortwave radiation is Sn, La is 

atmospheric longwave radiation and Lt is terrestrial longwave radiation, H is the sensible heat 

exchange, El is latent heat and sublimation or deposition energy flux at the surface, G is the 
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snowpack’s ground heat conduction, Qp is heat advection via precipitation and Qm is the 

removed heat through snowmelt (Zeinivand & Smedt, 2010). Essentially, the internal 

structure and energy balance of snow is governed by a series of variables, this equation 

simplifies the variables affecting the energy balance of a snowpack and depicts how energy is 

controlled.  These processes could either be directly from the atmosphere above with a 

change in temperature or precipitation or from the surrounding environment such as 

vegetation canopies increasing the temperature directly adjacent to them. 

   (1) 

 

Figure 2.1 : Visual representation of energy fluxes and mass exchange within a snowpack for 

accumulation and melt (Zeinvand & Smedt, 2010)  

In mountainous regions, snow dynamics are complicated by the variability in 

distribution of snow cover in these regions that are highly dependent on topography, wind 

speed and the presence and type of vegetation (Bhatti et al., 2016). Latent and sensible heat 

as well as net radiation are the most important for snowmelt energy and all these variables 

are unpredictable and varying with topography and presence of vegetation (Kim et al., 2017). 

For these reasons, quantifying changing snow cover patterns in mountainous regions can be 

complicated and difficult to predict or model.  
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2.2 Mountain Snow Climatology and Hydrology 

Snow is a major part of the global hydrological system. Snow accumulation patterns vary in 

relation to latitude, altitude, and regional weather patterns (Mote et al., 2016). The northern 

hemisphere experiences seasonality of snow, as do some regions in the southern hemisphere 

(Robinson et al., 1993). While other areas experience perennial snow cover, such as high 

latitude and high-altitude regions like the Himalayas, the Cascade Mountains, and parts of 

the European Alps (Tong, 2009). Outside of seasonality, SCE can be influenced by large 

scale weather patterns, such as the North Atlantic Oscillation (NAO), Oceanic Nino Index 

(ONI), Pacific Decadal oscillation (PDO), Pacific North American pattern (PNA) etc. 

(Pollock & Bush, 2013 & Derksen et al., 2014). High altitude mountain regions can exhibit 

perennial snow cover due high elevation as temperatures remain cool enough to sustain snow 

cover throughout the seasons (Tang et al., 2017). In these regions, snow greatly contributes to 

the hydrological system through snowmelt that recharges groundwater, controls streamflow 

generation, provides nutrient recycling and controls soil moisture (Kormos et al., 2014). 

Thus, snow cover is a crucial component of the earth’s water cycle providing significant 

renewable water to downstream communities, for this reason they are coined the water 

towers for these regions (Viviroli et al., 2007).  

 Under a changing climate, studies have shown variability in SCE patterns. Snow 

cover during the spring freshet has been the most effected. Studies have shown a varying 

range of snow extent changes in the past few decades. With over 50% of variations in snow 

cover extent explained by temperature increase through regression analysis, a decrease of 

snow extent by -17.8% per decade from 1979-2011 is shown among these studies (Derksen 

& Brown, 2012). Another study quantified the decline as -0.8 weeks/ decade from 1967-2008 

(Gwangyong et al., 2010). As subsequent years’ experience warmer air temperatures earlier 

in the season, snow cover will continue to recede earlier, and bare earth will be exposed to 

radiation which will absorb this heat and continue to accelerate snow cover decline with this 

positive feedback effect (Wang et al., 2017).  

In mountainous regions, weather patterns are complex due to topographic and 

elevation effects. The surface heat flux effects in these areas are influenced by many 
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variables such as moisture advection, cloud formations, and stability of air masses as well as 

orthographic lift, heat inversion and variability in energy fluxes with hypsometry. These 

processes produce non-uniformity in the accumulation of snow through complex 

redistribution by wind and heterogenous radiation per unit depending on aspect, vegetation 

patterns and so on (Liston, 1999 & Hernandez-Henriquez et al., 2015). Studies have shown 

that these landscapes exhibit an elevation dependent warming effect which coincides with 

loss of snow cover at lower elevations (Bormann, 2018.; Elliot & Petruccelli, 2018; Huss et 

al., 2013). Also, because direct radiation to the surface in these areas is not homogenous, 

snow cover extent losses are controlled by aspect and slope as well as climatic variables such 

as precipitation, temperature, wind speed etc. (Brown & Mote., 2008). Snow cover losses in 

these areas are mostly concentrated at elevations at or below 2000 m.a.s.l. (Dedieu et al., 

2016; Schnorbus et al., 2014). Land above this threshold typically remain cold enough to 

maintain snow cover throughout the year (Dedieu et al., 2016). While climate model 

predictions have shown potential increases in winter precipitation in mountainous areas, this 

precipitation may not necessarily fall as snow but as rain instead (Stewart, 2009). Rain -on-

snow events can accelerate the loss of snow cover by snow melt through heat advection 

(Stewart, 2009 & Zheng et al., 2018). It is speculated that the increase of snowfall at high 

elevations may off-set the loss of snow extent, as some studies have verified using river 

gauge data (Stewart, 2009). However, this may not be the case in all mountainous regions. In 

Western Canada, measured air temperatures have increased on average by 4ᵒC since 1962 

and there is evidence of the tree line shifting up slope with no evidence of increased snow 

accumulation at high elevations (Lapp et al., 2005; Li et al., 2018). Studies like this counter 

the argument of the potential for increased snow accumulation at higher elevations to offset 

the loss of snow extent at lower elevations. These patterns do not appear to be consistent for 

all mountainous regions, and further climatological research is needed to improve our 

understanding of the dynamics of mountain snow cover under a changing climate.  

2.2.1 Teleconnections and Climate 

The ONI has warm and cold phases termed the El Nino and La Nina. These phases 

are brought about by the anomalies in sea surface temperature (SST) over the eastern 
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equatorial Pacific Ocean by +/-0.5ᵒC for a period exceeding 5-months consecutively 

(Shabbar, 2014; Bevington et al., 2019). El Nino events are caused by weakened trade winds 

that bring warmer ocean water the coast of North America, this shift is paired with above 

average winter temperatures and lower levels of precipitation (Fleming & Whitfield, 2010). 

La Nina events have an opposite effect on Western North America, characterized by strong 

trade winds, that push warm ocean water towards Asia allowing upwelling of cold water 

(Glantz et al., 2020). This causes wetter and cooler than normal winter temperatures in the 

north by the movement of the jet stream northward (Glantz et al., 2020). The PDO is a 

similar phenomenon in that it is associated with periods of warmer (cooler) SST spanning the 

Pacific Ocean up to the Gulf of Alaska (Newman et al., 2016). The cycle of phases in PDO 

span ~10-30 years, but the precise reason as to why they occur are still the subject of research 

(Newman et al., 2016). Potential reasons for the PDO are linked to ONI phases, atmospheric 

pressure, and natural variability (Newman et al., 2016).  Positive (negative) phases in the 

PDO are associated with warmer (cooler) than average SST throughout the Pacific Coast and 

cooler (warmer) SST in the interior North Pacific (Newman et al., 2016).  El Nino and 

positive phases in PDO have been associated with earlier snow melt out dates, drier 

conditions, and warmer air temperatures in the northwest, while La Nina and negative PDO 

have the opposite effect (Bevington et al., 2019). The PNA is associated with the ONI. A 

positive (negative) phase is def ined by above (below) normal atmospheric pressure heights 

throughout the western United States and below (above) normal atmospheric pressure heights 

over eastern United States (Bevington et al., 2019). Positive PNA phases are associated with 

warmer (cooler) than normal temperatures in the west (east), while negative phases are 

associated with cooler (warmer) than normal temperatures in the west (east) (Bevington et 

al., 2019). These teleconnections play a role in mountain snow climatology affecting 

temperature and precipitation patterns on the west coast and interior B.C.   

2.2.2 British Columbia Snow Climatology 

Climate change can have major impacts on water resources because snowmelt is the 

primary driver of water supply due to the relative dryness in the interior BC and even slight 

changes could have large effects (Merritt et al., 2006). Studies have shown an increase in the 
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minimum temperature in the Okanagan basin and increased summer precipitation from 

gauging station data (Cohen et al., 2012). Water flowing through this region is governed by 

mountain snow which is projected to decrease in accumulation as temperatures increase 

(Kang et al., 2014). Decreasing total snow water equivalent accumulation throughout western 

Canada has been shown and linked to rising temperatures and decreased precipitation (Mote 

et al., 2005). There is also evidence that the interior of the Fraser River Basin, including the 

Northern Plateau and the Thompson-Okanagan region may transition from a hybrid of 

pluvial and nival river system to being rain dominated (Shrestha et al., 2012). An overall 

decrease in snow accumulation throughout the Fraser River Basin is correlated with an 

increase in temperature by 1.4ᵒ Celsius (Kang et al., 2014). In the Fraser River basin, 

projections show increased runoff in winter and spring and a decrease in the summer and fall 

seasons because of changes in precipitation and snow storage (Shrestha et al., 2012). 

Mountain regions have been shown to exhibit elevation dependent warming, in this area the 

early onset of mountain snowmelt can lead to decreased streamflow in the interior of the 

Fraser River Basin throughout the summer and fall seasons (Islam et al., 2017). Smaller 

changes projected for higher elevations, however, indicate that the Thompson-Okanagan 

region is highly sensitive to changes in temperature and snow storage because of its semi-arid 

climate regime (Kang et al., 2014; Merritt et al., 2006). These changes are critical for water 

resource management and have ecological impacts (Kang et al., 2014).  

Snow cover changes in this region are also highly affected by land cover change, 

notably forest cover loss. Clear cutting in southern interior BC has related to increases in 

snow accumulation caused by lack of snow loss to canopy interception (Winkler e t al., 2017). 

Forest cover loss to the pine beetle infestation and forest fires are also influencing forest 

cover loss (Winkler et al., 2015). Though these landcover changes may increase snow 

accumulation during the cold season, the loss of forest cover also causes increased rapid melt 

responses (Schelker et al., 2013, Carey & Pomeroy, 2009). As these areas will be exposed to 

direct solar heating, snow will melt more rapidly and contributing rapid runoff to rivers and 

streams without vegetation interception (Schelker et al., 2013). One study showed that clear 

cut or burned regions had snow disappearance occur 10-days earlier than forest covered areas 
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in this region (Winkler et al., 2015). In the Okanagan Plateau, these land cover changes have 

cause significant shifts in the runoff regime (Winkler et al., 2017). This is problematic for 

water resources, as these changes cause increases in water yield early in the season (April) 

and decreases later (June and July) (Winkler et a., 2017).  

The variations in snow season climatology in this region has been associated with 

several atmospheric circulation patterns, including the PDO, PNA and the most influential 

being the ONI. Correlation coefficients between BC snow cover and PDO or ONI in the 

onset of the snow season show the lowest correlations, whereas highest correlations occur in 

the winter and fall for snow duration and spring freshet (Bevington et al., 2019). The spring 

freshet is negatively correlated with both the PDO and the El Nino, meaning that increases in  

the severity of these indices tend to be associated with decreases in snow cover during the 

spring freshet, the same is found with snow cover duration (Bevington et al., 2019). 

Statistically, the significance of ONI and PDO on temperature and precipitation are confined 

to the cold months, one study showed that these teleconnections influence begins in February 

for the southern interior region of BC and in December for the Rocky Mountains to the east 

(Fleming et al., 2010). La Nina patterns in BC have also been linked to avalanche frequency 

as these years are characterized by colder temperatures, higher precipitation and therefore a 

greater amount of snow (McClung, 2013).   

Studies have shown that a general trend exists in decreased mountain snow extent at 

lower elevations (Pederson et al., 2013). Areas at or below 2000 m.a.s.l. are particularly 

sensitive to warming (Dedieu et al., 2016). Elevation-dependent warming has been modeled 

and aided by data gathered through visible remote sensing (Pepin et al., 2015). With 

increased temperatures at lower elevations, snow extent is expected to decrease, allowing for 

continued warming through exposure of the bare ground through the albedo effect (Pepin et 

al., 2015). Overall variability of precipitation patterns with climate change indicate that dry 

(wet) regions will get drier (wetter) (Dore, 2005). Climate model predictions show projected 

increases in temperature across mountain regions which are expected to cause rain -on-snow 

events, thus reducing snow cover extent and overall snow depth (Stewart, 2009). Snow cover 

climatology is affected by more than temperature. Large scale atmospheric systems influence 
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the duration of snow cover, the rate of retreat and the accumulation (Bevington et al., 2019). 

High temporal and spatial resolution observations of snow cover provide insights into snow 

patterns and further guide our understanding of how they are changing.  

2.3 Applications of Snow Cover  

The changes observed with respect to snow cover extent have implications for various 

applications. Snow accumulation in mountain catchments is responsible for over 80% of 

human water resources in semi-arid tropical and subtropical regions (Saavedra et al., 2017). 

Snow water storage is crucial for economic, recreational demands and environmental 

requirements (Mote et al., 2005). Snow cover in mountainous regions affect seasonal 

recreational activities that generate revenue through tourism activities (Sturm & Goldstein, 

2017). Throughout recent decades, the spring freshet has been occurring earlier in the season, 

thus snow related activities are at risk of being shortened, which subsequently has 

implications for these companies and the communities that depend on them (Shabarr, 2014). 

Changing snowmelt timing can affect types of vegetation that grows and the moisture of the 

soil in the following growing season (Kienzle et al., 2012). Anomalous warming 

temperatures can cause rapid snow melt in mountains which could lead to potential flooding 

(Harder et al., 2015). The timing and duration of snowmelt affects the ground water recharge 

and water tables for the entire year; regions that depend on snowmelt for irrigation could 

suffer from potential shifts in the snow off season (Winkler et al., 2017). The increase in 

climate warming potentially can induce increased instability of snowpack leading to 

increased avalanche occurrence in mountainous areas (Brown & Mote, 2008). However, a 

recent study in British Columbia has found this effect to be inconclusive (Belaire et al., 

2016). Therefore, snow cover extent is vital from a macro to micro-scale mountain processes 

and continuing to model, predict and analyze these changes is important for various 

applications.  
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2.4 MODIS Approaches to Measuring Snow Cover Extent (SCE) 

Traditional in situ data collection methods for climate-scale snow cover mapping are 

ineffective at capturing local to regional scale snow variability. The high spatial and temporal 

variability of snow cover requires frequent measurement schemes over large areas for 

effective mapping. In situ data from automated weather stations, snow courses and snow 

pillows are effective in aiding our understanding of snow variability at the very local scale, 

but their spatial domains are not easily scalable to snow mapping of large domains. Point 

data has limitations such as being time consuming to gather, requiring intensive labor and it 

is expensive, especially in remote areas (Bales et al., 2018). However, these datasets can 

assist in accuracy assessments of remote sensing methods or serve as input data for land 

surface modeling of snow cover extent and snow water equivalent (Dong, 2018).  The 

MODIS algorithm is the focus here as it has been used extensively in mountain snow 

research and other regions with high accuracy. The moderate resolution enables a reliable 

depiction of snow cover and the daily imaging is a vital component necessary for snow 

mapping.  

Remote sensing methods facilitate the acquisition of consistent daily observations of 

snow cover for snow cover extent mapping. Visible and infra-red remote sensing techniques 

for SCE and snow cover fraction (SCF) have been developed to assess variability. The most 

common method is the SNOWMAP algorithm developed for MODIS on both Terra/Aqua 

platforms with 500 m pixel resolution and daily acquisition (Hall et al., 2002). A nearly 

identical algorithm is available from VIIRS on the Suomi NPP satellite and is also used to 

produce a daily snow product at 375 m resolution (Hall et al., 2019). The SNOWMAP 

algorithm uses thresholding values of the Normalized Difference Vegetation Index (NDVI) 

(2) and the Normalized Difference Snow index (NDSI) (3) to identify pixels that are snow 

covered and their percentage based on the reflectance properties and the vegetation cover in 

the pixel (Riggs & Hall, 2015).  

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝑒𝑑 

𝑁𝐼𝑅+𝑅𝑒𝑑 
       (2) 

𝑁𝐷𝑆𝐼 =
𝑉𝑖𝑠𝑖𝑏𝑙𝑒−𝑆𝑊𝐼𝑅

𝑉𝑖𝑠𝑖𝑏𝑙𝑒+𝑆𝑊𝐼𝑅
      (3) 
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The basis of snow cover mapping with satellite observations is straightforward under 

cloud-free conditions; the albedo of snow is very high relative to other surfaces which makes 

it easily recognizable in an image (Riggs et al., 2017). However, cloud cover can complicate 

the process. Therefore, the NDSI is used more often because it takes information from the 

visible spectrum (0.545-0.565µm) as well as infrared channels (1.628-1.652 µm) which 

enables this distinction (Figure 2.2) (Riggs et al., 2017 & Hall et al., 2002). In non-forested 

regions, a pixel will be flagged as snow covered if it has an NDSI value equal to or greater 

than 0.4 and a reflectance greater than 11% in band 2 (0.841-0.876 µm) in areas non-densely 

forested (Hall et al., 2002). If these conditions are met, but the reflectance in band 4 is less 

than 10%, the pixel will not be mapped as snow to reduce the false detection of snow from 

dark forests (Hall et al., 2002). In forested regions, the reflectance of snow decreases in the 

visible and snow-covered forests have a lower NDVI (Hall et al., 2002). Pixels will be 

flagged as snow if they have an NDVI around 0.1, regardless of the NDSI being lower than 

0.4 (Hall et al., 2002). This is then converted into fractional snow based on the percentage of 

the pixel that passes these thresholds using equation 4 for all regions (Riggs & Hall, 2015).  

𝐹𝑆𝐶 = (−0.01 + (1.45 ∗  𝑁𝐷𝑆𝐼)) ∗ 100.00 𝑓𝑜𝑟 0.0 ≤ 𝑁𝐷𝑆𝐼  ≥ 1.0  (4) 

In earlier collections of the MODIS snow products there was a temperature screen 

that removed pixels classified as snow if the temperature was above 281k, however this 

caused snow commission errors regarding snow cover at high elevations (Hall et al., 2019). 

To remedy this, the screen was changed in collection 6 to include an estimated elevation 

threshold of 1300 m (Riggs & Hall, 2015). Therefore, if a pixel is snow below this threshold 

with a temperature above 281K it is not snow, and if it is above this elevation it is snow 

(Riggs & Hall, 2015). This screen is set to reduce false detection in tropical forests and warm 

coastal regions (Riggs & Hall, 2015). Non-snow surfaces may be flagged as snow if the 

SWIR is too high. A high SWIR screen is applied so that pixels with SWIR values from 

0.25-0.45 are flagged as unusual snow as snow cover usually has a SWIR value <0.20 (Riggs 

& Hall, 2015). The last screen applied is a solar zenith mask of >70ᵒ so nothing with low 

illumination is mapped, and anything with a zenith angle of >85ᵒ is night (Riggs & Hall, 

2015).  
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The MODIS snow product uses the MOD35_L2 cloud mask, a 1 km resolution mask 

which applies the mask to 4 corresponding pixels (Hall et al., 2002). This mask has been 

described as an aggressive and conservative approach, meaning that errors off commission 

may be a consequence of the mask (Morriss et al., 2016; Xue et al., 2014). The VIIRS 

product uses the cloud mask VNP35_L2 which is less conservative than the MODIS cloud 

mask, this is thought to be the biggest difference between these two snow cover products 

(Hall & Riggs 2019).  

2.5 Remote Sensing and Snow Climatology  

Reflected visible and infrared remote sensing plays a significant role in understanding 

snow cover climatology. An accurate depiction of snow cover at large spatial extents and 

high temporal resolution is required for change analysis of snow patterns with a changing 

climate. Onset and offset snow season dates are important variables when analyzing snow 

pattern changes as snow offset date is very sensitive to increases in temperature (Kang et al., 

2014). Using multiple remote sensing platforms, studies have shown an overall decrease in 

spring snow cover extent in the Northern Hemisphere (Brown et al., 2007). An amplified 

decrease of snow extent is shown in the last 40 years using a combination of ten datasets pre-

satellite era and with satellite data (Brown & Robinson, 2011). Correlation analysis found 

that over 50% of these variations can be explained by temperature increases (Brown & 

Robinson, 2011). The NOAA climate data record is the longest snow cover extent product, 

using a combination of in situ, visible and radar imaging to map snow since 1966-present 

(Brown et al., 2010). In the early years, the temporal resolution was monthly  and then 

weekly, to daily starting in 1999 when MODIS Terra was launched (Hori et al., 2017). With 

these datasets, it is possible to quantify the decrease in snow extent throughout the Northern 

Hemisphere, as studies have done. For example, in a study done from 1967-2008 showed a 

spring snow cover decline of 0.8 weeks/decade (Gwangyong et al., 2010). From 1979-2011 

there was a decrease of spring snow cover by -17.8%/decade (Derksen & Brown, 2012).   

The NOAA CDR has coarse spatial resolution at 190.5 km, and coarse temporal 

resolution for part of the dataset (Hori et al., 2017). This dataset is also subject to human 
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error as the decisions for snow covered pixels are not made by an algorithm but rather were 

manually selected (Brown & Derksen, 2013). The temporal resolution is coarse, particularly 

for snow cover which can change hourly under certain conditions especially in mountain 

environments. The Interactive Multi-Sensor Snow and Ice Mapping System (IMS) is another 

SCE product available. This product is available from 1997-present at 24 km spatial 

resolution and daily temporal resolution (Roy et al., 2010). This product uses visible infrared 

as well as passive microwave data to mitigate cloud coverage (Romanov et al., 2000). Coarse 

spatial resolution is not suitable for mountainous basins, as topographic complexity 

complicates the process of identifying snow with coarse spatial resolutions and is further 

complicated with the use of radar imagery within their analysis (Wang et al., 2016). In fact, 

when studying snow extent with these products on a hemispheric extent, mountain regions 

are often masked to increase overall accuracy of the study (Bormann, 2018).  

The NOAA CDR and Interactive Multi-sensor Snow and Ice mapping system (IMS) 

are used extensively when discussing the changes of snow cover extent climatologically and 

over large spatial extents (Hori et al., 2017; Mudryk, 2017; Hernandez-henriquez, 2015). Yet, 

there are uncertainties within these datasets that extend from uncertainties of visible remote 

sensing alone, especially in mountain domains where snow cover is heterogenous and subject 

to extensive cloud cover. The spatial resolution of MODIS is finer at 500 m, maintaining a 

daily temporal resolution. The exclusion of passive microwave sensors enables the finer 

spatial resolution in this dataset, with the tradeoff of cloud contamination. However, to 

maintain the moderate spatial resolution of the MODIS datasets without passive microwave 

data, steps to mitigate cloud cover must be performed. For these reasons, MODIS datasets 

are mainly used for studies done from 2000-present as the spatial and temporal resolution is 

much higher than the CDR and the IMS datasets.  

2.6 Uncertainties  

Visible-infrared remote sensing observations of snow cover are complicated by 

several issues. Satellites measuring within the visible spectrum are sun synchronous. 

However, during times of polar night, in the high Arctic especially, these methods are 

unusable (Wang et al., 2011). Forest cover causes uncertainties with snow cover methods as 
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well. The reflectance of underlying vegetation will affect the spectral signature of snow 

which causes misclassifications (Wang et al., 2015). Forest canopies obscure underlying 

snow leading to errors of omission (Berman et al., 2018; Tait & Hall, 2000). In mountainous 

regions, forest cover uncertainties add to uncertainties caused by the spatially variable 

distribution of snow cover in mountainous terrain that is complicated by slope, elevation, 

effects of shadows and varying solar illumination, aspect and patchy snow cover (Czyzowska 

et al., 2015). The MODIS fractional snow cover, MOD10_L2 product has shown to have 

similar accuracy as Landsat-7 30 m resolution snow maps in mountainous terrain with a 

least-squared regression analysis between these two datasets showing an R2 value ranging 

from 0.86-0.98, although some places had lower agreement at 0.47 and 0.58 (Crawford, 

2015). These low accuracy dates are attributed to transient snow patterns, cirrus cloud  

contamination as well as changes in viewing angle throughout the day when these images are 

collected and local solar illumination (Crawford, 2015). These studies allow for a better 

understanding of how well the MODIS snow algorithm performs in comparison to high 

resolution imagery, they give insights on areas of improvements as well as uncertainties.  

Snowpack metamorphosis can change its reflectance properties (Solberg et al., 2006). 

This will lead to misclassifications as reflectance values may shift depending on the size of 

the snow crystals (Figure 2.2) (Dietz et al., 2012).  NDSI uses the red and SWIR band which 

make this less of a concern for visible-infrared remote sensing, however when including 

passive microwave data, it can become a limitation (Dietz et al., 2012). Also, during periods 

of snow melt, snow changes and becomes contaminated consequently changing the albedo 

and the reflectance properties (Eckerstorfer et al., 2016). Depending on weather factors the 

off-season can also bring transient snow, which can bring about errors of 

over/underestimation depending on the timing of overpass of the satellite (Wagnon et al., 

2009). Given the overpass of MODIS at 10:00 am over the equator, if a snow event occurs 

later in the day, the image for that day will be underestimating snow cover because it 

occurred after the overpass of the satellite. Transient snow is common during the spring 

freshet (Kim et al., 2015).  
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a) b)  

Figure 2.2: a) Spectral signiture of snow depending on difference in snow crystals (Dietz, 2012), 

b) Difference in spectral signatures between ice clouds (cirrus), water clouds and snow cover 

(Dietz, 2012). 

The most challenging aspect is snow-cloud separability uncertainty which hinders 

visibility of the underlying ground cover. Clouds are highly reflective in infrared channels 

and snow is not, this difference allows for distinguishing between the two objects in the 

image (Riggs et al., 2017). However, cirrus clouds, formed of ice crystals, remain difficult to 

separate from snow using the SNOWMAP algorithm because the spectral signatures are very 

similar (Hall et al., 2001). The visible closeness of spectral signatures between types of 

clouds and snow can be visualized in figure 2.2 (Dietz et al., 2012). Studies that use machine 

learning algorithms to further separate various cloud types from snow cover that have been 

relatively successful, such as convolution neural networks and support vector machines 

(Zhang et al., 2013 & Varshney et al., 2018). Improving models to further separate cloud an d 

snow in classification algorithms does not assist in our understanding of what lies beneath the 

surface of cloud contamination. It can improve accuracy by reducing errors of omission and 

commission but methods to mitigate this contamination are necessary to map snow cover 

variability with temporal and spatial accuracy. 

2.7 Cloud Mitigation Methods  

There have been several methods introduced with the purpose of mitigating cloud 

cover from visible remote sensing, as this is persistently reducing accuracy and introducing 
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uncertainties. Categories of these methods include spatial methods, temporal methods, multi-

sensor, and multi-step combinations. 

2.7.1 Spatial Methods 

This category of cloud removal or reconstruction is done by taking surrounding 

information and essentially interpolating the cloud cover pixels (Chen et al., 2017). Many 

methods exist to mitigate cloud cover in this category, however some of these are unusable 

for a temporally variable and heterogenous variable like snow cover (Liao, 2017). Spatial 

methods that are used for snow cover mapping that retain most of the accuracy include 

spatial filters (SF), snow line mapping approach (SNOWL) and locally weighted logistical 

regression (LWLR) (Parajka et al., 2010 & Li et al., 2019). Spatial filtering uses a given 

window, usually four or eight nearest neighbors, of adjacent pixels and uses this information 

to replace cloud contaminated pixels (Figure 2.3) (Hou et al., 2019). In the Austrian Alps this 

method retained an accuracy of 92% while mitigating 6-13% of cloud pixels (Hou et al., 

2019).  

 

Figure 2.3: Spatial filtering reconstruction using a) Four pixel nearest neighbor, b) Either-pixel 

nearest neighbor (3x3 kernel) (Li et al., 2019).  

 Mountain snow is more prevalent and permanent at high elevations, this is the 

premise of the regional snow-line elevation method (SNOWL). This methodology uses the 

mean elevation of snow cover and no-snow covered pixels to interpolate cloud covered 

pixels based on their elevation (Parajka et al., 2010). If a cloud pixel is above the mean snow 

elevation it will be designated as snow, and if it is below the mean land elevation it will be 
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reclassified as land and those in-between will be partially snow covered (Figure 2.4) 

(Paraijka et al., 2010). The SNOWL method has been shown to reduce cloud cover 

percentage from 60% to 10% retaining an accuracy of 91.5% from 95.1% in the Austrian 

Alps (Parajka et al., 2010). However, elevation dependent interpolation shows higher 

accuracy when the image is already 70% cloud free (Gafurov & Bardossy, 2009). Therefore, 

there are steps that must be taken before implementing SNOWL.  

 

Figure 2.4: Snow line and land line designations for SNOWL method (Li et al., 2019) 

 Weighted logistic regression methods have also been effective in mountainous 

regions with respect to snow cover. Spatial and topographic characteristics of cloudy pixel 

are used to estimate probability of snow occurrence under that cloud cover (Lopez-Burgos et 

al., 2012). Depending on the study region there are a few combinations that can be used as 

explanatory variables, such as elevation, aspect, slope, etc. Overall, this regression method 

will assign a logistical curve with the inverse distance of neighboring pixels based on the 

characteristics of that pixel (Lopez-Burgos et al., 2013). In the Salt River basin in Arizona, 

this method reduced cloud cover by 93.8% while maintaining similar accuracy to the original 

image (Li et al., 2019). However, this is a complex method and requires high computation 

power compared to other spatial methods (Li et al., 2019).  

2.7.2 Temporal Methods 

Temporal methods utilize the movement of clouds to combine images that are 

temporally correlated. The most popular temporal method is the Terra and Aqua combination 

(TAC). Since these satellites are of similar design and the snow product uses the same 



 

 22 

algorithm, it is possible to combine them to reduce cloud coverage without reducing the 

accuracy of the product significantly (Li et al. 2019). This method assumes that there is no 

significant snowmelt between the overpass times of these two satellites (Li et al., 2019). 

Although Aqua MODIS band 6 failed early on its life, the substituted band 7 has proven a 

useful replacement to facilitate the snow cover product continuance (Gladkova et al., 2012). 

While there are slight differences between Terra MODIS and Aqua MODIS snow products, 

the TAC has comparable errors as the two products separately (Li et al., 2019). This method 

was used in western USA and found that 5-14% of cloud cover was removed with an overall 

accuracy of 89.7% which is 1.4% higher than Aqua and 0.7% lower than Terra (Gao et al., 

2010).  

 Temporal filtering uses the same type of logic as TAC but is not same day 

combinations. Adjacent temporal deductions (ATD) use the day before and after an image to 

replace cloud cover pixels (Parajka et al., 2012). These methods do not reduce temporal 

resolution and retain accuracy. In one study, the accuracy of ATD was 96.3% whilst reducing 

cloud fraction by 25% (Gafurov & Bardossy, 2009). However, these methods assume that 

snow cover is unchanged between the interval of time used, which may be untrue during 

transitional periods. Thus, transitional periods, the accuracy of this method can be reduced 

(Gao et al., 2010). Multi-day combinations are also popular for snow cover mapping, an 8-

day MODIS product is available for this (Hall et al., 2002). Multi-day combinations will 

reduce accuracies but will reduce cloud percentage more than ATD with the sacrifice of 

temporal resolution (Dong & Menzel., 2016). In transitional periods, multi-day combinations 

tend to overestimate snow cover, or hold onto snow longer than it is present (Li et al., 2017). 

Flexible multi-day combinations are not operational but do show decreases in cloud 

percentage with overall accuracies decreasing by 2.2% and 2.6% for 6 day and 8 day, 

respectively (Gao et al., 2010). However, with slight decreases in accuracy there is a 

reduction of cloud cover by 45.7% and 48.4% (Table 2.2) (Gao et al., 2010).  

 

 



 

 23 

Table 2.2: Accuracy metrics for Terra and Aqua snow products with combined, ATD, and fixed 

day combination in clear (Oc), all sky conditions (Oa), cloud percentage (Pc), and snow 

accuracy for both clear sky (Sc) conditions and all sky conditions (Sa) (Gao et al. 2010) 

 

2.7.3  Multi-Step Methods 

 Multi-step methods provide a combination of previously mentioned strategies for 

cloud removal. To maximize the amount of information available, these usually begin with a 

Terra and Aqua combination, followed by a spatial filter of sorts and an ATD or multi-day 

combination to reduce as much cloud as possible or remove clouds entirely (Li et al., 2019). 

There are various combinations of multi-step methods. Those mentioned have been 

developed in a variety of landscapes, SNOWL is focused in mountainous regions,  TAC is 

universally used regardless of the landscape as are multi-day combinations.  

 The strategy for cloud mitigation in this research uses a multi-step methodology in a 

mountain dominated landscape. While adopting approaches from the literature, an addition of 

the VIIRS snow product (VNP10A1) to the TAC for a same-day combination with three 

observations instead of two. However, instead of prioritizing cloud pixel reclassification 

based on pixel value, it will be done based on the reported overall accuracy of each of the 

products themselves. This will be followed by an ATD of +/- 2 days to reduce as much cloud 

as possible whilst retaining maximum accuracy in the off season, followed by a spatial filter 

and finally the implementation of SNOWL. These methods will be applied to the Thompson-

Okanagan region, from valleys to the Rocky Mountains this method will be tested on a 

variety of landcover. Overall objectives of this research are to identify the benefits of adding 

VIIRS snow product to reducing cloud contamination, as well as comparing the accuracies 
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between all methods, and quantifying how much cloud is removed throughout the entire 

process. Finally, we aim to identify and understand variability of snow cover patterns in this 

diverse region through this methodology.  
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Chapter 3 

Study Area 

This chapter provides an overview of the study area. It is divided into subsections that 

explain the geographic, economic, and climatological aspects of the region. 

3.1 Thompson Okanagan Region 

This study will focus on the Thompson Okanagan region of British Columbia (Figure 

3.1). This portion of central BC is classified as an economic region which consists of several 

watersheds, most of which are partially covered. These watersheds include South Thompson, 

Thompson, Okanagan, and Columbia, which form the largest tributary to the Fraser River, 

the Thompson River (Figure 3.2) (Beacham & Withler, 2017). This region occupies 

94,197.76 km2 of central BC (Statistics Canada, 2017).  
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a) b)  

c)  

Figure 3.1: a) British Columbia in the context of Canada, b) BC economic regions including 

Thompson Okanagan and c) major water basins in BC 
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Figure 3.2: Watersheds in southern British Columbia with Thompson-Okanagan region 

overlapping  

This study focuses on the economic south-central region of BC because of the 

influence snow has on the economic activity of this region (Picketts et al., 2012). The highest 

ranked climate impacts on this region are forest fires and disease, water quality degradation 

and water shortages (Picketts et al., 2012). Each of these impacts are directly connected to 

snow patterns in the region. The cloud index in this region is also lower than other 

mountainous regions because of its unique geographic position (Wilson & Jetz, 2016). The 

SCE data are analyzed throughout the watersheds within the Thompson Okanagan region 

(figure 3.2). The area in general was chosen for several reasons;  

1) The climate in this region is characterized as semi-arid and therefore is less affected 

by continuous cloud coverage compared to other mountainous areas which makes 

it an excellent candidate for the proposed method (Caprio & Quamme, 2002),  

2) It contains various landscapes including mountain ranges, valleys, forested land and 

developed areas, which allows for the proposed method to be investigated under a 

variety of conditions,  

3) Snow cover in this area is crucial to economic success (see section 3.1.2).  
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3.1.1 Geographic Characteristics 

The Thompson region is in the southern central interior of British Columbia. BC has 

a very diverse landscape, from the Coast Mountains on the west to the Rocky Mountains and 

Cariboo Mountains on the eastern extent to the central plateau and Thompson Plateau in the 

interior (Church & Ryder, 2018). This diverse landscape was formed through tectonic 

regimes throughout the Tertiary times, extreme erosion, glacier movement and volcanic 

activity (Church & Ryder, 2018). The Thompson-Okanagan region itself varies in elevation, 

from low valleys at 150 m.a.s.l. to about 3500 m.a.s.l. (Shrestha et al., 2012). This region is 

incased with mountain ranges, Coastal on the west and Cariboo, Selkirk, and Monashee to 

the east (Tribe, 2005). These mountains are massive sources of drainage into the Fraser River 

from this region, these drainage patterns are mostly characterized by a south and southwest 

movement (Tribe, 2005). There are some exceptions to this, for example the Shuswap River 

flows northwest to the South Thompson River (Tribe, 2005). Main river systems in this 

region are the Thompson River, North and South Thompson Rivers which meet in Kamloops 

and flow into the Fraser River at Lytton (Merritt et al., 2006). The Nicola River and 

Clearwater Rivers are also notably large tributaries from this area into the Fraser (Merritt et 

al., 2006). Overall, the area is mostly covered by vegetation, alpine or coniferous forests 

(Shrestha et al., 2012).  

3.1.2 Human & Economic Activity 

There are a few major cities in the region including Kamloops, Kelowna, Osoyoos 

and Princeton (Destination BC Corp, 2019). Thompson-Okanagan is home to an estimated 

15% of the population of British Columbia (Statistics Canada, 2017). Most of the economic 

activity here is natural resources, forest industry, mining, agriculture, manufacturing, and 

tourism (Fraser Basin Council, 2013). The wine industry is especially important in this 

region because of the favorable climate for growing grapes, Okanagan is known for wine 

production (Rayne & Forest, 2016). However, this is an extremely sensitive process and 

fluctuations and increased variability in weather patterns have destroyed harvests in the past 

and can continue to do so with increasing variability (Caprio & Quamme, 2002). Studies 
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show that elevated temperatures throughout April-July are favorable for grape production, 

however, increasing temperatures passed a certain threshold during these periods cause a 

dramatic decrease production (Caprio & Quamme, 2002).  

 Tourism activities here are very heavily dependent on snow. This area is home to 

several ski resorts that attract people from all over the world. There are 3 major ski resorts 

(Big White, Silver Star and Sun Peaks) within this region, as well as the Okanagan Valley 

wine country which heavily depends on temperature stability for the growth of healthy wine 

grapes, and the salmon fishing industry is largely impacted by changes in water levels and 

storage in mountains- directly impacted by snow cover variations (Rayne & Forest, 2016 & 

Islam, 2017). However, with increasing temperatures projected by many studies, the snow 

season could potentially shorten, and parts of this region could transition into rain dominated 

areas (Islam et al., 2017). Understanding the patterns of snow in this region also affect 

potential hazards of flooding in cities surrounding the Fraser River because its flow is 

dominated by snowmelt during the spring freshet (Kang et al., 2014). The Fraser River is also 

home to one of the largest salmon populations in the world, changes in spring freshet may 

risk these salmon populations by increasing winter flows and decreasing spring and summer 

flows (Kang et al., 2014). Snow storage is also an important source for water resources for 

irrigation and domestic use in this region (Merritt et al., 2006).  

Temperature warming has proven to directly impact the economy in Canada as 

economic losses due to the El Nino event in 1997-98, for example, brought by drought were 

$2 billion to crop damage alone (Shabbar, 2014). Irrigation of crop lands in interior BC 

depend on mountain snow melt in the Rockies (Winkler et al., 2017). Economic loss this year 

spanned a loss in $1.5 billion to the heating industry, $300 million in recreation industry and 

$500 million in Canadian fisheries (Shabbar, 2014).  

3.1.3 Weather and Climate 

The semi-arid climate in Thompson-Okanagan contrasts with that of other areas in 

BC. The Coast Mountains control the climate in this region acting as a barrier and setting up 

the distinct climate on the leeward side of these mountains (Smith et al., 2008). This causes 
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the semi-arid climate in this area, the reduction of precipitation caused by air subsidence due 

to its proximity and alignment with the mountains (Smith et al., 2008). During the winter, 

temperatures are around -5.7 degrees Celsius (Merritt et al., 2006). The Fraser River Basin is 

classified as containing snow dominated basins, but this south interior region is a hybrid of 

rain and snow (Shrestha et al., 2012). The weather systems in this region are affected by 

upper troughs which cause vertical lift leading to clouds and ultimately precipitation, and by 

orthographic lift on the coast (Klock & Mullock, 2001).  

The Thompson Okanagan region, partly located within the Fraser River Basin, is 

ecologically, economically, geographically, and climatologically diverse. This area is 

extremely sensitive to warming and there are vast implications climate change will have on 

the economy, through natural resources and tourism, wine production and salmon 

populations as well as water resources (Islam et al., 2017). For these reasons, the regions 

springtime snow cover should be monitored and analyzed to contribute to recent findings and 

trends in snow cover variability and potential impacts on water storage.  
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Chapter 4   

Cloud Mitigation Methodology 

This chapter is split into four sections. This includes the satellite and other data used in the 

methodology followed by the pre-processing steps taken. The multi-step cloud mitigation 

methodology is then presented followed by the evaluation of the technique. This also 

includes methods taken to analyze the snow cover data extracted.  

4.1 Satellite Instruments and Data  

 This study uses the Moderate Imagine Spectroradiometer (MODIS) daily snow 

product data from both Terra and Aqua satellites (MOD10A1 and MYD10A1), as well as the 

Visible Infrared Imaging Radiometer Suite (VIIRS) snow product (VNP10A1). Terra was 

released in December of 1999 and Aqua in May of 2002 (Hall et al., 2002). This instrument 

collects data in 36 bands, with wavelengths from 0.4-14.4 micrometers, it has a revisit period 

of 1-2 days and the repeat period is 16 days (Hall et al., 2002). Its large swath of 2330 km 

allows for daily imaging of the Earth (Hall et al., 2002). The imaging spatial resolution varies 

from 250 m in two bands, 500 m in 5 bands and the remaining 29 bands are in 1 km 

resolution, Aqua specifications are identical (Hall et al., 2002). The high temporal resolution 

and moderate spatial resolution of MODIS observations, and the accessibility of MODIS 

products make them a critical tool for earth observation science. MODIS products include 

soil moisture, fire indices, evapotranspiration, surface temperature, chlorophyll etc. which 

can be accessed through the EarthData database created by NASA. For this study, the snow 

product will be used (MOD10A1, MYD10A1). These products use the SNOWMAP 

algorithm developed by Dorothy Hall to calculate snow cover percentage in each pixel based 

on radiances and indices calculated through thresholds of NDVI and NDSI (Hall et al., 

2001).  

VIIRS was launched in October of 2011 on the NOAA’s Suomi National Polar-

orbiting Partnership (Suomi NPP) carried out by NOAA. It carries 9 visible and near-infrared 

bands (NIR), 8 mid-infrared bands, and 4 longwave infrared bands (Riggs et al., 2017). It has 
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a spectral sampling of 0.412-12.01 micrometers (Riggs et al., 2017). VIIRS has a 16-day 

repeat cycle and a daily revisit made possible by its large swath of 3060 km (Riggs et al., 

2017). The spatial resolution is variable, 16 of the bands are at 750 m and 6 of the  bands are 

at 375m (Riggs et al., 2017). The VIIRS snow product follows Riggs et al., (2017) and 

includes a fractional snow product. VIIRS observations are also incorporated into the IMS 

and Globsnow products since 2013 (Riggs et al., 2017). These products are available in an 

EASE-Grid format. Both MODIS and VIIRS products incorporate cloud masks (Hall & 

Riggs, 2015 & Riggs et al., 2017). Overall, the algorithms of MODIS and VIIRS snow 

products are essentially the same, with differing resolutions and slight differences in spectral 

sampling. The biggest difference with the snow products is the differences in the cloud 

masks. Some bands used in the MOD35_L2 mask are not available for the VNP35_L2 which 

cause inherent differences in classification between the two products (Hall et al., 2019).  

Landsat-8 OLI is the most recent satellite in the Landsat series, launched in February 

of 2013 and is continuing to orbit (Barsi et al., 2014). Landsat-8 OLI overpass time is 10:00 

am over the equator +/- 15 minutes (Li & Roy, 2017). The USGS provides various levels of 

Landsat-8 data, for the purposes of this study collection 2 level 2 data will be used. Level-2 

process is done only on level-1 data that meets the requirement of a solar zenith angle less 

than 76ᵒ (Engebretson, 2020). Level-1 data is radiometrically calibrated using ground control 

points and digital elevation models (DEM) in this instance, as the products used in this 

research are L1TP (Engebretson, 2020). These datasets are also geometrically corrected 

using cubic convolution resampling method (Engebretson, 2020). Level-2 data processed 

after these corrections and are radiometrically, atmospherically corrected and delivered as 

surface reflectance (Engebretson, 2020).  Table 4.1 shows the band specifications of  the 

collection 2 level 2 Landsat OLI data products.  
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Table 4.1: Landsat-8 OLI band designations (Adeyeri et al., 2017)  

 

For evaluation based on landcover type, a MODIS landcover product (MCD12Q1) 

was used. This is an annual product with a resolution of 500 m that contains a variety of 

classification methods, for the purposes of this study the International Geosphere-Biosphere 

(IGBP) land classification scheme was used. This classification scheme uses a year of 8 -day 

MODIS adjusted reflectance data (Sulla-Menashe & Friedl, 2018). Collection 6 was 

classified using the Land Cover Classification System (LCCS) developed by the Food and 

Agriculture Organization, using a nested classification system (Sulla-Menashe & Friedl, 

2018). There are some uncertainties within this product including underrepresentation of 

wetlands, misclassification of grasslands and glacial regions that are covered by topographic 

shadows being mapped as water (Sulla-Menashe & Friedl, 2018). This product was gathered 

for each year that is included in the validation portion, where data is available (2018, 2019). 

The NASA Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM) was 

used as ancillary data. The 30 m resolution data was gathered from the USGS EROS archive. 

Table 4.2 provides a summary of the snow datasets used in this research.  
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Table 4.2: Data details for satellite imagery used in this study (Riggs et al., 2017 & Hall, 2002)  

 Launch 

date 

Spectral 

Sampling 

Repeat/Revisit/S

wath 

Spatial 

Resolution 

Product Bands Used for 

Snow Product 

MODIS Terra: 

12/1999 

Aqua: 5/ 

2002 

 

36 bands  

0.4-14.4 

micrometers 

Repeat: 16 days 

Revisit: 1-2 days  

Swath: 2330 km 

2 bands: 250m  

5 bands: 500m 

29 bands: 1km 

M*D10A2 

MCD12Q1 

4,6/7, 13, 16, 20, 

26, 31 & 32 

VIIRS Launch:10/ 

2011 

 

9 visible/NIR 

infrared bands, 

8 mid-IR, 4 

LW-IR bands 

0.412-12.01 

micrometers 

Repeat: 16 days 

Revisit: Daily 

Swath: 3060km 

16 bands: 750m  

6 bands: 375m 

VNP10A1 I1, I3, M10 

Landsat

-8 OLI 

02/2013 

 

11 bands, 

Visible, NIR, 

SWIR, TIR 

Repeat: 16 days 

Revisit: 8 days 

Swath: 185km 

 

Band 1:15 m 

Vis and SWIR: 

30 m 

 

Level-2 

Data 

3,4,5,6 

 

Analysis was focused on the three months from the year 2003 to 2019 during the 

spring freshet from April-June. However, the data was gathered from March 30 th to July 2nd 

from 2003-2019 to ensure that the periods were covered. Landsat-8 OLI data is present from 

2013-2019, these images are gathered within the study area for all these years where there is 

<20% cloud cover present.  

4.2 Data Pre-processing   

MODIS Terra/Aqua products were acquired through NASA’s Earth Data platform in 

two tiles (h10v03, h10v04). These products were downloaded in a geographic coordinate 

system and are georeferenced and corrected for slope and aspect through the Global 30 

Arcsecond digital elevation model (GTOPO30 DEM) (Hall & Riggs, 2015). For each year 
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the files were separated by tile identification and date and mosaicked as such. Then they were 

cropped and masked to a Thompson Okanagan shapefile acquired from the GIS database 

from the University of British Columbia. VIIRS data was gathered from the same source 

from 2012-2019. However, VIIRS is only available in sinusoidal EASE-grid format, so these 

files were re-projected to the WGS84 geographic coordinate system using a nearest neighbor 

method. VIIRS images were resampled to the same resolution as MODIS from 375 m to 500 

m using nearest neighbor interpolation once more. These VIIRS images were also collected 

in 2 tiles (h10v03, h10v04). The projected, re-sampled VIIRS images are then separated by 

tile and date and mosaicked and cropped and masked to the same Thompson Okanagan 

shapefile. The DEM was resampled to 500 m and cropped to the study region. Landcover 

classification MODIS images were cropped to the study region.  

4.3 Multi-Step Cloud Mitigation  

 Terra and Aqua acquisition times are 3 hours apart, as Terra crosses the equator at 

10:30 am and Aqua at 1:30 pm, VIIRS crosses at 1:00 pm (Miller et al., 2013). To mitigate 

cloud contamination, a simple workflow was adopted. First, all pixels that are classified as 

“cloud”, “missing data”, “no decision” and “detector saturated” are all removed and replaced 

with NA values for Terra, Aqua and VIIRS. This is a conservative approach to mapping; 

however, this is done to ensure that all the valid pixels from all sources are utilized. The 

Terra images are prioritized as they have the highest reported cloud accuracy throughout 

compared with Aqua and VIIRS (Key et al., 2013; Wang et al., 2009; Chelamallu et al., 

2014). The pixels labelled NA for Terra are replaced with cloud-free pixels from VIIRS or 

Aqua if VIIRS data are cloud contaminated. No class is prioritized in this method, it is based 

on the raw classification of each dataset and their position in the algorithm. The workflow for 

this combination is summarized below (figure 4.1).  



 

 36 

 

Figure 4.1: Diagram showing the cloud pixel replacement for Terra, Aqua and VIIRS  

 It was necessary to use the highest accuracy snow mapping estimates as possible. 

Aqua MODIS experienced a band 6 failure which impacts the snow and cloud mapping 

capability. Therefore, despite the restoration of band 6 sensors for Aqua, the SNOWMAP 

algorithm using Aqua exhibits lower accuracies than Terra and VIIRS (Key et al., 2013; 

Wang et al., 2009). Similarly, VIIRS also has lower reported accuracy than Terra 

(Chelamallu et al., 2014). This approach was adopted for years where VIIRS is available 

(2012-2019). Prior to 2012, a Terra Aqua combination (TAC) was adopted (Figure 4.2).  

 

Figure 4.2: TAC cloud pixel replacement flow diagram  
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 Having created a combined product of Terra, Aqua and VIIRS for 2012-2019 and a 

TAC for 2003-2011, an adjacent temporal deduction was performed to further mitigate cloud 

cover. This entails using the same function to replace same day pixels but applied to p rior 

and subsequent days. Pixels were used from the day i-1 (previous day) followed by the 

subsequent day, i+1, to ensure a snow-covered pixel was not prematurely labeled as “no-

snow” if snow melted during day i.  This methodology was repeated for ATD +/-2 days if the 

pixel remained cloud-covered.  

 

Figure 4.3 Flow chart for +/-1-day ATD for combined images  

 After a 2-day temporal filter was applied, a spatial filter was applied to the output 

images to further mitigate cloud contamination. Spatial filters have been used as part of a 

stepwise cloud removal process (Poggio & Gimona, 2015; Li, 2019). Some spatial filters 

incorporate terrain elevation and aspect as major drivers to the reclassification (Tong et a l., 

2009). Other spatial filters are done with using a majority-based approach, where a cloud 

pixel will be reclassified based on values of the nearest neighbors (Lindsay et al., 2015). 
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Some other approaches consist of snow and land-line rule-based approaches (Parajka & 

Broschl., 2008). In this study a 3x3 kernel (1500 x 1500 m) focal filter was applied to the 2 -

day temporally filtered images. Images were first reclassified as binary snow / no snow 

pixels based on a threshold of 50% snow cover. Meaning that pixels with a fractional snow 

cover >=50% were assumed to be snow and <50% no snow. This kernel uses the value of the 

nearest 8 pixels to interpolate the missing value. The spatial filter was added after the 

temporal filter to fill in as much of the large cloud coverage areas as possible prior to the 

spatial filter to maximize its effectiveness. 

The last step for cloud mitigation is the implementation of the SNOWL method, 

proposed by Parajka et. al. 2012. The SNOWL method calculates mean elevation for all 

snow pixels and no snow pixels within a region (Parajka et al., 2012). These are then the 

“snow-line” and “land-line” elevations, cloud pixels above the snow-line elevation will be 

reclassified as snow and cloud pixels below the landline will be reclassified as land (Parajka 

et al., 2012). Pixels in between these two elevations are considered partially snow-covered 

and will be left as cloud for the purpose of this study. The accuracy of this procedure was 

higher for snow onset and offset and is effective and robust in mountainous regions (Parajka 

et al., 2012). Therefore, it is a fitting addition to the cloud mitigation methodology. The 

location of clouds is highly sensitive to this method. If cloud cover is focused at mid 

elevations, which is often the case in certain years, the snow line elevation estimation will be 

too high and snow cover will be underestimated. Images where cloud cover is greater than 

25% throughout the whole area prior to this step will be excluded from the study, as another 

study using an elevation dependent interpolation method concluded that reliable cloud 

removal requires at least 70% of the image to be cloud free prior to the methods 

implementation (Gafurov & Bardossy, 2009). Figure 4.4 below shows a flow chart of this 

step in the methodology. This concludes the cloud-mitigation method, the overall steps are 

shown in figure 4.5.  

Cloud cover will be extracted as a proportion of the area for each step in the 

methodology to compare the cloud mitigation throughout the entire methodology.  Cloud 
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duration maps were also created where each pixel represents the number of days it was cloud 

covered. These were constructed for each year up to and after the SNOWL method for visual 

comparison for the efficacy of this method.  

 

Figure 4.4: SNOWL reclassification of cloud covered pixels above and below the calculated 

elevations “snow-line” and land-line”  
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Figure 4.5: Overall methodology of the combined snow product data that combines the TAC, 

ATD and SNOWL methods to produce cloud-mitigated snow cover extent.  

4.4 Evaluation of Cloud Mitigated Daily Snow Product 

 In situ snow measurements in this region were sparse and limited to 7 points 

throughout the area, mostly concentrated at medium to low elevation. Therefore, moderately 

high-resolution imagery was used ground-reference data to evaluate the moderate resolution 

(MODIS/VIIRS) product. A comparison study between MODIS FSC algorithm applied to 

Landsat ETM+ showed an adjusted R-square of 0.95 in an ordinary least square’s regression 

and an RMSE of 10% in a mountain domain (Crawford, 2015). The disagreement between 

the two datasets was attributed to cirrus clouds, the aggressiveness of the MOD35_L2 cloud 

mask and thin patchy snow as this study was done during the off season in a mountain terrain 

(Crawford, 2015). Landsat also showed a lower FSC than MODIS in some cases, which was 

a result of a transient snow fall between the overpasses of MODIS and Landsat ETM+ 

(Crawford, 2015). Landsat-8 OLI has also been used for validation of cloud mitigation 

methods on MODIS products throughout the Tibetan Plateau by using a binary thresholding 

algorithm like that of the MODIS FSC SNOWMAP (Deng et al., 2015). This found R2 values 
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ranging from 0.4-0.91 after a TAC, ATD, SNOWL and composite with AMSR2 was done 

(Deng et al., 2015). The agreement between the datasets also highly depends on type of land 

measured. For instance, grasslands have the highest R2 at 0.91, whereas forested lands fall to 

0.4 with this dataset (Deng et al., 2015). Therefore, the overall agreement of Landsat OLI and 

the MODIS product is relatively high. The largest differences between high resolution and 

moderate resolution snow mapping is that with high resolution it is easier to identify snow 

under forest canopies (Chokmani et al., 2010). In this case, a binary snow mapping approach 

is taken with a similar thresholding algorithm to SNOWMAP with an additional parameter 

targeting snow covered forests to assess agreement between high spatial resolution and the 

combined snow cover product.  

 Overall accuracy of MODIS products is between 85 and 99% in clear conditions, with 

identifying snow cover in forested regions being a limiting factor (Parajka et al., 2012). 

These areas exhibit a decrease in accuracy due to patchy or thin snow in underlying canopies 

as well as reflectance of snow changing in forested areas which requires high resolution to 

depict (Jain et al., 2008; Chaponniere et al., 2005). In forested areas under all-sky conditions, 

accuracy can be as low as 50% (Crawford, 2015). A series of level-2 Landsat-8 OLI products 

were used from 2013-2019 to compare with MODIS Terra/Aqua and VIIRS products 

separately as well for each step in the cloud mitigation methodology.  

Although a topographic correction is usually a pre-processing step for rugged terrain, 

in this case it was not. Cosine correction (c-correction) is used for Landsat images to smooth 

images and correct reflection values (Wang et al., 2018). This method uses the solar zenith 

angle, solar azimuth, aspect, and slope to correct and remove effects of topographic shadows 

(Wang et al., 2018). However, after running a c-correction on the Landsat images, it was 

clear that the change in surface reflectance values for each individual band distorted data 

values. Since the data was being used to create indices (NDSI, NDVI), which can detect 

snow-cover in shadowed regions, applying a c-correction was not justified (Moreira et al., 

2016). Research indicates that this method was 94% when compared to a GF-1 high 

resolution image acquired at the same time as the Landsat OLI image without topographic 

correction and only increased to 94.5% when topographic correction was implemented 
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(Wang et al., 2015; Wang et al., 2018). VIIRS and MODIS snow products assign “No 

Decision” to pixels with low illumination (solar zenith angle >70ᵒ) in the visible spectrum to 

minimize uncertainty of snow-cover pixels when cloud shadows or terrain shadows cause 

low reflectance (Hall et al., 2002; Riggs & Hall, 2015; Riggs et al., 2017). As mentioned 

earlier, these “No Decision” pixels will be changed to NA, which are removed for the 

evaluation to only measure agreement between snow-covered and land-covered pixels.  

A threshold method for the normalized difference snow index (NDSI), normalized 

difference vegetation index (NDVI) and a normalized difference forest snow index (NDFSI) 

was used for snow extraction in Landsat-8 OLI images. NDFSI is calculated with the NIR 

band and the SWIR band (7). Using the NDFSI with NDSI and NDVI thresholding was 

chosen to minimize snow pixel false negatives in forest covered areas (Wang et al., 2015). 

This binary method mimics the MODIS SNOWMAP algorithm with the addition of the 

NDFSI to better distinguish snow cover in forested areas.  

𝑁𝐷𝐹𝑆𝐼 =  
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
       (5) 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝑒𝑑 

𝑁𝐼𝑅+𝑅𝑒𝑑 
       (6) 

𝑁𝐷𝑆𝐼 =
𝑉𝑖𝑠𝑖𝑏𝑙𝑒−𝑆𝑊𝐼𝑅

𝑉𝑖𝑠𝑖𝑏𝑙𝑒+𝑆𝑊𝐼𝑅
      (7) 

With the NDFSI, it is possible to distinguish snow covered forests as the NDFSI 

value is higher under these circumstances (Wang et al., 2018). A pixel is classified as snow 

initially if it has an NDSI value over 0.4 and a reflectance in the NIR above 11%. An NDSI 

cutoff of 0.4 corresponds with a 50% snow covered pixel (Nagler et al., 2016). The pixel will 

remain classified as snow cover if the green band reflectance is above 10% to reduce any 

false classifications of dark vegetation (Hall et al., 2001). The last threshold from 

SNOWMAP is the SWIR reflectance, as previously mentioned snow SWIR reflectance is 

about 0.20 or less and in some cases with low solar angels can range from 0.25 -45 (Riggs & 

Hall, 2015). Thus, a threshold is placed so that any pixels with a SWIR > 0.45 are flagged as 

no snow. The temperature and elevation portions of the algorithm were not used in the binary 

snow map. These additional arguments for SNOWMAP are to reduce commission errors in 

warm coastal regions, subtropical forests and high reflective landcover such as salt flats and 



 

 43 

omission errors in warm mountain regions (Riggs & Hall, 2015). Additional snow in forested 

regions are identified using the NDFSI.  

To analyze the efficacy of using the NDFSI for detecting snow cover in forested 

regions, three dates throughout the off season in 2015 were chosen, April 20 th, May 13th, and 

June 7th. This year was selected because it contained images from each month throughout the 

season that had minimal cloud cover. For each date 3 regions of interest were selected guided 

by the Landsat landcover classification image of Canada for selecting a snow, forest, and 

snow-covered forest regions of interest (ROI). These ROIs were not gathered from the exact 

same areas for each date and so the number of pixels selected for each ROI on each date 

varied. Figure 4.6 shows the NDVI-NDSI values for each class. A considerable number of 

snow-covered forest pixels are excluded from the SNOWMAP thresholding algorithm as 

they exhibit an NDSI lower than 0.4. However, figure 4.7 shows the values of NDVI-NDFSI, 

in these figures it is possible to visualize the differences in index values for these three 

classes as well as to see the number of forest snow pixels that would be included in the 

binary snow map using the NDFSI.  

The first date, April 20th, shows a less clear boundary between open snow and snow-

covered forests. During this period, snow cover is still prominent in the area and snow 

underneath the canopy will have similar reflectance characteristics to open snow cover. 

Conversely, the remaining dates show clear discrimination between the classes (Figure 4.6). 

This is because throughout the snow off season, the snow underneath canopies will become 

contaminated with dirt and dust that change allows for differences between open snow and 

snow-covered forests to be more separable. However, this also stretches the distribution of 

NDFSI values beyond the threshold of being classified as snow cover (Figure 4.7). This can 

be explained simply, as snow cover in forests becomes patchier the NDFSI value will be 

smaller and the pixel does not contain enough snow to be classified as such any longer. The 

NDSI of snow-covered forests are shown to have a wider range of values which is reflected 

by the mean values in table 4.3 from 0.3 near the end of the snow season to 0.6 at the sta rt of 

the study period. Conversely, the mean of pure snow cover is stable at ~0.9 (Table 4.3). 
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Since the threshold of snow cover is NDSI > 0.4, snow cover under canopies would be 

largely underrepresented (Figure 4.6).  

The disparity of these NDFSI values between snow covered forests and pure snow are 

utilized in the thresholding algorithm. The red lines throughout figure 4.6 and 4.7 show the 

thresholding values themselves. In figure 4.6 it is shown how much snow under the canopy 

would result in omission errors with the NDSI thresholding of MODIS SNOWMAP 

collection 5. Figure 4.7 shows the addition of forest snow covered pixels using the added 

NDFSI thresholding.  Although the mean values between NDFSI and NDSI values do not 

show a significant difference, the figures displaying the data show the distribution of NDSI 

and NDFSI values of snow-covered forests (figure 4.6-4.7). From these ROIs and summary 

statistics, the decision to use the NDFSI in collaboration with the original thresholding of the 

SNOWMAP algorithm can be justified.  

Table 4.3: Means and standard deviations of NDSI, NDVI and NDFSI for the three landcover 

types (snow, forest and snow covered forests)  

 
April 20th May 13th May 22nd June 7th 

 
n=1855 n=1188 n=2280 n=425 

Snow Covered Forest Mean SD Mean SD Mean SD Mean SD 

NDSI 0.62 0.12 0.48 0.06 0.54 0.08 0.34 0.12 

NDVI 0.11 0.08 0.12 0.02 0.15 0.03 0.22 0.04 

NDFSI 0.68 0.08 0.56 0.05 0.66 0.05 0.53 0.07 

Forest n=1870 n=1612 n=1457 n=1280 

NDSI -0.39 0.03 -0.51 0.04 -0.40 0.03 -0.32 0.03 

NDVI 0.80 0.03 0.70 0.05 0.74 0.03 0.77 0.03 

NDFSI 0.44 0.06 0.17 0.11 0.35 0.07 0.43 0.04 

Snow n=5035 n=1936 n=1323 n=1960 

NDSI 0.90 0.02 0.96 0.01 0.94 0.00 0.93 0.00 

NDVI -0.05 0.01 -0.11 0.00 -0.10 0.02 -0.08 0.00 

NDFSI 0.89 0.02 0.95 0.01 0.93 0.00 0.92 0.01 

 

This method was chosen for the ground-truth dataset to allow continuity between the 

MODIS SNOWMAP algorithm and the one shown here, but also to allow for added accuracy 

of forest snow mapping with the reference dataset. Decision rules for the Landsat-8 OLI 
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snow mapping algorithm is depicted in figure 4.9. The addition of NDFSI gives a better 

understanding of where MODIS, VIIRS and a combined product still have accuracy issues 

with forested landscapes. Snow covered forests NDSI are usually lower and therefore can be 

exempt in binary snow maps (Wang et al., 2018). Whereas, the NDFSI for these regions is 

high, within this dataset the mean value is 0.60 (Table 4.3). This additional index for 

thresholding binary snow maps have accuracies ranging from 93.5-94.5% (Wang et al, 2015; 

Wang et al., 2018). Figure 4.9 shows the binary snow map of the right hand and left-hand 

side of the thresholding algorithm to display the additional snow pixels captured with the use 

of the NDFSI threshold. Locations of these ROIs are available in Appendix A. 
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a)  

b)  

c)  

Figure 4.6: Landsat NDSI-NDVI values for forest cover, snow cover and snow covered forests 

for 3 ROIs, a-c red lines represent the base snow thresholding for MODIS SNOWMAP 

collection 6 for April 20th, May 13th and June 7th 2015 
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a)  

b)  

c)  

Figure 4.7: NDFSI-NDVI values for forest cover, snow cover and snow covered forest for 3 

ROIs, a-c show red lines representing snow thresholding values according to original 

SNOWMAP for April 20th, May 13th and June 7th 2015 
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Figure 4.8: Adjusted decision rules for binary snow map of Landsat-8 OLI images (Wang et al., 

2018) 

 

Figure 4.9: Left: Landsat snow cover using NDFSI thresholding with NDSI <0.4., Right: 

Landsat snow map using the MODIS thresholding with additional thresholding arguments of 

SWIR, green and NIR bands on April 20th, 2018   
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Only Landsat-8 OLI images that contained <20% cloud cover was used for the 

accuracy assessment from 2013 to 2019. The dataset consists of 18 images, locations of these 

images are provided in Appendix B. These images are gathered from rows 23 to 25 and paths 

44 to 47. The remaining pre-processing steps include mosaicking images gathered on the 

same day, when available, co-registering them with the MODIS and VIIRS datasets and 

cropping them to the study region. Landsat-8 OLI contains a QA file where the cloud fraction 

mask (CF mask) was extracted. The function of mask (Fmask) is an object-based cloud and 

cloud shadow detection algorithm for Landsat imagery. While there are some known 

uncertainties within the cloud mask including misclassifying high reflectance landcover as 

cloud such as snow/ice, beaches, salt lakes and buildings (Zanter, 2019), the overall accuracy 

of the Fmask has been shown to be 96% (Zhu & Woodcock, 2012).  

The binary snow mapping algorithm is applied to each Landsat-8 image and then the 

CF mask is applied. The Landsat images are then resampled to 500 m. The re-sampled 

Landsat data are used as the reference data in the computation of confusion matrices of the 

MODIS snow extent data that coincide with the Landsat OLI snow data. The MODIS snow 

data includes the Terra, Aqua, VIIRS, TAC, the combined product and the ATD for 1 and 2 

days, the spatial filter and the SNOWL dataset. For each of the MODIS datasets, pixels 

flagged as anything above 100 (cloud, inland water, ocean etc.) will be changed to NA so the 

dataset includes only snow and no snow pixels, the remaining pixels have already been 

changed to reflect a binary snow map prior to the spatial filter step (Table 4.5). A threshold 

of 50% was implemented for the MODIS fractional snow datasets, pixels retaining a snow 

fraction of >50% are classified as snow. A systematic test in 10% increments found that 

pixels classified as snow with >=50% FSC had the highest agreement. All NA pixels are 

excluded from the confusion matrices, this includes cloud as masked by Landsat and clouds 

in all other datasets. Therefore, the number of points used for each agreement statistic will 

differ between datasets.  
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Table 4.4: MODIS and VIIRS flag value key (Riggs & Hall, 2015) 

Flag Value 
NDSI 0-100 

Missing Data 200 

No Decision 201 

Night 211 

Inland Water 237 

Ocean 239 

Cloud 250 

Detector Saturated 254 
Fill 255 

 

 The confusion matrix statistics that are extracted from each table will be the 

sensitivity, specificity, overall and balanced accuracy. The commission and omission errors 

will both be calculated with other statistics given. Equations 8 through to 13 are the 

necessary calculations for each metric where TP is true positive, TN is true negative, FN is 

false negative, FP is false positive, and N is the number of observations.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (8) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
      (9) 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
              (10) 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
             (11) 

𝑇𝑦𝑝𝑒 𝐼 𝐸𝑟𝑟𝑜𝑟 = 1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦              (12) 

𝑇𝑦𝑝𝑒 𝐼𝐼 𝐸𝑟𝑟𝑜𝑟 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦              (13) 

4.4.1 Snow Cover Analysis  

 Point data extracted from watersheds within the region were used to record the last 

day of snow (LDS) to analyze early snow melt patterns. This was done for within the 

individual watersheds analyzed in the study:  South Thompson, Thompson, Okanagan, and 

Columbia. The snow proportions were extracted and summarized, for available data. In situ 

data gathered from the BC data portal automated snow collection and were used to determine 

whether the distributions of remote sensing derived LDS follow the same patterns as in situ 
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LDS. Climate teleconnection indices, the PDO, PNA and ONI, from the NOAA database  

were used to analyze the linear relationships between these indices and the LDS dataset. 

These indices were used because these are the main teleconnections that have been proven to 

have impacts on snow cover in this region (Fleming et al., 2010; Bevington  et al., 2019; 

McClung, 2013). One article stated that the ONI and PDO are the most influential 

teleconnections in BC with respect to snow cover (Bevington et al., 2019). Another study 

stated that maximum snow depth measurements during El Nino were significantly lower than 

during La Nina years (McClung, 2013). The PNA was used as well as it is interconnected 

with variations in the ONI and it was stated to be a significant teleconnection on 

climatological variability in BC (Bevington et al., 2019). These relationships were tested 

with simple and multiple linear regression (MLR). For each 3-month interval, a simple linear 

regression with 200 m elevation intervals was done. This allows insight for how much LDS 

median variation within the 17-year dataset can be attributed to fluctuations in the ONI. This 

will also show which elevations are most susceptible to the ONI. The PDO and PNA were 

gathered for the study period (April 1st – June 30th), a multiple linear regression using both 

variables will be done for testing the significance of each variable on the off-dates for the 

same 200 m elevation intervals. These regression models are done for LDS datasets across 

the entire region and are not separated by watershed.  
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Chapter 5 

Results 

This study sets out to evaluate the patterns of snow cover in this region, using estimates of 

last day of snow (LDS). In addition, the study seeks to test associations in patterns observed 

with the Pacific Decadal Oscillation (PDO), Pacific North American teleconnection pattern 

(PNA) and the Oceanic Nino Index (ONI) on snow cover variability in this region through 

regression analysis. Contextually, the patterns of the snow offset date in this region over the 

17-year dataset provides insights into climate variability. Although there are no clear trends 

in this period that show decreases in snow extent during the spring freshet in this region, it is 

important to note that this period is shorter than a typical 30-year climate record. Overall 

accuracy of the complete cloud mitigation method reached 96%. Each watershed LDS 

dataset showed similar patterns at various elevations. Regression models testing the 

explained variability of teleconnections on the LDS datasets vary depending on the elevation 

bands as well, with the PDO and ONI being the most inf luential over this region.  

The chapter is divided into three sections. First, the results of the cloud mitigation 

efforts are presented. This is followed by an accuracy assessment of snow cover mapping. 

The third sections present the results of variations in snow cover extent in each basin and the 

links to teleconnection indices.  

5.1 Cloud Mitigation  

In this subsection, the progressive mitigation of cloud fraction from the Terra-Aqua 

Combined (TAC) method, the ATD method and the SNOWL methods are shown.  

5.1.1 Terra Aqua Combined (TAC) and VIIRS combinations  

 One of the objectives of this study was to mitigate as much of the cloud cover as 

possible through the implementation of the multi-step methodology. The addition of VIIRS 

starting in 2012 has variable effects on the cloud fraction, reducing up to 25% cloud cover 

when compared to the TAC in some cases, notably April 4 th, 2015. Figure 5.1 shows the 
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cloud fraction difference from the TAC to the combined product using VIIRS for the year 

2015, the remaining years are presented in Appendix C. VIIRS overpass is only 30 minutes 

prior to Aqua, therefore, there were no expectations that this additional dataset would remove 

significant cloud cover. Cloud mitigation with the addition of VIIRS was only significant 

where the overcast was sparse. Therefore, it is possible that the additional data from VIIRS 

originate from the difference in cloud mask compared to MODIS as well as cloud movement.  

 

Figure 5.1: Cloud cover percentage mitigated through the addition of VIIRS to the same-day 

combination 

5.1.2 The adjacent temporal deductions (ATD) method for +/- 2 days 

The ATD of +/- 2 days was the most effective in mitigating cloud fraction. The most 

successful year for cloud mitigation was 2015. A summary of the cloud coverage 

improvements throughout the study period are provided in table 5.1. It is notable that the 

average cloud percentage in the year 2015 after the entire methodology has been 

implemented is at 0.2% (Table 5.1). Figure 5.2 below shows the cloud fraction for each step 

in the process in 2015, drastic variations in cloud cover for the combined product are  areas 

where the ATD are the most effective. For example, mid-late June where TAC and the 
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combined product cloud fraction varied from 75% cloud cover to 50% repeatedly, applying 

ATD +/- 1 day mitigated nearly 50% of cloud cover (Figure 5.2). ATD +/- 2 days mitigated 

another 20% because of the differences in cloud fraction throughout that period. Early June is 

another example where original images and the combined product’s cloud fraction was 

nearly 100% and was brought down to 20% after the ATD +/- 2 days (Figure 5.2).  

Table 5.1: Average cloud cover percentage throughout the study period and throughout the 

methodology 
 

Terra Aqua TAC VIIRS Combined 
(Terra, 
Aqua, 
VIIRS) 

TAC + 
ATD +/- 1 

Day, 
Combined 
+ ATD +/- 

1 Day 

TAC + ATD +/- 
2 Day, 

Combined + 
ATD +/- 2 Day 

TAC + ATD 
+/- 2 Day, 

Combined + 
ATD +/- 2 
Day + SF 

TAC + ATD +/- 
2 Day, 

Combined + 
ATD +/- 2 Day 
+ SF +SNOWL 

2003 76.5 78.7 69.0 NULL NULL 41.0 25.4 16.3 2.4 

2004 63.0 66.0 53.6 NULL NULL 26.3 15.2 9.5 1.4 

2005 70.6 72.2 62.4 NULL NULL 36.0 21.8 13.4 1.9 

2006 69.5 71.9 61.4 NULL NULL 32.0 18.3 11.0 1.6 

2007 70.0 72.4 61.8 NULL NULL 32.3 18.4 11.8 2.2 

2008 77.8 79.6 70.8 NULL NULL 40.7 24.4 15.1 2.1 

2009 64.2 68.9 55.7 NULL NULL 27.2 14.7 8.5 1.2 

2010 76.7 79.0 68.0 NULL NULL 38.4 24.6 15.4 2.4 

2011 79.5 81.5 72.1 NULL NULL 43.0 26.1 16.3 2.7 

2012 80.3 81.7 73.0 75.2 64.2 33.1 18.1 18.1 2.5 

2013 75.6 77.2 67.7 70.6 58.4 28.1 14.6 7.6 1.8 

2014 75.1 79.0 67.0 72.5 57.7 23.3 10.4 4.5 0.7 

2015 58.5 62.8 49.0 58.2 41.1 12.0 3.6 1.3 0.2 

2016 65.4 68.9 57.0 66.3 50.5 19.7 8.2 4.1 0.8 

2017 74.5 76.4 66.9 71.5 58.8 27.1 14.1 6.6 1.1 

2018 68.4 71.8 60.9 65.3 52.4 22.4 11.1 5.5 1.0 

2019 70.1 75.5 61.9 69.4 53.2 20.4 8.9 3.9 0.8 

Average 71.5 74.3 63.4 68.6 54.5 29.6 16.3 9.9 1.6 
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Figure 5.2: Proportion of cloud cover from April 1st to June 30th, 2015 for each step in the 

methodology  

 The spatial filter removed minimal cloud cover in most cases, however, there were 

instances shown in figure 5.2 above where the addition of the spatial filter brought the cloud 

fraction to 0%. This method is most effective where there are small gaps of cloud scattered 

throughout the images. This is because the kernel uses the average of surrounding pixels, so 

where there are large gaps of cloud only the edges of the gap will be filled. Where there are 

small gaps throughout the image, most of them will be interpolated by this method. This was 

the reasoning behind applying this portion of the methodology near the end of the process, in 

order to utilize the movement of clouds from the combination of the three satellite datasets as 

well as the ATD +/- 2 days to have the least amount of large cloud gaps as possible. Overall, 

throughout most years in the analysis this method has been successful in reducing significant 

cloud cover. In some cases (2014, 2015, 2017) cloud cover was mitigated to a maximum of 

25% throughout the off-season. Whereas in the remaining years there are periods of time 

where cloud fraction remained as high as 75%, such as 2011 (Figure 5.3). The remaining 

visualizations of cloud fraction mitigation are presented in Appendix D.  
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5.1.3 Application of the SNOWL method to remove remaining cloud pixels  

The SNOWL methodology mitigated a sizable portion of remaining cloud covered 

pixels in days where cloud cover was already below 25% after temporal and spatial filtering 

were done. In the cases where cloud cover is still in excess, such as 2011, the methodology 

does mitigate cloud cover but not entirely (figure 5.3). Days that display substantial amounts 

of cloud cover (>1%) throughout the entire region after the methodology is done will be 

removed from the snow cover proportion analysis. This is to ensure that uncertainty from 

cloud covered landcover is not prominent in the study.  

 

Figure 5.3: Proportion of cloud cover from April 1st to June 30th, 2011 for each step in the 

methodology  

 The locations at which clouds are the most prominent are important in understanding 

where the most uncertainties are throughout the region in respect to snow cover extent. The 

cloud duration map comparison allowed the visualization of the shift of cloud cover 

presence. Figure 5.4 below contains cloud duration maps for years where there was the most 

dramatic cloud mitigation with the combined product +ATD +/- 2 days +SF + SNOWL, in 

comparison to the combined product + ATD +/- 2 days + SF, where the value of each pixel 

represents the number of days that pixel was cloud covered in the 91-day period.  These 
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images show a strong tendency for remaining cloud cover to be persistent mainly in the 

mountainous area of the study region.  

 

 

 

 

 

Figure 5.4 Cloud duration maps for 2005, 2008, 2010 and 2018 for TAC+ATD (left) and 

TAC+ATD+SNOWL (right) application, each pixel value is the number of days where it is 

classified as cloud cover 
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5.2 Accuracy Assessment of Combined Snow Cover Product (TAC+ATD+SF+SNOWL)  

Confusion matrices accuracy metrics were calculated for the entirety of the images 

that coincided with Landsat-8 reference dataset but also for forested landcover separately. 

Understanding where the errors are concentrated throughout the methodology is important 

when assessing the accuracy of the overall products. Note that in subsequent tables, NA 

values are present where there weren’t enough points in the specific dataset to compute a 

confusion matrix.   

Table 5.2: Overall Accuracy (OA) for each step and separate datasets used throughout the 

validation dataset with highest daily accuracy in bold 
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April 21st 2013 86.1 87.3 83.3 85.6 84.8 84.7 84.7 84.0 82.1 

April 1st 2014 73.4 75.0 74.6 72.7 72.5 72.2 72.2 71.1 71.9 

April 20th 2015 94.0 94.1 91.1 92.7 92.0 91.6 91.6 91.6 90.6 

May13th 2015 87.8 91.2 89.1 87.7 87.1 83.5 83.7 83.7 85.4 

May 22nd 2015 94.3 94.3 92.2 93.4 92.2 92.9 92.9 92.9 92.4 

June 7th 2015 99.4 99.2 99.2 99.1 98.9 98.8 98.8 98.7 98.7 

May 1st 2016 92.2 91.9 86.1 90.7 88.2 88.2 88.2 88.2 87.5 

May 15th 2016 97.8 98.4 96.6 97.7 97.2 97.2 97.2 97.2 97.0 

May 20th 2017 92.8 91.6 89.1 91.2 89.6 89.3 89.2 89.2 88.9 

May 27th 2017 95.0 95.3 91.1 93.8 91.8 91.6 91.5 91.5 90.6 

May 29th 2017 90.2 87.6 85.5 87.8 86.1 86.0 85.9 85.8 85.8 

June 5th 2017 98.1 97.5 97.1 97.0 96.1 95.7 95.5 95.1 94.8 

May 14th 2018 91.9 92.9 88.6 90.7 89.0 89.0 89.0 88.9 91.5 

May 23rd 2018 93.9 92.9 89.0 92.5 90.4 90.0 90.0 90.0 89.8 

June 24th 2018 NA 99.1 99.5 99.5 99.4 98.0 97.7 97.2 96.9 

April 8th 2019 78.8 79.8 80.7 79.4 79.2 79.2 79.2 76.8 74.5 

May 10th 2019 91.9 90.7 84.0 90.0 86.8 87.2 87.2 87.1 86.8 

May 26th 2019 91.3 89.9 81.4 89.4 86.7 86.5 86.5 86.3 85.5 
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The overall accuracy throughout the dates are not significantly reduced for TAC or 

the combined product (table 5.2). The adjacent temporal deduction datasets also do not show 

significant decreases in agreement with the Landsat imagery. SNOWL, being the final 

method applied, will also adopt the misclassifications of the previous steps (TAC, ATD, 

spatial filter). The ATD is expected to have slightly less agreement with the Landsat images 

because of the seasonality of the study. ATD assumes that snow cover from the receding and 

preceding days have not changed, since this study focuses on the spring freshet, sometimes 

this may not be the case. Similarly, SNOWL is based on the mean elevation of snow and no -

snow pixels. In complex landscapes such as this one, aspect and slope affect melt out of snow 

significantly (Erxleben et al., 2002). Thus, the slight reduction in accuracy after applying 

SNOWL can be attributed to pixels that are low (high) elevation but have north (south) 

facing slopes (Erxleben et al., 2002). Figure 5.5 below shows the number of data points f rom 

each dataset that are used in the computation of each confusion matrix. This gives an 

understanding of how much cloud mitigation is done within the Landsat-8 image coverage 

for each dataset. For the reference images used, there wasn’t a significant increase in points 

when an ATD +/-2 day was put into place. This is because by this stage in the methodology, 

there were minimal cloud covered regions remaining in the image. It is important to note that 

not all images are taken from the exact same overpass in the study area, so there will be more 

data availability depending on the coverage of each reference image as well.  
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Figure 5.5: Bar graph showing the number of pixels used for the accuracy assessment on each 

date 

 June 24th, 2018 in the Landsat dataset was the only date where the ATD +/- 1 and 2 

days made a large contribution to cloud mitigation. Table 5.2 shows that the overall accuracy 

decreased from 0.99 to 0.97. During this time of the year there will be minimal snow cover in 

the area, apart from the mountains. However, throughout the table the reduction in accuracy 

from the single datasets to the multi-day multi-satellite composites is limited to 2-8% adding 

about 20,000 points for ATD +/- 1 day and 21,165 for ATD +/- 2 days. These findings are 

like another study that found accuracy of ATD +/- 1 day to reach 96.3%, slightly lower than 

MODIS Terra by 0.7%. The amount of cloud cover mitigated in this study was not 

mentioned however (Gafurov & Bardossy, 2019).    

 A major limitation on snow cover mapping is identifying and correctly classifying 

snow cover in forested regions (Crawford, 2015). To analyze the accuracy in these areas, 

forested regions were separated for each date, the overall accuracy for forested regions in 

presented in table 5.3. Some dates show a dramatic decrease in accuracy for forested regions, 

while others remain above 90%. April 1st, 2014 and April 8th, 2019 are two notable dates as 

the accuracy drops from 72% and 79% to 58% and 68% respectively for the ATD +/- 1 day. 

These dates are at the beginning of the season, where Landsat-8 images tend to map more 
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snow cover in forested regions, especially with the NDFSI method than the SNOWMAP 

algorithm used in MODIS and VIIRS classification. Later dates throughout the season retain 

a relatively high OA partly because snow in forested regions has melted. To better 

understand these errors, an analysis of the spatial distribution of type I and type II errors is 

required (Figure 5.6).  

Table 5.3: Overall Accuracy for each step in the methodology and each separate dataset 

throughout the validation dataset in forested regions exclusively  with highest daily accuracy in 
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April 21st 2013 71.0 64.5 76.5 70.6 74.5 74.4 74.4 74.9 74.4 

April 1st 2014 56.6 56.1 61.5 56.3 58.5 58.7 58.6 58.9 76.0 

April 20th 2015 90.0 90.1 86.3 88.3 87.1 86.2 86.2 86.3 85.0 

May13th 2015 85.2 85.8 86.2 85.0 85.4 82.6 82.8 83.6 84.2 

May 22nd 2015 96.3 95.7 94.5 95.3 94.3 94.5 94.5 94.4 94.3 

June 7th 2015 99.1 98.8 98.9 98.8 98.6 98.6 98.6 98.5 98.8 

May 1st 2016 90.9 89.9 83.7 88.6 85.0 85.0 85.0 84.9 84.3 

May 15th 2016 97.2 97.7 96.7 97.0 96.8 96.9 96.9 97.0 97.3 

May 20th 2017 91.0 88.2 86.4 88.6 86.7 86.3 86.3 86.1 86.1 

May 27th 2017 94.5 94.5 90.5 93.0 90.3 90.0 90.0 89.9 89.2 

May 29th 2017 92.0 87.8 88.0 88.6 87.6 87.3 87.2 87.1 87.3 

June 5th 2017 97.8 96.6 96.1 96.5 95.4 94.9 94.8 94.5 94.3 

May 14th 2018 88.7 89.9 84.7 87.0 84.7 84.6 84.6 84.6 86.3 

May 23rd 2018 94.9 93.1 91.0 93.2 91.5 90.9 90.9 90.9 90.9 

June 24th 2018 NA 98.6 NA 99.0 98.9 98.9 98.8 98.7 98.8 

April 8th 2019 63.8 60.6 66.6 62.8 65.8 68.7 68.7 68.3 69.6 

May 10th 2019 90.2 88.1 82.2 87.3 83.8 83.7 93.7 83.7 83.6 

May 26th 2019 93.8 92.4 87.6 91.5 88.5 87.9 87.8 87.9 87.4 

 

 For a handful of dates selected to represent a spread throughout the season (April 1st – 

June 30th) in the accuracy dataset, accuracy maps were made to visualize the errors. Figure 

5.6 depicts the false/true positives and false/true negative in both forested landcover and non -

forested landcover. From these images, an overwhelming majority of false negatives are 
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occurring in forested landscapes, mostly confined to the tree-line area on mountains. The 

overall trend shows that there are significantly more omission errors in forested areas than 

commission errors. The exception for this is the two dates stated earlier. The best dates to 

analyze to assess the accuracy of the SNOWL step are April 1 st, 2014 and May 14th, 2018 

because these two dates have a significant increase in overlapping pixels to test between 

Landsat and the product. April 1st, 2014 agreement with Landsat from the combined product 

through to the SNOWL method decreases by a fraction of a percent (0.5%). On May 14 th, 

2018 the agreement between the product and Landsat increases from the ATD steps to the 

SNOWL step by 2.6%.   The average agreement between Landsat and the combined + ATD 

+ SF + SNOWL is 88.4% and reaches 98% (Table 5.3). It is expected that agreement with 

high resolution imagery would fluctuate given the study period and the variance with cloud 

fraction in each of these images. However, the slight decreases in accuracy as the images are 

progressed throughout the methodology is minimal. On average, there is a decrease in OA of 

1% from the combined image through to the combined + ATD + SP + SNOWL product, but 

a 3% average decrease from the Terra snow product. 
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a)  

b)  

c)  

Figure 5.6: Accuracy maps showing the proportion of true/false positive to true/false negatives 

on (a) April 20th, 2015, (b) May 10th, 2019 and (c) June 7th, 2019 for both forested and non-

forested areas  
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5.3 Snow cover  

 Understanding the variability and patterns of snow cover melt out in this region and 

the watersheds that resides within it, was one of the aims of this research. It has been shown 

that snow cover in the Northern Hemisphere is decreasing, especially in the off season 

(Brown & Mote., 2008; O’Leary et al., 2018; Derksen et al., 2014). In various mountain 

basins, snow duration maps have shown a decreasing trend, primarily focused in regions of 

low to mid elevation (Li et al., 2017). Because cloud cover persistence is variable throughout 

each year, snow cover duration maps were not created for this study. Instead, samples of 

pixels were taken from four watersheds within the study area. These watersheds consist of 

the South Thompson, Thompson, Columbia, and Okanagan watersheds. These watersheds 

are diverse in elevation, therefore the number of points gathered, and elevation bin sizes are 

not consistent throughout. For example, in the Thompson watershed, there are minimal areas 

above 2000 m.a.s.l. so this elevation was not sampled in this watershed. Likewise, in South 

Thompson, elevations below 1300 m.a.s.l. weren’t included in this portion of analysis 

because many pixels below this elevation show that snow typically has melted prior to the 

start date of this study period (April 1st). Regions above 2300 m.a.s.l. were also excluded 

because these are presumably areas where permanent snow cover is present or melt out date 

is later than the last day in the study period (June 30 th). Therefore, sampling between these 

watersheds does vary. Figure 5.7 shows the points gathered throughout the study region 

overlayed on the DEM used for reference. These points will be used to record the last day of 

snow (LDS) for each pixel throughout the study period. An LDS of 0 refers to a pixel melting 

out prior to the study period, and a value of 91 refers to a snow pixel remaining throughout 

the study period. The LDS is recorded as the last day where snow is present for a period >4 

days consecutively. This is to reduce the error caused by false detection by one of the 

satellites that may carry over to the combined product or the ATD product.  
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Figure 5.7: Distribution of points used for LDS analysis overlayed on DEM 

Snow cover proportions were also extracted from all days where cloud was <1% of 

the entire study region. Snow proportions for the South Thompson watershed were also 

extracted where cloud was present for <1% of the watershed boundary, to analyze the 

variability of an individual watershed within the study region. These metrics are what will be 

analyzed to answer the key questions of this research.   

5.3.1 Large Area Analysis: Full Thompson Okanagan Economic Region 

 To visualize this extracted dataset from the entire region, these points were input into 

a boxplot for ~300 m elevation bands. These boxplots are shown in figure 5.8. The points 

were sampled from 1200 to 2100 m.a.s.l. throughout the entire region.  
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Figure 5.8: Distribution of LDS (boxplots) for the Thompson Okanagan region for 2003-2019 

categorized by El Nino/La Nina strength., for the three elevation bands, 1200-1500 m.a.s.l., 

1500-1800 m.a.s.l. and 1800-2100 m.a.s.l. between April 1st-June 30th  

 Figure 5.8 shows wide variability; however, the pattern remains consistent throughout 

for each of the elevation bands. For each of these figures, there is a wave-like pattern 

throughout the 17-year dataset in respect to the medians with later snow disappearance in the 

middle years and earlier disappearance in the later years. Several years show a positive 

skewness in these LDS boxplots. Positive (negative) skewness means that over half of the 

data points are lower (higher) than the average proportion of snow cover in these years. In 

the case of positive (negative) skewing, the median will be larger (smaller) than the average 

value. There is a positive skewness in later years in the boxplots (Figure 5.8), whereas earlier 

years exhibit a negative skewness. This means that in earlier years, more points are located 

below the average value, and in later years more points are located above the average value. 

The maximum and minimum values show a wide range, sometimes across the entire study 

period (1-91 days). Because of the variability of snow cover melt out and the various 
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influences on this process, this can be attributed to pixels having similar elevations but 

varying aspect, slope and landcover.  

A supplementary dataset was gathered from in situ automated weather stations within 

the study region. This in situ data is open source and available via Aquarius Web Portal by 

the Provincial Government of British Columbia. From this database, LDS was recorded for 

points available as the day where snow depth is <3 cm. Unfortunately, there was no in situ 

data point within the study area where snow depth data was available from May 2003 to May 

2019. Therefore, only four points were selected one from May 1 st, 2004 and two more from 

May 1st, 2005. These points range from 1460 m to 1780 m in elevation. The threshold of 3 

cm was adopted from other studies that have used similar thresholds f or comparing snow 

cover from remote sensing observations to in situ ground measurements (Hori et al., 2017; 

Dong & Menzel, 2016). Interestingly, the snow depth measurements also follow the wave-

like pattern from previous charts shown thus far (Figure 5.9). Peaks and troughs in snow 

depth in situ dataset coincide with the ONI phases. 

 

Figure 5.9: In situ LDS  throughout the study period for 4 data points available from 

2004/2005-2019 

Last Day of Snow for 4 Available in Situ Stations Against the Median LDS 

within the same Elevation Range (1500-1800 m.a.s.l.) 
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La Nina years are consistently higher in values in all three elevation bins. The peak 

value is consistently in 2011, where there was a strong La Nina (table 5.4). There are also 

differences in distribution, some years show a normal distribution of values whereas others 

are skewed. For instance, in 2007 at all elevations there is skewing within the dataset, low 

elevation in 2012 are also skewed (figure 5.8).  

  The wave-like pattern is present within the snow proportion dataset for the entire 

region as well, with the largest median value remaining at 2011 with a strong La Nina index 

and lowest values in 2010, 2015 and 2016 with a moderate to strong El Nino index (figure 

5.10). However, this may due to the removal of snow proportion values on days where cloud 

cover >1%. The days still obstructed by clouds after the cloud mitigation process were not 

included in this calculation. This has a minor effect on the visualization and statistics of the 

extracted from the data.  

 

Figure 5.10: Total maximum snow cover extent proportions for the Thompson Okanagan 

region shown using boxplots for 2003-2019 categorized by El Nino/La Nina strength. 

5.3.2 South Thompson Watershed 

 The South Thompson watershed is located within the Thompson Okanagan region, 

analyzing the patterns within a catchment is crucial in terms of water resources and 
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challenges that may face this area with increasing variability. Therefore, the above analyses 

were done within this watershed as Thompson Okanagan region contains the whole South 

Thompson watershed boundary. To start, points were sampled throughout the region at 

multiple elevations and then split off into elevation bands to create the LDS boxplots as 

shown earlier.  

 

Figure 5.11: LDS distributions for 3 elevation bands (1100-1500 m.a.s.l., 1500-1800 m.a.s.l. and 

1800-2300 m.a.sl.)  throughout the South Thompson watershed from 2003-2019 categorized by 

El Nino/La Nina strength. 

 Overall, the trends in South Thompson follow the same patterns as the Thompson 

Okanagan region. For example, the years with the latest LDS median day are still the off-

season of 2011 and 2012. The years with the lowest median value are 2015 and 2016 (Figure 

5.11). The overall wave-like trend throughout the 17-year period is also present within this 

watershed. An interesting feature about this dataset is the high elevation dataset between 

1900-2300 m.a.s.l. This collection of points, bound by the limit of the watershed, shows 



 

 70 

several outliers. Average median values for El Nino and La Nina years were calculated for 

each elevation. Low elevation LDS average during El Nino years was 0 and 7 for La Nina 

years. Mid elevation average LDS median was 50 for El Nino years and 61 for La Nina 

years. High elevation LDS average for El Nino years was 81 and 90 for La Nina years.  

 

Figure 5.12: Boxplots of maximum snow cover fraction of the South Thompson watershed 

throughout the off season from 2003-2019 categorized by El Nino/La Nina strength. 

 The distributions of annual snow cover percentage in South Thompson are shown in 

figure 5.12. This pattern in this figure is the same as the LDS datasets for South Thompson, 

as well as the snow percentage distribution for the entire region of Thompson Okanagan 

(figure 5.10). Days where cloud cover exceed 1% were removed from the visualization of 

this boxplot.  

5.3.3 Thompson Watershed 

 The Thompson watershed is located west of South Thompson. This region does not 

have the range of elevation as other watersheds in this region, therefore the elevation bands 

and points collected were limited. This area experiences a rain shadow from the coastal 

mountains in British Columbia. As such, snow cover will disappear earlier in the season than 

the study period. Although this region is still snow covered for the winter, the rain shadow 

effect characterized by dry/warm descending air on the leeward side of the Coastal 
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mountains, cause this region to experience lower precipitation (Thorne & Woo, 2011). Due 

to these characteristics, the points gathered here range from 1300 m.a.s.l. to 1900 m.a.s.l., 

shown in the figures below are the boxplots representing LDS for these points (figure  5.13). 

Average median values for El Nino and La Nina values were calculated. For low-mid 

elevations El Nino years showed an LDS of 6.5 and 16 for La Nina years. For high elevations 

El Nino LDS was 27.5 and La Nina 50. 

 

Figure 5.13: LDS distributions (boxplots) for two elevation bands (1300-1600 m.a.s.l. and 1600-

1900 m.a.s.l.) in the Thompson watershed categorized by El Nino/La Nina strength. 

 There is more variability in this dataset in comparison to previous boxplots, more 

notably at lower elevations. This could be in part due to the relatively low relief in this region 

in comparison to other watersheds in the study area. However, the peaks in LDS remain in 

2011, 2017 and 2018. While the lowest values remain in 2003, 2015, 2016 and 2019 as 

shown in previous datasets. These values are more pronounced in this watershed, due to 

reasons stated above. 

5.3.4 Okanagan Watershed 

 The Okanagan watershed is located south of the South Thompson and Thompson 

watersheds. This watershed is part of the Okanagan Basin, extending into the United States. 

Points gathered throughout this watershed range from 1000-2300 m.a.s.l. The boxplots of 

LDS distributions are shown below in figure 5.14. The overall trends resemble the previous 

plots; however, they show greater variability and exaggerated values in this region. Average 
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median El Nino LDS for low elevation was 1.5 and 23 for La Nina. Mid elevation El Nino 

was 25.5 and 45 for La Nina. High elevation average median LDS for El Nino years was 42 

and 61 for La Nina. 

 

 

Figure 5.14: LDS distributions (boxplots) set for 3 elevation bands (1000-1400 m.a.sl., 1400-

1900 m.a.sl. and 1900-2300 m.a.sl.) in Okanagan watershed categorized by El Nino/La Nina 

strength. 

5.3.5 Columbia Watershed 

 The Columbia watershed is the final watershed in the region that was analyzed for the 

LDS dataset. This region contains part of the Rocky Mountains of BC and therefore is the 

watershed with the highest elevation in the study region. This means there will be greater 

topographic effects on the dataset meaning greater variation in distributions of LDS due to 

effects of slope and aspect. This region also shows to have longer lasting snow cover at the 

same elevations as previous watersheds. Figure 5.15 below shows the LDS distributions for 
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three elevation bands. The average median LDS at low elevations for El Nino years was 28 

and 46 during La Nina years. Mid elevations for El Nino years was 45 compared to 63 for La 

Nina years. High elevations El Nino years average median LDS was 62.5 and 75 for La Nina 

years.  

 

 

Figure 5.15: LDS distributions (boxplots) for 3 elevation bands (1000-1400 m.a.sl., 1400-1900 

m.a.sl. and 1900-2300 m.a.sl.) in Columbia watershed categorized by El Nino/La Nina strength. 

 Comparing the same elevation bin of 1000-1400 m.a.s.l for Columbia and Okanagan 

watersheds, the Okanagan watershed has overall earlier disappearance of snow than 

Columbia, but still follow the same pattern. These variations are expected with the 

differences in elevation, aspect, and topographic relief between these two watersheds.  

5.3.6 Simple and Multiple Linear Regression for LDS datasets 

 Simple and multiple linear regression were used to determine the strength of the 

relationships between the PDO, PNA and ONI with the LDS dataset throughout the study 

region. Linear regression is a statistical procedure whereby explanatory variables are used to 
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predict the outcome of a dependent variable (Gromping, 2009). Simple and multiple linear 

regression are distinguished by having one or more explanatory variables, respectively (Li et 

al., 2018). The LDS dataset was tested for normality using the Shapiro test and visualized 

using QQ-plots. Linearity, homogeneity of residuals and independence of residual errors 

were all assumptions that were tested for prior to applying these techniques to the dataset, 

these were reasonably satisfied, and the plots are available in Appendix E.  

Phases in the ONI, PDO and PNA affect the severity of the cold season throughout 

snow dominated basins (Shabbar, 2014; Bevington et al., 2019; Griesbauer & George, 2019). 

Throughout the watersheds investigated, we see these effects clearly. As medians and 

distributions of LDS for El Nino years are lower and La Nina years are much higher during 

the study period. However, it is not clear to what extent these atmospheric connections 

dominate variations in the snow off season in this region. To better understand this 

relationship in the study area, linear regression models were created to specifically test the 

effects of each of the mentioned indices. The main objective here is to understand how much 

of the variation within the LDS datasets are explained through phases and severity of the 

ONI, PDO and PNA and whether each index is statistically significant in the equation.  

The overall medians for six elevations bands of 200 m were extracted for each year in 

the study period. These bands are <1000 m, 1000-1200 m, 1200-1400 m, 1400-1600 m, 

1600-1800 m, and 1800-2000 m. The multiple linear regression was used for the PDO and 

PNA by averaging the values, found in table 5.5, and using that average as the explanatory 

variable with the LDS dataset being the dependent variable. The simple linear regression 

model was used for each 3-month interval of the ONI from December-June. The ONI 

averages were the explanatory variables with the LDS remaining the dependent variable. 

Since it is established that the individual watersheds follow the same overall pattern, LDS 

points from the entire area were used in this piece. 
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Table 5.4: ONI severity by year in the study period (April 1st – June 30th) (NOAA, 2020).  

Year ONI Intensity DJF FMA AMJ 

2003 El Nino Moderate 0.9 0.4 -0.3 

2004 Neutral N/A 0.4 0.2 0.2 

2005 El Nino Weak 0.6 0.4 0.3 

2006 La Nina Weak -0.8 -0.5 0.0 

2007 El Nino Weak 0.7 0 -0.3 

2008 La Nina Strong -1.6 -1.2 -0.8 

2009 La Nina Weak -0.8 -0.5 0.1 

2010 El Nino Moderate 1.5 0.9 -0.1 

2011 La Nina Strong -1.4 -0.8 -0.5 

2012 La Nina Moderate -0.8 -0.5 -0.2 

2013 Neutral N/A -0.4 -0.2 -0.3 

2014 Neutral N/A -0.4 -0.2 0.3 

2015 El Nino Weak 0.6 0.6 1 

2016 El Nino Very Strong 2.5 1.7 0.5 

2017 La Nina Weak -0.3 0.1 0.4 

2018 La Nina Weak -0.9 -0.6 -0.1 

2019 El Nino Weak 0.8 0.8 0.6 

Table 5.5: Monthly PNA index and PDO index throughout the study period (April 1st – June 

30th) (NOAA, 2020) 

 
PNA April PNA May PNA June PDO Index 

2003 0.14 -2.2 -0.6 0.5993 

2004 0.51 -1.76 -0.37 0.2471 

2005 1.28 1.74 0.29 0.2945 

2006 0.45 -1.27 -1.06 0.0585 

2007 1.25 -0.06 -0.38 -0.1606 

2008 -0.97 1.33 -1.75 -0.979 

2009 0.21 -0.58 0.35 -0.4662 

2010 1.54 -0.93 -0.2 -0.6209 

2011 -1.59 0.19 0.22 -1.4458 

2012 0.15 -0.42 -0.5 -1.2326 

2013 -1.56 -0.36 -0.43 -0.6036 

2014 0.25 -0.76 -1.46 1.1313 

2015 -0.15 -0.16 -0.17 1.5746 

2016 0.87 -1.06 -0.7 1.3134 

2017 0.4 -0.31 1.01 0.538 

2018 -0.91 -1.34 0.51 0.2309 

2019 -0.61 -0.29 0.12 0.6504 

 



 

 76 

Table 5.6: MLR results for median LDS from 2003-2019 and the explanatory variables: PDO 

and PNA.  

Elevation Variable Coefficient Significance R2 value Adj R2 F stat 

<1000m 
PNA 0.47 

0.57** 0.51 9.29 
PDO 0.0007 

1000-1200 m 
PNA 0.27 

0.64** 0.59 12.63 
PDO 0.0001 

1200-1400 m 
PNA 0.96 

0.51** 0.44 7.38 
PDO 0.0001 

1400-1600 m 
PNA 0.66 

0.62** 0.57 11.61 
PDO 0.0002 

1600-1800 m 
PNA 0.83 

0.54** 0.48 8.32 
PDO 0.001 

1800-2000 m 
PNA 0.69 

0.57** 0.51 9.38 
PDO 0.0008 

** Model Significance <0.01 

The MLR results are presented in table 5.6 using the averaged values presented in 

table 5.5. The overall findings here suggest that the PNA and LDS datasets do not have 

strong relationship as the p-value is not statistically significant. However, the PDO is always 

statistically significant. The F-statistic also shows that these predictors do have a relationship 

with the LDS dataset, the critical F-statistics for a significance value of 0.05 and 14 degrees 

of freedom (df) is 2.48. The F-statistic is used in conjunction with the p-value, but it tests the 

joint significance of all predictors. Therefore, a significant F-statistic in this case suggests 

that only the PDO is contributing to the relationship since the PNA has a very large p -value 

throughout the table. Since the lowest F-statistic is 8.3, there is a statistically significant 

relationship between the PDO and the LDS datasets. Collinearity between PNA and PDO 

were tested for and at -0.11, it further indicates that the PNA is not contributing to the model. 

Also, the R2 values are stable throughout the elevation bands, the lowest being 64%% 

between 1000-1200 m, when adjusted for all variables drops to 59%. This suggests that the 

addition of the PNA variable to the model is not contributing to the variability  explained in 

the MLR. This test shows that there is a statistically significant relationship between the PDO 

and the LDS dataset. 
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Table 5.7: Simple linear regression results for each 3-month interval of ONI (December-June) 

(explanatory) to the LDS medians in various elevation bands (dependent). Bold values indicate 

where the R2 value reached its highest 

  Elevation <1000 

m 

1000-1200 

m 

1200-1400 

m 

1400-

1600 m 

1600-

1800 m 

1800-

2000 m 
DJF R2 value 0.55** 0.53** 0.36** 0.34** 0.2 0.28* 

F stat 18.19 17.42 8.47 7.57 3.84 5.96 

JFM R2 value 0.60** 0.56** 0.39** 0.38 0.24* 0.31* 

F stat 22.83 19.18 8.77 8.99 4.61 6.78 

FMA R2 value 0.69** 0.60** 0.46** 0.44** 0.29** 0.36** 

F stat 33.02 22.82 12.92 11.62 6.1 8.65 
MAM R2 value 0.78** 0.69** 0.60** 0.62** 0.44** 0.50** 

F stat 52.89 33.54 22.5 24.18 11.94 14.77 

AMJ R2 value 0.61** 0.52** 0.62** 0.67** 0.53** 0.54** 

F stat 23.2 16.09 24.22 30.72 16.61 17.63  
*Significance value <0.05 
** Significance value <0.01 

The simple linear regression results are presented in table 5.7. There is always a 

statistically significant relationship between the explanatory and dependent variables, where 

the explanatory variables are the ONI values for each of the 3-month intervals and the 

dependent variables are the LDS medians at each elevation bin. Thus, each of these 

regression models do differ and there hasn’t been model selection throughout this process. 

The main justification for choosing linear over non-linear models was that the main goal here 

is to understand how much variability is explained by the teleconnections analyzed. The data 

also satisfied the assumptions and conditions for linear modeling. Linear modeling has also 

been used in the past to explain relationships between large scale teleconnections and snow 

timing such as snow offset dates, snow duration, and snow onset dates (Bevington et al., 

2019). There is a general trend in R2 values as well, as elevation increases the R2 value 

begins to decrease. The largest R2 values are in the March-April-May (MAM) monthly 

interval, reaching 78%. The F-statistics throughout each model is also statistically significant. 

An F-statistic > 1.97 is considered significant with 15 df and a significance value of 0.05. 

The F-statistics are also the highest during the MAM monthly interval. There is a pattern in 
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the strength of the relationship between the LDS dataset and the ONI, as elevation increases, 

the R2 value begins to decrease. The strongest relationship is during MAM, at low elevations. 

This suggests that the strongest relationship between ONI and PDO is at mid-low elevations 

and at high elevations these relationships decrease. Also, note that the alpha level chosen was 

0.05, relating to the probability of a type 1 error occurring. Most of the linear regression 

models shown here have a p-value below this significance value. Therefore, we can be 

confident about these relationships with a 5% chance of falsely rejecting the null hypothesis.  
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Chapter 6 

Discussion  

The aims and objectives of this study were to understand the dynamics and overall patterns 

of snow patterns during the spring freshet in Thompson-Okanagan whilst retaining as much 

temporal and spatial resolution as possible. This chapter is divided into three sections, the 

analysis of LDS variability, limitations, and future work. 

6.1 Snow cover analysis  

6.1.1 LDS Variations 

In general, the median for last day of snow follows patterns of the PDO and ONI 

closely. The patterns of skewness throughout LDS boxplots suggest that there are variations 

within the dataset for each year. This is potentially caused by the point selection, aspect and 

slope affect the timing and duration of snowmelt. Depending on the landcover, whether it is 

forest covered or bare land exposed to direct radiation also influence snowmelt. Forest cover 

will cause faster melt out of snow cover. It is also more difficult to capture snow covered 

pixels within these areas because of the spatial resolution and the spectral differences of 

snow and forest covered snow. Various aspects and slope at these high elevations can affect 

the snow duration. Steeper and north facing slopes are favorable for longer snow duration in 

high elevations, whereas gradual and south facing slopes are more exposed to  direct radiation 

and therefore will melt out faster (Pepin et al., 2015; Chaponniere et al., 2005). This can also 

explain why the distribution of each year within the datasets show a wide range in values 

(Figure 5.8-5.15). More pronounced at high elevations where the entire study region is 

plotted (Figure 5.8).   

Throughout the individual watersheds, the LDS patterns closely resemble that of the 

LDS for the entire region. However, the variations in elevation band sampling reveals more 

insight when individual watersheds are analyzed. The South Thompson watershed low 

elevation (1100-1500 m) sampling shows extremely low values in comparison to the 

Okanagan and Columbia watersheds sampled at nearly the same elevation interval (1000-
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1400 m) (Figure 5.11, Figure 5.14 & Figure 5.15). The South Thompson watershed is located 

to the west of Columbia and is characterized by lower overall relief which provides less 

topographic shadowing effects on the low elevation pixels. This could cause low elevation 

pixels in South Thompson to melt out at a fast rate. Okanagan also has relatively low relief in 

comparison to Columbia, LDS for low elevations in Okanagan are closer to that of South 

Thompson but have a wider range of values. This is potentially caused by the microclimate  

of this southern region of BC.  Overall, the melt patterns throughout the study region 

consistently show similar patterns. Although, when analyzing the individual watersheds, the 

patterns are more extreme with the maximum and minimum of LDS medians in each 

elevation bands being reduced considerably. This suggests that the microclimate affecting 

snow melt varies depending on specific domain including variations in temperatures, ground 

temperature, and patterns of rainfall during the spring freshet.  

6.1.2 Teleconnection and LDS Data Analysis 

The wave-like patterns visible throughout the LDS boxplots (Figures 5.8-5.15) 

correspond with variations of the ONI and PDO. Studies have drawn connections between 

large scale atmospheric circulation patterns and their effects on snow cover extent in the 

western Canada (Moor & Scott, 2006; Mote et al., 2005; Thorne & Moo, 2011; Islam et al., 

2017; Fleming & Whitfield, 2010). The ONI is a climatic pattern where the temperature of 

the equatorial Pacific is warmer or cooler than normal for a period longer than 5 consecutive 

months, leading to warmer or cooler temperatures in the parts of the Northern Hemisphere 

(Shabbar, 2014). These periods are classified as El Nino, above normal temperatures or La 

Nina, below normal temperatures (Bevington et al., 2019; Shabbar, 2014; Griesbauer & 

George, 2019). The 17-year study period contains 7 El Nino years, 7 La Nina years and 3 

neutral years. El Nino years are characterized by above-normal temperatures, paired with 

reduced precipitation (Bevington et al., 2019; Shabbar, 2014; Griesbauer & George, 2019). 

La Nina years are the opposite, where temperatures are lower than normal and there is an 

increase in precipitation in North America (Bevington et al., 2019; Shabbar, 2014; 

Griesbauer & George, 2019). The PDO also plays a role in variability over this region, as 
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positive phases in the PDO correspond with warmer temperatures over the west coast, and 

negative phases with cooler temperatures (Shabbar, 2014). The PNA also affects this region, 

with positive phases in the PNA indicate above normal temperatures in the west and the 

inverse (Shrestha et al., 2015; Bevington et al., 2019). The effects of PNA are enhanced in 

western Canada by the El Nino via adiabatic heating causing Rossby waves that increase 

PNA circulation (Bevington et al., 2019; Thorne & Woo, 2011). Therefore, the fluctuations 

in LDS can be attributed in part to the ONI, PDO and PNA. 

The regression models were used to assess the extent of the relationship between the 

teleconnection patterns and the LDS dataset. The PNA did not show a statistically significant 

impact on the LDS dataset. This was also shown to be true in other studies (Bevington et al., 

2019; Thorne & Woo, 2011). The PDO was always significant, which was also the 

conclusion was other studies using regression analysis with PDO and snow off-dates and 

snow duration (Bevington et al., 2019). R2 values for the MLR with PDO and PNA reached 

64% at low-mid elevations (1000-1200 m). ONI was consistently statistically significant, 

with R2 values increasing in the JFM months onward. Studies have shown that the ONI 

begins to influence snow duration and snow off-dates starting in January (Bevington et al., 

2019; Griesbauer & George, 2019). However, the largest values are in FMA and MAM at 

mid-low elevations, reaching 78%. Similar patterns are found in other studies, which 

conclude that teleconnections have less influence on high elevations (Bevington et al., 2019; 

McClung, 2013).  

The warmest years in the study period appear to be 2015 and 2016. These years were 

paired with a strongly positive PDO at 1.57 and 1.31, respectively (Table 5.5). Again, a 

strong positive PDO like this would signify overall warming of the region, with strong 

relationships between both the PDO and ONI with LDS datasets, it explains why these years 

have visibly lower LDS medians throughout all elevations (Bevington et al., 2019; Mote et 

al., 2005). The LDS shows that the coldest years were 2011 and 2012 where there were 

strong/moderate La Nina events in effect. The PDO during these years were also strongly 

negative at -1.44 and -1.23 (Table 5.5). Therefore, the PDO and ONI have major implications 

for the LDS dataset, and overall snow cover variability throughout the spring freshet in the 



 

 82 

Thompson-Okanagan region. However, there are other factors to take into consideration 

when linking the LDS to large-scale atmospheric circulation patterns like the ONI and PDO, 

such as the metrics used to calculate the indices themselves. It should be noted that the  PDO 

is calculated as a monthly spatial average of SST, usually taken between October-March 

when there is the most variability (NOAA, 2020). The ONI is calculated using a monthly 

moving average of SST and then comparing this 5-month average to the 30-year average 

(NOAA, 2020). The PNA is measured by winds and pressure patterns anomalies (NOAA, 

2020). Thus, all these patterns are measured by identifying anomalies from previous records 

and average SST and atmospheric pressure heights, this could ultimately affect the indices 

and their relationship with the LDS in these linear regression models. These findings suggest 

that increased variability of teleconnections will likely impact this region.  

6.1.3 LDS and Landcover Change 

Another pattern noticeable with these boxplots is the distribution of values in 2017 

and 2018 La Nina years compared to other La Nina years have slightly earlier melt out date 

medians, notably mid-elevations in the South Thompson watershed (Figure 5.11). An 

important thing to note about this period were massive forest fires. Southern interior BC 

experienced 26,869 km2 of land ravaged by forest fires (Bevington et al., 2019). Nearly 40% 

of the forest cover change in this region from 1917-2017 is attributed to forest fires in 2017 

(Bevington et al., 2019; Luckman & Kavanagh, 2000). These changes in forest land in the 

region affects snow cover duration and accumulation, as forest cover decreases snow 

accumulation will increase with the decrease in loss by interception. These changes also 

bring an increased areal extent of snow cover is exposed to direct radiation, ablation, and 

redistribution via blowing snow (Moore & Scott, 2006; Schelker et al., 2012; Greene et al., 

1999). Thus, this could partially be the reason 2017-2018 La Nina years and 2019 El Nino 

had slightly earlier LDS than the other La Nina/El Nino years in the study period. Clear 

cutting in Southern BC is also cause for reduction in forest cover as well as the Pine Beetle 

infestation (Picketts et al., 2012; Li et al., 2018). These patterns of deforestation began before 

the study period, therefore the baseline for snow cover patterns prior to these changes in 
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landcover are not available (Taylor et al., 2012). The effects of these landcover change in this 

area have been studied to assess changes in peak and low river and baseflow (Winkler et al., 

2015). These have shown and earlier peak flow, and a low spring and summer flow (Winkler 

et al., 2015). This means that landcover change, notably forest cover decreases have changed 

the timing of snow melt to be earlier (Winkler et al., 2015).  

6.1.4 Potential Implications  

El Nino years cost the Canadian economy billions of dollars in GDP due to loss of 

water resources leading to crop yield decreases due to drought, decrease in heating needs, 

snow recreation, and tourism (Shabbar, 2014; Strum & Goldstein, 2017). In this study, we 

can assign numeric significance to how much earlier snow will melt during an El Nino year 

in comparison to La Nina years. Each median LDS for each watershed studied and elevation 

bin acquired showed a significant difference between El Nino and La Nina LDS. At higher 

elevations, these differences were smaller than at mid-low elevations, as is expected from the 

regression models where we see the decrease of R2 values with an increase in elevation. 

However, at mid-low elevations (900-1300 m.a.s.l. the differences average ~23 days, 

meaning that El Nino years are associated with a decrease in snow days by this margin at 

elevations between 800-1300 m.a.sl. in comparison with La Nina years. At mid elevations 

(1300-1800 m.a.s.l.) the average decrease in median LDS is ~18 days and at high elevations 

(1800-2300 m.a.sl.) it is ~13 days. There is a decline in LDS differences as elevation 

decreases because of the weakening relationship between ONI and snow off-dates at higher 

elevations (Bevington et al., 2019; McClung, 2013).  Unfortunately, with only 3 neutral years 

in the study, there are not enough years to have an accurate baseline LDS, so these 

comparisons are between La Nina and El Nino years. This significantly earlier melt out of 

snow cover has impacts on peak flows in the region and causes low flows during the late 

spring and summer seasons (Winkler et al., 2017).  
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6.2 Limitations  

The cloud filling methodology mitigated up to 90% of cloud cover in some cases, 

with an average of 3% decrease in accuracy from original Terra snow products. The accuracy 

throughout the methodology did not show extreme fluctuations. After each additional 

methodology was applied to the images, the accuracy declines were very minimal in most 

cases. It is suspected that as we move through each step, the additional pixels used to test 

accuracy do not increase drastically. However, even in cases where ATD have increased 

pixels under investigations, only a 2% decline in accuracy is shown. The reason there are 

declines in accuracy as opposed to increases, is because of the seasonality of the study. With 

ATD in a study during the spring freshet, inaccuracies will arise when snow melt occurs on a 

day where that pixel is cloud covered because it will be assigned as snow if it had been 

classified as snow the previous day. This is more prominent issue with ATD. However, a 2%  

decrease in accuracy is a good margin with the addition of over 20,000 pixels (Table 5.3). 

SNOWL showed a drastic increase in points used on April 1 st, 2014 and May 14th, 2018 

(Figure 5.5). On May 14 th, the accuracy increased by ~2% from the ATD accuracy and April 

1st remained the same. This shows that SNOWL is robust and accurate throughout the spring 

freshet in this region.  

The accuracy assessment was done for forested and non-forested land separately as 

well, to better understand where the inaccuracies are concentrated. Many studies report on 

the inability to accurately classify snow cover in forested regions (Wang et al., 2011; Tait, 

2000; Czyzowska-Wisniewski, 2015). The findings here corroborate these assertions, as 

forested region showed lower accuracies across all methodologies almost consistently (Table 

5.3). Errors in forested regions can also be caused in part by thin patchy snow underneath the 

canopy (Hall, 2007).  In these cases, for 500 m resolution it will be extremely difficult to 

identify this snow cover. Underlying vegetation will also change the reflectance properties of 

snow, SNOWMAP is sensitive to these changes and likely will erroneously flag these pixels 

as “no snow” (Wang et al., 2011; Chokmani et al., 2010). Interestingly, there were some days 

where accuracy in forested regions were higher than the whole area, notably June 24th, 2017 

and May 26th, 2019. A possible explanation for this is that both dates are late in the season. 
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Nearly the end of June snow cover is expected to be almost entirely limited to upper limits in 

the mountains where there is minimal vegetation (Rayne & Forest, 2016). It was noted that 

2019 was a year of minimal snow cover in the region and thus the end of May in 2019 could 

be explained with the same reasoning. Accuracy results for a couple of dates in early April 

were surprisingly low as well. Snow cover during April will be present in forest covered 

regions, where the largest inaccuracies occur. Since the method for classifying snow cover in 

Landsat images were tailored to better represent snow covered forests, it is understandable 

that the MODIS algorithm at a much larger spatial resolution would fall short of this.   

There is a slight lag in overpass times Terra, Aqua and VIIRS and Landsat-8. 

Therefore, it is possible that the snow cover in these forested regions were in fact snow 

covered and by the time Landsat-8 had gathered data in the region that snow was no longer 

present. This is especially true in forested regions when considering sensible heat exchange 

from vegetation, this heat could quickly melt snow surrounding vegetation (Kim et al., 2017). 

Other main reasons why we see inaccuracies are the confusion of snow and cirrus clouds and 

thin patchy snow which are reported problems in most research concerning snow cover 

(Dietz, 2012; Parajka et al., 2010; Hall et al., 2019). Though the MODIS cloud mask is very 

conservative and overestimates cloud cover, in some cases high cirrus clouds can be 

misclassified as snow (Hall et al., 2019; Dong, 2018). Patchy snow throughout the season is a 

major source for omission errors for moderate resolution like MODIS (Jain et al., 2008; 

Parajka et al., 2012; Crawford, 2015). This is because these areas are often the transitional 

zones from snow cover to non-snow-covered regions. These regions often exhibit 

characteristics of patchy, thin, and often dirty snow that is affecting the retrieval of snow at 

moderate resolutions (Crawford, 2015; Dietz, 2012). These misclassifications in the original 

satellite images could transfer over to the main product throughout the methodology. 

However, the overall accuracies are within the same range as other studies when conducting 

multi-step methodologies (Parajka et al., 2012). The forest cover accuracy also shows the 

same range as other studies between ~60-98% agreement with high resolution imagery when 

considering snow-covered forests (Crawford, 2015). 
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This cloud mitigation methodology allowed for the successful creation of the LDS 

dataset to analyze snow patterns in the Thompson Okanagan region. The LDS datasets do 

provide a good understanding of variability at various elevations throughout the 4 watersheds 

studied in the region. The LDS dataset is sensitive to transient snow fall. However, the 

methodology to extract the LDS is robust as it is recorded as the last day where snow is 

present for >4 days consecutively. The study period was only 17-years and therefore no 

conclusions could be made about climate change in the region. Nevertheless, the findings 

show that there are variations within the LDS dataset that can be attributed to teleconnection 

patterns. Further investigation using this methodology in coming years would assist in 

understanding potential climate change impacts on the region. Spatial resolution is a major 

limitation in remote sensing. In a forest covered region such as Thompson-Okanagan, this 

limitation caused errors in snow mapping under forest canopies, patchy and thin snow, and 

dirty snow (Hall, 2007; Jain et al., 2008 & Chaponniere et al., 2005). Yet, forest covered 

regions exclusively still reached up to 98% accuracy when comparing to high resolution 

imagery. Therefore, by mitigating cloud cover in the region, it was possible to extract 

valuable insights on snow patterns which would not be possible without the multi-step cloud 

mitigation methodology.  

The use of MODIS and VIIRS resampled to 500 m resolution, and daily temporal 

resolution are limited by their availability. However, moderate resolution is essential when 

measuring snow offset dates in a region with complex topography such as Thompson 

Okanagan. Increased variability of snow cover is associated with changes in aspect, slope, 

vegetation cover and rain events (Erxleben et al., 2002). Thus, to increase certainty of the 

LDS dataset it can be argued that this spatial scale is required. Also, given the timing of the 

study daily temporal resolution is required because the focus is to understand the daily 

changes in snow offset date as they are associated with changes in phase of atmospheric 

circulation patterns.  
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6.3 Future work  

Further research includes further developing the method presented with additional 

steps for cloud mitigation. Applying the method in other regions to test robustness, 

specifically in mountain regions for the implementation of SNOWL. The addition of VIIRS 

to TAC could also be applied in any study to mitigate cloud cover contamination. Published 

works of recently developed cloud-gap-filled snow cover products using Terra/Aqua and 

VIIRS show that this is a viable method to mitigate cloud contamination (Hall et al., 2019). 

Land cover change is a major source of snow cover variability in this region (Winkler et al., 

2017). Analysis of land cover change within the period in this study would be beneficial to 

better solidifying the relationship between snow cover variability and clear-cutting forests, 

forest cover change via Pine Beetle infestation and forest fires as well. The addition of 

Sentinel-1 (SAR) instrument measurements in conjunction with visible-infrared imagery 

would mitigate all cloud cover, as SAR observations use large wavelengths that are 

unaffected by cloud cover. An application of this methodology could be to continue to 

monitor snow cover variability in climate sensitive regions such as Thompson-Okanagan.  

Snow water equivalent (SWE) data would be an asset to stakeholders in the area. 

However, there is a relationship between SWE and snow depth to snow cover given that the 

deeper the snowpack, the more time it will take to melt. Given this relationship, it can be 

argued that snow cover extent and LDS are still valuable and critical components to water 

resource management. In the past, visible infrared remote sensing has been used to construct 

snow depletion curves with daily temporal resolution (Winkler et al., 2015). From the cloud 

mitigated product, this is a potential avenue for future research in the region.  
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Chapter 7 

Conclusion  

This study investigated the snow offset dates in Thompson-Okanagan, southern BC from 

2003-2019. Using visible infrared remote sensing imagery has major cloud coverage. 

Therefore, the objective was to perform a multi-step cloud mitigation method and measure 

the accuracy and success of the procedure. Snow cover melt out was measured by the metric 

of LDS taken at various elevations throughout the 4 watersheds within the region. The key 

findings and potential implications are summarized below.  

Multi-step cloud removal processes are popular throughout the literature for studying 

snow cover (Parajka et al., 2012; Lindsay et al., 2015; Hüsler et al., 2014; Li et al., 2017). 

This multi-step methodology mitigated up to 90% of cloud cover in some cases, leaving an 

average annual cloud coverage of 0.2-2.4% (Table 5.1). Remaining cloud cover is 

exclusively present at mid-elevations where SNOWL leaves pixels assumed to be “partly 

snow-covered” as clouds. Accuracy was retained throughout these processes, decreasing by 

an average of 3% by the end of multi-step methodology, but reaching agreement of 98%. 

These misclassifications are presumably attributed to the presence of cirrus clouds and 

misclassification in the snow product data themselves, thin and patchy snow during the 

offset. The forest cover snow inaccuracies were shown, and most false negatives were 

present in forested regions. The issues with measuring snow cover using visible remote 

sensing are present throughout the literature as the spectral signature of snow changes for 

dirty, thin, patchy snow and snow cover in forests (Li et al., 2019). This multi-step 

methodology can be used in other mountainous regions, notably regions that do not 

experience polar night since all satellite imagery used was visible infrared. Although the 

accuracies with comparison to high resolution imagery was stable in this environment, 

accuracy may vary in distinct locations. Reproducibility of this methodology can be done in 

any region as all data is opensource and all software used is as well. Although the cloud 

mitigation methodology did not completely remove cloud cover for each year, it was 
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successful in removing a majority of cloud cover to create the LDS datasets throughout the 

four watersheds investigated. 

 Snow cover analysis throughout the four individual watersheds investigated in the 

region show a similar pattern. The wave like trend in the LDS dataset coincide with major 

fluctuations in the ONI. ONI and PDO fluctuations explain up to 78% and 64% of variability 

in the low-mid elevation snow cover melt out dates, respectively. Results from the MLR 

showed the PNA had no statistically significant relationship with the LDS datasets. Studies 

within this region have shown comparable results when attributing fluctuations in snow cover 

to large teleconnection patterns (Bevington et al., 2019). It is also shown that on average 

throughout the region El Nino years will influence the melt out of snow to be ~23 days 

earlier than the average La Nina year at low elevations, ~18 days at mid elevations and ~13 

days at high elevations.  

These changes in snowmelt affect flow regimes, as was found in other studies 

(Winkler et al., 2015). Flow regimes affect the crop yield in the region, which is crucial for 

the wine industry in Okanagan as well (Caprio & Quamme, 2002; Picketts et al., 2012). 

Aquatic habitat could also be impacted by changing flow regimes; however, this is not a 

simple linear relationship. Further research is required to conclude the impact of offset flow 

regimes on fish habitat, specifically salmon production in this region (Bradford et al., 2011). 

Earlier snowmelt is linked to low baseflow in the summer season, this dryness could increase 

risk of forest fires in the Thompson-Okanagan region (Berman et al., 2018). This area is 

already experiencing increased forest loss from forest fires, pine beetle infestation and clear 

cutting (Winkler et al., 2017; Schelker et al., 2013). Forest fire risk and snow offset date is 

linked, as earlier snowmelt increases variability and area burned during the summer seasons 

in western regions (Westerling, 2016). In mountainous regions, the inverse can occur as well, 

as forest fires increase, they melt snow in higher elevations leading to decreases in water 

availability and fueling larger fires and area burned (Westerling, 2016). This relationship has 

large impacts on the economy, forest fires in 2004 reduced revenue by 3% for tourism in 

southern BC specifically in the winery district (Statistics Canada, 2017). Further 

investigations on the economic impacts of reduced snow cover during El Nino events are 
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required. However, a study showed a decrease in the Canadian economy by almost $4 billion 

due to an El Nino event in 1997-98 (Shabbar, 2014). These losses are attributed to crop loss 

from drought, heating industry losses, recreational revenue loss from lack of wintertime 

snow, ice wine industry losses and Salmon fishery loss (Shabbar, 2014).  

 There was no distinct downward trend in median LDS in the four individual 

watersheds studied within Thompson-Okanagan. Climate studies have shown earlier snow 

melt in the springtime and decreasing overall snow extent in the northern hemisphere (Sturm 

& Goldstein, 2017). Although we don’t see this trend with the LDS datasets from this study 

or from the in situ data gathered from the stations available, this study was done on a 17-year 

dataset, and therefore is not a long enough timeframe to draw conclusions about recent 

climate change impacts on the region. The short dataset is due to availability of data. In this 

region, historical snow cover data such as the NOAA CDR would bring about too many 

uncertainties given that it masks out mountain ranges and has a coarse temporal resolution at 

the start of the record (1966) and coarse spatial resolution. As stated previously, daily 

temporal resolution is ideal for a study focusing on the spring freshet period and moderate 

spatial resolution is as well when focusing on regional scale fluctuations of snow offset date.  

Studies done using regional climate models predict variations in this area with a changing 

climate, including increased precipitation as rain instead of snow, a possible transition into a 

pluvial region, decreased water availability, increased forest fires and increased risk of 

flooding (Islam et al., 2019; Harder et al., 2015; Winkler et al., 2017). Thus, the findings in 

this study pertain mostly to variations in snow melt out dates via large atmospheric 

teleconnections and potentially land cover change. With increased anthropogenic forcing, the 

patterns and relationships derived between LDS and teleconnections could fluctuate 

especially given that the effects of climate change on ONI and PDO are still under 

investigation (Collins et al., 2010). These changes may in part be attributed to climate change 

but continuing this study in the future is necessary to establish this connection.  
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Appendix A 

Locations of ROIs for NDFSI analysis 
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Appendix B 

Locations of available Landsat-8 OLI images 

Locations for dates: April 21st, 2013, May 13th, 2015, May 15th, 2016 

Path 47, Row 23 

 

Location for dates: April 1st, 2014, April 20th, 2015, June 7th, 2015,  

Path 46, Row 24 

 

Location for dates: May 22nd, 2015, May 24th, 2016, May 27th, 2017, May 14th, 2018 

Path 46, Row 23 
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Location for dates: May 1st, 2016, May 20th, 2017, May 23rd, 2018, April 8th, 2019, May 10th, 2019, 

May 26th, 2019  

Path 45, Row 24 

 

Location for dates: May 29th, 2017  

Path 44, Row 24  
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Location for dates: June 5th, 2017, June 24th, 2018  

Path 45, Row 25 
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Appendix C 

Annual VIIRS reduction graphs 
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Appendix D  

Cloud proportion graphs for each year in the study period 

2003  
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Appendix E 

Linearity Assumptions for Linear Regression Models  

Multiple Linear Regression Residuals vs. Fitted Plots 

a) <1000 m Elevation Median 

 

b) 1000-1200 m Elevation Median 

 

c) 1200-1400 m Elevation Median 

 

d) 1400-1600 m Elevation Median 
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e) 1600-1800 m Elevation Median 

 

f) 1800-2000 m Elevation Median 

 

Simple Linear Regression Residuals vs. Fitted Plots 

a) < 1000 m elevation medians for each 3-month interval  

 

 



 

 118 

 

 

 

b) 1000-1200 m elevation medians for each 3-month interval  
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c) 1200-1400 m elevation medians for each 3-month interval 
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d) 1400-1600 m elevation medians for each 3-month interval 
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e) 1600-1800 m elevation medians for each 3-month interval 
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f) 1800-2000 m elevation medians for each 3-month interval 
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