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Abstract

We propose and evaluate fast, scalable approaches for solving the linear complementar-
ity problems (LCP) arising from the fluid pressure equations with separating solid boundary
conditions. Specifically, we present a policy iteration method, a penalty method, and a
modified multigrid method, and demonstrate that each is able to properly handle the de-
sired boundary conditions. Moreover, we compare our proposed methods against existing
approaches and show that our solvers are more efficient and exhibit better scaling behavior;
that is, the number of iterations required for convergence is essentially independent of grid
resolution, and thus they are faster at larger grid resolutions. For example, on a 2563 grid
our multigrid method was 30 times faster than the prior multigrid method in the literature.
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Chapter 1

Introduction

Motivated by the demand for realistic visual effects in the film and game industry, fluid
animation has been explored in the computer graphics community for many years. Fluids
are ubiquitous and indispensable in our daily life: the water from the sea, the coffee or
tea in our cups, the blood running through our veins, the gasoline for fueling vehicles, and
more. People see and interact with real fluids every day and expect to experience the same
effects when they appear on the screen. Getting used to how fluids behave naturally, even
minor inaccuracies in the animation may bring discomfort to the audiences. It comes with
no surprise that fluid simulation is an important topic in computer graphics.

Due to complexity of fluid dynamics, it is difficult to animate fluid effects frame by frame
based on visual appearance [56]. Therefore, physical based methods are widely used for
simulating realistic fluids by solving the equations derived from physics. The Navier-Stokes
equations are commonly used to describe the fluid flows of interest in simulations. Solving
the Navier-Stokes equations consists of the following steps [11]: advecting the fluid and
its velocities through the flow; applying body forces such as gravity; applying viscosity if
dealing with viscous fluid; and performing pressure projection to enforce incompressibility.

One obstacle to the realistic fluid simulation is the mishandling of the fluid near the
solid boundary. Standard solid boundary conditions do not allow fluid to naturally separate
from a solid boundary; instead, the inviscid fluid unnaturally adheres to the top and side
walls of a domain. Such unrealistic effects are usually noticeable in fluid simulations. To
resolve this issue, Batty et al. [8] proposed a new free surface/solid boundary condition
for the fluid-solid wall that allows separation while disallowing penetration. However,
while this corrects the behavior, it transforms the pressure equation from a standard linear
system into a linear complementarity problem (LCP) which is even more challenging to
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solve efficiently. As a result, this improved boundary condition has seldom been adopted
in practice.

Solving the pressure equation often comprises a significant fraction of the simulation
time [18], especially when the problem sizes are large. Therefore, it is important to develop
a fast and scalable numerical approach. We consider a method to be scalable if the number
of iterations is essentially independent of the mesh resolution. When the pressure equation
is a linear system, the preconditioned conjugate gradient (PCG) algorithm is commonly
used in the computer graphics community. However, PCG is not scalable as the number of
iterations increases linearly with the mesh resolution. With the modified solid boundary
conditions, the pressure equation becomes a LCP problem and cannot even be solved with
PCG, which presents more challenges to simulating realistic fluid efficiently.

Several approaches are used to solve LCP problems in fluid simulations. One way is to
formulate the LCP problem into a convex optimization problem. [26, 50, 34, 40]. Newton
method [3, 25] is also proposed and modified to solve the LCP and performs better than
projected Gauss-Seidel (PGS) type methods [23, 17, 33] and the pivoting methods [5, 2].
These methods usually involve solving several linear systems. It is not clear how scalable
they are in terms of the number of linear systems and the number of iterations required
for solving a linear system. Mutigrid is widely known for its good scalability. Various
multigrid schemes [49, 48, 27] have been used for fluid simulation with standard solid
boundary conditions and achieved scalable performance, but these require solving only
linear systems rather than LCPs. Chentanez & Muller [14] developed a multigrid method
to solve the LCPs but the scalability is not clear yet.

To resolve the issues mentioned above, we propose more efficient and scalable solvers
to speed up realistic fluid simulations. Specifically, we develop and evaluate variants of the
policy iteration [30], the penalty method [20], and the full approximation scheme multigrid
(FAS-MG) [37] for solving LCPs arising from the separating boundary conditions, because
such schemes are known to be convergent and efficient. While numerical schemes belonging
to these families of methods have been explored for problems arising in computational
finance [30, 20, 37], to our knowledge we are the first to consider their use in the context of
fluid animation, or computer animation more broadly. Our results show that our proposed
methods are both more scalable and more efficient compared with existing approaches.

The rest of the thesis is organized as follows. At first, we elaborate the previous work
in Chapter 2. In Chapter 3, we introduce the Navier-Stokes equations and boundary
conditions, discuss the standard fluid simulation algorithm, and describe the numerical
methods in fluid simulation. We review the definition of the LCP problem and illustrate
how it is formulated using the separating solid boundary conditions in Chapter 4. The main
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contribution of this thesis, namely the proposed fast and scalable solvers: policy iteration,
penalty method, full approximation scheme multigrid, are described in Chapter 5. We
present the numerical results including comparison with recent LCP solvers in Chapter
6. We conclude the thesis and discuss potential extension of our methods to rigid body
simulations in Chapter 7.
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Chapter 2

Previous work

We summarize prior work in solving LCPs from fluid simulations or related fields (eg.
rigid body simulations) in computer graphics and present the motivation of our proposed
methods. The LCP problem adds constraints to the linear problem to make the linear
component complementary to the constraints. This gives a nonlinear problem, which
cannot be solved with the existing linear solvers. Solving the LCP problem requires locating
the exact complementary positions to enforce the constraints in order to make it linear.
This is hard and computationally expensive especially for large problems. It is also desirable
to convert the LCP into sub-steps which are linear problems. However, it is difficult to
achieve good overall convergence and scalability when the problem is large.

One way to solve the LCP is to exploit its combinatorial nature. A direct approach
called pivoting method is proposed for solving LCP problems. The idea is to incrementally
find all the complementary entries to enforce the constraints. The use of pivoting method
can be traced in the rigid body simulation [5, 47], and collision detection [44]. Although
pivoting methods can provide accurate solutions to LCPs, they may suffer from exponential
time complexity in the worst cases, which is not computationally efficient [25].

In contrast with the direct approaches, iterative methods are used for solving LCPs
through iteratively improving the solutions. One such method is the projected Gauss-
Seidel (PGS) method which is based on the Gauss-Seidel method for solving linear systems.
The idea is to enforce the constraints from the LCP after each Gauss-Seidel iteration. It
has been used in several applications in computer graphics simulations including shock
propagation for multibody animation [23], deformable body contact [17], and adhesive
contact [33]. However, as pointed out in [33], PGS may suffer from slow convergence and
it is desirable to find more efficient LCP solvers.

4



The LCP can also be solved by converting it to a convex optimization problem, for
example, quadratic programming (QP), and solved using optimization techniques. The
PATH solver [26], which is a generalization of the classical Newton method and based
on quadratic programming (QP), was used by Batty et al. [8] to solve the LCP problem.
However, they point out that it is not scalable to large problems. Narain et al. [50]
formulated a pressure equation for granular material simulation into the LCP. Gerszewski
et al. [34] solved LCPs for pressure and density when animating large-scale splashing
liquids. Both Narain et al. [50] and Gerszewski et al. [34] used a QP solver called modified
proportioning with reduced gradient projections (MPRGP) [19] to solve LCPs. MPRGP is
an active set method based on preconditioned conjugate gradient (PCG) that interleaves
conjugate gradient (CG) steps with the update of the active set. Inglis et al. [40] proposed
a Primal-Dual method to split the convex optimization problem into two components and
solved them with CG and a classification scheme, respectively.

In addition to the convex optimization problem, Andersen et al. [3, 25] formulated the
LCPs in fluid animation in 2D into minimum map equations, which are nonsmooth and
nonlinear. They proposed a nonsmooth Newton approach to solve these minimum map
equations. They modify the standard Newton method and perform Newton iterations until
convergence. Their method has better convergence than projected Gauss–Seidel (PGS)
type methods [23, 17, 33] and is faster than pivoting methods [5, 2], but requires solving a
linear system and performing line searches on each Newton iteration. A drawback of their
method is that the matrix from each Newton iteration may be singular. It is observed that
the overall solver fails in some cases when using the preconditioned conjugate gradient
(PCG) as the linear solver. Therefore, the standard conjugate gradient (CG) method,
which is less efficient, has to be used. Andersen et al.[3] extend their framework to 3D
[4] and demonstrate convergence for a 1003 grid. However, they did not discuss how their
method scales with larger grid resolution.

For both optimization approach and Newton method, either PCG or CG is used as
the linear solver. However, PCG and CG are not scalable as the number of iterations is
known to double when grid resolution is doubled along each dimension, i.e., when the width
of each cell is halved [46]. The multigrid method is a solution to resolve the scalability
issue. The idea of multigrid method is to eliminate high frequency errors on the fine grid
and reduce low frequency errors on the coarse grid, which is less expensive. Chentanez &
Muller [14] developed a multigrid method to solve the LCPs from fluid simulations. Their
method requires only a few small changes to multigrid for linear systems [15]. They apply
these changes only to the finest three grids and do the same thing as the linear multigrid
does on the rest of grids. Their method converges for several scenarios in both 2D and
3D. However, they did not perform any scaling tests for large problems to demonstrate
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whether it achieves mesh-independent convergence behavior, which is the major advantage
of using a multigrid scheme.

Although the recent methods addressed the convergence issues for solving LCPs in fluid
simulations, the question of scalability still remains open. Thus, we propose fast and scal-
able LCP solvers suitable for large scale fluid simulations and demonstrate improvements
upon the existing approaches in terms of both convergence and scalability.
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Chapter 3

Fluid simulation

In this chapter, we will discuss how to simulate incompressible fluid in computer graphics.
First, we describe the derivation of incompressible Navier-Stokes equations. Since we only
deal with inviscid fluid only, we explain how to drop the viscosity term and obtain the
incompressible Euler equations. Then we discuss boundary conditions and show how the
complementary equations are formulated from separating solid boundary conditions. We
will introduce the standard simulation algorithm, which decomposes the incompressible
Euler equations into three sub equations. Finally, we present the numerical methods for
solving these equations.

3.1 Notation

Before introducing the equations and formulas in fluid simulation, we first introduce some
notations. Let x = (x1, x2, x3) = (x, y, z) be the position vector. We denote u as the fluid
velocity vector, t as the time, T as the termination time, p as the pressure, ρ as the density,
ν as the kinematic viscosity coefficient, and g as the acceleration due to body forces such as
gravity. The expression of the velocity vector is given by u = (u1, u2, u3) = (u, v, w) where
u = u(x, t), v = v(x, t), w = w(x, t) are the velocities in the x, y, z directions at time t,
respectively. The pressure p = p(x, t) is a scalar representing the force applied per unit
area at the position x and the time t. We define the gradient operator as ∇ = ( ∂

∂x
, ∂
∂y
, ∂
∂z

),

and the divergence operator as ∇· = ( ∂
∂x
, ∂
∂y
, ∂
∂z

)·. The advection operator u ·∇ is defined

as u ∂
∂x

+ v ∂
∂y

+ w ∂
∂z

. The notations in 2D can be defined similarly.
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3.2 Navier-Stokes equations

In computer graphics, fluid simulations are usually modelled by the incompressible Navier-
Stokes equations: 

∂u
∂t

+ (u ·∇)u + 1
ρ
∇p = ν∆u + g

∇ · u = 0.

(3.1)

We proceed to describing the derivation of the above equations using the incompress-
ibility, the law of mass conservation and the law of momentum conservation [35]. Consider
a chunk of fluid occupying an arbitrary domain Ωt at time t with volume of Vt, we denote
its surface as St = ∂Vt. For a differentiable scalar function f : Ωt × [0, T ] → R, the
transport theorem gives:

d

dt

∫
Ωt

f(x, t)dx =

∫
Ωt

{ ∂
∂t
f +∇ · (fu)

}
(x, t)dx. (3.2)

The mass of the fluid occupying Ωt is calculated by integrating over the fluid density ρ(x, t):∫
Ωt

ρ(x, t)dx. (3.3)

Since the mass of this chunk of fluid remain constant over time, the derivative of mass with
respect to time becomes zero. Letting f = ρ, the transport theorem yields∫

Ωt

{ ∂
∂t
ρ+∇ · (ρu)

}
(x, t)dx = 0, (3.4)

which holds for arbitrary domain Ωt. Therefore, the integrand vanishes and we obtain the
following equation:

∂

∂t
ρ+∇ · (ρu) = 0. (3.5)

Since we are dealing with incompressible flow, the constant density ρ gives:

∇ · u = 0, (3.6)

which is exactly the second equation in (3.1).

Now we proceed to the derivation of the first equation in (3.1) based on the conservation
of momentum. The momentum of the fluid in Ωt is expressed by integrating the product
of the mass with the velocity: ∫

Ωt

ρ(x, t)u(x, t)dx. (3.7)
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By Newton’s second law, the change of momentum equals to the sum of forces which
include the body forces, surface forces, and internal friction. We express the body forces
as ∫

Ωt

ρ(x, t)g(x, t)dx, (3.8)

and the surface forces as ∫
St

σ(x, t)ndS, (3.9)

where σ is the stress tensor, n is the normal component of the velocity around the surface
St. According to Newton’s law, we have

d

dt

∫
Ωt

ρ(x, t)u(x, t)dx =

∫
Ωt

ρ(x, t)g(x, t)dx +

∫
St

σ(x, t)ndS. (3.10)

Applying the transport theorem (3.2) to the left hand side of (3.10) and the divergence
theorem to the first term on the right hand side, we obtain the equation for the momentum:

∂

∂t
(ρu) + (u ·∇)(ρu) + (ρu)∇ · u− ρg −∇ · σ = 0. (3.11)

For Newtonian fluids obeying the Stokes assumption the stress tensor σ can be modelled
as follows:

σ := −pI + τ := (−p+ λ∇ · u)I + 2µδ, (3.12)

where τ is the viscous part, λ and µ are thermodynamic material constants and δ is the
strain tensor defined as

δ :=
1

2

[(∂ui
∂xj

+
∂uj
∂xi

)]
i,j=1,2,3

. (3.13)

Substituting (3.12) and (3.13) into the momentum equation (3.11) yields

∂

∂t
(ρu) + (u ·∇)(ρu) + (ρu)∇ · u +∇p = (µ+ λ)∇(∇ · u) + µ∆u + ρg. (3.14)

Since we assume the flow is incompressible (ρ is constant), applying the equation (3.6)
gives

∂u

∂t
+ (u ·∇)u +

1

ρ
∇p =

µ

ρ
∆u + g, (3.15)

which is the first equation of (3.1) if we define the kinematic viscosity as ν = µ
ρ
.
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As we are interested in dealing with inviscid fluids, we drop the viscosity part τ in
(3.12), which will consequently drop the viscosity term µ

ρ
∆u in (3.15) and present the

incompressible Euler equations as follows:
∂u
∂t

+ (u ·∇)u + 1
ρ
∇p = g

∇ · u = 0.

(3.16)

3.3 Boundary conditions

So far we have only described how the Navier-Stokes equations are used to model the
dynamics of the fluid inside the computational domain. However, we still need to specify the
fluid behaviour on the surface boundary. Typically, it is enforced by setting the appropriate
boundary conditions. In this section, we will present the standard boundary conditions
commonly used in computer graphics, followed by a modified condition that is able to
better capture the fluid-solid motions. We illustrate the issue with the standard boundary
conditions at the fluid-solid interface and how it can be resolved with separating solid
boundary conditions.

3.3.1 Standard boundary conditions

At the interface between the fluid and air, we assume there is no force from the air to the
fluid. Hence we set the pressure to be zero by imposing the following Dirichlet boundary
condition:

p = 0 (3.17)

at the free surface between fluid and air.

Let’s now consider the solid wall boundary. Let usolid be the solid velocity and n be
the outward normal. The standard solid wall boundary conditions are given as

u · n = usolid · n, (3.18)

which prevents fluid from crossing solid boundary.
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3.3.2 Separating solid boundary conditions

For simplicity, we assume the solid is static, namely usolid = 0. The standard solid bound-
ary conditions, u · n = 0, prevent fluid from flowing into or out of a solid but have the
side-effect of not allowing fluid to separate from a solid [8]. As a result, the fluid sticks to
the solid walls as shown in Figure 3.1 (Left). To allow the fluid to separate from the walls
but not flow into it, we instead model the solid wall boundary conditions as follows:

0 ≤ p ⊥ u · n ≥ 0, (3.19)

where p ≥ 0 is complementary to u · n ≥ 0. That is, p > 0 when u · n = 0 and u · n > 0
when p = 0.

Figure 3.1: A selected frame from two simulations of a 3D scenario of fluid splashing
inside a spherical boundary. Left: Without separating solid wall boundary conditions, the
fluid adheres to the top of the sphere. Right: With separating solid wall boundary condi-
tions, the fluid separates naturally.

The complementarity condition (3.19) ensures that either the fluid is moving away from
the wall, or there is a positive pressure force acting to prevent it from entering the wall.
Figure 3.1 (Right) shows that separating solid wall conditions allow the fluid near the top
right to separate from the sphere glass.
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3.4 Simulation process

Now we discuss how to simulate fluids. Since the analytic solution to the incompressible
Euler equations (3.16) is usually difficult to compute, finding numerical solutions is desir-
able in computer graphics community. As the first equation in (3.16) is nonlinear and the
two equations in (3.16) are coupled via the velocity, it is still not easy to numerically solve
them as a whole. The splitting method is commonly used in solving Navier-Stokes or Euler
equations in fluid simulation [11]. More precisely, the equations (3.16) are solved through
splitting into three simpler sub-problems:

D

Dt
u =

∂u

∂t
+ (u ·∇)u = 0. (3.20)

∂u

∂t
= g, (3.21)

∂u

∂t
+

1

ρ
∇p = 0 such that ∇ · u = 0, (3.22)

where D
Dt

is the material derivative operator [11]. Equation (3.20) is called an advection
equation, which models the motion of the fluid. Equation (3.21) refers to the acceler-
ation from body forces applying to the velocity field. The pressure changes due to the
accumulation of new velocities. Therefore, the pressure equation (3.22) is used to solve
the new pressure while ensuring incompressibility. The process of solving the pressure
equation is usually called pressure projection, which is the most time consuming part in
fluid simulation and the main focus of this thesis. The three equations (3.20) to (3.22) are
solve sequentially at each time step. We will explain later why solving these equations is
numerically equivalent to solving the original incompressible Euler equations (3.16).

Before giving the details of the simulation algorithm, we introduce some notations for
clarification. Assume we are interested in simulation from time t = 0 to t = T . Let tn

be the n-th time step and ∆tn = tn+1 − tn be the time step size. At the n-th time step
t = tn, we define the solutions from splitting method un = (u(x, tn), v(x, tn), w(x, tn)) as
the vector of fluid velocity values and scalar pn = p(x, tn) as the pressure. Given un,
we want to compute un+1 for the next time through solving equations (3.20) to (3.22).
First, we solve the advection equation (3.20) based on un and denote the solution as ūn.
Applying forward Euler method to the partial derivative ∂u

∂t
, we have

ūn − un

∆tn
+ (un ·∇)un ≈ 0, (3.23)
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which can be solve by a semi-Lagrangian method [11]. Then we solve the equation (3.21)
using forward Euler method. Let the solution be ûn, we have

ûn − ūn

∆tn
≈ g. (3.24)

Finally, solving the pressure equation (3.22) gives

un+1 − ûn

∆tn
+

1

ρ
∇pn ≈ 0 such that ∇ · un+1 = 0. (3.25)

Adding equations (3.23) to (3.25) together, we have

un+1 − un

∆tn
+ (un ·∇)un +

1

ρ
∇pn ≈ g such that ∇ · un+1 = 0. (3.26)

This means un+1, which is computed via splitting method, approximates the solution to
the incompressible Euler equations (3.16) at the time step t = tn+1. Therefore, the splitting
method gives an approximate solution to the incompressible Euler equations. The basic
algorithm for fluid simulation is given as follows:

Algorithm 1 Fluid simulation algorithm for numerically solving equations (3.16)

1: Given an initial velocity field u0.
2: for n = 0, 1, 2, ... until tn = T do
3: Determine a suitable time step size ∆tn.
4: Compute ūn through advecting velocity field un.
5: Compute ûn by applying body forces using forward Euler method.
6: Compute the pressure pn and use it to update the new velocity field un+1 for the

next time step.
7: Advance to the next time step tn+1 = tn + ∆tn.
8: end for

To avoid extra numerical dissipation and reduced accuracy caused by an aggressive time
step size, it is suggested [32] that the time step size should satisfy the following condition:

∆tn ≤ 5∆x

umax
, (3.27)

where ∆x is the space step size, umax is the estimated maximum absolute value of fluid
velocity at time tn.
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Now we discuss how to solve (3.22). After solving the equation (3.21), we have the
updated solution ûn at time step tn. We now describe how to use it to compute un+1 via
solving the pressure equation (3.22). First, we discuss the standard pressure projection
in fluid simulation, which makes the fluid incompressible with the standard boundary
conditions (3.18). Applying forward Euler method to the first equation of (3.22) at the
n-th time step gives

un+1 = ûn −∆tn
1

ρ
∇pn. (3.28)

The updated velocity field un+1 needs to satisfy the incompressibility inside the fluid

∇ · un+1 = 0. (3.29)

Substituting (3.28) into (3.29) gives a Poisson equation for the pressure pn:

∇ · un+1 = −∆tn

ρ
∇2pn +∇ · ûn = 0. (3.30)

It can be shown that the solid wall boundary condition un+1·n ≥ 0 gives us∇·un+1 ≥ 0.
After enforcing the separating solid wall conditions (3.19) in (3.30), the new equation for
pn satisfying the separating solid wall boundary conditions becomes:

0 ≤ pn ⊥ −∆tn

ρ
∇2pn +∇ · ûn ≥ 0. (3.31)

Derivation details can be found in the work of Andersen et al. [3].

We will discuss in detail how to solve the equations (3.30) and (3.31) numerically in
section 3.7. Once pn is solved, the new velocity un+1 can be calculated using the formula
in (3.28).

3.5 Staggered grid

So far we have presented the fluid simulation process and showed the equations for the
pressure at each time step. Now we look into these equations in terms of space and solve
them numerically. Before moving into the numerical computation, we discuss the staggered
grid or Marker-and-Cell (MAC) grid [38] for spatial discretization. The unique feature of
staggered grid is that different variables are stored at different positions; see Figure 3.2
for an illustration in 2D. The black dots represent the locations of pressure while the red
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and blue dashes represent the locations of velocities in horizontal and vertical directions,
respectively. We denote the pressure at the center of the (i, j)-th cell as pi,j. For the
velocity u = (u, v), instead of treating ui,j and vi,j at the center as unknowns, we denote
ui+ 1

2
,j, as the velocity at the center of shared edge of the the (i, j)-th and the (i+ 1, j)-th

cells, and vi,j+ 1
2
, as the velocity at the center of shared edge of the the (i, j)-th and the

(i, j+1)-th cells. Therefore, for each cell, we have the pressure at the center, two horizontal
velocities at the center of left and right edges (red dash), and two vertical velocities at the
center of top and bottom edges (blue dash).

Figure 3.2: Staggered grid in 2D with pressure stored at the cell centers (black dots) and
velocities stored at the centers of the edge (red and blue dashes).

In 3D, where the grid cell is a cube, the pressure is stored at the center and velocities
are stored at the center of the six faces. For the (i, j, k)-th cell, we denote the pressure at
the center as pi,j,k, the velocities at x direction as ui+ 1

2
,j,k, ui− 1

2
,j,k, y direction as vi,j+ 1

2
,k,

vi,j− 1
2
,k, and z direction as wi,j,k+ 1

2
, wi,j,k− 1

2
.
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3.6 Level set

In fluid simulation, we need to determine which cells fall inside fluid, solid, or air and which
cells are partially covered by the fluid. The level set method [51] is commonly used. A
level set function Φ : Rd 7→ R (d is the dimension of the space) is defined as follows:

Φ(x) =


= 0, when x is on the surface,

> 0, when x is outside the fluid,

< 0, when x is inside the fluid.

(3.32)

Given a position x, we compute the minimum distance to the surface and determine the
sign of Φ(x) based on (3.32). For example, if we have a fluid sphere in 3D centered at
(1, 1, 1) with radius of 2: (x− 1)2 + (y − 1)2 + (z − 1)2 = 22, the level set function can be
defined as:

Φ(x, y, z) =
√

(x− 1)2 + (y − 1)2 + (z − 1)2 − 2. (3.33)

With the level set function, we can use it to calculate the pressure near the surface.
For example, for a cell falling into both fluid and air but with its center in the air, we treat
it differently instead of setting the pressure to zero. Let’s assume that the (i, j, k)-th cell
covers only fluid while the (i+ 1, j, k)-th cell falls in both fluid and air, as shown in Figure
3.3. In this case, we have Φ(xi,j,k) < 0 and Φ(xi+1,j,k) > 0. The fluid-air surface is crossing
the (i+1, j, k)-th cell. The pressure xΓ is set to zero due to the boundary condition. Using
the level set function, we can calculate θ as:

θ =
−Φ(xi,j,k)

Φ(xi+1,j,k)− Φ(xi,j,k)
, (3.34)

and the pressure at the (i+ 1, j, k)-th cell can be calculated as:

pi+1,j,k = (1− 1

θ
)pi,j,k, (3.35)

which will be used for the discretization at the cell (i, j, k).
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Figure 3.3: 3D projection on the (x, y) plane showing that the cell (i + 1, j, k) partially
falls into the fluid

3.7 Discretization

Now we discuss how to solve the pressure numerically. We first describe the discretization
of the pressure equation in 3D assuming the standard boundary conditions are used. The
discretization in 2D is similar. Assume that the (i, j, k)-th cell whose center falls into the
fluid. Applying central difference method in the 3D staggered grid, (3.30) is discretized as:

∆tn

ρ

(6pni,j,k − pni+1,j,k − pni−1,j,k − pni,j+1,k − pni,j−1,k − pni,j,k+1 − pni,j,k−1

h2

)
= −

( ûn
i+ 1

2
,j,k
− ûn

i− 1
2
,j,k

h
+
v̂n
i,j+ 1

2
,k
− v̂n

i,j− 1
2
,k

h
+
ŵn
i,j,k+ 1

2

− ŵn
i,j,k− 1

2

h

)
,

(3.36)

where we assume that the grid size in all directions are equal, namely, ∆x = ∆y = ∆z = h.
If the (i, j, k)-th cell’s center does not fall into the fluid, we know that the pressure is zero.
Therefore, we have

pi,j,k = 0 (3.37)
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for those cells.

We note that the discretized pressure equation (3.36) needs to be modified when the
cell (i, j, k) is near the boundary. For example, if the (i + 1, j, k)-th cell falls into the air
(as shown in Figure 3.3), we replace the pressure pni+1,j,k with (1− 1

θ
)pni,j,k based on (3.35).

Therefore, (3.36) should be modified as follows:

∆tn

ρ

((5 + 1
θ
)pni,j,k − pni−1,j,k − pni,j+1,k − pni,j−1,k − pni,j,k+1 − pni,j,k−1

h2

)
= −

( ûn
i+ 1

2
,j,k
− ûn

i− 1
2
,j,k

h
+
v̂n
i,j+ 1

2
,k
− v̂n

i,j− 1
2
,k

h
+
ŵn
i,j,k+ 1

2

− ŵn
i,j,k− 1

2

h

)
.

(3.38)

Note that since θ is between 0 and 1, the coefficient of pi,j,k contributed by the cell (i+1, j, k)
will be 1

θ
> 1, which will make the matrix more diagonally dominant. Thus, as long as

there is air space inside the solid container, there is always at least one strictly diagonal
dominant row in the matrix.

Now we look into the solid-fluid surface. Substituting (3.28) into the boundary condition
(3.18), we have

∆tn
1

ρ
∇pn · n = ûn · n− usolid · n. (3.39)

By introducing the fluid volume V ∈ [0, 1] to deal with cells near the solid, (3.36) becomes
[11]:
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∆tn

ρ

(Vi+ 1
2
,j,k + Vi− 1

2
,j,k + Vi,j+ 1

2
,j,k + Vi,j− 1

2
,k + Vi,j,k+ 1

2
+ Vi,j,k− 1

2

h2
pni,j,k

−
Vi+ 1

2
,j,k

h2
pni+1,j,k −

Vi− 1
2
,j,k

h2
pni−1,j,k −

Vi,j+ 1
2
,k

h2
pni,j+1,k

−
Vi,j− 1

2
,k

h2
pni,j−1,k −

Vi,j,k+ 1
2

h2
pni,j,k+1 −

Vi,j,k− 1
2

h2
pni,j,k−1

)
= −

(Vi+ 1
2
,j,kû

n
i+ 1

2
,j,k
− Vi− 1

2
,j,kû

n
i− 1

2
,j,k

h
+
Vi,j+ 1

2
,kv̂

n
i,j+ 1

2
,k
− Vi,j− 1

2
,kv̂

n
i,j− 1

2
,k

h

+
Vi,j,k+ 1

2
ŵn
i,j,k+ 1

2

− Vi,j,k− 1
2
ŵn
i,j,k− 1

2

h

)
+
Vi+ 1

2
,j,k − Vi,j,k
h

ûsolid
i+ 1

2
,j,k
−
Vi− 1

2
,j,k − Vi,j,k
h

ûsolid
i− 1

2
,j,k

+
Vi,j+ 1

2
,k − Vi,j,k
h

ûsolid
i,j+ 1

2
,k
−
Vi,j− 1

2
,k − Vi,j,k
h

ûsolid
i,j− 1

2
,k

+
Vi,j,k+ 1

2
− Vi,j,k
h

ûsolid
i,j,k+ 1

2
−
Vi,j,k− 1

2
− Vi,j,k
h

ûsolid
i,j,k− 1

2
,

(3.40)

where ûsolid, v̂solid, ŵsolid are the velocities of solid objects along x, y, z axes, respectively.

Putting (3.36), (3.37), (3.38), and (3.40) together, we obtain a linear system as follows:

Ap + b = 0, (3.41)

where the matrix A corresponds to the discretization of the operator −∆t
ρ
∇2, b and p are

vectors for values of ∇ · ûn and pressure pn, respectively. Each of their entries corresponds
to the value at the center of a grid cell.

Based on the discretization, the matrix A is an M-Matrix [13] (see the Appendix A for
detailed proof) and symmetric positive definite (SPD) [12]. Since (3.41) is a linear system
with a SPD matrix, the preconditioned conjugated gradient method (PCG) is usually used
for solving the pressure in fluid simulation.

If the separating solid boundary conditions are used, the discretization of the pressure
pn gives a LCP problem (which will be discussed in detail in Chapter 4) as follows:

0 ≤ p ⊥ Ap + b ≥ 0. (3.42)

After solving either the linear system (3.41) or the LCP (3.42) for pn, we can use central
difference method again in (3.28) to update the velocity field in each direction as follows:

19



un+1
i+ 1

2
,j,k

= ûn
i+ 1

2
,j,k
− ∆t

ρ

pni+1,j,k − pni,j,k
h

, (3.43)

vn+1
i,j+ 1

2
,j,k

= v̂n
i,j+ 1

2
,k
− ∆t

ρ

pni,j+1,k − pni,j,k
h

, (3.44)

wn+1
i,j,k+ 1

2

= ŵn
i,j,k+ 1

2
− ∆t

ρ

pni,j,k+1 − pni,j,k
h

. (3.45)
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Chapter 4

LCP formulation from pressure
equation

In the previous chapter, we briefly mentioned that the discretization of the pressure gives
a linear complementarity problem (LCP) when separating solid boundary conditions are
used. In this chapter, we first describe the definition of the LCP and its applications
and then discuss in detail how to formulate the LCP from the pressure equation with
seprarating solid boundary conditions.

4.1 Linear complementarity problem (LCP)

We define the matrix A ∈ Rn×n and the column vector b ∈ Rn×1. Assume that A and b
are constants, we aim to find the vector x ∈ Rn×1 such that, for all 1 ≤ i ≤ n,

xi ≥ 0, (4.1)

(Ax + b)i ≥ 0, (4.2)

xi(Ax + b)i = 0, (4.3)

where xi is the i-th entry of x and (Ax + b)i is the i-th entry of Ax + b. The above
conditions (4.1) to (4.3) are known as linear complementarity conditions and are usually
expressed as follows:

0 ≤ x ⊥ Ax + b ≥ 0. (4.4)
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Here ⊥ means the condition on the left is complementary to the condition on the right. In
other words, if xi > 0 we have (Ax + b)i = 0 or if (Ax + b)i > 0 we have xi = 0. The
LCP conditions (4.1) to (4.3) can be viewed from different perspectives.

For example, the LCP can be formulated as root finding problem and solved with
Newton’s method [25]. Let y = Ax + b and define min(a, b) as the minimum value of a
and b. Let yi be the i-th entry of y. Since min(xi,yi) = 0 means that either xi or yi
has to be 0, we have yi = 0 if xi > 0 or xi = 0 if yi > 0, which is the definition of the
LCP conditions. Therefore, the LCP problem (4.4) is equivalent to solving the following
problem:

Ω(x) =

min(x1,y1)
...

min(xn,yn)

 = 0. (4.5)

Besides the minimum function ω, another popular function used for reformulating LCP is
the Fischer-Burmeister function defined as follows:

φ(x, y) ≡
√
x2 + y2 − x− y. (4.6)

When φ(x, y) = 0, it is easy to obtain that xy = 0, which means either x = 0 or y = 0.
If x = 0, only y ≥ 0 can satisfy φ(x, y) = 0. Similarly, we have x ≥ 0 when y = 0. This
means both x and y are non-negative and if either is positive, the other must be zero.
Therefore, φ(x, y) = 0 is equivalent to 0 ≤ x ⊥ y ≥ 0. The LCP problem (4.4) can be
converted to:

F(x) =

φ(x1,y1)
...

φ(xn,yn)

 = 0. (4.7)

The LCP can also be reformulated by introducing a control, which gives a Hamilton-
Jacobi-Bellman (HJB) Equation. As we know from (4.5), for the i-th entry (1 ≤ i ≤ n),
we have

min

(
xi,

n∑
j=1

Ai,jxj + bi

)
= 0. (4.8)

Introducing the control variable λi whose value is either 0 or 1, we rewrite the above
equation as follows:

min
λi∈{0,1}

{
λi

(
n∑
j=1

Ai,jxj + bi

)
+ (1− λi) xi

}
= 0, (4.9)
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which is equivalent to the conditions (4.1) to (4.3). To write (4.9) as the matrix form, we
define the set Mn = {diag({λi})|λi = 0 or 1}. We use the matrix Λ = diag({λi}) as the
control, where diag({λi}) is a square diagonal matrix with the elements of vector {λi} on
the main diagonal. Therefore, (4.9) can be written as:

inf
Λ∈Mn

{Λ(Ax + b) + (I− Λ)x} = 0, (4.10)

where I is the identity matrix.

The LCP problem is also equivalent to the quadratic optimization as follows:

min

(
1

2
xTAx + bTx

)
s.t. x ≥ 0. (4.11)

The detailed proof can be found in [9].

The LCP problems arise from different applications. For example, in American option
pricing, computing the fair price with underlying asset following a jump diffusion process
can be formulated as a LCP problem [20]. Besides the fluid simulation, LCP also can be
found in other areas (rigid body for example) in computer graphics [61, 53, 55].

4.2 LCP formulation

Now we discuss how to formulate LCP from the discretization of the pressure with separat-
ing solid boundary conditions. At first, we revisit the staggered grid in 2D and illustrate
how the pressure is stored in different types of cells. Let’s assume we have a circular do-
main in 2D with fluid filling its right half space, as shown in Figure 4.1. We assume there
are NC grid cells in the discretized domain and index them from 1 to NC . Specifically, the
cell (ix, iy) will be denoted as the i-th grid cell where i = ix + (iy − 1)Ny and Ny is the
number of grid cells along the y axis.

To prevent the fluid from sticking to the solid wall, the separating solid boundary
conditions (3.19) only need to be applied to boundary points. Let pi be the pressure of
the i-th grid cell in the discretization domain. If i corresponds to a cell near the solid
boundary (grey), the separating wall boundary conditions are enforced and the i-th row of
the discretized pressure equation (3.42) is

0 ≤ pi ⊥
NC∑
j=1

Ai,jpj + bi ≥ 0, (4.12)
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Figure 4.1: Grid cells after discretization in 2D for a circular domain whose right half
contains fluid. Red: cells in the fluid; Blue: cells in the solid; White: cells in the air; Grey:
cells in both fluid and solid; Azure: cells in both solid and air.

which can also be written as an HJB equation

min
λi∈{0,1}

{λi(
NC∑
j=1

Ai,jpj + bi) + (1− λi)pi} = 0, (4.13)

where λi is the control that minimizes the term in the braces on the left hand side. The
solution pi and the control λi are unknown and depend on each other. If the i-th cell
completely falls outside of the fluid (white, azure, or blue) or inside the fluid (red), the
i-th row of the discretized pressure equation simply becomes linear:

NC∑
j=1

Ai,jpj + bi = 0. (4.14)

Defining S = {1 ≤ i ≤ NC | The i-th cell lies in both fluid and solid} (grey cells in Figure
4.1), then the LCP problem (3.42) can be converted into the following mixed LCP (or
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MLCP): 
minλi∈{0,1}{λi(

∑NC

j=1 Ai,jpj + bi) + (1− λi)pi} = 0, if i ∈ S

∑NC

j=1 Ai,jpj + bi = 0, otherwise.

(4.15)

We define the set of possible control matrices as M = {diag({λi})|λi = 0 or 1 if i ∈
S ;λi = 1 if i /∈ S }. The nonlinear equation (4.15) can be written as an HJB equation:

inf
Λ∈M
{Λ(Ap + b) + (I− Λ)p} = 0, (4.16)

where Λ serves as the control and inf is performed componentwise on the vector inside the
braces. We will discuss how to solve this equation in Chapter 5.
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Chapter 5

Fast solvers

The LCP problem is a nonlinear problem, and therefore efficient solvers for linear systems
cannot be used directly. Solving the LCP equation (4.15) is challenging as the solution and
the constraints are coupled with each other. It requires enforcing the constraints while the
solution must be known in order to know where to enforce the constraints.

Several approaches have been proposed to solve LCP problems. However, they either
have slow convergence or do not scale well for large problems. Nonlinear iterative methods
are used to solve the LCP problems but in general convergence is not guaranteed [13].
Direct approaches like pivoting method suffer from exponential computational cost [25].
The most recent methods, the minimum map Newton method by Andersen et al. [3, 25]
and the full multigrid by Chentanez & Muller [14], demonstrated improvement on previous
works. However, the Newton method still suffers from scalability issues since it relies on
the CG solver, which is not scalable. The full multigrid is based on the standard multigrid
for linear system and its scalability has not been explored yet.

To solve the LCP problem in fluid simulation more efficiently, we propose three methods:
policy iteration [30], penalty method [31], and full approximation scheme (FAS) multigrid
[37], which is a multigrid method for nonlinear equations. We choose policy iteration
and penalty method because they converge fast in general. To deal with LCPs arising in
larger scale fluid simulations, we prefer a multigrid method due to its scalability; that is,
its iteration count is expected to be essentially independent of grid resolution. We will
show that our proposed methods can outperform the naive multigrid approach proposed
by Chentanez et al. [14] and the non-smooth Newton method proposed by Andersen et al.
[3].
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5.1 Policy iteration

The policy iteration, also referred as Howard’s algorithm [39], is used to solve nonlinear
problems like the Bellman’s equation from the Markov Decision process (MDP). A typical
nonlinear problem that can be solved by policy iteration is given as follows:

min
π
{M(π)x + D(π)} = 0, (5.1)

where M(π) and D(π) are the matrix and the vector depending on the policy π, respec-
tively. x is the solution such that the minimum value of M(π)x + D(π) is zero. The goal
is to find an optimal policy π∗ and a solution to satisfy (5.1). We note that both x and π
are unknown. The basic idea of policy iteration is to solve one of the unknowns by fixing
the other, and iteratively repeat the process until convergence. Therefore, the nonlinear
problem (5.1) is solved by alternating between two steps:

• Policy improvement:
π = argminπ{M(π)x + D(π)}. (5.2)

• Policy evaluation:
M(π)x + D(π) = 0. (5.3)

We first evaluate the optimal policy based on the approximate solution, linearize the prob-
lem with the evaluated policy, and then solve the linear system to obtain a better approx-
imate solution. Specifically, given an approximate solution xk, we compute the improved
policy πk using (5.2) by letting x = xk. Fixing the policy π = πk to linearize the problem,
we solve the linear system (5.3) for the improved approximation xk+1. We repeat this
procedure from k = 0 until convergence.

Compared with Newton method, the linearization process is simpler and less expensive.
We solve the LCP (4.16) using the policy iteration by treating the control Λ as the policy
π and writing the term inside the braces as M(Λ)x + D(Λ) where M(Λ) = ΛA + I − Λ
and D(Λ) = Λb. Our proposed policy iteration scheme for solving (4.16) first computes
the control Λk using an initial guess of pk, and uses the control to linearize the problem.
The optimal control is calculated by enumerating all possible values of λi (either 0 or 1)
for each entry i ∈ S on the diagonal of the control matrix and choosing the value such
that λi(

∑NC

j=1 Ai,jpj + bi) + (1− λi)pi is minimum. With the control Λk, we can linearize
the LCP problem as follows:

Λk(Ap + b) + (I− Λk)p = 0, (5.4)
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which can be rewritten as
(ΛkA + I− Λk)p = −Λkb. (5.5)

We note that the matrix ΛkA + I − Λk may not be symmetric due to the multiplication
by Λk on the left. We explain here how to convert it to an equivalent linear system with
a symmetric matrix. Since Λk is a diagonal matrix with its diagonal entries being either
0 or 1, we have (Λk)2 = Λk. We can rewrite it as (I − Λk)Λk = 0. If we multiply (5.5)
with I− Λk on both sides, we obtain (I− Λk)p = 0, namely p = Λkp. Therefore, we have
ΛkAp = ΛkAΛkp. This means, we can multiply the matrix ΛkA in (5.5) by Λk on the
right and give the equivalent equation to (5.5) as follows:

(ΛkAΛk + I− Λk)p = −Λkb. (5.6)

We then solve the linear system (5.6) to compute an updated solution pk+1 and use it
to once again compute a new control Λk+1. We repeat this process from k = 0 until the
residual is sufficiently small. Our policy iteration scheme is presented in Algorithm 2. The
control update in (5.7) amounts to explicitly enforcing the LCP constraints, by choosing
for each row a λi that produces the minimum value. The i-th row becomes trivial if λi is
chosen as 0. The method is remarkably simple, but we shall see that it is quite effective
in practice. We calculate the initial guess for the current time step using the control from
the previous time step since this exhibited the better performance than zero initial guess
in practice.

Algorithm 2 Policy iteration for solving the LCP problem (4.15)

1: Choose an initial guess for p0 and a tolerance ε.
2: for k = 0, 1, 2, ... until residual < ε do
3: Find the optimal control matrix Λk such that

Λk = arg inf
Λ∈M
{Λ(Apk + b) + (I− Λ)pk}. (5.7)

4: Solve the linear system for pk+1,

(ΛkAΛk + I− Λk)pk+1 = −Λkb. (5.8)

5: end for
6: The approximate solution is given by pk+1 after the residual reaches the tolerance ε.
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We remark that the matrix A obtained from the pressure equation is an M-Matrix (see
section 3.7 for details). The matrix in (5.8) essentially replaces some rows of A by putting
one on the diagonal since λi is either 0 or 1. Such replacement only happens to the indices
corresponding to the cells near the fluid-solid boundary and will not affect the connectivity
property required as an M-Matrix. Thus the matrix in (5.8) is also an M-matrix. Theorem
6.2 in [30] showed that the M-matrix property ensures the sequence of approximate solution
is monotone and hence our policy iteration is guaranteed to converge to a unique solution.

We will consider two possible iterative methods to solve the inner linear system (5.8) in
Algorithm 2. One is to use preconditioned conjugate gradient (PCG) [21] with incomplete
LU factorization (ILU) as the preconditioner, which has been applied successfully to prob-
lems in computational fluid dynamics [41, 29, 42]. We use the SPARSEIT++ pacakge [28]
to solve the linear system due to its efficiency and robustness. Although the incomplete
Cholesky (IC) preconditioner is also used in fluid problems, we choose ILU only because
IC is not provided by the linear solver package. Since the matrix is an M-matrix and
symmetric, it is guaranteed to converge. However, the rate of convergence may depend
on the mesh size. Another attractive option is to use multigrid which will be described in
section 5.3. Multigrid is known for mesh-independent convergence, although special care
needs to be taken to capture the irregular geometry and boundary conditions. Note that
the multigrid scheme used here is a basic linear multigrid method (e.g., [48]), distinct from
the nonlinear variant we develop in section 5.3.

5.2 Penalty method

In contrast to policy iteration, our proposed penalty method approach solves the LCP by
enforcing the constraints implicitly through large penalties. As a result, formulating the
linear system in our penalty method is faster than policy iteration, while the linear system
in policy iteration has a smaller size. Considering their tradeoffs, we propose to apply both
methods to solve the fluid LCP and explore how they perform.

The penalty method is popular in solving constrained optimization problems. Consider
the quadratic optimization (4.11) which is equivalent to our LCP problem. The idea of
penalty methods is to use a large positive penalty term ρ to penalize the violation of the
constraint x ≥ 0. We rewrite the problem (4.11) as unconstrained optimization by adding
the penalty term and replacing x with the pressure p as follows:
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min

(
1

2
pTAp + bTp + ρ

n−1∑
i=0

max(−pi, 0)2

)
= min(f(p)), (5.9)

where we expect the solution approximates the solution of (5.9) to the LCP. The reason
is as follows. Suppose there is a severe violation of the constraint p ≥ 0, which means
p has some negative entry pi < 0 with very large absolute value. The penalty term
ρmax(−pi, 0)2 will become very large, thus minimizing the possibility for p to be selected
as the solution. On the other hand, since the constraints pi ≥ 0 are enforced, minimizing
f(p) is equivalent to minimizing the quadratic function 1

2
pTAp + bTp for p ≥ 0, which

is exactly the LCP equivalence as shown in (4.11). Since the function to be minimized,
namely, f(p) is convex due to the SPD matrix A, letting its gradient be zero will give us
the solution:

∇f(p) = Ap + b− ρmax(−p, 0) = 0. (5.10)

Assuming that p satisfies the penalized nonlinear equation (5.10), then Ap+b ≥ 0 always
holds. If pi ≥ 0, we have (Ap+b)i = 0. If pi < 0, pi = −1

ρ
(Ap+b)i is expected to be very

small due to the large penalty parameter ρ (109 for all our experiments). Given an initial
guess pk, the penalty method formulates a linear system by comparing each entry with the
constraint. It adds a large penalty to the corresponding diagonal of the matrix A when
there is a constraint violation. Note that the penalty only applies to rows corresponding
to cells on the fluid-solid boundary. Let the diagonal penalty matrix Π(p) be defined as:

Π(p)i,i =


1, if i ∈ S and pi < 0

0, otherwise.

(5.11)

Based on (5.10), we have
Ap + b + ρΠ(pk)p = 0. (5.12)

Therefore, the linear system formulated through pk is given as follows:

(A + ρΠ(pk))p = −b, (5.13)

Solving the linear system (5.13) gives a new approximate solution pk+1, which is used to
formulate a new linear system. This process is started from k = 0 until convergence. Our
penalty method for the nonlinear problem (4.15) is given by Algorithm 3.

Since A is an M-matrix as mentioned in section 3.7, the matrix in (5.14), which is
constructed by adding some positive values to the diagonals of A, is also an M-matrix.
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Therefore, the convergence of penalty iteration to a unique solution is guaranteed [31].
As we did for policy iteration, we also propose to solve the inner linear systems using
incomplete LU-preconditioned CG [21] or (linear) multigrid. Similar to policy iteration,
the initial guess for the current time step is calculated using the penalty matrix (5.11) from
the previous time step to improve the solver’s performance.

Algorithm 3 Penalty method for solving the LCP problem (4.15)

1: Choose an initial guess for p0, a tolerance ε, and the discount ρ� ε.
2: for k = 0, 1, 2, ... until residual < ε do
3: Solve the linear system for pk+1,

(A + ρΠ(pk))pk+1 = −b, (5.14)

4: end for
5: The approximate solution is given by pk+1 after the residual reaches the tolerance ε.

5.3 Multigrid

Both our policy iteration and penalty method have nested iterations: the outer iteration
for updating a linear system and the inner iteration for solving the linear system. Since
this can become computationally expensive, especially for larger problems, in this section
we propose an efficient multigrid method for the LCP problem. While Chentanez et al. [14]
previously proposed a multigrid scheme to solve LCPs from fluid simulations, their method
is based on standard multigrid for linear problems. It is therefore expected to achieve sub-
optimal performance and scaling behavior on our nonlinear problem. Instead, we propose
to use the full approximation scheme (FAS) [57, 10, 37], which is a multigrid framework
designed specifically for nonlinear problems.

In this section, we will introduce our multigrid method and describe how it can be
applied to solve the LCP (4.15). But first, we will explain the idea of multigrid for solving
the pressure equation without the LCP condition. Multigrid has two main components:
smoothing, which removes high frequency errors on a fine grid to make the error smooth
(see the example in Figure 5.1); and coarse grid correction, which removes the low frequency
errors on a coarser grid. It proceeds from the fine grid to the coarse grid, solves the equation
exactly, and transfers information back to correct the fine grid error. This process is called
a V-cycle and can be extended to multiple grid levels by applying it recursively (see Figure
5.2). A standard multigrid method iterates the V-cycle until convergence.
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Based on the V-cycle, the more sophisticated scheme to do multigrid is called full
multigrid V-cycle (FMG). The idea is to firstly obtain a better initial guess from coarse
grid before performing the V-cycle as shown in Figure 5.2. It first starts with solving the
equation on the coarsest grid with grid size 8h as shown in Figure 5.3. Then it interpolates
the results to the next finer grid, namely the grid with grid size 4h. On this finer grid, it
performs a V-cycle and interpolates the results again to the next finer grid with the grid
size 2h. This process is done recursively until the finest grid (of size h for the case in Figure
5.3) is reached.

Figure 5.1: The error plot for a 2D Poisson problem after applying Gauss-Seidel smoother
with 0, 10, 50, and 100 iterations. We can see that the error becomes smoother after 10
iterations but is not reduced much from 50 to 100 iterations.
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Figure 5.2: A V-cycle in the 4-level multigrid from the finest grid with grid size h to the
coarsest grid with grid size 8h.

Figure 5.3: A full-cycle in the 4-level multigrid from the finest grid with grid size h to
the coarsest grid with grid size 8h. This full cycle contains 3 V-cycles.

To illustrate multigrid in detail, consider solving a linear system Ahph = fh discretized
from a domain with the grid size h, where Ah is the discrete Laplacian matrix, fh is a
column vector and ph is the exact solution. Let p̃h be the approximate solution after
pre-smoothing (e.g. damped Jacobi, Gauss-Seidel). We define the fine grid error as

eh = ph − p̃h, (5.15)

and the corresponding residual as

rh = fh −Ahp̃h = Ah(ph − p̃h) = Aheh. (5.16)
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Since resolving the smoothed error eh on the coarse grid is more effective, we restrict the
residual equation Aheh = rh to the coarse grid with grid size H and obtain

AHeH = rH , (5.17)

where AH is the matrix constructed by discretizing the PDE on the coarse grid and rH is
restriction of rh from fine to coarse grid. Interpolating the solution εH to the coarse grid
problem (5.17) gives us an approximate solution to Aheh = rh. We use it to correct the
approximate solution on the fine grid p̃h as p̄h ← p̃h + P (εH). Post-smoothing is applied
to p̄h after the correction. The multigrid method iterates the V-cycle until convergence.
The details of a V-cycle for linear multigrid is given in Algorithm 4.

Algorithm 4 V-Cycle of the multigrid for solving the linear system (3.41)

1: p̂hnew ← V-Cycle(Ah, fh, p̂h):
2: Define the restriction operator R and interpolation operator P .
3: if h is the coarsest level then
4: Solve Ahph = fh.
5: else
6: Pre-smooth with appropriate smoother:
7: p̃h = presmoothing(Ah, fh, p̂h).
8: Compute the residual rh = fh −Ahp̃h.
9: Restrict rh: rH = R(rh), where H is the next coarser level.
10: Compute the coarse grid matrix AH

11: Choose an initial guess p̂H for the coarse grid problem
12: Step to the coarse grid: εH ← V-Cycle(AH , rH , p̂H)
13: Interpolate and correct: p̄h ← p̃h + P (εH).
14: Post-smooth with appropriate smoother:
15: p̂hnew = postsmoothing(Ah, fh, p̄h).
16: end if
17: The solution is obtained by iterating p = V-Cycle(A,−b,p).

Since the problem we are solving is nonlinear, the multigrid V-cycle for linear problems
cannot be used to solve (4.15) directly. Specifically, the coarse grid error eH cannot be
evaluated through (5.17). In other words, we need to make changes regarding how to
step to the coarse grid. To address this issue, we need to change the smoother and apply
the Full Approximation Scheme (FAS) multigrid algorithm [10]. Firstly, we introduce the
Projected Gauss-Seidel (PGS), which is based on the Gauss-Seidel method and used for
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solving LCPs [25]. The idea of PGS is to enforce the non-negative constraint after each
Gauss-Seidel iteration. The PGS is in general slow in solving LCP but is efficient enough
to make the error smooth. The details of PGS for smoothing our LCP problem are given
in Algorithm 5. In each iteration, the PGS obtain the approximate solution by performing
a GS iteration. Then it checks every entry against the constraint. In case of constraint
violation, the PGS enforces the constraint on the corresponding entry. For example, if the
i-th entry obtained from GS iteration is negative and corresponds to the cell near the solid
boundary (i ∈ S ), the PGS sets it to zero to enforce the constraint.

Algorithm 5 Projected Gauss-Seidel (PGS) for smoothing the LCP problem (4.15)

1: p← PGS(A,b,p, Nmax):
2: The initial guess is given as p0 = p.
3: for k = 0, 1, 2, ..., Nmax do
4: for i = 0, 1, 2, ..., n− 1 do
5: rki = −bi −

∑
j 6=i Ai,jp

k
j

6: if i ∈ S then
7: Enforce the constraint:
8: pk+1 = max(0,

rki
Ai,i

)

9: else
10: pk+1 =

rki
Ai,i

11: end if
12: end for
13: end for
14: Return pNmax

We use N to define the operator on p on the left hand side of (4.16) and the equation
becomes N (p) = 0. Let N h denote the nonlinear operator N on the grid at level h, where
h is the grid size. According to (4.16), we have

N h(ph) = inf
Λh∈S h

{Λ(Ahph + bh) + (I − Λh)ph}, (5.18)

where the matrix Ah is constructed at grid level h, vector ph is the exact solution at the
level h, vector bh is restricted from the finer level, and the control set S h is defined to be
the same as in S except that the dimension of the matrices is the number of cells on the
level h. To explain how FAS multigrid works, we consider the fine grid level h and its next
coarser grid level H. The nonlinear problem at level h is

N h(ph) = fh. (5.19)
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Note that fh = 0 on the finest grid; see (4.16). The error after pre-smoothing is

eh = ph − qh, (5.20)

where qh is the approximate solution. The residual becomes

rh = fh −N h(qh) = N h(ph)−N h(qh). (5.21)

Let R be the restriction operator from fine to coarse grid. Due to the nonlinear operator
N h, we cannot use rh = N (eh) and restrict it into coarse grid as in the linear case. Instead,
we rewrite (5.21) as

N h(ph) = N h(qh) + rh (5.22)

and restrict it into the coarse level H:

NH(qH) = NH(R(qh)) +R(rh) ≡ fH , (5.23)

where qH be the exact solution to equation (5.23). The coarse grid error is computed as
eH = qH −R(qh). We interpolate the coarse grid error eH on the fine grid and use P (eH)
to correct qh.

Algorithm 6 V-Cycle of the FAS multigrid for solving the LCP problem (4.15)

1: qh ← V-Cycle(N h, fh,qh):
2: Define the restriction operator R and interpolation operator P .
3: Determine the number of pre-smoothing n1 and the number of post-smoothing n2.
4: if h is the coarsest level then
5: Solve N h(ph) = fh with PGS.
6: else
7: Pre-smooth with PGS:
8: qh = PGS(N h, fh,qh, n1)
9: Compute the residual rh = fh −N h(qh).
10: Restrict qh: qH = R(qh), where H is the next coarser level.
11: Compute fH = NH(qH) +R(rh).
12: qH ← V-Cycle(NH , fH ,qH)
13: Interpolate and correct: qh ← qh + P (qH −R(qh)).
14: Post-smooth with PGS:
15: qh = PGS(N h, fh,qh, n2)
16: end if
17: The solution is obtained by iterating p = V-Cycle(N ,0,p).
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Algorithm 6 provides the details of FAS multigrid. We use projected Gauss-Seidel
(PGS) [16] as the smoother. For the coarse grid matrix construction, we choose Galerkin
method [12] over the direct discretization because it gives a more accurate matrix. We
modify the standard interpolation and restriction to accommodate the staggered grid,
reduce the cost of constructing the coarse grid matrix, and maintain the same order of
accuracy. In case of jumps near the solid boundary, we adjust the interpolation and
restriction weights to improve accuracy. These modifications on the standard FAS enables
convergence of our solver for the LCP and achieves better performance than the multigrid
by Chentanez et al. [14].

Now we describe our modifications in detail.

5.3.1 Coarse grid matrix construction

The coarse grid matrix AH is often constructed by directly discretizing the problem on
the coarse grid. Since this way is cheap and simple, Chentanez et al. [14] computed the
coarse grid matrix by averaging the the weights of non-solid matter and the liquid level set
function from fine to coarse grids. We found that this approach is insufficiently accurate
as it led to the coarse grid error not always matching the fine grid error, in turn causing
slow convergence. In general, the complexity of the fluid domain can make it difficult to
accurately approximate the shape through discretization on a coarse grid. For example, a
bubble represented on the fine grid can disappear on the coarse grid. Therefore, to match
the fine grid matrix more accurately, we propose to construct the coarse grid matrix using
the Galerkin method [12]:

AH = R ·Ah · P, (5.24)

where Ah is the fine grid matrix. At the expense of getting a much denser matrix, which
results in extra computational costs, this approach ensures that the coarse grid operator
accurately matches its fine grid counterpart, and gives faster convergence. In particular,
this ensures that relatively thin boundaries which are only fully resolved at the finest
level are still naturally respected at coarser grid levels, without additional treatment. To
reduce the extra costs from using Galerkin method, we use the compact interpolation and
restriction (explained later), whose operators are much sparser, to make the coarse grid
matrices much sparser and faster to construct.
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5.3.2 Interpolation and restriction

We describe how to construct the restriction matrix R and the interpolation matrix P . To
preserve symmetry, the restriction matrix is computed as the transpose of the interpolation
matrix scaled by a constant (1

4
in 2D and 1

8
for 3D). A natural first choice for interpolation

is bilinear in 2D and trilinear in 3D, since they are both second order.

Because we have adopted a staggered grid with pressures at cell centers, we must do
it differently when interpolating between levels. The layout of two grid levels and their
pressure samples in 2D is shown in Figure 5.4. The solid line represents the coarse grid
and the dotted line the fine grid. Fine and coarse grid pressure samples are represented by
black and red points, respectively. Bilinear interpolation for the fine grid point ph depends
on the four nearest coarse grid points pH0 , pH1 , pH2 , pH3 . Their interpolation weights are
9
16

, 3
16

, 3
16

, 1
16

, respectively. The trilinear interpolation in 3D is shown in Figure 5.5: ph is
interpolated from eight surrounding coarse grid points with weights of 27

64
for pH0 , 9

64
for pH1 ,

pH2 , pH4 , 3
64

for pH3 , pH5 , pH6 , and 1
64

for pH7 .

Figure 5.4: Interpolation of pressure between grid levels in 2D.
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Figure 5.5: Interpolation of pressure between grid levels in 3D.

As we mentioned earlier, the coarse grid matrix is constructed by multiplying the
interpolation and restriction matrices. As a result, the density of the coarse grid matrix
depends on how we perform the interpolation and restriction. Using too many nearby
coarse grid points yields denser interpolation and restriction matrices therefore a denser
coarse grid matrix, which makes the computation more expensive. Thus, we propose an
even simpler alternate solution that uses fewer coarse grid points while preserving the
desired second order accuracy. Specifically, we adopt the barycentric interpolation, which
gives a sparser interpolation operator. As a result, the coarse grid matrix is sparser and
the construction is less expensive. Moreover, the smoothing process on coarse grids will
be less expensive due to the decrease of nonzeros per row. In our experiments in 3D, both
the average number of nonzeros per row of the top level coarse grid matrix and the time
for solving the LCP were reduced by about half.

We now describe how to perform the barycentric interpolation. Consider again ph in
Figure 5.4 for the 2D case, we will use the coarse grid points pH0 , pH1 , pH2 , since they
form a triangle that includes the non-coarse grid point ph (green lines in Figure 5.4). The
interpolation becomes ph = 1

2
pH0 + 1

4
pH1 + 1

4
pH2 . Similarly, in 3D as shown in Figure 5.5, ph

is inside the tetrahedron (green lines in Figure 5.5) formed by pH0 , pH1 , pH2 , pH4 . Each coarse
grid point is assigned a weight of 1

4
. The weights for 2D and 3D are determined such that

second order accuracy is preserved. We will give detailed proof later.
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These more compact interpolation (and corresponding restriction) operators give inter-
polation matrices that will be 25 percent sparser in 2D and 50 percent sparser in 3D. We
give a 3D example with small problem size (from 83 to 43) shown in Figure 5.6 to visualize
how much sparser can be achieved when constructing coarse grid matrix through barycen-
tric interpolation and restriction. The coarse grid matrix from trilinear and barycentric has
2,104 and 1,168 non-zeros, respectively. The operator P from trilinear and barycentric has
2,744 and 1,664 non-zeros, respectively. For larger problem size (from 643 to 323) shown
in Figure 5.7, the number of nonzeros demonstrates that using the barycentric makes the
coarse grid matrix over 50 percent sparser (858,304 vs 2,000,376 non-zeros). The opera-
tor P from barycentric (1,024,000 non-zeros) is also 50 percent sparser than from trilinear
(2,000,376 non-zeros).

We prove that the barycentric interpolation gives accuracy of second order. For simplic-
ity, let’s assume the cube in Figure 5.5 is [0, h]× [0, h]× [0, h] and we want to interpolate
the pressure at (h

4
, h

4
, h

4
) with the barycentric interpolation:

ph =
1

4
pH0 +

1

4
pH1 +

1

4
pH2 +

1

4
pH4 , (5.25)

where pH0 = p(0, 0, 0), pH1 = p(h, 0, 0), pH2 = p(0, h, 0), pH4 = p(0, 0, h). Assume the pressure
p is C1 smooth and apply Taylor expansion to pH0 , pH1 , pH2 , pH4 at (h

4
, h

4
, h

4
):

pH0 = p
(
h
4
, h

4
, h

4

)
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∂x

(
h
4
, h

4
, h

4

) (
−h

4

)
+ ∂p

∂y

(
h
4
, h

4
, h

4

) (
−h

4

)
+ ∂p

∂z

(
h
4
, h

4
, h

4

) (
−h

4

)
+O(h2), (5.26)

pH1 = p
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pH2 = p
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pH4 = p
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Figure 5.6: Visualization of the coarse grid matrix for 3D problem computed using trilin-
ear (left) and barycentric (right) interpolation/restriction from 83 to 43.

Figure 5.7: Visualization of the coarse grid matrix for 3D problem computed using trilin-
ear (left) and barycentric (right) interpolation/restriction from 643 to 323.
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Adding equations (5.26) to (5.29) together and dividing both sides by 4, we find that
all the first derivative terms are cancelled. Therefore, we have the error:

ph − p(h
4
,
h

4
,
h

4
) = O(h2), (5.30)

which concludes the proof in 3D. The proof in 2D is similar.

Finally, we present the experimental results in 3D (see Table 5.1) to show the per-
formance gain from using barycentric interpolation and restriction in Galerkin method.
Compared with direct discretization, the Galerkin method with trilinear is much more
computationally expensive (at least 7 times slower). However, using barycentric greatly
reduces the coarse grid matrix construction time and is even able to achieve similar per-
formance as direct discretization for large problems (eg. 1283).

Coarse grid matrix size Direct discretization Galerkin method (trilinear) Galerkin method (barycentric)
163 0.00 0.03 0.01
323 0.01 0.22 0.04
643 0.14 1.71 0.31
1283 2.55 14.01 2.56

Table 5.1: Coarse grid matrix construction timing (in seconds) comparison in 3D

Figure 5.8: Standard interpolation (dashed blue) across a narrow solid boundary causes
large pressure errors (shown in 1D). Our one-sided interpolation (red) yields better behav-
ior.
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5.3.3 Boundary handling

The solution to the pressure equation (4.15) may have a large jump around the solid
boundary due to different conditions being imposed on either side of it (see Figure 5.8).
Therefore, we modify our interpolants to accommodate this situation and ensure better
convergence of FAS multigrid. Inspired by the work of Wan & Liu [60] and Guendelman
et al. [36], we modify our interpolants to exploit knowledge of the solid boundary. Given
a fine grid point, we determine the interpolation weights for only the coarse grid points
which are on the same side of the solid. We then rescale the weights of those (same side)
coarse grid points proportionally so that they sum to 1. For example, consider a 2D coarse
grid cell crossing the boundary as shown in Figure 5.9.

Figure 5.9: Interpolation near the solid boundary in 2D.

Points pH0 and pH2 are on the opposite side of the solid from the find grid point ph.
Barycentric interpolation ordinarily assigns weights of 1

4
, 1

4
, 1

2
to pH1 , pH2 , pH3 , respectively.

In our modified one-sided interpolation, only points pH1 and pH3 will be used; their weights
after rescaling become 1

3
and 2

3
, so we have pH = 1

3
pH1 + 2

3
pH3 .

For the linear multigrid used for the inner linear systems in our policy iteration and
penalty method, we likewise use barycentric interpolation/restriction and neglect points
across the solid boundary, but find it unnecessary to normalize the weights.
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Chapter 6

Numerical results

In this chapter, we demonstrate efficiency and scalability of our LCP solvers by presenting
numerical results from simulating several scenarios in both 2D and 3D using separating
solid boundary conditions. We compare the performance of our solvers with the recent
competitive methods: the FMG [14] and the Newton’s method [3]. The comparison is
based on scalability, timing, and convergence.

6.1 Environmental set-up and parameters

The fluid simulation tool we are using in 2D and 3D is implemented by Batty [6, 7] written
in C++ . The domain is [0, 1]2 for 2D and [0, 1]3 for 3D. The time step for each frame is
0.01. We use an absolute residual tolerance of 10−6 throughout. To ensure convergence of
the penalty method, the penalty term ρ must be sufficiently large, which depends on the
desired tolerance. In our experiments, we chose ρ to be 103/tolerance (i.e., 109). For all
the multigrid methods, we choose the coarsest grid as 42 in 2D and 43 in 3D for all problem
sizes.

All the experiments except the maze scenario in Figure 6.7 were run on the slave nodes
of the Chardonnay cluster consisting of 2 master nodes and 8 slave nodes. Each slave node
has 2x Intel E5-2670 (8C) CPUs, 128 GB memory, 15T LSI SAS2308 disk space, 2x GbE
interconnect, and X9DRFF-7TG+ motherboard. The operating system is Linux Ubuntu
20.04.1 LTS and the C++ code is compiled with optimization option O2.

As for the maze scenario, the code for the simulation is provided by the developers of
Newton’s method [24], which needs to be compiled with CUDA and offers the option of
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running either on CPU or GPU. Since the Chardonnay cluster does not have GPU, we use
the node from the Graham cluster [1] to get the code compiled and run the experiments.
The node we use has 2 x Intel Xeon Silver 4110 Skylake @ 2.10GHz CPUs, 192 GB memory,
11.0TB SATA SSD storage, and 4 x NVIDIA T4 Turing GPUs. We run the code on CPU
for the comparison.

(a) 20th frame (b) 40th frame (c) 60th frame (d) 80th frame

(e) 20th frame (f) 40th frame (g) 60th frame (h) 80th frame

Figure 6.1: Snapshots from simulating fluid inside a solid circle in 2D using LCP bound-
aries (top row) and standard boundaries (bottom row).

6.2 Simulation scenarios

We present several scenarios in both 2D and 3D demonstrating the effects of using separat-
ing solid boundary conditions along with representative frames. We will run simulations
on these scenarios to measure the performance of LCP solvers.

Figures 6.1 and 6.2 show frames from two scenarios in 2D which demonstrate the
difference between standard and LCP solid boundary conditions. The scenario in Figure
6.1 simulates half fluid on the left inside a circular solid boundary in 2D. As we can see,
at the 20th frame, the fluid naturally slips from the top boundary when using separating
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solid boundary conditions. However, for the standard boundary conditions, the fluid does
not fall smoothly as if it is sticky. We can also see from the 40th frame that the fluid
using LCP boundaries is more tentative to peel off from the solid near the left most point.
From the 60th frame to the 80th frame, we can see that the fluid with separating solid
boundary conditions quickly drops from the ceiling while the fluid with standard boundary
conditions sticks to the top boundary. The scenario in Figure 6.2 simulates half fluid on
the left inside a solid square in 2D, which shows similar effects as the solid circle scenario.
The fluid can easily slip from the top (20th, 60th, and 80th frames) and the left (40th
frame) boundaries with separating solid boundary conditions, compared with the standard
boundary conditions.

We look at three scenarios in 3D. At first, we present selected frames from the scenario 1
in 3D in Figures 6.3 for separating solid boundary conditions and 6.4 for standard boundary
conditions. The scenario 1 simulates half fluid filling the left space inside a spherical
boundary. The 20th frame shows that the fluid drops from the boundary for the LCP case
instead of sliding around it. It is also shown in the other frames that the fluid more readily
separates from the boundary in the LCP case.

(a) 20th frame (b) 40th frame (c) 60th frame (d) 80th frame

(e) 20th frame (f) 40th frame (g) 60th frame (h) 80th frame

Figure 6.2: Snapshots from simulating fluid inside a solid square in 2D using LCP bound-
aries (top row) and standard boundaries (bottom row).
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(a) 10th frame (b) 20th frame

(c) 50th frame (d) 70th frame

Figure 6.3: Snapshots from simulating fluid inside a solid sphere in 3D at 1283 using
LCP boundaries.
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(a) 10th frame (b) 20th frame

(c) 50th frame (d) 70th frame

Figure 6.4: Snapshots from simulating fluid inside a solid sphere in 3D at 1283 using
standard boundaries.
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Figure 6.5: The 70th frame from scenario 2 in 3D, with (left) and without (right) sepa-
rating solid wall boundary conditions.

We now present more complicated scenarios. Scenario 2 is based on scenario 1 but
has a rectangular cuboid inside so that fluid-solid contacts frequently form and break on
the cuboid’s bottom face. At the 70th frame shown in Figure 6.5, we can see that the
water drops from the top with separating solid boundary conditions while it sticks to the
the boundary when using standard boundary conditions. Scenario 3 has a solid outer
boundary created as the union of two spheres. Two hollow solid spheres are also placed
inside the domain with the bottom one having holes through it. The effects of using
separating solid boundary conditions for scenario 3 is demonstrated in Figure 6.6. At the
10th frame, the water drops from top for LCP case instead of sliding along the boundary.
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Figure 6.6: The 10th frame from scenario 3 in 3D, with (left) and without (right) sepa-
rating solid wall boundary conditions.

6.3 Performance analysis

To evaluate the effectiveness of our proposed solvers, we compare the performance of differ-
ent solvers, including the standard boundary conditions using PCG (No LCP). Specifically,
we compare our methods with the multigrid method developed by Chentanez et al. [14] and
the non-smooth Newton’s method [3]. Chentanez’s full multigrid (FMG) approach iterates
costly full cycles while our multigrid uses V-cycles, which are simpler and less expensive.
Moreover, they pre- and post-smooth the error four times, while we do it only twice. For

50



policy iteration, we tested with two different solvers for the linear system (5.8): PCG and
(linear) multigrid, denoted by PI-PCG and PI-MG, respectively. The coarse grid matrix
here was also computed using the Galerkin method. We likewise tested penalty method
using PCG (PE-PCG) and multigrid (PE-MG). Newton’s method is broadly similar in
concept to policy iteration, but is much more complicated. In addition to solving a linear
system in each Newton iteration, it also requires performing a line search. For the purpose
of testing and comparing with Newton’s method, we also use their public CUDA code [24]
and ran tests using the CPU (rather than GPU). We measure the performance of these
methods based on the scalability and the timing. For multigrid methods, we show their
convergence at some representative frames in the simulations. Finally, we demonstrate
the contribution of our proposed modifications to the FAS-MG by comparing with the
standard FAS-MG.

6.3.1 Scalability

To compare scalability, we run the simulations for the scenarios in both 2D and 3D. Specif-
ically, we choose the scenario in 2D as shown in Figure 6.1 and in 3D as shown in Figures
6.3 and 6.4.

We measure the scalability using the average number of iterations per pressure equation.
Specifically, this refers to the average number of V-cycles per pressure equation over 100
frames for FAS-MG, and average number of full cycles for FMG. The solution processes
of policy iteration, penalty method and Newton’s method involve nested iterations, often
called outer-inner iteration. The outer iteration updates the linear system whereas the
inner iteration solves the linear system by an iterative method. We count all the inner
iterations per pressure equation. We measure iterations for policy iteration and penalty
method as the total number of PCG/MG iterations per pressure equation. For Newton’s
method, we add the number of PCG and line search iterations together to count as the
number of iterations.

Size FAS-MG PI-PCG PI-MG PE-PCG PE-MG FMG Newton No LCP
32 7.45 16.9 7.59 16.87 7.99 20.38 92.11 15.99
64 10.39 36.02 9.74 36.07 12.58 35.4 336.17 30.73
128 14.07 70.63 11.89 70.58 17.6 65.37 947.23 55.91
256 18.26 123.61 14.51 122.42 21.98 109.54 2283.65 93.2

Table 6.1: Average number of iterations per pressure equation for solving 100 frames of
the circular domain problem in 2D.
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Size FAS-MG PI-PCG PI-MG PE-PCG PE-MG FMG Newton No LCP
32 9.75 29.9 12.12 30.16 13.93 22.21 1901.69 20.14
64 10.44 70.92 14.66 71.34 19.11 39.81 3890.08 39.57
128 11.94 132.56 17.61 133.53 24.57 61.12 10879.01 62.26
256 14.02 251.88 20.71 252.28 28.84 89.89 NA 100.78

Table 6.2: Average number of iterations per pressure equation for solving 100 frames of
the spherical domain problem in 3D.

We perform the tests for different problem sizes, namely, the numbers of unknowns per
dimension: 32, 64, 128, and 256. For the 2563 grid in 3D, we did not test Newton’s method
because it was too slow. The test results for 2D and 3D are shown in Table 6.1 and Table
6.2, respectively. We recall that a method is considered to be scalable if the number of
iterations does not depend on the problem size.

For the 2D test, we can see that for our multigrid methods (FAS-MG, PI-MG, PE-
MG), the average number of iterations only increases 2 to 3 times from size of 32 to 256.
For the FMG, however, the number increases about 5 times. For the policy iteration and
penalty method with PCG, the average number of iterations increases 10 times from size
of 32 to 256. The FMG does demonstrate better scalability than the policy iteration and
penalty method with PCG but is not as good as our multigrid methods. This is because
the PCG solver itself is not scalable. The Newton’s method has much worse scalability as
the average number of iterations increases about 24 times from size of 32 to 256. For the
No LCP, the average number of iterations increases about 6 times from size of 32 to 256,
which scales better than PI-PCG and PE-PCG but worse than the multigrid methods.

For the 3D test, the result is similar to 2D but our multigrid methods have slightly
better scalability. The average number of iterations increase 1 to 2 times from size of 32
to 256. The other methods scale more or less the same as in the 2D case.

As an additional comparison against Newton’s method [3], we used the authors’ code
and tested their method and all of our LCP solvers in their maze scenario shown in Figure
6.7. Due to the limitation of their code, we only present the test for the problem sizes up
to 128 in 2D. The test result is shown in Table 6.3.
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(a) 20th frame (b) 40th frame (c) 60th frame (d) 80th frame

(e) 20th frame (f) 40th frame (g) 60th frame (h) 80th frame

Figure 6.7: Snapshots from simulating fluid inside a maze in 2D using our FAS-MG (top
row) vs. the non-smooth Newton’s method (bottom row). The results are visually consistent.

Size FAS-MG PI-PCG PI-MG PE-PCG PE-MG FMG Newton
32 4.41 9.74 8.11 9.5 7.67 6.89 87.2
64 7.07 15.52 10.55 15.75 10.11 10.71 195.5
128 5.83 31.29 13.52 31.9 12.91 34.13 450.21

Table 6.3: Comparison of the number of iterations between our solvers and Newton’s
method for solving the pressure equations for 100 frames of the maze problem in 2D.

The LCP solvers in the maze scenario (Table 6.3) scales similarly as the half fluid
scenarios in 2D (Table 6.1) and 3D (6.2). However, the PI-PCG and PE-PCG have better
scalability in the maze scenario. The simulation result also shows that our solver FAS-MG
produces consistent result as the Newton’s method (see Figure 6.7).
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Size FAS-MG PI-PCG PI-MG PE-PCG PE-MG FMG Newton
32 7 139 10 146 21 29 2773
64 8 282 9 301 18 61 5837
128 8 593 10 657 24 128 18680
256 9 1263 14 1255 28 234 38547

Table 6.4: Number of iterations for solving the pressure at the 10th frame of scenario 1
in 3D.

Size FAS-MG PI-PCG PI-MG PE-PCG PE-MG FMG Newton
32 6 149 11 161 18 35 2634
64 7 308 18 336 29 43 11122
128 8 503 22 548 40 63 50162
256 9 1186 43 1313 89 103 95823

Table 6.5: Number of iterations for solving the pressure at the 70th frame of scenario 2
in 3D.

Size FAS-MG PI-PCG PI-MG PE-PCG PE-MG FMG Newton
32 7 80 14 85 23 15 1430
64 15 182 37 203 57 43 9219
128 9 421 34 446 90 67 46491
256 12 762 24 887 60 175 122080

Table 6.6: Number of iterations for solving the pressure at the 10th frame of scenario 3
in 3D.

Now we test LCP solvers for specific frames with significant handling of fluid solid
separation in three different scenarios in 3D (see the 10th frame for scenario 1 in Figures
6.3 and 6.4, the 70th frame for scenario 2 in Figure 6.5, the 10th frame for scenario 3 in
Figure 6.6, respectively.) We choose these frames as they are representative in terms of
demonstrating the effects of using separating solid boundary conditions. The number of
iterations for solving the pressure for the first substep of the specific frame in the three
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different scenarios are presented in Tables 6.4, 6.5, 6.6, respectively. Table 6.4 shows the
scalability of LCP solvers at the 10th frame is similar to the scalability measured over all
frames (Table 6.2). Compared with scenario 1, the tests in scenarios 2 and 3 demonstrate
that the FAS-MG is still scalable even for complicated scenarios. The scalability of PI-
MG and PE-MG deteriorates a little bit, but they still perform better than the existing
methods (FMG and Newton).

Regarding scalability in terms of number of iterations, our FAS-MG, PI-MG and PE-
MG are scalable because the number of iterations increases slowly with increasing problem
size. Our FAS-MG scales the best since it has no outer iterations. Our PI-MG and PE-MG
are scalable due to the use of multigrid method and the good scalability of the number of
outer iterations of policy iteration.

We now explore the scalability of policy iteration, penalty method and Newton’s method
in terms of the number of outer iterations. We measure the average number of outer
iterations for these methods from size of 32 to 256 over 100 frames for the half fluid
scenarios in 2D and 3D are shown in Tables 6.7 and 6.8, respectively.

Size PI-PCG PI-MG PE-PCG PE-MG Newton
32 1.12 1.12 1.12 1.23 0.94
64 1.25 1.25 1.25 1.43 1.71
128 1.34 1.34 1.35 1.58 2.08
256 1.43 1.43 1.41 1.63 2.34

Table 6.7: Average number of outer iterations per pressure equation for policy iteration
and penalty method for solving 100 frames of the circular domain problem in 2D.

Size PI-PCG PI-MG PE-PCG PE-MG Newton
32 1.47 1.47 1.49 1.53 2.04
64 1.78 1.76 1.79 1.77 2.57
128 2.1 2.12 2.12 2.19 2.91
256 2.48 2.52 2.48 2.49 NA

Table 6.8: Average number of outer iterations per pressure equation for policy iteration
and penalty method for solving 100 frames of the spherical domain problem in 3D.

Tables 6.7 and 6.8 show that the number of outer iterations for policy iteration and
the penalty method is almost constant with only 2 to 3 linear systems needed per pressure
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equation. Policy iteration performs slightly better than the penalty method in terms of
average number of outer iterations. Moreover, our policy iteration and penalty method
scale slightly better than Newton’s method and require fewer outer iterations in general.
We note that the result for PI-PCG (or PE-PCG) is slightly different from PI-MG (PE-
PCG) due to round-off errors in numerical computation. They are supposed to be the
same theoretically.

The scalability of both inner and outer iterations contributes to the scalability of PI-
MG and PE-MG. However, for PI-PCG and PE-PCG, the number of iterations doubles
as the problem size doubles. This is expected as the number of PCG iterations usually
doubles with problem size, while the number of outer iterations remains relatively constant.
Newton’s method is comparatively slow, especially in 3D, because its inner iteration is
computationally expensive although its outer iteration is relatively scalable. FMG also
suffers from an increase in the number of iterations for full cycle although the rate is
less than 2 (about 1.5). We note that the number of iterations required to converge for
FMG is much larger than for our proposed multigrid methods (FAS-MG, PI-MG, and PE-
MG) because it is not designed for nonlinear problems. FAS-MG and PI-MG required the
smallest number of iterations among all the methods.
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Figure 6.8: A histogram illustrating how many pressure solves required a given number
of outer iterations for policy iteration and penalty method for 100 frames of the spherical
domain problem in 3D for grid size 128.

We observed that the pressure equations for most timesteps required solving the LCP
equations (i.e., performing multiple outer iterations) when the problem size becomes large.
We present a histogram of the number of outer iterations for policy iteration and penalty
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method over 100 frames in the 3D test for the size of 128 in Figure 6.8. About 93 percent
of these pressure equations are LCP problems while some of them need only one outer
iteration because the first control update leads to the correct linear system to solve the
LCP. Since we use sub-stepping, the number of problems solved exceeds the frame count.

6.3.2 Timing

We present the timing comparison for the scenarios mentioned at the beginning of section
6.3.1, namely, half fluid scenarios in 2D (Figure 6.1) and in 3D (Figures 6.3 and 6.4). We
measure the average time for solving the pressure equations over 100 simulation frames.
Tables 6.9 and 6.10 show the average time per pressure equation for all methods in 2D and
3D, respectively. Table 6.9 shows that in 2D our proposed methods (FAS-MG, PI-PCG,
PI-MG, PE-PCG, PE-MG) have similar performance especially for large grid sizes (128
and 256) and are much faster than FMG and Newton’s method. No LCP is the fatest
but it is expected as it solves a less complicated problem than LCP solvers. However, for
the size of 256, our LCP solvers are only slightly slower than the No LCP solver. From
Table 6.10, we observe that like in 2D, our proposed methods are still much faster than
FMG and Newton’s method in 3D. However, the performance of our proposed methods
are different when the size is 256. The FAS-MG performs much better than the other
proposed solvers. It is as much as 30 times faster than FMG in 3D at 2563, and is only
slightly slower than the No-LCP solver. We also present the timing for the maze scenario
in 2D, shown in Table 6.11. It also demonstrates superior efficiency of our methods over
FMG and Newton’s method although the our proposed methods perform differently. The
PI-PCG/PE-PCG perform the best but we note that the largest problem size is only 128.

Size FAS-MG PI-PCG PI-MG PE-PCG PE-MG FMG Newton No LCP
32 0.0021 0.00054 0.0028 0.00055 0.0025 0.0026 0.002 0.00048
64 0.0082 0.0034 0.0086 0.0033 0.0075 0.022 0.024 0.0029
128 0.029 0.02 0.03 0.021 0.028 0.17 0.24 0.016
256 0.13 0.15 0.12 0.13 0.13 1.25 2.59 0.098

Table 6.9: Average time (in seconds) per pressure equation for solving 100 frames of the
circular domain problem in 2D.
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Size FAS-MG PI-PCG PI-MG PE-PCG PE-MG FMG Newton No LCP
32 0.037 0.014 0.036 0.015 0.036 0.076 0.98 0.0074
64 0.25 0.2 0.33 0.2 0.37 1.68 25.38 0.09
128 2.15 2.64 2.82 2.82 4.28 30.24 637.67 1.15
256 16.78 36.96 24.58 37.82 47.38 510.71 NA 14.24

Table 6.10: Average time (in seconds) per pressure equation for solving 100 frames of the
spherical domain problem in 3D.

Size FAS-MG PI-PCG PI-MG PE-PCG PE-MG FMG Newton
32 0.016 0.0042 0.032 0.004 0.029 0.017 0.41
64 0.092 0.018 0.15 0.018 0.12 0.1 3.5
128 0.38 0.1 0.7 0.11 0.53 1.21 31.35

Table 6.11: Comparison of the average time (in seconds) between our solvers and Newton’s
method for solving the pressure equations for 100 frames of the maze problem in 2D.

Our methods are also more scalable than FMG and Newton’s method in terms of
timing. When the problem size is doubled, FAS-MG, PI-MG, and PE-MG take about
5 times longer in 2D and 10 times longer in 3D. PI-PCG and PE-PCG’s average time
increases by about 7 times in 2D and 14 times in 3D when the problem sizes doubles.
However, the average time for FMG increases by about 7 times in 2D and 17 times in 3D
when the problem size doubles. Newton’s method is the worst: about 10 times for 2D and
25 times for 3D.

We briefly discuss the time complexity per iteration for each method. For the multigrid
methods (namely FAS-MG, FMG, and our basic MG for linear systems) each smoothing
step takes about the same time on the finest grid. Each PCG iteration has about the
same time complexity as one smoothing step on the finest grid in multigrid. Due to our
Galerkin construction of the coarse grid matrix, our multigrid methods take more time
on the coarse grid for smoothing compared to a direct discretization approach, since the
coarse grid matrices have more nonzeros per row. However, this deficiency is outweighed
by the good scalability of our resulting method. The size of the linear systems in each outer
iteration of policy iteration, penalty method, and Newton’s method are about the same.
However, our policy iteration and penalty method do not need to perform line searches.
Updating the policy (in PI) and adding penalty terms (in PE) are both relatively cheap.
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6.3.3 Convergence

To demonstrate the convergence behavior of the multigrid solvers (FAS-MG, PI-MG, PE-
MG and FMG), we choose specific frames in three different scenarios in 3D defined in
section 6.2 such that they have significant handling of fluid solid separation and demon-
strate the effects of using separating solid boundary conditions. Specifically, we choose the
10th frame for scenario 1, the 70th frame for scenario 2, the 10th frame for scenario 3.
We present the convergence plot in terms of infinity norm of residual against the number
of iterations for the three frames in Figures 6.9, 6.10, 6.11, respectively. For FAS-MG,
PI-MG, and PE-MG, the number of iteration is the total number of V-cycles. For FMG,
it refers to the total number of full cycles.
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Figure 6.9: Convergence plots for our methods vs. FMG on a grid of size 256 for the
10th frame in scenarios 1.
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Figure 6.10: Convergence plots for our methods vs. FMG on a grid of size 256 for the
70th frame in scenarios 2.
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Figure 6.11: Convergence plots for our methods vs. FMG on a grid of size 256 for the
10th frame in scenario 3.
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For the 10th frame in scenario 1 shown in Figure 6.9, the FAS-MG, the policy iteration,
and the penalty method, have similar convergence behavior and are much better than the
FMG. For the 70th frame in scenario 2 shown in Figure 6.10, the FAS-MG has similar
convergence but the policy iteration and the penalty method become worse. They perform
worse than the FMG at the beginning but eventually converge faster than FMG. For the
10th frame in scenario 3 shown in Figure 6.11, the convergence result is similar to scenario
2 except that the policy iteration and the penalty method have better convergence. From
the convergence plots, it is clear that the FAS-MG has much better convergence than the
others.

6.4 Comparison with the standard FAS-MG

Finally, we show how each of our proposed modifications (interpolation and restriction,
boundary handling, and coarse grid matrix construction) on the standard FAS-MG con-
tributes to the success of our FAS multigrid solver. We replace each of them with the sim-
pler or standard option. Specifically, we replace barycentric interpolation and restriction
with standard trilinear, or with piecewise constant (PWC) interpolation and restriction;
replace the boundary handling introduced in section 5.3.3 with no specialized boundary
handling, and replace the Galerkin method for constructing the coarse grid matrix with
direct discretization of coarse levels, respectively.

Size Ours Trilinear interp. PWC interp. Simple boundaries Direct discretization
32 7 6 47 6 65
64 8 8 112 32 171
128 8 8 268 Diverged Diverged
256 9 9 616 Diverged Diverged

Table 6.12: Number of iterations for solving the pressure using variants of our FAS-MG
scheme, at frame 10 of scenario 1 in 3D.

We present the number of iterations (Table 6.12) on solving the pressure equation for
the first substep at the 10th frame of scenario 1 in 3D. Our method with the barycentric
interpolation has similar scalability as the standard trilinear interpolation but is more than
two times faster. This is expected as the coarse grid matrix obtained from barycentric is
about half sparser than from the standard trilinear. As shown in Figure 6.12, the improve-
ment on timing is significant when the problem size is large (1283 and 2563). Compared
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with the barycentric/trilinear interpolation with higher order of accuracy, the piecewise
constant interpolation makes the FAS-MG no longer scalable as the number of iterations
doubles with problem size. Table 6.12 also shows that the FAS-MG diverges when using ei-
ther simple boundary handling or direct discretization for large problems (1283 and 2563).
This means the special boundary handling and Galerkin method for coarse grid matrix
construction are necessary for the convergence of FAS-MG.
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Figure 6.12: Timing comparison between using barycentric and standard trilinear inter-
polations for solving the pressure at the 10th frame of scenario 1 in 3D
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Chapter 7

Conclusion and future work

In summary, we have proposed three methods, namely policy iteration, penalty method,
and FAS multigrid, as fast solvers for the pressure equations arising from liquid simulation
with separating solid boundary conditions. For our FAS multigrid methodology, we intro-
duced several adaptations to achieve the desired mesh-independent convergence behavior
on our LCP fluid problem. We demonstrated the superior efficiency and scalability of our
resulting solvers over existing methods. Moreover, our results show that our solvers are
able to resolve the liquid sticking issue near the solid boundary without making a major
sacrifice in computation time compared with the simpler linear solver case.

7.1 Future work

Simulating rigid bodies is a fundamental topic in computer graphics. The main components
of rigid body simulation are: time integration, collision detection, and impact response,
which is the most time consuming part. After detecting collision of objects, the simulator
handles the impact of multiple objects through an impact operator, which determines the
post-impact velocity of each object. The main challenges are developing a correct impact
operator so that the objects behave as desired after collision; and solving the post-impact
velocities efficiently.

Smith et al. [53] propose a generalized reflections multi-impact operator (known as GR
operator), which combines the LCP with Gauss-Seidel formulations, to satisfies all five
desiderata in rigid body simulations. The nonlinear optimization package Ipopt [59] is
used to solve the LCP but the scalability is not clear yet in terms of timing from their
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performance tests. Enzenhofer et al. [22] compares four mixed linear complementarity
problem (MLCP) solvers: Block Principal Pivoting (BPP) [43], Projected Gauss-Seidel
(PGS) [23], Projected Gauss-Seidel with Subspace Minimization (PGS-SM) [52], and the
Spook Stepper (SPOOK) [45] for multibody simulations with contact. BPP and PGS-SM
are more accurate at the cost of computational time. PGS is suitable for simulations where
the fast computation is the highest priority and accuracy is secondary. SPOOK works well
only for cases where the friction forces are not decisive.

The existing algorithms in collision response modeling cannot model multi-impact in
rigid body simulation realistically as they fail to fulfill at least one of five physical desider-
ata, which are Break away (BRK), Symmetry preserved (SYM), Energy bounded (KIN),
Momentum conserved (MOM), and One-sided impulses (ONE). BRK means bodies previ-
ously in contact may break away from each other due to the impact. SYM is that spatial
symmetries from pre-impact configurations should also exist in post-impact ones. KIN
makes sure that kenetic energy does not increase. MOM conserves the total momentum.
ONE means that impulses may push bodies apart but not pull them together. The GR
impact operator resolves the issues from the existing algorithms by satisfying all of the five
physical desiderata.

Our goal is to speed up the GR impact operator by replacing the LCP solver inside
its loop with faster solvers, including policy iteration, penalty method, and multigrid. We
describe some potential challenges we may face. The matrix in the LCP, unlike the one
from the pressure equation, is not a Poission matrix. Some methods like policy iteration
may not converge as the condition for that is no longer satisfied in the problem. We actually
find that most matrices are even singular. The solution is also sensitive to the modelling,
which means the LCP constraints must be strictly satisfied otherwise the simulation may
go wrong. In such cases a solver may not give the correct solution that satisfies the five
physical desiderata. We would like to explore the possibility of making changes to the
existing rigid body model (GR operator) to get an M-Matrix while preserving the five
desiderata or modifying policy iteration, penalty method, and multigrid such that they
still work well with those ill-conditioned matrices.
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Appendix A

Proof of M-Matrix

We give a proof that the matrix A in (3.41) is an M-Matrix. The matrix A is an M-Matrix
[13] if it has the following properties:

• L-Matrix: Ai,i > 0 for all i and Ai,j ≤ 0 for all i 6= j;

• Diagonally dominant: |Ai,i| ≥
∑

j 6=i |Ai,j| for all i;

• Connectivity: G (A) = {i||Ai,i| >
∑

j 6=i |Ai,j|} 6= ∅, and for any i /∈ G (A), there
exists a sequence i0, i1, ..., ik with Air,ir+1 6= 0, 0 ≤ r ≤ k − 1 such that i0 = i and
ik ∈ G (A).

We have shown in the discretization that A satisfies the first two conditions: L-Matrix
and diagonally dominant. Now we explain how it satisfies the connectivity when there
is air in the domain. As we mentioned earlier, for the cell near the fluid-air surface, its
corresponding row is strictly diagonal dominant, which means G (A) is not empty. We call
two cells corresponding to row i and j of A are connected if Ai,j 6= 0. This happens when
the fluid covers their shared edges/faces. Therefore, to satisfy the connectivity property for
an index i, there must exist a path from the corresponding cell to a cell near the fluid-air
surface. We can prove such path exists by contradiction. Assume it does not exist for a
cell, then any path initiating from that cell will only lead to solid or fluid instead of air,
this contradicts the assumption that there is air in the domain.
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