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Abstract

The subject of gravitational thermodynamics lies at the center of numerous fields of
study, many of which may seem disconnected, yet have proven to be deeply entwined. This
thesis examines two primary facets of this subject, the study of black hole thermodynam-
ics, and the principle of bulk/boundary duality (or ‘holography’) as applied to gravitating
systems.

In Part I of this thesis we explore thermodynamic aspects of a wide variety of black hole
spacetimes. We focus on asymptotically de Sitter black holes, in an extended phase space
where the cosmological constant is interpreted as a thermodynamic pressure. We begin
with the prototypical classes, examining general relativistic Schwarzschild- and Reissner-
Nordstrom-de Sitter black holes. We demonstrate the consistent formulation of their ther-
modynamics in the extended phase space using a Euclidean path integral approach, and
uncover novel compact small-large black hole transitions not seen in asymptotically AdS
spacetimes. We also consider a number of extensions of Einstein-Maxwell theory: Born-
Infeld electrodynamics, conformally coupled scalar fields, and Gauss-Bonnet gravity. We
study the thermodynamic properties and phase structure of black hole solutions in these
theories, uncovering (among other things) a unique reentrant phase transition in the grand
canonical ensemble, compact reentrant phase transitions, and isolated critical points. We
also examine the analogy these systems make with ordinary fluid systems, showing that in
contrast to asymptotically anti-de Sitter black holes, de Sitter black holes have nonlinear
equations of state which forbid such an interpretation.

Part II of this thesis represents an attempt to understand the thermodynamic nature
of gravity from a broader perspective. Here, we take a ‘holographic’ approach, promoting
the gravitational screen formalism to a fully covariant mapping between bulk geometric
quantities and those of a relativistic dissipative fluid system on the (arbitrary, timelike)
boundary. We demonstrate the projection of the field equations onto the screen boundary;,
derive the corresponding fluid conservation equations, and explicitly construct the dictio-
nary relating the two systems. We show how entropy production in the fluid is tied to
gravitational wave propagation in the bulk, and discuss the role of the equation of state
of the fluid in the correspondence. Finally, we explicitly construct several gravitational
screens in spherically symmetric spacetimes. We determine the properties of the resulting
holographic fluids, and use thermodynamical laws governing the fluid to assign a notion of
temperature and entropy to the bulk geometry.
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Notation and Conventions

Throughout this thesis, we adopt the following conventions. Indices are indexed beginning
with 0, with coordinate ordering such that (proper) time is always listed first, so that uy =
u, for example. Where appropriate, coordinate symbols (7,7, 0, ¢) are used in place of their
corresponding numerical values (0,1,2,3). The Latin indices (a, b, ¢, d, e) are reserved for
the bulk spacetime, and run from 0 to d where d is the dimension of the manifold M being
considered. Latin indices (4, 7, k, [) are used for quantities defined on any (d—1)-dimensional
subspace of M. We typically work in natural or Planck units, where ¢ = h = G = 1.
This considerably simplifies the visual clutter of many expressions, yet leaves the scale
of various quantities obscure at a glance. We restore the appropriate factors of (¢, i, G)
where connections to physical scales are to be made, or the presence of quantum effects is
being highlighted. Following Wald, MTW, and many others, we adopt the ‘mostly plus’
convention (—, 4, +,+) for the metric signature, endowing spacelike hypersurfaces with a
positive-definite metric. Partial derivatives with respect to a given index (or coordinate
variable) are denoted 0, (or 0,) while the covariant derivative is likewise denoted by V,.
One can always assume the dimension of the spacetime is d = 4 unless otherwise noted.
Of course, the Einstein summation convention for repeated indices is assumed throughout.
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The Structure of this Thesis

In presenting a large body of work such as this thesis, one must carefully balance how
reflective the work is of the research journey against the quality of the reading experience
for others. I have erred on the side of the reader, presenting the work not necessarily in
chronological order, but rather in a way that is pedagogically ideal and allows concepts to
be built naturally from one chapter to the next. The progress of theoretical research often
possesses no such continuity!

I assume familiarity with classical Lagrangian and Hamiltonian mechanics, special rel-
ativity and basic aspects of quantum field theory. I further assume a working knowledge
of general relativity. For the most part, the language of the relativists is used, though the
languages of differential forms and symplectic geometry are occasionally employed when
making connections between these subjects and the present work. In an effort to make this
thesis relatively self-contained, I also give a brief review of some fundamentals of general
relativity, path integral methods, and the most important aspects of black hole thermo-
dynamics. Throughout, the reader is referred to the canonical texts (or other sources) for
further details. With this, I hope that one who has never studied gravitational thermody-
namics before can still appreciate the work and find inspiration for their own research (or
learning).

The reader who is familiar with general relativity, but unfamiliar with the subject of
black hole thermodynamics, is encouraged to start their journey in Section 1.3. Chapters 2-
5 are largely self-contained, as is Part II of the thesis, though minor allusions to themes from
earlier chapters appear throughout. Both Parts I and II include their own introductions
and motivations.
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Part 1

Black Hole Thermodynamics



Introduction

Humanity’s journey towards a scientific understanding of the fundamental nature of reality
spans some six thousand years, culminating dramatically in our present day ability to
reach out to the edges of the universe from a tiny rock in an endless void!. Along this
journey, breakthroughs in our understanding of physics at all scales have precipitated
countless advancements in technology, which have largely elevated humankind to a realm
beyond that which evolution has brought any other species. Today, this understanding
is encapsulated by the two pillars of modern theoretical physics: the Standard Model of
particle physics, and the general theory of relativity. What remains elusive however is
a unified, consistent merging of these two theories, due in part to difficulties intrinsic to
quantizing the gravitational field. This ‘problem of quantum gravity’ represents perhaps
the biggest open problem in theoretical physics today, requiring knowledge of gravity’s
behaviour at the microscopic scale, deep within the regime where quantum mechanics
operates. Though the correct approach to this problem is often contested, what cannot be
argued is the unique status the gravitational field has as the very architecture of reality,
being a manifestation of the geometry of space and time itself. Of course, our motivations
for studying the gravitational interaction extend beyond the theoretical realm. The fact
that gravity underlies and connects all other processes in the universe has cemented its
observation as a powerful lens through which we may come to understand astrophysical
phenomena, physics beyond the standard model, and the evolution of the cosmos.

Understanding gravity is therefore essential if we are to discern Nature at the most fun-
damental level. Fortunately, a window into the microscopic structure of gravity is provided
through its thermodynamic properties. For every system we know of in the universe, un-
derlying its thermodynamic description is the statistical mechanics of its (fundamentally
quantum) constituents. The remarkable discoveries of the early 1970’s that black holes
radiate and possess entropy demonstrate that gravity is no different [1,2]. This has ignited
an entire field of research into the thermodynamic properties of black holes, objects which
live at the intersection of the infrared and the UV. Undoubtedly, the study of black hole
thermodynamics has provided deep insights into aspects of not only quantum field theory
in curved spacetime, but also string theory, information theory, and even condensed matter
physics [3-6]. Concepts like the universality of black hole entropy, the Unruh and Hawking
effects, soft charges and asymptotic symmetries, etc. have all played a role in shedding

!Tracing back to Mesopotamia and Ancient Egypt, though we necessarily loosen our definition of
‘science’ significantly as we reach further into the past.



light on gravity’s thermodynamic nature [7—10], and though its microscopic degrees of free-
dom remain poorly understood, this thermodynamic nature continues to guide our efforts
towards developing a quantum theory of gravity.

Like traditional thermodynamic systems, variations between equilibrium black hole
configurations are captured by the first law of thermodynamics [11]. This similarity with
ordinary substances extends beyond the first law, with analogues of the second and third
laws of thermodynamics being readily available for black holes, and processes like evapora-
tion occurring naturally. One of the most striking features of black holes arising from their
thermodynamic properties is that they, like ordinary systems, can undergo phase transi-
tions. This phenomenon, first discovered by Hawking and Page for anti-de Sitter (AdS)
black holes [12], has since been shown to occur generically in a wide variety of black hole
spacetimes, in higher dimensions, and in theories beyond Einstein-Hilbert gravity [13—16].
Much of the motivation for studying these ‘Hawking-Page’ transitions is rooted in the
anti-de Sitter/conformal field theory (AdS/CFT) correspondence, which provides a map
between a d-dimensional gravitational theory in bulk AdS to a (d — 1)-dimensional CFT
on its boundary [4]. The Hawking-Page transition has a natural interpretation in this
context, where the transition between a black hole and thermal radiation in the bulk is
dual to a deconfinement transition in the boundary CFT. This bulk/boundary duality has
proven to be an extremely powerful theoretical tool, allowing us to study strongly coupled
systems where perturbation theory fails, address issues related to information loss in black
hole evaporation, and compute the fine-grained entropy of a black hole [17-21]. Moreover,
modifications to the description of gravity in the bulk necessarily leads to corresponding
modifications of the boundary theory. As a result, all of the aforementioned generaliza-
tions of the Hawking-Page transition, along with the more exotic transitions that have
been discovered, are expected to have non-trivial interpretations in terms of the boundary
CFT (though decidedly less attention has been given to this connection compared to the
phase structure of the bulk).

The last decade has seen a resurgence of interest in the thermodynamics—and espe-
cially the phase structure—of black holes in the presence of a cosmological constant. This
interest is due in large part to the observations of Kastor, Ray, and Traschen [22] that a
new thermodynamic potential, the thermodynamic volume, enters into the derivation of
the Smarr formula for non-zero A. The thermodynamic volume can be understood as the
quantity conjugate to the cosmological constant, interpreted in this context as a pressure,
and appears as such in the first law of thermodynamics when variations of A are included.
There has since been considerable development of these ideas, including a proposed bound
on the black hole entropy in terms of the thermodynamic volume [23], the notion of holo-
graphic heat engines [24], extensions to include acceleration, going beyond black holes to
spacetimes with non-trivial topology [25-27], and connections with holography [27-30].
Perhaps most actively investigated has been the subject of black hole phase transitions,
where examples of Van der Waals behaviour, triple points (like that of water), re-entrant
phase transitions (like those occurring in certain gels), and even lambda transitions (like
those marking the onset of superfluidity) have been observed [16,31-33]. We refer the
reader to the review [34] where a number of these developments are summarized.



Whereas a wealth of interesting phenomena in AdS spacetimes have been discovered
thus far, the domain of asymptotically de Sitter (dS) spacetimes remains largely unexplored
[34,35]. This is despite recent measurements from a variety of sources indicating that we
live in a de Sitter-like universe [36-38]|, giving significant astrophysical relevance to de Sitter
black holes compared to their AdS counterparts. There have also been developments in the
formulation of a de Sitter/conformal field theory (dS/CFT) correspondence [39], leading
one to naturally wonder what the dual interpretation of dS phase transitions might be.
More pragmatically, it is of interest to understand how generic the phase structure of anti-
de Sitter black holes is: do the same types of phase transitions manifest for de Sitter black
holes, or are there new examples? This is the focus of Part I of this thesis: an examination
of the thermodynamics and phase structure of asymptotically de Sitter black holes.

With strong motivations available, the historic lack of progress concerning de Sitter
black hole thermodynamics may be surprising. The reason however is simple: de Sitter
black holes present unique challenges that their AdS counterparts do not possess. Perhaps
the most salient is the presence of the cosmological horizon. With a temperate generally
different from that of the black hole, the system is manifestly out of equilibrium. This
is in stark contrast to anti-de Sitter space, which acts as a natural box that confines?
radiation and allows equilibrium to be expressly achieved. Another issue with de Sitter is
a lack of globally timelike Killing vector field with which to associate the mass, rendering
the construction of conserved charges difficult [40-42]. The notion of a vacuum state is
also problematic since the spacetime is essentially non-stationary [43-45], and there is
no natural analogue of the Bondi news to characterize gravitational radiation in the full
non-linear context [46].

Various approaches have been developed to circumvent these problems, each with their
own issues and limitations. One is the effective temperature approach, where a single
temperature (which depends on both the cosmological and event horizon) is assigned to the
entire spacetime [47,48]. Such a temperature however lacks a clear physical interpretation,
and the system still appears out of equilibrium to a local observer. Another approach
considers subsets of the parameter space where the two horizon temperatures are equal,
allowing for a notion of equilibrium, but severely limiting the number of situations that
can be explored [49]. In this thesis, we will adopt a Euclidean path integral approach,
developed first by Gibbons and Hawking [50] and extended by York [51,52] to allow for the
definition of the canonical (and later, grand canonical) ensemble. In this approach, one
considers an ensemble where the temperature is specified at a finite boundary, effectively
enclosing the black hole in an isothermal ‘cavity’. As a result, equilibrium is manifest and
the meaning of the temperature is clear. This approach has seen some limited application,
with Brown and collaborators [52] demonstrating the stability of such an ensemble, and
later by Carlip and Vaidya, who found a Hawking-Page-like phase transition in both the
asymptotically flat and de Sitter cases [53]. These investigations were rather limited in
scope however, and did not consider the extended phase space in which we operate here.

2 Asymptotically AdS spacetimes have a timelike boundary at infinity that radiation can reach in a
finite time, as well as an attractive gravitational potential.
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Part 1 of this thesis represents a dramatic extension of the themes explored in those
cursory works. We will find that many new and interesting phenomena emerge, including
‘swallowtubes’ (compact regions in phase space outside of which transitions cannot occur),
analogues of the familiar Hawking-Page, small-large, and reentrant phase transitions ex-
hibited by AdS black holes, metastable reentrant transitions, and more. Throughout, we
will develop techniques which can be applied to a wide variety of extensions of the present
work, and discuss promising avenues for future research. The organization is as follows:

In Chapter 1, we provide a brief review of some essential aspects of general relativity, the
action principle, and the relationship between the path integral and partition function. We
also provide a detailed account of the most important aspects of black hole thermodynam-
ics, including the first law, Hawking radiation, phase transitions, and the issues that arise
in asymptotically de Sitter spacetimes.

In Chapter 2, we discuss the application of path integral methods to de Sitter spacetimes,
demonstrating explicitly how thermodynamic quantities are derived from the Euclidean
action. We study Schwarzschild and Reissner-Nordstrom-de Sitter black holes, examining
the extended first law of thermodynamics and deriving expressions for various thermody-
namic potentials that enter into the description. We further construct the free energy in
the canonical ensemble, and study the phase structure of these black holes, finding ana-
logues of the small-large transitions present in AdS black holes, though a lack of the Van
der Waals-like transitions which occur generically in those systems.

In Chapter 3, we consider Schwarzschild and Reissner-Nordstrom-de Sitter black holes with
a non-linear extension of the U(1) sector 4 la Born-Infeld electrodynamics. We again discuss
the extended first law, where a new potential appears through the Born-Infeld vacuum
polarization. We study the behaviour of the metric function and vacuum polarization, and
determine the relevant thermodynamic variables entering into the free energy. We consider
ensembles where both the charge and electric potential are fixed, finding in the latter case
the first known example of a reentrant radiation-black hole-radiation transition.

In Chapter 4, we consider a particular class of exact solutions to Einstein-Hilbert gravity
with a conformally coupled scalar field, motivated to understand how matter coupling
alters the thermodynamic description. We discuss subtleties involved in extending the first
law to systems with secondary hair, and how to account for the properties of the scalar field
in the thermodynamic analysis. We study the phase structure in the canonical ensemble,
finding Hawking-Page-like transitions throughout the parameter space, though with the
addition of a particular cosmic censorship bound arising from the scalar field profile.

In Chapter 5, we examine higher dimensional black holes in the context of Gauss-Bonnet
gravity, a commonly studied higher curvature modification of general relativity. We dis-
cuss the construction of the Euclidean action and its corresponding reduction, and derive
various thermodynamic potentials which enter into the description. We again study the
free energy, finding the typical Hawking-Page and small-large black hole transitions. We
also demonstrate a notable absence of the exotic triple points and reentrant transitions
that occur in the 6-dimensional anti-de Sitter case.



Chapter 1

Aspects of General Relativity and
Black Hole Thermodynamics

Having recently celebrated its 100 year anniversary, Einstein’s general theory of relativity
has enjoyed over a century of success in describing the universe around us. The insight
that both gravitation, and our perception of time are manifestations of the very geometry
of our reality has fundamentally changed how we view the world, and opened doors to a
staggering number of advances both theoretical and practical. To date, general relativity
has survived every conceived experimental test of its validity, and remains the only viable
candidate metric theory of gravity in four dimensions!. Of course, many alternative theories
of gravity have been developed over the decades, either to account for otherwise mysterious
phenomena (such as dark matter, inflation, etc.) or for purely theoretical interest. There
is indeed good motivation to study such theories, yet despite the wealth of alternatives
available, none have measured close to general relativity in its combined observational
successes and theoretical beauty.

In this chapter, we will review some fundamentals of the theory and provide some
details regarding the various mathematical machinery that will be employed throughout
the rest of this thesis. This includes a discussion about thermodynamic aspects of gravity,
de Sitter space, and path integral methods. We refer the reader to a number of classic
texts that provide significantly more detail than is given here. The book of Shutz [55]
provides a differential-geometric view of relativity. Wald [56] and Weinberg [57] offer
nice mathematical exposition from a physicist’s perspective. Carrol [58] and Poisson [59]
contain a large number of useful examples, the latter having also a nice review of the
3+1 formulation of general relativity. The book by Frolov [60] is specific to black hole
physics, containing numerous astrophysically relevant examples, semi-classical aspects, and
advanced topics such as quasinormal modes. The book by Will [61] provides a detailed
overview of experimental and observational aspects of general relativity, while his book
with Poisson [62] covers many applications of weak-field general relativity. One is left
hardly devoid of evening reading material.

!The recently proposed 4D Gauss-Bonnet gravity may be a contender [54].



General relativity is distinguished from a wide variety of alternative theories of gravi-
tation (which have been studied almost as long as general relativity itself) in that it is the
unique theory in four spacetime dimensions that satisfies the following conditions:

1. It is a metric theory, with g being the only dynamical variable.
2. There are two degrees of freedom
3. Spacetime diffeomorphism invariance is explicit

4. The field equations are at most second-order

Relaxations of the conditions (1) — (4) lead to various extensions or alternative theories,
some of which are considered in later chapters. Numerous astrophysical observations,
cosmological considerations, and technical difficulties have to various degrees constrained
(sometimes severely) the extent to which these alternative theories can deviate from the
dynamics of general relativity, firmly placing GR as the ‘standard model’ of gravitational
physics and the ideal starting point for any investigation into gravitational phenomena.

1.1 Manifolds, Metrics, and Curvature

The basis of general relativity is the assumption that spacetime can be represented by a
d-dimensional differentiable (C*) manifold M. Such a manifold alone possesses insufficient
structure to model gravitation as a geometric phenomenon. One must construct a tangent
bundle on M, endow it with an inner product structure, and then define a notion of parallel
transport which can be used to define curvature.

Beginning with the tangent bundle, one constructs at each point p € M a tangent
space T, M with dimension d. The tangent bundle TM = Upe v IpM is the disjoint union
of all tangent spaces on M. The manifold is then equipped with an everywhere non-
degenerate symmetric rank-two tensor called the metric g. The metric acts as a bilinear
form that maps two vectors u,v € T, M at p to a real number, thus defining an inner
product structure on T M. The object g is the (only) fundamental variable of the theory,
and satisfies:

l.g: TMxT,M—=R

2. g(u,v) = g(v,u)
3. g(Au+v,z) = Ag(u, 2) + g(v,2) fora € R
4. Yu,v € T,M, Pu ¢ 0| g(u,v) =0

The second condition represents symmetry of g, the third represents bilinearity, and the
final is nondegeneracy. The metric thus serves to endow the tangent space at each point
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in the manifold with an inner product. In a coordinate basis, the metric can be expanded
in terms of its components as

g = ds® = gupda" @ da® (1.1)

where the metric ¢ is often represented as ds? and referred to as the line element. It is
standard practice to omit the tensor product symbol above. The metric defines a notion
of distance within each tangent space, but does not suffice to meaningfully describe the
geometry or curvature of M, which requires that vectors at different points (elements of
different tangent spaces) to be compared. This is accomplished by the covariant derivative,
which can be used to determine how vectors are parallel-transported between tangent
spaces. A notion of curvature can then be defined by the failure of a vector to return to
its initial value when parallel transported around a closed curve in M.

To define parallel transport of tensor fields on M, one must first define a covariant
derivative V. V is a connection on the tangent bundle and generalizes the usual derivative
operator to tensor fields. For an arbitrary tensor T of rank (r,s), its covariant derivative
in a given coordinate basis is given by

(VecT)almarbl._,bs = 01"y, b, (1.2)
+ Faldchaz...arblmbs et FardCTal.”aT_ldbl,..bS

— Dl T gy oy — - = DO Ty 4 a (1.4)
In general relativity the connection V is taken to be torsion-free, namely we have that
V Vi =V Vo f . (1.5)

This is equivalent to demanding that the torsion tensor defined by V,V,f — V,V.f =
—T5 V. [ vanishes. Note that while in differential geometry V itself is referred to as the
connection, in relativity the name ‘connection’ is often reserved for the pseudotensor I'
instead. As it stands, there are many possible choices of derivative operator on M owing
to the large freedom in the components of I'. One may worry that different definitions
of derivative operator on the manifold may lead to inequivalent curvatures for the same
manifold, and this is indeed the case, as the ordinary derivative operator is coordinate
dependent and therefore cannot be associated with the manifold structure. Fortunately, a
natural (and unique) choice of derivative operator can be selected by imposing the metric
compatibility condition, V.g., = 0. This condition arises from the natural demand that the
inner product of two vectors remain unchanged when parallel transported around a curve.
With this condition, the following connection can be constructed:

I = %ged (9dap + Gava — Gabd) - (1.6)

This is the Levi-Civita connection, and is the unique torsion-free connection that satisfies
the metric compatibility condition.

With the connection in hand, we can finally define the curvature of a manifold through



the path-dependence of parallel transport. We consider the parallel transport of a dual
vector w® around a closed curve in M, and compare the difference between the final value
when transporting in opposing directions around the curve. An intrinsic notion of curvature
is given by the failure of w® to return to its original value when parallel transported around
a loop, and is captured fully by the Riemann tensor Rgpq., defined as a (1,3) tensor field
acting on w* as

R(u,v)w = V,Vyw = V,V,w — Vi w . (1.7)

In a coordinate basis the Riemann tensor is given by
Ropetwi = Vo Vywe — ViV e (1.8)

as the final term in (1.7) vanishes if (u, v) are coordinate vector fields. The Riemann tensor
encodes not only the failure of dual vectors to parallel transport back to their initial values
along closed loops, but also captures other innate properties one associates with curved
manifolds, such as the failure of initially parallel lines to remain parallel. The Riemann
tensor possesses d?(d? — 1)/12 independent components by virtue of its skew symmetry,
interchange symmetry, and Bianchi identities:

—_

. Rabcd = _Rabdc = _Rbacd

o

Rabcd = Rcdab

w

Ra[bcd} = Rapea + Racap + Radve = 0

e~

. V[6|R0Lb|ccl] = VeRapea + VeRapde + ViRapee = 0

The form of the Bianchi identities above assumes a torsion-free connection. Contraction
on the first and third index gives the symmetric Ricci tensor Ry,

R = R (1.9)

which in three dimensions or less contains all of the information encoded in the Riemann
tensor (though not when d > 3). The trace of the Ricci tensor is called the Ricci scalar,
or scalar curvature R:

R = guR™ = R," (1.10)

The Ricci scalar is a curvature invariant which measures the deviation in volume of a
geodesic ball in curved space relative to Euclidean space. With these minimal ingredients
one can understand the meaning of the field equations presented in the next section.

1.2 Einstein’s Equations and the Action Principle

General relativity is much more than a prescription for defining the curvature of manifolds.
It is a statement of the origin of that curvature, and provides a model for how a manifold’s



curvature interacts with the fields that live on it (and vice versa). The fundamental insight
made by FEinstein is that the presence of matter (as described by quantum field theory
through the Standard Model) curves the spacetime in which the matter lives. In turn, the
curvature of spacetime dictates how matter moves throughout spacetime. Schematically
this is represented as

matter moves <> space curves (1.11)

or colloquially, “matter tells space how to curve; space tells matter how to move”. This
matter /curvature relationship is precisely captured by the Einstein field equations (EFEs).
One can heuristically derive their form by attempting to generalize the Poisson equation
for the Newtonian gravitational field

V20 = 47Gp (1.12)

where @ is the Newtonian gravitational potential and p is the mass density of the matter
producing the gravitational field. The object that naturally generalizes mass density to
the relativistic case is the energy-momentum (or stress-energy) tensor T,,. Constrained by
index rules, the simplest generalization of (1.12) is

Gy = kT (1.13)

Following the assumption that the gravitational field (and thus potential) is encoded in the
curvature, one attempts to build the tensor G, out of suitable combinations/contractions
of the Riemann tensor. Due to the equivalence principle?, the simplest possible choice
turns out to be

Rab - %Rgab = /{Tab (1.14)

—_———
Gab

One can show that this equation exactly reduces to Newtonian gravity in the weak-field,
slow moving, time-independent limit. From the Newtonian limit one can further establish
that k = 87G. Equation (1.14) is the original equation proposed by Einstein that expresses
the link between matter and the geometry of spacetime. It is a system of ten second-order
partial differential equations that determine the evolution of the metric g,; in the presence
of stress-energy (matter). This equation can be generalized by including a constant A on
the left-hand side:

Gab + Agab = 87TGTab . (115)

A is known as the cosmological constant, and its presence has wide-reaching implications in
general relativity and our understanding of the universe. Originally introduced by Einstein
to allow for static cosmological solutions in the presence of matter, it was soon rejected due
to the discovery of Edwin Hubble that the universe is expanding®. In the coming decades,

2The equivalence principle dictates that VT, = 0. Due to the Bianchi identity, choosing G, = Rap
would imply that T = const. everywhere in spacetime regardless of matter content, which is highly
implausible.

3Einstein later deeply regretted the introduction of A into his field equations. According to Archibald
Wheeler, he was heard lamenting that “[it] was my biggest blunder of my life.” in the Institute for Advanced
Study’s Fuld Hall.

10



our understanding of quantum field theory would eventually see Einstein vindicated as it
became clear that the vacuum itself possesses an energy density, which can be interpreted
as the cosmological constant appearing in the field equations. By 1998, the accelerating
expansion of the universe would be observed by the Supernova Cosmology Project and the
High-z SN Search in perhaps the most important discovery of modern cosmology [63,64],
an observation whose accuracy has been significantly improved upon since then [65, 66].
However, the discrepancy between its predicted value from quantum field theory and the
observed value of A is anywhere from 60 to 120 orders of magnitude depending on the
model used, representing one of the biggest unresolved mysteries in physics (see [67] for
a detailed discussion of these developments and issues). Despite its tangled history, the
cosmological constant is now a cornerstone of the current ACDM model of the universe,
and will take on a central role in our work.

More rigorously, one can derive the Einstein equations from an action principle, as one
does in classical mechanics to arrive at Newton’s laws. The principle of stationary action
states that a system evolves from an initial state ¢; at time ¢; to a final state ¢s at t5 along
a path (in the configuration space of the generalized coordinates ¢;) for which the action
I[q] is stationary to first-order, namely 6S = 0. The action itself is defined as the integral
over time of the Lagrangian L = [ £d*z of the system, or (equivalently) the integral of
the Lagrangian density £ over the spacetime

o) d(0) = [ Llatr). i) ar (116)

The Lagrangian itself is a function of the generalized coordinates of the system and their
time-derivatives, and contains all information about the dynamics of the system. In the
non-relativistic case, the Lagrangian simply represents the difference between the kinetic
and potential energy of the system. Varying the action with respect to the fields/coordi-
nates and requiring that the variation vanishes (6/ = 0) then gives the equations of motion
of the system. For general relativity, it is the Einstein-Hilbert action that gives the EFEs
when varied:

IEH_W d4x\/_< —2A> (1.17)

Here, g is the determinant of the metric tensor giving the natural volume form on the mani-
fold, R is the Ricci scalar, and A is the cosmological constant. This action is supplemented
by a contribution from the matter content of the system, so that* Lios = Ign + Ivatter-
Varying the action with respect to the inverse metric g gives

Oln = o G/d4a: 5\/_(3 2A>+161G iy \/—_g6<R—2A> (1.18)

4This is the minimal coupling prescription, where no individual terms involve both the curvature and
matter fields.
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where

1 1

g ab ab
S/—g = ———0g = —2— (g6gw) = —2v/=7 (gud
5 gg 2/—9(9 gb) 3 g(gbg)

§(R=2A) = 6(Rupg™) = Rapdg” + g0 Rapy = Rap0g™ + V(g% — g**oT¢,) .
Total c?cgivative

The total derivative term becomes a pure boundary term by Stokes’ theorem, vanishing
when M is closed (compact with no boundary). Combining the results above, and not-
ing that the variation of Spaiter With respect to the matter fields gives a stress-energy
contribution Ty, one arrives at

1
167G

—2 0 (V—=9Ln)
V=g  6g®

5Itot = d4fL‘ V=4 (Rab_%Rgab+Agab_87TGTab) 5gab =0 ) Tab =

where it is clear that for any such variation to vanish, we must have
Gap + Agap = 87GTy,

which are the Einstein field equations derived above. The above prescription for arriving at
the field equations generalizes to arbitrary actions that have Lagrangians as functions of the
generalized coordinates. This gives a powerful framework for studying many different can-
didate theories of gravity, since all of the kinematic and dynamical information is contained
in the theory’s action and general covariance is manifest. Note that in cases where M has
a boundary OM, the action (1.17) must be supplemented by the Gibbons-Hawking-York
boundary term for the variational principle to be well-defined:

1
I = BxvhH 1.19
GHY 3Gy o 917\/— ( )

Here, h is the determinant of the induced metric h,, on the boundary, and H is the trace
of the extrinsic curvature of OM.

1.3 Path Integrals

Though not without its technical issues, the path integral has proven to be an extremely
useful tool in understanding gravity beyond the classical realm [68,69]. Aside from formally
defining a quantum theory of gravity, the path integral further provides us with a powerful
way to study gravitational thermodynamics when the spacetime under consideration does
not admit a straightforward definition of temperature (this application is discussed in depth
in Chapter 2). In this application, one exploits the fundamental relationship between the
classical Euclidean action Ig and the quantum mechanical partition function Z,

F=-TlogZ~TIg (1.20)
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where [ is the free energy of the system and T is the temperature. The above relation
holds in the semi-classical approximation and comes directly from the path integral. As the
path integral underlies the ‘cavity’ approach we will use to study the thermodynamics of
various spacetimes within this work, we provide here a review of its construction. Starting
in Chapter 2, we will see explicitly how the path integral can be applied to asymptotically
de Sitter spacetimes to formulate a thermodynamic description.

In quantum theory, the amplitude for a system to evolve from an initial state |g;, ;) to
a final state |gf,tf) can be written in terms of the path integral as

a(tr)=ay

(ar. telgi, ti) = (g e =0/ ) :/ ) Dig] e~ Ma/M (1.21)
q(ti)=q;

This is an integral over all field configurations that take on values ¢; at ¢; and gy at ty.
Eventually, we will interpret this as the amplitude for a spacetime to transition from one
state to another. The field ¢ may be any quantum field: a scalar, Dirac field, spinor
field, etc. A probabilistic interpretation requires that we move to the Euclidean sector of
the theory under consideration, by analytically continuing ¢ to imaginary values (sending
t — —i7). The signature of the metric then becomes Euclidean (instead of Lorentzian)
which renders the kernel K = (g;| e #7/"|g;) of the evolution operator positive, allowing
for its interpretation as a probability density. The amplitude then becomes

7iH(tf7t¢)/h 7HT/h

{asl e ) = (asle T a) (1.22)

Recall now that the partition function for a thermal state in quantum theory can be written
Z ="Tr(exp—pH) , (1.23)

where 3 = T~ ! is the inverse temperature of the state. For a continuous spectrum of
states, the trace can be expanded as

Tr (exp — BH) = / dg (gl e |q) . (1.24)

Notice now that if we integrate only over paths that are periodic with periodicity 7 in (1.21),
then ¢(0) = ¢(7) = ¢; = ¢y, and the path integral becomes

q(T)
(qle ™/ |g) = o Dlq] e~ 1=l (1.25)
q(0

Comparing (1.24) and (1.25) we see that a path integral, when restricted to the Euclidean
sector of the theory and to states periodic in imaginary time, is equal to the partition
function of a thermal state in the theory, provided that we identify the periodicity with
the inverse temperature 5 = 7/h. We thus have

a(7)
Z="Tr(exp—pH) = / Dlq] e teld/h (1.26)
q(0)
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where the integral over dg has been absorbed into the integration measure ﬁ[q]

In gravity, we are concerned with the interaction of (quantum) matter fields with the
(presumably quantum) gravitational field. The path integral measure should thus include
the metric g along with the fields . However, to leading order in 5% the matter fields
do not contribute to the path integral, so the measure is simply D(g), where topologically
distinct metrics may contribute. With this, the partition function can be approximated by

Z = Dlg] e~ el (1.27)

metrics periodic with 7

We can further approximate this quantity by considering only the leading contribution
to the integral, which comes from metrics that are classical solutions to the equations of
motion, namely those for which 6/g[gy] = 0. This is the saddle point approximation, in
which

/ Dlg] e~ elol/h o Tsloal/h (1.28)
where we denote by g, said classical metrics. Therefore we have that
Z w7 lBloal/n FrTIg. (1.29)

This can be regarded as the zero-loop approximation to the full partition function, which
only includes the (dominant) contribution from the gravitational fields. The partition
function can then be related to other thermodynamic quantities through the usual formulas
from statistical mechanics

= 5_685 Iy . (1.30)
Some care must be taken in the application of these formulas. It is really a variation of the
action that is being done with certain parameters being held fixed, something we clarify
further in Section 2.3. Loosely speaking then, determining the thermodynamic properties
of quantum fields in a given spacetime (in a semi-classical setting) amounts to evaluating
the on-shell Euclidean action Ig. Such path integral methods have been used as early as
1977 by Gibbons and Hawking [70] to compute the entropy and temperature associated
with a black hole.

1.4 Black Hole Thermodynamics

To what extent can a black hole (and indeed, gravity itself) be understood as a thermody-
namic system? This question has long been the subject of intense research, and is the basis
for the studies at hand. Central to the discussion is the first law of thermodynamics, which
expresses the relationship between equilibrium states of a system in terms of quasistatic
variations of the extensive parameters x; which characterize that system. In terms of the
temperature T', entropy S, pressure P, volume V', and other thermodynamic potentials X
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(these may be the charge, chemical potential, etc.), the first law states that the change in
internal energy of the system U is given by

dU =TdS — PdV =Y Xdx; . (1.31)

The far-reaching consequences of this law are difficult to overstate. Arising from a coarse-
graining of the fundamental microscopic description of matter, the laws of thermodynamics
underlie the entirety of the modern world, being responsible for heat engines, transporta-
tion, our understanding of weather and the global climate, agriculture, and more. Given
the power of the thermodynamic description, and its statistical mechanical underpinnings,
one would be remiss to not attempt to describe gravity in the very same way. In this
section, we describe how our understanding of black holes as thermodynamic objects has
crystallized over the decades, along with the subtleties involved in applying (1.31) to grav-
itational systems. We also remark on the inclusion of the cosmological constant in the first
law of thermodynamics for black holes, and define the extended phase space in which we
will operate.

1.4.1 The First Law

Beginning in 1972 with the famous area theorem by Hawking [71], which states that the
horizon area of a classical black hole can never decrease, it quickly became clear that many
analogies could be drawn between black holes and ordinary thermodynamic systems. With
the striking similarity between the area theorem and the second law of thermodynamics,
Hawking, Bardeen and Carter [11] soon formulated the “four laws of black hole mechanics”,
which state that for an asymptotically flat, uncharged, stationary, axisymmetric black hole:

1. The surface gravity s is constant over the event horizon of a black hole.

2. First-order variations in the charges M, @), J are captured by

K
dM = ——dA OdJ 1.32
srG + 3 ( )

where €2, is the angular velocity of the black hole.
3. The area of any individual event horizon cannot decrease, dA;, > 0.

4. No finite sequence of physical processes can reduce the surface gravity s of a black
hole to zero.

These neatly parallel the laws of thermodynamics for ‘ordinary’ systems, with the surface
gravity k playing the role of temperature, the horizon radius r;, appearing in place of the
system’s entropy, and the mass M being interpreted as the internal energy U. At the
classical level the similarities between (1.31) and (1.32) are merely a coincidence, because
the temperature of a black hole is identically zero and there is no mechanism by which two
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black holes might exchange heat in order achieve thermal equilibrium. Various thought
experiments by Bekenstein in 1972 led him to a convincing connection between black hole
entropy and horizon area [2,72], given by

A
S~—. 1.33
e (1.33)
Just three years later, in one of the most significant theoretical papers ever written [1],
Stephen Hawking would use arguments from quantum field theory in curved spacetime to
show that black holes in fact radiate as blackbodies with a temperature proportional to

their surface gravity,
K

That black holes radiate has profound and far-reaching consequences for our understanding
of gravity and quantum mechanics. For one, the existence of Hawking radiation cements
black holes as true thermodynamic systems, by providing an equilibration mechanism and

allowing their temperature to be non-zero. It also fixes the proportionality constant in
(1.33) such that

(1.34)

Ap
S= 125 (1.35)

giving an explicit relationship between the horizon area and black hole entropy. This re-
lation has deep implications for information theory, providing a theoretical bound on the
amount of information that can be contained in a region of spacetime. These discoveries
also make clear the holographic nature of gravity, with the entropy scaling as the area of
the bounded region rather than its volume (as it does for traditional systems). Most im-
portantly, that gravity apparently possesses thermodynamic properties provides a window
into its microscopic structure, as for every system we know of in the universe, coarse-
grained thermodynamic properties arise from the underlying statistical mechanics of the
constituent degrees of freedom.

Of course, while the origin of the black hole’s apparent temperature is well understood,
the nature of the entropy remains much more mysterious. Below, we see how a modern
derivation of the first law hints at the origin of black hole entropy, but it should be noted
that the relationship (1.35) has been calculated using a half-dozen or so completely dis-
parate approaches [73-78], each of which provide a unique perspective on the state-counting
interpretation of S = Ay /4. The universality of the Bekenstein-Hawking entropy, and lack
of a complete quantum theory of gravity, make the origin of S one of the biggest open
problems in theoretical physics today.

A historic derivation

As the first law is central to the study of black hole thermodynamics, we begin by
outlining the original derivation of (1.32) by Bardeen and collaborators (for explicit de-
tails, see [11]). To arrive at the differential mass formula above, one uses the fact that a
stationary, asymptotically flat spacetime possesses a unique timelike Killing vector field &,
which satisfies

VoVik? = —Ruk" . (1.36)
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In the axisymmetric case, there is also a unique rotational Killing vector k, satisfying the
same constraint. One can integrate (1.36) over a spacelike hypersurface S and rewrite the
left side as an integral over the boundary 05, giving

VP dY g = — / Rk dYy, . (1.37)

oS S

By choosing S to intersect the event horizon, the boundary 95 is made to contain the
event horizon 0B and a 2-surface at infinity. The integral at infinity is related to the ADM
mass of the spacetime M, allowing one to rewrite this as

1
M = / (21,° — T6Y) k*ds, + o VP dSa (1.38)
S

™ JoB

where T = T,%. A similar integration can be performed for k,, giving the angular momen-
tum as measured at infinity:

- 1 -
J=- / T k*dy, — = VlkedS,, . (1.39)
S

T JoB
Expressing the null vector tangent to the horizon generators as [* = k% + Q,k®, and using

the fact that €, is constant over OB, we can combine (1.38) and (1.39) to get

1
M= / (21,° — T8%) k*dSy + 2 Jir + — | VUI%dE, (1.40)
s AT Jop

where Jj, is the horizon contribution of (1.39). The final term V®/d¥,;, can be rewritten
in terms of the surface gravity and horizon area element as kdA. Then, using the fact that
k is constant over the event horizon one finally arrives at

M = / (21,° — T68%) k*dSy + 20, ), + fAh : (1.41)
S T

For vacuum spacetimes, T, = 0. The first-order variation of (1.41) gives the differential
form of the second law as stated above, namely

K
AM = " dA, + Qud; | 1.42
s R (1.42)

A modern derivation

Here we sketch out a modern derivation of the first law using the Iyer-Wald-Zoupas
symplectic formalism, which has the advantage of being more broadly applicable and also
reveals the origin of the black hole entropy S as the Noether charge associated with diffeo-
morphism invariance (for explicit details see [11]). Beginning with a generic Lagrangian
L = L(¢,d¢), its first-order variation with respect to the fields ¢ can be written as

5L = B¢+ df . (1.43)
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Here, the equations of motion (Euler-Lagrange equations) are £ = 0 and d#f is a boundary
term written as the differential of the symplectic potential §. The (symmetry) variation of
the field ¢ associated with a diffeomorphism-generating vector field £¢ is given by®

0c¢ = L, (1.44)

where L; is the Lie derivative along &. If there are no background fields, then the variation
of L can be written in terms of the symmetry variations of ¢, giving

0L = LeL = [i,d]L = i¢(dL) + d(i¢L) = dicL | (1.45)

where d is the exterior derivative® and 7 is the interior product”. Subtracting (1.43) from
(1.45) implies the existence of a current j that is conserved on-shell:

Eé¢ +db —dicL =0 — d(0 —igl) = —Ed¢ . (1.46)
\“',—/
J
If E = 0, the current j is closed and can be written in terms of a 2-form ()¢ such that
J = dQ¢ , which when integrated over a spatial hypersurface gives the Noether charge. The

variation of the Hamiltonian H generating the flow in phase space that corresponds to the
diffeomorphism ¢ gives Hamilton’s equations

SHe — /EQ(¢,5¢,E§¢) o w4 dH =0, (1.47)

where ¥ is a Cauchy surface and Q = d0(¢, L¢) — L0(p,d¢) is the symplectic current.
Using (1.43)-(1.46) along with the definition of j and €, this variation can be expressed as

§H, = / 50 — Lc0 = / 5Qe — ich =0 (1.48)
¥ ox

where the last equality holds if £ is a symmetry. Suppose we further consider an asymp-
totically flat black hole spacetime. If the boundaries of the hypersurface ¥ are chosen to
be spatial infinity and the event horizon 0B, then we have

/83 5Qe = /Oo 5Qc — ich . (1.49)

where the surface normals are taken to be outward pointing. Defining a Killing vector field
£* = 1* + Qpyp® which vanishes on 9B, and defining the canonical energy (the ADM mass
M in this case) and angular momentum J as

M:/OOQt—itQ, J:—/OOQ¢, (1.50)

5Since generally, 656 = [¢, C%]e, for a gauge symmetry.

Sdw = %dmi Adx™ A - Adxt* for a k-form w = adz®™ Adz® A --- Adzt

"The interior product relates the Lie and exterior derivatives of a form through the Cartan magic
formula: Lxw =d(ixw) + ixdw.
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one can rewrite (1.49) as

oM = 0Q¢ + QpdJ . (1.51)

oB

It remains to show that the integral term can be written in terms of the surface gravity
and horizon area (or entropy). To proceed, one must recognize that ()¢ is an algebraic
function of ¢ and its derivatives and use the relation V£ = ko,’ (with o,° being the
normal 2-form to 0B). With this, Q¢ can be rewritten entirely in terms of the surface
gravity x and horizon binormal o, with no explicit reference to the killing field £&. Defining
the Noether charge Qg as the object obtained by these replacements, one has

SM = —68+Q8J, S=2r[ O, (1.52)
27T 9B

where explicit integration of the entropy term gives the horizon area A (in the case of
Einstein gravity). This derivation is much more powerful than the previous one in that it
holds for any diffeomorphism invariant Lagrangian theory of gravity and for nonstationary
perturbations of black hole spacetimes as well [79]. It is also more insightful, as the horizon
entropy S can be clearly traced back to the Noether charge ()¢ of the diffeomorphism &.

1.4.2 Hawking Radiation and Black Hole Temperature

As we have seen, underlying the concrete interpretation of (1.32) as the first law for a true
thermodynamic system is the existence of Hawking radiation, which is absent in the purely
classical description of the black hole geometry. Lacking this, we have only a formal analogy
between black hole spacetimes and ordinary thermodynamic systems. As the concept of
a black hole’s temperature is central to the study at hand, we sketch out one of many
derivations of Hawking radiation here, and also demonstrate the important connection
between the surface gravity of a horizon and the temperature its associated radiation.

To understand Hawking radiation at a fundamental level, a quantum description of both
matter and gravity would be required. Fortunately, it suffices to consider the behaviour
of quantum fields on a fixed classical black hole background, which amounts to taking the
limit m, /M — 0 while keeping r, = 2GM fixed. For a solar mass black hole, we have

My _ VG s , (1.53)

M M,

while for a supermassive black hole the value is many orders of magnitude smaller. For
this reason, the behaviour of quantum fields in curved spacetimes can be understood in a
semi-classical approximation in all but the most extreme scenarios, and the back-reaction
of the fields on the geometry can be safely neglected.

Hawking radiation is rooted in the fact that in curved spacetimes, there is in general
no unique definition of the vacuum state |0). As a result, and especially in time-dependent
spacetimes, the vacuum state in at some early time |0;) may not be equivalent to the
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vacuum state at a later time |0f). This can be interpreted as particle production resulting
from the time-dependence of the gravitational field. To see this, consider a 4d massless
scalar field ¢ with conjugate momentum 7 which satisfies the Klein-Gordon equation and
equal time canonical commutation relation

o =0, (i), 7(y;)] = i6® (i —y;) (1.54)

The field ¢ can be expanded in terms of a complete basis of solutions to the wave equation

as
dp 1

r)= | —=——=
4(z) / (2m)3 | /2w,
where w, = /|p|?> + m?. The creation and annihilation operators a, and af satisfy [a,, af] =
(2m)30®) (p — q), and the vacuum state |0) is defined as the state for which

(ape™™" + a;ei’”) (1.55)

a [0) =0 (1.56)

for all p. In the above, plane-wave solutions were chosen for the field expansion, but we
could in principle use any other orthonormal basis {f,, f;} as well. In the asymptotic
region, the field can be expanded as

qs:/(fpaerf;aj,) , (1.57)

where Of, = 0. The {f,} are chosen to contain only positive frequency solutions with
respect to some preferred time coordinate, and are orthogonal with respect to the Klein-
Gordon inner product

(60, 6;) = —i / VE (6:Va0 — 67V 06,) 0" dPa = 6, (1.58)

where 3 is a Cauchy surface and n® is its normal. For the case of Hawking radiation, we are
concerned with the Penrose diagram shown on the left side of Figure 1.1, which represents
the formation of a black hole from collapsing matter. In the asymptotic past, one can define
particle states (on the blue line) by choosing a set {f,} which satisfy (1.58) on ¢ = Z~,
such that the solutions have positive frequency with respect to the null generators of 7~
and can be written as in (1.57). a, and a; are then the creation and annihilation operators
associated with the ingoing particle states, and since Z~ is a Cauchy surface, the field can
be written as (1.57) everywhere.

However, an observer in the distant future (at Z%) does not have access to the entire
spacetime, owing to the presence of the event horizon. While the red line HUZ™" in Figure
1.1 is a Cauchy surface, Z" itself is not. Particle states for observers outside the black hole
must be defined by combining data on H and ZT:

¢ = / (gpbp + 0] + ke + kil ) (1.59)
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Figure 1.1: Penrose diagram of collapsing matter forming a black hole. Left: A classical
black hole which forms through collapse but does not evaporate. Red and blue dashed
lines represent (respectively) past and future Cauchy surfaces on which mode functions
can be constructed. Right: A semi-classical black hole, which forms and later evaporates.
The orange arrow represents the evaporation event, which appears instantaneous due to
the conformal transformation.

The solutions {g,} are purely ingoing having support only on H, while the {k,} are the
outgoing modes with support on Z*. Both sets of solutions independently satisfy (1.57)
on their respective hypersurfaces. Finally, choosing {k,} to be positive frequency with
respect to the generators on Z* allows for the interpretation of {cp,cjo} as creation and
annihilation operators for particle states in the asymptotic future. Since Z~ is a Cauchy
surface, one can express the solutions on Z* as a linear combination of the {f,, fr}, and
the corresponding creation and annihilation operators as linear combinations of the a, and
al’s. Explicitly, one has

C; :/<&:jaj+5;ja}> . (1.60)
J

Since in general f;; # 0, an initial vacuum state defined by a,|0) = 0 will not appear to
be a vacuum state at Z. Using (1.60) one can write the expectation value for the number
operator defined in the asymptotic future, where this becomes plain to see:

(N) = (0] i, [0) = / Boal? - (1.61)

Global analytic solutions to the wave equation for ¢ do not exist in the Schwarzschild
spacetime, preventing an explicit calculation of 3,,. However, one can determine the
asymptotic form of 3,, by recasting the Klein-Gordon equation as a 1-D scattering problem
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with an effective potential due to the presence of the black hole (see [1] for explicit details).

The result is that ]

(N,) =T, x (1.62)

2mwp
e —1

where I'), is the classical absorption coefficient for the scattering of the field off the black
hole, and k is the surface gravity. This is just a thermal spectrum at a temperature

K
T=_". 1.63
o (1.63)

Evidently there is a flux of energy escaping to infinity from the black hole, which one
can show necessarily causes the mass of the black hole to decrease. This is evaporation via
Hawking radiation. Though we only considered the presence of a massless scalar field here,
similar calculations can be performed for fermions, linearized metric perturbations, and
charged fields. All are found to have a blackbody spectrum as in (1.62). These results also
hold for rotating black holes despite the initial stationarity assumption. For massive fields
the frequency w, contains the rest mass of the corresponding particle, and so the black hole
will only radiate such particles in an appreciable amount when 7" > m. Therefore, for the
majority of the lifetime of a typical black hole the Hawking radiation consists of photons
and gravitons.

The dramatic implications of the above extend beyond simply allowing for the interpre-
tation of a black hole as a thermodynamic object. As the black hole evaporates, its mass
will decrease until (presumably) the entire rest mass of the black hole escapes in the form
of radiation, leaving again an asymptotically flat space as illustrated on the right side of
Figure 1.1. The issue that arises here touches at the foundations of quantum mechanics.
Evidently 3J; is a Cauchy surface while ¥ is not, the implication being that unitarity is
violated by black hole evaporation, since the final state of the fields present is a thermal
state and thus contains no information about the state of the matter which formed the
black hole (or anything else which may have fallen into it during its lifetime). This is the
famous black hole information parador. Though no complete answer to the problem of
information loss in black hole evaporation exists today, its attempted resolution has served
as the inspiration for a great number of theoretical advances in physics [80].

The temperature in more general settings

As it happens, the relationship (1.63) between the temperature of Hawking radiation
and the surface gravity of the event horizon is quite general. In the previous section we
considered a static, spherically symmetric spacetime representing a Schwarzschild black
hole. In fact, that the temperature of the thermal state in the asymptotic region of a
black hole spacetime is proportional to the surface gravity of the event horizon is true for a
wide class of black hole spacetimes, including charged Reissner-Nordstrom black holes and
spinning Kerr black holes. Moreover, Gibbons and Hawking showed that similar arguments
apply to other horizons as well, in particular the cosmological horizon associated with A > 0
(de Sitter) solutions to Einstein’s equations [81]. They showed that an observer in de Sitter
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space measures an isotropic background of thermal radiation with temperature

K"COSIHO

T = 5 - (1.64)
This temperature enters into a thermodynamic description of the cosmological horizon
through the first law (1.32) the same way that the horizon temperature would, except the
area A is now the proper area of the cosmological horizon. The entropy S can thus be
regarded as a measure of the lack of knowledge about the universe beyond the cosmolog-
ical horizon. The general relation (1.63) allows one to determine easily the temperature
associated with a given horizon. Consider a general static, spherically symmetric metric

of the form
ds® = —f(r)dt* + g(r)dr? + r*dQ* . (1.65)

with the event horizon being located at r = r;,. Recall that the surface gravity for a Killing
horizon with Killing vector £ is defined as

K2 = —1 (V) (VR . (1.66)

The normalized time translation Killing vector associated with the metric above metric is
simply &% = 47, so that on the event horizon

o= im 2S00
2 /g

As in the Schwarzschild spacetime, it will often be the case that g(r) = f~*(r), and so we
simply have
)

47

T=Th

(1.67)

=30, - T

(1.68)

where the prime indicates a derivative with respect to the argument, and the result is
evaluated at » = rj,. For the asymptotically flat Schwarzschild black hole, this gives the
well-known result of Tj, = (87M)~1. One could just as well apply (1.68) to the cosmological
horizon (if it exists) to determine its temperature instead.

1.4.3 The Hawking-Page Transition

Having previously alluded to the Hawking-Page transition and remarked on its theoretical
importance, we should be precise about what the transition represents and how it fits into
the larger theoretical context. The Hawking-Page transition represents a phase transition
from radiation to a ‘large’ black hole in asymptotically anti-de Sitter spacetimes (ones
in which A < 0). Unlike flat space the (conformal) boundary of AdS is timelike, allowing
massless particles to reach the boundary in finite proper time. Almost universally, reflecting
boundary conditions are imposed at this boundary so that AdS can be treated as a closed
system. As a result, massless particles are reflected back towards the center upon reaching
r = oo. Outgoing massive particles return to the center in similar fashion, owing to
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the attractive nature of the potential when A < 0. This peculiar feature of AdS leads
immediately to an interesting observation: while a small black hole may evaporate quickly
(before any radiation reaches the boundary), a sufficiently large black hole may achieve a
state where the rate of outgoing radiation matches that of the ingoing reflected radiation,
rendering the black hole stable.

The two situations described above represent equilibrium states, with the entire space-
time being described by a single temperature T (either that of the radiation or of the
large black hole). It should be clear that if one had a mechanism by which to vary the
temperature of the spacetime, at some point a phase transition will occur between pure
radiation (often called empty AdS) and a large black hole. This idea can be made precise
by considering the contributions of both the radiation and large black hole to the parti-
tion function Z. Using (1.29), one can evaluate the contribution to the partition function
from both the AdS geometry and the black hole geometry. In Chapter 2 we will see the
details of how such a calculation is performed. For now, we merely quote the result for the
4-dimensional case:

BQ2 1 2

Ig [gAdS] = _47TG \/Tl/rgrc (1 + 7"3) (169>
15 [gsch) = 15 [Gads] + A, rn(L—17) + 0O (1/r7). (1.70)

167G

Here, 7, is the horizon radius, = 1/7T is the inverse temperature, and r. is some large
but finite cutoff radius at which various subtraction terms should be matched to remove
any divergences. It is clear from (1.70) that when r, > 1, the dominant contribution to
the partition function is Ig[gsen], while for r, < 1 it is Ig[gaas]. At rp = 1, the quantity
I5 [gsen) — IE [gads] changes sign, and a transition occurs between the radiation and large
black hole phases. This is the Hawking-Page transition.

In classical thermodynamic terms, this behaviour is typically captured by the free
energy of the system. For an isolated system at constant temperature, the thermodynamic
potential of interest is the Helmholtz free energy

F=E-TS . (1.71)

The free energy is a useful quantity since the equilibrium state of a system at a given tem-
perature always corresponds othe global minimum of F'. Another way to see the Hawking-
Page transition is to simply evaluate F' given the appropriate definitions of E, T, and S
for the AdS black hole, and compare it to the free energy of the radiation phase (which is
always taken to be F' = 0). Where the free energy of the black hole becomes lower than
that of the radiation phase, the Hawking-Page transition occurs. This is shown in Figure
1.2.

As we have noted, there is extensive theoretical interest in the Hawking-Page transition.
In the context of AdS/CFT, contributions from the bulk geometric states to the partition
function have a clear interpretation in terms of boundary CFT states. In fact, the bulk
partition function for the geometries exactly maps to the thermal partition function for
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Figure 1.2: The free energy F' of the Schwarzschild black hole, demonstrating the presence
of a Hawking-Page transition. Left: F' as a function of temperature 7. When T" < T,
empty space is thermodynamically preferred. When 7" > T,, the large black hole phase
minimizes F' instead. Right: F' as a function of horizon radius rj,. The free energy (and
thus the action) changes sign when the black hole becomes large enough.

the boundary CF'T, the most well-known example being the map between type IIb string
theory on AdSs x S® and N' = 4 super Yang-Mills theory on the boundary of AdSs [4].
The bulk Ig[gaqs] contribution represents a low temperature confining phase in the CFT,
while the Ig[gss] contribution represents a high temperature deconfined free gas phase.
This is the often cited AdS/CFT interpretation of the bulk Hawking-Page transition as a
boundary deconfinement transition (as occurs in a quark-gluon plasma for example).

The Hawking-Page transition provides a partial resolution to the black hole information
paradox, as the transition between the black hole and radiation phase (which appears to
not be unitary, at least without a quantum theory of gravity) has an expressly unitary
description in terms of the boundary CFT. As a result, it is clear that information is
preserved during the evaporation process.®

The theoretical power of the AdS/CFT correspondence has motivated a very large
number of investigations into the phase structure of bulk gravitational theories, as any
modifications to the description of the bulk transition (be it from the inclusion of charge,
angular momentum, higher curvatures, etc.) will necessarily correspond to a modification
of the boundary CFT description. More exotic phenomena beyond the simple radiation-
black hole Hawking-Page transition are possible as well, each having a unique interpretation
on the CF'T side. The hope is that a complete understanding of the bulk phase structure
of black holes in Einstein gravity and its extensions will allow for insights into strongly
coupled CFT physics, and this has indeed proven to be the case [83].

These motivations extend to the asymptotically de Sitter cases we study here, owing
to recent developments of the dS/CFT correspondence [39]. Though dS/CFT is still in its

8Computing exactly what happens at the transition remains an open problem, namely, the Page curve
cannot be constructed in this way [82]. In this sense the issue is only partially resolved.
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infancy compared to its anti-de Sitter counterpart, we expect that our understanding of
the phase structure of asymptotically dS black holes will be widely applicable to the study
of those boundary CFTs as well (once we have achieved a sufficient technical maturity
concerning dS/CFT).

1.4.4 The Extended Phase Space and Variable A

In discussing the analogy between the first law of thermodynamics for traditional systems
(1.31) and the first law of black hole thermodynamics (1.32), there is a notable absence of
a pressure-volume term on the gravity side. In the asymptotically flat case considered in
the early work of Bardeen and collaborators, there is indeed no variable in the black hole
description that has a natural interpretation as a thermodynamic pressure, and so on the
surface the absence of a pressure-volume term is perhaps expected.

This expectation changes when one considers solutions with non-zero cosmological con-
stant, as A itself can be seen to act as a kind of pressure. Consider moving the contribution
from the cosmological constant to the matter side of the field equations:

Gab -+ Agab = SWGTab — Gab = 87TG(Tab — ﬁ/\gaw . (172)
A
Tab

What kind of stress energy tensor is this reminiscent of? A perfect fluid with energy density
d and isotropic pressure p has a stress-energy tensor

Tap = dlag[papvpap} : (173)
Therefore, the cosmological constant acts like an isotropic perfect fluid with

= A = (1.74)
pA_SﬂG’ PA = —PA - .

Motivated by the parallels between a non-zero cosmological constant and a universal fluid,
it is natural to ask how A might enter into the first law. This occurs naturally when
one considers variations of A, an idea that has been explored at least as early as 1985 by
Teitelboim [84]. Since then there has been extensive study of this idea, notably in [22] where
various scaling arguments were used to construct an eztended first law for AdS black holes
which accounts for variations in A. Previous work suggested that a pressure-volume term
could be incorporated into the first law through explicit calculation of various quantities
for a given spacetime [85-87], while the results of Kastor and collaborators showed that
this can be achieved in the general case, without reference to a particular solution. In
that work, a Hamiltonian perturbation analysis was used to show that variations in the
cosmological constant A lead to an expression for the mass variation which reads

K C)
oM = 87TG5A+ 87TG5A ) (1.75)
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The quantity © is given by a Komar integral as

O=— {/ Ao (W™ — wiyg) — / dZabw“b} . (1.76)
95ec oM

where w? is the Killing potential (satisfying & = V,w®) and 9% is the codimension-2
surface representing the boundary of a suitably chosen hypersurface ¥, with volume element
d¥.. The quantity wibg serves to renormalize the Killing potential which formally diverges
in AdS. The Killing vector k£ is chosen to be the horizon generator, which approaches 9/0t
in the asymptotic region given an appropriate choice of coordinates. X is taken to extend
from the bifurcation surface 0% to a boundary at infinity 0% .,, whose unit normal vector
is n® = fV,t. If ¥ is further orthogonal to k%, then k* = fn® and the integral above can

be written
/ dSgpw™ = — [ dP 'z —gP) . (1.77)
0% b

which is just the negative of the volume of the surface ¥ between the horizon and infinity.
The second integral can be written in a similar way, giving

-0 = VAdS — ‘/bh =V (178)

so the potential © entering in the first law has the interpretation of the (negative of the)
volume excluded from the spacetime by the presence of the black hole. We saw previously
that A could further be interpreted as a fluid with pressure given by

A .

Therefore, ©5A/87G = VP, and (1.75) becomes the extended first law of thermodynamics
M =T6S+ VP, (1.80)

where the thermodynamic volume V' appears as the quantity conjugate to the pressure,

oM
V= (—) . (1.81)
oP S.0.7

An important distinction between this law and the first law without variable A is that the
right hand side now represents the variation of the enthalpy H = U 4+ PV of the system.
We therefore identify the mass M with H rather than the internal energy U as is the case
in (1.32). The relation (1.80) can be suitably generalized to include charge and angular
momentum, which enter in the same way here as they do in the regular phase space. In the
case of asymptotically de Sitter (A > 0) spacetimes, the Killing field £* becomes spacelike
outside of the cosmological horizon, and so the conserved charge one would construct at
infinity cannot have the interpretation as a mass as it is now ‘conserved in space’ rather
than in time. Of course if one does not integrate past the cosmological horizon, no such
issue arises, a fact that will be useful later in this work.
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The remainder of our work will take place in this extended phase space, where in general
the cosmological constant is related to the thermodynamic pressure through
A (d—-1)(d~-2)

A . (1.82)

p—__
ST 16712 ’

where [ is the de Sitter length scale (see Section 1.5). In de Sitter space, the cosmological
constant is positive, so the variable P is better thought of as a tension rather than a pres-
sure. The extended phase space is the natural context in which to study the phase structure
of black hole spacetimes with non-zero A, where many interesting thermodynamic phenom-
ena have been uncovered including triple points, re-entrant phase transitions, superfluid
transitions, and more [16,33,88]. These phenomena are not only interesting in their own
right, drawing parallels between some of the most exotic objects that appear in our uni-
verse and everyday thermodynamic processes like the liquid-gas phase transition of ordinary
water, but also have implications for gauge theories through gauge/gravity duality, each
example having a non-trivial dual description in terms of the boundary CFT [28,30,89].

One common feature in the extended phase space is a striking analogy between the
liquid-gas transition of a Van der Waals fluid and a small-large black hole phase transition
in AdS spacetimes. A Van der Waals fluid is characterized by an equation of state

r o (1.83)

v—>b 2

P(T,v) =

where a accounts for the attractive forces between constituent particles and b accounts for

their finite size. This equation of state accurately models the behaviour of fluids above their

critical temperature and also captures the behaviour of fluids at the liquid-gas transition.

Interestingly, the equation of state for AdS black holes in the extended phase space displays
similar qualitative behaviour. For a 4D charged AdS black hole one has [90]

2

P(T,v) = r ! 20

v 2mv? vt

(1.84)

There is a critical point {P,, T, v.} at which the phase transition becomes second-order,
which occurs when

oP  O*P

v ov?
For the black hole equation of state, the critical ratio P.T,./v. = 3/8 is identical to that of
the Van der Waals fluid, as are the associated critical exponents which govern the scaling
behaviour of various quantities near this point. This remarkable similarity between fluid
phases and black hole phases extends to many other cases [91]. We will see a departure from
this behaviour for asymptotically de Sitter black holes, where the presence of the isothermal
cavity leads to an equation of state that is nonlinear in 7" and does not support Van der
Waals-like transitions. These de Sitter transitions are thus of a decidedly different character
than their AdS counterparts, at least as far as this ‘universal’ behaviour is concerned.

=0. (1.85)
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1.5 de Sitter and its Problems

Much of the studies herein concern asymptotically de Sitter spacetimes for the motiva-
tions discussed in the introduction. In this section we define de Sitter spacetimes and
their asymptotically related variants, describe some of their properties, and discuss the
difficulties associated with providing a thermodynamic description of these spaces.

The d-dimensional de Sitter space, denoted dSy, is a maximally symmetric solution to
Einstein’s equations with positive cosmological constant (A > 0). It can be understood
as a hyperbolic submanifold of d + 1 dimensional Minkowski space M4 satisfying the
constraint

— it A =12 (1.86)

Here, z; are coordinates on M4 and [ is the de Sitter length scale. Through the Einstein
equations (1.15) the de Sitter length can be related to the cosmological constant A and
scalar curvature R as @-1)d-2) (d—2)

A= o2 =5 R, (1.87)
from which we see that dS,; is a constant curvature space. If desired, [ can always be set
to unity by a Weyl rescaling. De Sitter space has a cylindrical topology R x S%°!, and
inherits its symmetry group SO(1,d) from its embedding space (a Lorentzian manifold of

dimension d + 1). In static coordinates, the metric takes the form

-1
a2 = (1-2Yar v (1-0) a2+ a2 (1.88)
[2 12 d—2 > .

where dQ% _, is the metric on the unit (d—2) sphere. It is clear from (1.88) that the vacuum
spacetime possesses a horizon at r = [, the cosmological horizon. In Figure 1.3 we show
two convenient representations of dSy, using static coordinates and Kruskal coordinates.

It should be clear from the Penrose diagram in Figure 1.3 that the causal structure
of dS; does not allow any single observer to access the entire spacetime. This is contrary
to the experience of observers in Minkowski space, whose past lightcones will eventually
contain the entire spacetime. In de Sitter, an observer sitting at the north pole lives in a
causal patch defined by OT N O~ whose diagonal boundaries represent the cosmological
horizon. Furthermore, while there exists a well-defined future directed timelike killing
vector field 0/0t in the left causal patch, this vector field becomes spacelike in the upper
and lower patches, and is past-directed in the right patch. As a result, Hamiltonian time
evolution cannot be properly defined for the entire spacetime, and we have issues defining
thermodynamic quantities like energy or mass even before considering the presence of a

black hole.

Further difficulties arise when we generalize to asymptotically de Sitter black hole
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Figure 1.3: Representations of de Sitter space dS;. Left: The hyperboloid defined by
(1.86) embedded in M4 with (d—1) coordinates suppressed. Static coordinates only cover
the shaded region inside the de Sitter horizon (represented by the curved lines). Right:
Penrose diagram of d.S;. Points in the interior are S%2, with future (past) timelike infinity
represented by Z, (Z_). The yellow region O represents the causal future of an observer
sitting at the north pole, while their causal past O~ is represented by the blue region.

spacetimes. The simplest example is the Schwarzschild-de Sitter metric:

N 2m  r? ) om  r2\ ! 5 9o
dS:— 1—7—1—2 dt“— 1—T—l—2 d’l“ +7'de_2, (189)

This metric represents a static, uncharged black hole in de Sitter space. The study of
the thermodynamic properties of such a spacetime faces an immediate problem due to the
presence of the cosmological horizon: with a temperature generically different from the
black hole horizon, the system is manifestly out of equilibrium. To see this, consider the
definition of temperature given by (1.63). For the metric (1.89), the temperature associated
with the event horizon is

f'(r) kn 1—Ar}

Ty = =t = (1.90)

C N - o A7y,

where k;, is the surface gravity of the bifurcate horizon, r;, is the location of the event
horizon (given by the smallest positive real root of f(r) = 0), and the relation (1.87) has
been used. For A — 0, this gives the Hawking temperature of a Schwarzchild black hole
as observed from infinity. Of course, no such observer exists in SdS; due to the presence
of the cosmological horizon. Rather, one should consider an observer situated between
both horizons, r, < r < reesmo. As we have noted however, such an observer will observe
isotropic thermal radiation from the cosmological horizon as well, with a temperature of

1'(r) Keosmo 1—Ar2
T = _ _ COSmMo 1.91
cosmo 4 2w 477 cosmo ( )

T=Tcosmo
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which is in general different from the temperature of the black hole (1.90). Therefore, and
observer in the region between the two horizons will never see an equilibrium state, as
there will always be an apparent heat flux from one horizon to the other (except for in the
Nariai limit, where r;, = 7eosmo). Furthermore, there is no single coordinate system that
can be analytically extended from one horizon to the other. These are perhaps the most
salient difficulties associated with applying the usual techniques for understanding AdS
black hole thermodynamics—how can one achieve equilibrium?

A number of approaches have been pursued over the years which avoid the issues raised
here in various ways, though each with their own difficulties or limitations.” One method is
to assign a single equilibrium temperature to the system which accounts for both the event
and cosmological horizon temperatures. This ‘effective temperature’ approach relies on
enforcing the first law to hold for the system, and then defining the effective temperature
to be the coefficient of the entropy variation d.S [47,48]. The issue with this is twofold: for
one, the resulting effective temperature T.g is in general not the temperature experienced
by any observer in the spacetime (and can sometimes be negative). For two, while indeed
a single temperature has been assigned to the spacetime, no mechanism has actually been
employed to keep the system at equilibrium, and one is forced to question the application
of equilibrium thermodynamics to the situation.

Another method involves fixing certain parameters of the system to set the two horizon
temperatures to be equal, as was done in [49]. In that example, 5-dimensional charged
Gauss-Bonnet black holes in asymptotically de Sitter space are considered, which are con-
formally coupled to a scalar field. We omit the details of the theory, noting only that the
metric function for that class of black hole solutions takes the form

2 2
fir) =1 8m n dmg® At H ’ (1.92)

32 3rd 6 r3

where H is a parameter associated with the scalar field. As it happens, there is enough
freedom in the choice of parameters in (1.92) to make the temperature associated with
the event horizon (1.90) equal to that of the cosmological horizon (1.91) for certain values
of {m,q, H,A}, so that there is no heat flux in the region between the two. While the
advantage here compared to the effective temperature approach is that equilibrium is
expressly achieved, one is limited to studying choices of parameters for which the horizon
temperatures coincide, which is often not possible in a given theory if there are insufficient
degrees of freedom to work with.

In order to make progress in the largely unexplored realm of de Sitter black hole ther-
modynamics, we will use a Euclidean path integral approach that surmounts the difficulties
presented above. As described in Section 1.3, the thermal partition function Z for a system
at temperature T' = h/k,( can be related to a functional integral over the Euclidean sec-
tion of the theory. When applied to gravitating systems, a series of approximations allows
one to evaluate the contribution of a given classical metric to the full partition function,
and various thermodynamic quantities associated with the metric can be readily extracted.

9See also [92,93] for other recent developments on this subject.
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This approach was first used by Gibbons and Hawking [50] to compute the entropy of a
Schwarzschild black hole from a statistical mechanical description of the gravitational field.

The advantages of the Euclidean approach over those previously mentioned are nu-
merous. First, a clear semi-classical description of the origin of black hole entropy is
available, with the added advantage that we know exactly what the equilibrium tempera-
ture T" means. Second, our analysis is rooted in a much more fundamental description of
the gravitational field, as the Euclidean path integral formally defines a quantum theory
of gravity [94]. Third (and perhaps most relevant for our purposes) is that one is free
to fix boundary-value data as appropriate for the problem at hand. Physically, this will
be interpreted as a mechanism by which thermal equilibrium is ensured. In the following
chapter, we will describe the application of Fuclidean path integral methods to the prob-
lem of asymptotically de Sitter spacetimes, and clarify the advantages over previously used
methods.

32



Chapter 2

De Sitter Black Holes in Cavities

Having laid the groundwork for the explorations to come, we now move into the main body
of this thesis: the study of the thermodynamic properties of a variety of asymptotically de
sitter black hole spacetimes. In this chapter we present an analysis of the simplest examples,
namely the Schwarzschild-de Sitter and Reissner-Nordstrom-de Sitter black holes. We
use a Euclidean action (or ‘cavity’) approach, where boundary value data is fixed on a
finite radius cavity around the black hole. This imposes a condition for thermodynamic
equilibrium for these otherwise out of equilibrium systems. Using similar methods, a
cursory exploration of de Sitter black holes was done by Carlip and Vaidya [53], representing
at the time the only known attempt at understanding de Sitter black hole thermodynamics
in this way (aside from the seminal work of Brown and collaborators [52,95]). However,
these early attempts suffer from a number of issues, including a counter-intuitive choice
of reference spacetime for the energy, and the lack of an explicit check of the first law.
Furthermore, variations of A are not taken into account (indeed, the work in [52] considers
only asymptotically flat black holes), adn attention is not given to the construction of
a Smarr-like relation. In this chapter, we will resolve many of these issues, and explore
to a much greater extent the phase structure of these black holes. We demonstrate new
thermodynamic features not previously seen in this realm, discuss the extent to which the
analogy between black holes and Van der Waals fluids persists in the de Sitter case, and
examine the impact the presence of a cosmological horizon has on the thermodynamics.

We work in the extended phase space outlined in Section 1.4.4 for the reasons men-
tioned there, and also to make contact with a wealth of previous work in asymptotically
AdS spacetimes. In AdS black holes, an extended phase space analysis reveals interesting
connections between black hole phase transitions and those of ordinary fluid systems. We
will find that de Sitter black holes exhibit behaviour in many ways analogous to that of
their AdS counterparts, with a Hawking-Page phase transition appearing for uncharged
black holes, and a small/large black hole phase transition appearing in the charged case.
Despite this similarity, we show that the equation of state for these black holes has a non-
linear temperature dependence and therefore cannot support behaviour characteristic of
a Van der Waals fluid the way that AdS black holes do. Finally, we find a new type of
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compact first-order phase transition in charged de Sitter black holes, which exists within
a finite pressure range and is unlike any phase transition seen thus far in asymptotically
AdS black holes. This manifests as a ‘swallowtube’ in the phase diagram, whose character
differs dramatically from the swallowtails seen in AdS due to the cosmological horizon.

This chapter is organized as follows: In Section 2.1, we introduce the ‘cavity’ approach,
outlining the general procedure we will use throughout this work to study the critical
phenomena of asymptotically de Sitter black holes. We further comment on how the
issues raised in Section 1.5 are resolved by this method. In Section 2.2, we show explicitly
how the Euclidean path integral is evaluated. In Section 2.4 we examine in detail the
Schwarzschild-de Sitter (uncharged) case, finding that black holes undergo a standard
Hawking-Page phase transition despite the inclusion of the pressure-volume term in the
first law. In Section 2.5 we examine Reissner-Nordstrém-de Sitter (charged) black holes,
finding a number of new phenomena including a small to large black hole phase transition
analogous to those found in AdS spacetimes, and a pressure-dependent compact phase
transition.

2.1 Thermodynamics of Black Holes in a Cavity

Our treatment of black hole thermodynamics is inspired by methods used by Braden,
Brown, Whiting, and York [52], where equilibrium is achieved by fixing boundary value
data on a finite-radius surface within the spacetime (the cavity). By imposing reflecting
boundary conditions on the surface of the cavity, equilibrium is guaranteed. There is also
a flexibility in the choice of ensemble, which simply depends on which data is chosen at the
cavity. We work in the canonical ensemble, where the temperature and charge are fixed on
the boundary. In de Sitter spacetime, the backreaction of radiation near the event horizon
will tend to lower the temperature of the spacetime [96]. We ignore such backreaction
effects in the present analysis, assuming that the evaporation timescale is small compared
to the typical timescale of the phase transitions in the system. Unlike previous work in
this area, we will also interpret the cosmological constant as a thermodynamic pressure
according to the discussion in Section 1.4.4, using the relation

A

P=——
8

(2.1)
where P < 0 when A is positive. As noted previously, although the physical interpretation
of negative P is a tension, we shall continue to refer to it as pressure for the sake of clarity.
The identification above will allow us to study the equation of state of these black holes
in the extended phase space, where the analogy between the first law of thermodynamics
and black hole thermodynamics is complete [34].

Let us first outline the general procedure for studying the thermodynamic properties
and phase structure of a given spacetime/theory using the cavity approach. The steps
involved are as follows:
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1. Evaluate the (on-shell) Euclidean action I for the given theory/spacetime, with
suitable choice of boundary conditions at finite radius.

2. Using Ig, determine the thermodynamic quantities relevant to the chosen ensemble
(such as the mass M, entropy S, temperature 7', or energy F).

3. Construct the free energy appropriate to the ensemble (Gibbs or Helmholtz). This
quantity will be minimized by the thermodynamically preferred state and can thus
be used to study the phase structure.

The above represents a minimal procedure for studying the phase structure of a given
theory or spacetime. One may be interested in more than just the presence of phase
transitions within a given system, and though many of our discussions will center around
phase structure, indeed we will consider other thermodynamic properties as well. For
example, one can study the (extended) first law and Smarr relation for these systems, and
use them to determine other thermodynamic potentials involved in the description such
as the volume V', surface tension A, or electric potential ®. One can also determine the
equation of state P(T', V') for a given spacetime and examine the extent to which the phase
transitions are analogous to the Van der Waals phase transitions that occur in everyday
fluids (as seen in asymptotically AdS examples). We will do all of the above. In the next
section, we will give an explicit demonstration of step 1 for the simplest possible spacetime
where this cavity approach is applicable, the asymptotically flat Schwarzschild black hole.

2.2 Evaluating the Euclidean Action

As described in Section 1.3, various thermodynamic quantities of interest for a given space-
time can be obtained through the Euclidean path integral. Here, we wish to clarify the
technical details involved in the explicit computation of the Euclidean action, a proce-
dure we will use repeatedly in the investigations to come. The example here will be for
an asymptotically flat Schwarzschild black hole. The Euclidean action It., for the black
hole with boundary d.M is given by the Einstein-Hilbert action with the Gibbons-Hawking
boundary term:

[Total = IE - [O
1 1

=—— [dos/gR+ — | davVkK -1, 2.2

167 M \/g &G OM 0 ( )

The definitions follow those of Section 1.2, where g is the bulk (Euclideanized) metric, R
is the Ricci scalar, K is the trace of the extrinsic curvature of the boundary oM, k is
the boundary metric, and we have set G = 1. [; is a subtraction term that is chosen to
properly normalize the action. One way to understand how this subtraction term arises is
the following. Recall from Section 1.3 that in the semiclassical approximation the partition
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function is related to the Euclidean action by

z - /Dg e 1E Z e 1Blgel (2.3)

9el

where the second equality follows from the saddle-point approximation and Ig is given
by (2.2). In the present case, the classical metrics g, that contribute to Ip are the
Schwarzschild and Minkowski metrics, g5, and gf.:. What we would like to do is isolate
the contribution to the partition function Z coming from just the black hole. However,
merely evaluating the contribution to Z coming from Ig[gse] does not accomplish this, as
the Euclidean action for the Schwarzschild metric also contains a large flat space contri-
bution®. By subtracting from Ig[gs] the same action evaluated for the Minkowski metric
I5[gfiat] (with the metrics matched at the boundary), we are effectively removing the ‘non-
black hole’ part of the Schwarzschild metric’s contribution to the partition function. With
this subtraction in mind, the total action becomes

1 1 1 1
ITOtal:_m_W/\/ng4x+8_7T/\/EKd3x+16_7T/\/%R0d4x_8_71‘/vk0[{0d3x

Schwarzschil?ircontribution Flat space subtraction
2 ,  dr’ 2( 102 | o2 2 n
ds” = f(r)dr* + o) +r <d9 + sin“(0)d¢ ) : f(ry=1- - (2.4)

where Ry and K| are the Ricci scalar and boundary extrinsic curvature in the reference
spacetime, and ds? is the metric for both spacetimes (the horizon radius 7, is simply zero
for Minkowski space). We specify boundary value data at a finite radius r = r,, effectively
surrounding the black hole in an isothermal cavity, so the boundary terms should be
evaluated at this radius rather than spatial infinity. For the Schwarzschild and Minkowski
spacetimes, the bulk action vanishes (R = Ry = 0), so we are left with

1 Bo p27 pm
—~ —// Vo (Ko)db d dr
—re 8 Jo Jo Jo

Bh 27 p7
Tt = — / / Vk (K)d6 dpdr (2.5)
8 Jo Jo Jo

r=rc¢

The two integrals are done in different spacetimes, so care must be taken that the time
coordinates and their periodicities are chosen appropriately so that the metrics match at
r.. The matching condition is:

(1—:—’;)d72=(1)d75 — — 20 =0, y/1—dr=dn (2.6)

!The Schwarzschild geometry contains large contributions to the partition function coming from ther-
mal excitations of gravitons far away from the black hole, which are removed by subtracting the flat space
action.
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We thus have

B ﬂh 21 pm
ITotal—g/O 0\/E (K)d&dgb‘ ,/ / \/_ Ky) d@dgb‘ (27

r=rc

where (), is the periodicity in imaginary time 7 in the Schwarzschild spacetime. This
periodicity should be chosen to eliminate the conical singularity in the 7 — r plane at the
horizon. To see this, consider expanding near the horizon, where r = r, + €. The metric
there becomes

ds? = = dr? —|— " de? + r2d0? (2.8)

Th

The metric factors into an S? and a two-dimensional S! x IR part:

ds3 = a4 e (2.9)
Tn €

Making the substitutions p = 2,/rp€e and xy = ﬁ reveals the metric
ds3 = p*dx* + dp? (2.10)

which resembles polar coordinates (ds®> = r2d¢? +dr?) but y is not necessarily 2r-periodic,
so in general this metric is that of a cone?. The singularity at p = 0 is a true metric
singularity and not just the coordinate singularity at » = 0 in polar coordinates. To
eliminate the conical singularity we impose that the period of x is indeed 27. Then 7 has
period 47ry, which is the inverse Hawking temperature for the Schwarzschild black hole.
More generally the periodicity required will be

2 41
=TI,

(2.11)

where  is the surface gravity®. This is what is meant by choosing the periodicity in
imaginary time to eliminate the conical singularity. The whole spacetime is foliated by
leaves of topology S! x S2, and 3, gives the periodicity required at the horizon so that
the proper length of the S! shrinks smoothly to zero at r = r;,. At the boundary r = 7,
the periodicity in the local time t is 5 = Bu+/ f(r.). The periodicity in the global time 7
is (B in the whole spacetime. Quantum fields in the spacetime inherit this periodicity and
therefore the temperature of a thermal state is seen to be redshifted by a factor 1/ f(r.) at
the cavity.

Returning to the evaluation of (2.7), we construct the extrinsic curvature and bound-
ary metric by choosing an inward pointing spacelike unit vector to the boundary, s, =

2This is only true of the Euclidean section. In the Lorentzian section the near-horizon metric has the
same form but with (—, +) signature, and is actually the Rindler metric written in obscure coordinates.

30ne can see this explicitly by using the general near-horizon expansion © = 7}, + € for any metric of
the form (2.4) and following the same procedure, choosing the coordinate transformations for p and x such
that the metric is forced into the form (2.10).
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K = _2A f(r) — 2f/5c7“() ;- Vk = f(r)r*sin(6) (2.12)

For the reference spacetime, we choose flat empty space, where f(r) = 1, so that the
extrinsic curvature and metric there are

Ko=—-=, ko =r"sin(0) (2.13)

Performing the integrations over (6, ¢) then gives the reduced action
I. = <%rh — e+ A/ (re — rh)rc> B (2.14)

By direct substitution of the relation between periodicities 5 = S,/ f(r) one can show
that this is exactly the expected result of

I, = Br, (1—,/1—;—’1) — 2 (2.15)

The procedure described above can be followed almost identically to determine the Eu-
clidean action for a large class of theories and/or black hole metrics, and is used in the
remainder of this work to evaluate such actions. We refer to I, as the reduced action to
differentiate it from the corresponding general form (before any integration is done). We
emphasize however that the integrations required may be highly non-trivial. In this ex-
ample the bulk action vanishes for both the Schwarzschild and flat space metrics, so no
radial integration is required in (2.7). This will not be the case in general. Alternatively,
one could have arrived at the same result through repeated use of integration by parts and
product rule to recast (2.4) as a total derivative (as was originally done in [52]). In this
way the integration becomes trivial and one can immediate arrive at (2.15). However, in
more complicated theories/spacetimes it may be difficult or impossible to rewrite the bulk
action as a total derivative, necessitating the direct integration of the action as was done
here.

2.3 Thermodynamic Quantities and the First Law

In this section we summarize how the relevant various thermodynamic quantities will be
determined for the Schwarzschild and Reissner-Nordstrom-de Sitter black holes, and discuss
where generalizations of the results in Section 1.4 are required. Recall from Section 1.3
that determining the relevant thermodynamic quantities becomes relatively straightforward
once the (reduced) Euclidean action I, has been determined. Varying the reduced action
with respect to the physical degrees of freedom at the stationary points gives the energy
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and entropy in this ensemble:

op

The variations above are performed with all other parameters held fixed, possibly necessi-
tating the inclusion of extra terms to account for the dependency of 5 on those parameters*.
The energy as defined is the mean thermal energy of the black hole with respect to the
empty de Sitter spacetime, which can be related (at least in the AdS and flat case) to the
ADM mass of the spacetime after accounting for the gravitational and electrostatic binding
energy®.

E=—" S:ﬁ(al’”> — 1, (2.16)

We have established that fixing boundary value data on a finite radius reflecting cavity
allows the black hole to be in equilibrium, but what is the associated temperature? In the
path integral, the periodicity [ corresponds to the inverse of the equilibrium temperature,
T = 1/5. To determine 3, one can simply extremize the reduced action with respect to
ry and solve for 3. The expression will in general depend on the other physical degrees of
freedom present:

a[r(ﬁa ThyTe, 4, A)
8rh

=0 — 6(Th>T07Q7A) = T(Tharaqu) (217)

E, T, and S will enter the thermodynamic description through the extended first law
described in Section 1.4.4, which for the case at hand reads

dE = TdS — \dA, + VAP + ¢dQ (2.18)

where k is the surface gravity of the black hole, A is the horizon area, J is the angular
momentum, 2 is the angular velocity, ¢ is the electrostatic potential, and @) is the electric
charge. A\dA, is a work term arising from the presence of the cavity, where A, = 47r? is the
cavity surface area and A is the surface tension/pressure. For asymptotically AdS black
holes in the extended phase space, one usually identifies the mass variation of the black
hole dM with a variation of the enthalpy H = E 4 PV rather than the internal energy
U. In the case of these de Sitter black holes a similar statement holds true: the variation
of the mean thermal energy dF is analogous to a variation of an ordinary thermodynamic
enthalpy H.

The action allows us to directly determine the temperature T, entropy S, and energy E
of the system. To determine the thermodynamic volume and surface tension, we evaluate
the differentials dF, dS, dA., and dP, and enforce that (2.18) holds. The resulting ther-

4This is necessary if, for example, 8 = B(r}), since this imposes a constraint that does not allow the
action to vary with respect to r;, while keeping [ fixed.
5The thermal energy E is related to a conserved mass quantity M through dM =

dE\/<1 — :—’;) (1 — %(rf + rerp + ri)) In asymptotically AdS and flat spacetime M is the ADM mass.

In de Sitter it has a different interpretation since it is not conserved in time.
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modynamic volume will in general be different from the geometric volume V' = %m‘% (that
appears for charged AdS black holes [31]) as we will see. Since we have included pressure
in the thermodynamic ensemble, we will also be able to study the equation of state P(T, v)
of our system. Once the thermodynamic volume V' has been determined from the first law,
the equation of state follows by inverting the temperature for A and substituting into (2.1).
The expression to be solved is generally quadratic in A, leading to two possible equations
of state, though only one is physical in our case. The construction of the equation of state
will allow us to determine the extent to which various analogies between black holes and
fluid systems (common in AdS spacetimes) extend to the de Sitter case.

The inclusion of A and the isothermal cavity in the thermodynamic description also
leads to a modified Smarr relation which in four dimensions is

E =2(TS — A, — PV) + ®Q (2.19)

and can be derived from various scaling arguments [97]. In the absence of the isothermal
cavity, the AdA. term vanishes and we recover the usual form of the Smarr relation. This
relation has played an important role in black hole thermodynamics both as a consistency
check and through its broad applicability, as it holds for both asymptotically AdS and dS
spacetimes, is valid in any dimension, and is satisfied by more exotic objects like black
rings and black branes [22].

Finally, we wish to examine the phase structure of the Schwarzschild-de Sitter and
Reissner-Nordstrom-de Sitter black hole. In the discussion of phase transitions, the ther-
modynamic potential of interest is the Helmholtz free energy F', which is globally mini-
mized when a thermodynamic system reaches equilibrium at constant temperature. In the
canonical ensemble, F' is defined by F' = E — T'S and can therefore be deduced directly
from (2.16) and (2.17). Plotting F(T") with the appropriate parameters held fixed (as de-
termined by the chosen ensemble) can then reveal the character of any phase transitions
present.

2.4 Schwarzschild-de Sitter Black Holes

In this section, we consider explicitly the (uncharged) Schwarzschild-de Sitter black hole.
The action is

1 1
— [ d*z/g (R—2A) + 8—/ FPaovVk K — [ davk F®n, Ay — I, (2.20)

ITotal = _].6
™ Jm ™ Jom OM

where we have added an electromagnetic boundary term for the charged case, with n,
being normal to the cavity and the electromagnetic field strength tensor defined in terms
of the potential as Fy, = 0, A, — 9y A,. We shall choose a subtraction term I, for the action
such that Ity = 0 when the mass of the black hole vanishes. This will just be the action
for the empty de Sitter spacetime whose metric is matched to the black hole spacetime
on the boundary. In this way, we are using empty de Sitter space as the reference point
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from which energy is measured, as opposed to the topologically distinct Minkowski space.
This is in contrast to the early work of Carlip and Vaidya [53], where the latter choice for
reference spacetime was chosen, so that their action vanishes for flat space. Each choice
results in different values for most thermodynamic quantities and changes the location of
the critical points, but we will find that they produce the same qualitative behaviour. We
emphasize however that ours is the intuitively correct choice, as one should not be altering
the asymptotic structure of the spacetime when comparing its energy in the presence of a
black hole vs. radiation. We take a spherically symmetric ansatz for the metric,

ds® = f(y)dr* + a(y)dy® + r(y)?dQ? (2.21)

where y € [0, 1] is a compactified radial coordinate with y = 0 corresponding to the black
hole horizon (r(0) = r,) and y = 1 corresponding to the cavity wall (r(1) = r.). The
boundary at y = 1 has topology S!x S? with S? having area 47r?. Heat flux through
the cavity wall is chosen such that its temperature 7" = S~! remains fixed. The inverse
temperature 3 is related to the proper length of the boundary S* by 8 = 27 f(1), where
the periodicity in imaginary time 7 is 27.

Thermodynamic quantities can be derived from the action (2.20) after the integrations
are carried out and the various constraints imposed to arrive at the reduced action I,. For
the case at hand, one proceeds by solving the Hamiltonian constraint to determine the

metric function,

om  Ar?

flry=1-="- 50 (2.22)

The horizons are located at the real and positive roots of f(r) = 0, of which there are
two for the parameter range 0 < 9Am? < 1. The smaller root rj, gives the location of the
event horizon, while the larger root 7cosmo is the cosmological horizon. The limit where the
horizons coincide is known as the Nariai limit, where 9Am? — 1 and thus 7, — Tcosmo-

One can proceed in two equivalent ways, either by following the procedure detailed in
Section 2.2 to explicitly evaluate the action using (2.22), or by inserting the ansatz (2.21)
into the action and rewriting the integrand as a total derivative (thus bypassing the need
for explicit radial integration). This alternative method is demonstrated in Appendix A
for the case at hand. Either way, the integrations in (2.20) are performed and we arrive at
the reduced action:

I, = Br, [\/1 _ A;g _ \/(1 — :“_’;) (1 — %(rf —|—rcrh+r,2l)> ] — 7ry (2.23)

The inverse temperature is found by extremizing the action with respect to r, and solving

for 3, giving
47T7’h\/<1 — ;—h> (1 — B (r2+rery + T}QL))

1—Ar?

B = (2.24)
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from which the temperature is simply

1—Ar?
47rrh\/<1 — :—h) (1 — %(TZ + r.ory + 7‘%))

In the limit A — 0, r. — oo, this reduces to the familiar result of "= 1/47r, = 1/87w M.
The entropy is

T = (2.25)

oI,

— — 2
55~ b= (2.26)

§=p

and finally the energy is

o R (I et B

2.4.1 The First Law

With the energy E, temperature T', and entropy S as defined above, we can determine the
thermodynamic volume V' and surface tension A from the first law (2.18). Direct evaluation
reveals that the surface tension is given by

(4Ar3 —6r.) (X = Y) +rp(Ar? = 3)Y
481r2 XY ’

A= (2.28)
and the thermodynamic volume is

V=— : (2.29)

X:X(A)E\/(l—r—h) (1—%(r3+rcrh+rg)) L Y=Y(A)= 1—A£3. (2.30)

With these definitions it is straightforward to verify that
dE =TdS — MdA.+ VdP , (2.31)

Unlike V' (which should be positive to retain its interpretation as a physical volume) the
sign of A is free to be negative since this simply corresponds to a surface pressure. Figure 2.1
shows regions in parameter space where V' and \ are positive, in terms of the dimensionless
ratio x = r,, /1. € [0, 1].

There are two limits of interest here. The first is the asymptotically flat limit A — 0.
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Figure 2.1: Regions of positivity (blue) for thermodynamic potentials associated with the
Schwarzschild-de Sitter black hole as a function of z = ry,/r. and A, with fixed r. = V3.
Left: The thermodynamic volume V. Right: The surface tension A.

In this case we have X — /1 —r,/r. and Y — 1, giving

2rc(1— 1—T—h)—7‘h 4 r (1—\/1_7”_]1)_7“%,
Te Te
A= V=" (2.32)

16772, [1— 2 3 -
7nC TC

which agrees with the results of [52]. Note that in this limit, V' > 0 provided that r, <
0.84837r., as demonstrated in Figure 2.1. Since there is no longer a cosmological horizon
in this limit, we can further take the large cavity limit r. — oo, which results in A — 0
and V' — oo, as expected.

We can also take the small black hole limit r, — 0, where A — 0 and V' — 0. In this
case we let r, = xr. and expand around x = 0 to find

\/ngA
~— x
167 (3 — Ar2)3/2

) _ 6rriz B 9z 5
+0(z?%), 1% 1 TEEwE) +0(x°)

T (3 - Ar2),/9 — 3Ar2
(2.33)

Both the thermodynamic volume and surface tension vanish in the small black hole limit
for fixed cavity size. Of course, we cannot take the large cavity limit here because the
cavity size is bounded by the cosmological horizon.
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2.4.2 Helmholtz Free Energy and Phase Transitions

We can now examine the phase structure of the uncharged Schwarzschild-de Sitter black
hole. To do so, we consider the Helmholtz free energy (F' = E—TS) whose global minimum
corresponds to the equilibrium state of the system at fixed temperature. A plot of F' as a
function of T" and P for fixed r. reveals the presence of any phase transitions in the system.
Using (2.25), (2.26) and (2.27) we have

Ar3 rY
F Py="l _ x4+ L 2.34
(rhylrca ) A Te + \/g 414 ( 3 )
1 — Ar?
T ., P) = h 2.35
(e, P) =~ (2:35)

where F' and T are understood to be functions of P through the definitions (2.30) of X
and Y and the identification A = —87P. We plot F(T') parametrically for fixed P and
r. using r, as the parameter. This is shown in Figure 2.2 and Figure 2.3, which reveal
the presence of a standard Hawking-Page phase transition from pure radiation to a black
hole, whose size increases with increasing temperature. The F' = 0 line corresponds to
the radiation phase, with the transition to a black hole occurring at the temperature 7,
where the blue line crosses F' = 0. Above this critical temperature the black hole phase has
lower free energy and is thermodynamically preferred. The value of T, is the solution to a
fifth-degree polynomial and therefore must be found numerically. The kink in the F' — T
curve corresponds to T,,;,, the lowest temperature at which a locally stable (supercooled)
small black hole can exist at the given pressure and cavity size. This point occurs where
OF /0T becomes undefined, and can be found analytically. The expression for T,,;, is long
and without much insight, so we omit it.
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Figure 2.2: Helmholtz free energy of the Schwarzschild-de Sitter black hole. Left: F(T')
for fixed cavity size (r. = 1) and varying pressure. Right: F(T') for fixed pressure (P =
—0.1) and varying cavity size. The critical temperature T, is indicated with a red dot.

One can also verify that the heat capacity C, = —£(9S/9p) is positive above the tran-
sition temperature, demonstrating the stability of the black hole phase. Varying either
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Figure 2.3: Helmholtz free energy of the Schwarzschild-de Sitter black hole as a function

of temperature and pressure for fixed cavity radius (r. = 0.5). The F' = 0 plane is indicated
in blue. Hawking-Page transitions occur along the line of intersection.

the cosmological constant A or the cavity size r. simply moves the location of the critical
temperature, but does not qualitatively change the behaviour of the phase transition. This
agrees with the results of Carlip and Vaidya [53]; the flat-background choice of normaliza-
tion for the action simply moves the location of the critical point but does not introduce
new thermodynamic features.

As outlined in Section 1.4.4, working in the extended phase space allows us to examine
the equation of state for these uncharged de Sitter black holes. The equation of state can
be cast as a relationship between the pressure P, temperature 7', and volume V', which
we take to be the thermodynamic volume divided by the number of degrees of freedom
associated with the horizon [34]. In AdS space the volume V ~ r3 and the specific volume
(the volume per horizon degrees of freedom) v ~ 7}, [31]. However in dS space, (2.35) means
that the pressure is a non-linear function of (7, r;), and (2.32) in turn implies that 7, is
a highly non-linear function of V. As a result, the equation of state cannot be expressed
in closed form. Implicitly plotting P(V') at fixed T reveals an absence of the oscillations
characteristic of the Van der Waals fluid. We omit the plot here for lack of insight.

2.5 Reissner-Nordstrom-de Sitter Black Holes

We now turn to the (charged) Reissner-Nordstrém-de Sitter black hole. In AdS, the pres-
ence of charge allows for small-to-large black hole phase transitions in the canonical en-
semble [31]. Some of the thermodynamic properties of charged de Sitter black holes in a
cavity have already been investigated by Carlip and Vaidya [53]. Here we explore their
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phase structure further, working in the extended phase space, and examine more closely
the nature of the phase transitions present.

As before, the Hamiltonian constraint determines the metric function for the 4-dimensional
charged de Sitter black hole:

f(r):1—2—m+q—2—A—TQ. (2.36)

r 72 3

The reduced action in this case becomes

/ Ar? T q* A
e [ b 3 \/(1 - T_c) <1 e g(rg trern +r}2b) -y (237)

The expression (2.36) for r?f is now a quartic polynomial in 7, and we must restrict
ourselves to regions where f(r) > 0 for the path integral to be well defined. An analysis
of these allowed regions can be found in [53].

The temperature is found again by extremizing the action with respect to r, and solving
for g, giving

1 1= rZic - %(T? + T'elp + T}%) + (1 - %) (%(7’2 + 2Thrc> - z_§>
T'=—2-= he (2.38)

B 47T7’h\/< — :—h> (1 — rZic — %(r% + rory + r,%))

The entropy is again

ol
L 2.
o5 " e (2.39)

S=p

and the energy is

2 2
E:gg:rc[ 1—A§C— (1—T—h> (1— 1 —é(rgwcrhw,%))]. (2.40)

<

>
=

o
w

2.5.1 The First Law

As in Section 2.4, we use the first law to find the thermodynamic volume V' and surface
tension/pressure A. The first law must be supplemented by an additional term ®dQ to
account for the presence of charge. We find that

Ve
. - Y
(4Ar3 — 6r.) (X = Y) 4+ rp(Arf — 3)Y — 5

A= Ih (2.41)
A87r2 XY .
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where we have now defined the quantities

X(A) = \/(1—@) (1— @ —%(r§+rcrh+r§)> . V(A =4/1- A;f . (2.43)

With these definitions we have that both the first law,

dE = TdS — MA, + VdP + ®dQ. (2.44)

and Smarr relation,

E =2(TS — M. — PV) + 3Q (2.45)

are satisfied. We again depict the regions of positivity for V' and A in Figure 2.4. Note
that as charge increases the region of positivity shrinks.
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Figure 2.4: Regions of positivity (colored) for thermodynamic potentials associated with
the Reissner-Nordstrom-de Sitter black hole as a function of z = rj,/r. and A, with fixed

cavity radius 7. = /3. Left: The thermodynamic volume V. Right: The surface tension
A

2.5.2 Helmholtz Free Energy and Phase Transitions

We turn once again to the Helmholtz free energy to examine the phase structure of the
system. Using (2.38), (2.39) and (2.40) we have

Ard -~ r.B

FlrnroP)= 20 g B 246
1 — Ar?

T(ryre P) =~ (2.47)
4ar, X
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which is identical to the uncharged case aside from the extra g-dependent term appearing
in X. We plot F(T) parametrically for fixed P and r. using rj as the parameter. This is
shown in Figure 2.5.
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Figure 2.5: Helmholtz free energy of the Reissner-Nordstrom-de Sitter black hole as a
function of temperature. Left: Various pressures (P = —0.08,—0.07,—0.01) with fixed
charge (¢ = 0.08) and cavity size (r. = 1), showing clearly the formation of a swallowtail
below the critical pressure, in this case P. ~ —0.82. Right: Various cavity sizes (r. =
0.6,0.8,0.9) with fixed charge charge (¢ = 0.08) and pressure (P = —0.08). The red dots
indicate the location of the small-to-large black hole phase transition.

Though the free energy is largely similar to that of (2.34), the presence of charge
significantly alters the phase structure. Below a certain critical pressure P., the free energy
develops a kink which in the F'—T — P space forms a swallowtail. The swallowtail indicates
the presence of a first-order phase transition from a small black hole to a large black hole,
which occurs at the crossing where the critical temperature 7T, is reached. The horizon
radius 7, increases along the near-horizontal line at the left (in the direction indicated by
the arrow), which is the same as the direction of increasing temperature. Eventually a
crossover point (where T' = T,) is reached, beyond which the free energy is minimized by
moving downward along the steeper line instead of forward along the near-horizontal line.
At T = T, there is a discontinuity in the horizon radius r,. Note that for charged black
holes, the F' = 0 line is inaccessible to the system, as we have chosen an ensemble where
q is fixed. To leading order in small-A, analyticity of f(r) requires that m? > ¢* which
cannot be satisfied by a black hole with fixed charge that evaporates to pure radiation.

This swallowtail behaviour appears also in charged and rotating AdS black holes,
though we note a significant departure from the behaviour of previously studied exam-
ples in our case. Normally, as the magnitude of the pressure increases, the swallowtail
grows without bound, indicating the presence of a phase transition for all pressures above
the critical pressure P, where the swallowtail first forms. In our case however, the swal-
lowtail closes past a certain maximum pressure P,,,., creating the swallowtube shown in
Figure 2.6. The phase transition from a small to large black hole is then compact in the
sense that it exists only in a finite domain in P. For sufficiently large r. or small ¢, the
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swallowtube intersects the P = 0 plane and is cut off (since we are in de Sitter space, P
must be negative), though it still closes off at P,,,,. This is qualitatively different from the
reentrant phase transitions found in, for example, higher dimensional rotating AdS black
holes, where lowering the temperature of the black hole results in a small-large-small phase
transition [32].

0.20
0.18
0.16
0.14

0.12

0.40

Figure 2.6: Helmholtz free energy of the Reissner-Nordstrom-de Sitter black hole as a
function of temperature and pressure for fixed charge (¢ = 0.08), showing slices of constant
pressure, and demonstrating the compact nature of the phase transition.

It is also interesting to examine the coexistence curve for this system, which we show in
Figure 2.7. Here also we see a departure from the behaviour of AdS black holes, where the
coexistence line increases monotonically and terminates at one end at a second order phase
transition. Instead, the compact region that comprises the swallowtube is represented by
a line segment in P — T space along which the small and large black hole phase coexist,
terminating at either end with a second order phase transition at the two critical pressures
where the two ends of the swallowtube first form.

The two distinctly different branches correspond to two regimes where a separation of
scales occurs. In the upper branch, the cosmological horizon is always farther from the
black hole than the cavity is, namely max(r. — ) < max(7eosmo — 7). The influence of
the cosmological horizon on the thermodynamic features is largely screened, and the upper
portion of the coexistence line can be seen to resemble the case of the charged AdS black
hole. For the lower branch, the cosmological horizon is always closer to the cavity than the
event horizon, and so the thermodynamic behaviour deviates sharply from the AdS case.
The transition region is marked by the bend in the coexistence line, which occurs when
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Figure 2.7: Left: Coexistence line for the charged dS black hole, along which the small
and large black hole phases coexist. The line terminates at two ends where a second order

phase transition occurs, indicated by a black dot. Right: Coexistence line for the charged
AdS black hole.

the Nariai limit is achieved at exactly the cavity radius rNariai = Te-

To close this section, we remark on the equation of state of the system. Finding the
pressure P(T, V) by eliminating r; now requires solving 7' = T(P,ry,, 7, q), which is now
a ninth-degree polynomial in 7,. Again, one must proceed by plotting P and T" implicitly
using ry, as the parameter. As in the uncharged case, implicitly plotting P(V') for fixed T
reveals an absence of the oscillations characteristic of the Van der Waals fluid.

2.6 Summary

The extended phase space thermodynamics of de Sitter black holes in an isothermal cavity
is simultaneously quite similar and strikingly different from that of asymptotically flat
and AdS black holes. Of immediate note is the fact that there is no simple equation of
state relating the pressure to the thermodynamic volume. This is because in both the
uncharged and charged cases the presence of a cavity necessarily introduces a complicated
non-linear relationship between these quantities, and the presence of standard Van der
Waals oscillations is no longer present. Despite this, the free energy indicates clear and
interesting phase behaviour for both cases.

For the uncharged case, the identification of the cosmological constant with the ther-
modynamic pressure does not change the phase structure considerably; we still note a
first-order Hawking-Page phase transition from hot gas to a black hole, with a locally sta-
ble supercooled region. This is not surprising since the extended phase space Helmholtz
free energy is identical to the ‘regular’ phase space free energy. We also considered the
analogy that these phase transitions make with Van der Waals systems, and concluded that
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the equation of state does not support any liquid-gas type phase transition. Distinct from

the usual AdS case however is the fact that that the equation of state is highly non-linear
inT.

The charged de Sitter black hole presents novel features. We find a small-to-large
black hole phase transition which occurs for pressures more negative than a certain critical
pressure and above a certain critical charge. This structure is similar to the type seen in
asymptotically AdS black holes. However this phase transition is compact in the sense that
there is a second, more negative critical pressure P,,,, below which the phase transition
disappears. This is in stark contrast to what occurs in AdS black holes, where above the
(positive) critical pressure the phase transition is always absent, and below this pressure
the phase transition is always present. For a large enough choice of cavity size, the phase
transition is present even when P — 0, but there is always a maximum pressure |Py,q,|
beyond which the small-large transition disappears, regardless of the choice of ¢ and r..
This swallowtube phenomenon results from the presence of the cosmological horizon and
is unique to de Sitter, rather than arising from the presence of the cavity (swallowtubes
do not exist for asymptotically flat or AdS black holes in cavities).

As a final remark we note that that the results we obtain and the existence of black
hole phase transitions in general is largely dependent on the scaling properties of the basic
thermodynamic variables in (2.19). These differ from the situation in standard thermo-
dynamics, where the entropy is a homogeneous function of degree 1 of the total energy
E, the volume V', and particle number N [98]. Whether or not such a requirement can
be self-consistently imposed in black hole thermodynamics is not clear. There are many
avenues to explore beyond the work presented here. It will be particularly interesting to
see if the reentrant phase transitions and triple points typical of higher dimensional AdS
black holes manifest themselves in the presence of an isothermal cavity for other types of de
Sitter black holes. In the next few chapters, we will explore these questions by considering
various extensions of the 4D Einstein-Maxwell black holes considered here.
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Chapter 3

Born-Infeld-de Sitter Black Holes

In Chapter 2 we demonstrated the utility of the Euclidean path integral (or ‘cavity’)
approach when considering spacetimes where no obvious notion of thermodynamic equilib-
rium is available. In the remaining chapters, we will show that this approach enjoys broad
applicability not only to a wide variety of asymptotically de Sitter black hole spacetimes,
but also to extensions of the traditional Einstein-Maxwell theory considered in Chapter 2.
Our purpose in Chapter 3 will be to demonstrate this, by extending the U(1) sector in our
study of Reissner-Nordstrom-de Sitter black holes to Born-Infeld electrodynamics.

Named after its progenitors Max and Leopold, Born-Infeld theory is a nonlinear (still
abelian) extension of Maxwell electrodynamics, proposed in 1934 to address the electron’s
self-energy divergence [99]. At the time, our understanding of quantum electrodynamics
was still in its infancy, and two opposing views on the fundamental nature of particles per-
sisted: the dualistic and unitarian standpoints. The dualistic view, which was prevailing at
the time, supposed that matter and fields are fundamentally distinct entities. This implies
in the electromagnetic case that electrons are entirely separate from the electromagnetic
field (E, H); they source and are influenced by (E, H) yet are not part of them. The
unitarian view on the other hand, was that particles such as the electron do not exist as
entities separate from fields but are rather manifestations of (in the classical setting) sin-
gularities of the fields themselves, consistent with the divergence of (E, H) in the classical
field theory description of the electron.

Adopting the unitarian point of view, Born and Infeld sought to write down a theory
of classical electromagnetism that allowed for solutions that could have particle interpreta-
tions yet be divergence-free, the inspiration being drawn from the development of special
relativity, where a finite bound on the speed of light proved to be an essential ingredient.
Their idea was a nonlinear modification to the classical action of the electromagnetic field
that would allow for soliton solutions to the field equations. These solitons would have
finite self-energy and be able to persist on their own, providing an intriguing model for
the electron as an electromagnetic field configuration, which is also free from the issues
plaguing the Maxwellian description of an electron as a point particle. Born-Infeld theory
also enjoys a unique status among nonlinear electromagnetic theories in that it alone is
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absent of vacuum birefringence [100]. This effect appears generically in nonlinear electro-
magnetic theories, but is severely constrained by observational tests and also manifests
in a pathological way as deformities in the lightcone structure of spacetime [101]. That
Born-Infeld theory is free of these issues makes it an intriguing extension to study.

Decades after its introduction, interest in Born-Infeld theory would see a resurgence ow-
ing to the discovery of Fradkin and Tseytlin that the effective Lagrangian for abelian gauge
fields coupled to open strings is given exactly by the Born-Infeld Lagrangian (3.2) [102],
which extends to the supersymmetric case as well [103]. The parallels drawn by Born and
Infeld between the finite electric field and speed of light would also see themselves vali-
dated by the discovery that the maximal electric field strength arises directly from the fact
that brane propagation cannot exceed ¢ [104]. For these reasons, there is great theoretical
interest in Born-Infeld theory as an alternative to traditional Maxwellian electrodynamics.
In the context of black hole thermodynamics, we are naturally led to ask what implications
this type of modification to Einstein-Maxwell gravity might have for their thermodynamic
properties, and in particular their phase transitions. That these phase transitions are also
studied extensively in the context of string theory neatly ties the theoretical origins of
Born-Infeld theory back to the present investigation.

The Born-Infeld Lagrangian stands in contrast to the Maxwell Lagrangian as follows:

1

Litaxwell = ZFabFab , Foy = 0,40 — ObA, (3.1)
JFrab |7 b

rn-Infeld — 4 2 1 - 1 . . 2

LBorn-nfeld b( + 2 ) (3.2)

Here, Fy;, is the usual field strength tensor and b is the Born-Infeld parameter, with the
limit b — oo corresponding to Maxwell electrodynamics. b can also be related to the
string tension a = (27b)~! in string theory, in which stretched open strings are created
dynamically to suppress the electric field to a maximal value [105]. One can show that
soliton solutions exist in this theory, and that the maximal allowed value of the electric
field is finite and determined by the parameter b. Given the experimental constraints on
the electron ‘size’ at the time, the original theory predicted a maximal value for the electric
field (given by the Born-Infeld parameter) of

BEyax = 1.187 x 10 V/m (3.3)

Today, this value is lower-bounded by hydrogen ionization experiments and y7y-scattering
at the LHC such that Eyp., > 10%® V/m, corresponding to a lower bound on the brane—
mass scale of M 2 100 GeV [106,107]. In anti-de Sitter spacetimes, it is known that this
non-linearity introduces interesting new features beyond the Einstein-Maxwell case [108]:
the Gibbs free energy becomes discontinuous in a certain temperature range, indicating a
new kind of phase transition between small and intermediate sized black holes.

In this Chapter, we will demonstrate that a similar type of phase transition occurs in
de Sitter space, finding also a reentrant small—large—small black hole phase transition
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previously unseen in Born-Infeld black holes. We find that the character of these phase
transitions depends critically on the value of the maximal electric field strength in the
Born-Infeld theory. We also examine the free energy in an ensemble where the potential is
fixed, and find not only metastable reentrant phase transitions (where the radiation phase
globally minimizes the free energy), but also a reentrant radiation—black hole—radiation
transition, the first time such a phase transition has been observed to our knowledge.

This chapter is organized as follows: In the next section, we discuss what modifications
one should make to the thermodynamic description for a proper treatment of Born-Infeld
black holes. In Section 3.2 we examine the thermodynamic properties of Born-Infeld-de
Sitter black holes, including a discussion of the first law, the phase structure that arises,
and an analysis of the vacuum polarization and metric function. Finally, in Section 4 we
examine the free energy of charged de Sitter black holes both in the Maxwell and Born-
Infeld theories in an ensemble where the potential is fixed, and discuss the phase behaviour
present there.

3.1 Thermodynamic Quantities and the First Law

With the appearance of a new coupling constant b in the Born-Infeld Lagrangian, we must
suitably generalize the extended first law for Born-Infeld black holes, as the mass parameter
M is now also a function of the Born-Infeld parameter b. Specifically, we may define a new

quantity
oM

known as the ‘Born-Infeld vacuum polarization’. This quantity has units of an electric
polarization and is required for consistency of the first law and associated Smarr relation
[108]. With this new potential the first law becomes

dE = TdS + VAP — MdA, + ¢dQ + Bdb . (3.5)

As before, A is the surface tension associated with the cavity, A. is the cavity area, ¢
is the electrostatic potential, and @ is the electric charge. The identification (2.1) of the
thermodynamic pressure with the cosmological constant persists from before. We can again
determine the temperature 7', entropy S, and energy E of the system from the Euclidean
action, while the thermodynamic volume, surface tension, and vacuum polarization are
determined from the first law (3.5).

We also have a modified Smarr relation for Born-Infeld black holes, which in four
dimensions reads

E=2TS—AA.—PV)+®Q — Bb . (3.6)

As (a version of) the Smarr relation appears to hold for every known black hole system
and can be derived using very general arguments, it serves as an important consistency
check for our thermodynamic description.
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3.2 Born-Infeld-de Sitter Black Holes

In this chapter, we focus our attention on asymptotically de Sitter solutions in Einstein-
Born-Infeld theory. We follow the same general procedure as before, evaluating the on-shell
Euclidean action, using the result to determine the energy, temperature, and entropy of
the spacetime, then constructing the free energy to examing the phase structure. Einstein-
Born-Infeld theory is described by the following bulk action and boundary term:

1 1
Itotal = — T d4$\/§ (R - 2A + EBI) + — / dg.f\/E (K — Ko) . (37)
167T M 87T OM

R is the Ricci scalar, A is the cosmological constant (positive for de Sitter space), K is the
trace of the extrinsic curvature of the boundary, and Lg; is the Born-Infeld Lagrangian
given by (3.2).

Like before, we choose the subtraction term K such that the action is normalized to
I = 0 when the mass (and therefore charge) of the black hole vanishes, making ‘empty’
(actually radiation filled) de Sitter space the reference point for the energy. As in the
Einstein-Maxwell case examined in Chapter 1, this choice does not change the qualitative
behaviour of the critical phenomena, only the numerical values of various quantities and
critical points. Nonetheless it is still the more natural choice of reference since empty de
Sitter space has the same asymptotics and topology near the boundary as the corresponding
black hole spacetime.

In Schwarzschild coordinates, the metric function takes the form

dr?
ds® = — f(r)dt?
PO 6

where f(r) is determined by the Hamiltonian constraint and is given by

Ar2 2B [ 2
f<r>=1—$—§+7 (\/r4+z—2—r2>dr- (3.9)

The boundary will be placed between the two largest real (positive) roots of f(r) = 0, so
that r, < r. < Treosmo- In these coordinates, we can also write the gauge field as

115 —¢
At:ggﬂ( q), (3.10)

+ r2d)? (3.8)

4724 2t
which generates a finite radial electric field

BE(r)= —L— (3.11)

b
[od 4 42
7’+T2

where 5F(a,b,c,z) is the Gaussian hypergeometric function. The ‘integral’ form of the
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metric function (3.9) is valid for all A, b, ¢ and r > 0. It can also be written in terms of
2F1 as

m  Ar 2b%r? q> 4q? 115 —¢

where the series expansion of oF(a,b,c, z) is convergent for |z| > 1, i.e. r > +/q/b.
The reduced action for this spacetime can then be determined explicitly using methods
discussed previously. We find that

I, =5 [(1 Ar‘f)m ((%2 — N)(r2 —73) + 3(re — i) — 2072 + @2
r =PT¢ — _

3 37,

—7r
9 h
37, 3riry,

2 115 —¢? 115 —¢° 1/2
+20ry/rk + 2 4 <2F1<Z7§’Z> b27q~ﬁ> re — 2F1(Zp§az» zﬁg) Th)) )

(3.13)

The temperature is found by extremizing the action with respect to r, and solving for 3,

giving
Vare (147 (20 — &) — 20,/Brf + &)

-1 _ 7
b 4y /rp X

(3.14)

where we have defined

X = \/rcrh <3(rC —1p) + (202 = A) (r2 —r}) — Qb(rm/b%‘ﬁ + @2 — /0Py + q2>) —F

(3.15)
and 115 2 115 2
—q —q
F=4¢* |3F | =, =, =, — | . — o F1 | =, =, =, — . 3.16
q |:2 1(47274’627%)7“ 2 1(47274ab2T§>Th:| ( )
In the limit b — oo, this reduces to the Maxwell case discussed in Chapter 2,
— A2y ] + <1 — ;-h) (%(r? + 2rpre) — é)
T — c ‘ b (3.17)

47rrh\/<1 - ;—h) (1 - TZ—iC —2(r2 4oy + r,%))

and taking further the limits A — 0, ¢ — 0, and r. — oo gives the familiar result
T = 1/4nry, for the asymptotically flat Schwarzschild black hole. The entropy is

oI, o
95 I, =mr; (3.18)

S=p
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and finally the energy is

7 [(1 A’%)w (2’?“3—ri)?—A(rS—rz>+3<rc—rh>—%rc\Ww
= :’]"C —_ —_

3 3re

115 — 115 —¢° 1/2
+2br /P 4q? <2F1(Zp§az» bQZﬁ) re — 2F1(Z’§7Z’ 2?«3) Th)) /

3r, 3riry,

(=l

= (re/5 =3 - X V3T (3.19)

One can check that in the limit b — oo these quantities also reduce to those obtained in
Chapter 2.

3.2.1 The First Law

With the energy E, temperature T', and entropy S as defined above, we can determine
the thermodynamic volume V', surface tension A\, and vacuum polarization B from the first
law. In order for (3.5) to hold, the surface tension must be

A

8mr,

1 3 — 2Ar? N F—rern, (202 — A) (472 — %) + 3(2rc — 1))
V9 — 3Ar2 2V/3re /T X
2 (4re/Pri+ @ = /L + )

, 3.20
2v/3re/Th X (3.20)
the thermodynamic volume is
3 . r2X /2
4mr, (TC\/E Tt Ty )
V = ) (3.21)
V3 X
the electric potential is
3F
o V3 (3.22)

= Iynx

and the vacuum polarization is

2 re _ Th 2 re — i - S - E
B= 2rern [q (\/b2r§+q2 \/b2r;t+q2> o (\/b2ré‘+q2 \/bz’"§+q2> o Th)] T
- vV 37"h X '

With these definitions it is straightforward to verify that

(3.23)

dE = TdS — AdA, + VdP + ¢dQ + Bdb . (3.24)
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As an important check, direct substitution of the above quantities also reveals that the
modified Smarr relation (3.6) is also satisfied.

Figure 3.1 shows regions in parameter space where V' is positive, in terms of the dimen-
sionless ratio z = r,, /7. € [0, 1] and the cosmological constant (i.e. pressure) A. We have
implicitly restricted our analysis to regions where r;, < r. < Teosmo. Outside the shaded
regions one cannot interpret (3.21) as a volume in the traditional sense. One can see on
the right side of Figure 3.1 that as b becomes large, the volume behaves as it does in the
Maxwell case depicted in Figure 2.4, as expected.

1.0 1.0

0.8 0.8

06 0.6
0 q=01 [ b=0.1
A fq=04 7 T b=10
0.4 [1g=07 0.4 [ b=30
[1g=10 0 b=10%

0.2 0.2

0.0 0.0

X X

Figure 3.1: Regions of positivity (colored) for the thermodynamic volume V' as a function
of x = r),/r, and A, with fixed cavity radius r, = v/3. Left: Varying charge with b = 0.1.
Right: Varying b with ¢ = 0.5.

Figure 3.2 depicts regions where the cavity tension A is positive. Outside of the shaded
regions (some of which overlap with V' > 0 regions) \ is negative and should be thought of
as a surface pressure. Within the shaded regions A can be regarded as a surface tension.
There is therefore a critical line along which A = 0 where the work required to create the
cavity vanishes.

3.2.2 Vacuum Polarization and Metric

Born-Infeld theory has the feature that two distinct types of black hole solutions exist,
depending on the values of b and ¢. This is demonstrated in Figure 3.3, where we plot
the metric function (3.12) for fixed mass and varying b, as well as fixed b and varying
mass. There is a marginal case (indicated in green) separating the two types of solutions,
which occurs when f(r) attains a finite value at the origin. At this point, the black hole is
completely regular. The condition for this to occur is

37(1)?
m = VOCTE)
3T
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Figure 3.2: Regions of positivity for the surface tension A\ as a function of x and A with
fixed cavity radius r, = v/3. Shaded regions indicate positivity, where A should be regarded
as a surface pressure. Left: Varying charge with b = 0.1. Right: Varying b with ¢ = 0.7.

Spacetimes with m > m,, are Schwarzschild-de Sitter-like, having a singularity at r = 0,
a black hole horizon at r = ry, and a cosmological horizon at r = reesmo (beyond the
cavity radius r.). Spacetimes with m < m,, are Reissner-Nordstrom-de Sitter-like (and
approach this solution as b — 00), with up to three distinct horizons: the inner horizon at
r = r;, the outer black hole horizon at r = rj,, and the cosmological horizon at r = rcosmo-
The small-r behaviour is similar to that of the Born-Infeld-AdS case examined in [108].
However the positive cosmological constant changes the large-r behaviour; even though
the cosmological horizon is ‘hidden’ behind the cavity, spacetime is still de Sitter-like up
to the cavity radius.

2 v 1.0
()
()
()
()
()
()
14 ] 0.5
]
3 — m=010 — b=01
f(r) 0 /:;E m=022  f5 o0 =09
' — m=025 — b=53
E — m=035 — b=11
L E — m=050 -05} — b=90
'
(]
"
"
-2 L -1.0
0.0 0.2 0.4 0.6 0.8 0.0 0.8

r r

Figure 3.3: The metric function f(r) as a function of r for ¢ = 0.1, A =1, and r. = 0.6;
the cavity radius is indicated by the red dashed line. Left: Fixed vacuum polarization
(b = 10.22) and varying mass parameter m. Right: Fixed mass (m = 0.18) and varying
b. In both figures the marginal case appears in green.
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Figure 3.4: Behaviour of the vacuum polarization for ¢ = 0.1, A = 1, and r. = 0.6; the
cavity radius is indicated by the red dashed line. Left: B as a function of x = ry/r. for
various b. The red dots indicate the marginal mass along each line. Right: B as a function
of b for fixed T'= 0.5 (B — b isotherms), with two branches.

The conjugate B to the maximal electric field strength b in the first law has units of
polarization per unit volume, and is referred to as the Born-Infeld vacuum polarization.
Its behaviour is shown in Figure 3.4. On the left, we see that for any r < r., the vacuum
polarization approaches zero as b increases (corresponding to the Maxwell limit), and
appears to reach a finite value at the origin. However we cannot draw conclusions about
the small-r behaviour since (3.12) restricts us to working in regions where r > m The
red dots on each line mark where the marginal mass (3.25) is achieved; to the left of this
dot the solution is Reissner-Nordstrom-de Sitter-like and to the right it is Schwarzschild-de
Sitter-like.

Also of note is the fact that B vanishes at r. for any value of b, implying that the cavity
itself does not support a vacuum polarization. Looking at the right diagram in Figure 3.4,
we see that there are two branches of B — b isotherms. The upper branch corresponds to a
negative thermodynamic volume V', while the lower branch has V' > 0, so we take the lower
branch to be the ‘physical’ one. In both branches the vacuum polarization approaches zero
as we approach the Maxwell limit b — oo.

3.2.3 Helmholtz Free Energy and Phase Transitions

We now turn to the phase structure of the Born-Infeld-de Sitter black hole. The quantity of
interest is the Helmholtz free energy, F' = E — T'S, which is minimized by the equilibrium
state of the system. Plotting F as a function of T for fixed P (or A) will reveal the presence
of any phase transitions in the system, generally indicated by discontinuities in the free
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energy. Using (5.34), (3.18), and (3.19) we have

A2 VBrenl® (L4 0 = Mg - /@ +0]) -

3 4X \ 37“h

where F' is understood to also depend on ¢, b, and r., which are fixed. In Figure 3.5, Figure
3.6, and Figure 3.7, we plot F'(T') parametrically using r, as the parameter.

F(rp,A) =r./1
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Figure 3.5: Helmholtz free energy of the Born-Infeld-de Sitter black hole for fixed cavity
size (r. = 0.6), pressure (P = —0.0025), and charge (¢ = 0.1). Left: b = 4. Right:
b=4.42.

There are a total of 4 distinct critical values of b marking points where qualitative
differences in the phase behaviour occur. We refer to these as {b.1, be2, be3, bea} and note
that the exact values depend on ¢, r., and A and must be found numerically. On the left
of Figure 3.5, we see that for ‘small’ values of the maximal electric field strength (b < b.),
the free energy resembles that of an uncharged AdS black hole, where a Hawking-Page
phase transition normally occurs. In this case however, we have chosen an ensemble where
the charge is fixed, so there can be no transition from a black hole to empty space, and
only a large black hole exists above the minimum temperature where the leftmost cusp
is. To see a possible phase transition, we must plot the free energy at fixed potential,
G = M — TS — &g, which we do in Section 4. Above the critical value b.; (in this case
by =~ 4.38) a kink forms in the free energy, which traces out an inverted swallowtail in
F —T — P space, similar to the one observed in [108]. This is shown in the right-hand figure
in Figure 3.5. However, for values of b in the range (b.1, beo) this kink does not intersect
the lower large black hole branch, which still minimizes the free energy, and therefore does
not indicate the presence of a phase transition.

In Figure 3.6, we see that when b exceeds the second critical value (b > b.y), a ‘star’
pattern characteristic of a reentrant phase transition forms. Examining the figure on
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Figure 3.6: Helmholtz free energy of the Born-Infeld-de Sitter black hole for fixed cavity
size (r. = 0.6), pressure (P = —0.0025), and charge (¢ = 0.1). On the left we have
b = 4.57565 and on the right b = 4.65. The red dashed lines mark the temperature at
which phase transitions occur.

the left, as the temperature increases the first dashed line corresponds to a zeroth-order
large—small black hole phase transition, whereas the second dashed line corresponds to
the usual first-order small—large transition. When b > b.3 (as in the right side of Figure
3.6), the small black hole branch always has lower free energy than the upper large black
hole branch, so the first phase transition is washed out and only the small—large black
hole transition at the second dashed line remains. Finally, when b is above the fourth
critical value b > b.4, the phase structure of a charged Schwarzschild-de Sitter black hole
emerges, as expected since the limit b — oo corresponds to the usual Einstein-Maxwell
action. Indeed in this limit we recover all of the phenomena and qualitative behaviour
seen in the previous chapter, with only small quantitative changes to the various critical
values when b is very large but finite. To summarize, there are five regions separated by
four critical values of b:

0<b<be : No phase transitions. Large black hole phase globally minimizes F'.
be1 < b <bey: No phase transitions. Unstable inverted swallowtail region forms.
beos < b < by : Reentrant phase transition from large — small — large black hole.
bes < b < by : Small — large transition with a minimum temperature.
bea < b <00 : Small — large transition with no minimum temperature.

In the Maxwell case examined in Chapter 2, we demonstrated the presence of a unique
‘swallowtube’ structure in phase space which results from the presence of the isothermal
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cavity. This tube represented a compact region in phase space where a small/large black
hole phase transition occurs, the pressure being bounded by an upper and lower critical
value P € { Pyin, Pmax} outside of which the phase transition disappears. A similar, albeit
more complicated structure appears when Born-Infeld electrodynamics is introduced. For
large values of b we recover the swallowtube seen in the Maxwell case, with a slightly
modified shape (the identical shape being achieved in the limit b — o). However once
b falls below a critical value, the shape of this tube qualitatively changes, such that each
constant-pressure slice resembles one of the two cases shown in Figure 3.5. Depending
on the exact choice of parameters, these slices may contain a reentrant phase transition
(as in the left side), or a regular small—large transition (as in the right side), and always
have the property that there are no black holes with 7" ~ 0, unlike in the Maxwell case
where black holes exist down to 1" = 0. This difference is shown in Figure 3.7, with the
tube structure being represented as a series of constant pressure slices in /' — T — P space.
Furthermore, for any choice of ¢, r., and b where a reentrant phase transition is present in
one of the slices, the tube terminates at P = 0. If there is no reentrant phase transition,
one can always choose parameters such that the tube pinches off at a non-zero pressure as
it does in the Maxwell case. Note finally that if b is small enough, then for no choice of ¢,
re, and A is the swallowtube present.

0.4

06

0

Figure 3.7: Helmholtz free energy of the Born-Infeld-de Sitter black hole for ¢ = 0.105,
r. = 0.6, showing slices of fixed P. The red dots mark the small—large phase transition
on each slice. The red line is the coexistence curve. Left: b = 4.6. A reentrant phase
transition is present on the slices indicated with the black arrows. These slices resemble
the left of Figure 3.6. The remaining slices resemble the right of Figure 3.6. Right: b = 5.
There are no reentrant phase transitions present. Note the difference in small-T" behaviour
between the two figures: on the left, there is a minimum temperature at which the black
hole phase exists, while on the right there is no minimum temperature (the lines extend to
T =0).

Working in the extended phase space also allows us to determine the equation of state
for these Born-Infeld-de Sitter black holes. This is a relationship between the pressure
P, temperature 7', and volume V' (the thermodynamic volume divided by the number of
degrees of horizon degrees of freedom) [34]. In AdS space the volume V ~ r} and the
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specific volume (the volume per horizon degrees of freedom) v ~ 7}, [31]. However in dS
space, (5.34) means that the pressure is a non-linear function of (7', 7;), and (3.21) in turn
implies that r, is a highly non-linear function of V. As a result, the equation of state
cannot be expressed in closed form. We can plot P(V') at fixed 7" numerically; however
doing so shows an absence of the oscillations characteristic of the van der Waals fluid. We
omit the plot here for lack of insight. These oscillations are present in the Born-Infeld-
AdS case examined in [108]; it remains to be determined whether the analogy with van
der Waals fluids in the extended phase space breaks down because of the presence of the
cavity, or due to the fact that we are working in asymptotically de Sitter spacetime.

3.3 Free Energy at Fixed Potential

As noted above, we should not expect to see a Hawking-Page-like phase transition when
examining the free energy as defined by (3.26). This is because the ensemble considered
there is one where the total charge ¢ is fixed. However, a black hole cannot dissolve into
pure radiation and conserve charge at the same time. Instead, one must consider what
happens when the potential is fixed at the cavity while the charge is allowed to vary. With
these boundary conditions the free energy becomes G = M — T'S — ®q. We examine first
the Maxwell limit b = oo, followed by the Born-Infeld case.

3.3.1 Maxwell Theory

In the Maxwell limit, the free energy at fixed potential is:

T 3 Vra(rn —re) (rern (A (r2 + rery, +12) — 3) + 3¢2)

. ( (87T [ /(e = 1) Gern (A2 F rarn 1) — 3) + 368) + V3(Ar? — 1>> + ﬁ—q>
+

A/re(re —h) (rern (N (r2 4+ rerp +12) — 3) + 3¢2)

(3.27)

We plot (3.27) as a function of temperature T for fixed ¢, r., b, and A in Figure 3.8,
along with the free energy of the Born-Infeld-de Sitter black hole for large b. Examining
the figure on the left, as one follows the branches from 7' = oo (where they overlap) the
black hole increases in size towards the maximal value r., which is achieved at the red dots.
The yellow line in Figure 3.8 represents a reentrant phase transition, with a small—large
transition occurring at the leftmost red line, followed by a large—small transition at the
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Figure 3.8: Free energy at fixed potential, with r. = 1.5, A = 0.001. The temperatures at
which phase transitions occur are indicated by the red dashed lines. The cavity radius 7. is
indicated by a red dot. Left: The Reissner-Nordstrom-de Sitter black hole, with varying
¢. Right: The Born-Infeld-de Sitter black hole with b = 10 for ¢ = 0.141.

second line. For values of ¢ above a certain critical value ¢., the branches no longer
intersect (as in the green case), and the small black hole globally minimizes the free energy
for all temperatures. This value depends on the choice of r., b, and A and must be found
numerically. Below ¢. (as in the blue curve) there is only a small—large transition, as
the free energy terminates at r. before intersecting the small black hole branch again.
Critically, these transitions are all metastable, as the free energy is in all cases above the
G = 0 line corresponding to the radiation phase.

3.3.2 Born-Infeld Theory

In the Born-Infeld case, the free energy at fixed potential is:

19258 (4,4, 3, — 3 ) = 12 (VP + @ - 2P} + Ao} = 3)
3,
mrc<1+7«z(2b2—/&)—2b 627“;41-1-6]2) V3F
4 X 4ymX

G:

(3.28)

Figure 3.9 displays the free energy (3.28) of the Born-Infeld-de Sitter black hole at
fixed potential. On the left, we plot G for fixed b and varying ¢. Just like in the Maxwell
case, there is a critical value of ¢ for which the large black hole branch begins to in-
tersect the small branch (as in the blue line) and gives rise to a (metastable) reentrant
small—large—small phase transition. The exact value of ¢ at which this occurs again
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Figure 3.9: Free energy of the Born-Infeld-de Sitter black hole at fixed potential. The
three lines overlap where they merge together in both figures. Left: b = 0.5, r. = 1.5,
and varying ¢. The temperatures at which phase transitions occur are indicated by the
red dashed lines. The cavity radius r. is indicated by a red dot. Right: Fixed ¢ = 0.095,
r. = 1.5, and varying b.

depends on the value of r., ¢ and A, and must be found numerically. In the given example,
this occurs at approximately ¢. ~ 0.08. We emphasize again that the radiation phase
globally minimizes the free energy here. For comparison, we plot the same free energy for
the Born-Infeld-de Sitter black hole for b = 10 and ¢ = 0.141 on the right side of Figure
3.8, demonstrating that for large enough values of b the two cases are identical.

On the right of Figure 3.9, we plot GG for fixed ¢ and varying b. Here we see that a
true reentrant phase transition emerges within a small range of values for the maximal
electric field strength b. In the given example, for b € (0.57,0.75) the large black hole
branch crosses the G = 0 line, giving rise to a reentrant phase transition from radiation
to an intermediate black hole, and back to radiation as the temperature increases. The
thermodynamically stable state is pure radiation at both small and large temperatures,
with a charged black hole as the stable state at intermediate values. Above b = 0.75,
the cavity radius r. is reached before the large black hole branch crosses the G = 0 line,
and we have a zeroth order phase transition from a large size black hole to radiation. To
our knowledge this is the first time these particular types of reentrant phase transitions
from black holes to radiation have been observed. The fact that a black hole exists within
an intermediate temperature range while radiation is the preferred state at both low and
high temperatures is a curiosity that is so far only seen when an isothermal cavity and
Born-Infeld gauge field are present.
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3.4 Summary

The introduction of an isothermal cavity as an equilibrating mechanism allows for the study
of a wealth of thermodynamic phenomena in various asymptotically de Sitter spacetimes.
We have shown that Born-Infeld-de Sitter spacetimes admit interesting new phase struc-
tures that are not present in either traditional Maxwell theories or in asymptotically AdS
spacetimes, namely the existence of a tube-like structure in F' — T" — P space analogous
to the swallowtail typically seen in AdS spacetimes, but which is compact in the sense
that there is an upper and lower bound of pressures for which a small/large black hole
phase transition occurs. In the Maxwell case studied in Chapter 2, this swallowtube repre-
sented a series of first-order small—large black hole phase transitions. The non-linearities
of Born-Infeld theory significantly alter this structure, so that each slice of the tube instead
represents a reentrant phase transition when b is small enough. Notable is the fact that the
boundedness of the electric field strength means that the swallowtube is cut off at P =0
for a wide range of values for r. and ¢ (i.e. the phase transition survives in the P — 0
limit). This is in contrast to the Maxwell case where the tube pinches off at both ends at
non-zero pressure, and the phase transition disappears as P — 0.

We have also observed for the first time reentrant phase transitions between charged
black holes and pure radiation in the Gibbs ensemble where the potential is fixed. We find
that for a certain range of ¢, Born-Infeld black holes are stable at intermediate values of
the temperature, provided the parameter b is in an intermediate range of values. Otherwise
either cold radiation or hot radiation is the more stable state. Finally, we note that the
isothermal cavity necessarily introduces non-linearities in the equation of state P(T,V)
that prevent the oscillations associated with Van der Waals-like phase transitions (typi-
cally seen in asymptotically AdS spacetimes) from occurring. This was seen in Chapter
2 in the Einstein-Maxwell case, and remains true even with the inclusion of Born-Infeld
electrodynamics. It seems that the equilibrating mechanism (isothermal cavity in dS vs.
reflecting boundary conditions in AdS) plays a larger role in determining the nature of
the equation of state than does the inclusion of field non-linearity. It remains to be seen
if this is still true in higher dimensions, when angular momentum is considered, or when
considering other modifications to Einstein-Maxwell theory. Some of these possibilities will
be explored in the chapters to follow.
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Chapter 4

Black Holes with Scalar Fields

Having studied the effect of gauge fields (both in the context of Maxwellian electrodynamics
and its non-linear extension), we now turn our attention to generalizations of the Einstein-
Hilbert action which include a scalar field ¢, and the effect such inclusions have on the
thermodynamic description of black holes. There is an obvious motivation to consider such
extensions coming from our desire to eventually understand the thermodynamic properties
of astrophysical black holes. These are never of the idealized, isolated variety described by
the standard metrics. Rather, they reside in environments where other matter fields are
constantly interacting with the black hole, the simplest model for which is a scalar field.
Though there is a rich history in examining the interplay between scalar fields and the
gravitational interaction, there has been comparatively little interest in the thermodynamic
aspects of black holes endowed with scalar fields, despite the strong motivations available
from cosmology, field theory, and particle physics. Among these are the recent discovery
of a fundamental scalar in nature (the Higgs boson), as well as the ubiquity of scalar fields
in cosmology, where they are used to model dark matter, neutron stars, the early universe,
and more [109-112]. Indeed, scalar fields arise quite generally in effective field theory
descriptions of fundamental fields after coarse-graining, and also underlie the mechanism
of inflation [113,114]. Examining their role in black hole thermodynamics therefore is

essential if we are to eventually understand the thermodynamic properties of astrophysical
black holes.

Some attempts at understanding this interplay have already been made, notably with
the Bronnikov-Melnikov-Bocharova-Bekenstein (BMBB), the Martinez-Troncoso-Zanelli
(MTZ) and the Achucarro-Gregory-Kuijken (AGK) pierced black hole solutions [115-118].
These early examples, originally the only known exceptions to the “black holes have no
(scalar) hair” theorem [119] have now given way to a large number of solutions of Einstein
gravity and its extensions [120]. However in the context of black hole thermodynamics,
particularly for asymptotically de Sitter black holes, they have received relatively little
attention. The BMBB black hole has been shown to lack any sensible thermodynamic
interpretation [121], owing to the divergence of the scalar field at the horizon, while also
being generically unstable [122]. However the situation for the MTZ black hole, which
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is the analogous solution for A > 0, is somewhat more promising. There, the entropy
and temperature are both found to be finite, and there appears to exist non-trivial phase
structure when charge is present [123]. However, these preliminary investigations (the ones
with A # 0 in particular) are not formulated in the extended phase space as we will do
here.

Another motivation for including a scalar field in the action comes from alternative the-
ories of gravity, a large class of which are scalar-tensor theories. These theories generically
contain a scalar field and have proven to be very resistant to exclusion by observational
tests. They also possess a substantial phenomenology and have significant theoretical in-
terest due to the ubiquity of scalar field—gravity coupling in unifying theories and cosmol-
ogy [124]. These are metric theories of gravity (as defined in Section 1.1.1) which contain
an extra scalar ‘gravitational field” ¢ coupled directly to the metric g (the basic aspects of
which are presented in the subsequent section). The earliest and most well-known example
of a scalar-tensor theory is Jordan-Brans-Dicke theory, in which the gravitational coupling
G is allowed to vary in spacetime and is encoded in the scalar field profile. The theory
is, like general relativity, in agreement with all current astrophysical observations, though
it contains a tunable parameter, which can be used to ensure the theory falls within ex-
perimental constraints. Nonetheless, more general scalar-tensor theories remain extremely
interesting as they are equivalent in many cases to some counterpart f(r) theory of gravity,
which are often used to model dark matter in cosmology [125].

With these motivations in mind, a number of open questions concerning the role that
scalar fields play in the context of black hole thermodynamics naturally arise. Can sen-
sible thermodynamics be formulated with conformal coupling, or are more complicated
couplings required? Which classes of scalar-tensor theories admit reasonable thermody-
namic descriptions of black holes, and how do boundary conditions imposed on the scalar
field affect or constrain the allowed phenomena? Do general features seen in the phase
structure of de Sitter black holes (Hawking-Page transitions, swallowtubes, etc.) survive
when a scalar field is introduced, or do new features appear? In order to shed some light
on these questions, we consider a more general class of solutions recently reported by
Anabalon and Cisterna [126]. There, a large class of analytic (asymptotically de Sitter)
solutions to Einstein gravity with a conformally coupled scalar field were discovered, a
subclass of which are the well-known MTZ and BMBB solutions. In this chapter we will
examine the thermodynamic aspects of these Anabalon-Cisterna (AC) black holes, in an
effort to answer some of the questions posed above, and towards a better understanding of
black hole thermodynamics with matter fields at play. We emphasize that these AC black
holes are solutions to Einstein gravity with a non-minimally coupled scalar field, rather
than the scalar-tensor theories described above (a sometimes subtle distinction which we
clarify in Section 4.1). Even still, there are good motivations for studying non-minimally
coupled scalar fields, and given the close parallels between these two classes at the level of
the action we expect that at least some qualitative features of the thermodynamic aspects
will be transferable.

This chapter is organized as follows. In Section 4.1, we discuss the inclusion of scalar
fields in the gravitational action, and clarify the distinction between scalar-tensor theories

69



and scalar fields coupled to gravity. In Section 4.2 we describe the theory being considered,
defining the relevant quantities and commenting on various limits being considered. In
Section 4.3, we calculate the on-shell Euclidean action for these conformally coupled de
Sitter black holes, and determine the free energy of the spacetime. In Section 4.4, we
examine the phase structure of these black holes, using the temperature to determine
regions where interesting phase structure may be present, and demonstrate the presence
of Hawking-Page-like transitions through the free energy. Finally, we summarize the main
results and comment on future avenues of research.

4.1 Scalars in Gravitational Theories

We have discussed two different ways in which a scalar field might arise in the action for
a given gravitational theory. One is as a fundamental geometric field as occurs in generic
scalar-tensor theories. These theories have gravitational actions of the form

1
1= / V=9 [¢R - %ga”aﬂbm - V(¢)} d'7 + Inagter (4.1)

where w(¢) is a coupling function, V(¢) is the potential of the scalar field, and Iyagter 18
the action of any matter fields present. Variation of the action with respect to the metric
g and scalar field ¢ gives the equations of motion for the fields,

Gab Z%T ab + wéf) (aa¢3b¢ - %gab<a¢)2) + é (VaVi — gapy9) (4.2)
1 dw d

where [y is the D’Alembertian associated with the metric g, and 7" is the trace of the
matter stress-energy tensor. The well-known Brans-Dicke theory is recovered in the limit
where w(¢) = const. and the potential V' (¢) vanishes.

Similar structure at the level of the action emerges when one considers the scalar field
to be part of the matter content of the theory (rather than a geometric field) when a non-
trivial coupling is assigned between the matter and curvature. Historically, and indeed in
the ACDM description of the universe (whose bases are general relativity and the Standard
Model), the gravitational and matter sectors factorize as

[Total = [EH + [matter (44)

where Igy is the Einstein-Hilbert action and I,.¢te; 1S the action of any matter fields present.
This prescription for describing matter in the presence of gravity is known as the minimal
coupling prescription. In quantum field theory, the minimal coupling prescription means
that fields only couple through their charge distributions, rather than higher multipoles
of the distributions. In the context of gravity, it means that matter fields only couple to
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gravity through the measure /—g d*z, and not directly to the curvature R.

Despite minimal coupling underlying the ACDM description of matter and gravity, there
is good reason to consider instead a non-minimally coupled prescription, which involves
the appearance of a %5qu52 term in the action. For one, inflationary theories generically
contain non-minimally coupled (e # 0) scalar fields, and their viability is highly sensitive to
the choice of € [127,128]. Furthermore, non-minimal couplings generically arise in quantum
corrections to a given action even if no such coupling exists in the classical theory [129].
The value e = 1/6 is particularly significant, and is known as the conformal coupling
prescription, so named because it renders the action invariant under a conformal rescaling
of the metric gu, — Q?(x)gqp. Conformal coupling allows one to circumvent early ‘no-hair’
theorems formulated either in asymptotically flat spacetimes or with minimally coupled
scalar fields (for reviews see [120,130]). ¢ = 1/6 is also the unique choice for which the
Green’s functions of the field reduce locally to their Minkowski space counterparts, and
propagation of massive particles on the light cone is avoided [131]. All said, we have
motivations along a number of axes for considering the implications that scalar fields have
for black hole thermodynamics, especially with the conformal coupling prescription®.

4.2 Self-Interacting Scalar Fields

In light of the preceding discussion, we will consider the AC class of exact solutions to
Einstein’s equations with non-zero cosmological constant and a conformally coupled, self-
interacting scalar field [126]. This large class of solutions describes a variety of topologically
distinct spacetimes, including everywhere-regular black holes and wormholes, which further
have everywhere regular scalar field configurations. The general theory is described by the
following bulk action I, potential V' (¢), and equation of motion for ¢,

B R—2A 1 s 1, 4
1= fvma| B - jeer - err-vio)| e (45)
1 oV
V(¢) = 10+ s’ + aug? o = 6R¢ + 96
1 1 9 1 9
Q(Gab + Agap) = 0adOpp — §gab(a¢) — gV (¢) + G (9l = VoV + Gopy) 97,
where we have set G = 1, and the cosmological constant determines the de Sitter length
scale through A = 3/12. With the choices a; = —% ag, a3 = —A f—;gfﬁ, and ay = —%,

the equations of motion have an exact solution given by

(3 1/2 m(§—1)—¢&r
o(r) = (E) mE—1) Er (4.6)

!Einstein gravity with a non-minimally coupled scalar field is subsumed by the so-called generalized
scalar-tensor gravity (GSTG) theories. In that context, the two seemly different cases discussed above are
in fact one and the same.

71



while the Euclidean? metric for the spacetime is

ds* = Q(r) lf(r) dr? + % + rdeg] (4.7)
(4= D)’ o mYoses o [AE-1
Ur) = (r —m)? ’ fr) = <1 r ) 2 2= 3(&2+1)

Here, £ is an arbitrary dimensionless parameter yielding the MTZ solution when equal to
zero, m is the mass parameter, A is the cosmological constant, and d3 is the metric on
S§?%. We have also defined ¥ = Y(A) for convenience. Note that the above solution can
actually be seen to arise from the MTZ solution through a conformal transformation and
field redefinition, as shown in [132]. However, even though the two solutions are related in
this way, it has been shown that such a relationship does not imply the thermodynamic
properties of the solution are the same. Rather, such transformations can significantly
affect the thermodynamics, warranting the investigation of the system defined by (4.5)
[133,134].

Though a number of geometrically distinct solutions arise in various limits of the general
theory defined above (detailed in [135]), we focus mainly on the case where A > 0 and
0 < & < 1. This gives rise to a black hole spacetime with the conformal structure of
the Schwarzschild-de Sitter solution, with a new asymptotic region replacing the inner
singularity, and an everywhere finite value for the scalar field (as long as r > m). The
focus on positive ¢ arises from the fact that the spacetime possesses a curvature singularity
at r = m(1—¢) due to the divergence of the scalar field there. When £ > 0, this singularity
is always hidden behind the event horizon, while for £ < 0 one can have a naked singularity
for certain values of {m, &, A}. There is also a curvature singularity at » = 0. Note that
the conformal factor €2 diverges on the horizon in the limit m — 0, unless the limit £ — 0
is taken first.

The spacetime possesses three distinct horizons: a cosmological, an event, and an inner
horizon. The cosmological and event horizons are located at

1—+/1—4mX 14+ /1 —4mX (4.8)
2% ’ ’

Tn = Tcosmo =
23 ’

The Nariai limit, where the event horizon and cosmological horizon coincide, is achieved if

MNariai — i = M (49)

40 aVA(e 1)

In the Nariai limit, the only possible location for the cavity is at 7. = rNariai, Where both
the entropy and energy (as determined by (5.33)) diverge. However they diverge in such a
way that the temperature acquires a finite value.

2The Lorentzian counterpart is easily obtained via Wick rotation 7 — it.
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4.3 Evaluating the Euclidean Action

In this section, we evaluate the on-shell Euclidean action for the theory defined above. As
before, we must supplement the action (4.5) with a Gibbons-Hawking-York-type boundary
term for the action to be stationary and to have the correct composition properties for the
path integral [50,136]. In the case of the scalar-tensor theory defined above, the required
boundary term gives a total action

Iy = /\/g [8% +V(p) — iw?} d'z — 2/\/E [16% + %&} K d’ (4.10)
where the equations of motion have been used to simplify the bulk part. In the boundary
part, kg, is the metric on the boundary (with determinant k), and K is the trace of the
extrinsic curvature of the boundary defined by an inward pointing normal vector s* as
K = %Eska“. As always, the requirement that the S? corresponding to the event horizon
be non-degenerate further requires that the periodicity in 7 be fixed to

4 21
B, TS D

This is the inverse Hawking temperature of the black hole (and is invariant under conformal
rescaling of the metric), which reduces to the known temperature of the MTZ solution when
¢ = 0. Equilibrium in the system is achieved by fixing the temperature at the cavity 3!
to simply be the Hawking temperature redshifted to the cavity radius, thus determining
the periodicity in locally observed time for quantum fields at r., namely

B =BV flre) Qre) - (4.12)
The contributions to the Euclidean action (4.10) are
B A¢ M6 & 5 2mA
_Afed (1 2f6¢'\"
O¢? = Q (;+QQ)+( 9 ) : (4.14)
CrQff +3rfQ +4Qf |Q
K= o \/; , (4.15)

where primes indicate derivatives with respect to r. Performing the integrations gives the
on-shell Euclidean action for the black hole spacetime
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(1-¢) [A(Tc—rh)((rc+rh)2—1)<2%§+(3ZE+1) (E+r) (Erf+5+rc)>

6
x (re+E(1—€)) (€ —1)" =353 (& +1) <2r§—3r322+55 (€—1)+r.2*(2+9¢)
+E2 (14 +3r25% (E—1) +198) + 2 (11+4€ =372 5% (E+4))

+ 223 (20 4+ 15€ — 37252 (€ + 4)) )] (4.16)

where = = r,(X 7, — 1). In the semi-classical approximation, equation (1.29) is justified
by observing that the dominant contributions to the path integral come from metrics that
are classical solutions to the equations of motion. In our case, there are two distinct ones®:
the Schwarzschild-de Sitter-like solution given by (4.7), and the “empty” de Sitter-like
solution where m = 0. The path integral over (4.7) contains contributions from graviton
fluctuations far away from the black hole. In order to isolate the contribution to the
partition function coming from the black hole itself, we subtract from the black hole action
the same action evaluated for m = 0, matching the metrics on the boundary 0M. Despite
a lack of divergences in the Euclidean action with finite boundary (the usual motivation
for including a subtraction term being to regulate them), in our case this subtraction still
serves to set the reference point for the free energy to be the empty de Sitter spacetime.
We will often refer to this phase as the ‘radiation phase’ or ‘thermal de Sitter’. Note that
even when m = 0, the scalar field does not vanish, though it does achieve a constant value.

Hawking-Page-like transitions are sometimes insensitive to the choice of background
subtraction, such as in charged black holes in the canonical ensemble, because the pure
radiation phase is inaccessible to black holes with fixed non-zero charge. However, in
our case performing this subtraction correctly is critical, since a shift in the free energy
above /below the F' = 0 line (which corresponds to the radiation phase) may wash out any
Hawking-Page-like phase transitions present. One cannot naively take the r, — 0 limit of
(4.16) to obtain this subtraction term. Rather, the Euclidean action must be re-evaluated
for the m = 0 solution, taking care to match the metrics between this and the m # 0
action on the boundary. The Euclidean action for the reference spacetime is

Bere| (1= €N (0% —6) = Ar2 (&~ 1)° | (re+ 7 (1 — 1)

I
’ 6(2+ 1) /T =522 [re— i (Srp — 1) (= 1)]
With these considerations the Euclidean action for the Schwarzschild-de Sitter black hole
with conformally coupled scalar field is simply

(4.17)

ITotal - ]E - IO . (418)

This is in contrast to the Euclidean action obtained in [137], where instead of the canonical

3Note that Minkowski space is not a solution to the classical equations of motion when A # 0, and
so it does not contribute to the path integral. This justifies the use of the empty de Sitter space as the
“background subtraction” instead of the commonly employed flat space.

74



ensemble considered here, a microcanonical ensemble without boundary is used for the
MTZ black hole. One can obtain this result by taking the limit 7, — 7¢osmo in (4.16),
which gives

Itotal = 0 . (4.19)

The action in this case identically vanishes as there is no charge for the scalar field, in
agreement with Equation (22) of [137]. Our result is more general though, since we have
not set ¢ = 0. Even in this more general case the action vanishes without charge when no
cavity is present. Of course, when the action vanishes one cannot obtain a sensible notion
of energy and entropy for the spacetime through the canonical relations (1.30), further
motivating the inclusion of the cavity.

4.4 Thermodynamics and Phase Structure

The action (4.18) allows us to calculate all thermodynamic quantities of interest using
(1.30). In particular, we will be interested in examining the equilibrium temperature
(4.12) and free energy F' to look for possible phase transitions within the spacetime. We
remind the reader that we work in units where h = C' = G = 1 unless otherwise specified.

4.4.1 The First Law

Before analyzing the phase structure, we should discuss the first law of thermodynamics
for these black holes. As stated, we have

dE = TdS + VdP — MA, . (4.20)

where we are working in the extended phase space where

A

P=——".
8

(4.21)
The natural question to ask is whether a suitable generalization of the first law is required
in the presence of the scalar field, as it was in Chapter 3 for Born-Infeld theory. Formally,
we may consider adding a term representing the variation of the scalar charge along with
its conjugate potential, so that

dE =TdS +VdP — AdA + ®d¢ o = <g—§) . (4.22)
In the context of string theory [138], such a first law appears generically for black holes
as both their mass and area depend on the values of the moduli fields ¢, at spatial
infinity. These moduli label different ground states of the theory, as the string coupling
g, is related to the vacuum expectation value of the dilaton ¢ at infinity. The moduli do
not correspond to new conserved charges however, as they are not associated with a new
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integration constant [139]. The question of whether or not an inclusion of the form (4.22)
is warranted is thus subtle. This issue was recently explored in [140], where black holes in
Einstein-Maxwell-dilaton gravity were considered. In that work, it was shown that neither
the Smarr formula nor the first law require the addition of a scalar charge term. For our
purposes, we can therefore take the extended first law to read

dE = TdS + VdP — MA, (4.23)

where the quantities have their usual meaning from the previous chapters.

4.4.2 Equilibrium Temperature

Working in the regime of equilibrium thermodynamics requires the assignment of a single
equilibrium temperature to the system under consideration. As we have seen, the cavity ap-
proach is particularly well suited to de Sitter spacetimes, where the differing temperatures
associated with the event and cosmological horizons drive the system out of equilibrium.
Fixing the temperature at the surface of the cavity circumvents this issue by forcing the
spacetime to equilibrate to the cavity temperature. The spacetime considered here, in
contrast to the previous cases, is unique in that the event and cosmological horizons are
actually at the same temperature, namely,
f(r) Y(1=2%7ra)

Th =L 7| =2 =7 &/ 4.24
A 47T o ) ( )

TA
where A = {h,cosmo}. However, this is not the temperature that an observer between
the two horizons (at r = r. for example) would experience, who instead sees the black hole
radiating at a redshifted temperature of

T,
y . N— (4.25)

Qre) f(re)

Thus, even though equilibrium in terms of particle flux is already manifest between the
two horizons (as the surface gravities are equal), equilibrium as understood by observers
in the spacetime is still achieved by fixing the temperature at the cavity to be equal to T.
In this case, the temperature at the cavity required for equilibrium is

Y (1-=2%m) (rc—rh (1—Erh))
27((7“0—1-7"h (1 —ETh) (5— 1))\/(27%_‘_7'6_7%)2 — 2y 4

T= (4.26)

With this in mind, we begin with a study of the equilibrium temperature (4.26) of the
spacetime under consideration. A necessary (but not sufficient) condition for the existence
of complex phase structure is the multivalued nature of the horizon radius rj, as a function
of temperature. This is because the existence of multiple black hole phases at a given
temperature is manifest in the multiple (real, positive) values of the horizon radius 7,

76



which correspond to the different sizes of black holes that exist at that temperature for a
given set of fixed parameters {A,£}. The horizon radius thus plays the role of the order
parameter for the system. These phases may be unphysical for other reasons, or otherwise
be inaccessible through quasistatic transformations, so ultimately the free energy F' must
be evaluated to determine whether a phase transition actually occurs at the given tem-
perature, but an examination of 7'(r)) nonetheless provides useful insight as to where in
parameter space such transitions might exist. For example, one can immediately rule out
the presence of small-large phase transitions if the temperature is a monotonic function of
the horizon radius. Note that even if T'(ry,) is monotonic, Hawking-Page-like phase transi-
tions may still occur.
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Figure 4.1: Equilibrium temperature 7" as a function of x = r, /r, for fixed cavity radius
r. = 2, showing regions where 7}, is multivalued at fixed temperature, signalling a possible
phase transition. Left: Varying pressure A with £ = 0. Right: Varying pressure A with
£=0.2.

In Figure 4.1, we plot the equilibrium temperature 7T'(r;) of the black hole spacetime
for various choices of A and . For convenience, the function is written in terms of the
relative size of the black hole with respect to the cavity, x = r;/r.. On the left of Figure
4.1, we consider different values of A with & = 0, corresponding to the MTZ black hole.
We observe that the temperature is always positive and monotonically increasing with
respect to the size of the black hole*, eventually diverging as the black hole fills the cavity
entirely (r, — r.). For large enough A (as in the red curve) the temperature asymptotes
before rj, reaches r.. This corresponds to a black hole whose mass is large enough to
pull the cosmological horizon inside the cavity for the given value of A. Since we require
R < Te < Teosmo, this places an upper limit on the black hole size. Despite the apparent
jump in the figure, the new maximum moves smoothly from z = 1 as A increases. When
A < Apax, the cosmological horizon always lies outside of the cavity regardless of the size
of the black hole. This maximal value, below which the entire spacetime is available to the

4The apparent crossings near = = 0.8 are coincidental.
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black hole, occurs at

_ 3+
arz(e2 1)y

In the case of the MTZ black hole, we therefore expect to only see a Hawking-Page-like

phase transition, which we will confirm by examining the free energy.

(4.27)

max

The case for non-zero ¢ is markedly different. On the right of Figure 4.1, we again
plot T'(ry) for varying A, this time with £ = 0.2. In this case, there is a region bounded
by a minimum and maximum pressure (indicated by the red horizontal lines) where ry, is
multivalued for fixed T. The three distinct values of r, that exist at a particular equi-
librium temperature in this region represent (up to) three coexistent black hole phases.
Further analysis is required to assess whether these phases are accessible to the system.
For example, the divergence of the scalar field ¢(r) and the vanishing of the conformal
factor Q(r) (which leads to a singular inverse metric) place further constraints on the valid
parameter space. Both of these occur at r = m(1 — &), requiring that r, > m(1 —¢). From
(4.8) this places a constraint on £ such that

(1-Sr)(l—¢) <1 (4.28)

for non-zero 7, in order for the divergence to be hidden behind the event horizon. This
‘cosmic censorship bound’ is always satisfied for & > 0, while for £ < 0 it can be violated.

4.4.3 MTZ Black Holes (¢ =0)

We consider first the case where £ = 0, corresponding to the de Sitter MTZ black hole [117].
In this limit, the metric and scalar field simplify in the following ways:

o) =2 i) = au (129)

T™r—=m

O(r)y=1,  f(r)= (1 - 7>2— 2 (4.30)

The spacetime has the geometry of the lukewarm Reissner-Nordstrom-de Sitter black hole
[141,142]

In Figure 4.2, we plot the free energy F'(T') of the MTZ black hole as a function of the
cavity temperature (parametrically using 7). The black line, where F' = 0, corresponds to
the free energy of the empty® de Sitter spacetime (the radiation phase). For each colored
curve, the black hole size increases from left to right, with the leftmost end terminating
where m = 0. For low temperature, the radiation phase globally minimizes the free energy.
As the temperature increases, eventually a critical point is reached (marked by a red dot)
where the free energy of the black hole becomes lower than that of the radiation phase, and

SEmpty in the sense there is no black hole. There is still a scalar field present in the spacetime.
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Figure 4.2: Free energy of the MTZ (£ = 0) black hole in the canonical ensemble, with
varying A. The black F' = 0 line corresponds to the radiation phase. Red dots mark the
critical temperature at which the black hole begins to dominate the thermal ensemble and
a first-order Hawking-Page-like phase transition occurs.

a Hawking-Page-like first-order phase transition occurs. As the black hole size increases
further, the free energy monotonically decreases until the cavity radius is reached, where the
temperature diverges. When A becomes large enough (as in the red curve, where A = Ap.x)
the Nariai limit is achieved at exactly the cavity radius, so that the line terminates on the
right side at r, = 1. = Tcosmo-

4.4.4 AC Black Holes (£ #0)

Next we consider the more general class of solutions given by £ # 0. In this case the scalar
field and metric functions are given by (4.7), with the total Euclidean action still being
(4.10). In Figure 4.3 we plot F(T) as before, with £ = 0.2 and various choices of A. The
results are qualitatively similar to that of the MTZ black hole, with Hawking-Page-like
phase transitions from radiation to a large black hole occurring at a critical temperature
that depends on the cavity size and cosmological constant. As before, the black hole size
r, increases from left to right along each curve, terminating at the left where r, = 0.
There is again a maximal value for A given by (4.27) where the cavity radius coincides
with the Nariai limit, as in the red curve of Figure 4.3. Below this limit, we always have
R < Te < Teosmo, and the temperature diverges as the black hole horizon approaches the
cavity. At exactly A = A, the system exists at a finite temperature whose free energy
is equal to that of radiation, however both the energy and entropy diverge. Despite Figure
4.1 suggesting otherwise, there are no small-large black hole phase transitions present, even
though for some choices of A and &, T'(ry,) has three real roots. In all cases where this is
true, only one of the roots turns out to satisfy (4.28).

In Figure 4.4 we again plot the free energy, this time for various ¢ at fixed A. On the
left, we show positive values of the scalar parameter, while on the right we show negative
values. When ¢ > 0, the behaviour is again similar to the MTZ case, where a Hawking-
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Figure 4.3: Free energy of the AC (£ # 0) black hole in the canonical ensemble, with
varying A. The black F' = 0 line corresponds to the radiation phase. Red dots mark the
critical temperature at which the black hole begins to dominate the thermal ensemble and
a first-order Hawking-Page-like phase transition occurs.

Page-like phase transition occurs at a critical temperature whose exact value depends on
the value of £ and A. Again there is a minimum temperature for the spacetime, achieved
when m = 0, and the temperature diverges as the cavity is approached.

On the other hand when ¢ < 0, qualitatively different behaviour emerges. In this case
it is possible for (4.28) to be violated, so even though the free energy of the black hole
crosses the F' = 0 line as it would for a Hawking-Page-like phase transition, the transition
itself does not necessarily occur. On the right of Figure 4.4 we plot the free energy for
various negative values of £&. Marked with a circle on each curve is the minimal value of
r, that satisfies (4.28), below which there is a naked singularity. The dashed portions of
the curves indicate that the bound has been violated. When ¢ is sufficiently negative, no
black hole of any size can exist within the cavity, as in the red curve where £ = —0.4.
For intermediate values (as in the yellow curve where £ = —0.2) there is a branch of black
holes that are regular outside the horizon. However, as the temperature decreases, a naked
singularity forms (the Kretschmann scalar diverges) before the black hole can reach a free
energy that is lower than radiation, so no transition occurs. The blue curve demonstrates
a scenario where ¢ is sufficiently small so that the critical temperature is reached before
a naked singularity forms, and a Hawking-Page transition occurs. This is the case for a
given (fixed) cavity radius. It is always possible to choose the location of the cavity to
ensure that the HP transition occurs before a naked singularity forms. In other words, for
a given value of A and &, one can always choose an appropriate value for r. such that a
curve similar to the blue one is obtained, as opposed to the yellow one. In this way, the
correct choice of boundary location is essential for the avoidance of naked singularities and
the persistence of the HP transition.
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Figure 4.4: Free energy F as a function of temperature 7 for fixed cavity radius r. = 2 and
varying £. For each curve, a Hawking-Page-like transition occurs at the critical temperature
marked by a red point. Left: £ > 0. Right: ¢ < 0. Along the dashed portions of each
curve, a naked singularity is present. The colored point on each curve indicates that
equality in (4.28) has been reached.

4.5 Summary

We have studied the phase structure of a new class of asymptotically de Sitter black holes,
conformally coupled to a real scalar field. The presence of an isothermal cavity, equivalent
to fixing boundary value data on a finite surface in the spacetime, allows us to establish a
notion of thermodynamic equilibrium in these asymptotically de Sitter spacetimes, which
normally are not in equilibrium due to the two horizons present. What we have shown
is that the Hawking-Page-like transition from a black hole spacetime to one filled with
radiation occurs generically for these black holes. In the limit where the scalar field pa-
rameter ¢ tends to zero, corresponding to the M'TZ black hole, the HP transition is present
throughout most of the parameter space, except in the special case where the event and
cosmological horizons simultaneously asymptote to the boundary at r. when the Nariai
limit is approached. In this case, the black hole phase is unstable and always has a higher
free energy than the empty spacetime.

When ¢ < 0, the situation is more complex. There is now a cosmic censorship bound
that must be satisfied due to the divergence of the scalar field ¢ and vanishing of the
conformal transformation 2. This means that while HP transitions are possible, ¢ must
be sufficiently small for the given values of A and r. in order for the phase transition to
occur before a naked singularity forms in the spacetime.
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Of note is the distinct absence of the ‘swallowtube’ behaviour seen in previous examples
of asymptotically de Sitter black holes. Indeed, even the typical small-large black hole phase
transition does not occur for this class of black holes. This is not surprising insofar as the
geometry here is that of the lukewarm Reissner-Nordstrom-de Sitter black hole [141,142],
which represents a measure-zero element of the parameter space for those black holes. It
is possible that the consideration of a charged scalar field would produce some of these
more exotic transitions that are common to AdS black holes. What is significant is the
fact that the Hawking-Page phase transition appears to persist even when the geometry
is coupled to matter, in this case a scalar field. Though the class of solutions considered
here represents a special choice of potential for the scalar field for which exact solutions
exist, we expect that similar results will hold for more ‘realistic’ potentials. Eventually, we
would like to be able to understand the thermodynamic properties of astrophysical black
holes, which may well couple to scalar fields in the form of dark matter or as effective
descriptions of other fields. This work is a step in this direction.
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Chapter 5

Gauss-Bonnet-de Sitter Black Holes

Having studied the prototypical case of Einstein-Maxwell gravity in Chapter 2, a well-
motivated example of a modification to ordinary electrodynamics in Chapter 3, and the
effect of matter content in Chapter 4, we now turn our attention to modifications of the
gravitational sector itself. Since its inception, General Relativity has largely stood on
its own as the unique metric theory of gravity in four dimensions that obeys the strong
equivalence principle. It has also enjoyed unparalleled success in its agreement with just
about every conceived experimental test and observation, the historic examples being the
perihelion precession of Mercury (known as early as 1859 through the work of Le Verrier),
gravitational lensing around massive objects (measured in the famous Eddington experi-
ment during an eclipse in 1919), and gravitational redshift (the first confirmations being
astrophysical measurements by Popper in 1954 and terrestrial ones by Pound, Rebka, and
Snyder in 1959) [143-146].

Despite its historic success, which mounted over the coming decades as experimental
technology quickly evolved, there has been interest in alternative theories of gravitation as
early as general relativity itself. These include Whitehead’s quasilinear theory of gravity,
the torsional Einstein-Cartan theory, and Fierz-Pauli’s massive graviton theory, to name a
few [147-149]. Many such alternatives were quickly excluded, as even the early weak-field
experiments would severely constrain how much a theory could deviate from the predictions
of general relativity. Today, strong field tests of general relativity from binary black hole
mergers and a wealth of cosmological considerations including structure formation and
the CMB constrain alternative theories even further [150-152]. However, there remains
significant interest in the study of alternative theories of gravity, as it is known that general
relativity is merely an effective, low-energy description of some more fundamental theory.
As a result we are motivated to consider not only observational consequences of alternatives
to GR, but also theoretical ones, as we do in the present chapter.

One such class of alternatives are the popular scalar-tensor theories described in Chap-
ter 4. In those theories, auxiliary fields are added to the gravitational action that encode
the geometry of spacetime alongside the metric g. Rather than including new fields in
the description, one can instead consider modifications to the Einstein-Hilbert action in
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the form of additional metric-dependent terms only. Though there are many categories of
such theories, the majority fall into the so-called f(r) theories', and higher-curvature (or
higher derivative) theories. In this chapter, we will focus on higher-curvature corrections
to Einstein gravity, and consider their implications for de Sitter black hole thermodynam-
ics. Such corrections are ubiquitous in approaches to quantum gravity where they arise as
quantum corrections to the Einstein-Hilbert action, and are expected to occur quite gen-
erally in high-energy regimes [153]. In this chapter we will consider one such correction in
the form of Gauss-Bonnet gravity. Gauss-Bonnet theory arises from the leading correction
to the Einstein-Hilbert action contained in the Lovelock class of theories [154]. Lovelock
gravity is in many ways the natural generalization of Einstein gravity to higher dimensions,
providing the most general possible prescription for adding higher curvature corrections
to the action while maintaining second-order equations of motion (thus being ghost-free).
Moreover, the boundary terms for Lovelock theory have long been known [155-157], which
is advantageous for the present study. In the years following the work contained in this
chapter, further theoretical developments have even led to a formulation of Gauss-Bonnet
gravity in four dimensions [54, 158], making the present studies even more interesting. In
the realm of AdS black holes, higher-curvature theories have resulted in a number of inter-
esting observations [24, 28,30, 159-175|, the most notable being the existence of multiple
re-entrant phase transitions, triple points, and A-type superfluid transitions [16,33]. One
of our goals here is to explore to what extent these interesting features carry over to the
de Sitter case. Additionally, older [176] and more recent [177] work has considered the
thermodynamics of asymptotically flat Gauss-Bonnet black holes in cavities; our work can
be considered the natural generalization of these studies to de Sitter space.

This chapter is organized as follows: In Section 5.1, we present the Gauss-Bonnet
theory of gravity, defining the action, metric function, and relevant boundary terms. In
Section 5.2, we consider uncharged black holes. The on-shell action is evaluated and
all relevant thermodynamic quantities are calculated. We use the first law to derive the
conjugate variables. We also construct the free energy of the spacetime and study its phase
structure. In Section 5.3, we repeat this analysis for charged black holes. We conclude
with a summary of the results.

5.1 Gauss-Bonnet Gravity

As noted, Gauss-Bonnet gravity can be understood as a modification of Einstein gravity
through the addition of a term to the Einstein-Hilbert action that is quadratic in the
curvature. Such a term is only non-trivial in d > 5: due to the Chern theorem it is a pure
boundary term in d = 4 and identically vanishes in lower dimensions. As a result, the
black holes we consider here are necessarily higher dimensional®?. The (Euclidean) action

IThese can often be recast in the form of a scalar-tensor theory.
2As mentioned in the previous section, recent work indicates that a non-trivial formulation is possible
in d = 4, though at the time this was not known.
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for the theory is
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where we have included a Maxwell field in addition to the gravitational terms. Here, R is
the Ricci scalar, A is the cosmological constant, Agp is the Gauss-Bonnet coupling (which
has units of inverse length squared), X} is the Euler density, and Fy; is the electromagnetic
field strength tensor. The terms appearing in the first line are the usual bulk terms from
which the equations of motion are derived. The boundary terms ensuring a well-posed
Dirichlet problem appear in the second line. Finally, the third line contains the relevant
boundary term for the Maxwell field to ensure that the system is in the fixed charge
ensemble. Here g, is the full spacetime metric, while 7;; is the induced metric on the
boundary. The vector n, is the outward pointing normal to the constant r hypersurface.
For a constant r surface in a (Euclidean) spherically symmetric geometry, this boundary
metric takes the form

Yijda'dz? = f(r)dts + 1r*dSgq s . (5.2)

The object /7 that appears in the boundary action is the square root of the determinant
of this metric. J is the trace of the boundary tensor,

(2KKyKf + KuK"K;j — 2Ky KMKj; — K°Ky) (5.3)

W =

Tij =

with Kj;; the extrinsic curvature and K = hinij its trace, G;; is the Einstein tensor
computed for the boundary metric 7,5, and the Euler density X, is given by

Xy = Rapea R — 4R, R™ + R*. (5.4)

For the (Lorentzian) metric and gauge field we have that?
2

dr
d82 = —f(’l“)dtQ + m

__1 d—2 a q () — o(r
A== [ s = o) et (s5)

and the field equations reduce to a polynomial equation that determines the metric function

fr),
h ((f(?“) - 1)) _was ¢ (5.7)

r2 rd—1 "~ ;2(d-2)’

+ 7r2dQ? (5.5)

3Note that the one-form dt diverges on the horizon. We have chosen a gauge for A such that this
divergence does not lead to an ill-defined gauge field on the horizon.
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with h(z) given by the polynomial function

20 )
h(z) = AT T+ Agpr”. (5.8)

In these expressions, ¢ and w are two integration constants that are related to the mass M
and charge @) of the black hole according to

16mm
Wyg3 = ——, 5.9
= (5.9)
Q 811G
= ) 5.10
1= o\ @93 (>:10)
Note that when Agg = 0 we get
Wd—3 q2 2/\7“2

=1- . — , 5.11
T =1 e ~ gon@-2) >4y
which is the ordinary charged (A)dS black hole solution in Einstein gravity. However, here
we will be interested in the case where A\gg # 0 and will work with d > 5. In this case the
metric function is the solution of a quadratic equation, and we pick the root that has a
smooth limit as Agg — 0.

Our aim is to study the phase structure of de Sitter black holes including higher-
curvature corrections to the action. As usual, the phase structure will be obtained via
an analysis of the free energy which can in turn is obtained from the Euclidean on-shell
action for the theory. As in the previous chapters, equilibrium is ensured by placing the
black hole in a perfectly reflecting finite cavity, which necessitates a Dirichlet boundary
condition at the location of the cavity, whose temperature is held fixed.

5.1.1 Evaluating the Euclidean Action

In this section we will compute the on-shell action. The action (5.1) is decidedly more
complex than the cases considers thus far. A number of simplifications will allow us to
determine a remarkably simple analytic form for the reduced action, as we will show.
Working quite generally, we consider a metric of the Euclidean form

2
ds* = f(r)dt* + dr” +12dS g (5.12)
f(r) ’
where d¥ is the line element on a space of constant curvature with k£ € {—1,0, 1} denoting
negative, zero, and positive curvature. The specific form of the line element can be found,
for example, in equation (4) of [168]. Using the methods of [178], it is quite straight-forward
to perform a direct computation of the on-shell action in any spacetime dimension. The
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following terms contribute to the bulk action:

R=— {fu 2(d;2>f’ (d- 2)(d;3)(k - f)} |
R = [f”+ Q(d;@f’ _ <d—2)(d;3)(k—f)r |
RapeaR = (§")? +2(d - 2) (L) 2d—2(d—3) (kr—Q f)2 | -

Rather than pursue a direct integration of the action (as we did in the previous chapters)
it turns out that some algebra allows us to recognize that the bulk gravitational action is
a total derivative:

QuoBu d {_2(d—2>q2

Ibulk: d—2 - d—2 p1 1
B 167 dr rd=3 + Jwa—s =1 f

2D/ b)
D —4 r2 ’
(5.14)
In producing this expression we have made use of the field equations. Specifically, we have
replaced the appearance of a r¢~'h term with the corresponding factors of w and g. Note
that, in the above, ) is the periodicity of the Euclidean time enforced by demanding no
conical singularities at the zero of f.

Let us now focus on computing the boundary term. The Euclidean solution is a smooth
manifold at the horizon with topology R? x 8?2, We therefore consider a boundary term
only at the location of the cavity. To compute the boundary term, we use the convenient
notation of [178] which introduces the orthonormal projectors

d—2
=60 p =676 o= 65" (5.15)
i=1

to decompose the curvature into temporal, radial, and angular parts (in the last term the
sum extends over the angular directions). These orthogonal projectors satisfy the following
relations:

c_ b b

.7 =10 el =0, ool =0, (5.16)

and
it =plpt =1, olo=d-2. (5.17)

a

The boundary term is composed of various traces and contractions of the extrinsic curvature
tensor K;;. For a constant r surface, the extrinsic curvature computed for the outward-
pointing unit normal vector is
/
wie I i VI (5.18)
r

2V f
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and the curvature tensor of the boundary is

72 %1%

R = (5.19)
where k characterizes the curvature of the constant time slices of the boundary, as men-
tioned above. From the Riemann tensor we compute the Ricci tensor and Ricci scalar of
the boundary to be

, d—3)k d—3)(d—2)k
Ry =k, o (=32 50
r r
We then note that the Einstein tensor of the boundary geometry is just given by
. 1 (d—3)k od—2
J — J o 5 e A J o Il 21
g R; 251 R 2 {Uz 9 i } (5 )

Using these results, some simple manipulations yield the following results

/A il

wont= (i) +ua (2)°
K/K/'K' = (i)g +(d —2) (ﬁ)g : (5.22)

2\/f r
Putting these together we obtain
S I 7 A%
AR AR [(m) wa-a ()]

=|(al) e (D] Gl 2]} o

O L

where primes denote derivatives with respect to r. With this in place, we can calculate
explicitly the on-shell action for the Gauss-Bonnet black hole.

and

In the following sections we will consider the uncharged case and the charged cases
separately. We will work in the fixed charge ensemble, which requires the addition of the
Maxwell boundary term appearing in the last line of Eq. (5.1). Noting that the outward

pointing normal one-form is
dr

VI(r)

ngdzr® =

(5.25)
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and taking care to work with the Euclideanized gauge potential? it can easily be shown
that

8T B 8t rd=3 (5.26)

d—3 d—3
7,C Th r=rp

/ 7 Fin A, = (d—2)BpS a2 [ ¢ ¢ ] ~(d—=2)B1 [ q° ]Mc
415 = = .
oM

From the expression for the bulk action in (5.14) it is then obvious that when this term is
subtracted from the bulk action the explicit charge dependence completely drops out. In
the fixed charge ensemble, the charge appears in the action only through its appearance in

f(r).

5.2 Uncharged Gauss-Bonnet Black Holes

We begin with a study of the thermodynamic properties of D-dimensional uncharged
Gauss-Bonnet-de Sitter black holes. Computing the full on-shell FEuclidean action is
straightforward since the bulk action is a total derivative. Upon integration it gives two
contributions: one at the horizon r,, and one at the location of the cavity, r.. We will also
specialize to the case k = 1, so that the transverse sections are spheres. The boundary
term contributes only at the cavity. Performing the action calculation, followed by some
simplification, we arrive at the following general result:

(d— Z)deiihf(TC)rg_B (_37~3 + 2AaB(f(re) — 3))

_ Qd_grz_z |:1 N 2(d — 2))\(}]31
T — .

Iy =

(5.27)

Here (3}, is the periodicity of the Euclidean time, which is redshifted to a value \/ f(r.)08
at the cavity. We wish to physically fix the temperature of the boundary to be this value,
so that 8 = \/f(r.)0Bh, thereby ensuring thermodynamic equilibrium within the cavity.

The answer above is not quite complete. It is customary to normalize the action such
that flat, empty spacetime has zero action and energy. To achieve this, we must subtract
from the action the boundary term evaluated for an identical cavity in flat spacetime. This
subtraction term has the form

(d—2)Qq 287375

4
Ih=— ) 2
: w2 D (5.29

and the complete action is then I — Iy. In the present work, especially in the context of
uncharged black holes, we will be interested in comparing the free energy of the black hole
solutions with the free energy of an identical cavity filled with radiation. The free energy
of the latter configuration is obtained from setting the metric function f(r) to be the one

4In other words, requiring that ¢ — iq so that A;dt = A; dtg — see, e.g., [52] for additional details.
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for a pure de Sitter solution in Iy — I;.° For convenience, we then consider the difference
between these two actions which is equal to

= ALy — I) = (d — 2)22:;2/307“05 [ F(re) (=372 + 2Xan(f(re) — 3))

-2 — Mhan
—/ fol(re) (=3r2 4+ 2Xa(fo(re) — 3))] — Qd_% [1 4 M} 7

(5.29)

where fo(r) denotes the metric function with the mass parameter set to zero and f(r) is
the full solution for the physical Gauss-Bonnet-de Sitter black hole

2 r2-d/2 \/Td +4A\gB (7" wq_3 + Td/lg)

e 1 —
fr) * 2)cB 2AcB

(5.30)

where we have defined

(d—1)(d—-2)
2(?

in the above. It is this branch that reduces appropriately to the Einstein gravity solution

when the Gauss-Bonnet coupling is turned off. However note also that when the mass

parameter is set to zero the metric function becomes

fo(r>:1+(1—\/1—|—4)\GB/12>T2 (5.32)

A= (5.31)

2)aB

which corresponds to the pure dS vacuum of the theory. Note that the higher-curvature
corrections ‘renormalize’ the cosmological constant. The asymptotics will be sensible pro-
vided that Agp/l? > —1/4. This will be the case in the bulk of this work where we focus
primarily on positive coupling. If this bound is violated then the solution will terminate
at some value of r and will not extend all the way r — oo.

From the above it is now possible to compute the entropy and energy of the solutions
in the standard way. We find

. gg _(d- 2212;—27“5 VT (=372 + 2an(f(r) - 3)
—V/fo(re) (=3r2 + 2xgp(fo(re) — 3))} ’

5Note that, in the case of flat asymptotics, the action and energy for an empty cavity are set to zero
simply by subtracting a boundary term for an identical cavity embedded in flat spacetime. However, in
the dS case, a subtraction of the boundary term for an identical cavity in pure dS will not accomplish this
— the reason is that when the cosmological constant is nonzero the bulk action contributes also to the
total action.
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where we note that, since I, is the difference in actions of the black holes and the cavity
filled with thermal gas, F here corresponds to difference in energies between those solutions.
Note also that since we are working on-shell, the computation of these quantities needs
to account for the fact that w is not independent of 5. The entropy here is exactly the
Iyer-Wald entropy computed for Gauss-Bonnet black holes with spherical horizons. The
energy has received “self energy” corrections due to the presence of the cavity.® Note that
the energy implicitly depends on 7 due to the appearance of the mass parameter wy_3 in
the metric function.

As usual, the temperature 7' = 37! is obtained by demanding that the variation of I,
with respect to ry, vanish. This is accomplished by first rewriting f(r.) in terms of r, by
isolating for M in f(r = r,) = 0 and substituting back into f. We find that

oI, L o,
o, 0 0 —T——Mm, (5.34)

where again the prime indicates a derivative with respect to r. This result is consistent
with our expectation that the temperature required for equilibrium in the cavity should
coincide with the redshifted Hawking temperature at the location of the cavity.

5.2.1 The First Law

The (extended) first law of thermodynamics for uncharged Gauss-Bonnet black holes reads:
dE =TdS + VdP — MA. + ®cpras (5.35)

where the usual work term AdA. associated with changes in the cavity area A is present,
and a PopAgp term is now included to account for variations in the Gauss-Bonnet coupling.
Having determined the energy E, temperature 7', and entropy S, we can determine the

form of the conjugate variables {V,\, ®5p} entering the first law. For convenience, we

define
—2A

V= (EDEDR (5.36)

and let f(r) — fand fo(r) — fo, though note that these functions depend on (r, 7., v, Agp, q)-

6In the case where A = 0 we can easily see that, in the limit 7, — oo

i B — (d—2)Qq—2wq—3

=M
Te—+00 167G

which matches precisely our expectations.
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Using (3.7)-(3.8) we find the following:

20 3 [()\GB (fo—1)rP — %rf*z)%—?ﬁ— (TCD/\GB(f 1) -3 cD+2> ic\/%}

V= rTo J (D —1)

(5.37)
(d—2) Qs
96w/ fy f T

+2 (Aapf — 372 — Xap) Te S ) + \/_< D2 ( (afo) re+ 32 fo(D— 3)))
= ($7 o= D+ oD = 3) (o~ 3)) A (5.38)

[TCD Jo (f (Aep(d—=5)f+2(3—=D)r—3\gs (D —5))

@GBI%{(%(T?AGB( —fo) +3 CDH)a?\’;OB—'r’DfO(fO )>\/f
+ (% (fAeB =372 — AaB) 55+ /7 =3 f) r4=53/fo ri’} (5.39)
(D —2) Q378 Nep (f— 1) —1r2) 4

_ 9q
¢ = ot (5.40)

The uncharged case differs from the charged case only in the functional forms of f and
fo that appear in these expressions, as well as the lack of ¢d(@ term in the first law. One
can also show through explicit substitution that these variables satisfy the modified Smarr
relation, which in this case reads

(d—3)E = (d—2)TS — 2(PV + AA,) + 20cpAas - (5.41)

In Figure 5.1 we plot regions where the thermodynamic volume is positive, as a function
of r, and r. with A and Agp held fixed. The volume is positive in the blue shaded region.
There are two boundaries enclosing this region. The diagonal line marks the boundary
where r. > r,; since we are restricting the cavity to lie outside the event horizon, we are
automatically on the upper-left side of this line. The second, curved boundary represents
the line along which r. = resmo. Again we are restricting our cavity to lie within the
cosmological horizon, therefore the thermodynamic volume is positive in all regions of
interest. This picture is qualitatively identical in higher dimensions.

5.2.2 5 Dimensional Black Holes

Having derived the general results for the uncharged Gauss-Bonnet black holes, we turn
to the study of their phase structure, starting with d = 5. The quantity of interest is the
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Figure 5.1: Thermodynamic volume of the uncharged Gauss-Bonnet black hole in d =5
with A\gg = 0.1 and A = 0.3. The blue shaded region indicates positivity of the volume V.
The diagonal and curved boundaries mark, respectively, where r. = r, and 7. = rcosmo-

free energy F = E — TS, the quantity that is minimized by the equilibrium state of the
system.

One way to examine the behaviour of this system is to realize that for a phase transition
to occur at a given temperature 7', the function r,(7") with fixed {r., A\¢p, P} must be
multi-valued.” The interpretation of this is the existence of multiple thermodynamically
competing states with equal temperature but different horizon radii rj,, which will in general
have different free energies. The transition of the horizon radius being a single valued
function of the temperature to multi-valued thus (typically) corresponds to the free energy
becoming multi-valued at fixed temperature. This will not, however, tell us about the
stability of the phases or nature of the transition, which must be determined from the free
energy itself. An analytic study of the roots of T'(r;) is not possible in this case since
the expression does not admit a closed form solution for r,. In Figure 5.2 we plot the
temperature as a function of x = ry, /7. for fixed coupling Agp and varying pressure P, as
well as fixed P and varying A\gp, showing the transition from the single to multi-valued
regime.

On the left of Figure 5.2, one can see that at fixed coupling there is a compact region
[Prins Prmaz) between the red dashed lines where 7" is not a monotonically increasing func-
tion of x, in which case the horizon radius is a multi-valued function of the temperature.
Below the minimum and above the maximum pressure, there is only one thermodynam-
ically allowed state. In contrast, on the right we see that at fixed pressure, there is a
maximum value of the Gauss-Bonnet coupling below which the horizon radius is multi-

"This is true throughout most of the parameter space, however there are some points where the
temperature may be single-valued but at an inflection point, signalling a second-order phase transition.
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Figure 5.2: Temperature 7" as a function of x = r,/r. for fixed cavity radius r. = 2
and d = 5, showing regions where 7, is multi-valued, signaling a possible phase transition.
Left: Varying pressure with A\gp = 0.3. The red dashed horizontal lines demarcate the
region in which 7" is not a monotonically increasing function of x. Right: Varying Gauss-
Bonnet coupling with P = —0.02. Above the red dashed line T is not a monotonically
increasing function of z.

valued. However there is no minimum and the phase transition (if it exists for a given
choice of parameters at fixed pressure) always persists in the limit Agp — 0. This type of
analysis gives hints as to which regions in parameter space may have multiple competing
phases, but only the free energy F' can tell the whole story. The free energy of empty
de Sitter space is F' = 0, so even if multiple black hole phases exist, they may not be
thermodynamically preferred, as we will see.

In Figure 5.3 we plot the free energy ' = E — T'S parametrically as a function of T’
with r, as the parameter. The thermodynamically preferred state is the one that globally
minimizes the free energy. As the temperature of the system increases, the system will
follow the line with lowest free energy whenever a crossing is reached. On the left of Figure
5.3, we plot the free energy at fixed value of the Gauss-Bonnet coupling and varying
pressure. There is a crossing of the black hole free energy with itself, corresponding to a
first order small-to-large black hole phase transition. However, since this crossing is above
the free energy of thermal de Sitter space (£ = 0), the relevant transition occurs at the red
dots where the black hole free energy line crosses ' = 0. This represents a Hawking-Page
phase transition from radiation, or thermal de Sitter space, to a large black hole, and is
generically seen in asymptotically AdS black holes.

We briefly clarify the notion of the Hawking-Page transition in de Sitter space. Here
the transition is between a thermal gas confined to the cavity (this is what we mean by
‘thermal de Sitter’) and a black hole confined to the cavity. The temperature of both the
gas and the black hole will generically be different from the temperature associated with
the cosmological horizon. This is justified by the presence of the cavity: the boundary
conditions imposed by the cavity allow for the control of the temperature of the cavity and
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Figure 5.3: Free energy of the Gauss-Bonnet-de Sitter black hole in d = 5 with r. = 2,
showing a Hawking-Page phase transition from radiation to a large black hole, where the
free energy crosses F' = 0. Left: Varying pressure with Agqp = 0.3. Right: Varying Gauss-
Bonnet coupling with P = —0.03. For very small values of \gp the free energy limits to
the Einstein case where there is a Hawking-Page phase transition with a minimum black
hole temperature.

its contents independently of the cosmological horizon.

On the right side of Figure 5.3, we plot the free energy at fixed pressure for varying
coupling A\gp. Here we see that below a critical value of the coupling (in this case Agp ~
1.3), a crossing forms in the black hole free energy, though because it is always above
F = 0, we again only have a Hawking-Page phase transition where the large black hole
branch crosses F' = 0. In the limit A\qg — 0, corresponding to Einstein gravity, we
recover the results presented in Chapter 2. Note that while the Hawking-Page transition is
present for any choice of A\gp, three situations are distinguished by the number of unstable
phases available to the system. When Agp = 0, there are two black hole phases, when
0 < Agp < 1.3 there are three black hole phases, and when A\gp > 1.3 there is only one.
The presence of the Gauss-Bonnet correction also gives rise to unstable black hole phases
down to T" = 0, while in the Einstein limit A\gp — 0 there is a minimum temperature black
hole where the free energy reaches a point.

5.2.3 6+ Dimensional Black Holes

When d > 5, there are two cases of interest. When A\gp > 0, there is again only a Hawking-
Page transition from thermal de Sitter space to a large black hole, with a minimum black
hole temperature as in the Einstein limit of the d = 5 case. This is encoded in the fact
that the temperature is never more than double-valued as a function of = = 7, /r.. When
Age < 0 however, we observe a small-large black hole phase transition, since the small
black hole branch now has lower free energy than the radiation phase, and is the preferred
state of the system at low temperatures. We demonstrate this in Figure 5.4, plotting the
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free energy for fixed pressure and varying coupling for d = 6. Note that unlike in the
d = 5 cases, when the coupling is negative, the small black hole branch (represented by the
near-horizontal lines) has free energy less than that of radiation, and is not continuously
connected to the large black hole branch. The phase structure is qualitatively identical for
higher dimensions, with only the precise value of the critical temperature differing for a
given choice of cavity size, pressure, and coupling.
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Figure 5.4: Free energy of the Gauss-Bonnet-de Sitter black hole with d = 6, r. = 2,
P = —0.03, and varying Gauss-Bonnet coupling. Left: With Ao > 0, there is a first-order
phase transition from thermal de Sitter to a large black hole. Right: With Agp < 0, there
is a first-order small-large black hole phase transition. Note the free energy of the small
black hole branch is below that of radiation in this case. This behaviour is qualitatively
the same in higher dimensions.

As is well-known, at sufficiently negative coupling Gauss-Bonnet gravity exhibits patho-
logical behaviour such as naked singularities or negative string tension (if viewed as arising
from « corrections in string theory) [179]. However, small negative couplings cannot be
completely ruled out via analysis of physicality conditions [180]. Note also that when
one considers the dynamical stability of these black holes, the coupling is further con-
strained [181], and that these black holes will be dynamically unstable in higher dimen-
sions [182]. These constrained merit further investigation, especially in light of our results
here where a change in sign of the coupling leads to very different phase structure.

5.3 Charged Gauss-Bonnet Black Holes

We next consider the inclusion of a U(1) gauge field in the action (5.1), and study the
resulting thermodynamics. In general, the presence of a Maxwell-like field leads to re-
entrant phase transitions and van der Waals-like behaviour. This is tied to the 76729
falloff of the charge term that appears in the metric function when such a field is present,
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leading to additional roots in the temperature. The action is the same as before,

(d — 2>Qd_267’g_5

I, =
247

VT (=302 + 22an(f(re) - 3)

Qy_ord=2 2(d — 2)\
—V/ fo(re) (=3r2 + 2Xa(fo(re) — 3))] - Z h {1 + ((d — 4))75]3} : (5.42)
however now the metric function takes the form
2 r2-d/? \/rd +4Xgp(rwes — @ ri-d—ri/12)
f(r)y=1+ - : (5.43)

ZAGB 2)\GB

The energy E, temperature T', and entropy S therefore take the same functional form
as in the uncharged case, namely (5.32)—(5.34), differing only by the form of the metric
function f(r). The free energy F' = E — T'S thus also takes the same general form as in
the uncharged case.

5.3.1 The First Law

When charge is present, the first law must be supplemented by an additional ¢ dQ term,
with ¢ representing the electric potential of the spacetime measured at the cavity, and @)
the total charge:

dE =TdS +VdP + MA. + ¢dQ + ®Pgpdrgs (5.44)

We can again derive the conjugate quantities {V, ¢, A\, \gp} from the first law. We omit
the expressions here as they are structurally identical to those in Section 5.2.1 with the
appropriate replacement of the metric function with the charge-dependent one. One can
again verify through direct substitution that the Smarr relation holds for these quantities,
which in the presence of charge reads

(d—3)E =(d—2)TS + (d—3)¢Q — 2PV + 2dapas . (5.45)

As before, we examine the thermodynamic volume to check for positivity. In Figure 5.5,
we plot regions where V' > 0 for varying charge q.

When ¢ = 0 we reproduce Figure 5.1. With non-zero ¢, regions where the thermody-
namic volume is positive are smaller than in the uncharged case. The inner boundary of
the shaded regions correspond to the location of the inner horizon r_ of the charged black
hole. Outside of these regions, the volume is not negative, but rather imaginary. Since we
are restricting the cavity to lie within 7_ < r. < r¢osmo, We have an everywhere positive
thermodynamic volume as in the uncharged case.
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Figure 5.5: Thermodynamic volume of the charged Gauss-Bonnet black hole in d = 5
with A\gp = 0.1, A = 0.3, and varying charge. The shaded regions indicate positivity of
the volume V. The diagonal boundary marks where r. = r.

5.3.2 Phase Structure

We again turn to an analysis of the free energy F' = E'—T'S to uncover the phase structure,
this time for charged Gauss-Bonnet-de Sitter black holes. Figure 5.6 shows a plot of the
free energy of the black hole both for varying pressure and varying coupling.

While the free energy in Figure 5.6 looks identical to the uncharged case, the interpre-
tation is different in an important way. Since we are working in the canonical ensemble,
the charge ¢ of the black hole is fixed. This means that there is no Hawking-Page phase
transition at the crossing of the black hole free energy with the F' = 0 line, because a black
hole cannot fully evaporate while its charge is held fixed. Instead, we have a small-large
black hole phase transition where the black hole free energy line crosses itself. The sys-
tem will follow the branch with lowest free energy, so the black hole suffers a jump from
small 7y, to large rj, at the crossing. With the cavity present, there is not only a minimum
critical pressure P,,;, below which a kink forms in the free energy, but also a maximum
pressure Pp,.,. These critical pressures coincide with the values of [Py, Prae] at which x
becomes multi-valued at a given temperature. At these critical pressures, a cusp forms in
the free energy where a second order phase transition occurs, as in the red curves of Figure
5.6. Outside of the range [Ppin, Pnaz|, the free energy is monotonic and there is no phase
transition.
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Figure 5.6: Free energy of the charged Gauss-Bonnet-de Sitter black hole with d = 5
and r. = 2, showing a first-order phase transition from a small black hole to a large black
hole. Left: Varying pressure with A\gg = 0.3. Right: Varying Gauss-Bonnet coupling
with P = —0.03. In the A — 0 limit we have a small-large phase transition.

On the right side of Figure 5.6, we vary instead the Gauss-Bonnet coupling with pressure
held fixed. For couplings above a certain value (in this case A\gp = 1.3) there is only one
phase. Below this value, a crossing forms and we have a small-large phase transition.
Notably, in the Einstein limit Agp — 0 this small-large transition persists, unlike in the
uncharged case considered previously. Unlike the uncharged case, when charge is present
all of the qualitative features of the d = 5 black hole remain the same in higher dimensions;
only the precise values of the free energy and critical points change, but all other phase
structure and limiting behaviour is identical.

Unlike the typical ‘swallowtail” behaviour seen in asymptotically AdS black holes (see
for example [31]), the free energy here forms a tube in ' — T — P space, as shown in
Figure 5.7. This ‘swallowtube’ behaviour, first observed in Chapter 2, is in stark contrast
to the swallowtails that arise in black hole systems without cavities. In those systems,
there is only a maximum pressure P,,,, below which the phase transition is present. Here,
there is also a minimum pressure |P,,;,| > 0 that is reached where another second-order
phase transition occurs, and only between these two pressures is there a small-large black
hole phase transition. In Figure 5.8, we plot the coexistence curve for the black hole and
compare it to a typical AdS black hole. These curves are lines in P — T space along which
the small and large black hole phases simultaneously exist and have equal free energy.
Note the striking difference: when a cavity is present, the coexistence line terminates at
two second-order phase transitions as opposed to one. One can also vary the charge ¢ at
fixed values of the pressure and coupling, as shown in Figure 5.9. Here we see a single
critical value of the charge ¢. for a given choice of A and Agp, below which there exists a
small-large black hole phase transition, persisting down to ¢ = 0. Notice that swallowtubes
only exist in F'—T'— P space: both in F'—T —q and F—T — Ao space we see a swallowtail
instead, with just one critical value of the respective parameters q or A\gp.
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Figure 5.7: Free energy of the Gauss-Bonnet-de Sitter black hole in d = 5 with r, = 2
and A\gp = 0.3, showing the formation of a swallowtube corresponding to a compact region
of first-order phase transitions from a small to large black hole. Each line corresponds to a
constant-pressure slice, while red dots mark the location of the critical temperature within
each slice. The red line is the coexistence line.
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Figure 5.8: Coexistence curves for black holes, along which the small and large black hole
phases coexist. Left: The uncharged Gauss-Bonnet black hole with r. = 2 and varying
Agp- The large dots mark the critical pressures P, (Praz), above (below) which there
is no phase transition. At these points a second order phase transition from small to
large black hole transition occurs. Right: The uncharged AdS black hole, illustrating the
difference when there is no cavity present. There is only one second order phase transition
at the red dot P4z
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Figure 5.9: Free energy of the charged Gauss-Bonnet-de Sitter black hole with d = 5,
r. = 2, and A = 0.3, showing a first-order phase transition from a small black hole to a
large black hole below a critical value of the charge ¢. In this case, ¢. ~ 0.8.

5.4 Summary

We have studied the phase structure of both charged and uncharged de Sitter black holes
in Gauss-Bonnet gravity, in the canonical ensemble. The presence of an isothermal cavity,
equivalent to fixing boundary value data on a finite surface in the spacetime, allows us to
have a notion of thermodynamic equilibrium in these asymptotically de Sitter spacetimes,
which normally are not in equilibrium due to the two horizons present. What we have seen
is a host of interesting phenomena. In the uncharged case, there exist Hawking-Page-like
phase transitions throughout most of the parameter space, with a number of unstable black
hole phases present. In the special case of A\gp < 0, we find a region of first order small-large
black hole phase transitions, where the free energy of the small black hole branch becomes
smaller than that of radiation. Interestingly, while exotic re-entrant phase transitions
and triple points are seen in 6-dimensional uncharged Gauss-Bonnet black holes in AdS
spacetimes, here we see only a Hawking-Page phase transition in the 6-dimensional case.
This touches on an important point: that while anti-de Sitter space acts like a ‘box’ that
confines radiation much like a cavity does (allowing the black hole to reach thermodynamic
equilibrium), these two methods of achieving equilibrium leave their imprint on the phase
structure. One cannot understand the thermodynamic behaviour of a black hole without
also considering how it is being maintained at equilibrium, for the exact method by which
this is achieved affects significantly the resulting behaviour, even if the mechanisms seem
qualitatively alike.

When charge is present, the story is considerably different. We generically see first
order small-large black hole phase transitions encoded in the presence of a swallowtube in
the FF — T — P space, with second order phase transitions at the minimum and maximum
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pressures representing the end points of the tube. This swallowtube behaviour appears to
be a characteristic feature of black holes embedded in isothermal cavities, as we have seen
throughout Part I. Interestingly, such tubes only exist in F' —T" — P space. When either
the charge ¢ or coupling Agp are varied, only a swallowtail emerges. These parameters do
however control the size of the swallowtube in FF — T — P space, and for any particular
choice of P for which a tube exists, one can find values of ¢ and Agp such that the two ends
of the tube (corresponding to a second order phase transition) meet. Based on previous
work [166] we would expect that the merging of two critical exponents would yield novel
critical exponents. However, the investigation of this expectation is difficult here as there
is no first-order phase transition present in the case where the ‘merged’ critical exponent
occurs — it is a truly isolated second-order phase transition. It is an open question as to
whether different critical exponents emerge at this point, and how universal such behaviour
is when a cavity is present.

Finally, recent developments [54, 158, 183] indicate that Gauss-Bonnet gravity (or a
version of it) can in fact be formulated in D = 4, in such a way that the Gauss-Bonnet
term (5.4) contributes nontrivially to the dynamics. The resulting theory is a Horndeski-
type scalar-tensor theory that contains, among others, spherical black hole solutions for
both positive and negative cosmological constant. Despite unanswered questions regarding
the space of solutions and the nature of divergences which occur in the asymptotic region,
significant attention has been given to the theory as it contests general relativity in its
uniqueness as a four-dimensional, ghost-free metric theory of gravity. Our studies here
should certainly be extended to this four-dimensional case.

This concludes our foray into the extended phase space thermodynamics of asymptotically
de Sitter black holes. At the end of each chapter we have attempted to summarize im-
portant results and possible extensions of the work contained therein. Nonetheless, the
reader should look to the Epilogue where we provide a summary of the main results of
each chapter, the broad lessons one should take away from this work, as well as a dis-
cussion of the most important avenues to explore in the future. In Part II of this thesis,
we will make strides towards understanding gravitational thermodynamics in more general
settings (where convenient boundaries like the event horizon are unavailable) through a
holographic approach rooted in relativistic hydrodynamics.
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Part 11

Beyond Black Holes
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Introduction

The task of understanding the microscopic degrees of freedom of the gravitational field
has a long history®, one which has led to significant advances in our understanding of
physics and mathematics across dozens of often disparate fields. As we have emphasized in
Part 1, a key observation guiding our exploration has been that gravity appears to possess
thermodynamic properties, most readily manifest in Hawking radiation and the laws of
thermodynamics for black holes. Undoubtedly, significant progress has been made in un-
covering the structure of gravity at the microscopic scale, yet a fundamental understanding
is still lacking. How do we answer the questions that seem to naturally arise in the dis-
cussions, namely, “What is the energy of gravity?” and “What does the entropy count?”.
Black hole thermodynamics appears to provide at least partial answers, but there is still
much work to be done towards resolving them in full.

There is a sense in which the subject of black hole thermodynamics seems rather con-
trived. We are in principle making statements about the thermodynamic properties as-
sociated with the very geometry of space, yet binding ourselves to the existence of the
event horizon, a surface that is teleological, null, and frankly bizarre. We are of course
being disingenuous in adopting such a viewpoint. Black holes provide a extremely conve-
nient environment where the connection between thermodynamics and geometry is readily
apparent?, and the insight gained from their study has been profound. Still, one is left won-
dering why it is so difficult to discuss thermodynamics in the absence of such boundaries
— after all, gravitation hardly requires the presence of a black hole. Can we somehow un-
derstand the thermodynamic properties of the gravitational field in more general settings?
This question is not new, and the answer is likely contained in a particularly exceptional
property of gravity.

Unique to the gravitational interaction is its holographic nature [3,185,186], captured by
both the universality of the Bekenstein-Hawking entropy (being related to various entropy
bounds [40, 187]), as well as the vanishing of the Hamiltonian of general relativity (a
consequence of diffcomorphism invariance). As a result of this property, the notion of
a boundary plays a central role in the discussion of gravitational thermodynamics. We
have already mentioned several examples of frameworks which could be reasonably called
‘holographic’. In perhaps the most well-known realization of this principle, AdS/CFT,

8See [184] for a brief history of quantum gravity research.
9In the derivation of the first law presented in Section 1.4.1, one can choose a boundary other than #,
but in so doing the resulting quantities lose their simple interpretations as temperature, entropy, etc.
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bulk degrees of freedom in supergravity can be mapped to gauge theory degrees of freedom
on the conformal boundary of AdS [188]. Another notable example is the membrane
paradigm, where one effectively replaces the interior of a black hole with a fluid living on
the stretched horizon, the two being indistinguishable to an external observer [189]. This in
some ways resembles also the fluid /gravity correspondence [190], where a long-wavelength
limit of Einstein’s equations is mapped to the boundary of AdS in the form of a classical
fluid, though there the fluid is relativistic and the boundary is at infinity, rather than the
black hole!®. Of course, the relationship between bulk and boundary degrees of freedom
is not unique to black holes and string theory; it is a general property of gauge theories
that transformations which are pure gauge in the bulk can (when bounded regions are
considered) give rise to physical symmetries, and thus non-trivial degrees of freedom, on
the boundary [191-193]. This is a theme that is prevalent not only in quantum gravity,
but condensed matter as well [83]. Though the holographic principle takes on many guises,
these are all in essence statements of the fundamental idea that the information contained
in a bulk region of space-time can be encoded purely in the boundary of that region.

Each of these examples of bulk/boundary correspondence come with their own limita-
tions. In AdS/CFT, the duality critically relies on the asymptotic properties of anti-de
Sitter space, whose boundary is timelike and can be reached with finite affine parame-
ter. The boundary CFT correlators live only at Z, where the asymptotic symmetry group
SO(2,d) underlies also the d-dimensional CFT. Our understanding of situations where
A = 0 is still rather incomplete [194,195], but in this flat space holography the boundary
is still at (null) infinity. In the membrane paradigm, the stretched horizon is confined to
within epsilon of the event horizon H, a surface that is teleological and null. The canon-
ical examples of holography thus offer a limited perspective, because one is constrained
to situations where knowledge of the boundary of space or the end of time is required.
From a practical point of view this is unsatisfactory; as local observers we generally lack
the ability to access these types of boundaries. From a theoretical point of view, given the
holographic nature of the gravitational interaction, and the fact that gravity is something
we observe not just globally, but also (quasi-)locally, there is no a priori reason to discount
the formulation of a bulk/boundary relation for more general surfaces.

Recent developments in addressing these issues has led to the concept of using a grav-
itational screen as a quasi-local observer [196,197]. A gravitational screen represents the
time evolution of a two dimensional space-like hypersurface, which serves as the boundary
of a bulk region of spacetime. Projecting Einstein’s equations onto the screen yields the
incompressible Navier-Stokes equations for a viscous fluid, allowing for a mapping between
bulk geometric degrees of freedom and boundary fluid degrees of freedom. However, un-
like in the membrane paradigm or AdS/CFT, the boundary is not restricted to the event
horizon of a black hole or to spatial infinity. This approach is in some ways reminiscent of
other quasi-local approaches to gravity, such as the original work of Brown and York [198],
rigid quasilocal frames [199], and other 242 formulations of general relativity [200-202],
though no fluid interpretation is given in those constructions.

19Even black hole thermodynamics is in a sense a holographic approach, with thermodynamic quantities
being defined in terms of the event horizon, whose entropy scales with its area rather than its volume.
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Our goal in Part II of this thesis will be to extend the concept of the gravitational
screen to the relativistic regime, drawing a connection between two manifestly covariant
frameworks: general relativity in the bulk, and non-equilibrium relativistic hydrodynam-
ics on the boundary. In so doing, we make steps towards the resolution of many of the
issues presented above. The bulk and boundary theories are placed on an equal foot-
ing, and non-Newtonian phenomena can be properly incorporated into the fluid descrip-
tion. We will draw much inspiration from both the membrane paradigm and fluid /gravity
correspondence—indeed those examples should in principle arise as various limits of ap-
propriately chosen screens. Beyond demonstrating the construction of the formalism, we
further clarify the interpretation of the fluid pressure as the screen’s normal acceleration,
finding that the correct bulk/viscous splitting must include an expansion-dependent term.
We also explicitly construct several examples of gravitational screens both in Minkowski
and Schwarzschild spacetimes and examine the properties of the corresponding holographic
fluids. Finally, we examine how the fluid entropy is linked to the curvature of spacetime,
and remark on the salient features of the correspondence. The organization is as follows:

In Chapter 6 we present the gravitational screen formalism. We detail both the geo-
metric construction of the screen and all of the elements that enter into the description
of the boundary hydrodynamic system. We show how to relate the screen variables to
those of the fluid system, and derive various conservation laws. Finally, we establish the
dictionary that maps the geometric quantities to the hydrodynamic ones.

In Chapter 7, we present some explicit examples of our dictionary in action. We show
how phenomena like entropy production can be interpreted geometrically, and construct
several examples of screens in various backgrounds. We derive the equation of state of
the screen fluids, along with other relevant thermodynamic quantities, and discuss various
subtleties involved in the fluid interpretation. Finally, we close by commenting on a number
of open questions and applications.
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Chapter 6

Gravitational Screens

In this chapter, we will develop the relativistic gravitational screen framework, and con-
struct the dictionary we will use to relate the screen geometry to a hydrodynamic system.
We begin in Section 6.1 by presenting the geometric construction of a gravitational screen,
and demonstrate how conservation of energy and momentum arises from various projections
of the Einstein equations onto the boundary. In Section 6.2 we review important features
of relativistic hydrodynamics, and derive conservation of energy /momentum equations for
the boundary fluid. We treat separately the case of the equilibrium (perfect) and non-
equilibrium (dissipative) fluids, and further discuss the thermodynamical laws governing
quasistatic evolutions of the system. Finally in Section 6.3, we construct the mapping
between the bulk geometric variables describing the screen and the boundary variables
describing the relativistic hydrodynamic system. We comment on the interpretation of the
mapping, and discuss some of the limitations and open questions that arise.

6.1 Gravity

We begin with a discussion of the geometry of the gravitational screen, and define all of
the relevant quantities we will use in describing its features and evolution. A gravitational
screen . is a 2+1 dimensional timelike hypersurface, which is viewed as the time evolution
of a 2-dimensional boundary S of some 3-dimensional bulk (connected) region of spacetime.
For the time being we consider spherically symmetric boundaries only, though the geometry
can in principle be more complex. The screen is characterized by s*, the outward pointing
spacelike unit vector normal to &, and u®, the timelike unit vector tangent to . By
construction we have that s,s* =1, u,u® = —1, and s,u®* = 0. Throughout, Latin indices
are used for vector and tensor components, where their dimension is made clear from their
definition. Figure 6.1 illustrates the construction.
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Figure 6.1: A gravitational screen X and a spatial section S.

From the bulk metric g,, we can construct the metrics on > and S as:

S: dab = hab + U Up

Here, h,;, projects into the space orthogonal to s* and encodes the intrinsic geometry of X.
Likewise, g, further projects into the space orthogonal to u®. The screen is topologically
R x S?, admitting a smooth codimension-one foliation by the leaves S, which are level sets
of some time function ¢(z) inherited from the bulk foliation.

The extrinsic curvature of X is given by
Hyy = h, hVesq . (6.3)
while the geometry of the boundary surface S is encoded in the extrinsic curvature tensors
Osab = 0’0" Vesa s Ouar = 4,°6,"Vetla (6.4)

the normal one-form
Wy = qab(scvbuc) , (6.5)

and the normal accelerations,
Ya = UVl Y = —ups®V,s . (6.6)

Together these quantities completely characterize the geometry of & and its embedding
in M. The quantity v, is the radial acceleration of a screen observer and will play an
important role in our work. In the case where u, is not hypersurface orthogonal, there will
also be a non-zero twist vector

€' = u'Vys" — 8"Vyut | (6.7)

which measures the deviation from orthogonality of the congruence u® to the spacelike
hypersurfaces which foliate .
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The extrinsic curvature H,, and projector h,, can be used to construct the surface
stress-energy tensor on I, given by

1 1

S =5z S = 5= ((Hhay — [Hal) »  H = 0" Ha (6.8)
Square brackets represent the discontinuity of a quantity across the boundary between
the regions exterior (V) and interior (V_) to the boundary, so that [A] = Al,, — Aly_.
This is the Brown-York stress-energy tensor for a hypersurface embedded in spacetime
and is justified by Israel’s junction conditions [198,203]. The form of S,, arises from
the requirement that Einstein’s equations are consistent in the distributional sense in the
presence of singular surface stress-energy. It expresses the intuitive notion that if a closed
surface has non-zero stress-energy, the extrinsic curvature and metric necessarily differ on

either side of the surface (see [203] for details).

Eventually we will interpret (6.8) as the stress-energy tensor of a relativistic fluid living
on the surface ¥. We adopt a holographic point of view, where the fluid stress-energy
tensor (supported entirely on ) and the equations governing its evolution map to the
gravitational dynamics and geometry within the screen. To this end, we require [H,p] —
H,, and [H| — H, so that the screen becomes the boundary' of our spacetime. In our
case, this can be accomplished concretely by imposing a Zs identification at > so that
the screen acts like a mirror. The interior region is thereby replaced entirely by a surface

stress-energy tensor
Sab = Hhab - Hab ) (69)

This is in the same spirit as the membrane paradigm [189], where the stretched horizon is
taken to be the boundary of the spacetime, and boundary conditions for the fields present
are chosen on the stretched horizon such that an external observer cannot distinguish
the membrane from the ‘real’ black hole. A few conceptual points are worth addressing
here. In the membrane paradigm, the stretched horizon is placed very close to the event
horizon, such that crossing it and returning would require Planckian accelerations [204].
In this paradigm, we consider arbitrary timelike screens and so in principle an observer
could pass through the screen and communicate her/his findings to the outside world.
Moreover, the apparent location of the screen differs for different external observers, unlike
the event horizon which is a global property of the spacetime. The former issue is one of
interpretation: the claim is not that the universe is filled with fluid bubbles inside of which
spacetime vanishes, rather, that any observer external to some region V_ can understand
its gravitational features in terms of a relativistic boundary fluid?. The latter issue is
resolved by the fact that the different observers are related simply by various boosts, and
so can consistently map their observed screen variables to one another.

!This is markedly different from merely considering a surface within a spacetime. See Appendix B for
more details.

20f course, the extent to which this is possible is not known, and is one of the primary aims of this
investigation.
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6.1.1 Screen Energy-Momentum

With the definitions above and the general form of the surface stress-energy tensor (6.9),
we can already see how the screen geometry might be recast in hydrodynamic terms. We
begin by evaluating H,;, explicitly:

Hy = h, 1,V 54
=(q,"— Uauc)(de - ubud>vcsd
= 4,0 " Vesa — ¢ uptVesg — ¢, uauVesa + taupuu’Vesy
= Osap + ¢, Ups Vettg — ¢, U u(Viesg + Vase) — uagupu©s?V g
H,p, = Ogap + wally + Uy — Yullalp (6.10)

We can then determine S, using :

Sab = Hhab - Hab
= (Yu + 05)(qab — Uatip) + Yullally — Wallp — UaWh — Ogap
= Yulab — TullaUp + QSQab - esuaub + TullagUp — Welp — UgWp — @sab
= _esuaub — Wallpy — UgWp + (’yu + %HS)Qab - (@sab - %esqab)
- _esuaub — Wallp — UgWp + (7u + %GS)Qab - @sab (611)

where 0, = ¢, is the expansion and Osup = Ounp — %quab is the trace-free part of
Osap- Note that the form of (6.11) does not depend on u, being hypersurface orthogonal.
This expression for the surface stress-energy is already suggestive of a mapping between
the screen geometry and a hydrodynamic counterpart. Consider a fluid living on a 241
dimensional timelike hypersurface defined by a timelike unit tangent vector u, and 2D
projector q.p. Such a fluid has a stress-energy tensor

Sab = €UgUp + TaUp + UaTp + Pap + ap (6.12)

where e is the fluid energy density, 7, is the momentum density, p is the isotropic pressure,
and II,; is the spatial stress tensor, given by

e =uubS,, m, = —qbauchC l:[ab = qcaqdbScd — DGap - (6.13)

The stress-energy tensor (6.11) on the boundary ¥ can seemingly be interpreted as a fluid
stress-energy tensor provided we make the following identifications:

95 Tu + %95 Wq @sab
= —— —_— —_——_—— a = - Ha = — . ;]-4
c P 8tG i b 87G (6.14)

This mapping from geometric variables describing the screen and thermodynamic variables
describing a fluid formally suggests that we can understand at least part of the bulk
gravitational physics inside of ¥ in terms of a relativistic boundary fluid. What remains to
be shown however, is that these identifications can derived consistently through Einstein’s
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equations and satisfy the necessary constraints, and to examine the conditions under which
the quantities in (6.14) result in a system that obeys the known laws of thermodynamics
and hydrodynamics. We would also like to determine the extent to which the screen is
‘holographic’, in the sense that it preserves information about the bulk despite being lower
dimensional. In the remainder of this chapter, we make steps towards these goals.

6.1.2 Conservation of Energy

The identifications (6.14) demonstrate that at least a partial mapping is possible between
variables describing the screen and those describing a fluid system. To make the corre-
spondence more precise, we will examine Einstein’s equations projected onto the screen,
and compare them to their hydrodynamic counterparts. Einstein’s equations with zero
cosmological constant are G, = R — %Rgab = Ty. Their projection onto the hypersurface
Y is given by the Gauss-Codazzi equations,

DyS* = —T,,s°h"* | (6.15)

where D,V, = hachdeCVd is the covariant derivative on 3. Equation (6.15) can further be
projected along the timelike direction as

DyS*u, = —Tyy (6.16)

where Ty, = s%ubT,;, represents the energy flux density flowing across the screen. This is
the conservation of energy equation for the screen. Using (6.11) we have that

@ ©) ®) @ ®

—Tsu = —Dy(0su"u”)ug — Dy(wu")ug — Dy(u®w®)uq + Dpl(Yu + 365)q" Jtta — Dy(0%)u,
Evaluating the terms individually:

@ = — Dy (Osu’u)u,
= — Dy (0s)uluu, — O Dy(ubu®)u,
= u’Dybs — uu,0sDyu’ — Oulu, Dyu®
= Dybs + 050y — upu’ Db
= Dybs + 0504
@ = —Dy(wu®)u,
= —u,u’ Dyw® — uyw® Dyu’
= —u,Dyw® — u*w,bs

= Wyay
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@ = —Dy(u’w®)u,
= —u,u*Dyw® — u,w? Dyu®
= Dy’ — up w°Du’
= Dy’
(4) = Dy[(7u + 366)g")ua
= ¢ Dy(va + 205) + ta(Yu + 365)Dog™®
= (Yu + 305)0u
@ = _Db(égb)ua
= —Dy(0%u,) + 6% Dyu,
= 0% Oua

All together we have
(Dy + 00)0s = —(87G) Tuu + (Yu + 205)0u + 02Oy — (dy + 28u,) 0" (6.17)

where we have used the fact that u%w, = wu‘D.u’ = u,w*D.ub = 0 and D,V* = d,V* +
aue V' ® for a vector V¢ which is tangent to S.

6.1.3 Conservation of Momentum

The conservation of momentum equation is found by instead projecting (6.15) in the spatial
direction as

(DbSba>Qac = _Tsc (618)

where Ty, = s°T,. and it is understood that the index ¢ represents components tangent to
S. Ty represents the momentum flux density across the screen. Again using (6.11) we can
expand (6.18) as

@ @ ©) @ ®

Tsc = Db(esubua)qg,c + Db(wbua)szc + Db(ubwa)Qac - Db[(’yu + %gs)qba]Qac + Db(élsm)qg,c

Evaluating the terms individually:

@ = Db(esubua)Qac
= Que(uPu Dyfs + O5u® Dyu® + Osu’ Dyu®)

= esauc
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@ = Dy(wu*)qac
= o’ Datt” + qoett* Dyw”
= wai’w
= w’(30ugbe + Oupe + €1e)
(3) = Dy(u’w™)gae

= qacubwa“ + qacw“Dbub
= dyw, + Oywe.

@ = _Db[<7u + %es)qba]Qac
= —acq"* Dp(Yu + 305) — Guc(Yu + 365) Dpg™
= _dc(F}/u + %95> — Ayc

@ - Db(éga)qgc
- Db(élsm%zc) - éZanQac
= DY,

where €4, is the antisymmetric part of ©y,;. All together we have that

(87G)Tse = Oaue + (20udbe + Ouse + €4e)w” + duwe — (de + aue) (Yu + 2605) + DyO%, . (6.19)

6.1.4 The Radial Constraint

We also have a constraint equation for the rr component of the Einstein tensor coming
from the Gauss-Codazzi equations. The constraint is:

— 2Tys"s" =R+ H H™ — H? . (6.20)
Using (6.10) and the fact that w,u® = 0 we find that this reduces to the following condition:

—2T,35"5" =*R + (Ogap + Wally + Wytla — Yattaty) (0% + wu® + wbu® — yu'u®) — (yu + 0s)?
=3R + @sabﬁ‘;b — 2% + 7121 — 7121 — 2vubs — 0>

s

=R+ Ogupl2 — 2w? — 27,05 — 162 . (6.21)
The d-dimensional Ricci scalar evaluated on a (d — 1)-dimensional surface is
R =T1R 4+ ¢(K? — K, K°) + 2eV,(n’Vyn® — n*Vyn?) (6.22)

where K, is the extrinsic curvature of the (d — 1) surface defined by the normal vector n?,
which is normalized to n? = €. In the case of the surfaces ¥ and S, the normal vector is
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u®, the extrinsic curvature is .5, and € = —1, so we have that

SR ="R — 0% + 040 + D, (uDyu’ — u’ Dyu®)
=R — 102 + ©,,0% — 2D,a2 + 20, + 262
=R+ 362 + 0uwO% — 2(d, + aye)al + 20, (6.23)

The constraint equation thus becomes (having reintroduced the factor 87G):

—(167G)Tas =2R + 302 + 204 + OuaOL + Q5002 — 2(dy + aya)al — 2w? — 27,05 — 167

With the gravity equations in hand, we can proceed with discussing conservation of
momentum and energy for a relativistic viscous fluid, which we will derive in the next
section.

6.2 Relativistic Hydrodynamics

As discussed earlier, there are already a number of contexts in which the geometric features
of boundaries within a spacetime can be understood to have fluid-like properties. With
the exception of the fluid/gravity correspondence and AdS/CFT, all of those examples
draw analogues between gravitational features and Newtonian fluids. For example, in the
membrane paradigm the conservation equations for the stretched horizon are shown to be
in correspondence with the Navier-Stokes equations, a decidedly non-relativistic proxy for
the gravitational features of the black hole. This is also the case for earlier work involving
gravitational screens themselves. Our main goal here will be to elevate the fluid side of
these correspondences to the relativistic regime, placing it on an equal covariant footing
with the gravity side. We review some of the essential aspects of relativistic hydrodynamics,
and study the covariant conservation laws for a relativistic hydrodynamic system. We refer
the reader to a number of texts that give much more substantial treatments of the subjects
discussed herein [205-208].

At all times we assume that the time scales of the system’s dynamics are large compared
to the time scales of the microscopic physics, and that each fluid element is small enough
to be locally in thermodynamic equilibrium, while at the same time containing a large
enough number of particles that microscopic dynamics are averaged out. We denote the
rest-mass density of the fluid with p, the fluid four-velocity with u* (which is normalized
to uu, = —1), and the fluid acceleration with a® = u®V,u® (which also satisfies a%u, = 0).
Describing the fluid at the statistical level is the Lorentz invariant distribution function
f = f(x,p), which gives the particle number density in phase space at time ¢, and depends
on the properties of the microscopic constituents of the fluid. Though we will largely
bypass the direct use of the distribution function, it plays an important role in defining
various quantities at the statistical level.
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Our understanding of relativistic fluid systems is broadly separated into two regimes,
equilibrium and non-equilibrium (dynamical, or dissipative) systems. The study of systems
at equilibrium is especially appealing because the laws of thermodynamics can be easily
formulated, and adiabatic or quasistatic processes allow us to move from one equilibrium
state to another in a way that is often physically reasonable. Indeed, a great number of
physical systems possess a separation of scales (usually in the temporal sense) that allows
for such an equilibrium description. In the context of gravity, equilibrium thermodynamics
encompasses the celebrated ‘laws of black hole thermodynamics’ formulated by Bardeen,
Hawking, and Carter, and has led to entire fields of research into the thermodynamic
behaviour of black holes [11]. However, where dynamical processes are concerned (such
as the formation/evaporation of a black hole) we often find ourselves in a regime where
the first law fails to provide an adequate description. From the fluid perspective, such
non-equilibrium scenarios fall into the dissipative regime, where viscous effects and heat
fluxes lead to entropy production in the fluid. These far from equilibrium scenarios are the
ones we seek to eventually understand, and will require the machinery of non-equilibrium
hydrodynamics, though we focus mainly on equilibrium phenomena in this chapter.

Our discussion begins with the relativistic conservation laws, which can be constructed
from various moments of the distribution function f. The first moment of the distribution
function gives the number density current N* and rest-mass density current J* of the fluid,
which can also be written in terms of u®, the rest-mass density p, and the number density
n as

d3p
N“:/p“f—oznu“, J*=mN* = pu . (6.24)
p
The second moment of the distribution function gives the fluid stress-energy tensor
d3
T = /p“pbf _Op . (6.25)
p

In the absence of sources, the rest-mass density current and stress-energy tensor are both
divergence-free, leading to the covariant conservation laws for a generic relativistic fluid,

VI =0, VaJ*=0 (6.26)
while conservation of rest-mass is expressed by the continuity equation,
VN =V, (pu*) =0 (6.27)

These equations may of course be supplemented on their right hand side by source terms
if appropriate. In practice the relativistic equilibrium distribution function f is unknown,
but we can avoid using it by instead specifying the stress-energy tensor directly, taking the
covariant conservation laws as a starting point®.

Finally, the number density current N* and entropy density current s* (we give precise
meaning to this quantity in the following section) for the non-perfect fluid can be written

3Likewise, (6.26) is easily derived if f is known.
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as

N =nu® +n", (6.28)
s = su® + s | (6.29)

where n* and s* are the non-equilibrium contributions to the currents and vanish for a
perfect fluid. The picture presented here is valid in both flat and curved spacetime in any
dimension.

6.2.1 Thermodynamical Laws

Hydrodynamic systems of the variety described above are of course thermodynamic systems,
and have well defined behaviour captured by the laws of thermodynamics. The laws of
thermodynamics provide information about how the thermodynamic properties of a fluid
change when the system evolves in a quasi-static equilibrium. In this section, we derive
some useful thermodynamic relations that will be used throughout this chapter.

We begin with first law of thermodynamics, which captures how various physical pro-
cesses (such as heat exchange with the environment, through work being done on the
system, or through the creation/destruction of fluid components) lead to changes in a sys-
tem’s internal energy U. For a relativistic fluid, the first law of thermodynamics in the
fluid’s rest frame is the same as the first law in flat space, and takes the form

dU =TdS — pdV + pudN , (6.30)

where T is the temperature of the system, S is the entropy, p is the pressure, V' is the
volume, N is the number of fluid particles, and p is the chemical potential. This is the
same form of the first law encountered in Chapter 1, which can easily generalized to include
other species of particles (for multi-component fluids) or other thermodynamic potentials.
Many useful relations can be extracted directly from (6.30) through scaling arguments. In
particular, let us express the internal energy U as a function of V, S and N. Since these
are extensive! quantities, a rescaling of V, S, N corresponds to a rescaling of U as

UMAV,AS,AN) = XU(V, S, N) . (6.31)
Differentiating with respect to A gives:
VOoaxyU(AV,AS,AN) + SOxsU(AV,AS, AN) + NOWU(AV,AS,AN) =U(V,S,N) (6.32)
Setting A = 1 and using (6.30) gives

U=TS —pV + uN . (6.33)

4Extensive quantities are represented by homogeneous functions of degree 1, satisfying f(Az) = A\f(z).
Intensive quantities (such as temperature) are homogeneous functions of degree 0, such that f(A\x) = f(z).
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This is the so-called Fuler relation which we will use extensively. Dividing through by V'
we obtain
e+p="Ts+ un (6.34)

which is the Euler relation expressed in terms of the internal energy density e = U/V/,
entropy density s = S/V, and number density n = N/V. Taking the differential of the
Euler relation and using the first law again we arrive at:

dp = sdT + ndu . (6.35)

This is the Gibbs-Duhem relation which expresses the fact that the intensive variables p, T', u
are not independent. This equation reduces the number of independent thermodynamic
degrees of freedom in the system by one®. Finally, we can combine the Euler relation and
first law to get an expression for the entropy density of the system

d d
R (6.36)
S e+p—un

which is valid when the number density is a constant (dn = 0).
The Second Law

One of our primary goals is to obtain a useful notion of entropy for gravitating systems
through the properties of the holographic fluid. To this end, we require a geometric version
of the second law of thermodynamics, which we demand that any physically reasonable
fluid system must satisfy. From a kinetic theory point of view, the microscopic origin of the
second law is encoded in the so-called relativistic H-theorem, which arises from conditions
on the relativistic collision integral and states that
d®p

OH" L 1

where f is the distribution function. For an equilibrium distribution function fy, equality
is achieved. Away from equilibrium, %I;: < 0, and collisions within the system will drive it
back towards %f; = 0. This is the content of the second law of thermodynamics. Because
H* is defined in terms of the distribution function we can use it to define the fluid entropy

in terms of an entropy current four-vector:

. “ 1 d3p
Apg and By are constant coefficients that capture, respectively, the Newtonian and quan-
tum contributions to the fluid entropy. They are given by

h3 R3
Ay =L, By=4+-2L (6.39)
9(s) Js

SThermodynamic degrees of freedom are independent intensive variables/coordinates.
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where g(s) = 2s+ 1 is the degeneracy factor® arising from internal spin degrees of freedom
and the + accounts for Fermi (+) and Bose (—) statistics. The second law of thermo-
dynamics can now be written in terms of the entropy current. Consider integrating S®
over a spacelike hypersurface x with normal vector field n® and metric hy, to get the total
entropy:

Stot(X) = / Vh S8, dx . (6.40)

This quantity should be non-decreasing for all surfaces x’ in the future of y, so that

Stot(X/) - Stot(X) = /\/__g (vaSa) d4ZL‘ Z 0 ) (641)

where the divergence theorem was used. Since the surfaces can be chosen arbitrarily, the
second law is the condition that
V,S*>0. (6.42)

One rarely works at the level of the distribution function f, as it is often computationally
impossible to track its evolution. Instead, adopting a more macroscopic point of view, it
is useful to write the entropy current as

St = R 6.43
spu’ + - (6.43)
such that for a perfect fluid R* = 0 and equality is achieved in (6.42). Deviations from
equality (entropy production) are thus captured by the dissipative part R, which should
be built from the non-equilibrium parts of the stress-energy tensor. We comment further
on this in Section 7.2 after introducing the concept of the perfect and non-perfect fluids.

6.2.2 Perfect Fluids

We first consider the relativistic perfect (sometimes called ‘ideal’) fluid, seeking the con-
servation laws that govern its evolution. In the case of a perfect fluid, there are no viscous
effects or heat flux, and the pressure tensor is diagonal. As a result, there is no entropy
production and the fluid is at equilibrium. For a fluid living on the surface ¥ with metric
hay this stress-energy tensor takes the form

T = (e + p)uu’ + ph® | (6.44)

where e is the internal energy density of the fluid and p is the isotropic (equilibrium)
pressure. For a perfect fluid, the velocity u® is uniquely defined as the vector parallel to
the density flux J“, and defines a frame that is comoving with the fluid called the Eckart
frame. Conservation of number density gives

Va(nu®) =u'Ven+nVau =Vyn+60n=n+6n=0. (6.45)

SFor massless constituent particles one should instead use g(s) = 2s + 1.
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The divergence of the stress-energy tensor is
VT = (e + p)uVu’ + (e + p)u’Vu® + uu’Vo(e + p) + hV,p .
Projecting this along the fluid velocity u® gives the energy conservation equation:

VTP = (e 4 p)upyu®Vaul 4 (e + p)upu’ Vou® + upuu’Vo(e + p) + uph®Vap
=—(e+p)f —u'Vy(e+p)+uV.p
=—(e+plh—é=0, (6.46)
where we have used uu®V,u? = 0 in the first and second line and defined & = u*V .

Projecting in the direction orthogonal to u, (given by the metric ¢?° = h%® + uub) gives
the conservation of momentum equation

G VoT™ = (e + p)gauVaub + (e + p) g’ Vou® + qauu’Va(e + p) + quh™Vap
- (6 + p)qcbub + QCavap
= (e+p)gai’ +dp =0, (6.47)

where we have used that ¢,,u® = 0 and defined d,z = ¢.*V,2. The relativistic conservation
equations for number density, energy, and momentum are thus:

A +nf =0 (6.43)
et (e+p)lf=0 (6.49)
(e +p)gat® +dep =0 (6.50)

In 2 4+ 1 dimensions, this is a set of 4 equations for the 5 unknowns representing the fluid.
Equations (6.48) and (6.49) are scalar equations while (6.50) is a vector equation with 3
components, one of which is equivalent to the normalization condition u®u, = —1. The
final ingredient needed to close the system is the equation of state. This is a (usually
phenomenological) relationship between the state variables that arises from microscopic
interactions within the fluid, and is typically cast in the form p = p(p, e). The equation of
state can in principle be derived from the distribution function if one knows the microscopic
physics, though often it suffices to assume a particular equation of state based on the
macroscopic features of the system being considered. In Section 7.1, we further clarify the
role of the equation of state in the screen formalism.

6.2.3 Non-Perfect Fluids

Let us turn to the case where viscous effects and heat fluxes are present and write the full
relativistic conservation equations. In the presence of heat flux and viscous effects, the
definition of the local rest frame of the fluid is ambiguous [209]. We adopt the so-called
Eckart frame, where u® is parallel to the density current, so that the continuity equation is
the same as for the perfect fluid case. We can decompose the stress tensor, number density,
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and entropy density for the non-perfect fluid into equilibrium (perfect) and non-equilibrium
(non-perfect) parts as follows:

T =T+ AT®  N*=Ni+AN*  5°=8% +AS (6.51)

Here, Teaqb is given by the perfect fluid stress tensor (6.44). The quantities N = nu?,
Sy = su®, and T, ;Zb represent the equilibrium contributions that yield equations (6.48) to
(6.50). The non-equilibrium parts are

AT = eus” + wh™ + u’q" +u’q* + 11* (6.52)
AN& — nua _|_ na (653)
ASa — O'Ua + Sa (654)

where € is the internal viscous energy, 7 is the dynamic pressure (the difference between
the total pressure and pressure at equilibrium), 11 is the anisotropic (or viscous) stress
tensor, ¢* is the heat (or thermal momentum) flux orthogonal to u®, n® is the number
density current, n is the non-equilibrium contribution to the number density, and o is the
non-equilibrium contribution to the entropy density. 11, ¢%, and 7 are the thermodynamic
fluxes that capture the deviations from a perfect fluid, and are given in this case by the
following;:

0% = ¢°.q"4 6T — (p+ m)q™
¢" = —q" . 6T ,

p+m= %qab 5T . (6.55)
The full stress-energy tensor for the non-perfect fluid can be written:
T = (e + e)uu’ + (p + 7)q™ + u'q® + uq® + 11" (6.56)
Conservation of mass gives:

0= V,N* = V,(N%, + AN?)
= Va(nu®) + Vy(nu® 4+ n®)
=nVu' +u'Ven +nVau® +u*Ven + Vn®
=n+nb +n0 + 19+ (dg + tg)n® (6.57)

Conservation of stress-energy gives:

0= VT =V,[(e+eu s’ + (p+m)(g" + u'u’) + uq’ + u’q" + 1]
=uu'Vo(e+e+p+m)+ (@ +ub)(e+e+p+7)+g°Valp +7) + "0
+ UV g + ¢*Voub + u'V,q" + V1% (6.58)
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Projected in the direction of u®, (6.58) gives the conservation of energy equation

0=uV T = —u'Viletetp+m)—(e+et+p+m)0+u'Vu(p+7)+upgd
+ ubuavaqb + ubqavaub —Vauq" + uy V, I1%
=—(e+&) —(e+et+p+ml— (dy+ 20a)qg" + %04 (6.59)
where we used the fact that uI1% = u,¢* = upq*Vu’ = 0, V,q® = (dg +1,)¢° and defined

Oap = dequps as the shear tensor. Finally, projecting (6.58) into directions orthogonal to
u® gives the conservation of momentum equation

0= gaVaT™ = qup(i® + u’0) (e + e+ p+7) + gag™Valp + 7) + ¢4°0 + gt Vag"
+ qcbqavaub + qcbvaHab
= te(e+e+p+7) +de(p+7) + (da + )IE + garg”
+ 4 q"0 + qevq" Vot
= te(e + e+ p+7) + de(p + ) + (do + )% + gard”
+ 4eq"0 + qenq” (w,” + 0" + 10g," — i,u")
=t(e+e+p+7)+do(p+ )+ (do + )T + gepd
+ (Wae + Tac + 204ac) ¢ (6.60)
where we have used the decomposition V, up = wap+0as+ %QQab —uqup. This decomposition
breaks the covariant derivative of the fluid four-velocity into the antisymmetric twist or
vorticity tensor wyy,, the symmetric trace-free shear tensor o,p, and the expansion scalar
0. This decomposition is useful in that the irreducible parts of V,u;, have straightforward
physical interpretations. Consider an ideal spherical fluid element X', which consists of a
large number of fluid molecules in equilibrium. The twist w,, describes rotations of the fluid
element about a principal axis in the local frame, the shear o, induces volume-preserving

deformations of X that also preserve the principal axes, and the expansion 6 describes
deformations that change the volume of the fluid element while retaining its shape.

To summarize, the conservation of mass, energy, and momentum equations for the
relativistic non-perfect fluid are (respectively):

0=n+nb+nd +n+ (d, + 4,)n* (
0=—(é+é)—(e+e+p+m)0— (da+ 2ia)g" + %0y (6.62
0=tc(e+e+p+m)+de(p+7)+ (do + @)% + gepd” (

+ (Wae + Oac + 304ac) ¢ (
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6.3 The Dictionary

Having derived equations (6.62) and (6.63) representing conservation of energy and mo-
mentum for a relativistic fluid, and equations (6.17) and (6.19) representing the same for
a gravitational screen, we can now see that they in fact take on the exact same form,
with each geometric variable describing the screen possessing a direct analogue in the fluid
system. We now show the conservation of momentum and energy equations side by side:

Energy conservation

0= —Dubs — Oubs + (Yu + 305)0u + O Oua, — (du + 2ayc)w” — (87G) Tau
0=(é+¢)+ (e+e)f+ (p+m)0 — %4 + (do + 21,.)q"

Momentum conservation

0 = Osay. — (dc + aJuc) (’VU + %Qs) + Dbégc + dywe + (%Qquc + éubc + 6bc>wb - (87TG)TSC
0= —(e+ e — (de+ ) (p+7) — (dg + )% — qed® — (%anc + 0o + wac) q*

There appears to be a freedom in the choice of sign in the identifications above. This
fixed by observing that the terms Ty, and Tj., which represent respectively the energy and
momentum flux across the screen, appear to be unaccounted for in the fluid description.
Indeed, this is because we initially took the hydrodynamic conservation laws (6.26) to be
source-free, resulting in the vanishing left hand side of equations (6.62) and (6.63). It
is clear now that non-zero Ty, or T.. will manifest themselves as non-zero source terms
in (6.26). These terms have a natural interpretation, as any energy-momentum flux into
(or out of) the screened region would necessitate a change in the fluid’s energy-momentum
density, which is achieved by the source (or sink) terms. Consistently matching these
source terms to the fluxes above and taking into account the direction chosen for the
surface normals fixes the sign of the identifications.

The final step is to introduce a time flow vector ¢* with a dual ¢} describing the choice
of time foliation, which will be normal to the sphere S and normalized to

t=—f, t?=f? (6.65)
where f is the lapse. Choosing” a frame such that

t* = fu® e = fs° (6.66)
allows us to define the rescaled geometric quantities:

Y%= fra Or=fbs Op=fls 0, =0,  Op= fbs (6.67)

"Note that in general, u® may not be parallel to t*. This will be the case whenever u® is hypersurface
orthogonal (the twist vanishes), a choice that will suffice for the examples we consider in Chapter 7.
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Multiplying (6.17) and (6.19) by f? and rescaling the quantities as defined above, we finally
arrive at the correspondence:

O, + 20
e+€:_8tG p+7r:%8 ét 0 =0  wap=e€aw
™ T , (6.68)
@t*ab fwa
M, = — —- e —
b 8¢ Oab fab 4 8¢

We now turn to the main features of the dictionary. In this picture, the fluid energy
density e is related to the rate of expansion of outgoing radial null geodesics at the bound-
ary. The 2D fluid pressure p is now identified with ~; + %Ht*, in contrast with the membrane
paradigm and non-relativistic screen formalism, where it is simply 7; [189,196]. The pres-
sure can thus vanish for non-trivial screen geometries leading to complex thermodynamic
behaviour. The fluid expansion @ is directly related to the expansion in the time direction
of the screen. The intuition is clear: if the screen expands in the spatial direction, the 2D
volume available to the fluid increases, and the fluid expands. Neither the number density
n nor the fluid particle rest mass m map to a gravitational analogue, so that the rest-mass
density p = nm of the fluid remains undetermined from the dictionary. This is perhaps
expected, as we are working at a classical, macroscopic level. One can understand the
ambiguity by considering a distant observer viewing a screened region: their gravitational
probe would be unable to distinguish between a fluid with n = % and m = 2 from one with
n=2andm= %

A new feature appearing in our work is the fluid twist or kinematic vorticity wy, which
is equal to the twist €, of the screen observers. The fluid twist measures rigid rotations
of fluid lines with respect to the local inertial rest frame. In contrast to the Newtonian
case, the relativistic kinematic vorticity does not fully capture the phenomenon of rela-
tivistic vorticity. This is related to the fact that relativistic hydrodynamics does not have
a straightforward Newtonian limit [209]. Traditionally, quasi-local approaches to studying
gravitational thermodynamics use shell observers whose 4-velocities are hypersurface or-
thogonal, avoiding the complications introduced by a non-vanishing twist. For the screen
constructions we consider in Chapter 7, this will turn out to be sufficient, but it is nice to
have incorporated the twist here for applications to rotating screens, where it will certainly
play a role. We also note the appearance of the non-equilibrium contributions to the en-
ergy and pressure, € and 7, to the fluid side of (6.68), which do not appear in the perfect
fluid case (6.14). No new contributions that might correspond with € and 7 appear on
the gravity side. Clearly, these are absorbed into the expansion and normal acceleration,
but is not clear what the appropriate splitting should be. This can likely be determined
by considering a dynamic process such as a null shell collapsing onto an otherwise static
screen, where the distinction between equilibrium and dynamic effects is obvious.
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Now that we have a precise relationship between the gravitational variables represent-
ing the evolution of our screen, and the thermodynamic variables representing the fluid,
we can investigate different screen evolutions and background geometries. We are par-
ticularly interested in determining which situations allow for the construction of physical
screens, how the properties of various screen fluids differ from those encountered in non-
gravitational settings, and which thermodynamic considerations should be used as guides
in formulating a consistent duality between geometry and hydrodynamics.

6.4 Summary

In this chapter we have given the relativistic completion of the gravitational screen formal-
ism first presented in [196], and constructed the map between geometric variables describ-
ing the evolution of the screen ¥ and the thermodynamic variables describing a relativistic
fluid system. With the formalism in place, we can consider explicit screen constructions
and examine the properties of the fluids that arise. We can also assign a geometric inter-
pretation to phenomena appearing in relativistic hydrodynamic systems, with the eventual
goal of providing a quasi-local measure of gravitational entropy and energy through the
‘holographic’ boundary fluid.

Of course much remains to be understood concerning the formalism presented above,
especially in the context of time-evolving screens. We have notably omitted the discussion
of how one should incorporate non-orthogonal boundaries, and the implications of a non-
vanishing twist when deviating from hypersurface orthogonality. Another important task
is to make contact with other well-known results from hydrodynamics. Here we have
focused on the essentials, conservation of energy and momentum, but in principle with the
dictionary in hand, many other gravity equations can be translated into their hydrodynamic
counterparts (and vice versa). For example, in the non-relativistic case one can show that
the radial constraint appearing in Section 6.1.4 can be mapped to the dynamical Young-
Laplace equation that appears in the study of capillary systems [196]. This equation is
purely Newtonian, so in our case we should seek the appropriate relativistic generalization.
The answer is likely given by the Darmois-Israel formalism [210], though it remains to
be seen what fluid interpretation will be given to the screen variables in this relativistic
context.

We would also like to examine the extent to which these screens are in fact holographic,
namely, are there enough degrees of freedom present in the fluid description to reconstruct
uniquely the bulk interior geometry? As ¥ is not achronal, it is not obvious how the
initial-value problem should be cast. The usual theorem concerning the well-posedness of
the initial value problem for Cauchy surfaces (See [56] for example) cannot be extended
to null surfaces, much less timelike surfaces. Only recently has the initial value problem
for timelike surfaces been explored [211,212]. Of course, we take the perspective here that
the background geometry is known a priori, but this is certainly an area that requires
more exploration. Finally, as we have mentioned, we will eventually need to consider
dynamic processes to fully disentangle the dynamic fluid variables from their equilibrium
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parts. With these questions in mind, we will now move on to the direct application of
(6.68). In the next chapter, we will concern ourselves with the simplest examples of screen
constructions to demonstrate how the formalism can be applied, and comment on some of
the salient features of the dictionary.
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Chapter 7

Using the Dictionary

In this chapter, we will explore various concrete applications of the dictionary (6.68).
We will be particularly interested in the extent to which these screens have fluids with
‘sensible’ thermodynamic properties, what kinds of geometries can be encoded by physical
fluids, and what equations of state they possess. Only single-component fluids will be
considered here, and we ignore the internal gravitational interaction. We emphasize that
this chapter is largely exploratory in nature, and there are many open questions concerning
the interpretation of the screen’s fluid properties. We aim to demonstrate how these
properties are determined in the most salient examples, discuss the interpretation of the
results, and comment on future applications and developments for the screen formalism.

In Section 7.1, we briefly discuss the role of the equation of state in our construction,
and its geometric interpretation. In Section 7.2, we construct the gravitational analogue
of the second law, and comment on the link between entropy production in the fluid
and gravitational wave propagation in the bulk. Finally, in Section 7.3 we apply the
gravitational screen formalism to a number of different scenarios, focusing primarily on
static, spherically symmetric backgrounds and screen geometries. We explicitly construct
the screens and determine their equations of state, along with the temperature and entropy
of the screen fluids. We close by highlighting what we have learned and promising directions
for future research.

7.1 Equations of State

The system described by (6.26) has more degrees of freedom than equations. To close the
system we require an equation of state, which describes the relationship between global
thermodynamic variables that arises from microscopic interactions within the fluid, usually
in the form p = p(p, e). This can be derived from the distribution function if one knows
the microscopic physics, though often it suffices to assume a particular equation of state
based on the macroscopic features of the system being considered. With the dictionary in
hand, we can assign a geometric interpretation to the equation of state for the screen fluid.
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Examining (6.68), it is clear that from the gravity point of view the equation of state
will be uniquely determined by the expansion 65 and normal acceleration v,, which are in
turn determined by the screen geometry and evolution (the unit normal and tangent vectors
s, and u,, along with the 2-metric g,). This allows for two approaches: we can either fix
the screen geometry, and ask what equation of state is required to support that geometry,
or fix the equation of state, and determine what screen geometry/evolution arises from it.
We will tend towards the former, assuming a given background geometry and determining
the extent to which physically reasonable fluids can describe the geometry. Note that non-
trivial time evolution for the boundary (such as an expanding screen) generically leads to
time-dependent equations of state, as we will see in Section 7.3.2. Though uncommon, such
equations of state appear in some attempts at modelling the expansion of the universe, see
[213,214] for example. Note that the equation of state for the screen fluid, being completely
determined by the chosen geometry/evolution, will not be affected by our prescription for
assigning a temperature and entropy to the screen fluid. These variables do not have
gravitational analogues in our dictionary, and require additional input to determine.

7.2 Entropy Production

Though we focus primarily on equilibrium scenarios here, it is interesting to discuss the
origin of entropy production in non-equilibrium situations. In relativistic fluids this comes
from two primary sources, viscous dissipation and heat fluxes, the presence of which lead
to deviations from equilibrium. Using the dictionary (6.68), we eventually hope to map
these sources of entropy production directly to the geometry of the screen/spacetime.

As discussed in Section 6.2.1, the statement of the second law of thermodynamics is
that the total entropy of the fluid never decreases, such that

VuS*>0  with S%=spu®+ R? : (7.1)
where R* has non-zero divergence and is a function of the thermodynamic fluxes m, ¢“,
and 7. The equilibrium state of a fluid is characterized by the absence of such transport
phenomena, with 7 = ¢, = 7, = 0. In this case R* = 0, leading to strict equality in
(7.1) and a perfect fluid description. Though R* can in principle be determined from the
full distribution function, this is generally not done. Instead, the form of R® depends
on which description of non-perfect fluids is used. A common framework for discussing
relativistic dissipative fluids is Classical Irreversible Thermodynamics (CIT), in which a
linear dependence of R® on the thermodynamic fluxes is assumed. Upon imposing all the
relevant constraints, one can show that the most general form of the entropy current for
such “first-order” theories is [215]
qa

¢ = 4= 2
S spu +T (7.2)
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The entropy production rate is then
-1
V.5 > a (Habaab + 70+ ¢*(DyInT + aa)) , (7.3)

where we have used the continuity equation and conservation of energy. The first two
terms capture the entropy production due to viscous dissipation, while the rest describe
entropy changes due to heat fluxes. The simplest possible constraints on the right-hand
side that satisfy the inequality are

T =—C0
o = —KT (D, InT + a,)
oy = —200a (7.6)

These represent the constitutive relations of CIT, where x is the thermal conductivity, ¢
is the bulk viscosity coefficient, and 7 is the shear viscosity coefficient. When translated
to the gravity picture, we have that

1/~
VaS" > (@gb@uab + (02 — w(DyInT + aa)> . (7.7)

The first term suggests that viscous dissipation in the fluid maps to gravitational wave
production in the bulk, since this quantity is related to the Weyl tensor Cgp.q in the null
limit. It would be interesting to examine a screen in a gravitational wave background to
study precisely how the rate of entropy generation is tied to the wave propagation in the
bulk.

The second term in (7.7) expresses dissipation arising from the screen expansion, while
the last term is a source term that captures entropy changes due to heat fluxes in the fluid,
which come from matter/energy fluxes through the screen. S* and 7' can only be identified
with a gravitational analogue once the equation of state (i.e. screen evolution) is fixed. As
we will see, spherically symmetric screens in static, spherically symmetric spacetimes have
screen fluids with no heat flux or viscous dissipation.

CIT represents the simplest dissipative framework, with only linear departures from
equilibrium. Inherit to CIT are superluminal diffusion speeds and instabilities, though it
has proven extremely useful in Newtonian regimes and reproduces the correct equilibrium
behaviour of fluids. One can consider higher-order contributions to the dissipative flux
R® to resolve the issues with CIT, as is done in the Israel-Stewart formalism [216]. Here,
contributions to R® which are second-order in the dissipative fluxes are included, giving
enough freedom to cure the causality and stability issues of CIT (though the higher-order
terms often lack a simple physical interpretation). In future work, we hope to translate
well-known results from these frameworks into the gravity picture, and present a clearer
geometric interpretation of the dissipative terms that give rise to entropy production.
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7.3 Static, Spherically Symmetric Screens

In the remaining sections, we focus on the application of the formalism described above to
explicit screen constructions. We start with the general static, spherically symmetric case
in four dimensions. We consider a screen ¥ whose spatial sections S are 2-spheres of fixed
areal radius 7, and a spherically symmetric bulk metric g,, with the general form

2

2 2 7,2 dr
dst = —f(r)“dt +f(r)2

Let f = f(r). The time evolution of S is represented by the timelike hypersurface 3, whose
metric defined in terms of the spacelike normal vector s, = [0, f~1,0,0] is

+ 1% (d6® + sin®0 d¢?) . (7.8)

hab = Gap — SaSp = — f2dt* + 12 (d92 + sin?6 dqbQ) (7.9)
with s,s* = 1. The extrinsic curvature of ¥ is given by

2f

Hay, = hehV,sq = diag [—f’f2, 0,7f,rf sin26] , H=f+=—= (7.10)
r

where f = f(r) and primes denote derivatives with respect to r. Recall from Section 6.1
that the energy-momentum tensor on ¥ is
~ 1

Sab = %(Hhab - Hab) =

1

S (7.11)

where H denotes the trace of H,,. The non-zero components of Sy, are

2 3
Sy = 2
r
Seo =1°f" +rf (7.12)
Sps =1>f'sin® 0 + rf sin 0
We now choose u, = [—f,0,0,0] to be the timelike vector field tangent to ¥ normalized to
ugu® = —1. Recall also that the twist vanishes in the spherically symmetric case and that

ues® = 0. The extrinsic geometry of S is given by

Ouar = 0, Ouap = diag [0,0, 7 f,7f sin6] (7.13)
where the trace parts are
0,=0, 0,= —% . (7.14)
The normal one-form representing the fluid momentum density is
wa = q (s Vau’) =0, (7.15)
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and the normal accelerations are
Vs = —Ups*Vas® =0, Y = SputVoul = f . (7.16)

Rescaling the above according to (6.67) and using the dictionary (6.68) it is straightforward
to translate these quantities to their fluid counterparts. We summarize the results in the
table below.

Fluid Quantity Gravity Quantity Value
—0,, _f2
Energy Density (e) SW% 47T£’l“
+ 504 1 2
2D Pressure (p) % G (ff/ + f7>
Fluid Expansion (6) 0, 0
fzwa
Heat FI a — 0
eat Flux (¢q) e
Viscous Stress (I1,) —Osab 0
Shear (o) Opab diag[0,0,7f2, 7 f%sin? 6]

What can be said about the general properties of a fluid described by the table above?
From the fluid point of view, entropy production comes from two sources, viscous dissipa-
tion and heat flux. As we have seen, the (local) entropy production rate for the fluid in
terms of the screen variables is

1/~
VaS* > (@gb@uab + (02 — w(DyInT + aa)> , (7.17)

Notice in particular that for static screens in static, spherically symmetric spacetimes,
My ~ Ouw) = 0, so there is no viscous dissipation, and since there is no heat flux,
Qo ~ wq = 0, there is no entropy production. A perfect fluid description will therefore arise
in all static, spherically symmetric background geometries. Notice also that this means
the constitutive relation is O5(0,) = 0 which is the constitutive relation of a fluid with
vanishing shear viscosity. The equation of state may however be highly non-trivial owing
to the functional forms of e and p. This will be clear when we specialize to particular
background geometries in the following sections.

7.3.1 Static Screens in Minkowski Space

Now let us take the results above and apply them to some explicit examples. We consider
first the simplest case of a static screen of fixed areal radius r in Minkowski space. We
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work in units where G = 1. The bulk metric (outside the screen) is simply
ds® = —dt* + dr* + r?dQ* . (7.18)

The unit vectors tangent and normal to the screen are s* = [0, 1,0, 0] and «® = [1,0,0,0].
The screen has the following stress-energy tensor

S = diag [—2/7,0, 7,7 sin’ 0] (7.19)

and bare geometric quantities

®sab:0 @uab:O
1

s = — 0,=0
4rr

vs =0 Yu=0".

Since the fluid expansion # vanishes (it is mapped to 6,,), equation (6.48) reduces to n =0
which implies that n = const. and we are justified in using (6.36). Using the dictionary,
the energy density and pressure of the screen fluid are found to be

1 1
_ - 7.20
¢ 4rr p 8rr ( )

The equation of state is therefore
e(p)=—-2p <+— ple)=—3c, (7.21)

which is the equation of state of a barotropic fluid' This fluid has the familiar equation of
state from cosmology, p(e) = we with w = —%, which appears in some quintessence and
k-essence models [208]. The strong and dominant energy conditions are satisfied, though
the speed of sound ¢? = dp/de is imaginary, so classical perturbations are not supported.

In Figure 7.1 we plot e, p, and e + p as a function of the screen radius r.

We can now use the Euler relation along with the first law (6.36) to determine the
entropy and temperature of the screen fluid. Two very different cases arise depending on
whether a chemical potential p is included? in the fluid description. We analyze these
separately as the limit u — 0 is subtle.

LA barotropic fluid is a fluid whose energy density depends on pressure only.
2Recall that p has no gravitational analogue in our dictionary, and is thus unspecified.
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Figure 7.1: Energy density e and pressure p of the static, flat screen.

Vanishing chemical potential (= 0)

We begin with the case of vanishing chemical potential. This is reminiscent of a photon
fluid or non-interacting Bose-Einstein condensate, though the equations of state of those are
rather different than the one we see here. With no chemical potential, it is straightforward
to solve (6.36) for the entropy density of the fluid. We have that

/%:/ de | s(e) = Ce? . (7.22)

e+p

where C' is a positive integration constant which we take to be unity. We can express this
in terms of the screen radius r as

s(r) = {622 (7.23)
The temperature is:
r— (=Y T(e) = ~, T(r) = —2 (7.24)
=7 €)= 5 r) = —=2nr )

Figure 7.2 shows a plot of the temperature, entropy density, and total entropy of the screen
as a function of the screen radius r. The entropy density scales like ~ 772 so the total
screen entropy is independent of the size of the enclosed space. This is a reassuring since
from the outset we were hoping to somehow attribute the fluid entropy to the curvature
of the enclosed region.
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Figure 7.2: Temperature T', entropy density e, and total entropy S as a function of screen
radius r for the static, spherically symmetric screen in Minkowski space.

From Section 6.2.2, the conservation of energy and momentum equations for a perfect
fluid are

e+(e+p)f=0 — O+ (ya— 305)0u=0
(e+pla.+Dp=0 — (yu— %Hs)uc + D(yu + %95) =0

Notice that since 65 and u® are constant and 6, = 0, the conservation equations are trivially
satisfied (as they should be). The temperature being negative is not particularly surprising
because e < 0 for any finite screen. That the fluid energy density is negative is a common
feature in such programs (indeed, in the membrane paradigm the identification e ~ —6g
is the same), and arises from the binding energy associated with the gravitational field.
On the other hand, one can demand that the properties of the fluid resemble those of a
traditional one to the greatest extent possible, and explore the consequences of the demand.
That the energy density is negative is unavoidable, but perhaps a more sophisticated model
can give rise to positive temperature fluids. Next, we will examine whether a non-zero
chemical potential can resolve these issues.

Non-zero chemical potential (u # 0)

With a non-zero chemical potential, the geometric properties of the screen are identical
to the preceding case; it is only the thermodynamic description that changes. In particular,
the Euler relation becomes e + p = T's — un, which combined with the first law gives

d d
/iz/——i—. (7.25)
] e+p—un

To solve this integral, we must specify the functional dependence of the chemical potential
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on r. Let us assume a constant chemical potential. We then find

1 2

s(e) = (e —2un)*> <« s(r) = <— + Q,un) (7.26)
Ay
1 —2mr

Te)=——— <+ Tr)=——. 7.27
(€) 2(e —2un) (r) 1+ 8mrun (7.27)

Positivity of T' thus requires choosing a chemical potential such that

-1

pn < — (7.28)

8rr

Since 7 > 0 and n > 0, this implies that the fluid must have negative chemical potential,
as in most classical gases and in quantum bosonic gases. In Figure 7.3 we plot the entropy
density s, total entropy S, and temperature T for fixed r, showing that for a particular
choice of chemical potential there is a minimum screen radius that can be supported before
the temperature becomes negative, namely when un = —1/87r. The entropy density
approaches a constant value 4(un)? as r — oo and T approaches —1/4un. The total
screen entropy grows like ~ 72 at large 7.
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Figure 7.3: Total entropy S, entropy density s, and temperature 7" of a gravitational
screen at fixed radius in flat space with un = —9. The dashed line corresponds to the
minimum supported screen radius, below which 7" < 0. e and T are rescaled to fit on the
graph.

It is clear that even in the absence of curvature, the screen entropy is non-zero and in
fact increases with the size of the region bounded by the screen. Of course, flat space is
scale-invariant, so it is surprising that there is a dependence at all on the screen radius. In
this way the example with @ = 0 is somehow more sensible, though the energy density of
the fluid there is still non-zero even though we have assumed a flat, vacuum spacetime.

The lesson appears to be the following: it does not make much sense to speak of
gravitational screens with physical boundary stress tensors in the absence of curvature. In
some ways this makes perfect sense. We are effectively excising a region of the spacetime
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when we impose the membrane-like conditions on the screen’s extrinsic curvature ([H] —
H), which now acts like a boundary in the spacetime. This necessarily induces a non-
trivial surface stress-energy due to the junction conditions, which an external observer
would find puzzling as the spacetime is presumed to empty in the first place, having no
gravitational content. Only a completely trivial fluid would then match their expectations.
That the total screen entropy grows with the size of the screened region indicates that
some kind of flat space background contribution is being counted, which one could hope
to remove through some renormalization procedure. However, one still has to deal with
the issue of scale invariance and the instability that occurs when the screen becomes too
small. Perhaps then, one can only assign thermodynamic meaning to the gravitational
screen when there is something non-trivial to screen, though certainly more work needs to
be done to understand the Minkowski example.

7.3.2 Accelerating Screens in Minkowski Space

In this section we briefly consider a spherically symmetric screen in flat space that is
accelerating radially outward with constant acceleration a to illustrate some difficulties
that arise for non-static screens. The metric outside the screen is

ds* = —dt* + dr* + r*dQ? (7.29)
The velocity of an observer on the screen is u® = [cosh(at), sinh(at), 0, 0] and the spacelike

unit normal to the screen is s* = [sinh(at), cosh(at),0,0]. The screen radius is r(t)
a~1 cosh(at) with area A = 47r(t)%. The stress-energy tensor of the screen is

(24 cosh?(at) —2atanh(at) 0 0 ]
—2atanh(at) —2asinh?(at) 0 0
Sab = 0 0 cosh®(at) (1 + cosh(at)) 0
a
0 0 cosh®(at) (1 + cosh(at)) sin®(6)
- a/ -
and the following bare geometric quantities:
cosh?(at) 0 tanh(at) 0
_ — a
Osa = cosh?(at) sin®(0) Ouar = 0 tanh(at) sin®(0)
a a
C':)sab =0 éuab =0
0s = 2a 0w = 2atanh(at)

vs = —asinh(at)

Yu = a cosh(at)
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The energy density and pressure are therefore

e = 2a, p = —a(1 + cosh(at)) (7.30)

ple) = —% <1 + cosh (%)) (7.31)

This satisfies the perfect fluid conservation of energy equation

giving an equation of state:

¢+ (e +p)0 = Dybs — (yu — 305)04
= 2a” tanh(at) ( cosh(at) — 1) — 2a tanh(at)(a cosh(at) — a)
=0

as well as conservation of momentum

(6 +p)QCbub + dcp = _(7u - %es)qwub - dc(")/u + %95) =0

however notice that the equation of state p(e) is now time-dependent. Such equations of
state, though far less common than their time-independent counterparts, have recently been
considered in cosmology where dark energy is modelled as a fluid with an inhomogeneous
equation of state [217-219]. We note that constant acceleration is not required for this to
occur; a time-dependent equation of state is a generic feature of non-static screens. In the
present case, that screen observers experience a local acceleration a means that in principle
the screen temperature should be related to the Unruh temperature. We leave the analysis
of these types of screens for future work.

7.3.3 Schwarzschild Screens

We now turn to the important case of the Schwarzschild background, considering a gravi-
tational screen X with fixed areal radius r > 2m centered at the origin of the Schwarzschild
chart. We will focus here on the case of a non-zero chemical potential, and comment briefly
on the issues one encounters if g = 0 is chosen. The background metric is

2
ds? = —f2di? + f2dr +0%d95,  f = fr) = [1- = (7.32)

where m is the ADM mass of the black hole. The timelike unit vector tangent to the screen
is u® = [f71,0,0,0] and the spacelike unit normal to the screen is s* = [0, f,0,0]. The
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non-zero components of the stress-energy tensor on the screen are

2 3
Stt:—i
T

Sgg = 7’2f/ + ’/’f
Sps =12 sin® @ + rfsin 0

and the bare geometric variables are

@sab:O @uab:O
2

Gsz—f 0. =0
r

75 =0 ’Yu:f,.

This represents a fluid with

r—2m r—m N r—3m
= — (& =
Amr2 p 8mr2’ p 8mr2

€ = —

(7.33)

(7.34)

The figure below shows the behaviour of e and p as well as their sum e + p as a function
of the screen radius. The Schwarzschild case is rather more complex than the static flat
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Figure 7.4: Energy density e, pressure p, and enthalpy e + p for a gravitational screen at
fixed radius outside of a Schwarzschild black hole of mass m = 1. The horizon is indicated

by a red dashed line.

case, since r(e) is given by the solution to a quadratic now, with solutions

—1 — 14 32mme

B —1 4+ +/1+ 32mme

(7.35)

ri(e) = , Tao(e)

8me

8me
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There are two branches of solutions that must be considered together. Subscripts on
quantities label whether they correspond to branch 1 or 2 of (7.35). The resulting equations
of state are

B 1 —16mme — /1 + 32mme

pi(e) = 647m

B 1 —16mme + /1 + 327me

7.36
64mm ( )

) b2 (6)
This is the equation of state of a barotropic fluid (as in the flat case) though the dependence

of pressure on energy density is no longer linear. Expanding p(e) for small m shows that
branch 1 limits to the flat case considered previously:

+ 2me*m + O(m?) . (7.37)

pi(e) = —3e — 2e*mm + O(m?) | pa(e) ~ R -
As long as r > 2m, classical perturbations are supported by this fluid. At r = 4m, de/0p =
0 and so the sound speed ¢, diverges, indicating the fluid has become incompressible. We
again determine the entropy density from the first law and Euler relation. For p;(e) we

have
de 64mm de
| _ _ 7.38
n(s(e)) / e+ / 1+ 48m™me — /1 + 32mme — 64mmun ( )
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Figure 7.5: Equations of state e;(p) and es(p) for the Schwarzschild screen, with m = 1.
The first branch has a well-defined m — 0 limit while the second does not.

Evaluating the integral explicitly, the entropy density and temperature can be found as
functions of the screen radius and mass parameter:
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-1 r—6m
(2r2(1 — 32wmun) + 8m(3m — 27“))4/3 4 tanh (r\/12+9(56m>

= 7.39

s1(r,m) r8/3 °xp 31+ 96mmpun ( )
2/3 4tanh™! (—r Gmﬂ_ciz )

Ti(r,m) - — (7.40)

B 128mm( —m (87r2un +r —3m)) P 3v/1+ 96mmun

In Figure 7.6 we plot these as a function of screen radius for fixed mass and un, along with
the total screen entropy S(r) which is just the density integrated over S.
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Figure 7.6: Total entropy S(r), entropy density s(r) and temperature 1" of a gravitational
screen at fixed areal radius r in a Schwarzschild background with m = 1 and un = —0.01.
T and S are rescaled to fit on the graph. The dashed red line corresponds to the event
horizon r, = 2m.

The temperature and entropy density approach constant values at large-r, while the
total entropy increases without bound (as in the flat case). As the screen fluid replaces the
interior of S, we interpret this entropy as the entropy of the screened region. However,
we still need to develop a renormalization/subtraction scheme to correctly remove the
‘vacuum’ contribution to the entropy arising in Minkowski space. The correct way to
account for the flat space contribution remains an open problem in our work. In any case,
what will remain true is that the entropy achieves a finite value at the horizon, which can
be normalized to give the Bekenstein-Hawking entropy through the integration constant
(which we had set equal to unity previously). Let us assume such a normalization, so that
s & 1/4 for a screen very close to the horizon. The limit as ¥ — 9H is a null limit where
u® — s and 6, — 0. Close to the horizon, the expansion will be negligible compared to
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the normal acceleration ~,. From the Euler relation® and the dictionary we have:

r

Y | 2
Ts=e+p:%8—;t:§<ff’+f> (7.41)

Let € = r — 2m and perform a near-horizon expansion ¢ — 0. With the entropy density
defined above, this becomes

Tom— 4+ 0() — Tr—— (7.42)

~ 32rm

which is just the usual Hawking temperature of the Schwarzschild black hole. This is
not surprising because in this limit the normal acceleration, which is equal to the surface
gravity k, dominates over the expansion. In the null limit the temperature becomes exactly
T = 1/8rwm. This limit coincides with the membrane paradigm, where a near horizon
expansion is assumed, while our formulation does not require the screen to be close to the
black hole. As the screen is pulled back from the horizon, the temperature defined above
receives corrections due to 6y« becoming non-negligible. It remains an open question as to
what meaning to assign to the fluid temperature. Away from the horizon it is not simply
equal to the redshifted Hawking temperature, though it is comforting that our formalism
can incorporate well-known results from the special case of a horizon-like screen.

7.4 Summary

In this chapter, we have given some explicit examples of screen constructions, focusing on
spherically symmetric and static examples. We have shown that for such cases, a perfect
fluid resides on the boundary ¥, whose equation of state is sensitive to the background
geometry. We have also shown that time-dependent screen evolution generically leads to
time-dependent equations of state, leaving the analysis of these situations for future work.
Though the interpretation of the Minkowski space screen is difficult, in a Schwarzschild
background things become more clear. We are able to consistently derive the equation of
state, temperature, and entropy of the screen fluid, noting that since we are working at the
purely classical level T" and S can only be determined up to a constant. One approach to
arrive at an explicit result for these quantities is to take the limit as the screen approaches
a surface whose entropy is known. We show this in the case of the event horizon, where
the fact that we should obtain S = A/4Gh in the limit where the screen approaches the
horizon can be used to fix the normalization and determine the fluid temperature, which
is found to be the Hawking temperature.

We remark again on the fact that 7" and S are unspecified in the dictionary (6.68).
Though not surprising, this means that determining the entropy and temperature of the
screen fluid requires additional input. We appealed to the Euler relation to do so, noting

3Note that in the null limit we must have that u — 0 otherwise the temperature will receive a (constant)
correction +pun.
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that the inclusion of the chemical potential term pn was essential if one demands ‘reason-
able’ fluid properties. Of course, the screen fluid can never fully resemble a traditional
fluid; at the very least the energy density is negative owing to the attractive nature of the
gravitational interaction. This does not, however, prevent us from using the tools of rela-
tivistic hydrodynamics to examine the properties of such a fluid. One apparent subtlety in
our application of the Euler relation is important to mention. Recall that it was derived
not from the extensivity of S, V| N, but rather the assumption that the internal energy is
a homogeneous function of degree one in these variables. There are examples where this
is not the case, leaving the possibility of different constructions for 7" and S. This was
the case in Chapter 2, where a black hole in a finite radius cavity was shown to satisfy
e +p = 2T's instead, so the energy is a homogeneous function of degree one-half in .S. To
avoid potential ambiguities in the choice of Euler relation, one can instead appeal to the
experience of local screen observers to assign a temperature to the fluid. For example, the
motion of fluid observers on the fixed-radius Schwarzschild screen is not geodesic. Near
the horizon, they appear to be locally Rinder observers, and in a semi-classical setting
can be expected to experience a temperature 7' = a/27m where a ~ x. This is also true
of the accelerating screen observers, and can perhaps be used as a guide for assigning a
temperature to the screen fluid without any assumptions about the Euler relation. We
leave this interesting possibility for future exploration.

This concludes our construction and first application of the relativistic gravitational screen
formalism. Though we have highlighted many open questions concerning its interpreta-
tion and technical construction, we hope to have also demonstrated the potential of the
framework in answering fundamental questions about the holographic nature of gravity.
We hope to eventually devise, in a consistent way, quasi-local notions of the entropy and
energy of arbitrary gravitational systems, and most of all, provide an avenue for under-
standing geometric phenomena through a completely different lens.
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Epilogue
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What have we learned?

In Part I of this thesis, we investigated the thermodynamics and phase structure of
a number of asymptotically de Sitter black hole solutions. In Chapter 1 we found that
in the Einstein-Maxwell case, uncharged black holes exhibit first-order HP transitions
with a locally stable supercooled region. Charged black holes showed pressure-dependent
compact small-large phase transitions indicated by a ‘swallowtube’ in F' — T — P space,
whose coexistence line terminated in the P — T plane at two second-order critical points.
This swallowtube is a feature unique to de Sitter, and arises from the presence of the
cosmological horizon rather than the cavity. In Chapter 3, we showed that Born-Infeld
black holes exhibit this same swallowtube structure, though when the BI parameter b is
small, each constant-P slice contains a reentrant (small-large-small) phase transition. We
also demonstrated the first example of a radiation-black hole-radiation transition in the
grand canonical ensemble. In Chapter 4, we examined Schwarzschild-de Sitter black holes
with a conformally coupled scalar field. We found that HP transitions occur generically,
though the scalar field introduces a cosmic censorship bound which places restrictions on
the choice of cavity location. Finally, in Chapter 5 we investigated Gauss-Bonnet-de Sitter
black holes in D > 5, where we found small-large transitions with a minimum temperature
when the GB coupling is positive.

In all cases we derived the various thermodynamic potentials that entered into the
appropriate generalizations of the first law, and verified that the Smarr relation can be
suitably extended. We also showed that the analogy between HP transitions and liquid-
gas van der Waals transitions are not as universal as once believed. Though ubiquitous in
AdS spacetimes, they appear to be absent in de Sitter, at least when a cavity is used as the
equilibrating mechanism. This is despite the fact that on the surface, the cavity appears
to play the same role as the asymptotic structure of AdS. The presence of the cavity
necessarily modifies the equation of state in a non-trivial way, such that the oscillations in
the P—V plane characteristic of the liquid-gas transition do not appear. More work should
be done to understand fully whether such transitions are possible. At the very least, we
have shown yet another example in which AdS is a truly unique space.

In Part II, we generalized the gravitational screen formalism by promoting the fluid side
to the relativistic, dissipative regime, and incorporated the twist €., on the gravity side. We
constructed the dictionary, relating in a consistent way the geometric and hydrodynamic
variables, and discussed the interpretation of the map. We showed how entropy production
is linked to gravitational wave generation, and provided an avenue for exploring higher-
order dissipative frameworks from a geometric point of view. We examined a number of
examples of screens, finding the equation of state of the holographic fluid and determining
its entropy and temperature. We found that in the limit as a screen approaches the horizon,
we formally recover the membrane paradigm, and can deduce that the temperature of the
black hole is approximately equal to the Hawking temperature, with corrections arising
from the separation between screen and horizon. We also show that the screen entropy
can be tied to the curvature of the exterior Schwarzschild geometry, though the question of
how to normalize this quantity remains unanswered. Finally, we demonstrated the critical
role the chemical potential plays in the holographic description.
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From a broader perspective, I hope to have convinced the reader that the study of the
thermodynamic aspects of gravity is worthwhile, interesting, and an essential part of our
journey towards a deeper understanding of the fundamental nature of reality. There are
three main lessons from the present work that I would like to emphasize.

The first is that in a thermodynamic context black holes possess an extremely rich and
interesting phenomenology, especially in their phase structure where many analogies to
everyday thermodynamic systems arise. That black holes display behaviour akin to the
evaporation of water, supercooling of helium, quark deconfinement, and much more, speaks
to the universality of the coarse graining procedure and the power of thermodynamics in
physics. We have also seen that gravity in many contexts behaves no differently than these
ordinary systems, despite the unique role the gravitational interaction takes on among the
fundamental forces. In this work we have shown that despite many technical difficulties,
these ideas and phenomena can indeed be extended to asymptotically de Sitter black holes,
which display an equally varied and interesting thermodynamic landscape.

The second is that there is much subtlety in even these equilibrium contexts, and one
should always be mindful of the physical interpretation of their framework (where possible).
My experience is that we are often too easily satisfied with the state of affairs once a notion
of equilibrium is available for our system, where it is often thinly disguised behind the first
law. In de Sitter, there are a number of ways to formally achieve equilibrium in the sense
that one has something resembling the first law, but the interpretation of such a law takes
on a dramatically different meaning in each context. Indeed, sometimes one doesn’t really
have equilibrium at all despite a first law appearing. Our cavity approach has a simple
physical interpretation: the black hole is being placed in a reflecting box. One could even
imagine some advanced civilization doing this in the laboratory. However, we have seen
that in many cases this reflecting box has a profound impact on the phenomenology. Many
situations where one might have guessed the thermodynamic behaviour would mirror the
AdS case turned out to be strikingly different. The broader lesson here is that one should
always be mindful of the assumptions that form the basis of the system at hand, and not
be hasty in judging two situations to be similar based on surface-level features.

The third is that much can be learned by looking for connections and relations between
disparate systems. Theoretical physics centers around constructing mathematical models
to explain observed phenomena, and these models are at some level nothing more than a
collection of labels with rules for their manipulation. Often times, when a simple relabelling
relates two models describing completely different systems (as was the case in Chapter 7),
it reveals profound and deep connections between those systems. This has proven to be
the case many times over (in the relationship between supergravity and conformal field
theory [4], between asymptotic symmetries and the gravitational memory effect [220], etc.)
often revealing an underlying unifying theory which explains both facets, as was the case
with electromagnetism. It is not surprising then that the greatest ideas and inspirations
often emerge at the intersection of different fields, and we should always strive to integrate
the vast pools of knowledge available from others into our own endeavours.
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Where do we go?

Though I have touched on many unresolved questions both conceptual and technical
throughout this work, there are three avenues of exploration that I would like to highlight
as being especially interesting and relevant for future investigation.

Rotating Black Holes

Much of our motivation for studying de Sitter black hole thermodynamics, especially
compared to the well-known AdS cases, comes from their astrophysical significance. As-
trophysical black holes are almost certainly of the Kerr-de Sitter variety; as nearly all
observable stars rotate [221], there is little reason to expect that a black hole would form
with zero angular momentum (at least, a vanishingly small probability of doing so). Clearly
then, we should extend our analysis to these Kerr-de Sitter black holes, the likes of which
have been studied extensively in asymptotically AdS space. Beyond the issues already
present in de Sitter, Kerr black holes complicate matters further as there is no real Eu-
clidean metric associated with a rotating black hole. One can consider complex metrics
which yield a real thermodynamic action, but the interpretation of such constructions is
not entirely clear [95]. The choice of cavity geometry is also more subtle. A natural choice
may be a set of zero angular momentum observers (ZAMOs), such that the cavity is ax-
isymmetric and rotating with the black hole. Such observers however do not rotate at the
same angular velocity as would be required for a heat bath to be in equilibrium with a
Kerr black hole. Exploring these questions will be an important step towards elevating our
understanding of thermodynamics in de Sitter space to the same degree that anti-de Sitter
space enjoys.

The Dual Description

As we have mentioned, there has been significant interest in the phase structure of
AdS black holes owing to their dual interpretation in AdS/CFT, though we stress that the
implication these exotic bulk transitions have for their corresponding boundary CFTs is
not often explored, and should be. Can we hope to learn something about strongly coupled
systems from de Sitter thermodynamics? There has been some work towards realizing a
dS/CFT correspondence in analogy with the well-known AdS/CFT examples [39], however
the situation is significantly more complicated for de Sitter. This stems from the serious
problems one faces when attempting to construct a stable de Sitter vacuum in string the-
ory, about which a number of no-go theorems have been formulated [222,223]. The issues
arise from the fundamental role that boundary correlators play in string theory; in AdS
the natural boundary is timelike, while in de Sitter the spatial sections are compact. Still,
there is at least one example of such a correspondence between bulk dS; and a CFT on
the S? at null infinity [39], though the precise form of the bulk theory is not known. In
any case, it is natural to ask what interpretation these Hawking-Page-like phase transitions
have in the context of dS/CFT, if they can at all be realized there (our cavity is at a finite
radius after all). This connection certainly warrants more exploration given the wealth of
insights we have gained from studying the AdS case.
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Unifying Frameworks

The gravitational screen formalism, being quite general in its construction, should be
able to realize many interesting limits. We have already shown (though not in explicit
detail) how one can recover the results of the membrane paradigm by taking the limit as
the gravitational screen approaches the event horizon of the black hole. Already in the
membrane paradigm, the first law of thermodynamics as discussed in Part I is manifest, so
in this sense the screen formalism can rather trivially recover known results from black hole
thermodynamics. In principle, we should be able to consider an appropriate limit where
the screen tends towards the boundary of some asymptotically anti-de Sitter space, and
in so doing recover the fluid/gravity correspondence as well. It will also be interesting to
examine how the screen construction relates to the cavity approach we pursued in Part I,
having a similar ‘boundary thermodynamics’ flavour. The explicit demonstration of these
various limits would serve to unify these opposing views on gravitational thermodynamics
into one coherent framework, something we hope to eventually achieve.

Non-equilibrium Systems

The study of black hole thermodynamics rests firmly in the realm of equiltbrium ther-
modynamics. We operated at all times under the assumption that the timescales involved
(evaporation for example) are large compared to the typical equilibration timescale of the
system, assumed all evolution was quasi-stationary, and ignored entirely any backreactions
that might be present from Hawking radiation. Even in our treatment of gravitational
screens and their dual hydrodynamic interpretation, we focused mainly on static cases
where a perfect fluid (equilibrium) description arises. This leaves open many questions
(some of which we touched on in Chapter 7) about the nature of entropy production and
viscous dissipation, which arise from distinctly non-equilibrium processes. It is clear, how-
ever, that eventually nonequilibrium processes must be considered if we are to uncover the
statistical mechanical nature of gravitational entropy. Consider the example of Hawking
radiation, where the result Ty = (87m)~! is really just constraining the asymptotic form of
the density matrix at Z,. It says little of the dynamics of the radiative process, yet many
of the apparent ‘paradoxes’ arise due to the equilibrium approximation, and are perhaps
resolved by moving away from this regime [224]. In our screen formalism, we saw that there
is an ambiguity in the splitting of the viscous and equilibrium parts of the pressure and
energy, something which undoubtedly will require us to consider dynamic processes where
these can hopefully be separated. The point is, only so much can be done at equilibrium.
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Closing Remarks

Above all else, I hope to have conveyed that the subject of black hole and gravitational
thermodynamics lies at the center of a dramatically interconnected web. Throughout my
work in this area, I have experienced a regular amazement at the frequency with which
concepts from different fields find application in unexpected areas. The most impactful
ideas often result from a confluence of knowledge from across these areas, while ignoring
(or lacking the ability to translate from) other fields has frequently stagnated progress. I
hope that my work here contributes in some small way to our collective understanding of
black holes and the gravitational interaction, and that I have perhaps added a strand or
two to the web of theoretical physics.
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Appendix A

The Reduced Action

Here we demonstrate the evaluation of the reduced action I, for Einstein-Hilbert-
Maxwell gravity using an alternative method where the action is written as a total deriva-
tive, rather than being explicitly integrated. We begin with the action

1
[=-1— d4x\/_( — 20+ F?) + 8—/ Eavk (K — Kp) (A1)
T
and the following ansatz for the metric in terms of the radial coordinate y € [0, 1]:
ds® = f(y)*dr* + a(y)?dy® + r(y)*dQ? (A.2)

The horizon is located at r, = r(0), and has topology S?. The boundary has topology
St x 8% is located at y = 1, and has an S? component (the cavity) with area 47r?, where
r. = r(1). The temperature of the boundary is given by the proper length of the circle S*:

1=8= /0 ’ f()dr =2 f(1) (A.3)

The requirement that the horizon be §? immediately implies that f(0) = 0. This requires
further that
f/

«

=0 (A4)

y=0

in order for the near-horizon geometry to be flat. With the constraints in place we first
examine the bulk part of the action:

1

Tor d491: V9 (R—2A+ F?) (A.5)

Iv = —

The Ricci scalar can be evaluated for the metric (A.2), giving

R 2’ 2f"  4r'f! N 4o N 2 2(r)?
 fad  fa? rfa? ra® 2 202
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where primes indicate derivatives with respect to y. The field strength tensor is F,, =
0,4, — Oy A,. For a static, spherically symmetric spacetime, the gauge freedom allows us to
write A, = A,(y) with all other components vanishing. The boundedness of A, at y =0
and y = 1 requires

_ kBo

A, (0)=0,  A(1)=—~ (A7)

where ¢ = ¢(0) — ¢(1) and k is a constant. With this, the Maxwell part of the action
reduces to:

2(A/)2
a? f2

Substituting (A.6) and (A.8) into (A.5) and performing the integrations over 6 and ¢ gives:

]M _ /dy " [Tzill N TT/f/ N T’I“”f B Oé_f (7,/)2f r2afA B TZ(AI)2:| (Ag)

F? = F,F* = (A.8)

Q@ « 2+a+2 2acf

Next we solve the Hamiltonian constraint G7, + Ag™, — 87717, = 0 for A and insert it into
(A.9). The electromagnetic contributions cancel and we are left with:

2 rn ! £ / /
IM—/dydT {Tzi Lt +Wfo‘} (A.10)

« o?

Now we turn to the boundary action. The electromagnetic boundary term makes no
contribution, with the charge-dependence entering only through the metric function. We
are left with:
Towi = - dPr Vi (K — Ko) (A.11)
8T Jom
K is the trace of the extrinsic curvature of the boundary surface, k is the metric on that
surface, and the subtraction term K is chosen such that I =0 when m = 0. K is defined
in terms of the radial spacelike unit normal vector to the boundary s* = s¥ = a~!(y) which
gives
rf' 4+ 2r'f

K = K, K =
rof

(A.12)

where Kup = koky¥V osq and kap = gap — SaSp is the metric on the boundary. Using (A.12)
in (A.11) and integrating over ¢ and 6 gives:

2 £/ ! 2 K.
IaM:_/dTTf—i-rrf—f—Tfo (A.13)
2cv o 2 y=1
The full action is therefore:
211 ! £l / / 2 £ / 2 K
I:/dydTrf+rrf+rrfa _/dTrf+rrf+rfo (A14)
20 ! o? 20 a 2 =1

Before proceeding further, we return to the Hamiltonian constraint, rewriting it as a total
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derivative with respect to y:

(r')? 1 2r" 2r'al q*
G, +Ag,—87T", =0= R 9
Ay T r2a?2  r?2  ra? ras TAT 7
N2
B 1, 2 (ra—rwy i
0= 72 ro ( o2 ) A+ rt
1 "\ 2 / q*
027"27'/ T (a) —1 +A+T'_4
/
"\ 2 A 17’
0 — R | T — g% | 2 A.15
[((a) ) 5= 1] (A15)
This is then integrated to obtain
"\ 2 C ¢ A
Ty o b e AT A16
(a) + r + 72 3 ( )

The integration constant is found by requiring that the near-horizon geometry (the y — 7
plane near y = 0) be isometric to R?, and that the Euler number be x = 2. With the
given metric, these conditions imply that

f =1, (T_I>2 =0 (A.17)

y=0

The second condition, along with (A.9) and the fact that r(0) = r, gives that

2 3
g Arp,
C=—rp— + 40 A.18
Th Th+ 3 ( )
which leads to
"\ o ¢ Ay @ Ar?
S IR o O STt St
(a) r rhr+3r+r2 3
2
Th q A 2 2
— (1) (1oL 2 Al
( r)( o 3( +rrh+rh)) (A.19)

We now use the conditions (A.17) along with integration by parts and the product rule
multiple times to rewrite the action (A.14) as a total derivative in y:

I = /dydT |:(K02?"2f) B (Tgf)/] — /OQTFdT [K027°2f — 7’7;]”}

y=1

(A.20)

y=0
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Finally, we use the fact that f(0) =0, (1) =r., 5 =27f(1), and (A.19) to arrive at:
2 2 / y=1 2 2
I:/ dT{KOTf rrf] —/ dT|:T—:|
0 2 o}
2
o[BI s ()]
2 a
q*

=B, [K;rc - \/<1 — 7"_) <1 T 2(7"2 + rery + Th)) ] — 7} (A.21)

As noted in the main text, we choose Ky such that the action vanishes when m = 0 (which
implies ¢ = 0 and 7, = 0). This requires

=0

Ko = —4/1—=¢ (A.22)

which is easily verified to be the trace of the extrinsic curvature of the boundary when
m = 0. With this choice we arrive at the reduced action:

/ 2
I= ﬁrcl Ar \/ 1—— 1— a —é(r§+rcrh+ri)>] —mry (A.23)
e 93

In this way, we avoid direct radial integration of the bulk action, which may be very difficult
to do analytically. However, it may not always be possible to write the action as a total
derivative.
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Appendix B

Replacing Spacetime with Screens

Here we review the junction conditions that lead to boundary stress tensors in the
presence of metric discontinuities. We also clarify the difference between merely positing
a surface within a spacetime, and treating the surface as a boundary of that spacetime.

Consider a hypersurface ¥ with normal vector field n® which separates two regions V,
and V_ of spacetime, with respective metrics g}, and g_,. We can write the full metric as
a distribution-valued tensor

gar = O() g, + O(=1)gy, (B.1)

where O(!) is the Heaviside distribution and [ is an affine parameter along congruence of
geodesics which orthogonally pierce the boundary, chosen such that [ = 0 at X. Then,
using (B.1) one can evaluate the Riemann tensor, finding that

R%ea = O() R g + O(—=1) Ry + 6 (1) A%eq (B.2)

where
A%eq = D] ne — [[%] na (B.3)

and square brackets indicate the discontinuity of the quantity across . There is an appar-
ent curvature singularity (the third term) at the boundary X. Inserting the above into the
field equations, one can absorb the delta function part of the singularity into a contribution
to the stress-energy tensor as

Tup = O()T}, + O(~1)Ty + 6(1)Sus - (B4)

The last term has the interpretation of the stress-energy of a thin shell on the boundary
Y. Some algebra allows one to write S, in terms of the induced metric hy, and extrinsic
curvature H,, of X. One finds that

Sab = [H]hab — [Hab] . (B5)

The result is intuitive if one imagines a surface ¥ whose spatial section is an S? with
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radius R. Suppose one had a thin shell of matter evenly distributed across ¥ with total
mass m. Already from Newtonian physics one realizes that the interior metric g, must
be Minkowski, while the exterior metric g, will be the Schwarzschild metric, so there is

clearly a discontinuity
[Hap| = Haply+ — Hap|y- (B.6)

in the extrinsic curvature between the two sides, which contributes to the stress-energy
tensor (B.5). In our work, as in the membrane paradigm, ¥ is treated as the boundary of
the spacetime. This is significantly different from the situation above, as the stress-energy
tensor only receives a contribution from the extrinsic curvature in the exterior region. To
accomplish this, one imposes a Z, symmetry at the boundary, such that the interior is a
mirror copy of the exterior. One then has

[Hab] = 2Hab|V+ . (B?)

The resulting surface stress-energy tensor is markedly different. In particular, assuming
an exterior metric of the form

2
ds® = —f(r)?dt* + f??:)z +r2d0” + 1 sin(6)*do” (B2
the stress-energy tensor using (B.7) is
_ 4f° — (2 — in2 !
Sy = T Seo = 2(r°f' +rf), Spp = 2rsin”(0)(r [ + [) (B.9)

while the stress-energy tensor resulting from (B.6) is

Su= U =D g 2 o1), Spe= s 4 1) (B10)

r

These are clearly very different.
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