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Abstract

In this thesis, we study the large magnetoresistance in MoTe2, and non-linear anomalous

Hall effect in MoTe2 and WTe2. The main results of the thesis are reported in two chapters,

each of which is dedicated to different physical observations, as described below.

Thin flakes cleaved from layered single crystals exhibit high mobility, and semimet-

als show nearly compensated electron and hole density. The two combined in a layered

semimetallic TMDC show a large and unsaturated magnetoresistance. However, thinning

down the sample to a few atomic layers results in a charge imbalance and a decreased

mobility, suppressing the overall magnetoresistance. As large magnetoresistance is an im-

portant component of various applications, it is important to determine which of these

factors are prominent in affecting the magnetoreistance in the thin materials, and po-

tentially modify that factor for 2D XMR applications. To study this, we use thickness

tuned magnetotransport measurements on a semimetallic layered TMDC, MoTe2. We use

a two-band model to extract mobility and electron-hole ratio from the magnetoresistance

measurements. Upon analysing the data over various thicknesses, we conclude that the

suppression of magnetoresistance in thin layers is prominently impacted by the mobility.

A high mobility in thin layers can be achieved by using a high quality single crystals and

providing an atomically flat substrate of boron nitride for device fabrication. We also mea-

sure Shubnikov de-Haas (SdH) oscillations in the resistivity of MoTe2 at high magnetic

field. We analysed the frequency of these oscillations in the inverse of magnetic field to

find corresponding signatures of electron and hole pockets on the Fermi surface.

The other phenomena we try to explore is the anomalous Hall effect(AHE) in a time re-

versal invariant system. AHE originates both from the Berry curvature mechanism intrinsic

to the material, and spin-orbit coupled impurity scattering processes. A non-zero Berry

curvature requires the system to be breaking either of the time-reversal(TRS) or inversion

symmetries. While the AHE in TRS breaking ferromagnetic materials has been elaborated

upon in literature, a general theory of AHE in IS breaking materials was only recently

provided. For inversion symmetry breaking systems, the Hall effects appears as a DC and

second harmonic response to the applied current, giving a non-linear anomalous Hall effect

(NLAHE). Three dimensional TMDCs, MoTe2 and WTe2, are non-centrosymmetric crys-
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tals, where application of in-plane electric field gives a finite NLAHE along the c-axis. For

measurements, we designed a device with both in-plane and vertical contacts to measure

the first and second harmonic responses. To parse different contributions to the NLAHE,

we rely on the scaling relation between the NLAHE strength and longitudinal conductivity.

We provide a scaling with conductivity by changing the thickness and temperature. Our

scaling relation shows that the NLAHE is dominated by skew scattering contribution along

with a new exponential dependence on conductivity at low temperatures. Finally, to put

this work in context with the existing AHE results, we measure the Hall ratio and Hall

conductivity.
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Chapter 1

Introduction

The last decade has seen a dramatic shift in the experimental approach to the condensed

matter physics with the isolation of atomically thin Graphene by Geim and Novoselov in

2004 [4, 5]. Their technique of mechanically isolating mono- or few-atomic layers from a

bulk crystal, combined with a large library of layered crystals, has enabled exploration of

both fundamental physical properties and novel device functionalities. A further devel-

opment to form heterostructures with pristine interfaces, where electrons are exposed at

the interface of different materials, has lead to emergence of new quantum properties. For

instance, heterostructure assembly into moiré patterns for bilayer graphene twisted at cer-

tain angles exhibit superconductivity [6], and emergent ferromagnetism [7]. Graphene/BN

moiré heterostructure have shown Chern insulator characteristics, originating from corre-

lation effect and emergent paramagnetism in each lattice [8].

Transition metal dichalogenides (TMDCs) are another class of layered crystals with in-

teresting electronic properties. TMDC semimetals, MoTe2 and WTe2, are non-centrosymmetric

crystals with large spin orbit coupling and high mobility. These properties have lead to the

observation of large magnetoresistance [9, 10, 11], predictions of type-II Weyl semimetal

[12, 13, 14], large spin orbit coupling [15, 16], superconductivity [17, 18], and edge states

[19, 20, 21].

In this thesis, we will investigate an interplay between the crystal structure and trans-

port properties of layered transition metal dichalcogenides. In particular, we study thick-
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ness evolution of large magnetoresistance in MoTe2, and crystal symmetry dependent non-

linear Hall like effects in MoTe2 and WTe2.

1.1 Two dimensional materials

There was a long held belief backed by both theory [22, 23] and experiments that two

dimensional materials cannot exist in a free standing form. Theoretically, it was suggested

that at any finite temperature the thermal fluctuations can reach to the length scale of

interatomic distance making the system unstable [24]. Experimentally, it was shown that

a decrease in the melting point of film upon decreasing the thickness can decompose it at

typically dozens of atomic layers [25, 26]. Therefore, conventionally, thin films were grown

on a 3D lattice matching substrate by the bottom-up approach of Molecular Beam Epitexy

and Chemical Vapour Deposition. These conventional methods provide a benefit of large

area growth but require special equipment which are expensive and time consuming. The

resultant film and heterostructure have grain boundaries, and may have a strained or charge

trapped interface.

Two dimensional (2D) materials are single atomic layers of materials with thickness

∼0.5-0.7nm. This dimensional confinement has consequences on the density of states,

symmetry properties, and spin-orbit interactions. In layered materials, in-plane bonds are

covalent (∼10 eV/atom) in nature, and out-of-plane bonds are of van der Waals type (∼30-

60 meV/atom), close to the thermal energy at room temperature ∼26 meV. Presence of

weak van der Waals force allows for mechanical isolation of thin layers of material using

a scotch tape. Furthermore, layered 2D materials host various electronic and structural

phases, even a single system can exhibit more than one phase under various conditions of

thickness, strain, defects, temperature, magnetic field, and gating.

1.1.1 Graphene

Graphene is an arrangement of sp2 hybridized carbon atoms in a hexagonal lattice. Three

of the four valence electron orbitals are sp2 hybridized to form a σ bond, and an unpaired
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electron in the pz orbital forms π bond with the neighbouring carbon atoms. The in-plane

σ and out-of-plane π bonds are responsible for robust in-plane bonding in carbon allotropes

and transport properties in Graphene, respectively.

Fig. 1.1 shows the lattice structure of Graphene, the two carbon atom basis unit cell has

a lattice constant, a = |a1| = |a2| =
√

3×1.42 = 2.46Å. The strong σ bond allows electrons

to be tightly bound with each carbon site while π bond gives contribution to the hopping

term, allowing applicability of tight binding model based analysis. The eigenfunction

corresponding to the Hamiltonian of a single atom gives the atomic orbital function, and

the crystal potential acts as a perturbation field resulting into modified atomic orbital in

the form of Bloch wave function.

Figure 1.1: The lattice and reciprocal lattice structure of graphene. (a) Bravais lattice of

graphene made from the unit cell (dashed parallelogram) consisting of two carbon atoms.

(b) Reciprocal lattice and construction of Brillouin zone. (c) Brillouin zone with high

symmetry k-space points.

The resulting dispersion relation is equation 1.1, where t is the hopping term. Fig. 1.2

shows the linear dispersion relation at low energy, high symmetry K and K
′

points host

massless Dirac particles and have low density of states. The saddle points in between the

K and K
′

have high density of states, formation of moiré structure with bilayer Graphene
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Figure 1.2: Energy dispersion relation of Graphene. (a) Conduction and valence band in

Graphene touching at K and K
′

points. (b) Contour plot with projection on Kx-Ky plane

depicting the hexagonal Brillouin zone.

modulates the energy for saddle points [6].

E(kx, ky) = ±t

√
1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
(1.1)

Hexagonal Boron Nitride

Boron nitride (BN) is an isomorph of graphene where adjacent C-sites are replaced by B

and N atoms. Since the energy at the B and N sites are different, it breaks the inversion

symmetry of the system. A large difference between the electronegativity of B and N

atoms leads to a wide bandgap of 5.76 eV [27], the dispersion relation for BN is given in

the equation 1.2. It is also chemically inert, therefore, can be used as an encapsulation
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layer to protect sensitive materials from degradation in air.

E(kx, ky) =
(εB + εN)

2
±

√
(εB − εN)2

2
+ t2 + 4t2 cos

√
3kxa

2
cos

kya

2
+ 4t2 cos2

kya

2
(1.2)

1.1.2 Transition Metal Dichalcogenides

Transition metal dichalcogenides (TMDCs) have a general formula of MX2, where a tran-

sition metal element (M= group 4-6 and 10) is sandwiched between two layers of chalcogen

atoms (X= S, Se, Te). The intra-layer bond between M and X atoms are covalent in na-

ture, while inter-layer bond between each MX2 layer is of van der Waals type. Each metal

atom in MX2 is bonded with 6 chalcogen atom, and each chalcogen atom is bonded with

3 metal atoms, giving the oxidation state for metal (M) and chalcogen (X) as +4 and -2,

respectively. Their electronic properties depend on the specific choice for atoms (M,X) and

their relative arrangement. A detailed list of properties with different transition metals is

given in the Table 1.1. TMDCs crystallize in 2H, 3R, 1T, and 1T
′

structures, where digits

indicate the number of X-M-X layers in a stacking sequence. 1T has octahedral while 2H

and 3R have trigonal prismatic coordination as shown in Fig. 1.3. Most common electronic

phases among TMDCs are semiconducting 2H and semimetallic 1T phases.

M X Properties

Ti, Hf, Zr S, Se, Te Semiconducting, Diamagnetic

V, Nb, Ta S, Se, Te Metals, Supercondcutor, Charge Density Wave

Mo, W S, Se, Te Semiconducting, Semimetallic

Tc, Re S, Se, Te Semiconductor, Diamagnetic

Pd, Pt S, Se, Te Semiconducting, metallic, Superconducting

Table 1.1: Electronic properties of TMDC materials. Adopted from [3].

Many of the semiconducting TMDCs have a band gap of 1-2 eV [28] which changes

from indirect to direct band gap with decreasing thickness. 2H-MoS2 is a typical example

of this transition [29], where an indirect bulk band gap of 1.2 eV changes into direct

1.9 eV of band gap in monolayer as shown in Fig. 1.4 due to quantum confinement.
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Figure 1.3: MX2 stacking in a typical TMDC. (a) 3D stacking of M(grey) and X(yellow)

atoms. (b) Polymorphs of TMDCs from left to right: 2H, 3R, 1T. Reproduced from [30].

Upon decreasing the thickness, transitions at Γ point shift significantly from an indirect

to direct band gap. Other semiconducting TMDCs, MoSe2, 2H-MoTe2 and WSe2 and

their heterostructures have also been investigated for their layer dependent band structure

contributing to optoelectronic properties.

M(Mo, W)Te2

True 1T coordination is unstable in MoTe2 as in-plane bond distortions dimerize the Mo

atoms along the b-axis. Two stacking configurations of these distorted layers along the

c-axis give rise to distinct three-dimensional (3D) structures: the centrosymmetric β (or

1T’) phase at high temperature (above ∼250K) and the noncentrosymmetric γ (or Td)

phase at low temperature, with the difference being only a ∼4◦ tilt in the unit cell. The

orthorhombic non-centrosymmetric phase belongs to the space group Pmn21, it hosts type-

II Weyl nodes which is characterized by linear touching between electron and hole pockets

[31, 32, 33, 34, 35, 13, 36]. Given to the high mobility and charge compensation, they

exhibit extremely large magnetoresistance (XMR) below ∼20K [9, 10, 37]. Fig. 1.5 shows

the crystal structure of 1T MoTe2 and its structurally distorted phases.
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Figure 1.4: Indirect to direct band gap transition in 2H-MoS2 with reducing number of lay-

ers with a band gap of 1.2 eV and 1.9 eV, for bulk and monolayer, respectively. Reproduced

from [1].

7



Figure 1.5: Phases of 1T MoTe2, with atomic arrangement along in-plane (top row) and

out-of-plane (bottom row) direction. (a) Unstable 1T phase where Mo atoms dimerizes

into 1T
′
. (b) Tilted unit cell for the distorted high temperature β-MoTe2. With black line

depicting the mirror symmetry along a-axis. (c) γ-Mote2 stabilizes at low temperature or

low thickness.
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1.2 Heterostructure

The ease of formation of heterostructures is one of the most attractive capabilities of lay-

ered materials. Heterostructures are formed by co-lamination and restacking of layers of

different materials. Constituent layers can be stacked in different sequences and angles to

achieve a certain functionality. These functionalities range from intrinsic material property

of changing the band structure to extrinsic factors of providing a flat substrate and encap-

sulation from the environment, creating a tunnel junction, dielectric barriers and acting as

a contact electrodes. Since the constituent layers also support van der Waals interactions in

their native crystal, it excludes the requirement of lattice matching. Viscoelestic polymers

are used to sequentially pick-up and transfer material layers from one substrate to another

to form a multilayer structure.

One of the recent developments on the formation of moiré patterns by angle dependent

stacking of monolayers have caused emergence of new electronic phases [38, 39]. The key

theoretical insights were given by Bistritzer and MacDonald that for a moiré stacking, near-

est neighbour site for hopping of the electron can come from the adjacent layer. Therefore,

controlling the twist angle can change velocity of Dirac points, density of states, and at

a precise magic angle of 1.05◦C causes flattening of lowest energy bands in graphene [38].

Experimentally, it can be achieved by tearing off a section of a material sheet, then align

it with the base sheet at a precise angle [6, 40].

1.3 Thesis Overview

This thesis entails study of devices based on layered TMDCs: MoTe2 and WTe2. We

first investigate the thickness-tuned evolution of electronic structure for a low temperature

phase of MoTe2 (Td-MoTe2). Then, we study the space group symmetry of Td-MoTe2 and

WTe2, and corresponding non-linear phenomena using second harmonic measurements.

In chapter 2, we discuss the standard experimental techniques for fabrication and mea-

surement of layered material based devices. We include details on mechanical exfoliation,

polymer assisted heterostructure assembly, and fabrication of contact electrodes. The
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methods for device fabrication and measurements will be used in chapters 3 and 4.

In chapter 3, we study large magnetoresistance of Td-MoTe2. We focus on the thickness

evolution of large magnetoresistance in a semimetallic phase of MoTe2. We perform mag-

netotransport measurements and assess electronic transport by using a two-band model.

We measure quantum oscillations in MoTe2. The frequency obtained from the quantum

oscillations are used to identify the electron and hole pockets of the Fermi surface.

In Chapter 4, we discuss the symmetry properties of TMDC materials MoTe2 and

WTe2, and its consequences on non-linear transport. We present both first and second

harmonic Hall measurements for in-plane and out-of-plane directions of the crystal. To

elucidate the mechanism involved in this process, we propose a scaling law with respect to

the relaxation time upon varying the temperature, and discuss the impact of asymmetric

scattering mechanisms.

Chapter 5 concludes the work presented in this thesis and provides an outlook for future

experiments into probing Weyl semimetal and non-linear anomalous behaviour in MoTe2

and WTe2.

10



Chapter 2

Experimental Methods

In this chapter, we will talk about device fabrication methods for two dimensional materials

based measurements. In particular, we include the details of heterostructure assembly

techniques using polymers, and fabrication of contact electrodes.

2.1 Heterostructure Assembly

2.1.1 Mechanical Exfoliation

The van der Waals inter-layer interactions in layered materials are weak enough to allow

for their separation at room temperature using a scotch tape. A bulk crystal is first placed

onto a scotch tape, after multiple repetitions of sticking and releasing the tape to the

crystal, thin layers of the material are separated out. These layers are then transferred to

a substrate (Si/SiO2 or a polymer stamp) for identifying appropriate thickness and shape.

To form pristine surfaces and avoid oxidation of sensitive materials, this process is usually

carried out inside a nitrogen or argon filled glove box with oxygen and moisture content

<2 ppm.

An optical microscope is used for a rough estimation of flake dimension and thickness.

The visibility under a microscope depends on the band gap and thickness of the flakes. In
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their bulk form, insulators with their high band gap are usually transparent, while semi-

conductors, depending on their band gap exhibit different colours. In case of mono(few)-

layers, a rough estimate of thickness can be made by looking at the contrast of diffracted

light from the thin film.

2.1.2 Transfer techniques

With the availability of few(mono)-layers, the next step is to assemble them in a desired

heterostructure geometry as per measurement requirements.

There are both wet and dry transfer techniques for creating heterostructures. In this

thesis, we use polymer based dry transfer techniques, as they provide cleaner interfaces

and are less destructive towards chemically sensitive materials. The required polymer

properties for heterostructure assembly are: ability to form a close contact with the mate-

rial surface, transparent in nature to provide alignment accuracy, temperature dependent

elastic properties, and less residue formation.

Polydimethylsiloxane (PDMS) and Polycarbonate (PC) are transparent viscoelastic

polymers used in this work. Viscoeleastic materials act as an elastic solid over short

timescales, and can slowly flow at longer timescales and temperature. When they are slowly

brought in contact with the substrate surface they conform to the materials present on the

substrate. Their viscoelastic properties are temperature dependent, and at a low operating

temperature of ∼70-90◦C leave negligible residue during transfer process. Some of the

challenges associated with this method are achieving correct alignment with multilayer

stacking, and avoiding formation of air bubbles and polymer residue on the material surface.

Polydimethylsiloxane (PDMS) assisted Fabrication

PDMS stamps can be made by curing a solution of Sylgard 184 elastomer or can be

purchased as a gelfilm from Gelpak. Thin (∼1mm) PDMS stamps are cut into small

1cm×1cm pieces, and placed onto a glass slide. Scotch tape with exfoliated flakes is then

put on top of the stamp and pressed lightly using a smooth surface (i.e. cotton swab)

to make a close contact between layered materials and the PDMS surface. Tape is then

12



ripped off of PDMS surface in a quick horizontal motion, resulting into layers of exfoliated

materials of varied thickness and shape on the PDMS stamp. To find out correct thickness

and shape, the glass slide along with the PDMS stamp is loaded onto a micromanipulator

to be viewed under an optical microscope. This micromanipulator has a motion capability

for all three x, y and z-axis, allowing to scan the whole stamp with x-y motion, and focusing

on flakes of different thicknesses through z-axis manipulation.

Once we identify a desired thickness and shape for each constituent layer in the het-

erostrucuture, the PDMS stamp is aligned with the bottom contact electrodes on a Si chip

for transferring the material on the substrate. Glass slide with the PDMS stamp facing the

substrate is slowly lowered down to make a contact with the substrate at around 60-90◦C.

PDMS stamp is then retracted from the Si chip, leaving the material on the bottom contact

electrode as SiO2 surface is smooth and flat, and at a high temperature thin flakes have

higher affinity for it than polymer surface.

Although PDMS assisted transfer is a straightforward method, picking up and trans-

ferring one material at a time, makes it a time consuming process, and leaves residue at

the interface of a multi-layer device. Therefore, a better technique would be to use van

der Waals force of layered flakes to pick up subsequent layers, then transfer the final stack

onto contact electrodes, this can be achieved by PC assisted technique explained in next

section.

Polycarbonate (PC) assisted Fabrication

To make a PC film, a drop of Polycarbonate solution with anisole (6%) is spread out on

a glass slide and cured for 10 minutes at 90◦C forming a thin PC layer. This thin layer

is then cut into small pieces to be transferred onto PDMS gel with just allowing a small

window(∼1mm×1mm) for PC layer. This PDMS/PC stamp then used for picking up layers

of different materials. PC film expands upon exposing to a temperature as small as 40◦C,

and makes a close contact with the material surface, after making the contact temperature

is further raised to 70-100◦C for enhancing the contact. While retracting the PC to pick up

the material(M), it is again cooled down to 40◦C. The stack of PDMS/PC/M is then used

for picking up other materials to form the heterostructure, once the assembly is complete.
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Figure 2.1: PC assisted assembly of BN/Graphene/BN heterostructure. (a)-(b) Picking

up of top BN layer on th PC surface (c)-(d) Use of van der Waals interaction to pick-

up single layer Graphene (SLG) using PDMS/PC/BN. (e)-(f) Picking up of bottom BN

layer to provide complete encapsulation. (g)-(h) Transfer of final stack by melting the

PC at 180◦C. (i) Final stack after top PC film was dissolved using a chloroform solution.

Reproduced from [41].
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The whole stack is transferred onto a bottom contact electrode where temperature is raised

upto, 150◦C to melt the PC film. A typical example of making BN/Gr/BN heterostructure

is shown in Fig. 2.1.

2.2 Fabrication of contact electrodes

Contact electrodes are fabricated through a combination of nanofabrication techniques in

a clean room environment. The three major components of this process are: (i) coating of

a resist layer (ii) exposure to a radiation source and (iii) deposition of a metal

2.2.1 Spin Coating

Spin coating is a method of coating a thin layer of a solution by rotating the substrate at

a certain speed. Thickness of the resulting film depends on the molecular weight of the

solute, concentration of the solvent and rotating speed of the substrate. For the purpose

of lithography, a resist layer is coated onto the substrate.

A resist is a material which is sensitive to the exposure of e-beam(or light) in a lithog-

raphy process. Thickness of the resist is an essential factor in deciding the resolution of

the lithography pattern, and thickness of the metal deposited. Usually, it is recommended

to have a resist layer 2-3 times thicker than the deposited metal to avoid cracking of the

resist during deposition process. The electron beam resist used in this thesis is Polymethyl

methacrylate (PMMA) A6, where A6 represents the 6% of PMMA solutiion in a Anisole.

A bilayer resist with MMA/PMMA was used to get a better undercut. Photolithography

process in this work uses bilayer PMGI/Shipley 1805 as a photoresist.

2.2.2 Lithography

Lithography in the context of nanofabrication is a transfer of patterns on an e-beam (light)-

sensitive material by selective exposure. It is based on the interaction of a radiation source

(electron beam or laser) with the underlying polymer resist which either weakens (positive
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resist) or strengthens (negative resist) the polymer bonding, allowing it to dissolve or

remain intact in a developer solution. The resolution achieved by the patterning devices

is based on the wavelength of the radiation, in e-beam lithography it is controlled by the

acceleration voltage for electrons.

A resist coated chip is loaded into the chamber for exposure, chamber is brought to a

low pressure to reduce the scattering of the beam. Substrate is corrected for its alignment

and focus. Then write field alignment is performed to match the sample coordinate with

the pattern coordinate in the CAD. After achieving sufficient amount of correction factor

the exposure window is opened for patterning.

In this work, we have used Raith150 Two e-beam lithography for making contact elec-

trodes, with 10 keV of accelerating voltage and 30 µm aperture. We used Heidelberg-MLA

for the photolithography with 405 nm laser source.

2.2.3 Electron-beam Evaporation

Electron-beam evaporation was used to deposit contact electrodes on Si/SiO2 substrate.

Electrons beams generated by thermionic emission or field effect emission are accelerated

towards the deposition metal and upon striking with the material surface lose their kinetic

energy converting it to other forms of energy, including thermal energy. This thermal en-

ergy then melts the metals, which under sufficient temperature and low pressure sublimes

to form vapor, the vapors condenses on the substrate and gets deposited. In our experi-

ments, we used Intlvac Nanochrome II-UHV(10−7 torr) beam evaporator with a power of

10keV for depositing gold. Since noble metals have less affinity towards oxygen, it causes

poor adhesion on SiO2 surface, a thin (∼ 5nm) Titanium or Chromium layer is used as an

adhesive layer. These electrodes can be used both as a bottom contact or top contact. We

have used bottom contact electrodes of Au(45nm)/Ti(5nm).

Atomic Force Microscopy

Atomic force microscopy is based on the mutual interactive forces between two surfaces,

namely, the AFM probe and specimen to be measured. The function of AFM is based
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on Hooke’s law, where cantilever is deflected after reaching very close to the surface. A

laser light is shined on the cantilever to track its movement, the deflected laser light from

cantilever is collected by a position sensitive detector (PSD) consisting of two photodi-

odes, signal from PSD is then transferred to a differential amplifier to give final data on

surface topology and thickness. It can be used both in contact and non-contact mode, in

our experiments, we used Bruker Nanoscope AFM in a nondestructive tapping mode for

measurement, it can resolve height difference down to nanometer scale in z-axis.

2.3 Summary

PDMS assisted transfer and e-beam lithography were used to assemble MoTe2/BN het-

erostructure, and patterning of contact electrodes for the devices in magnetoresistance

measurements in chapter 3. The low temperature measurements were conducted in a 3He

cryostat, with a magnetic field capability of 12T.

PC based transfer and photolithography techniques were used to assemble heterostruc-

tre BN/MoTe2/BN/Gr/BN, and pattern contact electrodes used for non-linear Hall mea-

surements in chapter 4. 4He cryostat was used for low temperature measurements with

14T magnet.
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Chapter 3

Linear magnetotransport in MoTe2

In chapter 1, we discussed that layered transition metal dichalcogenides (TMDCs) widen

possibilities for understanding both fundamental material properties and innovative device

configurations. Their availability in various structural and electronic phases, along with

facile phase transition methods, can lend information about electronic transport mecha-

nisms and corresponding physical phenomena. This capability, combined with the experi-

mental methods available for device fabrication and measurement discussed in chapter 2,

can play an important role in exploring TMDC material based devices and their applica-

tions.

In this chapter, we will talk about MoTe2, an interesting member of TMDC material

system, which crystallizes in both semiconducting 2H and semimetallic 1T-type structures.

We will investigate the large magnetoresistance exhibited by a low temperature phase (Td)

of 1T-MoTe2. We first give an introduction to the magnetoresistance in non-magnetic

materials. We present measurements depicting structural phase transition in MoTe2 with

respect to thickness and temperature. We measured a large magnetoresistance in MoTe2

which systematically suppresses upon decreasing the thickness. To understand the im-

plications of tuning thickness on magnetoresistance suppression, we look into the carrier

transport properties MoTe2. Thereafter, we use a two band model to quantitatively anal-

yse carrier mobility and carrier density upon changing thickness. Finally, we discuss the

results from magnetoresistance measurements and two band model fitting to comment on
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the evolution of electronic structure of Td phase of MoTe2 upon changing thickness.

3.1 Introduction

3.1.1 Magnetoresistance

Magnetoresistance is a change in the electrical resistance of a material upon applying

magnetic field, quantified by percentage magnetoresistance (MR), ∆ρ
ρ

= ρ(B)−ρ(0)
ρ(0)

. Large

magnetoresistance (XMR) usually discussed in the context of magnetic materials with

Giant magnetoresistance (GMR, MR% ∼ 50%) and Colossal magnetoresistance (CMR,

MR% ∼ 105%), have shown applications in spintronics and sensing devices. In non-

magnetic metals with isotropic Fermi surface application of magnetic field does not result

in a net magnetoresistance. However, a finite MR can be observed in semimetals [9],

semiconductors with anisotropic Fermi surface. Fig 3.1 shows a classical picture of an

electron transport in a non-magnetic material upon applying magnetic field, deviation in

the path of electron reduces the mean-free path and increases the resistivity. The force

experienced by an electron moving in a constant magnetic field is given by:

dk

dt
= −e

c
[v ×B] (3.1)

corresponding time period of motion in a circular orbit is, T = 1/ωc = m∗c
eB

. This force is

perpendicular to the velocity of electron, and the momentum component along the field

(B ‖ z) is conserved. Therefore, k is confined to the orbital defined by the intersection of

Fermi surface with a plane normal to H. For a closed Fermi surface all of such cross-sections

are closed orbits while for open Fermi surface some of them can be open orbits.

Semimetals show a large MR at low temperatures as charge compensation leads to

near cancellation of Hall electric field. Under charge compensation and weak magnetic

field (ωcτ << 1) MR varies as µB2. At large MR saturates to a constant value.
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Figure 3.1: A classical picture of electron scattering under magnetic field. The mean free

path λ decreases as a result of circular motion caused by magnetic field (H).

Magnetoresistance in the two-band model

Two band model includes contributions from carriers in one hole and electron band only.

For the same applied electric field both bands can contribute differently to the overall

conductivity.

E =
1

σi
Ji +

βi
σi
H × Ji (3.2)

where σ is the conductivity and R = β/σ is the Hall coefficient. Taking a cross product

with H will give:

H × E =
1

σi
H × Ji +

βiH
2

σi
Ji (3.3)

Combining both the equations

Ji =
1

1 + β2
iH

2
(E − βiH × E) (3.4)

Total current from both bands is J = J1 + J2. Calculating electric field from the total
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current:

E =
1

σ(1 + β2H2)
(J + βH × J)

σ =
σ1

1 + β2
1H

2
+

σ2

1 + β2
2H

2

(3.5)

Magnetoresistance can be written as:

ρ =
1

σ(1 + β2H2)
(3.6)

For H = 0

ρ0 =
1

σ1 + σ2

(3.7)

Relative change in magnetoresistance can be written as:

∆ρ

ρ0

=
ρ− ρ0

ρ0

=
σ1σ2(β1 − β2)2H2

(σ1 + σ2)2 +H2(β1σ1 + β2σ2)2
(3.8)

Td phase of both MoTe2 and WTe2, with a distorted crystal structure exhibit an

anisotropic Fermi surface, has been shown to demonstrate a large and non-saturating MR

[37, 9]. Transport studies have attributed the cause to a close compensation of electron

and hole concentrations at low temperature for both the materials [11, 42, 43, 44]; however,

angle-resolved photoemission experiments report that MoTe2 remains uncompensated at

all temperatures [45], in contrast to WTe2 [46]. One can directly test the effect of charge

(un)compensation on XMR in MoTe2 by changing the relative carrier concentrations, but

this is generally difficult to do in bulk systems without introducing unwanted disorder.

It has been shown that the Td phase is realized in thin MoTe2 samples (below∼12nm)

at all temperatures up to 400K [47], potentially allowing for the observation of Weyl nodes

and their surface states under ambient conditions. The cause has been attributed to c-axis

confinement of the hole bands. For the bulk crystal, it has been calculated that both

electron and hole pockets shrink when cooling from the β to γ phase [48], and so it is

possible that reducing thickness similarly stabilizes the latter at higher temperatures by

confining the hole bands to lower energy.
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In principle, these differences for thin samples should have a marked effect on the mag-

netoresistance (MR) at low temperature, provided that charge compensation is responsible

for the XMR. Namely, we expect that a changing electronic structure would alter the del-

icate carrier balance achieved in the bulk crystal. We have performed both longitudinal

and transverse magnetotransport measurements on MoTe2 flakes at 300mK as a function

of thickness. Not only do we observe lower MR in thin samples, fittings to a two-band

model surprisingly show a decrease in both the absolute and relative carrier concentrations

as well as their mobilities. By modeling the different effects separately, we conclude that

the MR is more sensitive to changes in carrier mobility, and that, in principle, relatively

large MR values can be achieved with a moderate degree of charge imbalance.

3.2 Measurement and Analysis

3.2.1 Device Characterization

We performed AFM measurements to conclusively determine the thickness of eight MoTe2

samples to be 7nm, 8nm, 10nm, 16nm, 20nm, 25nm, 50nm and 180nm. We measured tem-

perature dependent resistivity for three representative MoTe2 samples of different thick-

nesses (7, 50, and 180nm), results shown in Fig 3.2b. The traces are normalized to the

resistivity at 280K and offset for clarity. All show metallic characteristics in contrast

with an earlier report on unprotected thin flakes, which observes insulating behavior for

thicknesses below ∼10nm [37].

A signature of temperature dependent T
′

to Td phase transition is the observation of

hysteresis loop at ∼250K, which gradually disappears for decreasing thickness as a single

Td phase is stabilized in thin flakes for the entire temperature range [47]. Below ∼10K,

the resistivity saturates to a temperature-insensitive, residual value. In the inset, we have

explicitly plotted the residual resistivity for all of the samples measured in this work (eight

in total) at 300mK. While there is variation between samples, we observe no direct trend

with flake thickness. Furthermore, the average residual resistivity 1.8×10−5Ω-cm (marked

by dashed line) is comparable to that of the bulk crystal (∼10−5Ω-cm) [11], indicating that

our flakes have not degraded during the preparation process.
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Figure 3.2: Measurement Schematic and temperature induced phase transition.

(a) Device geometry and optical image of a representative device. MoTe2 is covered with

thin hBN to prevent oxidation. Scale bar is 10µm. (b) Main panel: normalized resistivity

as a function of temperature for three MoTe2 flakes of different thicknesses. An offset was

applied to the upper traces for clarity. Metallic behavior is observed down to 4K for all

samples. Inset: residual resistivity of all samples measured at 300mK. The dashed line

marks the average resistivity.

23



3.2.2 Analysis based on two band model

Figure 3.3: (a) Percent magnetoresistance as a function of perpendicular magnetic field.

MR decreases with decreasing thickness. (b) The MR measured at 10T for the different

samples. (c) Exponent α of power law fit to the field dependence. Magnetoresistance is

sub-quadratic as the thickness is reduced. The effects of charge imbalance and mobility

decrease on MR and α are modeled separately and plotted in red and blue, respectively.

We collected magnetoresistance data for both longitudinal and transverse resistance.

The MR data display a strong thickness dependent behavior. In Fig. 3.3, we plot MR(%) =
ρ(B)−ρ(0)

ρ(0)
×100, for the eight samples at 300mK and field applied along the c-axis. While the

MR is always positive and unsaturating, we observe a clear and systematic suppression with

reduced thickness. In the top panel of Fig. 3.3, we explicitly plot the thickness-dependent

MR measured at 10T. The value is ∼3000% in the 180nm flake, which is comparable to

that measured in the bulk crystal [11], and decreases by two orders of magnitude in the
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thinnest samples. Although the full Fermi surface of γ-MoTe2 is complex and made up

of multiple electron and hole pockets, the magnetotransport behavior may be understood

from a simplified two-band model, where we assume that conduction takes place via one

electron and one hole band only. Here, the field dependence of longitudinal and transverse

resistivity obeys, respectively [9]:

ρxx(B) =
(nµn + pµp) + (nµp + pµn)µnµpB

2

e[(nµn + pµp)2 + (p− n)2µ2
nµ

2
pB

2]

ρyx(B) =
(pµ2

p − nµ2
n)B + (p− n)µ2

pµ
2
nB

3

e[(nµn + pµp)2 + (p− n)2µ2
nµ

2
pB

2]

(3.9)

where n(p) and µn(µp) refer to the electron (hole) concentration and mobility, respec-

tively. If n=p, the first equation simplifies to MR=µnµpB
2, thus yielding unsaturating MR

with a quadratic field dependence, as observed in bulk crystals [37, 11, 42]. The suppression

of MR we observe in thin samples then suggests either (1) an imbalance of electrons and

holes or (2) a decrease in their carrier mobilities. In order to distinguish between these two

scenarios, we have first extracted the field dependent exponent from our data (MR∼Bα)

using a power law scaling, and the result is plotted in the bottom panel of Fig. 3.3b. α

is closer to 2 for thicker samples, but decreases with decreasing thickness, suggesting that

the field dependent term in the denominator of ρxx becomes more dominant, and thus n6=p

for thinner flakes (scenario 1). The red and blue curves show the result of modeling the

two scenarios separately, which will be discussed below.

We would like to determine quantitatively the carrier concentrations and mobilities for

the different thickness flakes. Unlike ρyx, however, ρxx is insensitive to the carrier type. We

have therefore measured both longitudinal and transverse resistivities in order to determine

the full resistivity tensor of our samples, and the field (anti-)symmetrized results are shown

in Fig 3.4. We have performed a simultaneous fit of ρxx and ρyx using the two-band model

equations above (dashed lines in Fig 3.4, and the extracted carrier concentrations and

mobilities are shown in Fig. 3.4c, along with the relative carrier concentration n/p. First,

we note that the fit for ρxx is consistently larger than the measured values at higher

fields beyond 8T. The reason for this is that degree of carrier imbalance, p-n, allowed
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Figure 3.4: Summary of two band model fitting: Fitting of (a) longitudinal and

(b)transverse resistivity over various thickness samples. (c) Plot of extracted carrier density

and mobility.
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for by ρyx is not sufficient to deviate ρxx strongly away from a B2 dependence. Within

the two-band model, we find that the density and mobility for both electrons and holes

decrease slightly with reduced thickness. The ratio between electrons and holes, n/p, also

decreases, indicating greater carrier imbalance. This behavior suggests that c-axis quantum

confinement alone cannot account for the dimensionality-driven β to γ phase transition,

as the electron pockets are mostly cylindrical [45, 49]. It is consistent, however, with the

transition energetics calculated by Kim et al. [50], which reports overall shrinking of both

surfaces accompanying the β to γ transition. The mechanism behind the thickness-driven

effect therefore remains open question. Since both carrier imbalance and reduced mobility

can suppress the MR, the two behaviors should be considered separately. In order to model

this explicitly, we have taken the extracted carrier densities for the different thickness flakes

and kept their mobilities constant and fixed to the values for the 180nm flake.

Figure 3.5: Magnetoresistance dependency on charge-imbalance over various thickness.

We then calculated the MR within the two-band model using these new parameters,

and plotted the MR percentage at 10T as well as field-dependent exponent on top of the

27



original data in Fig. 3.3b in red (“imbalance-limited” curve). We similarly modeled the

effect of reducing mobility only by fixing carrier densities fixed to the 180nm values. This

is plotted in blue (“mobility-limited” curve). We observe that while sub-quadratic field

dependence can be attributed to lack of charge compensation, the overall MR suppression is

due to a reduction of carrier mobility. In principle, MR above 1000% may still be achieved

in the thinnest samples, despite an imbalance ratio of n/p∼0.8, as long as the mobility

can be made large. Fig. 3.5 we have taken the extracted transport parameters from the

two band model and plotted it by varying the n/p. It shows that the as thickness is

reduced, magnetoresistance has less dependency on carrier compensation, therefore being

less affected by a slight deviation from n/p∼1.

3.3 Quantum Oscillations

Quantum oscillations are oscillations in the magnetization or resistance of a material with

the external magnetic field. First observed in 1930 by de Haas and van Alpen as oscillations

in magnetization in a single crystal Bismuth [51], analysis of these oscillations can help to

map out the Fermi surface of a material under a strong magnetic field. Theoretical insight

for these oscillations was given by Onsager in 1952 based on the Landau quantization of

electron energy in a magnetic field. He proposed that the frequency(f) of the oscillations

is proportional to the area of cross-section(A) of the Fermi surface, f = ~
2πe
A, where

proportionality constant is a universal constant, measuring quantum oscillation across

different planes of a crystal can give the cross-section of full Fermi surface. In this section,

we will look into the formation of quantized Landau levels as a solution to the Hamiltonian

of a free electron under a strong magnetic field and consequences of these levels on the

conductivity of a material.

3.3.1 Landau Levels

Magnetic field influences both the spin and the orbital motion of an electron. The impact

on spin in metals gives rise to Pauli paramagnetism, while, on atomic orbitals leads to
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quantization of electronic energy level under a sufficiently high magnetic field. Formation

of Landau levels can be understood by solving the Schrodinger’s equation of a system under

a magnetic field.
p2

2m∗
ψ = Eψ (3.10)

where p = −i~∇ is the momentum operator. In the presence of a magnetic field B =

(0, 0, Bz), momentum operator transforms as p = −i~∇+ eA, where A is magnetic vector

potential, a useful1 choice for the gauge potential could be A = (0, Bx, 0).(
p2
x

2m∗
+

(py + eBx)2

2m∗
+

p2
z

2m∗

)
ψ = Eψ (3.11)

By introducing x0 = −~ky/eB and cyclotron frequency ωc = eB
m∗

, we have[(
p2
x

2m∗
+

1

2
m∗ω2

c (x− x0)2

)
+

~2k2
z

2m∗

]
ψ = Eψ (3.12)

The above equation is a combination of Hamiltonian for one-dimensional harmonic oscilla-

tor along x-direction and free-electron in z-direction the corresponding energy eigenvalues

will be:

E = (l +
1

2
)~ωc +

~2k2
z

2m∗
(3.13)

where, l is an integer. The energy eigenfunction are a product of plane waves in the y and

z direction, and a one dimensional harmonic oscillator wave function in the x direction.

The application of a magnetic field causes the electrons to form Landau level with each

level by quantum number l.

Interesting oscillatory changes in properties with magnetic field occur when Landau

levels break through the Fermi surface as magnetic field is increased. Properties change

because the density of states at the Fermi energy oscillate as a function of magnetic field.

This effect is maximized when a Landau tube crosses an extremal cross-section of the

Fermi surface. The oscillations in magnetization are known as de Haas-van Alphen effect.

1Any value for gauge potential is valid for which B = ∇ × A will not change, A = (−By, 0, 0) would

give the same value for B and energy eigen value but different eigen function.
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The analogous effect on the electrical resistance is known as Shubnikov-de Haas effect.

Both effects give rise to oscillations in properties as a function of 1/B. The period of these

oscillations gives the area Aext of the maximal and minimal cross-sectional area of the

Fermi surface normal to the magnetic field.

3.3.2 Shubnikov-de Haas Effect

When magnetic field is applied to a system it forces moving electrons of the bulk to confine

in a circular motion. For B = Bz, kx and ky states are restricted to circles, while kz state

remains unaffected. Increasing value of Bz causes Landau cylinders to move through the

Fermi surface resulting into oscillations. When there are more than one region of the Fermi

surface parallel to the Landau cylinders, it gives a beating pattern. Fourier transform of

this beating pattern can give the different frequency components, and the amplitudes of

the oscillations. The period of these oscillations the corresponding cross- sections is given

by

∆

(
1

B

)
=

2πe

~Aext
(3.14)

From equation 3.13, energy gap between two Landau levels is ~ωc ∝ B. Therefore, increasing

the magnetic field increases the gap between the levels. The energy of Landau levels with

respect to the Fermi energy decides the impact of Landau level formation. If the highest

Landau level is far from the Fermi energy, then no states are available for scattering, and

the Shubnikov-de Haas resistivity goes to zero. Upon increasing the magnetic field, the

highest Landau-level gets near the Fermi-energy, causing scattering of the bulk states. This

scattering results in the peak of the Shubnikov-de Haas oscillations.
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Figure 3.6: Landau level in a clean(top) and in a disordered(bottom) sample.

3.3.3 Damping in Oscillations

Temperature Effect

At a finite temperature the probability distribution of electron energy can be given by the

Fermi distribution function:

f(E) =
1

1 + exp(E−µ
kBT

)
(3.15)

Thermally excited electrons can have energy levels outside of the Fermi surface. Shoenberg

[52] suggested that this can be seen as a distribution of hypothetical metals with their Fermi

energies distributed around EF , and all being at T=0. The spread of Fermi surface area

will lead smearing in the phase resulting into damping in oscillation amplitude as shown

in Fig. 3.6. A quantitative description of magnetic oscillations was given by Lifshitz and

Kosevich in 1954. The first harmonic l=1 of the LK formula for two dimensional electron

gas at temperature T is:

A1 ∼
T

2 sinh(2π2Tm∗

~eB )
(3.16)
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By fitting this formula to the measured amplitude, the effective mass m∗ can be extracted

to calculate the mobility µ and carrier density.

m∗ =
~
√
πn

v∗F
=

µ

v∗2F
(3.17)

3.4 SdH oscillations in MoTe2

At high magnetic fields the details of scattering processes become less important allowing

to study the Fermi surface more closely. SdH oscillations have previously been observed in

high-quality MoTe2 crystals, which allows for an independent measurement of the Fermi

surface [37, 49, 43]. We have observed oscillations for the 10nm, 20nm, and 180nm flakes

at 300mK. Their background resistivities were subtracted and the results are plotted as a

function of 1/B in the insets of Fig. 3.7. The samples show a beating pattern, thus indi-

cating the presence of more than one frequency. We have taken the fast Fourier transform

(FFT) of the SdH oscillations and the result is shown in the main panel of Fig. 3.7a. We

observe two clear peaks for all samples and possibly three for the 20nm flake, which show

oscillations starting at lower field. For the 180nm flake, the peak positions (202T and 266T)

are similar to what has been observed in the bulk crystal [49], and correspond to carrier

densities of 0.70×1020 cm−3 and 0.93×1020 cm−3, respectively, via the Onsager relation.

Density functional calculations indicate these oscillation frequencies are associated with

electron pockets [49], while the hole pocket frequencies either exceed 1000T or fall below

100T. For the thinner flakes, these two peaks are systematically shifted to lower fields,

and thus densities. In Fig. 3.7c, we have plotted the sum of the densities extracted from

the positions of the two prominent peaks (open red circles) in order to compare with the

concentrations obtained from the two-band model. The thickness dependence is qualita-

tively consistent, although the electron density estimated from classical magnetotransport

is lower in thinner samples. We have further performed the same measurement on the

20nm flake, which shows the most prominent oscillations, as a function of temperature

(see Fig. 3.7b). By fitting the peak amplitudes to the Liftshitz-Kosevich (LK) formula, we

obtained an estimate of the effective masses (∼1.0-1.2m0), which are slightly larger than

those measured for the bulk crystal (∼0.8m0).
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Figure 3.7: SdH oscillations in the longitudinal resistivity of MoTe2. (a) Inset:

SdH oscillations observed after subtracting the polynomial background for each sample.

Their corresponding FFT is shown in the main panel. The dashed lines are guides to the

eye showing decreasing frequencies with decreasing sample thickness. (b) Main panel: The

FFT of the SdH oscillations for the 20-nm sample measured at 0.3, 0.45, 0.8, 1.3, and 1.7 K.

Inset: The amplitude of the FFT peaks as a function of temperature fit to the LK formula

to extract the effective masses. (c) The carrier densities for different thickness samples

extracted from the simultaneous fit of ρxx and ρyx using the two-band model, compared

with the values extracted from the SdH oscillations(open circle).
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3.5 Conclusion

We used magnetotransport measurements to study the thickness evolution of electronic

structure in γ-MoTe2 at low temperature. We observed a decrease in both electron and

hole densities as well as mobilities in thin flakes. The decrease in electron and hole density

possibly stabilizes the γ phase in thin flakes at room temperature, while the decreased

mobility greatly suppresses the XMR effect. It may be possible to still achieve very large

MR values without near-perfect charge compensation, this can potentially interesting con-

sequences for the tailoring of XMR in future materials.
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Chapter 4

Non-linear Transport in MoTe2

In the previous chapter, we employed thickness induced structural phase transition of a

transition metal dichalcogenide (TMDC) material MoTe2 to study carrier mobility, carrier

density imbalance and their impact on large magnetoresistance. In this chapter, we will

look into the symmetry properties exhibited by TMDC class materials MoTe2 and WTe2,

and symmetry dependent non-linear transport properties.

Underlying symmetry of a crystal decides its response to perturbations of electric and

magnetic field, this accounts for observation of helicity dependent photocurrent response

[53, 54], and non-linear transport properties [55, 56, 57, 58, 59, 60]. An interesting con-

sequence of inversion symmetry breaking under an electric field is the observation of non-

linear Hall like effects in three-dimensional non-centrosymmetric crystals, topological crys-

talline insulators, two-dimensional TMDCs, and polar materials [61]. This non-linear Hall

effects can be explained based on the idea of anomalous Hall effect (AHE), which until

recently was only explored in the systems with broken time reversal symmetry. AHE orig-

inates from both the intrinsic picture of Berry phase dependent anomalous velocity and

extrinsic factors resulting from spin-orbit interaction of electron with crystal lattice and

impurities. Intrinsic picture which is most studied and well understood at this point has

been driven a lot interesting work. Extrinsic mechanism which depends on a details of scat-

tering process [62] significantly impacts the overall strength of the Hall effect [63, 64, 65],

and becomes largely important when application of Hall effect in real devices is concerned.
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In this chapter, we will discuss the findings of non-linear anomalous Hall effect (NLAHE)

in non-centrosymmetric TMDCs MoTe2 and WTe2. We will start with a brief discussion on

anomalous Hall effect explaining the mechanisms involved in it. We then proceed to look

into the symmetry constraints for the MoTe2 and WTe2 and then design measurements

accordingly. We perform both first and second harmonic measurements along in-plane

and out-of-plane direction to measure longitudinal and transverse conductivity. To parse

different contributions to the NLAHE, we will be introducing a scaling law with respect

to the longitudinal conductivity, and discussing the mechanism responsible for this effect.

To quantify the strength of the observed effect, we give a measure for the Hall ratio, and

finally to put this work in context with the available literature we present a map of Hall

conductivity across various AHE experiments.

4.1 Anomalous Hall Effect

In ferromagnetic conductors, passage of charge current can generate an electric field in

the transverse direction even without the application of an external magnetic field. This

“anomalous” Hall effect (AHE) requires broken time reversal symmetry and originates both

from topological aspects of the material’s band structure and electron scattering coupled

to the spin-orbit interaction.

In the following section, we will discuss these different mechanisms, and their validity

in different conductivity regimes. Conventionally, classification for different contributions

is based on dependence of anomalous Hall conductivity (σAHE) on Bloch state transport

time (τ). Experimentally, it is achieved by plotting σxy vs σxx ∝ τ , where τ can be varied

by controlling the disorder or temperature. The two leading contributions to AHE are τ 0

and τ 1, since disorder are treated perturbatively they correspond to higher order term τ 1.

Hall resistivity can be written as ρxy = σxy
σ2
xx+σ2

xy
, varies as ρxy ∼ ρ2

xx and ρxy ∼ ρxx, for

intrinsic and extrinsic mechanisms, respectively.
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4.1.1 Intrinsic Mechanism

In 1954, Karplus and Luttinger [66] proposed that spin-orbit interactions of polarized con-

duction electrons can explain the observed large magnitude and temperature dependence

of anomalous Hall effect in Ferromagnetic materials. They explained that in the presence

of an external electric field electrons faces a transverse force but left and right symmetry

is maintained, however, in systems where time reversal symmetry is broken an asymmetry

is developed, giving an additional contribution to the electron velocity. This velocity when

summed over all occupied bands contributes to anomalous conductivity. After the intro-

duction of Berry phase [67] in 1984, a connection between anomalous velocity of Bloch

electrons and Berry phase was established by Change et al. [68] and Sundaram et. al.

[69], that anomalous conductivity can be understood as the sum of Berry curvature over

the occupied bands.

To understand the microscopic picture we can look into the velocity of electron wave

packet in a crystal lattice in the presence of magnetic field. The group velocity can be

written as:

∂〈~r〉
∂t

=
∂ε

~∂k
+
e

~
E × Ω(k) (4.1)

The quantum origin comes from the contribution of Berry curvature (Ω(k)) which

is non-zero in systems with either broken time reversal or broken inversion symmetry.

The anomalous Hall conductivity of a system can be written as: σAHE =
∫
d2kf(k)Ω(k),

where f(k) is the Fermi distribution function. In time reversal symmetric systems, Berry

curvature transforms as an odd function, Ω(k) = −Ω(−k), which under equilibrium Fermi

distribution will give a zero Hall conductivity. However, under a non-equilibrium Fermi

distribution this can lead to a finite Hall conductivity.

As this contribution purely depends on the band structure of the crystal and doesn’t

account for the phonon and impurity related scattering it is called an intrinsic mechanism.

It is the most studied contribution which can be derived from the first principle contribution

of the electronic band structure and found to be a dominant factor in the system with high

spin-orbit interaction. Although it can explain the anomalous velocity of the electron in the

absence of magnetic field for a perfect crystal under realistic conditions the imperfections
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of the crystal need to be considered. Their contribution towards the asymmetric scattering

of electrons in a crystal can be explained by extrinsic mechanism below.

4.1.2 Extrinsic Mechanism

A semiclassical explanation for extrinsic contributions to AHE was given by Smit[70, 71]

and Berger[72], which talks about the effect of disorder scattering in imperfect crystals.

Both asymmetric and symmetric scattering can be attributed to the spin orbit coupling

of the electron with the impurity potential. The extrinsic contribution was calculated

from the expectation value of the position operator after the collision with the impurity as

depicted in the Fig. 4.1. First, the center of wave packet shifts in the direction transverse

to the velocity of the electron after scattering giving side-jump contribution. Second, the

expectation value continuously deviates in time from the initial path of the wave packet

giving skew-scattering contribution. This scattering is spin-dependent with opposite spins

scattering in opposite directions. Considering the electron scattering from an impurity.

The Hamiltonian for this problem can be written as following:

H = H0 +Hso

H0 = p2/2m+ U(r)

Hso =
~2

2m2c2

1

r

dV

dr
(l · S)

Here, U(r) is the impurity potential, l = (r × p)/~ and S are the orbital momentum

and the spin of the electron, respectively.

Skew-scattering

In the linear transport regime, scattering of electrons from impurities or phonons is bal-

anced by the applied electric field E giving a steady state current. Taking this into account,

Smit argued that under steady state the anomalous velocity proportional to k̇ will vanish,

and the temperature variation shows the dependence on the electrical resistivity of the ma-

terial [70, 71]. Spin orbit coupled electrons upon scattering from the impurity gets deflected
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Figure 4.1: Scattering of polarized electron from impurity potential. φ is the skew-

scattering contribution and ∆y is side-jump contribution. Adopted from [2].

in a direction perpendicular to the momentum k and magnetization M, for a perfect crystal

this scattering will have left and right symmetry, giving no contribution to the overall Hall

effect. However, for an imperfect crystal this produces an asymmetric scattering causing

a net transverse velocity. The transition probability associated with collision is given by

equation 4.2 involving the chiral term coming due to spin-orbit coupling in both perfect

crystal and disorder Hamiltonian.

Wn→n′ =
2π

~
|〈n|V |n′〉|2δ(En − En′) (4.2)

Microscopic detailed balance which decomposes the kinetics of a system in elementary pro-

cesses states that at equilibrium each elementary process is reversible in nature. However,

it fails in the calculation of Hall conductivity which involves higher order impurity potential

terms. Skew-scattering is give by the asymmetric part of the transition probability

WA
kk′ = −τ−1

A k × k′ ·Ms (4.3)

This asymmetry is indicative of different scattering probability for W(k → k′) and W(k′ →
k). Including this contribution in the linearized Boltzmann equation gives the transverse

velocity component.

Side-jump

The semiclassical picture of side-jump mechanism proposed by Berger [72] considers the

scattering of a Gaussian wave packet from a spherical impurity with spin orbit interaction,
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resulting into a transverse displacement with respect to the wave vector k. Assuming a

spherical potential well of radius R of the following form,

V (r) =

0 r > R

~2
2m

(k2 − k2
l ) r < R

(4.4)

For a finite spin-orbit interaction term Hso = (1/2m2c2)(r−1∂V/∂r)SzLz with Sz(Lz) as

z-component of spin(orbital) angular momentum. The corresponding transverse displace-

ment ∆y for an incident wave-packet with wave vector k is

∆y =
1

6
kλ2

c (4.5)

where λc = ~/mc is the Compton wavelength. For k ∼ kF ∼ 1010m−1 (typical metals),

∆y ∼ 3× 10−16m is too small to be measured. However, in solids, the effective spin-orbit

interaction is enhanced by band-structure effects by a factor of

2m2c2

m∗~
τq ∼ 3.4× 104 (4.6)

with this enhancement, the transverse displacement is ∆y ∼ 0.8× 10−11m.

4.2 Non-linear anomalous Hall effect (NLAHE)

Although it was theoretically established that anomalous Hall effect can result from a finite

Berry curvature in the system which retains time reversal symmetry and have broken

inversion symmetry [68, 69]. It wasn’t until Moore and Orenstein’s work relating DC

photocurrent observed in a realistic two dimensional system with Berry phase induced

due to quantum confinement that an experimental connection was achieved [53]. They

discussed the results in regard with the optically inactive media showing helicity dependent

response [73, 74], as a Berry-phase effect driven by inversion symmetry breaking.

A more generalized version of this theory was given by Sodemann and Liang Fu [61]

suggesting that Hall-like currents can be observed as the second-order response to the ex-

ternal electric fields in time-reversal invariant systems with broken inversion symmetry as
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both DC and second harmonic response to the driving frequency. This non-linear Hall

effect arise from the Berry curvature dipole (BCD) in the momentum space, generating a

net anomalous velocity when system is in non-equilibrium (current carrying state). The

non-linear Hall coefficient is a rank two pseudo-tensor whose form is determined by the

point group symmetry. Inversion-symmetry breaking may cause segregating the positive

and negative Berry curvature in different regions in momentum space causing a net dipole

moment. Nonlinear effect can be observed upon applying an electric field along the direc-

tion of this dipole moment. Since then there has been many theoretical [75, 76, 77] and

experimental [56, 78, 57, 59] reports trying to elucidate the underlying mechanism.

In non-centrosymmetric materials retaining time reversal symmetry, it is possible to

realize a “nonlinear AHE” (NLAHE), whereby the current induces an effective magneti-

zation in the sample and establishes a transverse electric field that increases quadratically

with applied electric field [61, 75, 79, 80, 20]. Experimentally, an AC voltage of frequency

ω is applied across the sample and a voltage of either frequency 2ω or 0 (DC) is detected

in the transverse direction. Such an effect was first demonstrated in two-dimensional (2D)

WTe2 within the plane of the layers [56, 55]. They tune the Fermi level by gating the

device, and show that at a charge neutrality point a large non-linear response is observed.

They attribute it to the intrinsic contribution coming from the dipole moment of Berry

curvature arising from the layer-polarized Dirac fermions in bilayer WTe2. Another work

on few layer WTe2 showed crystalline axis and temperature dependence of the non-linear

Hall effect [78]. They attribute the effect to both intrinsic Berry curvature dipole mecha-

nism and extrinsic spin-dependent scatterings. A quantitative result on the non-linear Hall

effects arising from the Berry curvature dipole moment in the non-centrosymmetric Weyl

semimetals was reported by [79]. They discuss the type I, TaAs, and type II MoTe2 and

WTe2, Weyl semimetal systems concluding that the tilted Weyl cone of Type-II semimetals

result in larger BCD. Berry curvature dipole is given by

Dab =

∫
k

f0
∂Ωb

∂ka
(4.7)

The left side of 4.2 shows the crystal structure of Td-MoTe2. The a and b axes lie within

the plane of the layers, while the c-axis points out-of-plane. In addition to a mirror plane

that is normal to the a-axis, there is a glide plane that is normal to the b-axis and a two-
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Figure 4.2: NLAHE measurement schematic. Main panel: crystal structure of MoTe2

in the Td phase and device geometry. Purple, blue, and gray flakes represent MoTe2, h-

BN, and graphene, respectively. Inset shows optical image of 70-nm-thick device. h-BN

blocking layers, graphene, and the bottom vertical contact are outlined in blue, gray, and

red, respectively. Scale bar is 5µm.
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fold screw axis along the c-axis, putting the bulk crystal in the non-centrosymmetric space

group Pmn21 [81]. The corresponding point group mm2 has the nonlinear susceptibility

tensor,

 0 0 0 0 d15 0

0 0 0 d24 0 0

d31 d32 d33 0 0 0

 . For the application of an in-plane electric field of

frequency ω: [Eω
b ,Eω

a ,0], a vertical Hall current at frequency 2ω: j2ωc = d31(Eω
b )2+d32 (Eω

a )2,

develops along the c-axis, while nonlinear currents in-plane strictly vanish: j2ωb = j2ωa =

0. In contrast, since the glide plane and screw axis symmetries are broken for the surface

layers, ultrathin samples understood to be in space group Pm [82], with allowed nonlinear

currents both in-plane and out-of-plane.

To design a measurement for understanding mechanism behind NLAHE, we have gath-

ered following information. For TMDC materials MoTe2 and WTe2 the allowed direction

for NLAHE is along the c-axis. Since there could potentially be conductivity dependent

skew scattering contribution, NLAHE should be have a crystalline axis dependency for an

anisotropic crystal. Therefore, we need to fabricate a device which can incorporate re-

quirements of current injection from both planer axis(a & b), in-plane Hall measurement,

four-terminal longitudinal voltage measurement and a pure c-axis contact for eliminating

any mixing with in-plane components.

4.3 Experimental Methods

4.3.1 Sample Fabrication

To measure c-axis NLAHE, we have fabricated samples with vertical as well as in-plane

contacts. In particular, our devices consist of underlying gold electrodes with MoTe2

crystals of various thicknesses transferred on top. To maintain consistency, all MoTe2 flakes

were exfoliated from a single piece of bulk crystal grown by the flux method. Few-layer

graphene was used as a vertical top electrode with insulating hexagonal boron nitride (h-

BN) blocking all but the tip of the vertical contacts to prevent mixing with in-plane currents

and fields. In order to protect the sample from degradation, the entire transfer process

was performed within a nitrogen-filled glovebox. A device schematic is shown (without the
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top h-BN layer for clarity) in Fig. 4.2, and an optical image of a representative device is

shown in the inset.

Since current applied along the a- and b-axis of the crystal generally give rise to different

nonlinear Hall currents or fields as per the different elements of the susceptibility tensor d31

and d32, we have controlled for the sample orientation by selecting MoTe2 flakes that were

rectangular in shape and aligning them with the circular electrode pattern. This allows for

current injection along both the long and short directions of the flake in the same device,

which in almost all cases correspond to the a- and b-axis, respectively. For either current

I‖a or I‖b, our device geometry yields measurement of the following linear and nonlinear

voltages: in-plane longitudinal (Vxx), in-plane Hall (Vxy), and out-of-plane Hall (Vxz).

4.3.2 Measurement Set Up

Transport Measurements

Both the magnetotransport and NLAHE measurements were primarily carried out in a

pumped Helium-4 cryostat (Cryo Industries of America) with a base temperature of 1.4K.

The latter was further cross-checked in a Montana Instruments Cryostation with base

temperature of 5K. For the second harmonic NLAHE measurements, an AC current with

frequency between 17 to 277Hz was passed along either the a- or b-axis of the MoTe2

crystal, and Vxx, Vxy, and Vxz voltages were measured at both the first harmonic (X

channel) and second harmonic (Y channel) frequencies using an SR830 lock-in amplifier.

A Keithley 2450 source measure unit was further used to measure the DC voltage response

of the NLAHE.

Optical Second Harmonic Generation Measurements

Rotational anisotropy SHG measurements were taken in a normal incidence geometry using

a pulsed laser with a pulse duration of∼325 fs, a repetition rate of 200 kHz, and an incoming

fundamental wavelength of 800 nm. The MoTe2 samples were held at 80K inside an optical

cryostat. Using a single-photon sensitive detector, the intensity of the reflected SHG was
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measured as a function of the angle between the incident polarization and the x-axis in the

lab coordinate frame. The incident fundamental and the reflected SHG polarizations can

be selected to be either parallel or crossed, forming two polarization channels for the SHG

measurements.

4.4 Measurement & Analysis

This section includes measurement and results on device characterization using optical

second Harmonic generation, and magnetoresistance measurement, low temperature second

harmonic transport on both WTe2 and MoTe2.

4.4.1 Device Characterization

In order to confirm the crystal orientation, we first measured the longitudinal magnetoresis-

tance, MR=[Vxx(B⊥)-Vxx(0)]/Vxx(0) for constant current, along the two current directions.

Fig. 4.3a shows representative data from a 47-nm-thick device at 1.4K: I‖a (I‖b) exhibits

quadratic (linear) magnetoresistance up to 12.5T, consistent with previous measurements

on bulk crystals [10]. Overall, MR is large and non-saturating due to close electron-hole

compensation combined with relatively high carrier mobilities [9, 37, 79]. In addition, we

have performed optical second harmonic generation (SHG) measurements, which can also

distinguish between the a- and b-axis of MoTe2. Fig. 4.3b shows SHG intensity measured

on the same sample at 80K with incident and scattered light polarization in parallel as

a function of the polarization angle relative to the a-axis, at which a node can be seen,

consistent with previous results [83]. Unlike the electrical second harmonic measurements

we are to present, optical SHG is mostly sensitive to the symmetry properties of the surface

layers, which allow for in-plane responses.

4.4.2 Non-linear Hall measurements

Fig. 4.4 shows representative NLAHE measurements taken on a 127-nm-thick sample at

2K. The upper two panels show Vxz measured at DC and second harmonic (2ω= 354Hz)
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Figure 4.3: NLAHE sample characterization.(a) Symmetrized MR of 47-nm-thick

device with current applied along the a and b crystal axes at 1.4K. I‖a (I‖b) exhibits

quadratic (linear) MR. (b) Angle-dependent second harmonic generation measured on the

same sample. Minimum (maximum) intensity occurs along the a-axis (b-axis).
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frequencies as a function of the first harmonic (ω=177Hz) V 2
xx for I‖a and I‖b. All four

traces show linear behavior at low bias as expected for the NLAHE [78], although the slope

is larger for current along the a-axis. At higher bias the curves become slightly sublinear,

possibly due to sample heating. Furthermore, for each current direction, the DC and 2ω

amplitudes are comparable for a given applied bias. In contrast, as shown in the lower two

panels, relatively small second harmonic voltage is measured for Vxx or Vxy for comparable

bias, consistent with the allowed symmetries discussed earlier for bulk-like crystals.

Figure 4.4: Dependence of NLAHE on crystal axis and thickness. (a) Upper

panels: DC and second harmonic Vxz vs. first harmonic V 2
xx for I‖a and I‖b in 127-nm-

thick sample at 2K. Lower panels: analogous second harmonic measurements for in-plane

response show significantly weaker signal under comparable bias. b, NLAHE strength

E2ω
z /(Eω

x )2 and residual longitudinal conductivity σxx0 vs. sample thickness for I‖a and

I‖b. Both values are larger for greater thickness and I‖a.
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Figure 4.5: Fidelity of NLAHE signal. The c-axis NLAHE does not substantially

change with a changing first harmonic frequency or b exchanging the current leads.

The Fig. 4.5 show that these results do not change when the frequency ω is changed

over an order of magnitude or by exchanging the current leads, indicating that they stem

from intrinsic properties of the sample.

For the remainder of this work, we will focus only on the second harmonic component of

the c-axis NLAHE. The strength of this effect can be defined as the slope of the linearized

plots presented at low bias. In order to understand and demonstrate the reproducibility

of these results, we have performed similar measurements across five samples of different

thicknesses down to the 2D limit: 127, 70, 47, 32, and 9nm. The NLAHE strength is

shown as a function of sample thickness for both I‖a and I‖b in the upper panel of Fig.

4.4b. We have used electric field values, E2ω
z /(Eω

x )2, instead of voltage in order to account

for the different dimensions of the samples. The local Eω
x at the vertical contact area

was obtained from finite element method simulations of each individual device. For every

sample, the a-axis shows larger strength than the b-axis, while for both axes, the strength

decreases substantially with decreasing thickness. In particular, for I‖a in the thickest

(127nm) sample, E2ω
z /(Eω

x )2 = 0.43m/V.

The differences observed between the samples and two crystalline axes can be attributed

to their differences in conductivity. In the lower panel of 4.4b, we have plotted the residual
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longitudinal conductivity σxx0 for each sample and axis, which shows a similar trend. This

reflects the three-dimensional electronic character of MoTe2-decreasing thickness increases

surface scattering, which lowers the residual conductivity by over an order of magnitude

in our thinnest sample, consistent with previous results from the previous chapter.

4.4.3 Scaling relation in NLAHE

Scaling relation between anomalous Hall resistivity and longitudinal resistivity has been

central tool in parsing different contributions to the anomalous Hall effect. It is generally

believed that AHE has three key components as discussed in section 4.1. σAH = σint +

σsk+σsj where σint, σsk, σsj are contributions from KL intrinsic effect, skew scattering and

side-jump mechanism, respectively. A recent temperature dependent scaling was proposed

by [62], where comprehensive scattering mechanisms were included.

σAH − α0σ
2
xx/σ0 = β(T ) + β

′
(T )σxx/σ0 + β”(T )(σxx/σ0)2 (4.8)

where βs are temperature dependent coefficients arising from combinations of inter-

action between electron-impurity and electron-phonon scattering, α0 is contribution from

impurity skew-scattering. Fig. 4.6a, shows the temperature dependence of E2ω
z /(Eω

x )2 and

conductivity measured for the 127-nm-thick sample-both decrease with increasing temper-

ature. In the lower inset, we show the temperature-dependent longitudinal resistivity for

I‖a in the same sample, which conversely decreases with decreasing temperature. Specif-

ically, the resistivity scales linearly with temperature at higher temperatures, but begins

to saturate in the crossover region roughly centered at TL ∼18K.

Taken together, these results indicate that conductivity (or resistivity) may be the fun-

damental parameter upon which the NLAHE strength depends. To show this dependence

explicitly, the main panel of Fig. 4.6b shows the log-log scale, E2ω
z /(Eω

x )2 for both axes of

each sample versus temperature-dependent conductivity normalized to the residual conduc-

tivity, σxx/σxx0, and a general trend appears to emerge. Specifically, at lower conductivity

(higher temperature) for a given sample and axis, E2ω
z /(Eω

x )2 scales closely with σ2
xx as
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compared with the guide-to-eye in gray. Above (below) a certain conductivity (tempera-

ture), it increases at an even faster rate. To see this crossover point more clearly, we have

extracted the local slope ν from the data in the main panel as a function of temperature

(normalized to the TL of each sample/axis, which ranges between 13-18K), yielding the

relationship E2ω
z /(Eω

x )2 ∼ σ
ν(T )
xx . The inset of Fig. 4.6 shows ν(T) for all the different

traces in the same color scheme as that used in the main panel. Above TL, ν is near 2 for

every trace, while it rises continuously below this temperature. We have also performed

similar measurements on bulk-like WTe2 (which shares the same crystal structure) as well

as MoTe2 Hall bar devices for I‖a, both of which show qualitatively similar behavior. This

indicates that the strength and scaling of the c-axis NLAHE is not unique to MoTe2 nor a

result of the circular electrode geometry.

In order to understand the mechanism behind the NLAHE and the observed scaling with

longitudinal conductivity, we turn to the theory behind the ordinary AHE, as it is under-

stood that the NLAHE strength, which can also be written as (E2ω
z )/(Eω

x )2 = σNLAH/σzzE
ω
x ,

where (σzz being the linear c-axis conductivity and σNLAH is the nonlinear anomalous Hall

conductivity element zx), scales in the same way as anomalous Hall conductivity σAH in

the ordinary (linear) AHE [78, 84, 62]. For the latter, σAH consists of intrinsic Berry cur-

vature, skew-scattering, and side-jump(-like) scattering contributions [85]. The intrinsic

part does not depend on longitudinal conductivity (scales with σ0
xx), while upon chang-

ing temperature, skew-scattering scales with σ2
xx and side-jump contains terms that scale

with σ0
xx, σ

1
xx, and σ2

xx [84, 62, 86, 87]. It is therefore not possible to distinguish between

the various mechanisms by scaling analysis. Nonetheless, it is generally understood that

skew-scattering dominates for highly conducting samples with large residual conductivity

[88].

4.4.4 Analysis of large NLAHE

To further our understanding, we have fit all our data for E2ω
z /(Eω

x )2 above TL to the

functional form: Aσ2
xx + B, and the extracted A and B values are plotted in the lower

panels of Fig. 4.8 as a function of the residual conductivity σxx0 of the sample/axis. The

upper panel shows a representative fitting for the 127-nm-thick sample with I‖a.
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Figure 4.6: Scaling of the NLAHE with sample conductivity. (a) Main panel:

E2ω
z /(Eω

x )2 and σxx vs. temperature for I‖a and I‖b in 127-nm-thick sample. Inset: longi-

tudinal resistivity ρxx vs. temperature for I‖a in same sample. ρxx crosses over from linear

temperature dependence to saturation below TL ∼18K. (b) Main panel: E2ω
z /(Eω

x )2 vs.

σxx/σxx0 for all four samples along a and b axes. All traces show scaling close to a power

law with exponent of 2 at lower conductivity (higher temperature) and exhibits an upturn

as σxx approaches σxx0. Open circles mark the data points taken at the temperature closest

to TL. Inset: local scaling exponent ν vs. temperature. ν continually increases above 2

for all traces below TL.
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Figure 4.7: Measurement of c-axis NLAHE in bulk-like WTe2. (a) Second harmonic

Vxz vs. first harmonic V2
xx for I‖a and I‖b in 130-nm-thick sample at 2K. b NLAHE

strength E2ω
z /(E2ω

x )2 vs. σxx/σxx0 for I‖a and I‖b. c, Hall angle E2ω
z /E2ω

x vs E2ω
x for I‖a

and I‖b. Peak NLAHE strength and Hall angle is less than but comparable to 127-nm-thick

MoTe2.

A initially decreases with increasing σxx0, but saturates at higher σxx0. For the AHE,

the skew-scattering term is given by A = ασ−1
xx0 [84, 62, 89, 87], where α is termed the skew-

scattering coefficient and the residual conductivity is taken as a measure of the disorder

from impurities. This general scaling cannot be directly applied for our samples, since we

are not tuning the impurity concentration by changing thickness, while measurements along

the different crystalline axes for the same sample show different residual conductivity due

to differences in band structure, not disorder. By reducing thickness, we have instead in-

creased the contribution of surface scattering to the total resistivity, which by Matthiessen’s

rule can be written as: σ−1
xx0 = σ−1

xx0b(ulk) + σ−1
xx0s(urface). Taking into account the different

symmetries for the bulk and surface layers, we further assign different skew scattering coef-

ficients between the two, and write: A = αbσ
−1
xx0b+αsσxx0s

−1 = αsσxx0
−1 +(αb−αs)σxx0b

−1.

In the thick limit, we expect σxx0 ∼ σxx0b, and so A ∼ αbσ
−1
xx0b, consistent with the nonzero

constant value we observe at high conductivity. If we further approximate that σxx0b is

independent of thickness and equal to the measured σxx0 of our thickest sample, we can

fit our data across the entire thickness (residual conductivity) range for each axis to the

formula above (see colored lines in the middle panel of Fig. 4.8). The extracted skew-
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scattering coefficients are shown in the inset. Overall, α is larger for bulk skew-scattering

and similar between the two axes.

The constant term B is expected to contain contributions both from the intrinsic Berry

curvature and extrinsic side-jump(-like) events and be independent of residual conductivity

[62, 89, 90]. Although this value varies over two orders of magnitude between samples, we

indeed do not observe any clear trend with σxx0. We first calculate the upper limit for the

predicted intrinsic contribution to B in the section below.

Calculation of intrinsic contribution

In the NLAHE, the vertical Hall current is given by j2ω
z = σzzE

2ω
z = 2χzxx(E

ω
x )2, where

χzxx is the nonlinear susceptibility tensor given by [75],

χzxx = −εzyx
e3τ

2~2(1 + iωτ)
Dxy

where εzyx is the third-rank Levi-Civita symbol and Dxy is the intrinsic Berry curvature

dipole. In the DC limit ω << 1, we have: E2ω
z

(Eω
x )2

= 1
σzz

e3τ
~2 Dxy.

For each sample, we have extracted the electron and hole densities (n, p) and mobilities

(µn, µp) using a two-band model for the ordinary Hall effect and magnetoresistance [10].

As we saw in the previous chapter, the electron and hole densities are nearly balanced. We

can then obtain the corresponding scattering time, τ =
µmeff

e
, where meff ∼ m0, the bare

electron mass [10]. τ ranges between ∼0.2ps (9nm) to ∼1ps (127nm).

We used both experimental c-axis measurement and DFT calculation to determine

σzz∼0.6σxx for I‖a near the charge neutrality point, while the theoretical value for Dxy is

0.856 [10]. From these values, we calculate an upper limit of E2ω
z /(Eω

x )2 = 1.3× 10−7m/V

across all our different samples the result is marked by the gray line. This theoretical

value is one order of magnitude less than our smallest experimental value, suggesting that

intrinsic Berry curvature only plays a minor role in the extremely large NLAHE observed

here. Although, the intrinsic contribution may in principle be enhanced by external per-

turbations, such as strain, or symmetry breaking by the surface layers [91, 92, 93].

53



Figure 4.8: Determination and analysis of scaling parameters in NLAHE. (a)

Upper panel: representative fit to E2ω
z /(Eω

x )2 = Aσ2
xx + B for T > TL for 127-nm-thick

sample, a-axis. Lower panels: A and B vs.σxx0 for all samples and axes. Red and blue

dashed lines are fits to formulas described in the text for a and b axes, respectively. Gray

line is predicted intrinsic Berry curvature contribution to B. (b) Upper panel: represen-

tative fit to ∆ = Cexp(Dσxx) for T < TL for 127-nm-thick sample, a-axis. Middle panel:

C and D vs. σxx0 for all samples and axes. Lower panel: low-temperature enhancement

factor (E2ω
z )/(Eω

x )2
∣∣∣
2K
/(Aσ2

xx0 +B) vs. σxx0.
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For temperatures below TL, E2ω
z /(Eω

x )2 increases further with conductivity beyond the

σ2
xx dependence seen at higher temperatures (see Fig. 4.6b). Such behavior has not been

previously observed experimentally for the AHE, and so it remains an open theoretical

question as to the microscopic scattering mechanism responsible for this effect. A possible

candidate is side-jump, as it has been recently predicted that, for high-purity samples

below the Debye or Bloch-Gruneisen temperature, scaling parameters for side-jump(-like)

contributions may actually be temperature-dependent [62]. We proceed to fit our data

in this regime in order to determine an empirical scaling relationship. The continuous

increase of ν below TL suggests an exponential dependence on σxx, and so we have fit the

additional contribution to: ∆(E2ω
z )/(Eω

x )2− (Aσ2
xx +B) = Cexp(Dσxx), and the extracted

C and D values are plotted in the middle panel of Fig. 4.8b as a function of the residual

conductivity σxx0 of the sample/axis. The upper panel shows a representative fitting for

the 127-nm-thick sample with I‖a. While C sharply with increasing σxx0, D decreases. The

net effect, however, is such that the NLAHE strength at low temperature is increased by

a roughly constant factor above that expected from skew-scattering alone. In the lower

panel of Fig. 4.8b, we have plotted as a function of σxx0, the ratio between the measured

E2ω
z /(Eω

x )2 value at 2K and Aσ2
xx0 +B, the extrapolated skew-contribution, and this factor

falls between 3–5 for all but one sample/axis.

4.5 Discussions

The combination of the different scattering processes, together with the nonlinear depen-

dence of the Hall field on applied bias, allows us to obtain the largest Hall ratio in electric

field observed to date outside the quantum (anomalous) Hall regime. In Fig. 4.9a, we

have plotted E2ω
z /Eω

x , the ratio between the Hall field generated and the applied longitu-

dinal field, as a function of Eω
x measured for the 127-nm-thick sample at 2K, which shows

the largest NLAHE strength amongst all our samples. The ratio is always larger for I‖a,

for which it rises initially with increasing Eω
x , reaching a maximum of 2.47, an order of

magnitude larger than the analogous quantity measured in giant linear AHE compounds

[94, 95]. At larger bias, E2ω
z /Eω

x decreases as Eω
x itself becomes sublinear with applied

current, likely due to heating.

55



Figure 4.9: Observation of extremely large Hall ratio and conductivity at higher

bias. (a) Hall ratio E2ω
z /Eω

x vs Eω
x for I‖a and I‖b in 127-nm-thick sample. Hall ratio

reaches 2.83 for a-axis. (b) Anomalous Hall conductivity σAH vs. σxx0 for various linear

and nonlinear AHE materials. Stars mark values measured in this study.
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We would further like to quantify the nonlinear anomalous Hall conductivity at this

peak Hall ratio, which can be expressed as: σNLAH = (E2ω
z /Eω

x )σzz. We have measured

both the a- and c-axis resistivity of a separate bulk MoTe2 crystal (grown under the

same conditions as that used for our devices) and further calculated the conductivity

anisotropy as a function of the position of the Fermi level using density functional theory.

σzz/σxx ∼0.25(exp.)-0.6(th.) for I‖a near the charge neutrality point where electrons and

holes compensate, yielding σNLAH ∼8×107 S/m. Assuming a similar anisotropy ratio for

WTe2, we estimate σNLAH ∼5×107 S/m at the peak Hall ratio for our bulk-like WTe2 device.

For comparison, we have plotted these values in Fig. 4.9b, together with those measured

in-plane for ultrathin MoTe2 and WTe2, as well as the linear anomalous Hall conductivities

measured in various magnetic systems as a function of the residual longitudinal conduc-

tivity [96, 97, 63, 98, 32, 99, 100, 101, 102, 103, 104]. Overall, σAH is larger in more highly

conducting systems. The values for the c-axis response in MoTe2 and WTe2, in particular,

are the largest yet reported.

In summary, we have observed an extremely large c-axis NLAHE in Td-MoTe2 that

is dominated by asymmetric electron scattering. Our work reaffirms the importance of

extrinsic contributions to the (NL)AHE, especially in highly conducting metals, and opens

a new direction for obtaining giant Hall ratios and conductivities in non-centrosymmetric

systems without breaking time reversal symmetry.
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Chapter 5

Conclusion and Outlook

This thesis was aimed at exploring the interplay between crystal structure and magneto-

transport in semimetallic transition metal dichalogenides (TMDCs). We started with a

discussion on relevant layered materials, namely, graphene, boron nitride, and semimetal-

lic TMDCs: MoTe2 and WTe2. We learned that these semimetallic TMDCs can exhibit a

large magnetoresistance and non-linear phenomena owing to their unique structural and

electronic properties. Then, we discussed the techniques that can be used to assemble

heterostructures of layered materials for transport measurements.

We studied the thickness evolution of magnetoresistance in Td-MoTe2. We measured

a large magnetoresistance of ∼3000% in a 180nm sample, which decreases by two orders

of magnitude upon reducing the thickness to 7nm. This occurs concomitantly with a de-

crease in the carrier mobility, and electron-hole imbalance upon reducing the thickness.

The question we tried to address is which of these two factors is dominant in suppressing

the magnetoresistance in thinner samples. We performed both classical magnetotransport

and quantum oscillation measurements to study carrier transport, and identify signatures

of electron(hole) pockets on the Fermi surface. We used a two-band model analysis for

magnetoresistance, and calculated the associated carrier mobility and electron-hole ratio.

After comparing our data across various thicknesses, we arrived to a conclusion that mag-

netoresistance is more sensitive to the mobility, therefore, a large magnetoresistance can

still be achieved with some degree of carrier imbalance. In principle, a MR of about 1000%
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can be achieved, despite the carrier imbalance ratio of 0.8, if a high mobility can be main-

tained. Thin layers isolated from high quality single crystals will have a higher mobility,

which can further be increased by fabricating the device on atomically flat boron nitride

substrate. We also observed oscillations in longitudinal resistivity for higher magnetic field

(>6T). The two prominent oscillations at frequencies 202T and 266T, correspond to the

electron pockets on the Fermi surface as seen in density functional theory calculations.

Then, we looked into the non-linear anomalous Hall effect (NLAHE) exhibited by

MoTe2 and WTe2, arising from their non-centrosymmetric crystal structure. Here, we per-

form both in-plane and out-of-plane, first and second harmonic transport measurements

to study the NLAHE. We present a scaling relation between E2ω
z /(Eω

x )2 and longitudinal

conductivity, to determine various contributions to the NLAHE. From the scaling, we find

that it has mainly three types of dependency on the conductivity, namely, B, Aσ2
xx, and

Cexp(Dσxx/σxx0), indicating the contributions from intrinsic plus side jump mechanism,

skew-scattering, and an unexplored exponential scattering, respectively. The Hall ratio was

(E2ω
z /Eω

x ) measured to be 2.47 and 1.85, for MoTe2 and WTe2, respectively. The corre-

sponding Hall conductivity values are 8×107 and 5×107 for MoTe2 and WTe2, respectively.

The Hall ratio measured in MoTe2 is the largest outside of the quantum Hall regime, and

Hall conductivity is largest yet achieved in any material.

From the measurements on the non-linear anomalous Hall effect, we further continue

to address the mechanism behind the exponential variation of NLAHE strength with lon-

gitudinal conductivity in the temperature range below 15K. We have designed a geometry

to examine if there is a spin dependent mechanism responsible for this large effect. To

investigate the spin accumulation on one of top and bottom surfaces of bulk MoTe2, we

will measure the spin filtering using a ferromagnetic potential barrier.
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