
Slip Prediction for Upper-Limb Prosthetics 

 

 

 

by 

 

 

Andrew Smiles 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master’s of Applied Science  

in 

Systems Design Engineering 

 

 

 

Waterloo, Ontario, Canada, 2021 

 

 

©Andrew Smiles 2021 

 



 

 ii 

Author's Declaration 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 



 

 iii 

Abstract 

Amputees have greatly benefitted from improved prosthetic technologies, increasing 

dexterity, degrees of freedom, and attachment to the body, however sensory feedback has 

made comparatively little improvement. Osseointegration has been shown to produce a 

transcutaneous pathway to allow for long term stable invasive electrical stimulation [1], [2]. 

The need for useful prosthetic feedback has been pre-existing, however now there is the 

capability for prosthetics to begin recreating lost sensations through neural stimulation. This 

thesis investigates the ability to create a slip prediction system, in a currently existing and 

widely used commercially available prosthetic hand. This slip prediction system is designed 

to alert the user before slip begins to occur to maximize potential usefulness. Two methods of 

stimulation are compared to a no-stimulation baseline in execution of a task designed to 

induce slip. Improvements are indicated through a reduction in number of slips, and 

improved understanding of grip capabilities, shown by prosthetic movement planning within 

grasp limits. One stimulation condition delivers a single rapid stimulation “spike” as slip 

becomes more likely. The other stimulation condition delivers a continuous stimulation, with 

amplitude proportional to slip likelihood. The predictor is shown to have a prediction 

accuracy of 69% when used with feedback. Slips across all four participants were shown to 

be reduced by stimulation, as 53 slips occurred using no stim, 37 slips occurred using the 

spike feedback, and 31 slips occurred using the amplitude feedback; however this decrease 

was not shown to be statistically significant. This indicates that the neural stimulation slip 

prediction delivered in this thesis, provided additional and actionable information even when 

the participant could see, hear, and freely move the prosthesis. 
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1. Background 

1.1 Amputation 

Amputation of a major limb is a life altering event for amputees, with potential of instantly 

reduced independence in activities of daily life. Amputation impacts amputees in different 

ways, depending on the nature of the amputation. Unlike lower-limb amputation where 

decreases in ambulation may be the cause of diminished independence and capability, upper-

limb amputations cause diminished independence through decreases in object manipulation 

capability. This is primarily caused by the loss of the hand, and can be exacerbated by loss of 

the elbow, or shoulder articulation. The natural human hand is very effectively constructed in 

its capability to provide strong but dextrous movements. Beyond pure mechanics, the natural 

hand provides a broad range of feedback to its user on the properties of external objects, and 

the nature of current grasps. There have been many developments in creating increasingly 

functional prosthetic hands, in terms of both mechanical and sensory capabilities. However 

due to the difficulty in providing long-term stable, rich sensory feedback, wide-ranging 

biomimetic sensory suites in prosthetic hands are not currently in high demand, or 

commercially available. 

1.2 Osseointegration 

Osseointegration describes the interaction between bone, and implant (typically Titanium) in 

which the bone has formed around the implant, and is long-term stable [3]. This process has a 

nearly sixty-year history, and has been shown effective in a wide range of applications [3], 

[4]. Osseointegration is effective for bone anchoring, but also allows for creating a safe 

transcutaneous structure. The biocompatibility of titanium with the bone and skin has 

allowed surgeons to create strong connections to the skeleton, previously deemed impossible 

[5]. Developed through the 1960s for facial and dental implants, the technique has been 

applied to many other fields such as hearing aids, cosmetic prosthetics, and both internal and 

external joint repair prosthesis [2], [4]–[6].  
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Attaching the prosthesis directly to the bone provides many benefits to upper and lower 

limb prosthetics over their traditional counterparts. Typical prosthetics have a socket-stump 

mating, which can cause a host of problems, including but not limited to discomfort, poor fit, 

pressure sores, and load transfer issues. Osseointegration mitigates these by creating a 

synthetic bone for the prosthesis to attach to, mimicking the natural skeleton [7]. The skeletal 

biomimicry has been found to relieve many inherent interfacing issues of current limb-

prosthetics such as discomfort, weight and limited movement [7]. As such, osseointegration 

is particularly promising for major limb replacement through prosthetics. One such example 

is the OPRA (Integrum AB, Sweden) system which features a titanium fixture screwed into 

long-bone at the site of amputation, with a titanium abutment passing through skin at the end 

of the stump [2], [8] seen in Figure 1. This abutment is used for affixing prosthetic limbs 

rigidly and directly to the bone, and has been shown to be long term stable [2], [7]–[9]. 

 

Figure 1 Cut-through view of the OPRA system embedded in long bone, from [9]. 
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More recently, long term stable transcutaneous pathway was established by passing wires 

across the skin barrier using the osseointegration [2]. These wires are capable of translating 

electrical information across the skin such as muscle activation recording, or nerve 

stimulation. By eliminating the skin-electrode interface, these long term stable invasive 

recordings are significantly richer and more stable signals than surface recordings. Recently, 

neural stimulation delivered to the residual nerves through the osseointegrated pathway, has 

shown to be a stable and effective method of recreating the missing tactile sensations of the 

amputated hand [1], [2]. Osseointegration is an impressive and promising prosthetic 

development, which moves the field closer to recreating the natural limb through its 

connection, control and sensory capabilities.  

1.3 Myoelectric Control 

Electromyography (EMG) is the recording of detectible electric pulses released as a result of 

muscle activation [10], [11].  Muscle fibers conduct and generate electricity, simultaneously 

with mechanical contraction. This electrical activity varies in amplitude and frequency as the 

nervous system changes desired muscular force [10]. EMG for control applications is 

typically recorded as the spatial and temporal summation of electrical impulses in the 

receptive field of each electrode. Increasingly discerning/fine electrodes improve specificity 

of recording over the spatial domain. EMG acquisition requires recording of electrical 

activation from the active sites, and recording of a predetermined grounding site in which 

relevant signals would not be present. The value of the EMG is taken as the difference in 

activities between these two sites.  

Due to the inherent position-dependant quality of the EMG, it is imperative that the 

recording electrodes are placed as close to the sources of the information as possible. This 

explains the advantages of invasive recordings over surface EMG. While maintaining 

effective signal to noise ratios is always important, EMG signals for rudimentary control are 

robust enough for daily-use application, even when recorded from the surface. There are 

many more EMG processing considerations and elements to consider in designing an EMG 

acquisition system/controller, however these are out of scope of this work.  
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EMG control is becoming more common in upper limb prosthetics, which in theory would 

allow more naturalistic control of prosthetic capabilities [11]. Despite the benefits of 

implanted electrodes, the discomfort of skin-penetrating wires, the propensity for 

transcutaneous implants to become infected over time, and the donning/doffing process the 

prosthesis, has resulted in most, if not all, EMG-enabled commercial prosthetics using 

surface EMG recording for control. Invasive EMG prosthetic control remains a developing 

space as prosthetics become more technically adept to make use of the richer data, and 

solutions to the issues surrounding transcutaneous electrodes become available.  

1.4 Neurostimulation 

As EMG recordings are understood as reading information from the body, electrical 

stimulation is understood as writing information to the body. Electrical stimulation comes in 

many forms, with many targets, such as muscles or nerves. Neurostimulaiton refers to the 

stimulation of the nervous system for any reason, which may be to promote activation, or 

generate new stimuli all together. It has been shown that electrical nerve stimulation 

delivered across the skin, or invasively is capable of creating tactile sensations in an 

amputee’s missing limb [12], [13]. Due to underlying complexities in natural nerve 

encodings, it remains impossible to create perfectly biomimetic sensations through artificial 

nerve stimulation. It is however possible to create reliably differentiated sensations through 

varying stimulation pulse frequency, amplitude, and pulse width [12]. Electrical stimulation 

contains a vast number of different parameters, however the neurostimulation relevant to this 

thesis is constrained to charge balanced pulses. Balancing charges ensures the net flow of 

electrons at the site of stimulation remains neutral, protecting the nerve. The waveform used 

in this work to achieve balanced charge begins with a strong but short polarization, followed 

by a longer but weaker depolarization, seen in Figure 2.  

The most rudimentary sensation which can easily be delivered from prosthetic hand to 

amputee is a magnitude of applied force detected by the sensor on the prosthetic. This is 

relatively easy mechanically and computationally, to both implement in the prosthetic, and 
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calculate the feedback response as linearly proportional to the force sensor  [1], [14]. 

However, the natural hand provides significantly richer modalities of sensation sensations, 

which through convolution in the mind are understood as texture, pliability, and grasp 

stability. For example, understanding the quality of a grasp requires normal and shear forces, 

as well as proprioception – senses that are not provided by current prosthetics, nor are easy to 

create through neurostimulation. This causes users to make assumptions about the applied 

forces of their prosthesis based on visual and auditory feedback, and guesses at the frictive 

and compliance qualities of the target object. A major bottleneck for sensory feedback 

remains at the human-machine-interface, which must have a wide electrical and neural 

bandwidth at low latency, and remain long term stable outside of laboratory settings. For 

prosthetics to develop to the point where they are equal to human hands, major 

breakthroughs are required in sensory synthesis and feedback. 

The sensorized hands on the market today are scarce and have limited sensory capability. 

In instrumented prosthetics, sensors typically feed into closed-loop control strategies which 

do not directly provide sensory information to the wearer. Sensorized prosthetics with a 

closed-loop control methodology, often provide corrective movements to the hand such as 

tightening grasp, when a slip is detected.  One such hand which performs this way is the 

Ottobock Sensorhand (Ottobock, Germany), and it has been observed through amputee 

 

Figure 2 Neurostimulation wave form, consisting of (a) stimulation pulse, (b) interphase 

interval, and (c) charge recovery pulse. The stimulation pulse is 10 times stronger than 

the recovery pulse, however the recovery pulse is 10 times longer to maintain charge. 
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interaction that this function is not popular. The resulting nonvolitional prosthetic movements 

were reported as disconcerting and reduced feelings of embodiment. It was additionally 

reported that the participants would take time after each power-on of the prosthesis to switch 

off this behaviour. This indicates there is a need to provide the wearer with quality of grip 

feedback in an informative manner such that they can chose to execute volitional movements 

of their own accord. 

1.5 Regression  

Sensory synthesis is completed naturally in the brain to develop abstract understandings such 

as quality of grip, due to the narrow bandwidth of sensory neurostimulation, the synthesis 

must occur digitally pre-stimulation.  Regression is the mathematical principal of 

determining the likelihood between different labels, based on input data of a known type. 

There are many different types of regression, but only linear regression between two classes, 

is relevant for this study. A key factor of regression is the continuous output of likelihood, 

compared to classification, which holds similar mathematical principals, however results in a 

discrete/binary output. The continuous output can be more useful in some cases, as it allows 

for greater understanding of the underlying prediction, and confidence of prediction.  

 

𝑋 = 𝑏 + ∑ β𝑖 [
(𝑥𝑖 − μ𝑖)

σ𝑖
⁄ ]

𝑑

𝑖=1

 

(1) 

Equation (1) is the math underpinning the linear regressor as described above. The output 

𝑋 is the sum of linear data transformations on the input vector 𝑥 of length 𝑑, and a scalar bias 

of 𝑏. The vectors 𝛽, 𝜇, and 𝜎 are all of length 𝑑, and are the trained values responsible for 

encoding different classes of  𝑥. Equation (1) shows the math used in assessing the inputs 

using a known model, and does not show the machine intelligence mechanism used to 

generate the model values. The model values which scale the inputs are determined through 

support vector machine (SVM) training, in which a hyper-plane is mathematically 

determined in 𝑑-dimensional space to separate the two labels for prediction [15]. The 𝑋 

output value represents the distance from this plane. SVM performs well when there are 

underlying geometric relations between the input data, and is less prone to overfitting 
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compared to similarly complex machine learning approaches, such as logistic regression. 

SVM training is a powerful tool which is applied to much more than just regression. The 

underlying math and processes behind SVM training, as well as assessing higher dimensional 

SVM regression (e.g. quadratic) are beyond the scope of this work. 

Patterns and connections not observed by humans may be leveraged by machine learning. 

This plays a key role in sensor synthesis, which is the means of determining information 

from a series of sensors, which is greater than the sum of their individual parts. By providing 

a full suite of sensors as input to the regressor, synthesized findings can emerge from patterns 

in the sensor data.  

1.6 Modern Upper-Limb Prosthetics 

The Cybathlon is the Olympics of the powered prosthetic world, with events for many 

different types of prosthetics. It occurs every four years and many of the best research teams 

in the world participate. The purpose of the Cybathlon is to promote development in 

prosthetic technologies through competition. Prosthetics are growing more technically 

capable and are incorporating more mechanics and electronics as the field grows. EMG 

controlled prostheses are becoming common consumer grade devices, and multi-articulated 

prosthesis are allowing for a variety of different biomimetic grip patterns, even with very 

rudimentary EMG control [16]. Despite these improvements, the first place victors of every 

Cybathlon upper-limb prosthesis race has used body-powered prosthetic hands [17]. This 

type of prosthesis is unpowered, and is actuated using a tension table system, which closes 

the hand on slight shoulder movement [16].  

The Cybathlon competitions are an indicator that, while developments in powered 

prosthetics have come a long way, there is still a demonstrated need for improvement in 

capability and usability of electronic prostheses. One such area of improvement is the use of 

sensory information in control, which has been identified as one of the four major limitations 

of the current state-of-the-art in prosthetic control [10]. There are many prosthetics, both 

commercially available and experimental, with integrated sensors, as well as developed and 

validated sensorized components such as individual fingers[18]. These sensors are often used 



 

 8 

for internal calculations of grip dynamics in the hand, effecting prosthetic movement outside 

of the direct control of the wearer [18].  

1.6.1 e-OPRA System 

A new bio-interface for prosthetics has been recently been developed using the 

aforementioned technologies. The e-OPRA (Integrum AB, Sweden) system is the electrified 

version of the OPRA system, and is made so through a secondary surgery after 

osseointegration to add implanted electrodes into the residual muscles, and onto the 

transected nerves [1], [2]. The implanted muscle electrodes allow for very clear and reliable 

EMG recording which has proven to be stable, and in some participants, allows for natural 

feeling movement control for the prosthetic [1], [2]. Cuff electrodes attached to the residual 

transected nerves provide neural stimulation, and have been shown to create reliable 

localized sensations of varied intensity [1], [2]. This is achieved through transcutaneous 

communication made possible through the osseointegration conduit. A TM4C123GH6PM 

microcontroller (Texas Instruments, USA) external to the body records, processes and acts 

upon input from the muscles, as well as calculates and executes electrical stimulation of the 

nerves [1], [2]. The arm and hand hardware is independent of the microcontroller, and can be 

replaced with any commercially available or experimental prosthetic. The microcontroller 

performs computations for the system, and is capable of noise cancelling, multi-input pattern 

matching, machine learning calculations, and all required digital signal processing. Due to 

these functions, the e-OPRA is the most appropriate test platform for deploying new 

prosthetic neural stimulation algorithms. 

As the e-OPRA is still an experimental implant system, the pool of users remains a small 

group of participants with regular oversight, and years of documented system use. The e-

OPRA system is integrated into the lives of its users in both a physical and cognitive sense. 

As a result of these factors, all four current transhumeral-amputee users of the system are 

very comfortable with the control, and have a deep understanding of their prosthetic system 

from a user perspective. 
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1.6.2 Slip Sensing 

Slip detection is a developing field in smart robotics. As human-robot interaction becomes 

increasingly common, the requirements for robots to understand more about their 

surroundings will increase [18]. It is also a growing field in upper limb prosthetic 

development [18], as sensory and computational power becomes more spatially dense, 

prosthetic hands are capable of housing more of each. Even if prosthetics developed to the 

point in which they were mechanically equivalent to a human hand, they would not have the 

same level of performance without tactile, somatosensory, and proprioceptive feedback. The 

lack of sensory information delivered to prosthetic users causes difficulty in reacting to 

surprise grasping events, such as slip or deformation [19]. There is a clear benefit to 

providing amputees with knowledge of slip from the prosthesis, however the ways in which 

it has been attempted in the past are insufficient and inapplicable to daily life. Several current 

prominent methodologies for detecting slip include: 

 Frequency analysis: recording and classifying the stick-slip relationship of an 

object sliding over the pertinent sensors such as force sensors, or 

microphones. This is done through Fourier transforms [14], [20] or wavelet 

pattern matching [21], [22] to detect known signal properties.  

 Piezoelectricity: reading the charge generated by the micro-vibrations of slip 

from a piezoelectric material. Slip information can be extracted from this 

signal through spectral/power analysis [23], [24]. 

 Force comparison: comparing magnitudes of multiaxial force sensors to 

understand the ratio of grip force to perpendicular forces which may cause slip 

[25], [26]. This method assumes there is a ratio of perpendicular to transverse 

forces which at which a slip will be induced due to inferred friction 

coefficients [18]. 

 Force differentiation: extracting meaningful information from sharp changes 

in force [27], [28] or pressure sensors [29], as understood through their time 

derivative. Underlying mechanisms causing derivative spikes vary across 

sensors and implementations.  
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Common repeated shortcomings emerged through previously published slip mitigation 

work. Present in every paper reviewed except [30], was the detection of slip only once it had 

begun, and improvements were presented as decreasing the time to detect slip from onset. 

However detecting slip in progress is less useful than providing the amputee user with an 

understanding of the grip dynamics before slip occurs, if the goal is to prevent slip all 

together. Low contact force (≤ 7𝑁) was reported in [13], [14], [18], [19], [21], [22], [25], 

[26], [28], [29], [30]–[33], which reduces the usefulness of the system as slip could easily be 

mitigated by increasing the grip force of the prosthetic. Only [19] showed validation of 

detection with high forces (≥ 20𝑁). Once slip was detected, many studies proposed 

automatically modulating prosthetic grip (tested: [23], [27], [36], [37], stated intention to test: 

[22], [29], [34]), which would remove the control from the amputee and reduce agency of the 

prosthetic user, and can reduce feelings of ownership over the arm. Much of the work was 

focused on developing new prosthetic sensors ([21], [23], [25], [29], [32], [33], [35]), finger 

tips ([14], [19], [22], [24], [27], [28], [31], [34], [37]), or entire new hands ([20], [36]). This 

may be effective as a slip detection methodology, however it dramatically decreases the 

impact of the work, as it would be difficult to rapidly deploy the new technology to global 

amputees.  

The aforementioned works typically did not include amputees in the validation of their 

designs, and thus cannot be analysed for application to daily life. Works such as these 

completely leave the amputee out of the loop, and validate their slip detection using robot-

object, or robot-robot interaction, seen in [14], [19], [30]–[33], [35], [37], [20]–[25], [27], 

[28]. Only [13] included a singular (blindfolded) amputee in the loop, with neurostimulation 

feedback, performing a variety of tasks designed to induce slip. A particular interest of this 

thesis was addressing the gap in literature regarding the impact of a pre-slip notification. To 

provide an actionable metric of stability to the participant before slip occurs, such that the 

slip could be avoided rather than minimized.  
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1.7 Objectives of Thesis Research 

The goal of this study was to implement a slip prediction algorithm on a commercially 

available sensorized hand and assess impact on movement planning. Slip prediction models 

were formulated for this hand using both heuristic hand-specific, and generalized prosthetic-

independent methodologies. These were undertaken in order to quickly produce a proof of 

concept, and to maximize rapid application to other hands, respectively. Additionally, a user-

in-the-loop test setup to determine the efficacy of slip prediction was developed and 

validated. This test is also used to demonstrate the impact of slip prediction feedback on 

amputee movement planning. 

In the work presented in this thesis, four amputees received slip predictions through varied 

neurostimulation conditions to determine the efficacy of slip prediction, using a 

commercially available prosthetic. A novel experiment is used for validation, which aims to 

be representative of life outside of the laboratory. The experiment protocol was designed 

specifically to achieve this by keeping the sight, hearing, and movement of the participants 

uninhibited, and by using grip forces more than 20N greater than in any of the surveyed work 

in the literature (with the exception of [19]). 

  



 

 12 

2. Methodology 

2.1 Subjects 

Four subjects with trans-humeral amputations participated in this study, all subjects were 

users of the e-OPRA osseointegrated prosthesis system. All subjects have used an 

osseointegrated prostheses for a range of 7±2 years, and have received nerve cuff stimulation 

during at-home use for 5±3 years. However the exact duration of stimulation is determined 

through personal preference, as not every prosthetic hand is sensorized. Each participant 

owns at least two different prosthetic hands; the exact amount of at-home stimulation 

received is determined by personal preferences of the frequency of different hand use. There 

is no participant mandate for at-home sensorized hand use.  

Participant 1 is a right-handed 48-year-old man who had desmoid fibromatosis in his right 

forearm [2]. In 2003, he required a transhumeral amputation, after which he used a socket 

prosthesis with surface EMG control. The socket attachment was replaced by an 

osseointegrated prosthetic implant in 2009, also with surface electrodes used to control the 

prosthesis. In January 2013, when he was 41 years old, he underwent implantation of 

electrodes for control, and later stimulation [2]. 

Participant 2 is a left-handed man, who underwent a transhumeral amputation of the left 

arm. Due to ethical constraints, additional details of participant 2 cannot be presented.  

Participant 3 is a right-handed 45-year-old man who had traumatic loss of his right arm in 

1997 during work accident [2]. He had worn an electric prosthesis with a socket attachment 

controlled through surface EMG for 5 years but eventually abandoned it. In 2014, he 

received osseointegration for skeletal attachment of the prosthesis which was controlled 

through surface EMG. In January 2017, when he was 42 years old, he underwent nerve 

transfers and received an implant with the neuromusculoskeletal interface [2]. P3 is the only 

participant who has stimulation disabled for daily life, as he reported it became intertwined 

with phantom sensations.  
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Participant 4 is a right-handed 47-year-old man who lost his left arm as a result of high-

voltage electrocution in 2011 [2]. He initially used an electrically driven prosthesis that was 

attached to his body with a socket and was controlled using surface EMG. In 2014, he 

received osseointegration to allow attachment of a prosthesis. In January 2017, he underwent 

implantation of the electrode interface [2]. 

2.1.1 Recruitment 

All four participants were recruited from within the ongoing e-OPRA research from the 

Centre for Bionics and Pain Research (CBPR). Due to the longitudinal nature of the CBPR 

study, additional tests are slotted into the overarching study plan as appropriate/needed. All 

e-OPRA participants come to the center a few times per year as needed for experiments such 

as these, and to retune the arm control and neurostimulation settings. Preliminary findings, 

and additional information on the long-term e-OPRA study can be found in [2]. 

This slip notification study was presented to the potential participants during their regular 

visits to the laboratory, participation was voluntary; each were asked if they would like to 

participate after being able to read information letter and ask questions to the research team. 

This experiment was performed with the full host of current participants with e-OPRA 

systems.   

2.1.2 Subject Prosthesis Details 

Each participant sees a prosthetist from their home region of Sweden. The prosthetist is 

trained in prosthetic arm maintenance, and orienting the prosthesis in a natural way which 

matches the intact arm. Different prosthetists have manufactured alignment components for 

each of the amputees, which serves as fine tuning of the osseointegration. The prosthetic 

hand of each participant was changed during this study, however the alignment component 

was kept in place as that is what each participant was most used to. Full prosthetic system 

shown in Figure 3.  
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Each participant used an Ottobock SensorHand Speed right hand, and their own Ottobock 

ErgoArm elbow to run the experiments. To maintain consistency between participants and 

trials, the same Ottobock SensorHand Speed was used with each participant. Customization 

to the participant’s prosthetic hardware was as follows: reprogramming the limb controller 

into the trial mode, or replacing it with a controller with the trial code on it, changing their 

hand to the study SensorHand Speed, and tightening the Ergo Arm passive rotation screw to 

limit internal/external rotation at the elbow joint. Each participant used the prosthetic elbow 

they came to the lab with, as it was the proper length for their natural proportions, and plays 

little role in the function of the experiment.  

  

 

Figure 3 Main components of the prosthetic system used by the participants. 
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New neurostimulation feedback settings were determined for each participant at the start of 

their visit. Stimulation parameters which could create a clear and immediately noticeable 

pulse sensation, a noticeable but weak sustained sensation, and a strong but non-painful 

sustained sensation, respectively, were determined for each participant. Participant 

stimulation settings are shown in Table 1. The EMG thresholds for the maximal muscle 

contraction level the subject would exert during the experiment (GUI shown in Figure 4) 

were set far lower than the maximal voluntary contraction (MVC) level. This is to minimize 

participant exertion, by lowering the required myoelectric response (and muscular activation) 

required to move the hand. Fine prosthetic movements were not required for this study.  

Table 1 Stimulation settings for each participant, determined to be noticeable but non-

painful at the start of each experiment session. 

 

Feedback Setting Participant 1 Participant 2 Participant 3 Participant 4 

Spike 

Stimulation 

Amplitude 

[uA] 

130 450 620 700 

Frequency 

[Hz] 

100 30 100 100 

Pulse 

Width [us] 

100 200 350 250 

Amplitude 

Stimulation 

Amplitude, 

Low [uA] 

120 300 450 800 

Amplitude, 

High [uA] 

140 450 650 500 

Frequency 

[Hz] 

30 30 30 30 

Pulse 

Width [us] 

100 200 350 250 
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2.2 Ethics 

This study received approval from both Office of Research Ethics at the University of 

Waterloo (ID#42485), and the Swedish Ethical Review Authority (DNR2020-04600). All 

subjects provided informed consent before starting the study. The protocol of the study was 

completed according to the guidelines of the Declaration of Helsinki.  

In November 2020, approval from Office of Research Ethics at the University of Waterloo 

to run a participant-facing study was contingent on Coronavirus precautions. Risk mitigation 

precautions mandated by Chalmers University and University of Waterloo, were undertaken 

as the safest union of both sets. Hand sanitizer was readily available, personnel were reduced 

to the necessary minimum, masks were distributed and changed within 4-hours of use, 

experiment equipment was cleaned between participants, and all participants kept in contact 

with a physical therapist for regular health and wellness screenings before and after visits.  

 

Figure 4 Screenshot of the EMG threshold setting GUI, showing absolute value of EMG 

in Volts over a 10 second recording; the red line represents set maximum muscle 

contraction, the blue line represents set minimum activation threshold. Fine prosthetic 

control was not needed in this experiment, thus maximum contraction was set below 

maximal voluntary contraction to reduce participant effort. 

 

 



 

 17 

2.3 Equipment 

2.3.1 Prostheses 

The prosthetic end-effector used for all training and experiments was a SensorHand Speed 

hand (Ottobock Healthcare GmbH, Duderstadt, Germany). This particular hand is sensorized 

through three sensors located in the thumb, and one in the joint of the thumb. The thumb 

housed one force sensor normal to the pad of the thumb, and two parallel and oppositely 

directed shear sensors. The sensor in the base of the thumb recorded torque, and was 

calibrated such that it returned values of the linear force applied at the thumb. All participants 

were familiar with the operation of the hand and have used it in daily life since receiving 

their osseointegrated prosthesis. View of the SensorHand Speed skeleton, with the associated 

sensory receptive fields can be seen in Figure 5.  

 

 

Figure 5 View of the Ottobock SensorHand Speed system without silicone cover, 

integrated sensory suite illustrated. 
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2.3.2 Grasped Objects 

Two objects of known dimension were required for the experiment to be run, one to create 

the regressor data-set, and one used by the participant in pulling trials, called the training 

block, and the trial totem, respectively. The training block, shown in Figure 6 a), was 3D 

printed in PLA filament with an untreated surface. The trial totem, shown in Figure 6 b), was 

also printed with PLA, but the contact surfaces were smoothed with 120 grit sandpaper. The 

training block was 18mm high, and 80mm long to allow multiple slips while maintaining 

control of the object. The contact area of the experimental totem was also 18mm high, 

however was made narrower to promote the block slipping completely from the hand. The 

widths for the top and bottom of the target area were designed to narrowly match the widths 

of the contact areas of the prosthesis’ silicon glove, shown in Figure 6 c). The cord was 

connected to the totem by an elongated neck, which was designed to discourage 

pronation/supination of the wrist, by increasing the torque resulting from pulling the totem 

out of alignment. During the experiment, the totem was connected to an exercise elastic to 

provide dynamic resistance. Two elastics were used, a lighter 328N/m yellow band, and a 

stronger 657N/m black band (determined through average of 3, 10cm pulls). 

 

 

Figure 6 a) Training block, b) trial totem detail, c) view of the trial totem grasped by the 

prosthetic before a pull attempt. 

 

a) 

b) c) 
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2.4 Proof of Concept 

2.4.1 Slip Forces Testing 

The relationship between the grip strength, and force-to-slip needed to be characterized in 

order to effectively understand chance of slip. A protocol was devised and run to find the 

forces at which slip would occur in the prosthesis. The set-up of the investigation was as 

follows: the trial totem was attached to a force gauge using an exercise elastic, the training 

block was gripped by the prosthesis at a predetermined grip force, and the prosthesis would 

be slowly pulled away from the force gauge by the researcher to induce a slip. Pulls were 

concluded once the prosthesis lost control of the totem. Maximum achieved force, elastic 

type, and grip strength were recorded for each trial; 40 trials were completed for each 

combination of grip strength and elastic type, 160 trials in total, no randomization was 

undertaken. 

 

Figure 7 Maximum force results of pulling the test block until visible slip was observed, 

sorted by elastic and grip strengths used. 
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The average maximum force observed in low grip trials was 24.21N, and the average high 

grip observed was 31.22N, greater stratification can be seen in Figure 7. The force is very 

consistent between elastics in the low strength grip, however in the high strength grip a 

3.00N difference in maximum forces was observed, the light elastic resulting in the highest 

average forces. While the data showed a 7.00N average difference between 15N, and 25N 

grips, the range of each grouping was large enough to create overlap between grip strengths.  

This investigation was valuable as it changed the direction of experimental design. It was 

expected that slip would occur at a near constant force for each different grip strength. The 

variance in slip forces is likely due to slight changes in pull attempt speed, and by 

inconsistencies between grasps, both of which would also occur in participant-trials. 

2.4.2 Bespoke Slip Prediction System 

The proof-of-concept version of slip prediction was custom-built to prove an understanding 

of slip was possible to ascertain with the existing sensor array. This version also served to 

improve the understanding of what characterizes the slip event in the sensor domain. A series 

of gates each representing an observed characteristic of slip were programmed, and when 

each condition was met, the system reported a slip. The gates were determined heuristically, 

and were codified as follows: 

1. The torque sensor is reporting at least 5N; below this threshold shear sensors could 

not always detect shear, rendering their values unreliable. 

2. XOR shear sensor is reporting 0 shear; due to glove stretch mechanics, upon firm 

grasping the shear sensors would typically report two shear values in opposite directions, 

shear only present in one direction indicated a significant bias of force applied to one 

direction. 

3. The ratio of the normal force sensor and the torque sensor is less than 2 and greater 

than 0; it is expected that normal force at the finger tips and applied force at the joint are 

roughly proportional, however dynamics of the silicone glove altered this. 
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4. The differentiated and smoothed (5-sample moving average) normal sensor response 

has been negative for the last four samples (83.3Hz), and one of the similarly 

differentiated and smoothed shear sensor responses is greater than -0.4; due to glove 

movement, as slip begins to occur the normal sensor reports decreasing values and the 

shear sensor reports approximately even or increasing values. 

The performance of these handpicked features was very closely tied to the mechanics of 

the silicon glove sliding over the sensor. This system featured elements of both friction-cone 

and force differentiation methods of slip detection. 

The bespoke slip system was deemed to have acceptable performance as a benchtop slip 

detection algorithm. Major shortcomings were that it was not easily tunable, and was 

comprised of hand-picked thresholds specific to the SensorHand. This prediction system was 

thus limited in widespread applicability as a generalizable solution, and would drastically 

increase the time to create such a predictor for future hands. The inability to tune the detector 

resulted in reliable detection of slips once they had already begun to occur, rather than 

predict slips before they began. A new creation method for a slip-prediction system was 

implemented, and was easily applied to a variety of different hands, and was tunable to 

different slip prediction confidences.  

2.5 Software Developments  

2.5.1 Predictor 

The proposed predictor creation methodology used machine learning to perform sensory 

synthesis with the available data, in order to create a new sense of slip prediction. Design 

constraints dictated that the finished model should be as computationally simple as possible, 

and should be independent of the mechanics of the prosthetic. Both of these constraints 

would allow the proposed predictor to be replicated on a wider set of prosthetics and 

controllers. A trade-off presented itself between these design constraints: linear SVM 

regression was unable to reliably predict slip, and quadratic SVM regression was deemed too 

complex to easily import to all future firmware platforms, with limited memory. 
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Linear regression trained through SVM was deemed appropriately complex to easily import 

to all future firmware platforms, thus the data need to be linearized. The output of the two 

parallel, uniaxial shear sensors were combined through the absolute magnitude of their 

subtraction, to synthesize a generalized net magnitude of shear. The negative implications of 

this were minimal, as directionality was not intended to ever be delivered to the participant; 

and combining two opposing sensors into one is logical from a computational perspective. 

The output of the individual collinear shear sensors can be observed Figure 8, to provide an 

example of their relationship to shear forces. To improve richness of data based on findings 

from the proof-of-concept model, the first derivative of each input was calculated and also 

used in regression. 

2.5.2 Data Recording and Training 

All sensory data were transmitted from the hand into MATLAB, and labels of ‘stable’ and 

‘unstable/slipping’ were manually applied in real time through keyboard input. The default 

label was ‘stable’ and ‘unstable/slipping’ was applied at the instant of slip initiation. The 

label would apply to the previous three data points, but not the current one, all data collected 

without a label were discarded. The training block was connected to an elastic and grasped 

using the SensorHand mounted into a prosthetic arm. Slips were created by manually pulling 

the arm against the elastic clamped to a benchtop.  

The following data collection protocol was performed to generate the regressor training 

set. Labels were applied to pulling tasks, at grasp forces of 15N, 20N, 25N, 30N, pulling 

 

Figure 8 Response from the collinear but opposing shear sensors showing activation in both 

directions when no net shear is applied. a) Before grip, b) grip initiated, c) object pulled to 

right of hand, d) object returned to neutral grip, e) object pulled to left of hand, f) object 

returning to neutral grip. 
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from the left and right side of the hand, twice each. A fully labelled pull task consisted of 

applying a label at each of the following stages: grab object, apply a small amount of shear, 

increase shear, perform two slips, hold position after second slip, decrease shear, decrease 

shear to very low level. Outside of the described protocol, ten ‘stable’ labels were applied to 

the prosthesis sitting motionless with the hand empty and open.  

Linear SVM training was completed using the MATLAB Statistics and Machine Learning 

Toolbox, using equal weightings for ‘slip’ and ‘unstable/slipping’ labels. The model was 

initially validated through online classification running in MATLAB, using values streamed 

from the prosthesis. The SVM generated regression values were then encoded on the 

embedded prosthetic control unit for experimental use. 

2.5.3 Experimental Control Scheme 

During the experiment, grip strength in each attempt was dictated by a randomized protocol, 

and blinded from the participant. This required a new form of control scheme which could 

accept a maximum grip force from the researcher for each attempt. Existing control of the 

prosthesis was force-modulation, proportional to EMG activity. It was not possible to simply 

enter limits into the controller, as the grip would routinely overshoot before sensory feedback 

could stop the motion. The hand provided feedback at a rate of 15ms (~67Hz), and the inertia 

of the hand often caused grip overshoot. This was exacerbated by intense nonlinearities in 

hand speed as a function of current position, and in maximum hand closing force as a 

function of both speed and input signal. To illustrate: the already closed hand receiving a 

close 50% signal may reach 30N, however a fully open hand snapping closed on a block with 

the same 50% signal may reach 70N.  

The control scheme used for the experiment to reach the target force was developed as a 

binary-input, quasi-proportional controller. It was binary controlled as EMG input from open 

or close channels were on, or off, with no interest in magnitude of signal. This was done in 

an effort to reduce the physical strain on the participants, as this way the muscle activations 

did not need to be very strong. Upon EMG close intention, the controller would send a small 

close signal to the prosthetic which would gradually increase in strength over the duration of 
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the EMG close intention. Participants were instructed to continuously maintain the close 

intention, and the controller would automatically increase closing force, and perform 

overshoot correction. Recorded normal force in three consecutive grasps is shown in Figure 9 

to illustrate the overshoot correction. During force overshoot, while the close-hand intention 

was still performed by the participant, the prosthetic close hand signal was reset to its base 

value, and a similar gradual increase would occur in the open-hand signal. Opening strength 

would increase until the force decreased to the target range, or below the target, in which 

case closing would recommence. When target grip was reached for five consecutive sensory 

messages, all movement in the prosthesis was disabled until the user performed an open-hand 

action. This was to prevent against accidental prosthetic movement during the attempt, where 

forces often reported outside of the target window. Code of the aforementioned control 

system can be seen in Appendix A. 

2.6 Experimental Design 

2.6.1 Task Protocol 

The experiment was designed to test the impact of the slip prediction and notification system, 

by creating scenarios in which the participant could not be sure of the nature of their grasp of 

the target object. This was achieved through the experiment-mode prosthetic controller, in 

which maximum force at the finger tips was controlled by the researcher. Forces were limited 

to either 15N or 25N, each with ±10% accuracy. Maximum grip force of 25N was deemed 

appropriate for the number of trials performed, as to not exhaust the participant. To induce 

slip, participants were instructed to pull the trial totem as far as they could without slipping, 

 

Figure 9 Grip force across three 15N ±10% grasps, showing effect of the overshoot and 

correction. 
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against increasing resistance from one of two potential elastic bands. A force gauge was 

mounted to the bench top at the other side of the elastic, recording maximum force for the 

trial. Factors which may give away information on the stability of grasp where blinded from 

the participant. This experimental set-up can be seen in Figure 10 from the perspective of 

both the participant and the researcher. Grip force was sent to the controller over Bluetooth, 

and the elastics and force gauge were behind an opaque barrier. Maximum grip strength, and 

bands were blinded from the participants, and followed a randomized order unique per 

 

 

Figure 10 View of experimental set-up from perspective of researcher (above), and 

participant (below). The opaque divider blinds participant to which elastic is in use, and 

force results from each trial. 
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participant. In the case of consecutive trials without change, the action of changing a band or 

entering a new force were mimicked by the researchers. Two bands, and two grip strengths, 

each with 10 attempts resulted in 40 total attempts, with a randomized order. 

Three slip notification schemes were deployed to analyze the effect on amputee movement 

execution, no stimulation (no stim), was used as a baseline of performance. Spike stimulation, 

delivered a single quick and strong pulse when the regressor reported an imminent slip 

prediction of 0.4. Amplitude modulation stimulation, began continuous stimulation when the 

regressor reported 0.1 slip prediction and proportionally increased stimulation amplitude with 

prediction regression, reaching maximum stimulation amplitude at 0.9 slip prediction. Slip 

regression of 0.4 was heuristically determined during model validation to be used in the spike 

stimulation condition, as this value was reached after significant load was applied to the 

target object, and was reliably before slip. Each feedback condition was performed 

sequentially in unique orders per participant, resulting in 120 total pull attempts per 

participant. 

The number of feedback conditions is greater than the number of participants in the study. 

As such, not every combination order of the feedback conditions could be attempted, one 

condition was performed twice in each slot of 1st, 2nd, 3rd. This was sub-optimal, however 

was deemed necessary to minimize learning-effects and stimulation condition effects from 

interacting. The orders of tests for each participant are shown in Table 2. The complete 

ordered list of condition and feedback orders can be found in Appendix B. 

After readying the prosthetic for the experiment, the participants were given unlimited and 

undirected time to familiarize themselves with the new deterministic-force control and 

stimulation. This undirected time was repeated at the start of every new stimulation condition 

so that the participants could familiarize to and learn when the stimulation occurs. During 

these periods the hand was set to reach 20N (± 10%), and the participants could pull at the 

totem with both elastics connected to it, to prevent familiarization with the grasp force 

conditions. Due to the highly discretized nature of the experiment, participants were 

instructed that they could take rests whenever wanted, rests were additionally taken between 
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stimulation conditions. After all attempts were completed, a short casual interview was run 

while their prosthetic was returned to its pre-experiment settings. 

2.6.2 Interview 

Following the completion of every stimulation condition, a semi-structured interview was 

performed, ending with an open dialogue on the system in question. While all participants’ 

primary language was Swedish, all were capable enough in English for the interview to 

proceed without intervention from bilingual researchers. The format of the interview was 

shaped by the following questions: 

1. What was your strategy to prevent the object from slipping? 

2. How much did you rely on the algorithm feedback? 

3. Did the feedback feel surprising? Or did you receive it when it was expected? 

4. Do you think the feedback came too soon? Too late? 

5. Did you feel in-control of the block, or did it surprise you? 

No formal codifying of responses was performed. These questions were performed to 

understand the interests the individual participants have in using a system such as this in their 

daily life. This information is useful for shaping future development, and assessing future 

participant recruitment in longer-term slip prediction studies.  

  

Table 2 Order of each stimulation condition tested for each participant. 

 P1 P2 P3 P4 

1st No Stim No Stim Spike Amplitude 

2nd  Spike Amplitude No Stim Spike 

3rd Amplitude Spike Amplitude No Stim 
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3. Results 

3.1 Slip Prediction Model Generation 

3.1.1 Benchtop Model Validation 

The first objective of this work was validating the prosthetic-independent methodology for 

creating a slip prediction model which could be applied to multiple different hands. The 

finalized model was created using a linear SVM and hand data which were linearized before 

entering the model, further details in Section 2.5.   

 

𝑋 = 𝑏 + ∑ β𝑖 [
(𝑥𝑖 − μ𝑖)

σ𝑖
⁄ ]

6

𝑖=1

 

(2) 

  

The SVM regression calculation is shown again for convenience as equation (2), using the 

values found in Table 3, presented to illustrate general importance of each system input. 

Positive shear is highly correlated with slip, and joint torque is negatively correlated with 

slip. Additionally, slip is increasingly likely as the first derivative of the normal force 

decreases, which indicates an increase in the likelihood of slip, as the normal force decreases. 

These findings align with the bespoke proof of concept system of hand-picked slip signifiers. 

When analyzing the relative weights of the coefficients, it is important to note torque sensor 

values appeared in the (13, 27) range, while the normal and synthesized shear sensors 

common range is (0, 200).  This partly explains the relatively larger torque-coefficient 

Table 3 Regression values generated through SVM training, rounded to two decimals for 

brevity. 

𝒙 = {𝑻𝒐𝒓𝒒𝒖𝒆, 𝑻𝒐𝒓𝒒𝒖𝒆′, 𝑵𝒐𝒓𝒎𝒂𝒍, 𝑵𝒐𝒓𝒎𝒂𝒍′, 𝑺𝒉𝒆𝒂𝒓, 𝑺𝒉𝒆𝒂𝒓′} 

𝛃 𝛔⁄ = {−𝟎. 𝟎𝟐𝟓, 𝟎. 𝟎𝟎𝟓𝟗, −𝟎. 𝟎𝟎𝟒𝟓, −𝟎. 𝟎𝟎𝟔𝟒, 𝟎. 𝟎𝟏𝟐, 𝟎. 𝟎𝟎𝟎𝟓} 

𝛍 = {𝟏𝟕. 𝟑𝟗, −𝟎. 𝟎𝟔, 𝟏𝟎𝟐. 𝟓𝟏, −𝟎. 𝟐𝟕, 𝟖𝟓. 𝟔𝟐, 𝟎. 𝟎𝟎}  

𝒃 = 𝟎. 𝟏𝟖 
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magnitude when compared to the normal and shear, as the normal and shear coefficients 

were found in relation to much higher sensory inputs. 

The resulting slip prediction model displayed near complete slip prediction capability 

under ideal conditions: target object of similar thickness to training object, and tension 

applied perpendicular to the thumb. Figure 11 shows regression of slip prediction under ideal 

circumstances after object grab, induced slip to the right, and then induced slip to the left. If 

the tension was not applied directly perpendicular to the thumb, collinear with the shear 

sensors, the accuracy of the model would sharply drop off. The shear sensors only detect 

shear along one axis, their response is proportional to the cosine of the angle between the 

string tension and shear sensor. This was an issue during participant trials which resulted in 

the calculated prediction to be too low.  

3.1.2 Participant Model Validation 

It was found that the participants were able to move the prosthesis in order to generate a 

prediction of slip much more effectively with the presence of stimulation feedback. The no-

 

Figure 11 Visual example of the relation between each sensor value and regressor output 

across grasp and pull movements. a) Grasping object, b) neutral grasp, c) pulling object to 

the right, d) returning to neutral grasp, e) pulling object to the left, f) returning to neutral 

grasp. 

 

 



 

 30 

stim condition attempts had 65 (41%) total slip predictions, and both the spike and amplitude 

stimulation conditions each had 111 (69%) total predictions. A learning effect was also 

visible in number of predictions: 51% predictions in each participants’ first condition, 58% 

second, and 61% third. These percentages were calculated after the duplicated stimulation 

condition per order was averaged together, to reduce interference between order and 

condition. The stimulation condition can be seen to have an impact in addition to that of 

order, on participants’ ability to generate accurate predictions. 

The experiment was designed to create instances of slip/near-slip, it is reasonable to 

assume that each attempt should have generated a slip prediction. This indicates the model 

had an accuracy of 69% during conditions with stimulation, which is the state most relevant 

to daily life, and 60% overall (287 predictions for 480 attempts). Actual totem slips were 

predicted before they occurred with a 67% accuracy. 

Figure 12 shows two attempts from different participants, at 15N grasp force, and 

amplitude feedback; the stimulation was delivered, and pulling ended before slip occurred; 

max force for this trial was 20.1N and 11.3N respectively. The high grip force spike near the 

start of the trial is an artifact of the deterministic-force controller, which often overshoots, 

and then corrects itself. 

There was an observed failure of the system to predict slips during trials where the target 

object was misaligned in the grasp. Misalignment within the grasp was made common due to 

the design of the totem to just fit the fingers of the prosthetic. These failures of prediction 

took the form of a clear local maxima of prediction (Figure 13, occurring between 0.5-2 

second marks), however remaining below the threshold for prediction.  
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Figure 13 Regressor output of a pull attempt with the totem misaligned in grasp, local maxima of 

slip prediction is clearly visible from 0.5-2 seconds, however it is all below activation threshold. 

 

 

 

 

 

 

Figure 12 Two examples of grip and regressor output from two attempts from different participants 

which ended in a self-declared maximum pull force, using amplitude stim, at 15N grip. 
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3.2 Impact of Slip Prediction on Amputee Movement 

3.2.1 Impact on Slip Occurrence 

Across all participants and conditions, there were 121 (25%) slips, as broken down over 

stimulation conditions: 53 (44%) occurred during no-stim, 37 (31%) occurred during spike, 

and 31 (26%) occurred during amplitude stimulation. A Kruskal-Wallis test was performed, 

across all condition factor levels. The test was applied using MATLAB’s ‘kruskalwallis’ 

function with the assumption that the levels were independent from each other. No condition 

was found to have a statistically significant differing impact on number of slips, groupings 

shown in Figure 14. Of the 287 total predictions, 222 (77%) predictions of slip occurred 

during a stimulation enabled condition, of those only 49 (22%) proceeded to slip, full 

breakdown shown in Table 4. 

 

Figure 14 Slip sums across all participants by feedback condition. 
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A learning effect related to slip mitigation was discovered in the data: 51 (42%) slips 

occurred in the first condition, 40 (33%) in the second, and 30 (25%) in the last. Slips by 

participant, condition, and order are presented in Figure 15. Averaging the number of slips of 

the duplicated feedback condition in each order placement leads to: 39.5 no-stim slips, 25.5 

spike, and 22.5 amplitude; and by order: 37.5 first, 28.5 second, and 21.5 third. Clear 

condition and learning effects have been found, however potential entanglement does not 

significantly lessen their meaning. 

 

Figure 15 Number of slips in each condition, per order (shape) and participant (colour). 

 

Table 4 Summations of slips and predictions by stimulation condition. 

 

Stim Result   Predicted 

& slipped 

Unpredicted 

& slipped 

Predicted & 

non-slipped 

No prediction 

& non-slipped 

Slipped 

total 

Predicted 

total 

No Stim 32 21 33 74 53 65 

Spike 27 10 84 39 37 111 

Amplitude 22 9 89 40 31 111 
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3.2.2 Impact on Force Achieved 

Student’s t-tests were applied using the MATLAB ‘ttest2’ under the assumption of unequal 

variances, between forces by feedback condition, and between grips within feedback 

condition.  No significant change in average forces was observed with feedback compared to 

without shown in Figure 16 (left), regardless of slip outcome. Significant differences were 

found in force between the low and high strength grips in all stimulation conditions, shown in 

Figure 16 (right). The median difference in achieved forces between the two grip strengths 

were 3.0N in no stim, 5.9N in spike, and 7.0N in amplitude. Differences between low-grip 

and high-grip data were found to be affected by stimulation condition. Stimulation was 

shown to improve separability of the force outcomes between grips through: increased 

distance between the average forces of each grip, and reduced force variance within each 

grip, shown in Table 5. Distinction between low and high grip forces in motion planning is 

used as a proxy for the effectiveness of grip stability translation to the participant.  

 

Figure 16 Maximum force per attempt between feedback condition and success (left), and 

feedback condition and grip force (right).  

 

 

  ∗∗ 𝑝 ≤ 0.001 
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Student’s t-tests were applied to the successful pull attempts to assess the significance of 

the separation between grip conditions. The tests were applied with MATLAB’s ‘ttest2’ 

function, significance is shown in Figure 17 showing confidences of 𝑝 > 0.05, 𝑝 ≤ 0.05, and 

𝑝 ≤ 0.001. Each amplitude stimulation condition showed some degree of significance, P4’s 

spike condition showed no significance, and P1 and P3’s no stim condition showed no 

significance. Comparisons of between-subject differences in force groupings was not 

performed due to different pull-force baselines. This shows that even when the participant 

can see, hear, and freely move the prosthesis, the neural stimulation feedback conditions 

provide additional and actionable information with effects on motion planning. 

Table 5 Impact of feedback conditions on movement planning, shown by maximum force 

achieved. 

  

Difference in Group Average Force 

Between Grip Conditions [N] 

Average Variance of Within Each 

Grip Condition [N] 

No-stim Spike Amp No-stim Spike Amp 

Participant 1 6.185 6.415 6.530 19.332 9.995 17.857 

Participant 2 3.880 9.000 4.445 8.398 8.540 7.736 

Participant 3 0.465 5.115 10.200 13.400 17.617 7.995 

Participant 4 3.160 1.450 5.160 8.807 10.238 13.088 

 Average 3.423 5.495 6.584 12.484 11.597 11.669 

Improvement 60.56% 92.37%   7.10% 6.53% 

 

 

Figure 17 Achieved forces of the successful attempts, shown by each participant-feedback-

grip condition. 

 

∗ 𝑝 ≤ 0.05   ∗∗ 𝑝 ≤ 0.001 
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Qualitative Results 

3.2.3 Interview Results 

Each experiment session ended with a semi-structured open and candid conversation 

regarding the participants’ thoughts on the prediction system and feedback modalities. Self-

reported reliance levels of different senses (Table 6) are very telling, however they do not 

provide a full picture, and no relation could be found from their reported strategy and their 

performance measured by slips or max force. 

 

Responses to “What was your strategy to prevent the object from slipping?” from each 

participant were:  

1. “Directly when I feel the highest [stimulation], a little bit with the eye."-P1 

2. “Mostly visual… It’s so new.”-P2 

3. “Look at the object."-P3 

4. “Feel, observe, and hear [in that order], feel is from sensory feedback. In 30% of the 

tests I didn’t feel anything, but maybe I did. I received the feedback before I saw any 

[slips], the feedback is quite quick when I feel it. If I could feel the sensory feedback in 

every round I think I would never slip.”-P4.   

Responses to “Did the feedback feel surprising? Or did you receive it when it was 

expected?” were: 

Table 6 Self-reported reliance on feedback, vision, or mechanical senses from each 

participant, results given on an increasing 0 to 10 scale. 

 

Sense [0-10] P1 P2 P3 P4 

Prediction Feedback 7 5 1 2 

Vision 4 9-10 8 9 

Muscle/Bone Forces 3 8 4 5 
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1. “When I expected it, but sometimes you must find the direction.”-P1 

2. “It was not surprising.”-P2 

3. “No, because then it would not have slipped. I cannot say that because I did not feel 

it.”-P3 

4. “I think I received it when I should have”-P4 

Responses to “Do you think the feedback came too soon? Too late?” were:  

1. "No I think it is in the right time.” –P1 

2. “[I wish] it came sooner.” –P2 

3. "Too late, because I did not feel it.” –P3 

4. “If the meaning was to not drop objects it was correct, but I can push the object a 

little bit further each time after feeling the feedback before it slips.” –P4 

Responses to “Did you feel in-control of the block, or did it surprise you?” were: 

1. "I feel in control.” –P1 

2. “No, I think I had some control.” –P2 

3. "Sometimes it surprised me, I mean if I did the- I could use quite a lot of force and 

it did not slip, and then the next run it might be slipping directly. I don’t know if it 

was the changing of the rubber band or what it was.” –P3 

4. “No I felt in control.” –P4 

In conversation after the predetermined questions, only P3 and P4 had additional 

comments on the experiment or system. P3 stated his disdain for the force control system, 

and emphasized that there would be no level of sensory feedback quality that would justify 

changing his control to this style from speed control. The lack of direct control over the 

position and speed of the prosthetic caused by the force controller was very disturbing, and 

had requested breaks through the experiment to deal with that discomfort. P4 stated “This is 

the only part of the whole sensory feedback [obscenity] that I think there may be some value 



 

 38 

in, not how hard you are holding.” Indicating his preference toward this experimental system 

over what was being was currently deployed to his prosthesis out of the lab. A week after the 

study, in unrelated communication with the lab, P4 again stated their interest in continued 

work in this direction and their desire to use such feedback at home. These are very strong 

indicators that there is a need by prosthetic users to be provided richer information about the 

nature of their grasps in daily life.  

3.2.4 Participant Perspectives 

3.2.4.1 Participant 1 

Participant 1 reported the range of stimulation to be from 1 to 5 out of 10 across the whole 

amplitude stimulation spectrum; the spike stimulation pulse was also reported at 5 out of 10. 

P1 stated reliance on the stimulation system, saying they decided when to stop pulling 

“Directly when I feel the highest [stimulation] a little bit with the eye." P1 also made 

comment on having a difficult time keeping the tension in the right direction, saying that he 

would pull the block and then rotate the hand under tension to check more than one direction. 

P1 performed the last two conditions on the following day of the first due to time constraints. 

P1 also rotated the prosthetic hand in its mount half of a rotation after attempt 19, and 

returned it to original positioning on attempt 43. 

3.2.4.2 Participant 2 

P2 was optimistic about using such a system, but reported that he did not have enough 

experience with it yet to rely on it, and mostly relied on vision. P2 also reported the 

stimulation was not surprising when it occurred, but that he wished it came earlier. The 

difference between P2’s no-stim first condition and amplitude second condition was striking, 

with 9 slips in no-stim, and 0 slips in the amplitude. The observed strategy was ending the 

attempt as soon as the stimulation first occurred. Despite this conservative approach, the 

maximum forces recorded were comparable to the other conditions and participants.  
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3.2.4.3 Participant 3 

P3 is the only participant who does not use sensory feedback from the prosthesis on a daily 

basis, citing inconsistent sensations, and confusion between stimulation and strong phantom 

sensations. Due to the confusion between stimulation and phantom sensations, it was not 

possible to establish reliable numeric scores for each sensation intensity. P3 was very explicit 

in his feedback that he entirely relied on vision. Through the trials he would often say of his 

own volition, or after being asked, that he was unsure if he was receiving any stimulation. 

However, the performance of P3 is in line with the rest of the participants and indicates 

improvement in performance in relation to richness of feedback, seen across his conditions: 

1st – spike: 10 slips, 2nd – no stim: 17 slips, 3rd – amplitude: 8 slips. After the second 

condition P3 was frustrated at the force-control scheme, and requested to spread his 

participation out over two days, and returned 5 days later for the last condition.  

It is clear that P3 was very well blinded to the grip strength of the hand, and reported so 

himself in the interview: “I could use quite a lot of force and it did not slip, and then the next 

run it might be slipping directly. I don’t know if it was the changing of the rubber band or 

what it was.” He was the only participant where the median pull force for no stim low grip 

strength was greater than the high grip strength, by 0.8N. Contrasting this, grip condition 

force differences were found of 4.6N for spike, and 9.45N for amplitude stimulations. This is 

possibly an indication that a subconscious success of the prediction’s neural stimulation was 

observed. 

3.2.4.4 Participant 4 

P4 reported amplitude stimulation sensations between 3 and 7 out of 10, and spike 

stimulation at 7 out of ten. He was the most interested in the development of this 

functionality for the prosthesis, stating unprompted “This is the only part of the whole 

sensory feedback [obscenity] that I think there may be some value in, not how hard you are 

holding.” P4’s self-declared results from the questionnaire immediately contradict each other, 

first stating 2/10 reliance on the predictor, then “Feel, observe, and hear [in that order], feel is 

from sensory feedback.” Behavior and comments from P4 indicated a greater interest in 
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attempting to learn how the system worked rather than prevent slips, eventually describing 

the stimulation timing with “If the meaning was to not drop objects it was correct, but I can 

push the object a little bit further each time after feeling the feedback before it slips.” After 

pull 70, he began pushing the prosthesis with his hip to assist his tiring shoulder, which 

impacted the angle of the prosthesis, decreasing number of predicted slips. P4 indicated 

during the interview, and weeks later during an unrelated follow-up that he would be 

interested in trying this system out of the lab.  
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4. Discussion 

4.1 Summary of Key Findings 

From experimental results, we have established the following: 

I.  The linear SVM prediction system detected 69% of near-slip events when used by 

a participant with stimulation enabled.  

II.  The decrease in number of slips from 53 during no stim, to 37 during spike, and 31 

during amplitude stimulation was not statistically significant. 

III.  There is a 60.56%, and 92.37% increase in separations of force outcomes between 

grip strengths in spike and amplitude stimulations over no stim. 

IV. There is a 7.10% and 6.53% decrease in average variance of force groupings in 

spike and amplitude stimulations over no stim. 

V. The differences in force results between grip conditions are significant in all 

participants using amplitude, three out of four using spike, and two out of four 

using no stim feedback. 

4.2 Predictor and Prosthesis 

The performance of the slip prediction model was limited by the highly specific pulling 

angle, due to the uniaxial shear sensor. Even with the very narrow receptive field, slips were 

predicted and behaviour was observed to have changed as a result. This is very promising to 

future slip prediction work, as future prosthetics with a wider array of sensors may easily 

address this issue. 

The range of forces tested in this study (13N, 27N) has been underrepresented in previous 

work in this field. Most prior work tested slip detection at forces under 7N, which is much 

lower than the potential grip force of prosthetic hands on the market today. Maximum grip 

forced used (25N) was confirmed to be an appropriate grip strength for the number of 

repetitions; all participants took breaks between conditions, but few breaks within condition. 
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Additionally, due to the repeated lateral rotation nature of the experiment, participants often 

helped push the prosthetic against the elastic with their hip. Testing larger forces is not 

feasible with the shoulder lateral rotation used here. 

4.3 Impact of Slip Prediction 

The repeated pattern observed across the results is that the largest difference in performance 

measures exists between with-feedback and without-feedback; with-feedback showing 

improved performance outcomes. This is seen in number of slip predictions, number of slips, 

and statistical significance in the differences between grip levels. A similar trend also shows 

that within feedback, amplitude feedback tends to surpass spike feedback by a smaller 

margin. This is observable in the aforementioned outcomes, as well as in average grouping 

distance. Force groupings at each grip level contradict this trend, however by less than a 

single percentage point. 

This may be attributed to the richness of data provided by a continuous multi-level 

sensation rather than a binary notification which occurs once. It is likely that if additional 

feedback modalities were tested, the performance would also be proportional to the richness 

of information delivered to the participant. There remains much work to be done in the field 

of peripheral nervous system stimulation, in providing richer and more biomimetic 

sensations. 

Despite the trend showing amplitude outperforming spike stimulation, results indicate that 

individual participants demonstrated different relationships to each form of feedback. For 

example, P2 produced a force grouping spread of 9N in spike, compared to 4.44N in 

amplitude; and P1 showed average variance of 9.99N in spike, compared to 17.86N in 

amplitude feedback. This indicates potential value in providing users with options as to how 

they receive stimulation for optimal use. 

Without feedback grip levels showed a 3.0N grouping average separation, indicating that 

through blinding participants still had baseline insights into the strength/stability of the grip. 

The baseline understanding of grip capability was likely founded on auditory feedback, 
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observing micro-movements pre-slip, or feeling minute changes though osseovibration. 

These sensations are present in activities of daily life thus their inclusion was critical, as 

blinding or acoustically isolating participants would likely result in an overstated impact of 

slip stimulation. Stimulation increased the grouping separation by 2.9N (96.67%) and 4.0N 

(120%) beyond baseline, for spike and amplitude conditions respectively. It is reasonable to 

infer the increases in spread indicate greater understanding of which grip condition was used, 

and thus greater understanding of grip stability. This indicates the central thrusts of the 

experiment were valid, and that even with vision and hearing unaffected, the slip predictor 

provided an increased sense of grip stability, which led to improved task performance 

outcomes.  

4.4 Limitations 

During the experiment, the raw unmodified output of the regression equation determined 

when stimulation would occur. The raw output proved advantageous over binary output for 

richer information, however the trial results have shown more work is needed to improve the 

quality of the outcome. This is most apparent in the no-prediction results where the predictor 

reaches a local maximum over the pull that is still too low for classification, as shown in 

Error! Reference source not found.. This issue was observed when predicting slip with 

objects poorly grasped, and when pull force was sufficiently out of alignment with the shear 

sensors. Future tests should rectify this, by implementing post processing of the regression 

output to select for local maximums of a certain prominence, rather than pre-determined 

hardcoded values such as 0.1, 0.4, and 0.9. This may assist in accurate prediction in objects 

of different size and shape than what was used in the experiment.    

The narrow perceptive field of slip direction was a major drawback in the resultant design. 

The shear reaction force reported to the model was too low when the object was pulled at a 

deviation from its primary axis. Furthermore, heavy objects in daily life which may be prone 

to slip, would likely be held hanging from the hand of a straight arm. In this position, slips 

due to gravity would be directly perpendicular to the ideal angle of perception with the 
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current hardware setup. A sensor array with a set of perpendicular shear sensors could be 

used for vector addition to handle these perceptive gaps. 

Object thickness played a large role in predictor accuracy. Objects thicker than the training 

block had significantly lower slip predictor outcomes. This may be solved by a diversified 

training set, a prosthetic hand in which the sensor-object angle of incidence was not affected 

by hand aperture, or a prosthetic which could transmit finger position. These investigations 

were deemed out of scope as this was intended as a pilot study into applied slip prediction. 

Due to the exploratory nature of this study, additional target materials and shapes were not 

analyzed. The pre-slip nature of this detection system mitigates much of this risk, it is 

assumed that any materials with an equal or higher coefficient of static friction will have 

similar prediction outcomes. Theoretically there should exist a material with such a low 

friction coefficient that at 15N or 25N grip force, the shear sensors do not register enough 

reaction to predict the slip potential. The objects used in training and in experiment were 

smooth PLA, thus it is likely that most objects will satisfy the friction requirements. The 

silicone cosmetic prosthetic glove, is a secondary synthetic skin sometimes worn over the 

prosthetic to increase the aesthetic biomimicry of the prosthesis, may also effect prediction 

accuracy. These gloves are thin, and designed to fit snugly over the prosthetic. It is possible 

that using cosmetic gloves may distort the sensory patterns to such a degree that the predictor 

is no longer functional. This may be rectified by treating the prosthetic hand with a cosmetic 

glove applied as a new prosthesis entirely, and training a with-glove specific predictor.  

This is the first work to show the impact of hand-prosthetic slip notification on more than 

one participant. Large improvement was shown in reduction of slips, however with four 

participants results could not indicate statistical significance. Longer tests, or tests outside of 

the lab setting may be what is required to validate efficacy in slip mitigation in a more 

powerful way. 
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4.5 Future Developments 

Both the quantitative efficacy and qualitative user feedback results, indicate that there is 

justification in further development of slip prediction for use in daily life. Results of this 

study show promise for both present and future of prosthetics. Similar slip prediction systems 

could easily be applied to existing SensorHand Speed prostheses, and promote the inclusion 

of similar sensory suites in prosthetics currently in development. As both spike and 

amplitude stimulations were shown to improve slip prevention, it is assumed alternative 

notification mechanisms would be viable for prosthesis without direct electrical neural 

stimulation capabilities, such as a vibrotactile response.  Prosthetic designs in the future may 

apply similar prediction techniques, using a wider array of sensors, multiaxial load sensors 

would be of a particular interest to increase the perceptive field of slip detection. 

Improvements to the sensory suite, as well as biomimetic neurostimulation may provide the 

user with richer slip information, such as direction. 

There is more work to be done before this system may enter daily use. The most 

fundamental addition before this slip system could tested out of the lab, is the ability for the 

user to turn this feedback off. The ability to disengage the slip prediction system is the 

minimum required work for a long-term test that maintains complete prosthetic functionality 

and participant autonomy. Logging instances of slip, such that prosthetic control could be 

analyzed after the event would be required to analyse at-home use. Custom stimulation 

thresholds should be developed to the specifications of the participants. Affecting when the 

stimulation begins, or the stimulation-predictor response curve may promote comfort, ease of 

use, and study protocol compliance.  

Long term developments to take this methodology of slip prediction beyond experimental 

use would reapply the practices of this work on a wider range of variables. Additional 

training conditions should be tested, including differing object materials and geometries. 

Proving efficacy with more prosthetic hands as they become available will give an indication 

that this methodology is indifferent to the changes in hardware which are sure to come over 

time. Advancing that notion further, the breadth of sensor arrays which these training 
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methods remain functional is unknown. It is possible that as sensor arrays become more 

complex or specialized, the density of data required for linear prediction of slip is lost. 

A significant inhibiting factor in creating broader datasets for machine learning is the 

human-hours associated with performing and labelling the tasks [18]. The result of such 

inhibition presented as the limited materials tested in this experiment. A solution must be 

found which does not significantly increase researcher labour. Automating the hand-object 

interaction using a robotic arm would drastically reduce human time to create a complete 

data-set. The use of automated robotic validation is currently widely used in the slip 

detection field for testing the detection system [14], [19], [20]–[25], [27], [28], [30]–[34] . 

That methodology should be applied to autonomously generating intrinsically labelled data 

sets for training. 

The 3N difference in average pull forces between grasps in the no-stim condition, indicates 

that participants were able to gain some information on the stability of grasp through 

unintended means. Micro-slips detected though osseovibration, or sight are likely 

contributing to this. A more intelligent totem capable of detecting when slips occur should be 

developed. This may improve clarity of results as it would eliminate the ability for micro-

slips to go undetected by researchers. 
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5.Conclusions 

The objectives of this work were as follows: 

1. Evaluate the performance of a prosthetic-independent method for developing 

a slip prediction system using computationally simple machine intelligence, 

and a commercially available sensorized hand. 

2. Evaluate the impact a neural stimulation notification of slip probability, has on 

avoiding grasp slips in an upper limb prosthetic. 

3. Characterize the changes in motion planning that knowledge of slip 

probability has, in long-term prosthetic users performing pulling tasks. 

The performance of the predictor was highly correlated to the nature in which it was applied 

by the user. The predictor’s efficacy was shown to be dependent on the height of the object 

grasped, as well as the angle at which shear was applied. This is likely due to the entire 

training regime only being performed with a single object, and the uniaxial design of the 

shear sensors. Accuracy of the model was greatest (69%) when it was used with feedback, 

which reinforced correct pull directions in the participants.   

Experimental results show breakdown of slip as 44% no-stim, 37% spike stim, 26% 

amplitude stim. This shows improved task performance with model feedback delivered over 

neural stimulation. The factor levels could not be evenly balanced over the orderings, impact 

beyond effect of order was shown. Performance between participants varied between spike 

and amplitude stim as the most effective feedback for slip mitigation. This supports the idea 

that in application of a slip prevention system, the feedback style should be customized to the 

user’s liking. 

The results of the force data indicate participants were able to gather greater information 

about the abilities of a grasp with an uncertain friction force. A 61% and 92% improvement 

were seen in average grip grouping force separation over no stimulation, in spike and 

amplitude feedback respectively.  Statistically significant differences were found between 
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high grip and low grip forces in two participants using no stimulation, three participants 

using spike stim, and four participants using amplitude stim.  
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Appendix B: Full Order of Conditions 

P1 Band Grip Force[N] Slip? Predict?   P2 Band Grip Force[N] Slip? Predict? 

No Stim Light 25 22.1 1 1   No Stim Light 15 17.4 1 1 

No Stim Heavy 25 23.8 1 1   No Stim Light 25 27.3 1 0 

No Stim Heavy 25 26.1 0 1   No Stim Light 25 23.5 1 1 

No Stim Light 25 22.9 0 0   No Stim Heavy 25 18.9 0 0 

No Stim Light 25 21.2 1 1   No Stim Heavy 15 13.2 0 1 

No Stim Light 15 15.7 1 1   No Stim Heavy 25 17.7 0 0 

No Stim Light 15 15 0 1   No Stim Light 25 19.3 0 0 

No Stim Light 15 14.2 1 1   No Stim Heavy 25 15.2 0 0 

No Stim Light 25 18.9 1 1   No Stim Light 15 10 0 0 

No Stim Heavy 25 17.5 1 1   No Stim Light 15 16.8 0 0 

No Stim Heavy 25 23.9 0 1   No Stim Light 15 18.9 0 0 

No Stim Heavy 15 11.2 1 1   No Stim Heavy 15 21.1 1 0 

No Stim Heavy 15 8.9 1 1   No Stim Heavy 15 18.5 1 0 

No Stim Heavy 15 9.9 1 1   No Stim Light 15 14 0 0 

No Stim Light 15 8.7 1 1   No Stim Heavy 25 18.7 0 0 

No Stim Heavy 15 9.5 1 1   No Stim Heavy 15 17.6 0 0 

No Stim Light 15 14.7 1 1   No Stim Heavy 25 21.4 0 0 

No Stim Light 15 9 0 0   No Stim Light 25 21.4 0 0 

No Stim Heavy 25 9.4 0 0   No Stim Heavy 15 18.2 0 1 

No Stim Heavy 25 6.9 0 0   No Stim Light 15 17.4 0 0 

No Stim Light 25 16.2 0 0   No Stim Light 25 18.4 0 0 

No Stim Heavy 15 6.3 0 0   No Stim Light 25 21.5 1 0 

No Stim Light 25 15.4 0 0   No Stim Heavy 15 17.7 0 0 

No Stim Light 25 16.7 0 0   No Stim Light 25 18.1 0 0 

No Stim Heavy 25 11.2 0 0   No Stim Heavy 25 19.8 0 0 

No Stim Light 25 15.2 0 1   No Stim Light 25 20.5 1 0 

No Stim Heavy 15 8.9 0 0   No Stim Light 15 14.3 0 0 

No Stim Heavy 25 13.9 0 0   No Stim Heavy 15 17.7 0 1 

No Stim Heavy 15 9.1 0 0   No Stim Heavy 15 11.5 0 0 

No Stim Light 15 4.3 1 0   No Stim Heavy 15 14.1 0 0 

No Stim Heavy 15 8.6 1 0   No Stim Heavy 25 22 1 0 

No Stim Light 15 8.6 1 0   No Stim Heavy 25 16.7 0 0 

No Stim Light 15 12.5 0 1   No Stim Light 25 17.9 1 0 

No Stim Heavy 25 9.8 0 0   No Stim Heavy 15 10.6 0 0 

No Stim Heavy 25 12.4 0 0   No Stim Light 15 14.1 0 0 

No Stim Light 25 12.2 0 0   No Stim Heavy 25 16.7 0 0 

No Stim Heavy 15 9 1 1   No Stim Light 25 16.4 0 0 

No Stim Heavy 15 12.7 0 0   No Stim Light 15 16.6 0 0 

No Stim Light 25 14.3 0 0   No Stim Light 15 15.9 0 0 

No Stim Light 15 9.5 1 1   No Stim Heavy 25 21.8 0 0 

Spike Heavy 25 14.8 1 1   Amp. Heavy 15 17.9 0 1 

Spike Light 15 10.1 0 1   Amp. Heavy 25 20.8 0 0 

Spike Light 15 7.4 1 1   Amp. Heavy 25 18.4 0 0 

Spike Light 15 7.9 0 1   Amp. Heavy 25 17.9 0 0 

Spike Heavy 15 12.1 1 1   Amp. Heavy 15 18.8 0 1 

Spike Light 25 17.9 0 1   Amp. Light 15 10.7 0 0 

Spike Heavy 15 9.1 1 1   Amp. Heavy 15 18 0 1 
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Spike Light 25 16.1 1 1   Amp. Heavy 15 14.8 0 1 

Spike Heavy 25 23.1 1 0   Amp. Heavy 25 19.9 0 1 

Spike Light 25 18.2 1 1   Amp. Heavy 15 15.3 0 0 

Spike Heavy 15 9.9 0 0   Amp. Heavy 25 19.3 0 0 

Spike Heavy 25 20.9 0 1   Amp. Heavy 15 14.1 0 1 

Spike Heavy 25 17.1 0 1   Amp. Light 15 20.1 0 1 

Spike Heavy 25 18 0 1   Amp. Light 15 10.3 0 0 

Spike Light 25 14.9 0 1   Amp. Light 25 24.4 0 0 

Spike Light 15 12.3 1 1   Amp. Light 25 17.4 0 0 

Spike Heavy 25 16.3 1 1   Amp. Light 15 19 0 1 

Spike Heavy 15 9 0 1   Amp. Light 25 23 0 0 

Spike Heavy 15 12.8 1 1   Amp. Light 15 15.2 0 0 

Spike Heavy 15 3.1 0 1   Amp. Light 25 25.4 0 0 

Spike Light 15 14.2 0 1   Amp. Heavy 15 19.2 0 1 

Spike Light 25 14.2 0 1   Amp. Light 25 22 0 0 

Spike Light 15 9.2 1 1   Amp. Heavy 15 18.7 0 1 

Spike Light 15 11.1 0 1   Amp. Heavy 25 22.8 0 0 

Spike Heavy 15 9.2 0 1   Amp. Heavy 25 20.1 0 0 

Spike Heavy 15 11.2 0 1   Amp. Heavy 25 16.9 0 0 

Spike Heavy 15 10.2 0 1   Amp. Light 15 16.7 0 1 

Spike Light 15 16.6 0 1   Amp. Light 25 21.6 0 1 

Spike Heavy 25 12.8 0 1   Amp. Light 15 13 0 0 

Spike Heavy 15 13 1 1   Amp. Heavy 15 16.9 0 0 

Spike Light 15 12.6 1 1   Amp. Light 25 22.4 0 0 

Spike Light 25 11.7 0 1   Amp. Heavy 15 14.5 0 1 

Spike Light 25 14.8 0 1   Amp. Light 15 11.1 0 1 

Spike Light 25 15.5 0 1   Amp. Light 15 15.8 0 1 

Spike Heavy 25 19.8 0 1   Amp. Light 25 22.2 0 1 

Spike Heavy 25 25.4 0 1   Amp. Heavy 25 18.9 0 0 

Spike Heavy 25 18.9 0 1   Amp. Heavy 25 24.3 0 1 

Spike Light 25 18.3 0 1   Amp. Light 15 13.8 0 1 

Spike Light 15 14.1 1 1   Amp. Light 25 19.8 0 0 

Spike Light 25 14.7 0 1   Amp. Light 25 25.3 0 1 

Amp. Heavy 25 16.2 0 1   Spike Heavy 15 15.9 0 1 

Amp. Light 25 16.5 0 1   Spike Heavy 25 32.4 1 0 

Amp. Heavy 15 19.8 0 1   Spike Light 15 16.1 0 1 

Amp. Heavy 25 22.1 0 1   Spike Heavy 25 22.9 0 0 

Amp. Light 25 28.3 1 1   Spike Light 15 11.1 0 1 

Amp. Light 25 19.5 0 1   Spike Light 25 22.5 0 0 

Amp. Light 15 14.2 0 1   Spike Light 25 28.6 0 0 

Amp. Heavy 25 28.1 1 1   Spike Light 25 24.2 0 0 

Amp. Heavy 15 9.6 1 0   Spike Heavy 15 19.8 0 1 

Amp. Light 25 20.8 0 1   Spike Light 15 16.9 0 1 

Amp. Heavy 25 27.2 0 1   Spike Heavy 25 25.6 0 1 

Amp. Light 15 20.8 1 1   Spike Light 15 19 0 0 

Amp. Light 15 14 1 1   Spike Light 25 24.3 0 0 

Amp. Heavy 15 16.4 0 1   Spike Light 15 15.9 0 0 

Amp. Light 25 24.9 0 1   Spike Light 25 24.7 0 0 

Amp. Heavy 25 21 1 1   Spike Light 25 29.1 0 0 

Amp. Light 15 12.4 0 1   Spike Heavy 25 24.1 0 0 

Amp. Heavy 25 17 0 1   Spike Heavy 25 24.3 0 0 
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Amp. Light 15 10.1 0 1   Spike Heavy 15 18 0 1 

Amp. Light 15 9.7 0 1   Spike Light 15 14.1 0 0 

Amp. Heavy 15 7 1 1   Spike Light 15 14.5 0 0 

Amp. Light 15 18.2 0 1   Spike Heavy 15 13.1 0 0 

Amp. Heavy 15 12.1 1 1   Spike Heavy 15 15.5 0 0 

Amp. Heavy 25 15.6 0 1   Spike Light 25 23.4 0 0 

Amp. Light 25 21.6 0 1   Spike Heavy 25 24.4 0 0 

Amp. Heavy 15 13 1 1   Spike Light 15 18.8 1 0 

Amp. Light 15 7.9 0 1   Spike Light 25 22.4 0 0 

Amp. Heavy 15 13.1 0 1   Spike Heavy 15 20 0 1 

Amp. Light 25 17.8 0 1   Spike Heavy 15 18.2 0 1 

Amp. Light 25 14.5 0 0   Spike Light 25 26.5 0 0 

Amp. Heavy 25 16.7 0 1   Spike Light 15 22.4 0 1 

Amp. Heavy 25 15 0 1   Spike Heavy 15 21 1 1 

Amp. Light 15 18 0 1   Spike Heavy 25 28.5 0 0 

Amp. Light 25 18.7 0 1   Spike Light 25 24.4 0 1 

Amp. Heavy 25 22.5 0 1   Spike Heavy 15 19 0 1 

Amp. Heavy 15 16.7 0 1   Spike Heavy 25 29.4 1 0 

Amp. Heavy 15 10.9 0 1   Spike Heavy 25 26 0 0 

Amp. Light 15 12.8 0 1   Spike Heavy 15 13 0 1 

Amp. Heavy 15 10.6 0 1   Spike Heavy 25 31.1 0 0 

Amp. Light 25 13.9 0 1   Spike Light 15 16.5 0 1 

 

P3 Band Grip Force[N] Slip? Predict?   P4 Band Grip Force[N] Slip? Predict? 

Spike Light 25 24.2 0 1   Amp. Heavy 15 22.7 1 1 

Spike Heavy 25 34.9 1 0   Amp. Light 25 27 0 1 

Spike Light 25 22.5 1 1   Amp. Heavy 25 34.4 1 1 

Spike Heavy 15 19.5 1 1   Amp. Heavy 15 20.2 1 1 

Spike Light 15 18.2 1 1   Amp. Heavy 25 27.3 1 0 

Spike Heavy 25 20.6 0 1   Amp. Heavy 15 20 1 1 

Spike Light 15 15.6 1 0   Amp. Light 15 19 1 1 

Spike Heavy 25 17.2 0 0   Amp. Light 15 23.2 0 0 

Spike Heavy 15 19.2 0 1   Amp. Heavy 15 22.7 1 1 

Spike Light 15 12.8 0 0   Amp. Light 25 26.4 0 0 

Spike Heavy 25 17.3 0 0   Amp. Light 25 29.4 0 0 

Spike Light 25 19.4 0 1   Amp. Light 15 17.9 1 1 

Spike Heavy 25 23 0 1   Amp. Light 25 26.4 0 0 

Spike Light 15 18.1 0 1   Amp. Light 15 14.2 1 0 

Spike Heavy 15 13.3 1 0   Amp. Light 15 13.2 1 1 

Spike Heavy 15 18.5 0 0   Amp. Heavy 25 23.1 0 0 

Spike Heavy 15 16.6 1 0   Amp. Light 25 30.4 1 0 

Spike Light 25 17.3 0 0   Amp. Heavy 25 22.1 0 0 

Spike Heavy 15 18.5 1 1   Amp. Heavy 25 22.9 0 1 

Spike Light 15 10.3 0 1   Amp. Light 25 20.6 0 1 

Spike Light 15 13 0 1   Amp. Light 25 20.1 0 0 

Spike Light 25 19.5 1 0   Amp. Heavy 25 26.3 0 0 

Spike Heavy 15 20.8 0 1   Amp. Light 25 27 0 0 

Spike Heavy 25 24.6 0 1   Amp. Heavy 25 29.3 0 0 

Spike Light 25 24.6 0 1   Amp. Light 15 16.7 1 0 

Spike Light 25 27.1 0 1   Amp. Heavy 25 21.5 0 1 
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Spike Heavy 15 26.8 1 1   Amp. Light 15 19.5 0 1 

Spike Heavy 25 27.5 0 1   Amp. Heavy 15 21 0 1 

Spike Light 15 17.9 0 0   Amp. Heavy 25 22.8 0 0 

Spike Heavy 15 17.2 0 1   Amp. Heavy 15 15.6 0 1 

Spike Light 15 20.2 0 1   Amp. Heavy 25 25.8 0 0 

Spike Heavy 25 19.3 0 1   Amp. Light 15 22.4 0 1 

Spike Light 25 16.3 0 1   Amp. Light 25 24.2 0 1 

Spike Light 15 19.9 0 1   Amp. Heavy 15 23.8 0 1 

Spike Light 25 19.7 0 0   Amp. Heavy 15 23.2 0 1 

Spike Heavy 25 27.3 0 1   Amp. Light 15 25.9 1 1 

Spike Heavy 15 16 0 1   Amp. Heavy 15 20.1 0 1 

Spike Light 25 26.1 0 0   Amp. Light 15 26.8 0 1 

Spike Heavy 25 26.5 0 1   Amp. Light 25 26.3 0 0 

Spike Light 15 20.2 0 0   Amp. Heavy 15 22 1 1 

No Stim Light 15 16.9 1 1   Spike Light 25 29.4 1 0 

No Stim Light 25 18.7 0 0   Spike Heavy 15 17.7 0 0 

No Stim Light 25 20.2 0 1   Spike Heavy 15 24.2 0 1 

No Stim Heavy 15 14.9 1 0   Spike Light 25 24.5 0 0 

No Stim Heavy 25 15.2 1 0   Spike Light 15 22.9 1 1 

No Stim Heavy 15 15.2 1 0   Spike Heavy 15 13.5 0 0 

No Stim Heavy 15 16.3 0 0   Spike Heavy 15 22.3 1 1 

No Stim Light 25 22.5 0 0   Spike Heavy 15 18.2 0 1 

No Stim Heavy 15 19.2 1 1   Spike Light 25 22.6 0 1 

No Stim Light 25 14.4 0 0   Spike Heavy 25 23.4 0 1 

No Stim Heavy 25 10.8 0 1   Spike Heavy 25 27 0 0 

No Stim Light 15 17.1 0 0   Spike Light 25 27.5 0 1 

No Stim Heavy 25 16.8 0 0   Spike Heavy 25 25.1 0 0 

No Stim Light 15 7.8 0 0   Spike Light 25 23.1 0 0 

No Stim Heavy 15 17.1 0 0   Spike Light 15 20.9 0 1 

No Stim Heavy 15 17 1 1   Spike Heavy 15 25.1 0 1 

No Stim Light 25 17.5 0 0   Spike Heavy 25 22.7 0 1 

No Stim Light 25 22.4 1 1   Spike Heavy 25 19.3 0 1 

No Stim Light 25 11.8 1 1   Spike Light 25 23.5 0 1 

No Stim Light 25 14.7 1 0   Spike Heavy 25 27.1 0 1 

No Stim Heavy 25 14.6 0 1   Spike Light 15 25.8 0 1 

No Stim Light 15 20.7 1 0   Spike Light 15 29 1 1 

No Stim Light 15 15.8 1 0   Spike Light 15 22.4 1 1 

No Stim Light 15 15.5 0 0   Spike Light 25 21.7 0 1 

No Stim Light 25 18 0 1   Spike Light 25 19.7 0 1 

No Stim Heavy 25 13.6 0 1   Spike Heavy 15 16.1 0 1 

No Stim Light 15 19.8 0 0   Spike Light 15 21.8 0 1 

No Stim Light 15 14.1 1 0   Spike Light 25 22.2 0 1 

No Stim Heavy 25 15.8 0 1   Spike Heavy 25 22.1 0 1 

No Stim Light 15 18.3 1 1   Spike Heavy 25 21.7 0 1 

No Stim Heavy 25 14.9 0 0   Spike Light 15 22.6 0 1 

No Stim Heavy 25 22.9 0 1   Spike Heavy 25 23.6 0 1 

No Stim Heavy 25 23.9 0 1   Spike Heavy 15 22.7 1 1 

No Stim Heavy 15 17.2 1 1   Spike Light 15 21.4 1 1 

No Stim Heavy 15 21.2 1 0   Spike Heavy 15 22.2 1 1 

No Stim Light 25 15.7 0 0   Spike Light 15 23 1 1 

No Stim Light 15 19.5 0 0   Spike Light 25 17.4 0 0 
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No Stim Heavy 15 19.4 1 0   Spike Light 15 21.4 0 1 

No Stim Heavy 25 26.4 0 0   Spike Heavy 25 23.1 0 1 

No Stim Heavy 15 18.5 1 1   Spike Heavy 15 24.5 0 1 

Amp. Heavy 25 24.4 1 0   No Stim Light 25 25 0 1 

Amp. Light 15 15.5 0 1   No Stim Heavy 15 23.7 1 1 

Amp. Heavy 25 22.2 0 1   No Stim Heavy 25 23.5 0 1 

Amp. Heavy 15 11.8 1 1   No Stim Heavy 15 23.2 1 1 

Amp. Light 25 17.5 0 0   No Stim Light 25 27.6 0 1 

Amp. Heavy 25 21.5 1 0   No Stim Heavy 25 23.4 0 0 

Amp. Light 25 21.7 0 0   No Stim Light 15 21.3 0 1 

Amp. Light 15 14.5 1 0   No Stim Heavy 15 19.9 0 0 

Amp. Heavy 15 9.2 0 1   No Stim Light 15 19.2 0 0 

Amp. Heavy 15 12.5 0 1   No Stim Heavy 15 21.2 0 1 

Amp. Heavy 15 12.1 0 0   No Stim Light 25 21.5 0 0 

Amp. Heavy 15 9.9 0 0   No Stim Heavy 25 29 0 1 

Amp. Light 25 21.6 0 1   No Stim Light 25 22.4 0 0 

Amp. Heavy 15 8.2 0 1   No Stim Heavy 15 25.4 1 0 

Amp. Heavy 25 25.1 1 1   No Stim Light 15 17.8 0 1 

Amp. Light 15 11.9 0 1   No Stim Light 15 19.2 1 1 

Amp. Heavy 15 9.1 0 1   No Stim Light 25 23.7 0 0 

Amp. Heavy 25 25.4 0 1   No Stim Light 25 21.5 0 1 

Amp. Heavy 15 12.9 1 0   No Stim Heavy 15 25.2 1 1 

Amp. Light 15 13.9 0 1   No Stim Light 15 17.3 0 1 

Amp. Heavy 25 19.4 0 1   No Stim Heavy 25 27.4 0 0 

Amp. Heavy 25 21.8 1 1   No Stim Light 15 24.3 1 1 

Amp. Light 25 21.6 0 1   No Stim Heavy 15 25.5 1 1 

Amp. Heavy 25 18.9 0 0   No Stim Light 15 23.6 1 1 

Amp. Heavy 25 20.9 0 1   No Stim Light 25 23.4 0 1 

Amp. Heavy 15 15.2 0 1   No Stim Light 25 23.7 0 1 

Amp. Light 25 24.9 0 1   No Stim Heavy 25 23.1 0 0 

Amp. Light 25 28.6 1 1   No Stim Light 25 22.2 0 1 

Amp. Light 25 27.8 0 1   No Stim Heavy 25 23.4 0 0 

Amp. Light 15 15.2 0 1   No Stim Heavy 25 21.5 0 1 

Amp. Light 15 13.2 0 1   No Stim Light 15 21.9 0 1 

Amp. Light 15 19 0 1   No Stim Heavy 15 13.3 0 0 

Amp. Light 15 11.3 0 1   No Stim Heavy 25 25.2 0 0 

Amp. Light 25 23.9 0 1   No Stim Light 15 18.5 0 0 

Amp. Heavy 25 21.2 0 1   No Stim Heavy 15 25.2 1 0 

Amp. Heavy 15 11.6 0 1   No Stim Light 25 29.3 0 0 

Amp. Light 15 13.6 0 1   No Stim Heavy 25 27.8 0 1 

Amp. Light 25 21.7 0 1   No Stim Light 15 18.7 0 1 

Amp. Light 15 9.1 0 1   No Stim Heavy 15 19 0 1 

Amp. Light 25 23.6 0 1   No Stim Heavy 25 22 0 0 

 


