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Abstract 

Understanding the in-situ stresses and rock mechanical properties is necessary to ensure 

successful drilling, quality wellbore completion, and reservoir performance analysis. However, 

the conventional determination methods normally require a substantial financial investment, 

including prolonged rig standby time, and results might only be available for limited 

formations in a few wells in an oilfield. In this research, a novel, economical, and rapid 

methodology is presented to estimate the in-situ stresses and rock mechanical parameters from 

borehole deformation data, which are determined from four-arm caliper logs. Nevertheless, 

three significant challenges exist in the development of the new approach. 

The first challenge is the conventional application of circular-borehole-based linear 

elastic analytical solutions to the estimation of the in-situ stresses in shale formations, which 

often deform in a time-dependent manner so that the borehole becomes progressively more 

non-circular after initial elastic deformation. In order to address this issue, a three-dimensional 

poro-visco-elastic simulation approach is developed using the Finite Element Method (FEM) 

to analyze the time-dependent borehole deformation and assess its influence on the inversion 

process for in-situ stress estimation. 

The second challenge is the dilemma of using the default bit size as the original 

borehole size to calculate borehole deformations. To address this dilemma, an original 

borehole size is estimated that is different from the bit size for the quantification of the borehole 

deformations. The influence of the original borehole size on the borehole deformation response 

is investigated in this research. 
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The third challenge is the non-uniqueness of solutions due to the limitations of the 

available known parameters. This problem is addressed by applying optimizations of the in-

situ stresses inversion using the normalized weighted-sum multi-objective function.  

Continuous in-situ stresses profiles are generated for practical applications using this approach. 

The methodology has been successfully demonstrated in the determination of in-situ 

stresses and the rock mechanical parameters in cases studies in North America and China. The 

simulation results for these case studies indicate first that the time-dependent borehole 

deformation is mainly influenced by the visco-elastic properties of the rock; second, that pore 

pressure diffusion effects have a negligible influence on the time-dependent borehole 

deformations; third, for visco-elastic rocks, from a geomechanics point of view, borehole 

breakouts will be enhanced by rock creep effects; and last, drilling induced (tensile) fractures 

will not likely happen during the period of the time-dependent borehole deformations.  
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Chapter 1 

Introduction 

1.1 Motivation and problem statement 

In petroleum engineering, in-situ stress and rock mechanical parameters play important roles 

in the drilling and completion practices for unconventional reservoirs, affecting well design, 

well bore stability analysis, hydraulic fracture design, and understanding the incidence of 

asymmetric hydraulic fracture outcomes in a pad area that might impact the recovery rate in 

shale gas extraction. In-situ stress contrast between the caprock and the pay zone to be 

stimulated is a controlling factor for assessment of hydraulic fracture containment, for 

providing a scientific basis for assessment of the environmental impact of hydraulic fracturing 

practice in shale gas extraction, and for other geo-energy development activities such as 

refracturing after some depletion or changes in the probability of induced felt seismicity. 

Effective and rapid means of determination of the in-situ stresses will be beneficial to these 

engineering design practices.  

Among the three principal in-situ stresses (generally one is assumed to be vertical; thus 

the others are orthogonal and horizontal), the magnitude of the vertical stress (σv) is assumed 

to be equal to the weight of the overlying rock and can be calculated from the integration of 

bulk density logs.  

The direction of the horizontal in-situ stresses (σH, σh, where σH > σh) can be 

successfully inferred from borehole wall yield information such as breakouts or drilling-

induced tensile fractures, which are often detected in acoustic or resistivity image logs (Bell 
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and Gough, 1979; Zoback et al., 1985; Haimson and Herrick, 1986; Shamir and Zoback, 1992; 

Brudy and Zoback, 1999).  

As for the determination of in-situ horizontal stress magnitudes, there are three major 

categories of methodologies: injection-based measurements such as hydraulic fracturing tests, 

casing shoe leak-off tests (LOT), extended leak-off tests (XLOT), and formation integrity tests 

(FIT) (Haimson and Fairhurst, 1967; Zoback, 2007; Cornet and Valette, 1984); strain-relief-

based measurements such as over-coring and differential strain analysis (Fischer, 1982); and, 

empirical correlation-based calculations based on estimating rock mechanical properties and 

in-situ stresses from sonic (acoustic) logs (Desroches and Kurkjian, 1999; Chang et al., 2006; 

Sinha et al., 2008; Close et al., 2009; Najibi et al., 2017).  For a vertical drilled borehole in a 

normal faulting stress regime (Anderson, 1905, as referred to by Scholz, 1989), the field in-

situ stress measurement using hydraulic fracturing approaches is generally an estimation of the 

smallest principal in-situ stress, which is the minimum horizontal in-situ stress (i.e., σh = σ3 in 

this case).  

The maximum horizontal in-situ stress magnitude (σH) is often calculated by using the 

Kirsch equations for a circular elastic opening (Kirsch, 1898, as referred to by Zoback, 2007), 

and its validity is controlled and constrained by the presence of borehole breakouts, the 

hydraulic fracture breakdown pressure measurement reliability, the value of σh, and 

geomechanical properties such as elastic parameters, cohesion, friction angle, and unconfined 

compressive strength (UCS) (Zoback et al., 1985; Ervine and Bell, 1987; Aadnoy, 1990; 

Aadnoy et al., 1994; Peska and Zoback, 1995). 

Both field in-situ stresses measurements and laboratory rock mechanics parameter tests 

require a substantial financial cost and a long waiting time, and the results may only be 
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available for limited formations in a few wells in an oilfield.  For example, casing shoe leak-

off tests are never taken within a producing reservoir and are generally taken in shale strata, 

where casing shoes tend to be seated. Moreover, properties achieved from the lab are not 

necessarily those appropriate for in-situ stress change analysis, where mismatched confining 

stresses must be applied to mimic the in-situ conditions underground. Therefore, one 

motivation is to develop techniques to determine rock mechanical properties and in-situ stress 

in an economical and prompt manner while maintaining the measurement as an in-situ process, 

not requiring withdrawal of a cored sample.  

The goal of this research is to develop a methodology to estimate in-situ stresses and 

rock mechanical properties from borehole deformation data measured via four-arm caliper 

tools. The conventional stress and displacement calculations around a borehole are based on 

an elastic model of a circular opening. In actual drilling practice, however, a borehole will 

become non-circular instantaneously after drilling because of in-situ stress anisotropy. 

Research has shown that only 2% of the principal axis length difference in an elliptical 

borehole geometry can lead to a 5% difference in the σh calculation and a 10% difference in 

the σH calculation (Han et al., 2018). Moreover, a shale borehole wall might deform in a time-

dependent manner because of a viscous response of the rock. Therefore, the conventional 

circular-borehole-based linear-elastic analytical solutions might not be adequate for inverting 

stresses from four-arm caliper measurements in actual oilfield practice. To help attain the 

research goal, in the context of these challenges, geomechanics theories and the properties of 

shales are introduced in the next section.  
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1.2 Geomechanics background 

1.2.1 Stress and strain 

In-situ stress and strain are basic concepts in the geomechanics discipline.  A stress is defined 

as a force over an area, described in equation (1.1):   

   σሬሬ⃗ = 𝐹⃗/𝐴଴      (1.1) 

where σሬሬ⃗  is the stress (symbol 𝜏 is also used for a shear stress along a plane), 𝐹⃗ is the force, and  

A0 is the initial area. If a force is perpendicular to a planar surface, the resulting stress is called 

a normal stress; if a force is applied parallel to a planar surface, it is called a shear stress. A 

normal stress is called either a tensile stress if the stress is pulling the material apart, or a 

compressive stress if the stress is compressing the material. In geomechanics, compressive 

stresses are conventionally taken as positive.  

Strain is the deformation of the rock material in response to a change in the 

corresponding effective stress, Δσ′ = Δσ – p, where the total stress is σ, the pore pressure is p, 

and Δ stands for “change in”. A normal strain is defined as the change in length (caused by the 

change in normal effective stress) divided by its original length. A shear strain is the ratio of 

the change in length to its original length perpendicular to the principal stress axes of the 

element due to shear stress. A volume (or volumetric) strain is the ratio of the change in volume 

to its original volume, also called a bulk strain, when all-around change in effective confining 

stress is applied. These stress and strain concepts are illustrated in Figure 1-1. The normal, 

shear and volume strain are defined in equations (1.2, 1.3 and 1.4): 

 𝜀 = ∆𝑙/𝑙      (1.2) 

 𝛾 = tan θ      (1.3) 

 𝜀௏ = ∆𝑉/𝑉      (1.4) 
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where  is the normal strain, l is the change in length, l is the original length,  is the shear 

strain,  is the angle between the plane normal to the shear stress direction and the new 

orientation of the plane, V is the volume strain, V is the change in volume, and V is the 

original volume. 

 

Figure 1-1: Schematic diagram of stress and strain concepts 

To analyze stress/strain (σ-ε) behavior of a rock in-situ subjected to stress changes, it 

is necessary to specify the initial stress condition; this requires us to identify and estimate the 

three initial principal stresses: the major - σ1
 
- the intermediate -σ2

 
- and the minor - σ3 - 

stresses and their orientations. In-situ stresses are generated or controlled by self-weight and 

a series of geological events such as sedimentation, diagenesis and tectonic movements. Far-
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field stresses imposed on the basin boundary by tectonic movements such as compressional 

mountain building may be transmitted large distances across the basin (Luo and Dusseault 

1998), adding to the self-weight induced stress condition.  

To reduce the number of unknowns, and because the earth’s surface is relatively flat in 

most sedimentary basins, the three orthogonal and principal in-situ stresses are normally 

assumed to be the vertical stress (σv), maximum horizontal stress (σH), and minimum horizontal 

stress (σh). Generally, three common stress regimes are defined according to the relative 

magnitude of these three principal stresses: normal faulting stress regime (σv > σH > σh), strike-

slip faulting stress regime (σH >σv > σh), and thrust faulting stress regime (σH > σh > σv) 

(Anderson, 1905, as referred to by Scholz, 1989). 

The natural shear stresses, τ, are highest on planes 45° from the principal-stress planes, 

and the maximum shear stress, τmax, is defined as (σ1
 
- σ3)/2. Thus, the larger the natural 

difference in the major and minor principal stresses, the greater the shear stress, and the closer 

the rock is to a state of failure or shear slip (Dusseault, 2001). 

The effective stresses are the differences between total stresses in the rock and pore 

pressure in the interconnected voids. The effective stress is defined by Terzaghi’s law 

(Terzaghi, 1923, as modified by Biot, 1941):  

𝜎ᇱ = 𝜎 − 𝛼𝑝        (1.5) 

where σ is the total normal stress, σ′ is the effective normal stress, α is the Biot coefficient, and 

p is the pore pressure. Physically it means that the rock skeleton carries the part σ′ of the total 

external stress σ, and the remaining part, αp, is carried by the fluid in the porous medium. The 

Biot parameter α considers the compressibility of the mineral in addition to the bulk 

compressibility of the rock skeleton and governs the magnitude of the pore pressure change 
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when a change in total stress takes place. Its range is from 0 to 1 with a low value for low 

porosity, very stiff reservoir rocks, and a value of 1 for highly compressible rocks (high 

porosity sandstones, for example). 

1.2.2 Rock stiffness and rock strength 

Stiffness is the extent to which an object resists deformation in response to an applied force 

(Baumgart, 2000); it is defined as load divided by deformation. The inverse of stiffness is 

flexibility or compliance. The more flexible an object is, the less stiff it is. The stiffness of an 

elastic rock is a measure of its resistance to deformation.  

Rock strength is the basis for stability analysis. Generally, rock strength is spoken of 

in several different ways: uniaxial compressive strength or unconfined compressive strength 

(UCS), shear strength, tensile strength, and ultimate strength (after shearing has destroyed all 

cohesion). In all cases, for rocks, the terms refer to a clear maximum load that can be sustained 

before yield (significant irreversible deformation) begins.   

Figure 1-2 illustrates typical rock responses to external triaxial or uniaxial stresses. The 

onset of shear damage occurs at the locus of yield on the curves: the blue curve represents a 

uniaxial compression test; the black curve represents a triaxial compression test with a lower 

effective confining stress; the green curve represents a triaxial compression test with a higher 

effective confining stress. The left part of a curve before the yielding point is considered to be 

elastic deformation; the rock will recover to its original state after the loading stress is removed. 

After yielding, rock undergoes both elastic and plastic deformation, and generally exhibits a 

peak strength, followed by a sudden rock fracture event, or a slower diminution in strength as 

the rock cohesion is gradually destroyed.  
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Figure 1-2: Typical stress-strain curve of triaxial and uniaxial tests 

The magnitude of UCS equals the peak stress that a rock can sustain during a uniaxial 

compression test with no lateral confinement (σ′3 = 0). Usually, it is treated as a benchmark for 

rock stability analysis because it is easy to measure. The higher the UCS value, the more stable 

rocks are assumed to be. 

Shear strength describes rock strength available to resist shear stress. The resistive 

forces include two parts: one is the cohesive resistive force caused by cementation and grain 

interlock arising from diagenetic processes such as mineral cementation and other sources of 

cohesive bonding (dilation will be observed when cohesion is broken under a low effective 

confining stress); the other is the frictional resistive force caused by contact between particles. 

The magnitude of frictional resistance depends on the internal friction angle, , of the material 

and the magnitude of the effective confining stress, σ′n. The resistive force arising from the 

frictional strength is calculated as the product of σ′n and tan , which means that the resistance 

is proportional to the effective confining stress.  
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The ultimate strengths of rocks are also illustrated in Figure 1-2 (black and green 

curve). The ultimate strength refers to the strength that the rock retains after losing its cohesive 

strength component. It is the largest shearing resistance still available after large shear 

deformations have occurred along the yield surface. Once a rock passes the initial yield point, 

the internal damage continues to accumulate. The lowest shearing resistance is not only a 

function of the mineralogy, but is also related to the size and granulation of the fractured, 

damaged zone, the roughness of the shearing plane, etc.  

Tensile strength is the rock strength that prevents the solid matrix from being pulled 

apart (extensional strain) by fluid flow or other driving forces that can lead to a tensile stress. 

Specifically, the tensile strength of a material is the maximum amount of tensile stress that it 

can be subjected to before extensional rupture.  

The Mohr-Coulomb yield criterion (M-C criterion) is the most popular criterion among 

numerous empirical criteria to describe the locus of peak shear strength and the onset of strain-

weakening; it clearly captures and describes both frictional and cohesive strength factors, it is 

easy to apply, and is relatively reliable:  

𝜏௠௔௫
 
= 𝑐 + 𝜇 × 𝜎௡

ᇱ      (1.6)  

where  max is shear strength, c is cohesion, μ = tan () is the friction coefficient (is the friction 

angle), and σ′n
 
is normal effective stress. All parameters are effective stress parameters, as it is 

the effective stress that controls the rock strength. Figure1-3 illustrates the criterion. 
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Figure 1-3: Mohr-Coulomb (M-C) yield criterion  

The relationship among cohesion c, UCS and friction angle , can be written as the 

following equation:  

  𝑐 = 𝑈𝐶𝑆 × [1 − sin(𝜙)]/[2 × cos(𝜙)]     (1.7) 

When the shear stress , is equal to the peak rock shear strength max, rock will yield. A 

yielded rock will not return to its original shape and the deformation is a plastic deformation. 

However, a yielded rock does not necessarily mean a shear failure if the rock does not lose its 

function, such as a rock subjected to high confining stresses (the rock will yield if the shear 

stress is equal to the peak rock shear strength, yet the rock may not break). In the cases of 

unconfined strength tests when the peak rock shear strength is surpassed by shear stresses, the 

rock often collapses, and can be called rock failure. 

When the magnitude of the effective tensile stress (the absolute value) is equal to or 

larger than the rock tensile strength T0, rock tensile rupture will occur. The tensile rupture of a 

rock can also be determined from the Mohr-Coulomb criteria by using equation (1.8), assuming 

tensile force is negative. 
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𝜎ଷ
ᇱ ≤ 𝑇଴        (1.8) 

Similarly, a tensile ruptured rock is not necessarily mean a tensile failure of the rock 

if the rock is not falling apart (broken into pieces). The phenomenon can be observed when 

pulling a metal rod. The rod might become thinner and will not return to its original length if 

the tensile strength is compromised.  However, it may not be pulled apart if the pulling force 

is not large enough. Therefore, the rod is tensile ruptured but not tensile failed. 

1.3 Time-dependent behavior of shale  

Time-dependent deformation and time-dependent yield or rupture of shales are related to the 

behavior of the minerals in shale and the shale structural framework (texture and fabric). To 

clarify this complex behavior somewhat, shale mineral composition, shale structure, shale 

creep behavior, and phenomenological models are discussed in this section.  

1.3.1 Shale definition 

In geoscience, a shale is defined as a laminated, indurated rock with more than 67 percent of 

clay-sized minerals (Neuendorf et al., 2005). From a rock mechanics point of view, shale can 

be defined as a sedimentary rock where clay minerals constitute a load-bearing framework 

(Holt et al., 2012). In general petroleum engineering literature, the term “shale” usually implies 

a fine-grained sedimentary rock type, perhaps with distinctive laminations (mudstones 

excepted), and clay minerals forming the load-bearing framework under stress.  

The most common clay minerals, which account for more than 95% of clays found in 

sedimentary rocks, are smectite, kaolinite, illite, and chlorite. In a smectitic shale (reactive), 

more than 90% of the pore water is adsorbed onto the surfaces of the clay mineral, whereas in 
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an illitic shale or a chloritic shale (non-reactive), perhaps less than 30% of the water is surface-

adsorbed (Dusseault, 2018).  

The physical properties of a shale are impacted by the microstructure of clay minerals, 

which are sheet silicates consisting of layers of tetrahedrally coordinated silicon and oxygen 

atoms, and octahedrally coordinated hydroxyl groups with aluminum and oxygen atoms. The 

layers of some typical clays are shown in Figure 1-4 (Tournassat et al., 2015), where T stands 

for the tetrahedral silicon-bearing layers and O stands for the octahedral aluminum-bearing 

layers.   

 

Figure 1-4: Clay mineral layers for kaolinite, illite, and smectite 

The microstructure of smectite consists of two tetrahedral layers and one octahedral 

layer, and the surface of this “sandwich” is electrostatically active with adsorbed water, 
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hydrated cations (“exchangeable” cations), and even organic compounds. Smectite sheets have 

an exceptionally large surface area compared to other clay minerals, and therefore have a 

strong ability to adsorb water and “swell” in the presence of available water. This swelling can 

impact both the stiffness and the strength of the shale in a borehole wall when it is exposed to 

drilling fluids, one reason why clay mineral behavior is relevant to this thesis.     

The microstructure of kaolinite consists of one tetrahedral layer and one octahedral 

layer; it has a much lower surface area than smectite, and a lower cation exchange capacity 

because it has larger crystals than smectite. The structure of illite consists two tetrahedral layers 

and one octahedral layer with exchangeable potassium cations, with a limited swelling 

potential. Chlorite consists of two tetrahedral layers and two octahedral layers with Mg2+ or 

Fe2+ replacing part of the Al3+ in the octahedral layers, and it does not swell. 

The microstructure of clay minerals, the adsorbed water, and the laminated structure of 

the shale framework are intrinsic factors that affect the creep (time-dependent deformation) 

behavior of shales. 

1.3.2 Shale creep behavior 

The creep phenomenon was firstly systematically observed and reported by Vicat (Vicat, 1834, 

as referred to by Findley et al., 1976). The three stages of creep, which were first noted by 

Trouton and Rankine (Andrade, 1910; Findley et al., 1976) and further investigated by other 

researchers (Dusseault and Fordham, 1993), are shown in Figure 1-5: decreasing creep rate 

(primary creep or transient creep); constant creep rate (secondary creep or steady-state creep); 

increasing creep rate leading to rupture (tertiary creep or accelerating creep).  
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Figure 1-5: Three-state interpretation of creep behavior 

Creep is usually reported in terms of strain rate under a constant differential stress σ1 – 

σ3, and a constant temperature T (Dusseault and Fordham, 1993):   

𝜀̇ =
ௗఌ

ௗ௧
        (1.9) 

where 𝜀̇  is strain rate, 𝜀 is strain, t is time.  

All rocks creep upon undergoing a load change. Commonly it terminates almost 

instantaneously, in minutes or hours, or is so small that it can be ignored in an engineering 

design. Certain rock types or rock mineral compositions, such as salt or shale, are more apt to 

demonstrate creep. The creep of a shale is influenced by many different mechanisms related to 

intrinsic and extrinsic factors: geochemistry influences, electrochemically active minerals, 

temperatures, and in-situ stresses.  
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From a geomechanics point of view, the time-dependent deformation (creep) of a rock 

is continued deformation without a stress change. The creep phenomenon can be described by 

many engineering creep models including empirical creep laws, laws based on rheological 

models, and laws based on fundamental physical mechanisms. Engineering creep models, 

properly formulated and calibrated with testing, observations, geological history of 

deformations, and in-situ measurements, can be applied to various creep analyses ranging from 

borehole size scale (meter scale) to large areas of reservoirs, oilfields, or even the basin scale 

if tectonic creep and compaction studies are being made.  

1.3.3 Empirical creep laws 

The first creep law apparently was a logarithmic creep law presented by Philips (Philips, 1905) 

in describing slow stretch of India rubber, glass, and metal wires.  His logarithmic creep law 

is of the form 

    𝑥 = 𝑎 + 𝑏 × 𝑙𝑜𝑔(𝑡)        (1.10) 

where x is the stretch, a and b are constants for the pull, and t is time. The equation can be 

written in the form of the strain rate 

     𝜀̇ = 𝐵 × 𝑡ିଵ         (1.11) 

where 𝜀̇  is the strain rate, B is a constant, and t is time.   

In 1910, Andrade (Andrade, 1910) made an investigation of the creep of lead wires 

under constant load and proposed a creep law in the form 

   𝑙 = 𝑙଴ ቀ1 + 𝐵 × 𝑡
భ

యቁ 𝑒௞௧       (1.12) 



 

 40 

where l is the current length of the specimen, l0 is the initial length of the specimen, t is the 

time, and B and k are material constants which depend on the stress. When k equals to zero, 

equation (1.12) reflects a transient creep law that can be written in the form of equation (1.13).  

   𝜀̇ =
஻

ଷ
× 𝑡ି

మ

య          (1.13) 

 

1.3.4 Phenomenological models 

A time-dependent creep-strain response may correspond to one or several visco-elastic-plastic 

phenomenological models (also called rheological models), which use exponential and power 

law functions of time to model creep behavior. There are four basic components (spring, 

dashpot, slider, and brittle yield element) commonly used to represent elastic, viscous, plastic, 

and brittle behavior of a rock as shown in Figure 1-6. 

 

Figure 1-6: Illustration of four components used in rheological models 

Combinations of these components in different forms can yield various rheological 

models with different behaviors. Several simple rheological models (Dusseault and Fordham, 

1993) are shown in Figure1-7: the ideal linear elastic, perfectly plastic behavior;  the visco-

elastic steady-state creep behavior (Maxwell material); the visco-elastic transient behavior 

(Kelvin-Voight material); and the elasto-visco-plastic material (Bingham rheological model).    
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Figure 1-7: Some simple rheological models 

(a) ideal linear elastic, perfectly plastic behavior; (b) visco-elastic steady-state creep behavior (Maxwell material); (c) 

visco-elastic transient behavior (Kelvin-Voight material); (d) elastic visco-plastic behavior (Bingham material). 

A Maxwell model and a Kelvin model can be combined in series to form a new visco-

elastic model, for example, a Burgers model. The layout of the Burgers model is shown in 

Figure 1-8. When a constant stress is applied to the Burgers model, viscous strain occurs at a 

decelerating rate for a short period of time, whereas at a longer time, the viscous strain will 

maintain a constant rate from the η1 dashpot. When the stress is released, the strain in dashpot 



 

 42 

one will remain; the elastic strain in spring one and spring two, and viscous strain in dashpot 

two will be recovered as illustrated in Figure 1-9. 

 

Figure 1-8: Illustration of Burgers visco-elastic rheological model 

 

 

Figure 1-9: Stress-strain curve and strain-time curve of Burgers rheological  model 

The advantage of such models is that the deformational behavior of rocks can be 

expressed phenomenologically without any knowledge of the physical mechanisms 

responsible for the deformation (Hagin and Zoback, 2003). These models can provide a method 

for estimating the relaxation moduli and for bridging laboratory observations of time-

dependent deformations for rock samples with observations made in the field.   

1.3.5 Creep around circular openings 

The phenomenon of time-dependent deformation or creep has been observed in circular 

openings such as tunnels and boreholes (Kaiser et al., 1981a; Kaiser et al., 1981b; Swan et al., 

1989; Bonner et al, 1992; Li and Ghassemi, 2012; Sone and Zoback, 2014; Tomanovic, 2014). 

Around 50% of mining-induced seismic activity does not occur immediately after a blast, but 
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during extended periods after the blast (Drescher and Handley, 2003), indicating a continued 

time-dependent stress transfer that must, to some degree, be accompanied by time-dependent 

deformation. Obvious differences in caliper log measurements between active drilling data and 

days after drilling using geophysical logs have been observed (in Figure 1-10) showing time-

dependent borehole wall deformations (Bonner et al., 1992).   

 

Figure 1-10: Caliper log measurements while drilling and 5 days after drilling 

In drilling operations, intrinsic factors contributing to shale instability are the specific 

material properties such as permeability, mineralogy, and fabric (Fam et al., 2003). The 

extrinsic factors include in-situ stresses and redistributions of the in-situ stresses around the 
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wellbore, temperature changes due to the exposure of rock to drilling fluids of different 

temperature, initial and induced pore pressure, as well as the effects of drilling operations. 

In addition to the creep behavior of shale rocks, pore pressure is another critical 

parameter to be addressed as it will influence the determination of both the effective in-situ 

stress and the total tress. The calculation of the pore pressure is an important task in the poro-

visco-elastic simulations discussed in this research.  

1.4 Shale compaction and pore pressure calculation 

The compaction of shale rocks with the accompanying water expulsion is essential to large-

scale basin modeling and pore pressure evaluations. During normal compaction, the porosity 

of a shale decreases and the fluid inside the pores is expelled with the increase of the effective 

overburden stress as the burial depth increases. As a result, the properties of shaley sediments 

(such as resistivity, acoustic, density, or porosity) follow a normal (expected) trend with the 

increase in burial depth. In an abnormally pressured section, with a higher pore pressure than 

expected, most commonly found in offshore basins, there is a deviation of these measured 

shale properties from the normal trend. Therefore, the deviation of the measured values from 

this normal trend line represents an abnormal pore pressure. 

Eaton's method is the most commonly used pore pressures estimation approach using 

porosity related log data (resistivity, acoustic, or density). The method was first proposed by 

Hottman and Johnson (Hottman and Johnson, 1965), and modified by Eaton (Eaton, 1975). 

Eaton's method is based on Terzaghi’s effective stress concept of compaction theory. The pore 

pressure can be written as  

   𝑝 = 𝜎௩ − (𝜎௩ − 𝑧 × 𝑔 × 𝜌ே௢௥)(
ோಾ೐ೌ

ோಿ೚ೝ
)௡     (1.14) 



 

 45 

where p is the pore pressure, σvis the vertical stress, z is the depth, 𝑔 the gravity factor, Nor 

is the normal fluid density, RMeais the measured data (resistivity or sonic slowness), RNoris the 

corresponding data from the normal trend, and n is the exponent that depends on the log data 

type; for using the resistivity logging data, the default value of n is 1.2; for using the acoustic 

slowness logging data, the default value of n is -3.0 (Hottman and Johnson, 1965; Eaton, 1975).  

There are two major limitations in Eaton's method: the method is valid only for shale; 

and, the method accounts only for overpressure generated by under-compaction. Pore-fluid 

expansion effects from temperature changes, hydrocarbon maturation effects where kerogen 

turns into hydrocarbon liquids and gases, and clay diagenesis effects that result in water 

expulsion are not considered. Bowers (1995, 2001) developed a different method for pore 

pressure estimation to reduce the limitations of Eaton's method using sonic velocity data by 

accounting for both under compaction effects and pore-fluid expansion effects. Under the 

compaction mechanism, the velocity of the compressive sonic wave can be described in the 

form  

  𝑉 = 5000 + 𝐴(𝜎ᇱ
௏஼)஻       (1.15) 

where V is the sonic velocity in ft/s, σ'VC is the effective vertical stress on the virgin effective 

stress curve (Bowers, 1995) corresponding to the velocity V,and, A and B are parameters 

calibrated with the offset velocity and effective stress data. The velocity of the compressional 

sonic wave can also be described in the form  

  𝑉 = 5000 + [𝐴(𝜎ᇱ
௏ெ௔௫(

ఙᇲ
ೇ

ఙᇲ
ೇಾೌೣ

)ଵ/௎]஻     (1.16) 

where V is the sonic velocity in ft/s, σ'vis the effective vertical stress on the unloading effective 

stress curve corresponding to the velocity V,A and B are the same parameters as in equation 

(1.15), U is an empirical regional unloading parameter typically ranging between 3 and 8 
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(Bowers 1995) and determined for a specific sedimentary basin, σ'VMaxis the estimation of the 

effective stress at the onset of unloading and is specified as  

𝜎ᇱ
௏ಾೌೣ

= (
௏ಾೌೣିହ଴଴଴

஺
)ଵ/஻       (1.17) 

where VMax is the sonic velocity on the unloading effective stress curve corresponding to the 

velocity at the onset of unloading.  

The complexity of shale creep behavior and the pore pressure calculation in shale 

discussed in this section form the essential components in setting up research objectives.  

1.5 Research objectives and methodologies 

In order to achieve the goal of estimating in-situ stresses and rock mechanics parameters from 

borehole deformation data, the following objectives are set:  

 to analyze influences of the original borehole size and geomechanical 

parameters on the borehole deformations;  

 to investigate pore pressure influences on the time-dependent borehole 

deformations;  

 to investigate rock creep effects on borehole deformations and 

occurrences of time-dependent borehole wall breakouts; 

 to investigate influences of time-dependent borehole deformation on the 

determination of maximum horizontal in-situ stress and rock 

mechanical properties from caliper data; and, 

 to address the non-unique inversion issue in the estimation of the in-situ 

stresses and rock mechanics parameters. 

The methodologies to accomplish the objectives in this research are:  
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 development of a three-dimensional poro-visco-elastic simulation tool 

using the Finite Element Method (FEM) to quantify time-dependent 

borehole deformation and to analyze its influence on the in-situ stresses 

and the rock mechanical parameters; and, 

 application of optimization methods to find the optimal solution of the 

in-situ stresses and rock mechanics parameters.  

The overall workflow for the poro-visco-elastic borehole deformation FEM modeling 

and the in-situ stresses inversion optimization is shown in Figure 1-11.  

 

Figure 1-11: Flowchart of poro-visco-elastic FEM modeling and time-dependent stress 

inversion 
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First, the known parameters, such as Poisson’s ratio , spring constantsE1 and E2 of 

the visco-elastic model, dashpot viscosity η of the visco-elastic model, mud pressure Pm, initial 

formation pore pressure P0, minimum horizontal stress σhand measured borehole longer 

diameter C13 and shorter diameter C24, are determined. Next, the ranges of the unknown 

parameters, such as maximum horizontal stress σH, original borehole radius, timing of creep t, 

and Young’s modulus E, are constrained, and the values for the initial inputs of the unknown 

parameters are chosen. These input values for known parameters and constraints on the 

unknown parameters are listed as an example; for actual case studies, the number of known 

and unknown parameters must be determined according to data availability for a site.  

The time-dependent relaxation moduli are determined at each time step in the 

mathematical simulation. The borehole deformations are calculated through the poro-visco-

elastic FEM model and compared with measured borehole deformation via the objective 

function. The weighted-sum multi-objective function method is used as an example in this 

workflow for choosing the best outcomes. Then, the MatlabTM function "fmincon" was used to 

find the best fitness for each set of initial inputs. Finally, the solution corresponding to the 

smallest objective function value will be chosen as the most probable solution. Other inversion 

methods, such as the genetic algorithm and statistical analysis, and the normalized weighted-

sum multi-objective function method, can also be used in the workflow according to the nature 

of specific problems. 

1.6 Thesis structure 

In the first chapter of the thesis, basic geomechanics theories, the time-dependent behavior of 

shale rocks, phenomenological models, and shale compaction mechanisms and pore pressure 

calculation methods are reviewed.  
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In Chapter 2, the redistribution of in-situ stresses around a drilled borehole are analyzed 

and basic borehole shapes are presented; the methods used for in-situ stresses determination, 

including pressure injection-based methods, strain-relief-based methods, and empirical 

calculation methods, are reviewed. The theory and methodology of calculating in-situ stresses 

from four-arm caliper logging data are introduced, and consideration of the issue of original 

borehole size is explained.  

In Chapter 3, the theories of linear-elasticity, poro-elasticity, and visco-elasticity are 

reviewed, and the numerical modeling of creep behavior around a borehole is conducted using 

a poro-visco-elastic FEM model. 

In Chapter 4, analytical and semi-analytical formulations of relevant configurations 

found in the technical literature are reviewed, the constitutive formulation chosen for the 

material is justified, and the finite element simulations are verified.  

In Chapter 5, focusing on the underdetermined nature of the problem, the sensitivity of 

borehole deformation to geomechanical parameters is analyzed; optimization methods of in-

situ stresses inversion are then reviewed. 

In Chapter 6, the impact of creep behavior on the determination of in-situ stress and 

rock mechanical parameters is investigated. 

In Chapter 7, cases studies are presented of the in-situ stresses inversion method applied 

to the Marcellus Shale in the USA, to the Liard Basin and the Duvernay Formation and the 

Montney Formation in western Canada, to the Albert Formation in Eastern Canada, and to 

Karamay Basin in China. 

Conclusions and recommendations are presented in Chapter 8. 

 



 

 50 

Chapter 2 

Estimation of in-situ stresses from borehole deformation 

This chapter discusses basic borehole shapes that are generated immediately after drilling, as 

well as elastic theories of in-situ stress redistribution around a drilled borehole. The common 

methods for in-situ stress determination are reviewed. The feasibility of estimating in-situ 

stresses from four-arm caliper logging data is addressed, and the issue of original borehole size 

is explained.  

2.1 Basic borehole shapes and stresses around borehole  

Generally, there are four basic borehole shapes that are apparent immediately after drilling a 

vertical borehole: a circular shape, an elliptical shape, a borehole with drilling-induced 

(extensional) fractures in the wall, or a borehole with breakouts arising from compressional 

yield.  Figure 2-1 shows the four typical shapes, and several of these shapes may be apparent 

at the same point in a drilled borehole; for example, an elliptical shape interrupted by co-

existing breakouts and fractures can develop in a highly deviatoric stress field.  Development 

of these shapes after drilling depends on the in-situ stresses, the drilling mud pressure in the 

boreholes, the rock strength, and the formation pore pressure.  
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Figure 2-1: Basic borehole shapes after drilling 

 

As explained in Chapter 1, three orthogonal in-situ stresses that also correspond to the 

principal compressive stresses are assumed in oilfield practice: vertical stress (σv), maximum 

horizontal stress (σH), and minimum horizontal stress (σh). Suppose an elastic body of rock 

with Young's modulus E and Poisson's ratio v is subjected to the in-situ stresses σv, σH, and σh. 

A circular vertical borehole is drilled through the body (Figure 2-2); according to elastic theory, 

the solutions for the stresses around the borehole can be described by equations (2.1) to (2.6) 

(derived from the Kirsch set of equations under linear elastic isotropic property assumptions, 

Jaeger et al., 2009).  
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Figure 2-2: Cross-section of a vertically drilled borehole 
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ଶ
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 𝜏௥௭ = 0         (2.5) 

𝜏ఏ௭ = 0         (2.6) 

where r is the borehole radius, R is the distance from borehole center, σrr is the radial stress 

normal to the borehole wall, σ is the tangential stress around the borehole, σzz is the vertical 

stress around the borehole, is Poisson’s ratio, σv is the vertical stress, σH is the maximum 

horizontal stress, σh is the minimum horizontal stress,  is the angle from the maximum 

horizontal stress direction, and r, rz,  andz are shear stresses. 

On the borehole wall (where R equals r), the normal stress σrr equals zero; the tangential 

stress σ at the location A ( =0° as shown in Figure 2-3), can be written as  

𝜎ఏఏ = 3𝜎௛ − 𝜎ு−𝑝௠       (2.7) 
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where pm is the borehole mud pressure. In a homogeneous shale without natural fractures, 

drilling-induced fractures will occur at this location A if the mud pressure is large enough, a 

condition expressed by this equation  

  𝑝௠ = 3𝜎௛ − 𝜎ு + 𝑇଴ − 𝑝       (2.8) 

where T0 is the tensile strength of the rock, and p is the formation pore pressure.  

Similarly, at the location B on the borehole wall ( =90° as shown in Figure 2-3), the 

tangential stress σ can be written as equation (2.9). When applying this tangential stress at B 

and the mud pressure of the borehole to equation (1.6) in Chapter 1,  a breakouts occurrence 

criterion can be calculated using equation (2.10). 

  𝜎ఏఏ = 3𝜎ு − 𝜎௛−𝑝௠        (2.9) 

  (3𝜎ு − 𝜎௛−𝑝௠ − 𝑝) ≥ 𝑈𝐶𝑆 + tanଶ ቀ
గ

ସ
+

∅

ଶ
ቁ × (𝑝௠ − 𝑝)  (2.10) 

 

Figure 2-3: Drilling induced fractures and breakouts in a vertical borehole 
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The linear elastic strains around the borehole can be calculated using equations (2.11) 

to (2.16):    

𝜀௥௥ =
ఙೝೝି௩(ఙഇഇାఙ೥೥)

ா
                          (2.11) 

  𝜀ఏఏ =
ఙഇഇି௩(ఙ೥೥ାఙೝೝ)

ா
                            (2.12) 

  𝜀௭௭ =
ఙ೥೥ି௩(ఙೝೝାఙഇഇ)

ா
                        (2.13) 

  𝛾௥ఏ =
ఛೝഇ

ீ
       (2.14) 

  𝛾௥௭ = 0       (2.15) 

  𝛾ఏ௭ = 0       (2.16) 

where rr is the radial normal strain,   is the tangential normal strain, zz is the vertical normal 

strain, E is Young's modulus, is Poisson’s ratio, r  is the shear stress, r , rz, z are shear 

strains, and G is the shear modulus.  

2.2 Displacements around a borehole 

For a vertically drilled borehole under anisotropic horizontal stresses, in cases where neither 

drilling induced fractures nor breakouts occur, the cross-section of the borehole will show an 

elliptical shape; displacements around the borehole are illustrated in Figure 2-4. Within the 

framework of elasticity theory, the analytical solutions of displacements around the borehole 

can be derived from the Kirsch set of equations (Jaeger et al., 2009) and are written as 

equations (2.17) to (2.19). 
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Figure 2-4: Schematic of physical model of borehole deformation 

 

𝜇௥௥ = −
1

𝐸
ቈ൬

𝜎𝐻 + 𝜎ℎ

2
൰ ቆ𝑅 +

𝑟2

𝑅
ቇ + ቀ

𝜎𝐻 − 𝜎ℎ

2
ቁ ቆ𝑅 −

𝑟4

𝑅3 +
4𝑟2

𝑅
ቇ cos(2𝜃)቉ 

+
𝜐

𝐸
ቈቀ

𝜎ு − 𝜎௛

2
ቁ ቆ𝑅 −

𝑟ଶ

𝑅
ቇ + ቀ

𝜎ு − 𝜎௛

2
ቁ ቆ𝑅 −

𝑟ସ

𝑅ଷ
ቇ cos(2𝜃)቉ 

   +4
జమ

ா

ோమ

௥
ቀ

ఙಹିఙ೓

ଶ
ቁ cos(2𝜃) +

జ

ா
× 𝑟 × 𝜎௏ +

(ଵାజ)

ா
× 𝑃௠ × 𝑟   (2.17) 

 𝜇ఏఏ = −
ଵ

ா
ቂቀ

ఙಹିఙ೓

ଶ
ቁ ቀ𝑅 +

ଶ௥మ

ோ
+

௥ర

ோయቁ sins(2𝜃)ቃ +
జ

ா
ቂቀ

ఙಹିఙ೓

ଶ
ቁ ቀ𝑅 −

௥మ

ோ
+

௥ర

ோయቁ sins(2𝜃)ቃ 

   −4
జమ

ா

௥మ

ோ
ቀ

ఙಹିఙ೓

ଶ
ቁ cos(2𝜃)      (2.18) 

  𝜇௭௭ = −
௭

ா
[𝜎௩ − 𝜐(𝜎ு − 𝜎௛)]       (2.19) 

where r is original borehole radius, R is distance from borehole center, z is depth, urr is the 

radial displacement of the borehole at R, u is the tangential displacement of the borehole at 

R, uzz is the axial displacement of the borehole at R, E is Young’s modulus, is Poisson’s ratio, 

σv is the vertical stress at depth z, σH is the maximum horizontal stress, σh is the minimum 

horizontal stress, pm is borehole mud pressure, and  is the angle from the maximum horizontal 

stress direction. 
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2.3 Methods of in-situ stresses determination 

There are broadly three major methodologies for the estimation of in-situ stresses magnitudes: 

injection-based measurements; strain-relief-based measurements; and, empirical correlation-

based calculations based on estimating rock mechanical properties and in-situ stresses from 

sonic (acoustic) logging data.  

2.3.1 Pressure injection based in-situ stress measurement 

Hydraulic fracturing (HF) is a borehole field-test method designed to assess the state of in-situ 

stress in the earth crust and HF is the ISRM suggested pressure injection method for in-situ 

stress estimation (Haimson and Cornet, 2003). Sometimes small-scale HF tests, mini-frac test 

tests (Mini-Frac tests are a commercial variant), or a data-frac test, are used. The most 

popular current method for performing this Mini-Frac in unconventional resources 

development is the diagnostic fracture injection test (DFIT). In some cases where closure 

pressures are difficult to determine precisely, casing shoe leak-off tests (LOT), extended leak-

off tests (XLOT), and formation integrity tests (FIT) are used during drilling to estimate the 

minimum principal stress even though the quality of the results is less reliable than a full 

hydraulic fracture test (Haimson and Fairhurst, 1967; Zoback, 2007; Cornet and Valette, 1984). 

A schematic pressure–time curve illustrating a HF, DFIT, LOT, XLOT, FIT, or a Mini-Frac 

test is shown in Figure 2-5 (Zoback, 2007).  
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Figure 2-5: Schematic leak-off test, formation integrity test, or Mini-Frac test  

In the schematic example shown in the figure, the pumping rate into the well is constant. 

Thus, the pressure should increase linearly with time as the volume of the wellbore is fixed. 

The leak-off point (LOP) is a distinct departure point from a linear increase of wellbore 

pressure with time, which means a limited length hydraulic fracture must have formed. 

Therefore, a clear LOP indicates approximately the least principal stress (neglecting near-

wellbore resistance to fracture propagation). If the LOP is not reached before the wellbore 

pressure is allowed to return to a hydrostatic value, a formation integrity test (FIT), is said to 

have been conducted. Such tests merely indicate that at the maximum pressure achieved, a 

hydraulic fracture did not propagate away from the wellbore wall, either because the maximum 
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wellbore pressure did not exceed the least principal stress or was not sufficient to initiate a 

fracture of the wellbore wall in the case of an open-hole test.  

The peak pressure reached during a LOT or Mini-Frac test is termed the formation 

breakdown pressure (FBP) and represents the pressure at which an unstable fracture propagates 

away from a wellbore (fluid temporarily flows into the fracture from the wellbore faster than 

the pump supplies it, hence the pressure drops). The difference between the LOP and FBP is a 

complex function of the conditions immediately surrounding the well, especially when a 

fracture is being initiated through perforations that have already severely damaged the near-

wellbore rock. However, a distinct FBP may not necessarily be present in a reliable Mini-

Frac or LOT or XLOT, particularly if there is rock damage such as clay swelling, or residual 

thermal stress effects (cooling from the drilling mud) near the borehole wall.  

If pumping continues at a constant rate, the pumping pressure will drop after the FBP, 

eventually reaching a relatively constant value called the fracture propagation pressure (FPP). 

This is the pressure associated with propagating of the fracture far from the well. In the absence 

of appreciable near-wellbore resistance, the FPP is close to the least principal stress, σ3. Hence, 

the FPP and LOP values should be similar if the recommended slow injection rates are 

followed.  

An even better measurement of the least principal stress is obtained from the 

instantaneous shut-in pressure (ISIP) which is measured after abruptly stopping the flow into 

the well (Haimson and Fairhurst, 1967), while continuing to measure the pressure. In the case 

of constant (and low) flow rates and low viscosity fluid (such as water or thin oil) injection, 

the LOP, FPP, and ISIP have approximately the same values and can provide redundant and 

reliable information about the magnitude of the smallest principal stress. If a viscous fracturing 
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fluid is used, or a fluid with suspended proppant, FPP will increase due to the large friction 

losses. In such cases the fracture closure pressure (FCP) is a better measurement of the least 

principal stress than the FPP or ISIP. 

Fracture Closure Pressure (FCP), which can be estimated, for example, by intersecting 

two tangent lines on the pressure-time curve after instantaneous shut-in, is considered equal to 

the smallest principal stress, provided that the fracture has been deliberately propagated far 

enough from the borehole so that the stress perturbation and rock damage near the borehole 

have negligible effects on the results. In normal fault or strike-slip fault stress regimes, the FCP 

value is considered equal to the minimum horizontal in-situ stress σh = σ3 because the 

propagated fracture is very thin and normal to the σ3 direction. In cases when the curve is 

complex and no tangent lines can be clearly drawn, the minimum value among the leak-off 

pressure, fracture propagation pressure, and the shut-in pressure is taken as the minimum 

horizontal in-situ stress, or other pressure-time curve analysis methods are applied. 

An estimation of the maximum horizontal in-situ stress value is often achieved by 

calculations based on borehole breakouts, minimum horizontal stress, and rock mechanical 

properties such as cohesion, friction angle, UCS (Unconfined Compressive Strength), etc. 

(Zoback et al., 1985; Peska and Zoback, 1995). Based on the theory of elasticity by Kirsch 

(1898, as referred by Zoback, 2007), the relationship described in equations (2.8) and (2.10) 

are often used for the estimation of the maximum horizontal stress. However, the relationships 

might not be appropriate in the following scenarios: 

 The equation will not be valid for hydraulic fracturing methods in a cased 

perforated hole where the rock is damaged;  
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 Kirsch equations are assumed in circular boreholes, not necessarily 

appropriate for the maximum horizontal stress estimation in an elliptical 

borehole arising from breakouts or elastic deformation;  

 It is sometimes impossible to decide when a fracture is initiated at the 

wellbore wall during pressurization due to the compressibility of the system 

volume (fracturing fluid, pump, tubing, exposed borehole length); and, 

 An extensively damaged borehole wall (swelling, drilling damage, naturally 

fractured shale…) cannot give a correct maximum horizontal stress 

estimation because of strongly non-elastic and non-linear behavior.  

Therefore, cautions need to be taken when applying linear elastic relationships in the 

estimation of the maximum horizontal in-situ stress using injection-based in-situ stress 

measurement methods. 

2.3.2 Strain relief based in-situ stress measurement 

Strain relief approaches are also based on linear-elastic theory. When the stress applied to an 

object is removed, the object will deform to balance the removal of the stress. Although this 

method has various subdivisions such as borehole deformation tests or borehole strain tests, 

the general steps for strain relief methods share similarity: a piece of rock is removed from the 

layer and boundary stresses on it disappear; then, the geometric shape of the rock will recover 

in an elastic way, assuming the rock is an elastic material.  

Overcoring is one of the strain relief methods based on stress removal around the 

borehole, shown in Figure 2-6. The principle of overcoring measurements is to monitor 

geometrical changes during overcoring using precise strain gauges in a pilot hole. These 
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deformation measurements should be related to the stresses in the elastic medium by equations 

derived from the theory of elasticity. The instruments used for overcoring include 

"Doorstoppers" and "Borehole Deformation Gage" (Fischer, 1982). Figure 2-7 shows the 

deformation gage tool used in the overcoring technique.   

 

 

(http://www.hydrofrac.com) 

Figure 2-6: Overcoring procedure 



 

 62 

 

(USBM deformation gage, http://www.hydrofrac.com) 

Figure 2-7: Example of deformation gage 

The calculation of the in-situ stresses in the overcoring method using a deformation 

gage requires at least six independent final strain readings and the availability of elastic 

parameters for the rock. For isotropic rock, two conventional elastic parameters are needed: 

Young’s modulus and Poisson’s ratio.  

2.3.3 Empirical calculation of in-situ stresses 

In field operations, laboratory rock mechanical tests and in-situ stresses measurements require 

a substantial overhead cost and a prolonged rig standby time, and they are therefore expensive. 

Moreover, properties obtained from laboratory methods are never fully representative of in-

situ conditions and rock damage may have taken place, so they are not able to unequivocally 

represent actual underground conditions. Therefore, there have been efforts to develop more 

economical empirical methods to estimate in-situ horizontal stresses.  
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The commonly used empirical method in oilfield practice is based on empirical 

correlations between rock mechanical properties or rock physical properties and the values 

from geophysical sonic and density logs (Desroches & Kurkjian, 1999; Chang et al., 2006; 

Sinha et al., 2008; Najibi et al., 2017). The use of sonic logging data can be dated back to 1935 

when Schlumberger offered its wire line truck and cable as a commercial service for wellbore 

acoustic velocity surveys (Close et al., 2009). Figure 2-8 shows a typical sonic logging tool for 

measuring axial, azimuthal, and radial sonic slowness information of the near-wellbore 

environment. It is well accepted nowadays and is the most widely used empirical method in 

the petroleum industry to estimate rock mechanical properties from logging data and to 

correlate to in-situ stresses, especially in the identification of heterogeneous rock mechanical 

properties and heterogenous in-situ stresses in shale strata.  

 

(courtesy of Close et al., 2009) 

Figure 2-8: A typical sonic scanner tool providing sonic slowness information  
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Generally, in empirical methods, the horizontal stress is summarized as: 

     𝜎ு௢௥௜௭௢௡௧௔௟ = 𝜎ீ௥௔௩௜௧௜௢௡௔௟ + 𝜎்௘௖௧௢௡௜௖ + 𝜎்௛௘௥௠௔௟ + 𝜎ோ௘௦௜ௗ௨௔௟ (2.20) 

where σGravitational, σTectonic  and σThermal are the parts induced by gravitational, tectonic, and 

thermal effects respectively, σResidual is the residual stress due to the rock non-elastic properties 

during the loading/unloading process.  

Considering the situation of flat-layered strata deposited without any subsequent 

tectonic effects, the formation rock has to carry the weight of overlying strata (vertical stress) 

and, on the other hand, its deformation in the horizontal plane is restrained, as all the 

surrounding rocks have been influenced by the same vertical stress. This kind of lateral 

deformation restraint leads to impacts on the horizontal stress in the formation rocks. From 

linear elastic theory, we can get purely gravitational horizontal stress as: 

𝜎௛ = 𝜎ு =
௩

ଵି௩
𝜎௩ −

௩

ଵି௩
𝛼𝑝 + 𝛼𝑝    (2.21) 

where σh is minimum horizontal stress, σH is maximum horizontal stress, σv is vertical stress, 

 is Poisson's ratio,  is the Biot parameter appropriate for a stress change, and p is formation 

pore pressure. Limitations to applying this part of the equation are associated with uncertainties 

in the elastic parameters (including the Biot parameter ).  

Tectonic stresses can also be taken into consideration using a poro-elastic horizontal 

strain model, which estimates the impact on the horizontal stresses from the application of a 

pair of constant strains, x and y, to the formation in the directions of maximum and minimum 

horizontal stresses respectively. With the assumption of flat-lying strata and plain strain 

conditions, using the linear elastic model, the following equations with the additional 

horizontal stresses enforced by strains can be written (Blanton and Olson, 1999): 
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𝜎௛ =
௩

ଵି௩
𝜎௩ −

௩

ଵି௩
𝛼𝑝 + 𝛼𝑝 +

ா

ଵି௩మ 𝜀௫ +
௩ா

ଵି௩మ 𝜀௬     (2.22) 

𝜎ு =
௩

ଵି௩
𝜎௩ −

௩

ଵି௩
𝛼𝑝 + 𝛼𝑝 +

௩ா

ଵି௩మ 𝜀௫ +
ா

ଵି௩మ 𝜀௬   (2.23) 

where σh is minimum horizontal stress, σH is maximum horizontal stress, σv is vertical stress, 

 is Poisson's ratio, E is Young's modulus, p is formation pore pressure, andx and y are 

horizontal strains. 

The stresses and rock mechanical properties calculated from empirical equations need 

to be calibrated by laboratory core test data and field stress measurement data. 

In recent years, artificial neural networks and genetic algorithms have been applied to 

data analyses in the oil and gas industry (Sabir et al., 2018; Ibrahim et al., 2016; Huang et al., 

2018). These methods have been used to map the relationship between in-situ stress and the 

displacements or breakouts of a borehole wall and to estimate the in-situ stress (Zhang and 

Yin, 2014a; Zhang and Yin, 2014b; Zhang and Yin, 2015; Zhang et al., 2018). In these 

methods, caliper tools with six or more arms have been used to increase the number of 

deformation equations to match the number of unknown parameters.  However, such caliper 

tools are not regularly run in field practice. Therefore, we focus on the availability of caliper 

tools that are more frequently run in oilfields, the four-arm caliper tools.  

2.4 Four-arm caliper logging tools 

A four-arm caliper logging tool, such as Schlumberger's High-resolution Dip-meter Tool 

(HDT), is commonly run in the petroleum industry to obtain information such as hole size,  

formation strike and dip of bedding planes, and the presence and magnitude of breakouts.  The 

four-arm caliper tool is illustrated in Figure 2-9 (Plumb and Hickman, 1985). 



 

 66 

 

Figure 2-9: Schlumberger HDT (a) and geometry of a four-arm caliper tool (b) 

2.5 Analytical calculation of in-situ stresses from four-arm caliper logging data  

Equation (2.17) describes the radial displacements around a vertical borehole. If R=r, the 

displacement occurs on the borehole wall. Therefore, the radial displacement at point A in 

Figure 2-4 can be determined by the following equation:  

𝜇௥௥஺ =
𝑟

𝐸
[2𝜐2(𝜎𝐻 − 𝜎ℎ) + 𝜐𝜎𝑣 + (1 + 𝜐)𝑃𝑚 − (3𝜎𝐻 − 𝜎ℎ)]   (2.24) 

Similarly, on the borehole wall along the minimum horizontal stress direction at point 

B in Figure 2-4, the displacement can be determined by this equation:  

𝜇௥௥஻ =
𝑟

𝐸
[2𝜐2(𝜎ℎ − 𝜎𝐻) + 𝜐𝜎𝑣 + (1 + 𝜐)𝑃𝑚 − (3𝜎ℎ − 𝜎𝐻)]   (2.25) 

The lengths of the longer diameter (C13) and shorter diameter (C24) of the four-arm 

caliper log measurements, which generally correspond to the deformations of the borehole wall 

at point B and point A respectively, can be determined by equations (2.26) and (2.27): 

𝐶ଵଷ = 2(𝜇௥௥஻ + 𝑟) =
ଶ௥

ா
[2𝜐ଶ(𝜎௛ − 𝜎ு) + 𝜐𝜎௩ + (1 + 𝜐)𝑃௠ − (3𝜎௛ − 𝜎ு)] + 2𝑟 (2.26) 

𝐶ଶସ = 2(𝜇௥௥஺ + 𝑟) =
ଶ௥

ா
[2𝜐ଶ(𝜎ு − 𝜎௛) + 𝜐𝜎௩ + (1 + 𝜐)𝑃௠ − (3𝜎ு − 𝜎௛)] + 2𝑟 (2.27)      
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Under plane strain conditions, the lengths of the longer diameter (C13) and shorter 

diameter (C24)  can be further written as follows. 

𝐶ଵଷ =
ଶ௥

ா
[(𝜐ଶ − 1)(3𝜎௛ − 𝜎ு) + (1 + 𝜐)𝑃௠] + 2𝑟    (2.28) 

𝐶ଶସ =
ଶ௥

ா
[(𝜐ଶ − 1)(3𝜎ு − 𝜎௛) + (1 + 𝜐)𝑃௠] + 2𝑟    (2.29)      

These describe the relationship among caliper measurements (longer diameter length 

C13 or shorter diameter length C24), original borehole size, mechanical properties, and in-situ 

stresses. Therefore, in principle, it is possible to calculate the horizontal in-situ stresses from 

the borehole deformation data for a vertically drilled borehole. A demonstration of in-situ 

stresses calculation from borehole deformation data reported from the four-arm caliper tools is 

given here.  

Assume a vertical borehole drilled with an 8.7500 inches diameter bit to a depth of 

2500 meters. The borehole mud pressure is assumed to be 25 MPa. Suppose the measured 

shorter borehole diameter C24 from a four-arm caliper tool is around the bit size, which is 

8.7500 inches, whereas the measured longer borehole diameter C13 is 8.8000 inches. An 

estimate of the elastic parameters is also needed and shown in Table 2.1 When assuming the 

original hole size is 8.8000 inches, which is the same as the assumed length of the longer 

diameter, the calculated maximum horizontal stresses are 61 MPa and 32 MPa respectively.  

Table 2-1: Assumed parameters for stresses calculation 

Parameters Pm Bit size  C13 C24   

Units MPa inch inch inch GPa  

Values 25 8.7500 8.8000 8.7500 20.0 0.2 

 

The example demonstrates the feasibility of a stress estimation from good data and 

known parameters, which can mostly be obtained in the field or in labs, except the original 
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borehole size. However, the original borehole size must be considered since theoretically only 

up to two unknowns can be solved by the two analytical solutions (2.28) and (2.29). Otherwise, 

there will not be unique solutions for the in-situ stresses.  

2.6 Original borehole size consideration 

As discussed in the previous section, the original borehole size needs to be determined as a 

known parameter before calculation, whereas the precise shape is uncertain in most field 

operations. Calculations using bit size (gauge diameter) as the original borehole size give 

inconsistent results when compared to field observations. The details of such calculations are 

presented in this section. 

Figure 2-10 shows the four-arm caliper logging data for Well A-006-C/094-O-08 in the 

Liard Basin in British Columbia, western Canada (Bell, 2015). A section between around 4550 

and 4670 feet in which no breakouts were observed was chosen. The section can be identified 

using the software tool PFAS (Planning and Field Application Software) of ITC a.s. of 

Tonsberg, Norway (Bell, 2015). The zoom-in view of a section from 4620 feet to 4650 feet of 

Well A-006-C/094-O-08 is shown in Figure 2-11, and this interval corresponds to the top of 

the Fort Simpson Formation shale. The measured longer diameter C13 is around 8.7100 inches, 

the measured shorter diameter C24 is around 8.4918 inches in this interval. The bit size used in 

drilling this section is 8.5 inches. It seems that the borehole has enlarged in one direction (C13) 

which likely corresponds to the minimum horizontal stress direction. 
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Figure 2-10: Four-arm caliper log of Well A-006-C/094-O-08 

 

 

Figure 2-11: A section of non-breakouts in Well A-006-C/094-O-08  
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A series of calculations was performed to assess the differences between the theoretical 

borehole deformation and the observed borehole deformation. In-situ stresses, borehole 

pressure while drilling, and the Poisson's ratio are taken from Liard Basin stress analysis (Bell, 

2015). Several papers were examined about the possible Young's modulus value in gas shale 

rock at various depths (Eshkalak et al., 2014; Gao et al., 2015; Josh et al., 2012; Dewhurst and 

Henning, 2003; Islam and Skalle, 2013). The input parameters and the calculated theoretical 

borehole deformation in terms of displacements (urrA and urrB), borehole diameters (C13 and 

C24), and the ratio of the shorter diameter over the longer diameter (C24/C13) are listed in Table 

2-2.  

Table 2-2: Inputs and calculated borehole deformations for Well A-006-C/094-O-08 

Input Parameters Calculated results 

2r Pm  E σH σh σv C24 C13 C24/C13 urrA urrB  

inch MPa  MPa MPa MPa MPa inch inch  inch inch 

8.5 14 0.2 500 42 26 35 7.2264 8.2708 0.8737 -0.6368 -0.1146 

8.5 14 0.2 1000 42 26 35 7.8632 8.3854 0.9377 -0.3184 -0.0573 

8.5 14 0.2 2000 42 26 35 8.1816 8.4427 0.9690 -0.1592 -0.0286 

8.5 

8.5 

14 

14 

0.2 

0.2 

5000 

10000 

42 

42 

26 

26 

35 

35 

8.3726 

8.4363 

8.4771 

8.4885 

0.9877 

0.9938 

-0.0637 

-0.0319 

-0.0115 

-0.0057 

8.5 14 0.2 15000 42 26 35 8.4575 8.4924 0.9959 -0.0213 -0.0038 

8.5 14 0.2 20000 42 26 35 8.4682 8.4943 0.9969 -0.0159 -0.0028 

 

It is observed that the calculated theoretical shorter diameter length C24 (7.2264-8.4682 

inches) and longer diameter length C13 (8.2708-8.4943 inches) are both smaller than the 

measured lengths of C24 (8.4918 inches) and C13 (8.7100 inches). The calculation results 

indicate a borehole shrinkage, while observation indicates a borehole expansion, based on the 

assumption that the borehole size is equal to the bit size.  
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It makes sense that original borehole sizes are slightly larger than bit sizes due to factors 

such as the lithology, as well as erosion, damage and whirling of the bit; otherwise the bit 

would not be pulled out of the hole so easily. (One would expect that the in-situ stresses would 

cause the hole to become slightly smaller in diameter after drilling, which would add frictional 

resistance in pulling out of the hole). In the case example of Well A-006-C/094-O-08 in the 

Liard Basin, where there is a measured longer diameter length of 8.7100 inches, the original 

borehole size should be at least 8.7100 inches considering the theoretically calculated borehole 

shrinkage. Therefore, there must be an adjustment of the borehole size from the bit size before 

it can be used in calculation. The original borehole size is treated as an additional unknown 

parameter in the inversion of the in-situ stresses.  

A method to evaluate the influence of the original borehole size on the calculations is 

to use the ratio of the longer diameter and the shorter diameter. In practice, this ratio can be 

obtained via the length measurements of the two diameters in the elliptical borehole from the 

four-arm caliper log. Based on equations (2.28) and (2.29), the theoretical ratio between the 

two diameters, c = C24/C13, can be determined: 

𝑐 =
൫జమିଵ൯(ଷఙ೓ିఙಹ)ା(ଵାజ)௉೘ାா

(జమିଵ)(ଷఙಹିఙ೓)ା(ଵାజ)௉೘ାா
         (2.30) 

However, the two analytical equations are combined into one single analytical 

equation, which means that unique solution can be achieved for only one unknown parameter. 

If the magnitudes of Young’s modulus, Poisson's ratio, the minimum horizontal stress, and the 

ratio of the diameters' lengths are available, then the magnitude of the maximum horizontal 

stress can be determined from the equation. Or, if the magnitudes of Poisson's ratio, the 
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minimum horizontal stress, the maximum horizontal stress, and the ratio of the diameters' 

lengths are available, the magnitude of Young’s modulus can be calculated from the equation.  

In the example of the previous section in well A-006-C/094-O-08 in the Liard Basin, 

the average shorter diameter is 8.4918 inches, the average longer diameter is 8.7100 inches. 

The ratio of the shorter and longer diameter c is 0.9749. Using the known parameters of in-situ 

stresses, borehole mud pressure, and Poisson’s ratio in Table 2-1, the calculated Young's 

modulus is 2.5 GPa.   

The equation (2.30) is thus suitable for the determination of one single unknown 

parameter, such as either a Young’s modulus or a maximum horizontal stress, but only if all 

the other parameters are known.  

2.7 Summary 

Generally used methods for in-situ stresses determination include pressure injection-based 

methods, strain relief-based methods, and empirical calculation methods. However, these 

methods are either expensive or take a long waiting time.  

Theoretically, in-situ stresses can be calculated from borehole deformation data, 

providing that a relatively simple rock mass constitutive model is used, i.e. linear elastic and 

isotropic. This model may provide useful estimates, but issues such as an actual rock modulus 

(as opposed to a lab or acoustic modulus) and time-dependent behavior exist. Previous efforts 

for estimating in-situ stresses from borehole deformations are based on caliper tools with six 

or more arms, which are not commonly available, whereas four-arm caliper data are much 

more common. 
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It is feasible to estimate in-situ stresses through circular-borehole-based linear elastic 

analytical solutions with consideration of the original borehole sizes using four-arm caliper 

tools, which is generally available in field practice, 

However, the circular-borehole-based linear elastic analytical equations might not be 

adequate in inverting stresses from four-arm caliper measurements in visco-elastic rocks, such 

as shales. The boreholes might be irregular, and the borehole wall might creep due to the 

viscous behavior of the rock. Therefore, to quantify the time-dependent borehole deformation 

and to analyze its influence on in-situ stresses inversion, a Finite Element Method (FEM) 

simulation of the time-dependent borehole deformation is conducted. 
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Chapter 3 

Numerical modeling of time-dependent borehole deformation in 

poro-visco-elastic rocks 

In this chapter, linear-elastic, poro-elastic, and poro-visco-elastic borehole deformation 

theories are reviewed first. To more deeply understand and quantify the processes involved,  a 

numerical linear elastic Finite Element Method (FEM) model is then developed.  Finally, to 

modify codes and combine with optimization algorithms, a set of poro-visco-elastic FEM tools 

are developed and demonstrated for simulating time-dependent borehole behavior more 

conveniently. 

3.1 Linear-elastic theory 

Stresses at an arbitrary point can be characterized by stress vectors on three orthogonal planes 

passing through the given point (Irgens, 2008). Figure 3-1 shows the components of a stress 

tensor ,  which is defined in equation (3.1). 

 

Figure 3-1: Schematic diagram of a stress element 
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𝛔 = ൥

𝜎௫௫ 𝜏௫௬ 𝜏௫௭

𝜏௬௫ 𝜎௬௬ 𝜏௬௭

𝜏௭௫ 𝜏௫௬ 𝜎௭௭

൩                                          (3.1) 

The mechanics of solid bodies under stresses can be described by many models 

including rigid body models, elastic models, thermo-elastic models, and plastic models. The 

construction of a mathematical model for a linearly elastic body involves a combination of two 

distinct sets of considerations: the governing equations of motion (equilibrium) and the 

constitutive equations of the material (stress-strain relationships). The equilibrium equation of 

forces is described in the form 

    𝜎௜௝,௝ + 𝑏௜ = 0      (3.2) 

where 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧; σij,j is the derivative of stress σij at j; bi is the body force.  

The generalized Hooke's law stipulates the linear elastic stress-strain relationship for a 

homogeneous, isotropic, linear elastic medium with small deformations. The equation of the 

generalized Hooke's law is written in this form  

    𝜎௜௝ = 𝛿௜௝𝜆𝜀௞௞ + 2𝐺𝜀௜௝    (3.3) 

where i,j,k = x,y,z, σij is the stress, ij is the strain, ij is the Kronecker Delta (equals one when 

i =j, otherwise equals zero), and  and G are the elastic constants of the material ( is Lamé's 

first parameter, G is Lamé's second parameter or the shear modulus). Lamé's parameters have 

relationships to Young's modulus and Poisson's ratio as shown in the following equations . 

  𝜆 =
ா௩

(ଵା௩)(ଵିଶ௩)
       (3.4) 

    𝐺 =
ா

ଶ(ଵା௩)
       (3.5) 

The generalized Hooke's law described by equation (3.3) can also be written in the form 

of equation (3.6), which can be expanded to equations (3.7) through (3.12).  



 

 76 

   𝜀௜௝ =
ଵା௩

ா
𝜎௜௝ −

௩

ா
𝛿௜௝𝜎௞௞      (3.6) 

   𝜀௫௫ =
ఙೣೣି௩(ఙ೤೤ାఙ೥೥)

ா
                         (3.7) 

   𝜀௬௬ =
ఙ೤೤ି௩(ఙ೥೥ାఙೣೣ)

ா
      (3.8) 

   𝜀௭௭ =
ఙ೥೥ି௩(ఙೣೣାఙ೤೤)

ா
      (3.9) 

    𝛾௫௬ =
ఛೣ೤

ீ
      (3.10) 

   𝛾௬௭ =
ఛ೤೥

ீ
      (3.11) 

   𝛾௭௫ =
ఛ೥ೣ

ீ
      (3.12) 

where σ is normal stress,  is normal strain,  is shear stress,  is shear strain, E is Young's 

modulus,  is Poisson's ratio, and G is shear modulus. The strain-displacement relationship is 

described in the form  

   𝜀௜௝ =
ଵ

ଶ
(𝑢௜,௝ + 𝑢௝,௜)      (3.13) 

where ui,j is the derivative of displacement of ui at j. The expanded forms of the strain-

displacement relationships are described in the following equations: 

𝜀௫௫ =
డ௨ೣ

డ௫
        (3.14) 

𝜀௬௬ =
డ௨೤

డ௬
         (3.15) 

𝜀௭௭ =
డ௨೥

డ௭
      (3.16) 

𝛾௫௬ =
డ௨ೣ

డ௬
+

డ௨೤

డ௫
     (3.17) 

𝛾௬௭ =
డ௨೤

డ௭
+

డ௨೥

డ௬
     (3.18) 

𝛾௭௫ =
డ௨೥

డ௫
+

డ௨ೣ

డ௭
     (3.19) 

where ux, uy, and uz  are displacements in x, y, and z directions respectively.  
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Next, by substituting Hooke's law and the strain-displacement relationships into the 

equilibrium equation of forces, the governing equation of linear elastic bodies can be written 

in Navier's form with body forces ignored: 

(𝜆 + 𝐺)𝑔𝑟𝑎𝑑(𝑑𝑖𝑣𝐮) + 𝐺∆𝐮 = 0     (3.20) 

where u is the displacement matrix. The Navier equation can be described in the following 

expanded forms: 

(𝜆 + 𝐺) ቀ
డమ௨ೣ

డ௫మ +
డమ௨೤

డ௫డ௬
+

డమ௨೥

డ௫డ௭
ቁ + 𝐺 ቀ

డమ௨ೣ

డ௫మ +
డమ௨ೣ

డ௬మ +
డమ௨ೣ

డ௭మ ቁ = 0                  (3.21) 

 (𝜆 + 𝐺) ቀ
డమ௨ೣ

డ௫డ௬
+

డమ௨೤

డ௬మ +
డమ௨೥

డ௬డ௭
ቁ + 𝐺 ቀ

డమ௨೤

డ௫మ +
డమ௨೤

డ௬మ +
డమ௨೤

డ௭మ ቁ = 0              (3.22) 

 (𝜆 + 𝐺) ቀ
డమ௨ೣ

డ௫డ௭
+

డమ௨೤

డ௬డ௭
+

డమ௨೥

డ௭మ ቁ + 𝐺 ቀ
డమ௨೥

డ௫మ +
డమ௨೥

డ௬మ +
డమ௨೥

డ௭మ ቁ = 0               (3.23) 

3.2 Finite element method 

Analytical solutions (equations 2.28 and 2.29) for calculating the displacements at point A and 

B in Figure 2-4 are convenient to use. However, it will be more complex to calculate 

analytically for other locations around the borehole wall, especially when the cross section of 

the borehole is non-circular. A numerical solution to the borehole deformation is needed. 

Based on elasticity theory, the finite element method (FEM) is an efficient method to 

numerically solve continuum mechanics problems in many areas including stress analysis. The 

FEM approach was introduced into petroleum reservoir engineering in 1968 ( Price et al. 1968) 

and has been applied to solve many different flow and stress problems, such as two-phase flow 

in water flooding problems (Douglas et al., 1969; McMichael and Thomas, 1973; Settari et al., 

1977). Because FEM has demonstrated acceptable accuracy in all of its quasi-static 

applications, it is a useful and robust method to analyze the problem of wellbore deformation 

in this research.  
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There are generally seven steps included in a FEM formulation and solution to an 

engineering problem: (1) discretization, (2) interpolation, (3) properties, (4) assembly, (5) 

applying boundary conditions, (6) solution, and (7) post-processing.  

The discretization part, the meshing process, involves dividing the body into an 

equivalent system of finite elements with associated nodes and the appropriate element type, 

as illustrated in Figure 3-2 as an example. It is recommended that the lowest-order finite 

elements have corner nodes only, whereas the higher-order finite elements have both corner 

nodes and intermediate (mid-edge) nodes (Sandhu and Wilson, 1969, as referred by Xie and 

Zhou, 2002). However, similar interpolation functions for elements of different orders (such 

as pressure and displacement) have also shown satisfactory accuracy under proper meshing 

(Xie and Zhou, 2002). 

Interpolation involves choosing shape functions within each element. The functions are 

defined within each element using the nodal values of the element. Linear, quadratic, and cubic 

polynomials are the most commonly used shape functions. 

 

Figure 3-2: Discretization (meshing) process 
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Properties are assigned to every element through element stiffness matrices and 

element equations, which are developed through governing equations and constitutive laws. 

An example of the governing equations for the equilibrium of forces in the x, y, and z directions 

can be described as follows: 

డఙೣೣ

డ௫
+

డఛ೤ೣ

డ௬
+

డఛ೥ೣ

డ௭
+ 𝑏௫ = 0                                         (3.24) 

 
 డఙ೤೤

డ௬
+

డఛೣ೤

డ௫
+

డఛ೥೤

డ௭
+ 𝑏௬ = 0                     (3.25) 

డఙ೥೥

డ௭
+

డఛೣ೥

డ௫
+

డఛ೤೥

డ௬
+ 𝑏௭ = 0                      (3.26) 

The Galerkin’s weighted residuals method is the most commonly used method for solving the 

element equations. The solution of the elements equation in matrix form with body forces 

ignored can be written as: 

∭ 𝐁୘𝐃𝐁𝑑𝑥𝑑𝑦𝑑𝑧 ൥

𝑢௫

𝑢௬

𝑢௭

൩ = ቎

𝐹௫

𝐹௬

𝐹௭

቏                                           (3.27) 

where B is the matrix relating strain and displacement, Fx, Fy, and Fz are nodal loads in x, y, 

and z directions respectively, and D is the elasticity matrix shown in equation (3.28). 

 

𝐃 =
ா(ଵି௩)

(ଵା௩)(ଵିଶ௩)

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
௩

ଵି௩

௩

ଵି௩

௩

ଵି௩
1

௩

ଵି௩

௩

ଵି௩

௩

ଵି௩
1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

ଵିଶ௩

ଶ(ଵି௩)
0 0

0
ଵିଶ௩

ଶ(ଵି௩)
0

0 0
ଵିଶ௩

ଶ(ଵି௩)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                 (3.28) 
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In the assembly process, the generated individual element nodal equilibrium equations 

are assembled into a global nodal equilibrium matrix. The final assembled global equation 

written in matrix form is 

𝐅 = 𝐊𝐮                                             (3.29) 

where F is the vector of global nodal forces, K is the total stiffness matrix, and u is the global 

nodal displacements vector.   

Then, boundary conditions (stress boundary or displacement boundary) can be chosen, 

applied, and the unknown degrees of freedoms solved.  

The final step is post-processing, which is the set of activities required to interpret and 

analyze the results by displaying them in appropriate form, usually graphical in nature. 

3.3 Poroelastic theory 

The earliest theory to account for the influence of pore fluid on the quasi-static deformation of 

soils was developed by Terzaghi (1923, as referred by Yin, 2008) who proposed a model of 

one-dimensional consolidation. Later, Biot (1941) generalized the theory to the three-

dimensional case. Biot's consolidation equations consist of equilibrium equations for an 

element of the solid frame, stress-strain relations for the solid skeleton, and a continuity 

equation for the pore fluid. The term poroelasticity was first proposed by Geertsma (1966), in 

reference to Biot’s (1941) theory of three-dimensional consolidation. 

The governing equation for the solid is the forces equilibrium equation (in the forms of 

equations: 3.2, 3.24, 3.25, 3.26). The constitutive equation for the solid is the generalized 

Hooke's law. These equations can be written in Navier's form with body forces ignored 

(equations: 3.20, 3.21, 3.22, 3.23). The governing equation for the fluid flow is described in 

the mass balance equation (Biot, 1956) 
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     =
ଵ

ெ
𝑝 + 𝛼𝜀௏                (3.30) 

where is the fluid volume per unit reference volume, 1/M is the storage coefficient 

(1/M=/Kf+(1-)/Ks-K/Ks
2,  is the porosity of the porous medium, K, Kf and Ks are the bulk 

moduli of the matrix, fluid, and solid particles respectively), p is the pore pressure,  is the 

Biot coefficient, and V is the volume strain.  

The constitutive equation for fluid flow can be described in the form of Darcy’s law 

    𝑣 = −
௞

ఓ
∇𝑝                 (3.31) 

where v is the fluid velocity related to the flux, k is the permeability of the porous medium, 

and  is the viscosity of the fluid. The equation 3.30 can be related through the replacing of 

the fluid volume by the fluid volume calculated from the Darcy’s law.    

It seems anomalous that the fluid is considered to be compressible in the mass balance 

equation while it is assumed to be incompressible in the Darcy equation. There is no 'absolutely 

incompressible' material: some materials are very stiff and for convenience can be reasonably 

considered 'incompressible' in the actual analysis of fluid flow. The bulk modulus of water is 

about 2.25 GPa; hence, for illustration, water at a 4 km depth, where pressures are around 

40 MPa, only has a 1.8% decrease in volume compared to water at atmospheric pressure. 

Therefore, water is reasonably assumed to be incompressible in the application of Darcy's law. 

However, in poroelastic behavior analysis of stiff rock, a small change in the water volume 

will cause considerable pressure and stress changes. In such cases, the compressibility of water 

should be taken into consideration.  

Based on Biot’s theory of poroelasticity and Darcy’s law (Biot, 1941; Biot, 1956), the 

governing equations for fluid flow through a deforming saturated porous medium (in a 
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reservoir rock) can be described as follows with body forces ignored and tension considered 

positive (Yin, 2008): 

𝐺∆𝐮 + (𝐺 + 𝜆)𝑔𝑟𝑎𝑑(𝑑𝑖𝑣𝐮) − (1 −
௄

௄ೞ
)𝑔𝑟𝑎𝑑(𝐩) = 0                      (3.32) 

ቀ1 −
௄

௄ೞ
ቁ 𝑑𝑖𝑣𝐮௧ + ൬

ଵି∅

௄ೞ
+

∅

௄೑
−

ଵ

(ଷ௄ೞ)మ 𝐢୘𝐃𝐢൰ 𝐩௧ +
௞

ఓ
∆𝐩 = 0                   (3.33) 

where G and  are the Lamé constants, k is permeability of the porous medium,  is viscosity 

of fluid, u and p denote displacements of porous medium and pore pressure respectively, the 

subscript t denotes time derivative, is the porosity of the porous medium (it is assumed 

constant hereafter for simplicity),K, Kf and Ks are the bulk moduli of the matrix, fluid, and 

solid particles respectively, iT=[1,1,1,0,0,0], and D is the elasticity matrix expressed using 

Young’s modulus E and Poisson’s ratio v (equation 3.28) 

The governing equations can be approximated using Galerkin's finite element method 

and the final form of the FEM solution to the poroelastic equations is as follows (Yin, 2008): 

ቂ
𝐌 −𝐂
𝟎 𝐇

ቃ ቄ
𝐮
𝐩ቅ + ቂ

𝟎 𝟎
𝐂୘ 𝐒

ቃ ቄ
𝐮௧

𝐩௧
ቅ = ቄ

𝐟୳

𝐟୮ቅ                          (3.34) 

where M, H, S and C are elastic stiffness, flow stiffness, flow capacity, and coupling matrices, 

respectively. ቄ
𝐮
𝐩ቅ and ቄ

𝐮௧

𝐩௧
ቅ are vectors of unknown variables (u and p) and corresponding time 

derivatives; ቄ𝐟୳

𝐟୮ቅ is the vector of the nodal loads and flow sources. 

The explicit expressions of the above matrices are as follows (Yin, 2008):  

𝐌 = ∫ 𝐁୘𝐃𝐁d𝑉
 

௏
                               (3.35) 

𝐇 =
௞

ఓ
∫ (∇𝐍௣)୘൫∇𝐍௣൯d𝑉

 

௏
                              (3.36) 

𝐒 = ∫ 𝐍௣
୘ ൤

ଵି∅

௄ೞ
+

∅

௄೑
−

ଵ

(ଷ௄ೞ)మ 𝐢୘𝐃𝐢൨ 𝐍௣d𝑉
 

௏
                            (3.37) 

𝐂 = ∫ ቀ𝐁୘𝐢𝐍௣ − 𝐁୘𝐃
𝐢

ଷ௄ೞ
𝐍௣ቁ d𝑉

 

௏
                             (3.38) 
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In order to integrate the equations with respect to time, the generalized trapezoidal 

method (θ method) is adopted, and equation (3.34) becomes: 

ቂ
𝜃𝐌 −𝜃𝐂
𝐂୘ 𝐒 + 𝜃∆𝑡𝐇

ቃ ቄ
𝐮ଵ

𝐩ଵ
ቅ = ൤

(𝜃 − 1)𝐌 −(𝜃 − 1)𝐂

𝐂୘ 𝐒 + (𝜃 − 1)∆𝑡𝐇
൨ ቄ

𝐮଴

𝐩଴
ቅ + ቄ

𝐟௨

∆𝑡𝐟௣ቅ            (3.39)             

where t is the time increment, and θ is an implicit variable bounded between 0.5 (Crank-

Nicolson scheme) and 1.0 (fully implicit scheme). 

3.4 Poro-visco-elastic theory 

The theory of poro-visco-elasticity was first proposed by Biot in 1956 in an effort to emphasize 

the simultaneous existence of the time-dependent response of rocks accounting for pore 

pressure diffusion (poroelasticity) and the time-dependent behavior of the rock matrix itself 

(visco-elasticity) (Biot, 1956; Abousleiman et al., 1993). 

The relationship between time-dependent stress and time-dependent strain of a visco-

elastic material can be described as follows: 

𝜎(𝑡) = 𝜀଴𝐸(𝑡)                           (3.40) 

or, 

𝜀(𝑡) = 𝜎଴𝐽ா(𝑡)                           (3.41) 

where σ(t) is time-dependent stress, σ0 is the initial stress at time zero (t=0), (t) is time-

dependent strain,  is the initial strain at time zero (t=0), E(t) is Young’s relaxation modulus, 

and JE(t) is Young’s creep compliance function. 

Young’s relaxation modulus in principle can be replaced by the shear relaxation 

modulus and the bulk relaxation modulus. These relaxation moduli encompass the rheological 

behavior of the rock structure itself (Biot, 1941; Biot, 1956; Abousleiman et al., 1993). The 

governing equations of poro-visco-elasticity can be written as follows (body forces ignored): 
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𝐺(𝑡)∆𝐮 + [𝐺(𝑡) + 𝜆(𝑡)]𝑔𝑟𝑎𝑑(𝑑𝑖𝑣𝐮) − (1 −
௄(௧)

௄ೞ
)𝑔𝑟𝑎𝑑(𝐩) = 0                       (3.42) 

ቀ1 −
௄(௧)

௄ೞ
ቁ 𝑑𝑖𝑣𝐮௧ + ൬

ଵି∅

௄ೞ
+

∅

௄೑
−

ଵ

(ଷ௄ೞ)మ 𝐢୘𝐃(𝐭)𝐢൰ 𝐩୲ +
௞

ఓ
∆𝐩 = 0                         (3.43) 

where G(t) and t are the time dependent Lamé constants, k is permeability of the porous 

medium,  is viscosity of fluid, u and p denote displacements of the porous medium and pore 

pressure respectively, the subscript t denotes time derivative, is porosity of the porous 

medium,K(t) is the time dependent bulk modulus, Kf and Ks are bulk moduli of fluid and solid 

skeleton respectively, iT=[1,1,1,0,0,0], and D(t) is the time dependent elasticity matrix 

expressed using Young’s relaxation modulus E(t) and Poisson’s ratio  

3.5 Determination of visco-elastic phenomenological models 

Rock creep behavior can be simulated using one or several visco-elastic phenomenological 

models from various combinations of the four basic components: elastic spring, viscous 

dashpot, slider, and brittle yield element as shown in Figure 1-6. The choice of the 

phenomenological (or rheological) model for a certain analysis is determined by the type of 

rock under study. For example, for salt or soft shale that will creep continuously, a Maxwell 

model will be appropriate for some range of strain; sometimes the Maxwell model can also be 

used for fractured shale evaluation (Huang and Ghassemi, 2013). A Burger's model can be 

applied to the terminating but slow creep behavior of shale (Li and Ghassemi, 2012). A 

Bingham model can be used to analyze the visco-plastic behavior of a shale around a casing 

annulus (Xie, 2019).  

For the relatively stiffer shale showing attenuating creep, one commonly used 

phenomenological model is the generalized Kelvin model, whose mechanistic schematic is 
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represented in Figure 3-3. This model is applied in this research for the modeling of the time-

dependent borehole deformations. 

 

 

Figure 3-3: Generalized Kelvin model layout  

In Figure 3-3, E1 and E2 are spring constants; η is the dashpot fluid viscosity. The 

system is initially unstrained, unstressed, and a stress σₒ is instantaneously imposed at t=0. In 

the generalized Kelvin model, the time-dependent Young’s relaxation modulus can be 

determined using equation (3.44) by following the model principle and a series of Laplace 

transformations (Findley et al., 1976; Irondelle, 2011). 

𝐸(𝑡) =
ଵ

௤భ
+ ቀ

௣భ

௤ଶ
−

ଵ

௤భ
ቁ 𝑒

ି
೜భ
೜మ

௧                      (3.44) 

here E(t)  is the time-dependent Young's relaxation modulus, 𝑞ଵ =
ாభାாమ

ாభாమ
, 𝑞ଶ =

ఎ

ாభாమ
, and  𝑝ଵ =

ఎ

ாమ
.  

At time zero (t=0), the instantaneous response of the generalized Kelvin model to a 

stress σ0 is governed by the spring constant E1; therefore, E1 is the Young's modulus measured 

through standard triaxial tests.  

By using the same methodology, the bulk relaxation modulus can be determined to be  

𝐾(𝑡) =
ଵ

௤భ
+ ቀ

௣భ

௤ଶ
−

ଵ

௤భ
ቁ 𝑒

ି
೜భ
೜మ

௧                      (3.45) 
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where K(t)  is the time-dependent shear relaxation modulus, 𝑞ଵ =
௄భା௄మ

௄భ௄మ
, 𝑞ଶ =

ఓ಼

௄భ௄మ
, and  𝑝ଵ =

ఓ಼

௄మ
, 

and K1, K2, and K  are the intrinsic rock parameters.   

The shear relaxation modulus can be determined by 

𝐺(𝑡) =
ଵ

௤భ
+ ቀ

௣భ

௤ଶ
−

ଵ

௤భ
ቁ 𝑒

ି
೜భ
೜మ

௧                      (3.46) 

where G(t)  is the time-dependent shear relaxation modulus, 𝑞ଵ =
ீభାீమ

ீభீమ
, 𝑞ଶ =

ఓಸ

ீభீమ
, and  𝑝ଵ =

ఓಸ

ீమ
, 

and G1, G2, and G  are the intrinsic rock parameters.   

3.6 Numerical models of borehole deformation 

3.6.1 Problem definition 

A three-dimensional FEM model for a single-layer circular borehole will be developed and 

used to analyze the poro-visco-elastic deformation of the borehole wall. The model can be 

conveniently modified to comply with irregular boreholes and multi-layers in future research. 

The radial space from the borehole wall to the outer boundary is discretized into 15 unevenly 

distributed meshes: mesh size close to the borehole is much smaller than that close to the outer 

boundary. The cross-section plane view of the mesh is shown in Figure 3-4.  
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Figure 3-4: Cross section plane view of mesh  

The model dimension is 2 meters by 2 meters (from borehole center to edges) by 0.02 

meters (vertical layer thickness). The original borehole diameter is assumed to be 8.7 inches 

(0.22 meters). Twenty-node brick elements are employed for the FEM model, as shown in 

Figure 3-5. The total number of elements is 450; the total number of nodes is 3378. The local 

coordinates and shape functions for the 20-node brick element are listed in Table 3-1.   
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Figure 3-5: A 20-node brick element of FEM 

 

Table 3-1: Local coordinates and shape functions for a 20-node brick element 

Node i 
Local coordinates of nodes 

Shape function 
i i i 

1 1 1 1 N1=(1+)(1+) (1+)(++−2)/8 
2 -1 1 1 N2=(1−)(1+)(1+) (−++−2)/8 
3 -1 1 -1 N3=(1−)(1+) (1−) (−+−−2)/8 
4 1 1 -1 N4=(1+)(1+) (1−) (+−−2)/8 
5 1 -1 1 N5=(1+)(1−) (1+) (−+−2)/8 
6 -1 -1 1 N6=(1−)(1−) (1+) (−−+−2)/8 
7 -1 -1 -1 N7=(1−)(1−) (1−) (−−−−2)/8 
8 1 -1 -1 N8=(1+)(1−) (1−) (−−−2)/8 
9 0 1 1 N9=(1−)(1+) (1+)/4 
10 -1 1 0 N10=(1−)(1+) (1−)/4 
11 0 1 -1 N11=(1−)(1+) (1−)/4 
12 1 1 0 N12=(1+)(1+) (1−)/4 
13 0 -1 1 N13=(1−)(1−) (1+)/4 
14 -1 -1 0 N14=(1−)(1−) (1−)/4 
15 0 -1 -1 N15=(1−)(1−) (1−)/4 
16 1 -1 0 N16=(1+)(1−) (1−)/4 
17 1 0 1 N17=(1+)(1−) (1+)/4 
18 -1 0 1 N18=(1−)(1−) (1+)/4 
19 -1 0 -1 N19=(1−)(1−) (1−)/4 
20 1 0 -1 N20=(1+)(1−) (1−)/4 
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3.6.2 Governing and constitutive equations 

The governing equations for the equilibrium of forces with body forces ignored are shown as 

follows: 

డఙೣೣ

డ௫
+

డఛ೤ೣ

డ௬
+

డఛ೥ೣ

డ௭
= 0                                            (3.47) 

 
 డఙ೤೤

డ௬
+

డఛೣ೤

డ௫
+

డఛ೥೤

డ௭
= 0                             (3.48) 

డఙ೥೥

డ௭
+

డఛೣ೥

డ௫
+

డఛ೤೥

డ௬
= 0                      (3.49) 

where i =x,y,z, j= x,y,z, σ stands for normal stress,  stands for shear stress. By combining the 

above governing equations, the generalized Hooke's Law, and the strain-displacement 

relations, the Navier's equation without the body force term can be written as follows: 

(𝜆 + 2𝐺)
డమ௨ೣ

డ௫మ + (𝜆 + 𝐺)
డమ௨೤

డ௫డ௬
+ (𝜆 + 𝐺)

డమ௨೥

డ௫డ௬
+ 𝐺

డమ௨ೣ

డ௬మ + 𝐺
డమ௨ೣ

డ௭మ = 0     (3.50) 

(𝜆 + 2𝐺)
డమ௨೤

డ௬మ + (𝜆 + 𝐺)
డమ௨೥

డ௬డ௭
+ (𝜆 + 𝐺)

డమ௨ೣ

డ௬డ௫
+ 𝐺

డమ௨೤

డ௭మ + 𝐺
డమ௨೤

డ௫మ = 0     (3.51) 

(𝜆 + 2𝐺)
డమ௨೥

డ௭మ + (𝜆 + 𝐺)
డమ௨ೣ

డ௭డ௫
+ (𝜆 + 𝐺)

డమ௨೤

డ௭డ௬
+ 𝐺

డమ௨೥

డ௫మ + 𝐺
డమ௨೥

డ௬మ = 0     (3.52) 

By applying Galerkin's method, the element elastic stiffness matrix is described as 

follows: 

𝐊 = ∭ 𝐁୘𝐃𝐁𝑑𝑥𝑑𝑦𝑑𝑧                                           (3.53) 

or, it can be calculated by applying the Gauss Quadrature rule: 

𝐊 = ∑ ∑ ∑ 𝐁T𝐃𝐁|𝐉|𝑤𝑖𝑤𝑗𝑤𝑘
2
𝑘=1

2
𝑗=1

2
𝑖=1                                 (3.54) 

where B is the strain matrix, D is the elasticity matrix, | J | is the determinant of the Jacobian 

matrix J, wi, wj, and wk(in this model,wi=wj=wk=1) are weights for the Gauss points i, j, 

and  k. The matrices B and J, and the Gauss points i, j, and  k are described as follows: 
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𝐁 = 𝐋𝐍       (3.55) 
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    𝜉௜ = (−1)௜ ×
ଵ

√ଷ
      (3.59) 

    𝜂௝ = (−1)௝ ×
ଵ

√ଷ
     (3.60) 

    
௞

= (−1)௞ ×
ଵ

√ଷ
     (3.61) 

The solution in global matrix form is described as 

    [M][u]=[fu]      (3.62) 

where M is elastic stiffness matrix, u is the vector of displacements, and fu is the vector of 

nodal loads. The FEM formulation for the poro-visco-elasticity theory can be written as the 

following: 
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൤
𝐌(𝐭) −𝐂(𝐭)

𝐂(𝐭)୘ 𝐒(𝐭) + ∆𝑡𝐇
൨ ቄ

𝐮ଵ

𝐩ଵ
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൨ ቄ
𝐮଴

𝐩଴
ቅ + ቄ

(𝐟୳)

∆𝑡𝐟୮ቅ     (3.63) 

where M(t), S(t), and C(t) are time-dependent elastic stiffness, flow capacity, and coupling 

matrices respectively, H is the flow stiffness matrix.  

The explicit expressions of the above matrices are as follows:  

𝐌(𝐭) = ∫ 𝐁୘𝐃(𝐭)𝐁d𝑉
 

௏
                               (3.64) 

𝐇 =
௞

ఓ
∫ (∇𝐍௣)୘൫∇𝐍௣൯d𝑉

 

௏
                              (3.65) 

𝐒(𝐭) = ∫ 𝐍௣
୘ ൤

ଵି∅

௄ೞ
+

∅

௄೑
−

ଵ

(ଷ௄ೞ)మ 𝐢୘𝐃(𝐭)𝐢൨ 𝐍௣d𝑉
 

௏
                            (3.66) 

𝐂(𝐭) = ∫ ቀ𝐁୘𝐢𝐍௣ − 𝐁୘𝐃(𝐭)
𝐢

ଷ௄ೞ
𝐍௣ቁ d𝑉

 

௏
                             (3.67) 

3.6.3 Boundary and initial conditions 

A homogeneous, isotropic, poro-visco-elastic material with small strains is assumed for the 

stiff shale rock analyzed in this research; thermal and chemical effects are ignored for the 

convenience of investigation. The dimension of a vertically drilled borehole is very large in 

the vertical direction and is subjected to horizontal principal stresses that are perpendicular to 

the longitudinal direction. The horizontal stresses for a certain small depth section (vertical 

extent) of the same rock type typically do not vary much along the vertical direction; therefore, 

it is reasonably assumed that vertical strains are zero in this analysis. The model mimics plane 

strain 2-D problems and can be verified by corresponding 2-D plane strain analytical solutions. 

Generally, in linear elastic FEM analysis of borehole issues, the outer boundary of the 

model geometry should be 10 times the borehole size to avoid the boundary affecting the near-

wellbore stresses and strains. Therefore, for the quarter borehole size of around 0.11 meters 

(half of 8.700 inches borehole diameter), the outer boundary of the model geometry should be 

at least one meter away from the borehole center. To evaluate the potential need for a larger 
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model size to mitigate the possible boundary effects of visco-elastic behavior, time-dependent 

borehole deformations are calculated and compared among the following three models of 

various sizes: 

 1 by 1 meter model size, 200 elements, 1553 nodes; 

 2 by 2 meter model size, 450 elements, 3378 nodes; and 

 10 by 10 meter model size, 800 elements, 5903 nodes. 

Parameters listed in Table 3-2 are used for the time-dependent borehole deformation 

calculations for these three model sizes. The calculation results are shown in Figure 3-6.  It is 

observed that the simulated time-dependent borehole diameter of the three model sizes are all 

similar and in good agreement with the analytical calculation results (the maximum error is 

only 0.0001 inches). Therefore, in this research, a conservative model size of 2 meter by 2 

meter is used considering that borehole sizes in some case studies might be larger than the 8.7 

inches. 

Table 3-2: Parameters for various visco-elastic FEM model sizes  

Parameter Value 
Young’s modulus, E (GPa) 32 

Poisson’s ratio,  0.2 

Minimum horizontal stress, σh (MPa) 25 

Maximum horizontal stress, σH (MPa) 25 

Rock solid bulk modulus, Ks (GPa) 39 
  Spring constant of Kelvin model, E1 (MPa) 32 

Spring constant of Kelvin model, E2 (MPa) 32 

Dashpot viscosity, η (Pa∙s) 1014 

Mud pressure, pm (MPa) 0.0  
Assumed original borehole diameter, 2r (inch) 8.7  
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Figure 3-6: Time-dependent borehole diameter calculation of various model sizes 

 

The initial condition corresponds to the elastic state at t = 0 resulting from the sudden 

pressure change at the borehole wall (to mimic the drilling operation) without fluid flow. The 

flow of fluid occurs at subsequent steps. 

Boundary conditions and initial conditions for the proposed FEM are introduced and 

illustrated in Figure 3-7.  The relevant boundary conditions are: 

 the borehole wall is subjected to mud pressure.  

 the right boundary is subjected to the far field maximum horizontal stress. 

 the top boundary is subjected to the far field minimum horizontal stress.  
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 the left boundary is comprised of rollers (no normal displacement) and is 

traction free. 

 the bottom boundary is comprised of rollers (no normal displacement) and is 

traction free. 

 movement is fixed in z direction all nodes (plane strain). 

 the outer boundaries are free of fluid flow. 

 the borehole mud pressure is constant. 

 the internal viscous forces are calculated at each time step. 

The initial conditions are: 

 no fluid flow at time zero. 

 fluid flow starts at the first time-step. 

 

Figure 3-7: Boundary conditions for poro-visco-elastic FEM simulation 
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3.7 Calculation results  

The FEM model has been run using the boundary conditions and initial conditions described 

in section 3.6.3 with the parameters listed in Table 3-3. The results of borehole wall radial 

deformations with time after drilling are shown in Figure 3-8. It is observed that the linear-

elastic and poro-elastic displacements contribute very little to the time-dependent borehole 

deformations, whereas the visco-elastic property of the rock is the major cause of the borehole 

deformation. The borehole wall creep in this example (with assumed rock visco-elastic 

properties and in-situ stresses) terminates at ~2 hours (7000 seconds) after drilling. The final 

displacements are almost twice the initial linear elastic displacements (the instantaneous 

deformation) in both longer and shorter diameter directions. This shows that the creep 

displacements are also leading to continued development of an elliptical borehole wall 

geometry, and that the diameter reduction is greatest in the direction of σH. 

Table 3-3: Input parameters for poro-visco-elastic FEM modeling  

Parameter Value 

Young’s modulus, E (GPa) 32 

Poisson’s ratio,  0.2 

Minimum horizontal stress, σh (MPa) 26 

Maximum horizontal stress, σH (MPa) 43 

Rock solid bulk modulus, Ks (GPa) 39 

Spring constant of Kelvin model, E1 (MPa) 32 

Spring constant of Kelvin model, E2 (MPa) 32 

Dashpot viscosity, η (Pa∙s) 1014 

Pore pressure at time zero, p0 (MPa) 19.5 

Mud pressure, pm (MPa) 14.0 
 

Permeability, k (m2) 10-15 

Porosity,  0.07 

Fluid viscosity, (Pa∙s) 10-3 

Assumed original borehole diameter, 2r (inch) 8.7 
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Figure 3-8: Borehole wall creep at directions of longer and shorter axis 

 

Table 3-4 lists the magnitudes of the linear-elastic, poro-elastic and poro-visco-elastic 

FEM simulations of borehole diameters with time. The borehole diameters remain unchanged 

with time in linear-elastic simulations. The poro-elastic simulation results of borehole wall 

deformation are just slightly (0.0034 inches) larger than the linear-elastic simulation results at 

the beginning. It is also observed from the poro-elastic simulation results that although there 

is no further pressure variation on the borehole wall (except at the initial time step), the 

borehole wall deforms with time because of effective stresses change in the near wellbore area.  

However, the magnitude of this change is only ~10-3 inches, and it makes sense that it is often 

neglected in field practice.  
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Table 3-4: Borehole diameters variations with time 

Time 
 

(seconds) 

Borehole 
wall 

pressure  
(MPa) 

Linear elastic Poro-elastic  Visco-elastic 
Poro-visco-

elastic 
C13 

(inch) 
C24 

(inch) 
C13 

(inch) 
C24 

(inch) 
C13 

(inch) 
C24 

(inch) 
C13 

(inch) 
C24 

(inch) 

0 19.5 8.6954 8.6777 8.6920 8.6743 8.6954 8.6777 8.6920 8.6743 

0.1 14.0 8.6954 8.6777 8.6918 8.6741 8.6954 8.6954 8.6918 8.6741 

1 14.0 8.6954 8.6777 8.6915 8.6738 8.6956 8.6776 8.6915 8.6738 

10 14.0 8.6954 8.6777 8.6914 8.6737 8.6956 8.6776 8.6915 8.6738 

100 14.0 8.6954 8.6777 8.6914 8.6737 8.6953 8.6771 8.6913 8.6731 

1000 14.0 8.6954 8.6777 8.6914 8.6737 8.6940 8.6710 8.6902 8.6667 

10000 14.0 8.6954 8.6777 8.6914 8.6737 8.6911 8.6553 8.6871 8.6513 

 

The pore pressure profile with time is shown in Figure 3-9. In this demonstration case, 

the mud pressure (14.0 MPa) is smaller than the formation pore pressure, which is 19.5 MPa, 

hence the drilling is “under-balanced”, which is a common condition used to improve 

penetration rates in sections with strong shale that can resist the additional seepage forces 

arising from the pressure imbalance. The pressure decreases from the borehole wall to the outer 

boundary of the model area with time. Because there is no inflow from the outer boundary, 

when time goes to infinity, the pressure in the model will eventually level off to 14.0 MPa.  In 

this example, the pore pressure levels off to the borehole mud pressure within seconds.   
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Figure 3-9: Pore pressure with time without inflow from outer boundary 

The boundary condition for fluid flow was changed by setting a constant pore pressure 

of 19.5 MPa at the outer boundary, while maintaining the mud pressure of 14.0 MPa in the 

borehole, and the poro-elastic simulation of the borehole deformations was repeated. The 

pressure profile with time is shown in Figure 3-10. From the first time-step onwards, the 

pressure is maintained close to the original pressure except at the borehole wall location.  The 

scenarios of quick pressure restoration to the original level are the result of the choice of 

relatively high permeability properties of the rock.  
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Figure 3-10: Pore pressure profile under constant pressure from outer boundary 

The lengths variations with time of the longer diameter and the shorter diameter for 

these two scenarios are listed in Table 3-5. There are negligible differences in the borehole 

sizes between the two scenarios at time-step zero and time-step one. In the scenario of constant 

pore pressure at the outer boundary, borehole size remains unchanged after the first time-step 

since there are no effective stress changes in the near borehole area because the pore pressure 

is remaining constant. For the scenario of no inflow at the outer boundary, there is a slight 

borehole size change after the first time-step; however, the change in magnitude is very small 

and quickly disappears.  
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Table 3-5: Borehole diameters variation under different pressure boundary condition 

Time 
 

(seconds) 

Borehole 
wall 

pressure  
(MPa) 

Without inflow from 
outer boundary  

Inflow from outer 
boundary under constant 

pressure 
C13 

(inch) 
C24 

(inch) 
C13 

(inch) 
C24 

(inch) 

0 19.5 8.6920 8.6743 8.6920 8.6743 

0.1 14.0 8.6918 8.6741 8.6819 8.6742 

1 14.0 8.6915 8.6738 8.6819 8.6742 

10 14.0 8.6914 8.6737 8.6819 8.6742 

100 14.0 8.6914 8.6737 8.6819 8.6742 

1000 14.0 8.6914 8.6737 8.6819 8.6742 

10000 14.0 8.6914 8.6737 8.6819 8.6742 

 

3.8 Model convergence 

The model mesh convergence determines the number of elements required to ensure that the 

analysis results are not affected by changing the size of the mesh. The displacement 

will converge to a repeatable solution with an increase of elements numbers (or a decrease of 

element size).  

To assess the model mesh convergence, for the same 2 meters by 2 meters model, errors 

between the FEM simulated displacements at the borehole wall and the analytical solutions 

have been calculated for various grid densities. The results are listed in Table 3-6. Figure 3-11 

illustrates the relative error as a function of the number of elements. It is observed from the 

table and the plot that the displacements tend to converge to repeatable solutions (283 micro-

meters along the shorter diameter direction and 58 micro-meters along the longer diameter 

direction) for a same model dimension of 2 meters by 2 meters. Although the errors along the 

shorter diameter direction are slightly larger than those along the longer diameter direction due 

to the relatively larger displacements along the shorter diameter direction, errors along both 
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directions are less than one micro-meter and tend to be stable and consistent with the increasing 

of mesh densities, especially when the element numbers are larger than 200 in this example.  

Table 3-6: Borehole displacements under various mesh densities 

Elements 

FEM simulation Analytical solution Error 

C24  

(10-6 m) 

C13  

(10-6 m) 

C24  

(10-6 m) 

C13  

 (10-6 m) 

C24  

(%) 

C13 

(%) 

50 -280.19 -58.95 -283.40 -58.01 0.002870 0.000845 

200 -282.21 -58.33 -283.40 -58.01 0.000611 0.000288 

450 -282.82 -58.01 -283.40 -58.01 0.000530 0.000000 

800 -282.88 -58.01 -283.40 -58.01 0.000472 0.000000 

 

 

 

Figure 3-11: Relative error with increasing number of elements 
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3.9 Summary 

A poro-visco-elastic simulation tool is developed using FEM to quantify borehole diameters 

variation with time. The generalized Kelvin phenomenological model is selected for 

calculating the attenuating creep behavior of stiff shale rocks.  

The simulated time-dependent borehole deformation is mainly affected by the creep 

behavior of visco-elastic rocks. The simulated poroelastic borehole deformation is only a little 

bit more than those in the linear-elastic simulation results at the initial time step. In the 

following time steps, even though there are no further pressure variations on the borehole wall, 

the borehole wall deforms a little bit with time because the effective stresses change within the 

rock mass in the near-wellbore area. However, the magnitude of poroelastic borehole 

deformation is very small and is negligible in the context of other real sources of error.   

The model mesh used converges to errors along both directions that are small (less than 

one micro-meters for a two meters by two meters model of more than 200 elements) compared 

to the absolute displacements and tend to be stable and consistent with an increase in the 

number of elements. Further verification of the model with analytical solutions is discussed in 

the next chapter.  
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Chapter 4 

Verification of time-dependent borehole deformation models  

Borehole poro-visco-elastic deformations are complex problems for which no analytical 

solutions are available to solve problems in 3D cases. Even in 2D cases, only semi-analytical 

solutions are available for the poroelastic borehole deformations. Nevertheless, linear elastic 

analytical solutions exist and can be utilized to verify the linear elastic FEM modeling results. 

New analytical solutions for visco-elastic borehole deformation will be developed in this 

chapter and be applied for verification of visco-elastic FEM borehole deformation simulations. 

As for the poroelastic FEM simulations, there are analytical solutions for the in-situ stresses 

redistribution around a borehole and these will be used for the verification process; scenarios 

of overbalanced drilling, balanced drilling, and under-balanced drilling are presented in this 

chapter as additional verifications for the poroelastic FEM simulation.  

4.1 Verification of linear elastic borehole deformation 

The lengths of the longer diameter (C13) and the shorter diameter (C24) in four-arm caliper log 

measurements, which generally correspond to the deformations of the borehole wall at point B 

and A (Figure 2-4), can be determined by analytical equations (2.28) and (2.29). These two 

equations are used for the verification of the FEM linear elastic borehole deformation 

simulations.  

Table 4-1 shows the input parameters for both FEM modeling and analytical 

calculations. Results of the two calculation methods are listed in Table 4-2. The maximum 

difference between the analytical calculation and the FEM simulation in 0.0001 inches. 
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Table 4-1: Input parameters for FEM modeling and analytical calculation 

Parameter Value 

Young’s modulus, E (GPa) 20 

Poisson’s ratio,  0.2 

Diameter of borehole, 2r (inch) 8.7 

Maximum horizontal stress, σH (MPa) 43 

Minimum horizontal stress, σh (MPa) 26 

Mud pressure, pm (MPa) 14 

 

Table 4-2: Comparison of borehole deformation calculations 

Finite element method Analytical solution Difference 
C24 

(inch) 
C13 

(inch) 
C24/C13 

C24 
(inch) 

C13 
(inch) 

C24/C13 
C24 

(inch) 
C13 

(inch) 
C24/C13 

8.6644 8.6927 0.9967 8.6643 8.6927 0.9967 0.0001 0.0000 0.0000 

 

4.2 Justification of analytical visco-elastic borehole deformation solutions 

Analytical solutions for the creep behavior of a rock depend on the phenomenological models 

applied to the corresponding rock materials. For example, the analytical solution of strain for 

Burgers substances has been used to compare to lab test results (Li and Ghassemi, 2012) and 

the equation is of the form    

   𝜀 =
ఙ

ாభ
+

ఙ

𝜂భ

𝑡 +
ఙ

ாభ
(1 −  𝑒

ಶమ
𝜂మ

௧
)      (4.1) 

where E1 and E2 are Young's relaxation moduli of the springs, and η1 and η2 are dashpot 

viscosities.  

The visco-elastic analytical solution of radial displacement for the Maxwell visco-

elastic model has been given by Huang and Ghassemi (Huang and Ghassemi, 2013) and is in 

the form 
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𝑢௥(𝑡) = 𝑟൫𝜎 − 𝑝𝑚൯(
1

2𝐺
+

௧

𝜂
)     (4.2) 

where ur(t) is radial deformation of the borehole at time t, r is original borehole radius, σ is the 

far field stress, pm is borehole wall mud pressure, G is the shear relaxation modulus of the 

spring, and η is the dashpot fluid viscosity.   

For the generalized Kelvin model, equation (4.3) shows the analytical solution for the 

radial displacement of the borehole wall (Abousleiman et al., 1993; Abousleiman et al., 1996; 

Irondelle, 2011).   

𝑢௥(𝑡) = −
௥ఙഇ

ଶீభ
𝑒

ି
ಸమ
ഋಸ

௧
                                                    (4.3) 

where ur(t) is the radial deformation of the borehole at time t, r is original borehole radius, σ 

equals to σ when  σ equals to σh when , and G1, G2 and μG are intrinsic rock 

parameters determined by drained shear creep experiments on a jacketed rock sample.  

When t = 0, the instantaneous response of the generalized Kelvin model (as shown in 

Figure 4-1) to a stress σ0 is governed by the spring constant E1 through the calculation using 

equation (3.44). The spring constant E1 is viewed as the standard Young's modulus for linear 

elastic deformation, which will give an instantaneous deformation (εo) when the stress on the 

inner borehole wall is instantaneously relieved during the drilling process.  
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Figure 4-1: The strain-time plot of a generalized Kelvin model  

Similarly, the time-dependent bulk relaxation modulus K(t) and the time-dependent 

shear relaxation modulus G(t), at time zero (t = 0), will be equal to the bulk modulus K1 and 

shear modulus G1 respectively through the calculation using equations (3.45) and (3.46). 

Therefore, equation (4.3) can be written in terms of the shear modulus as shown in the 

following equation for time zero (t = 0). 

𝑢௥(0) = −
௥ఙഇ

ଶீభ
                                                    (4.4) 

If we consider 2D plane strain conditions for the linear elastic displacement analytical 

solutions, equations (2.24) and (2.25) can be re-written using the shear modulus (borehole 

displacement toward the center is negative):  

𝑢௥௥஺ =
௥

ଶீ
× ((𝜐 − 1) × (3𝜎ு − 𝜎௛) + 𝑝௠)    (4.5) 

 𝑢௥௥஻ =
௥

ଶீ
× ((𝜐 − 1) × (3𝜎௛ − 𝜎ு) + 𝑝௠)    (4.6) 
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However, when comparing equation (4.4) with equations (4.5) and (4.6), the 

displacement calculated using equation (4.4) is valid only for special plane strain problems 

with Poisson's ratio equals 0.5, mud pressure equals zero, and isotropic far-field stresses (either 

σH or σh). Therefore, equation (4.4) might be suitable for displacement calculations for salt or 

very soft shale with Poisson's ratio close to 0.5; however, it is not suitable for the verification 

of a visco-elastic FEM model in stiff rock with Poisson's ratio of less than 0.3.   

Moreover, according to equation (3.44), if we consider equal Young’s relaxation 

moduli for both springs, when time approaches infinity (𝑡 = ∞), the time-dependent Young’s 

relaxation modulus will reduce to half of the original value (𝐸(𝑡) = 𝑧ଵ𝑧ଶ (𝑧ଵ+𝑧ଶ) = 𝐸/2⁄ ). 

Therefore, the ultimate displacement should be approximately twice the instantaneous 

displacement as shown in Figure 4-1.  

However, a simple comparison shows a discrepancy involved in the two calculations 

when time goes to infinity. To demonstrate this discrepancy, both the visco-elastic FEM 

simulation and the analytical calculation were conducted using the parameters listed in Table 

4-3 for a pressurized borehole with mud, but without far-field stresses applied (fixed edges). 

The calculation results are shown in Figure 4-2, which show that the analytically calculated 

ultimate displacement is too high (around 2.5 times) to match the expected value of the 

generalized Kelvin model. An appropriate analytical solution should be used for verification 

of the visco-elastic FEM borehole deformation simulations.  
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Table 4-3: Parameters for visco-elastic FEM simulation and analytical solution 

Parameter Value 

Young’s modulus, E (GPa) 3.2 

Poisson’s ratio,  0.2 

Diameter of borehole, 2r (inch) 8.7 

Spring constant of Kelvin model, E1 (GPa) 3.2 

Spring constant of Kelvin model, E2 (GPa) 3.2 

Dashpot viscosity, η (GPa∙s) 3.0 

Mud pressure, pm (MPa) 14 

 

 

 

 

Figure 4-2: Deformations comparison of pressurized borehole 

(blue color symbols represent FEM modeling results; black color symbols represent analytical solutions) 
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4.3 Verification of visco-elastic FEM modeled borehole deformation  

Considering the discrepancies arising in using analytical deformation solutions for soft rocks 

to verify the borehole deformations of stiff rocks, in order to verify the visco-elastic FEM 

modeling results in this research, two new equations (4.7) and (4.8) were developed by 

replacing Young's modulus in equations (4.5) and (4.6) with the visco-elastic shear relaxation 

modulus G(t).  

𝑢௥௥஺ =
௥

ଶீ(௧)
× ((𝜐 − 1) × (3𝜎ு − 𝜎௛) + 𝑝௠)   (4.7) 

  𝑢௥௥஻ =
௥

ଶீ(௧)
× ((𝜐 − 1) × (3𝜎௛ − 𝜎ு) + 𝑝௠)    (4.8) 

The FEM visco-elastic borehole deformation simulation using parameters listed in 

Table 4-4, and the analytical calculations through equations (4.7) and (4.8) using the same 

parameters, have been conducted. The magnitudes of deformations (or the displacements) at 

the borehole wall along the shorter diameter direction, urrA, and magnitudes of the deformations 

at the borehole wall along the longer diameter direction, urrB, are plotted in Figure 4-3. The 

figure shows that the analytical calculation verified the FEM visco-elastic borehole 

deformation simulation with errors smaller than 0.003 inches. The detailed numbers are listed 

in Table 4-5, larger decimal numbers are for comparison purpose only. 
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Table 4-4: Input parameters for verifying the visco-elastic FEM simulations  

Parameter Value 

Young’s modulus, E (GPa) 3.2 

Poisson’s ratio,  0.2 

Minimum horizontal stress, σh (MPa) 23 

Maximum horizontal stress, σH (MPa) 43 

Rock solid bulk modulus, Ks (GPa) 39 

Spring constant of Kelvin model, E1 (GPa) 3.2 

Spring constant of Kelvin model, E2 (GPa) 3.2 

Dashpot viscosity, η (Pa∙s) 1014 

Mud pressure, pm (MPa) 14 
 Assumed original borehole diameter, 2r (inch) 8.7 
  

 

 

Figure 4-3: Borehole deformations of FEM modeling and analytical calculations 

(Black lines represent FEM modeling results; small circles represent analytical solutions; the upper curve 
indicates the borehole wall displacements along the shorter diameter; the lower curve  indicates the borehole 

wall displacements along the longer diameter.)  
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Table 4-5: Borehole deformations through FEM simulation and analytical solution 

Time 

(s) 

Finite element method Analytical solution Difference 

urrA (inch) urrB (inch) urrA (inch) urrB (inch) urrA (inch) urrB (inch) 

0 0.114614 0.011471 0.115493 0.011093 0.000878 -0.00038 

0.1 0.11461 0.011473 0.115493 0.011093 0.000883 -0.00038 

1 0.114633 0.011458 0.115496 0.011093 0.000863 -0.00036 

10 0.11455 0.011455 0.115529 0.011096 0.000979 -0.00036 

100 0.114728 0.011205 0.115862 0.011128 0.001134 -7.7E-05 

1000 0.118516 0.010854 0.119187 0.011447 0.000671 0.000593 

2000 0.122177 0.011214 0.122874 0.011801 0.000697 0.000587 

3000 0.12654 0.011244 0.126546 0.012154 5.77E-06 0.00091 

4000 0.130294 0.011449 0.130195 0.012505 -9.9E-05 0.001056 

5000 0.134112 0.011674 0.133815 0.012852 -0.0003 0.001178 

6000 0.13737 0.012112 0.137399 0.013196 2.83E-05 0.001085 

7000 0.140808 0.012461 0.140939 0.013536 0.000131 0.001075 

8000 0.144608 0.012523 0.144429 0.013872 -0.00018 0.001349 

9000 0.148388 0.013008 0.147864 0.014202 -0.00052 0.001193 

10000 0.151806 0.013193 0.151238 0.014526 -0.00057 0.001332 

20000 0.181488 0.015683 0.180734 0.017359 -0.00075 0.001676 

30000 0.202371 0.017332 0.201451 0.019348 -0.00092 0.002016 

40000 0.215434 0.01851 0.21441 0.020593 -0.00102 0.002083 

50000 0.22296 0.019102 0.221938 0.021316 -0.00102 0.002214 

60000 0.227003 0.019794 0.226125 0.021718 -0.00088 0.001924 

70000 0.229367 0.01974 0.228396 0.021936 -0.00097 0.002196 

80000 0.230682 0.019824 0.229613 0.022053 -0.00107 0.002229 

90000 0.231243 0.020025 0.230259 0.022115 -0.00098 0.00209 

100000 0.231592 0.020029 0.230602 0.022148 -0.00099 0.002119 
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4.4 Semi-analytical solutions of poroelastic borehole deformation  

In the development of analytical solutions for poroelastic deformations of circular openings 

caused by pore pressure change with time,  Carter and Booker (1982) proposed some cases of 

permeable and impermeable circular tunnels. According to their description, these tunnels are 

illustrated in Figure 4-4. They defined three cases of radial deformation modes for circular 

tunnels in permeable media and two cases of radial deformation modes for circular tunnels in 

impermeable media. Based on these cases, they developed several analytical equations to solve 

for tunnel displacements for permeable and impermeable cases due to pore pressure change. 

They concluded that there are no occurrences of radial displacements of tunnel walls because 

of pore pressure change in cases Ia, IIa, and Ib; the radial displacement is a function of the 

difference of the anisotropic stresses that are applied orthogonal to the tunnel as in the cases 

IIIa and IIIb. However, some coefficients and parameters of these equations are difficult to 

determine. Therefore, they expressed the displacements using coefficients versus radial 

distance ratios with time.  

 

Figure 4-4: Cases of permeable tunnels and impermeable tunnels 
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Later, Detournay and Cheng mimicked Carter and Booker's tunnel problems and 

developed three loading models of borehole deformation and investigated analytical solutions 

(Detournay and Cheng, 1988; Abousleiman et al., 1993; Abousleiman et al., 1996; Irondelle, 

2011). The three loading modes (as shown in Figure 4-5 after Irondelle, 2011) are:  

(i) isotropic far field in-situ horizontal stresses with no excess pore pressure;  

(ii) isotropic far field in-situ horizontal stresses with virgin pore pressure as 

excess pore pressure; and 

(iii) far field anisotropic horizontal in-situ stresses with virgin pore pressure as 

excess pore pressure.  

(courtesy of Irondelle, 2011) 

Figure 4-5: Modes of permeable boreholes  

The analytical solution for poroelastic borehole deformation developed by Detournay 

and Cheng (Detournay and Cheng, 1988) is shown in equation (4.9).   

𝑢௥௥ = 𝐴
ଵ

ோ
+

ଵିଶ௩

ଶீ(ଵି௩)

ଵ

ோ
∫ 𝑅𝑝𝑑ோ

ோ

௥
            (4.9) 

where 𝐴 is a constant that will vanish for loading modes (i) and (ii) because of the isotropic far 

field stresses (Carter and Booker, 1982; Detournay and Cheng, 1988), urr is borehole radial 

displacement, r is the borehole radius, R is distance from borehole center, G is shear modulus, 

 is Poisson’s ratio, p is pore pressure. The equation indicates that at the borehole wall (𝑅 =
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 𝑟), pore pressure will not contribute directly to the borehole radial displacement. The radial 

displacement is a function of the differences of the two far-field stresses that are applied 

orthogonal to the borehole. However, the determination of constant A is not an easy task and 

it is recommended to solve the deformation problem using numerical solutions (Carter and 

Booker, 1982).   

4.5 Stresses verification of poroelastic FEM borehole deformation model 

Since it is difficult to verify the poroelastic FEM simulation of the borehole displacements 

directly from the semi-analytical solutions, an alternative verification using analytical 

solutions of stresses around the borehole was conducted.    

According to poroelastic theory, the radial effective stress (σ'rr) and the tangential 

effective stress (σ') around a borehole can be described as  

𝜎ᇱ
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where r is the borehole radius, R is distance from borehole center, σ'rr is the effective radial 

stress normal to the borehole wall, σ' is the effective tangential stress around borehole, σ'H is 

the effective far-field maximum horizontal stress, σ'h is the effective far-field minimum 

horizontal stress, pm is the borehole mud pressure, p is formation pore pressure, and  is the 

angle from maximum horizontal stress direction. 

Using the parameters listed in the following Table 4-6, both analytical calculations and 

FEM simulations were conducted. The scenario of zero mud pressures was first addressed. The 

effective tangential stresses and the effective radial stresses around the borehole area at time 

zero are illustrated in Figures 4-6 and 4-7. 
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Table 4-6: Input parameters for verifying poro-elastic FEM modeling 

Parameter Value 

Young’s modulus, E (GPa) 32 

Poisson’s ratio,   0.2 
 

Biot coefficient,  0.54 

Minimum effective horizontal stress, σ'h (MPa) 26 

Maximum effective horizontal stress, σ'H (MPa) 43 

Rock solid bulk modulus, Ks (GPa) 39 

Pore pressure, p0 (MPa) 19.5 

Mud pressure, pm (MPa) 0 
 

Permeability, k (m2) 10-15 

Porosity,  0.07 

Fluid viscosity, (Pa∙s) 10-3 

Assumed original borehole diameter, 2r (inch) 8.7 
 

 

 

 

 

Figure 4-6: Horizontal stresses near borehole along X direction  
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In Figure 4-6, the solid line represents the FEM simulated radial effective stresses 

around the borehole at distances away from the borehole center along the X axis; the dashed 

line represents FEM simulated tangential effective stresses around borehole at distances away 

from the borehole center along the X axis. The stars are the calculated radial effective stresses 

around the borehole using the analytical equation (4.10); and, the small circles are the 

calculated tangential effective stresses around borehole using the analytical equation (4.11).  

Similarly, in Figure 4-7, the radial and tangential stresses around borehole at distances 

away from borehole center along the Y direction, are verified by the analytical solutions. 

 

Figure 4-7: Horizontal stresses near borehole along Y direction 

Figure 4-8 shows the FEM simulation and the analytical solution results of stresses 

around the borehole at time zero for a mud pressure of 14 MPa; other parameters remain 

unchanged. The verification is demonstrated; moreover, the mud support effects on the rock in 

the borehole wall are observed. The radial stresses on borehole walls at both the longer 
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diameter and the shorter diameter locations are increased by 14 MPa and equal to the difference 

between the mud pressure and the formation pore pressure. The tangential stress on the 

borehole wall at the longer diameter location decreases from 114 MPa to 100 MPa. The 

tangential stress on the borehole wall at the shorter diameter location decreases from 46 MPa 

to 30 MPa; the previous peak stress location (in Figure 4-6) shifted away from the borehole 

wall and reduced to 35 MPa. Stability is enhanced because of the additional support pressure 

(force) provided by the higher mud weight.  

 

 

Figure 4-8: Stresses around borehole under 14 MPa mud pressure 

 

4.6 Overbalanced and underbalanced drilling and the Biot effects 

Borehole mud pressure can change the magnitude of the stresses around the borehole and 

provide support to the borehole wall. In this section, poro-elastic FEM simulation results of 

stress variations around the borehole wall under conditions of balanced drilling (pm=p), 

underbalanced drilling (pm<p), and overbalanced drilling (pm>p) are illustrated.  In this context, 

the mud pressure is considered as a dynamic mud-column pressure which includes components 
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of the static mud-column pressure, the annulus pressure drop due to flow, the impact pressure 

in a vertical direction under the bit due to flow, and the impact pressure in the vertical direction 

under the bit due to bit rotation (Bingham, 1969). For the purpose of illustration simplicity, 

isotropic far field stresses are assumed for these scenarios. The properties used for these 

demonstration calculations are listed in Table 4-7.  

Table 4-7: Input parameters modeling balanced, overbalanced, and underbalanced 

drilling  

Parameter Value 

Young’s modulus, E (GPa) 32 

Poisson’s ratio,  0.2 

Biot coefficient,  0.54 

Minimum effective horizontal stress, σ'h (MPa) 40 

Maximum effective horizontal stress, σ'H (MPa) 40 

Rock skeleton bulk modulus, Ks (GPa) 39 

Pore pressure, p0 (MPa) 22.5 

Mud pressure for balanced drilling scenario, pm (MPa) 22.5 
 Mud pressure for underbalanced drilling scenario, pm (MPa) 18 
 Mud pressure for overbalanced drilling scenario, pm (MPa) 27 
 Permeability, k (m2) 10-15 

Porosity,  0.07 

Fluid viscosity, (Pa∙s) 10-3 

Assumed original borehole diameter, 2r (inch) 8.7 
  

The effective stresses around the borehole calculated using poroelastic FEM for the 

balanced drilling case are shown in Figure 4-9. The small circles and the small stars are 

verification points for the radial and the tangential stresses respectively, which are calculated 

using analytical equations (4.10) and (4.11). Since there is no flow at the borehole wall because 

the mud pressure and pore pressure are equal, the stresses immediately after drilling remain 

the same when compared to the stresses after a period (1000 seconds in this case). The 
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magnitude of the effective radial stress, σ'rr, equals the difference between the mud pressure 

and the product of the Biot coefficient (0.54 in this case) and the formation pore pressure. In 

the case of the Biot coefficient equal to 1.0, the magnitude of the effective radial stress, σ'rr, 

should be equal to zero.  

 

Figure 4-9: Stresses around borehole area in balanced drilling case 

The simulation results of the effective stresses around borehole for the underbalanced 

drilling case are shown in Figure 4-10. The flow to the borehole causes the formation pore 

pressure drop and eventually the formation pore pressure will be leveled off to be equal to the 

mud pressure. At equilibrium (1000 seconds after drilling), the magnitudes of the effective 

stresses (both tangential and radial) will increase by 2.43 MPa, which is the product of the Biot 

coefficient (0.54 in this case) and the formation pore pressure change (4.5 MPa).  
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Figure 4-10: Stresses around borehole area in underbalanced drilling case 

The simulation results of the effective stresses around the borehole for the overbalanced 

drilling case is shown in Figure 4-11. The flow from the borehole to the formation rock causes 

the formation pore pressure to increase and eventually the formation pore pressure will be 

leveled off to be equal to the mud pressure. At equilibrium (1000 seconds after drilling), the 

magnitudes of the effective stresses (both tangential and radial) will decrease by 2.43 MPa.  

 

Figure 4-11: Stresses around borehole area in overbalanced drilling case 
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4.7 Skempton pore pressure effects of a suddenly pressurized borehole  

Under undrained conditions, since the fluid is trapped in the pores, a compressive confining 

total stress of a magnitude σ will give rise to a pore pressure increment of p (Skempton, 

1954; Rice and Cleary, 1976; Cheng, 2016). The relationship between the initial induced pore 

pressure and the applied total stress can be described as  

  ∆𝑝 = −𝐵 × ∆𝜎      (4.12) 

where p is the initial induced pore pressure, B is Skempton’s pore pressure coefficient, and 

σ is the applied total stress increment. The Skempton pore pressure coefficient B can be 

obtained from  

  𝐵 =
௄೑

∅௄ା௄೑
       (4.13) 

where  is the porosity, K is the bulk modulus, and Kf is the fluid bulk modulus.  Based on this 

relationship, the coefficient B would typically be unity if the stiffness of the skeleton is much 

smaller than that of fluid such as in water-saturated soils (Kf >> K); however, the coefficient B 

would be substantially smaller for stiffer rocks (Kf << K). 

For a suddenly pressurized circular cylindrical cavity such as a drilled borehole, 

immediately after the loading has been applied, the tangential stress at the borehole wall can 

be expressed as  

   ∆𝜎ఏఏ = ቂ
ଶ(ଵି௩ೠ)

(ଵି௩)
×

௥మ

(ோమି௥మ)
+ (1 − 2𝜂)ቃ × ∆𝑝     (4.14) 

where σ  is the change in tangential stress, v is Poisson's ratio, vu is the undrained Poisson's 

ratio, r is the borehole radius, R is the outer boundary where pore pressure is maintained 

unchanged, p is the difference between mud pressure and pore pressure, and 

   𝜂 =
ଷ(௩ೠି௩)

ଶ஻(ଵା௩ೠ)(ଵି௩)
       (4.15) 
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 where B is the Skempton pore pressure coefficient.   

The variation of the radial stress σrr is not influenced by the Skempton effects and can 

be calculated from the following equation:   

   ∆𝜎௥௥ = −𝛼∆𝑝       (4.16) 

where  is the Biot coefficient, and p is the change of the pore pressure.   

The assessment of the Skempton effect was conducted using the parameters listed 

below in Table 4-8. In order to see the 'short time' effects, 0.001 seconds time-steps were 

adopted in the simulation.  

Table 4-8: Parameters for poro-elastic FEM calculation of the Skempton effects  

Parameter Value 

Young’s modulus, E (GPa) 32 

Poisson’s ratio, v  0.2 
 Undrained Poisson's ratio, vu  0.43 

Minimum effective horizontal stress, σ'h (MPa) 40 

Maximum effective horizontal stress, σ'H (MPa) 40 

Rock skeleton bulk modulus, Ks (GPa) 39 

Fluid bulk modulus, Kf (GPa) 2.25 

Pore pressure, p0 (MPa) 23 

Mud pressure, pm (MPa) 27 
 Permeability, k (m2) 10-15 

Porosity,  0.07 

Fluid viscosity, ( Pa∙s) 10-3 

Assumed original borehole diameter, 2r (inch) 8.7 
 

 

The effective tangential stress and the effective radial stress around the borehole are 

shown in Figure 4-12. The red plus sign is the verification point for the effective tangential 

stress around the borehole wall considering the Skempton effects, which is calculated from 

equation (4.14). The black circles and stars are verification points for the effective stresses 
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around the borehole wall considering the Biot effects, which are calculated using equations 

(4.10) and (4.11) respectively. It is observed that the immediate tangential stress change is 

influenced more by the Skempton effects due to a sudden pressure change in a cylindrical 

cavity, whereas the stable state of the stresses is influenced more by the Biot effects that are 

illustrated in Figures 4-9 through 4-11. 

 

Figure 4-12: Skempton effects on the calculation of the tangential stress 

4.8 Summary 

In this chapter, the developed poro-visco-elastic FEM borehole simulation model is verified 

with analytical solutions.  

The reported analytical solution for visco-elastic borehole displacements is justified 

and a new analytical borehole deformation solution suitable for stiff shale is developed and 

used for the verification of the numerical simulation of visco-elastic borehole deformations. 
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The lack of an analytical poro-elastic borehole deformation solution is addressed alternatively 

with the analytical solutions of stress variation around a borehole.  

In a poro-elastic material, the immediate tangential stress change is influenced more by 

the Skempton effects due to a sudden pressure change in a cylindrical cavity; the stable state 

of the stresses is influenced more by the Biot effects. 

Theoretically, the longer and shorter diameters of an elliptical borehole can be 

determined through either analytical calculations or through FEM simulations, should Young’s 

modulus, Poisson’s ratio, original borehole size, borehole pressure, two horizontal stresses, 

relaxation moduli, and timing of rock creep be known. However, the inverse calculation of the 

in-situ stresses and the rock mechanical parameters from the measured borehole diameters 

might result in multiple solutions because the number of unknowns is larger than the number 

of solution equations. In order to address the issue of this underdetermined nature, parameters’ 

uncertainties and optimization of inversion methods are discussed in the next chapter. 
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Chapter 5 

Parameter uncertainty and in-situ stress inversion methods  

As discussed in previous chapters, the inverse calculation from borehole longer and shorter 

diameters can only give results of up to two unknown parameters. Otherwise, solutions will be 

non-unique if unknown parameters are more than two.  

In order to address the underdetermined situation in the inversion of in-situ stresses and 

rock mechanics parameters from four-arm caliper data, in this chapter, the sensitivity of 

borehole deformations to the in-situ stress and rock mechanical parameters are investigated to 

potentially reduce the number of unknown parameters, constrain the range of the unknown 

parameters, and eventually mitigate the non-unique solution issue so that useful results can be 

generated.  

Optimization approaches for the inversion of in-situ stresses and the rock mechanical 

parameters from borehole deformation data are also investigated. First, the effectiveness of 

artificial neural networks (ANN), the genetic algorithm (GA), and statistical methods are 

evaluated in the inversion of in-situ stresses and rock mechanical properties. Then, the multi-

objective function optimization method is described and compared with the GA method, and 

the best practical method is recommended. 

5.1 Underdetermined nature of the inversion problem 

As discussed in section 2.5 of Chapter 2, for a vertically drilled borehole without breakouts or 

drilling induced fractures, if the original borehole size, wellbore mud pressure, Young’s 

modulus, Poisson’s ratio, and in-situ stresses are available, the longer diameter C13 and the 

shorter diameter C24 can be calculated using equations 2.28 and 2.29. However, in the inversion 

of unknown parameters (maximum horizontal stress H, minimum horizontal stress h, 
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Young’s modulus E, and Poisson’s ratio , and original borehole radius r), from known 

parameters (longer diameter C13, shorter diameter C24 and borehole mud pressure) using the 

same equations, the solutions are not unique. The problem is underdetermined because the 

number of unknown parameters (five) is larger than the number of equations (only two). 

Therefore, in the following sections, the input known parameters, the unknown parameters, 

and the approaches to find the most probable estimation of unknown parameters are discussed. 

5.2 Input known parameters 

Major inputs in the inversion of in-situ stress and rock mechanical properties are the longer 

and shorter diameters C13 and C24, mud pressure Pm, and vertical in-situ stress v (for constraint 

purposes specifying the stress regime). These input parameters are either directly measured 

(C13 and C24 are measured from four-arm caliper tools) or calculated from other measurements 

(v from integration of the density log). Generally, uncertainties exist since the measurements 

can never precisely represent the ‘‘true’’ value of that which is being measured (Walker et al., 

2003). However, logging tools are generally run only once in actual field practice. It is difficult 

to identify ranges of parameter variation for a single depth.  Therefore, such an input parameter 

is chosen to be a specified value for a specific depth, instead of being treated as a parameter 

with uncertainty. 

5.3 Sensitivity of borehole deformation to unknown geomechanical properties 

The non-unique solution issue can first be addressed by investigating the sensitivity of borehole 

deformations to the in-situ stress and rock mechanical parameters, such that non-sensitive or 

less-sensitive parameters might be held constant, stronger constraints stipulated, or specific  

parameters be discriminated against in the calculations.  
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Sensitivity analysis is the study of how the uncertainty in the output of a mathematical 

model or system (numerical or otherwise) can be divided and allocated to different sources of 

uncertainty in its inputs (Saltelli, 2002). Among the parameters influencing borehole 

deformations, the influence of deviations from the original borehole size has been addressed 

in Chapter 2.  The borehole mud pressure is a known parameter that can be obtained from 

drilling mud density calculation. Therefore, local sensitivity analysis is conducted in this 

chapter on rock mechanical parameters (Young’s modulus and Poisson’s ratio) and in-situ 

stresses, and mud pressure and borehole diameter issues are temporarily set aside. 

In order to determine how sensitive the borehole deformation is to variation of the 

geomechanical parameters and in order to better choose the constraint ranges for the unknown 

parameters, the sensitivity of borehole deformation to the variation of each of these 

geomechanical properties was analyzed using Well A-006-C/094-O-08 as an example. The 

data of this well is the baseline parameter set that the sensitivity analysis is conducted around. 

The sensitivity of borehole deformation to the variation of Poisson’s ratio and Young’s 

modulus are listed in Table 5-1 and Table 5-2. In Table 5-1, the entire normal range of 

Poisson’s ratio (0-0.5) was used; while all the other parameters, borehole diameters, vertical 

stress v, maximum horizontal stress H, minimum horizontal stress h, borehole mud pressure 

pm, and Young’s modulus E are constants, taken from the Liard Basin stress analysis report 

(Bell, 2015). The calculated borehole deformation is up to 0.0971 inches (0.0486 radial 

deformation on each side). The difference of the diameter lengths ratio is only 0.0056, which 

is less than 0.6%. When considering a Poisson’s ratio of around 0.15 to 0.35 for most common 

sedimentary rock types, the differences of deformation and variation of diameter lengths ratio 

will be even smaller, less than 0.02 inches and 0.0023, respectively.  
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Table 5-1: Sensitivity of borehole deformation to Poisson’s ratio 

2r pm  E H h v C24 C13 C24/C13 rrA rrB  

inch MPa  MPa MPa MPa MPa inch inch  inch inch 

8.7440 14 0 3000 42 26 35 8.4871 8.6783 0.9778 -0.1285 -0.0329 

8.7440 14 0.05 3000 42 26 35 8.4946 8.6854 0.9780 -0.1247 -0.0293 

8.7440 14 0.1 3000 42 26 35 8.5027 8.6920 0.9782 -0.1207 -0.0260 

8.7440 14 0.15 3000 42 26 35 8.5112 8.6981 0.9785 -0.1164 -0.0230 

8.7440 14 0.2 3000 42 26 35 8.5202 8.7037 0.9789 -0.1119 -0.0201 

8.7440 14 0.25 3000 42 26 35 8.5296 8.7089 0.9794 -0.1072 -0.0176 

8.7440 14 0.3 3000 42 26 35 8.5396 8.7136 0.9800 -0.1022 -0.0152 

8.7440 14 0.35 3000 42 26 35 8.5500 8.7178 0.9808 -0.0970 -0.0131 

8.7440 14 0.4 3000 42 26 35 8.5609 8.7215 0.9816 -0.0915 -0.0112 

8.7440 14 0.45 3000 42 26 35 8.5723 8.7248 0.9825 -0.0858 -0.0096 

8.7440 14 0.5 3000 42 26 35 8.5842 8.7276 0.9836 -0.0799 -0.0082 

Maximum difference 0.0971 0.0493 0.0056 0.0486 0.0247 

Percentage of maximum difference (%) 1.14 0.57 0.57   
 

 

Table 5-2: Sensitivity of borehole deformation to Young’s modulus 

2r pm  E H h v C24 C13 C24/C13 rrA rrB  

inch MPa  MPa MPa MPa MPa inch inch  inch inch 

8.7440 14 0.2 500 42 26 35 7.4010 8.5024 0.8705 -0.6715 -0.1208 

8.7440 14 0.2 800 42 26 35 7.9047 8.5930 0.9200 -0.4197 -0.0755 

8.7440 14 0.2 1000 42 26 35 8.0725 8.6232 0.9361 -0.3357 -0.0604 

8.7440 14 0.2 1200 42 26 35 8.1844 8.6433 0.9469 -0.2798 -0.0503 

8.7440 14 0.2 1500 42 26 35 8.2964 8.6635 0.9576 -0.2238 -0.0403 

8.7440 14 0.2 2000 42 26 35 8.4083 8.6836 0.9683 -0.1679 -0.0302 

8.7440 14 0.2 5000 42 26 35 8.6097 8.7198 0.9874 -0.0671 -0.0121 

8.7440 14 0.2 10000 42 26 35 8.6769 8.7319 0.9940 -0.0336 -0.0060 

8.7440 14 0.2 12000 42 26 35 8.6880 8.7339 0.9948 -0.0280 -0.0050 

8.7440 14 0.2 15000 42 26 35 8.6992 8.7360 0.9960 -0.0224 -0.0040 

8.7440 14 0.2 20000 42 26 35 8.7104 8.7380 0.9970 -0.0168 -0.0030 

Maximum difference 1.3094 0.2356 0.1264 0.6547 0.1178 

Percentage of maximum difference (%) 17.69 2.77 14.52   
 

 



 

 129 

In contrast to Poisson's ratio, Young's modulus has a larger reasonable range of 

variation in nature. For shale, it can be as low as several hundreds of MPa to several tens of 

GPa (Eshkalak et al., 2014; Gao et al., 2015; Josh et al., 2012; Dewhurst and Henning, 2013; 

Islam and Skalle, 2013). It can be observed from Table 5-2 that the borehole deformation is 

more sensitive to the variation of Young’s modulus than to the variation of Poisson's ratio. The 

Young’s modulus values listed in Table 5-2 can result in up to 18% in borehole deformation 

differences. Therefore, Young's modulus is a relatively more sensitive parameter in this type 

of inversion.  

Sensitivity of borehole deformation to the maximum and minimum horizontal in-situ 

stresses are listed in Table 5-3 and Table 5-4 respectively.  

 

Table 5-3: Sensitivity of borehole deformation to maximum horizontal in-situ stress 

2r pm  E H h v C24 C13 C24/C13 rrA rrB  

inch MPa  MPa MPa MPa MPa inch inch  inch inch 

8.7440 14 0.2 3000 26 26 35 8.6598 8.6598 1.0000 -0.0421 -0.0421 

8.7440 14 0.2 3000 28 26 35 8.6423 8.6652 0.9974 -0.0508 -0.0394 

8.7440 14 0.2 3000 30 26 35 8.6249 8.6707 0.9947 -0.0596 -0.0366 

8.7440 14 0.2 3000 32 26 35 8.6074 8.6762 0.9921 -0.0683 -0.0339 

8.7440 14 0.2 3000 34 26 35 8.5900 8.6817 0.9894 -0.0770 -0.0311 

8.7440 14 0.2 3000 36 26 35 8.5725 8.6872 0.9868 -0.0857 -0.0284 

8.7440 14 0.2 3000 38 26 35 8.5551 8.6927 0.9842 -0.0945 -0.0256 

8.7440 14 0.2 3000 40 26 35 8.5376 8.6982 0.9815 -0.1032 -0.0229 

8.7440 14 0.2 3000 42 26 35 7.5370 8.5268 0.8839 -0.6035 -0.1086 

8.7440 14 0.2 3000 44 26 35 6.3830 8.4037 0.7596 -1.1805 -0.1701 

8.7440 14 0.2 3000 46 26 35 5.0758 8.3289 0.6094 -1.8341 -0.2076 

Maximum difference 3.5839 0.3307 0.3906 1.7920 0.1654 

Percentage of maximum difference (%) 41.39 3.82 39.06   
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Table 5-4: Sensitivity of borehole deformation to minimum horizontal in-situ stress 

2r pm  E H h v C24 C13 C24/C13 rrA rrB  

inch MPa  MPa MPa MPa MPa inch inch  inch inch 

8.7440 14 0.2 3000 42 12 35 8.4817 8.8259 0.9610 -0.1312 0.0409 

8.7440 14 0.2 3000 42 15 35 8.4899 8.7997 0.9648 -0.1270 0.0278 

8.7440 14 0.2 3000 42 18 35 8.4982 8.7735 0.9686 -0.1229 0.0148 

8.7440 14 0.2 3000 42 21 35 8.5064 8.7473 0.9725 -0.1188 0.0017 

8.7440 14 0.2 3000 42 24 35 8.5147 8.7212 0.9763 -0.1147 -0.0114 

8.7440 14 0.2 3000 42 27 35 8.5229 8.6950 0.9802 -0.1105 -0.0245 

8.7440 14 0.2 3000 42 30 35 8.5312 8.6688 0.9841 -0.1064 -0.0376 

8.7440 14 0.2 3000 42 33 35 8.5394 8.6427 0.9881 -0.1023 -0.0507 

8.7440 14 0.2 3000 42 36 35 8.5477 8.6165 0.9920 -0.0982 -0.0638 

8.7440 14 0.2 3000 42 39 35 7.7297 7.9153 0.9766 -0.5072 -0.4144 

8.7440 14 0.2 3000 42 42 35 6.9841 6.9841 1.0000 -0.8800 -0.8800 

Maximum difference 1.4977 1.8418 0.0390 0.7489 0.9209 

Percentage of maximum difference (%) 17.66 20.87 4.06   

 
 

For a reasonable range of maximum horizontal stresses, the differences among the 

borehole deformation can reach as high as 41%, and for a reasonable range of minimum 

horizontal stresses, the differences among the borehole deformation can reach 20%.   

In summary, the Young’s modulus and the horizontal stresses have large influences on 

the borehole deformation calculations.  The influence of Poisson’s ratio is small, and it can be 

treated as a known parameter in the borehole deformations calculations and can be reasonably 

estimated form the rock lithology, geophysical log data, and other physical properties of the 

rock.  

5.4 Artificial Neural Network (ANN) 

The Artificial Neural Network (ANN) approach was originally developed by McCulloch and 

Pitts (1943). Since then, ANN models have evolved, and the ANN method is considered as a 

useful tool in finding patterns based on the characteristics of the relationships between the 
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inputs and outputs. In this research, as discussed in the following sections, ANN is not the best 

approach for the following reasons: 

1. explicit analytical solutions exist between borehole diameters and rock mechanical 

parameters and in-situ stresses.  

2. it takes longer calculation time when compared with other methods.  

However, the general procedure of ANN is reviewed and will be demonstrated in one 

case study for its possible use for more highly non-linear cases, where unknown patterns might 

exist between the inputs and outputs. 

 An ANN model usually consists of an input layer, one or more hidden layers, and an 

output layer. A schematic diagram of multilayer perception model is shown in Figure 5-1.  

 

Figure 5-1: Schematic diagram of multilayer perception ANN model 

 

Specifically, in ANN, products of inputs (x) and their corresponding weights (w) are 

summed and an activation function  is applied to get the output of that layer and feed it as an 

input to the next layer. In each layer, a neuron can be described by a genetic function as 

following:  
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𝑔 = ൫α ෌ (𝑤௜𝑥௜)
௡

௜ୀଵ
൯     (5.1) 

where  is the active function, n is number of inputs, xi is the value of ith node in input layer, 

wi is the weight for the ith node of input layer. 

A set of training samples are normally used to estimate the function between inputs and 

outputs. Once the relationship has been established with acceptable errors between the 

approximations and the target values over the training set, the ANN model can be applied to 

estimate the unknown values from the known parameters.  

ANN itself, which is the tool to find the most possible relationship between inputs and 

outputs, is not able to give a set solution to the problem; it must be combined with an 

optimization method, such as the Genetic Algorithm (GA) approach, for example, to find the 

most probable solution.      

5.5 Genetic algorithm modeling for optimization 

Optimization is a problem of minimizing or maximizing an objective function that is subject 

to some constraints (Guenin et al., 2014). The genetic algorithm (GA) is one of the most 

extensively used methods for solving both constrained and unconstrained optimization 

problems; it is called a genetic algorithm because it was originally used for natural selection 

and genetics models. The method was first introduced by Holland as an abstraction of 

biological evolution by natural selection (Holland, 1992) and has since been used in the fields 

of medicine and engineering (energy, oil and gas…), among others (Garg et al., 2016; Sabir et 

al., 2018; Ibrahim et al., 2016; Huang et al., 2018; Zhang and Yin, 2014a; Zhang and Yin, 

2014b; Zhang and Yin, 2015).  
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The genetic algorithm starts from a set of values, known as a population, and then goes 

through a series of calculations to determine the optimal solution to a stipulated problem.  For 

example, in genetics, a chromosome represents a solution to an evolutionary problem. In a 

human population, there will be several potential solutions called chromosomes within the 

population, each of which could evolve over time to yield an optimal solution to the 

evolutionary pressure (i.e., pressure to adapt), such as creating a slightly altered protein to 

fulfill more effectively a new need in the population. As chromosomes evolve over time 

through repeated successful iterations called generations, stronger chromosomes will be 

generated, which are evaluated by the objective function (fitness). The chromosomes having 

stronger fitness are more likely to be selected by the human population in the evolutionary 

process (Goldberg, 1989; Holland, 1992). Once certain chromosomes have been selected, they 

become parents and are combined with other parents to produce new chromosomes for the next 

generation through the genetic evolution process.  

The objective function in the case of estimating geomechanics properties from borehole 

deformation data is defined as the difference between GA-predicted deformed bore hole size 

and the caliper measured borehole size as follows:  

  𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = min ቀ
ଵ

௡
෌ |(𝐷௜ − 𝐶௜)|

௡

௜ୀଵ
ቁ    (5.2) 

where n is the total number of objectives, Di is the GA–predicted deformed bore hole size, and 

Ci is the measured deformed borehole size from four-arm caliper logs. 

In this research, borehole deformations can either be calculated from analytical 

solutions or be simulated using FEM; therefore, it is not necessary to use ANN. For comparison 

purposes, an ANN-GA combined calculation and a GA alone calculation are conducted using 

a well in the  Duvernay Formation in Western Canada, 00-06-12-046-17W5-0, as an example. 
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The results, 100 realizations for each method, are shown in Figure 5-2. Each realization 

represents an independent GA (or GA combined with ANN) optimization trail. 

 

Figure 5-2: GA calculation and ANN-GA calculation, 100 realizations each 

 

It is observed that similar results are achieved for these two methods; however, the 

ANN-GA method requires much more calculation capacity as illustrated in Table 5-5.   

Table 5-5: Comparison between GA calculation and ANN-GA calculation 

 GA (99% confidence range) ANN-GA (99% confidence range) 

 E, GPa H, MPa h, MPa E, GPa H, MPa h, MPa 

Average 4.3±0.2 160±2 85±1 7.6±0.2 162±2 82±0 
Deviation/Mean 0.2 0.1 0.1 0.2 0.1 0.1 

Calculation time ̴2 minutes > 600 minutes (10 hours) 

Result uniqueness No No 

 
 

The running time for an ANN-GA calculation is more than 300 times larger than the 

calculation using GA alone for a known relationship case study; therefore, the ANN-GA 

approach is not recommended for the case studies in this research. The application of ANN 

combined with GA is only demonstrated in the first case study for assessment of its use for 

future highly non-linear cases, where unknown patterns based on the characteristic 
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relationships between the inputs and outputs can be modeled or where there are abnormally 

large calculation capacities required if not using ANN. 

Neither ANN-GA nor GA method will give a unique solution. Each gives one hundred 

“good” solutions in this example. Although the variances of the three calculated parameters 

are not large (the normalized deviations, deviation/mean, are no more than 0.2) , the ranges of 

the estimated parameters might be more scattered if the number of the parameters are large. 

Therefore, statistical processes or other optimization methods will be needed to support the 

results of the optimization analyses.  

5.6 Statistics process 

Statistics involves collection, organization, analysis, interpretation, and presentation of data to 

aid decision-making or communicating information (Xie, 1999). Since GA-related methods 

will not give a unique solution, statistical methods can be applied to help choose a reasonable 

solution from the multi-solution results of GA-related calculations. The most used statistical 

method is calculating the mean value of the multiple solutions along with a confidence range 

as listed in Table 5-5. In this section, histogram analysis using the same GA calculation 

example of the previous section is discussed.  

Figure 5-3 illustrates histograms of the GA calculation results (100 realizations) about 

the maximum horizontal stress H, the minimum horizontal stress h, the Young’s modulus E, 

and the original borehole size 2r. It is observed that the highest frequency of σH is in the interval 

164-171 MPa, with 167 MPa being the modal value; the highest frequency of σh is 81-85 MPa, 

with a mode of 83 MPa; the highest frequency of E  is 4.7-5.1 GPa, with a mode of 4.9 GPa; 

and, the highest frequency of the original borehole size (2r) is 9.1360-9.1782 inches, with a 

mode of 9.1571 inches.  
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Figure 5-3: Histograms of Minimum horizontal stress, maximum horizontal stress, 

Young’s modulus, and original borehole size 

 Repeated GA calculations (another 100 realizations) are conducted, and distribution 

histograms are drawn to evaluate if the calculation can give a statistically consistent result. In 

addition, forward calculations of elliptical borehole diameters are also conducted from the 

estimated horizontal in-situ stresses and Young’s modulus; errors with those measured 

diameters are calculated. The calculation results are listed in Table 5-6.  

Table 5-6: Repeated GA calculation  

 GA calculation Repeated GA calculation 

 E, GPa H, MPa h, MPa E, GPa H, MPa h, MPa 

Mean 4.3 160 85 4.2 158 85 
 Forward calculation error C13: 0.0067; C24:0.0060 C13: 0.0137; C24:0.0143 

Mode 4.9 167 83 4.9 166 83 

Forward calculation error C13: 0.0006; C24:0.0117 C13: 0.0066; C24:0.0344 
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It is observed from Table 5-6 that the new calculation results are consistent with the 

previous calculation results. The errors between the forward calculated diameters and the 

measured diameters are around 0.0006 inches to 0.0344 inches, so the results are in reasonable 

agreement. 

This example estimates only four unknown parameters, and a clearly highest frequency 

interval is observed for each parameter. However, in cases of more unknown parameters, some 

parameters might not necessarily give an obviously highest frequency interval. In such cases, 

fixed values or reduced ranges for parameters having obvious higher frequencies in histograms 

can be chosen from the first calculation results, and then the model is executed again with a 

reduced number of unknown parameters or with a reduced range (a narrower set of constraints) 

for some unknown parameters. The methods are demonstrated in the first (Marcellus Shale) 

and the second ( Liard Basin) case studies in Chapter 7.  

The additional statistical analysis of the GA calculation requires additional time 

(normally around 1.5 hours) for estimations of in-situ stresses and rock mechanical parameters 

from borehole deformations at each additional depth. Therefore, more advanced optimization 

methods, multi-objective functions are considered.        

5.7 Weighted-sum multi-objective function 

In addition to the GA method, multi-objective optimization methods are reviewed and 

compared with the GA method to find the best optimization tool for practical applications. In 

this research, the differences between calculated borehole deformations and measured borehole 

deformations through four-arm caliper logs will be minimized subject to range constraints for 

in-situ stresses and rock mechanics properties. Therefore, there will be at least two objective 

functions for an optimization process: the length difference of the longer diameter and the 
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length difference of the shorter diameter. In cases where rock mechanical parameters or in-situ 

stresses are included in the objective functions for optimization process, there will be more 

than two objective functions.  

A multi-objective function optimization where there does not typically exist a feasible 

solution that minimizes all objective functions simultaneously is also called a Pareto 

optimization. Attention should be paid to Pareto optimal solutions (those that are not 

dominated by any other feasible solutions); that is, solutions that cannot be improved in any of 

the objectives without degrading at least one of the other objectives. The set of Pareto optimal 

outcomes is often called the Pareto front, Pareto frontier, or Pareto boundary.  

 

Figure 5-4: Pareto front in a multi-optimization problem 

 

Figure 5-4 shows the Pareto front of an example of a two objective function 

minimization problem. Black boxed points represent feasible solutions, and smaller values are 

preferred to larger ones. The blue curve represents the Pareto front. Red dots on the blue curve 

represent the Pareto optimal solutions. 
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All Pareto optimal solutions are considered equally good, given the level of inherent 

uncertainty in the problem being analyzed. Finding the best solution of a multi-objective 

optimization problem is then based on the viewpoint of a human decision maker, guided by 

other factors such as cost structures, social impacts, etc. Generally, in multi-objective 

optimization problems, weighted-sum methods are adopted (Augusto et al., 2013; Kim and 

Weck, 2019). In the optimization process to estimate in-situ stresses and rock mechanical 

parameters, a weighted-sum multi-objective function will be used, which is defined as: 

min ෌ 𝑤௜ × |(𝐷௜ − 𝐶௜)|
௡

௜ୀଵ
    (5.3) 

where n is the total number of objectives, Di is the ith calculated value, Ci is the ith measured 

value, and wi is the corresponding weight for the ith objective.  

In this research, a MatlabTM function "fmincon", which stands for "find minimum of 

constrained nonlinear multi-variable function", will be used to find the best fitness for the 

weighted-sum multi-objective functions. The "fmincon" function has five algorithm options: 

"interior-point", "trust-region-reflective", "Sequential Quadratic Programming (SQP)", "SQP-

legacy", and "active-set". Both interior-point and trust-region-reflective are large scale 

algorithms. The other three are not large scale algorithms. The trust-region-reflective algorithm 

requires the input of variable gradients into the objective function and allows only bounds or 

only linear equality (but not both), which is not suitable for the cases in this research. The 

interior-point algorithm, which is also called the barrier algorithm, solves linear and nonlinear 

convex optimization problems. It reaches a best solution by traversing the interior of the 

feasible region (Byrd et al., 1997; Wright, 2004). The interior-point algorithm in fmincon has 



 

 140 

a low memory demand and solves large problems quickly; it is the most appropriate option and 

is applied in the case studies of this research.  

5.8 Normalization in the weighted-sum method 

The weights for the objective functions are generally assigned by the decision makers based 

on historic knowledge of the optimization problem. However, values of different functions 

might be significantly different in their numerical order of magnitude, which makes 

comparisons difficult. For example, if one objective function is in the magnitude of 100, while 

another objective function is in the magnitude of 0.01, the summation of the two will be 

dominated by the larger magnitude objective function, and the influence from the smaller 

magnitude function will be “hidden”. For realizations of few initial inputs, the outputs of 

individual parameters can be checked and compared to the measured values, and the best 

results can be selected. However, if there are too many initial inputs, the practice of checking 

parameters for each output will be much more tedious.  

Therefore, it is usually necessary to normalize the objective functions to get a consistent 

solution with the weights assigned. Among many normalization approaches, the commonly 

used method is to normalize the objective functions as follows (Arora, 2012): 

   𝑓௜
௡௢௥௠ =

௙೔(௫)ି௙೔
బ

௙೔
೘ೌೣି௙೔

బ      (5.4) 

where fi
norm is the normalized ith weighted objective function having value between 0 and 1,  

fi(x) is the ith objective function, fi
0

 
 is the utopia point, and fi

max is the maximum of the ith 

objective function.   

If the objective functions for the in-situ stresses and rock mechanical properties 

inversion from the borehole deformation data are composed of only the differences between 
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the measured and calculated borehole diameters, these objective functions will have similar 

magnitudes that are in the range of 0-1 (typically in the magnitude of 10-2) and the 

normalization of the weighted-sum multi-objective function is not necessary. However, for 

example, if there are measured Young’s modulus or the minimum in-situ stress values that are 

included in the objective functions, the value of the function might be quite different from the 

objective function value of the borehole diameters, and then normalization will be required. 

For the case studies and the comparison in the next section, since the objective 

functions are composed of only the differences between the measured and calculated borehole 

diameters, non-normalized weighted-sum multi-objective optimizations are used. 

5.9 Comparison of inversion analysis methods 

The ANN-GA method, GA method, and the fmincon function of weighted-sum multi-objective 

optimization (non-normalized in this case) are compared in this section to evaluate the most 

practical method for invert calculation of in-situ stresses and Young’s modulus using the 

example well in the Duvernay Formation, 00-06-12-046-17W5-0. In each case, a 100 m long 

section (4520m~4620m) of the wellbore was used. However, only fmincon function generates 

in-situ stresses profiles and Young’s modulus profile in a reasonable time frame. Comparisons 

of calculation times used for single depth (4588m) calculation and profiles generation among 

these methods are shown in Table 5-7.   
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Table 5-7: Comparison among ANN-GA, GA, and fmincon calculations 

 ANN-GA GA  fmincon 

 E, GPa H, MPa h, MPa E, GPa H, MPa h, MPa E, GPa H, MPa h, MPa 

Calculation result 7.6±0.2 162±2 82±0 4.2±0.2 158±3 85±1 2.9 140 88 

Objective function  1.3010-2 to 1.3710-9 1.8010-4 to 3.9510-9 9.2910-10 

Calculation time  > 600 minutes (10 hours) ̴ 2 minutes +  ̴ 1.5 hours analysis  ̴ 5 seconds 

Profile generation too long to be possible > 1000 hours < 1.5 hours for 100 m section 

 

The calculation results of Young’s moduli and horizontal in-situ stresses listed are for 

a single depth. The results from ANN-GA and GA methods are average values of 100 

realizations with 99% confidence ranges (only assumed significant digits are used in the 

Table). The magnitudes of objective function value are around 10-2 to 10-9 for ANN-GA 

method; the magnitudes of objective function value are around 10-4 to 10-9 for GA method.  

In fmincon calculations, optimization solution is based on trials of many initial sets of 

inputs (at least ten sets of inputs for a single depth in the case studies) and the result with the 

smallest objective function value is chosen. The reliability of such trials has been checked by 

repeated fmincon calculations with various input values and varied number of input sets. In 

this comparison, the objective function value of the selected result is as small as 10-10 in 

magnitude.  

When comparing the calculation time required for these three methods, it is observed 

that the fmincon calculation is the fastest, while the ANN-GA is the slowest. Furthermore, a 

continuous stresses profile (as shown in Figure 5-5) can be generated since the calculation for 

a single depth takes only seconds, while this is practically impossible using ANN-GA or GA 

for calculation such a profile. Therefore, except for demonstrations in the first two case studies 

using ANN-GA or GA, the fmincon function of weighted-sum multi-objective optimization 
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for in-situ stresses and rock mechanical parameters inversion is used for further cases studies 

and is recommended for practical applications.  

 

Figure 5-5: Example of stress profile calculated from borehole deformation data 

 

5.10 Summary 

In this chapter, uncertainties in the estimation of in-situ stresses and the rock mechanical 

parameters from borehole deformation data are evaluated, and optimization methods of GA, 

ANN-GA, and the weighted-sum multi-objective function (fimincon) are compared for 

underdetermined problem cases.  

The sensitivity of linear elastic borehole deformations to the in-situ stress and rock 

mechanical parameters is investigated. The influence of Poisson’s ratio on borehole 

deformation is the least, compared to the in-situ stress and other rock mechanical parameters. 

Therefore, Poisson's ratio can be treated as a known parameter in most case studies and can be 
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reasonably assigned a value by referring to its lithology, geophysical log response, and 

geological information for the area.   

Non-unique solutions exist in using GA (or ANN-GA) methods. Statistically choosing 

the mean value or the highest frequency interval from a histogram can give reasonable and 

consistent results for cases where each parameter shows an obviously high frequency 

histogram interval; otherwise, choosing fixed values or reducing ranges for certain parameters 

and repeating the model calculations with a reduced number of unknown parameters is needed.  

Otherwise, more advanced optimization methods, such as the Matlab™ fmincon function, may 

be used to find the most probable solution. 

Among the ANN-GA, GA, and fmincon methods for in-situ stresses and rock 

mechanical parameters estimation, the fmincon method is the fastest and is able to generate 

stresses profiles in a reasonable amount of time; therefore, it is chosen for practical 

applications. 
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Chapter 6 

Impact of creep behavior on determination of in-situ stress and 

rock mechanical parameters  

Shales may creep under a change from the in-situ stress; as a result, the borehole wall will 

deform or even yield in a time-dependent manner. In this chapter, rock creep effects on 

borehole deformation, breakouts occurrence, and the inversion of in-situ stresses and rock 

mechanical parameters are investigated. 

6.1 Creep effect on borehole wall deformation 

Rock creep behavior after the stress release associated with drilling influences the measured 

borehole longer diameter (C13) and shorter diameter (C24) over time. To demonstrate the effect 

of time-dependent borehole wall rock deformation, the following assumed parameters listed in 

Table 6-1 are used in the visco-elastic borehole deformation solutions developed in Chapter 4 

(equations 4.7 and 4.8) based on the generalised Kelvin rheological model. The displacement 

-time plot of the generalised Kelvin rheological model diagram is shown in Figure 6-1.  

 

Figure 6-1: Displacement-time plot and rheological model 
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The calculated longer diameter, the calculated shorter diameter, and the ratio of 

diameters difference over bit size are shown in Figure 6-2. The comparisons of the borehole 

diameters at the instantaneous state (linear elastic deformation) with the borehole diameters at 

steady state (post visco-elastic deformation) are listed in Table 6-2.    

Table 6-1: Parameters for time-dependent borehole deformation 

Parameter Value 
Young’s modulus, E (GPa) 32 

Poisson’s ratio,  0.2 

Spring constant of Kelvin model, E1 (GPa) 32 

Spring constant of Kelvin model, E2 (GPa) 32 

Dashpot viscosity, η (Pa∙s) 1014 

Mud pressure, pm (MPa) 14 
 Maximum horizontal stress, σH (MPa) 43 

Minimum horizontal stress, σh (MPa) 26 

Original borehole size, 2r (inch) 8.7 
 Bit size, (inch) 8.5 

 

 

Figure 6-2: Time-dependent borehole diameters  
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Table 6-2: Simultaneous diameters and ultimate state diameters  

Bit 
Size 
inch 

Hole 
Size 
inch 

Steady state (visco-elastic) Simultaneous (linear elastic) 

C13 
inch 

C24 
inch (C13-C24)/Bit 

C13 
inch 

C24 
inch (C13-C24)/Bit 

8.5 8.7 8.6911 8.6553 0.0041 8.6954 8.6777 0.0021 

 

It is observed in this example (from Figure 6-2 and Table 6-2) that the calculated visco-

elastic borehole diameters immediately after drilling (instantaneous state) are equal to the 

linear elastic borehole diameters; the calculated visco-elastic borehole diameter gradually 

decreases (borehole shrinkage) with time in visco-elastic rocks until the rock creep terminates 

(steady state); and, the difference between the longer and shorter diameters increases with time 

until the termination of rock creep, and the differences are less than 0.5% of the bit size in this 

example.   

Will the borehole wall rock eventually deform to the theoretical maximum magnitude 

or will the rock yield before reaching that theoretical maximum deformation? This important 

question will be addressed in the following section.  It has implications on the estimates of 

Young’s modulus and the stress determination approaches. 

6.2 Creep effect on borehole breakouts 

Shale behavior is an extremely complex issue in drilling practice because there are many 

different types of shale, they may be intact or fractured in-situ, they may be highly reactive 

(smectic) or non-reactive (dense quartz-illite shales), and so on. In addition to the possibility 

of significant time-dependent borehole deformation after drilling, there might be time-

dependent borehole wall rock yield during or after drilling that may lead to continued 
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sloughing and hole enlargement, the development of breakouts, or rock fabric deterioration 

due to reactive smectite minerals interaction with the drilling fluids, etc.  

For progressive collapse of a wellbore in a shale formation due to geochemistry effects, 

the time-dependent wellbore wall failure increases with the drilling fluid exposure time and 

the activity of the drilling fluid aqueous phase with respect to the aqueous phase in the shale 

(Jia et. al., 2019). In this case, if the salinity of the mud aqueous phase is greater than the shale 

aqueous phase, water may flow from the shale to the borehole; if the salinity of the mud is less, 

the shale may absorb water in a time-dependent manner, increasing its volume, but also 

weakening the shale and promoting yield (Chenevert, 1970). In terms of the creep phenomenon 

itself, it is exceedingly difficult to determine the mechanism from deformation data alone, even 

if somehow the data are collected continuously over time (an extremely rare event in oil 

industry practice).  At best, one may have “before and after” caliper data if the open hole is re-

logged sometime after the initial logging.  However, the initial logging may have taken place 

days after that wellbore section was drilled, so all early time deformation has been lost.  This 

is a case where data is absent, so it is practically impossible to constrain the time-dependent 

deformations through measurements or even through assumptions of constitutive laws.     

The continued creep behavior of visco-plastic rock, such as shale, can cause the closure 

of the borehole (Xie, 2019), especially if the support pressure afforded by the borehole fluid is 

dropped to a low value. In this section, the terminating creep behavior of hard and stiff visco-

elastic shale rocks governed by the generalized Kelvin rheological model is analyzed. The 

analysis, from a geomechanics point of view, is focused on the rock creep induced borehole 

stresses increases and the resulting borehole wall rock yield, regardless of the geochemical 

effects.   
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The analysis of time-dependent borehole wall yield is conducted using the assumed 

parameters listed in Table 6-1. In addition, the UCS value is taken as 43 MPa, and the friction 

angle is 50o for the borehole wall rock, such that the borehole wall rock does not shear 

immediately after drilling. The tangential stresses at the longer and shorter diameter locations 

of the borehole wall at each time-step in the simulation are calculated considering the stress 

increments due to the creep of the borehole wall rock. Equations (2.8) and (2.10) are programed 

into the modeling tool to determine whether shear yield (breakouts) or tensile rupture (drilling 

induced fractures) will occur.  

Two indicators are calculated, one is the indicator for borehole breakouts occurrence, 

which is the difference between the calculated tangential stress and the maximum allowed 

tangential stress before borehole wall rock be shear yielded as described in equation (2.10); the 

other is the indicator for borehole drilling induced fracture occurrence, which is the difference 

between the calculated tangential stress and the minimum allowed tangential stress before 

borehole wall rock be tensile raptured as described in equation (2.8).  

The simulated variation of tangential stresses with time at the longer diameter location 

of the borehole wall (location B) is represented by the dashed line in Figure 6-3, and at the  

shorter diameter location (location A) it is represented by a solid line. Rock creep increases the 

tangential stresses by up to almost two times. 
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Figure 6-3: Rock creep induced tangential stress variation with time 

Such an increase in tangential stresses might cause borehole wall rock yield or rupture  

before the rock creep terminates. Indicators of borehole breakouts occurrence and drilling 

induced fractures are shown in Figure 6-4, where the red color line represents shear yield at 

the longer diameter location of the borehole wall (location B), and the blue line represents 

tensile rupture at the shorter diameter location of the borehole wall (location A). If the value 

of the indicator is negative, yield or rupture of the borehole wall rock is not occurring yet and 

the rock is intact; if the value of the indicator crosses the zero line (the dotted green line) and 

becomes positive, borehole wall rock yield or rupture is presumed to have occurred.  
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Figure 6-4: Yield & rupture indicators of borehole wall rock 

The example of visco-elastic behavior in this study indicates that although the borehole 

is intact immediately after drilling, breakouts might occur in less than one hour, as shown in 

Figure 6-4. The simulation results also indicate that borehole breakouts will be encouraged by 

rock creep effects whereas drilling induced fractures will not likely happen during the period 

of the time-dependent borehole deformation. Therefore, hydraulic fracturing treatment in 

visco-elastic shale formations is more difficult than in elastic rock formations because of 

increases in tangential stress, leading to increases in the breakdown pressure needed to initiate 

fracturing. 

In addition to the time-dependent borehole breakouts occurrences, the rock creep 

behavior also affects the determination of the in-situ stresses and the rock mechanical 

properties because it affects the measured diameters of the deformed borehole, and these values 

are used in the analysis. The details are illustrated in the following sections. 
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6.3 Creep effect on the determination of in-situ stress  

To understand the effects of time-dependent borehole deformation on the determination of in-

situ stresses, visco-elastic modeling based on the data listed in Table 6-1 was conducted. 

Assume a 26 MPa minimum horizontal stress has been measured; also, consider the longer 

diameter (8.6954 inches) and shorter diameter (8.6777 inches) to have been measured from the 

four-arm caliper tool. For this scenario, the original borehole size, the timing of rock creep, 

and the maximum horizontal stress are assumed to be unknown parameters. The range of these 

unknowns are listed in Table 6-3.  

Table 6-3: Ranges of unknown parameters for visco-elastic calculation 

Original borehole size Timing σH 

inch hour MPa 

8.7-8.8 0-72 35-50 

 

A weighted-sum multi-objective function described in equation (6.1) was applied to 

estimate the maximum horizontal stress and original borehole size at a particular timing after 

drilling.   

min   0.3 × |(𝐷ଵଷ − 8.6954)| + 0.3 × |(𝐷ଶସ − 8.6777)| + 0.4 × |(𝜎௛ − 26)|   (6.1) 

where D13 is the calculated longer diameter length, D24 is the calculated shorter diameter length, 

and h is the calculated minimum horizontal in-situ stress. MatlabTM function "fmincon" was 

used to find the best fitness.   

The optimization of the maximum horizontal in-situ stress is listed in Table 6-4. The 

results show that the objective function values are very close except for the first initial input 

case, which is only slightly smaller than the other three cases. In this case, the calculated 
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maximum horizontal in-situ stress is 43 MPa, based on the 8.75 inches original borehole size 

and a period of 36 hours after drilling.   

However, the calculated length of the longer diameter (8.7333 inches) and the 

calculated length of the shorter diameter (8.6985 inches) are too large when compared to the 

measured length of the longer diameter (8.6954 inches) and the length of the shorter diameter 

(8.6777 inches). This is because the values of objective functions for the longer and shorter 

diameter lengths are around a magnitude of 10-2 inches, which is significantly different in the 

orders of magnitudes of the objective function for the in-situ stress that is around several MPa 

(in magnitude of 100). As a result, the larger objective function value hides the influences of 

the smaller values of other objective function terms in the equation. 

Table 6-4: Results from weighted sum multi-objective function  

Initial 
input 

Objective 
function 

C13 
inch 

C24 
inch 

σH 
MPa 

σh 
MPa 

Timing 
hour 

1 0.0176 8.7333 8.6985 43 26 36.00 

2 0.0176 8.7333 8.6985 43 26 36.00 

3 0.0176 8.7333 8.6985 43 26 36.00 

4 0.0176 8.7333 8.6985 43 26 36.00 

 

To solve this issue, a normalized weighted-sum multi-objective function is considered 

and described in the following form.  

min 0.3 ×
|(஽భయି଼.଺ଽହସ)|

଴.ଵ
+ 0.3 ×

|(஽మరି଼.଺଻଻଻)|

଴.ଵ
+ 0.4 ×

|(ఙ೓ିଶ଺)|

ଵ଴
    (6.2) 

Here, the magnitudes of objective functions for longer and shorter diameter lengths are 

increased from 10-2 to 10-1; the magnitude of the objective function for minimum horizontal 

in-situ stress difference is reduced from 100 to 10-1. The resulted normalized objective 

functions are in the same magnitude of 10-1. A relatively higher weight (0.4) is given to the 

stress objective function considering the importance of the measured in-situ stress. 
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The same constraints and scenarios of initial inputs were applied to the new 

optimization calculation using the normalized weighted-sum multi-objective function. The 

results are shown in Table 6-5.  

Table 6-5: Results from normalized weighted-sum multi-objective function 

Initial 
input 

Objective 
function 

C13 
inch 

C24 
inch 

σH 
MPa 

σh 
MPa 

Original hole 
inch 

Timing 
hour 

1 0.0000 8.6954 8.6777 36 26 8.7066 0.82 

2 0.0043 8.6968 8.6777 35 26 8.7101 20.01 

3 0.0044 8.6968 8.6777 35 26 8.7101 49.98 

4 0.0043 8.6961 8.6770 35 26 8.7094 37.33 

 

It is observed that the normalized weighted-sum multi-objective function gives much 

more reasonable optimization results. Among the four initial inputs, the first input has the 

lowest objective function value, which gives the estimated maximum horizontal stress of 36 

MPa based on the simulated 8.7066 inches original borehole size and the simulated calipers 

measurement time are around 50 minutes after drilling.  

Table 6-6: Inverted maximum horizontal stress using visco-elastic model 

σH 
(elastic model) 

MPa 

σH 
(visco-elastic model) 

MPa 

Timing 
(after drilling) 

hour 
43 36 0.82 

 

Table 6-6 lists the inverted maximum horizontal stress from the linear-elastic model 

and the one from the visco-elastic model. It is observed that the visco-elastic model estimates 

a substantially smaller maximum in-situ stress than the linear-elastic calculations.  

The timing of 50 minutes after drilling is a purely simulated value, which indicates that 

the rock might be less viscous (zero timing means pure linear-elastic rock). In practice, except 

logging while drilling LWD, the timing between drilling and logging might take 6-10 hours 
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for sections just above TD (total depth) for normal operations (time to condition the hole, pull 

out of the hole, deploy the logging tool, lower it to bottom and do the logging); and timing for 

an up-hole section, it can be several days, even 5-6 days. 

6.4 Creep effect on the determination of rock mechanical properties 

Time-dependent borehole deformation will influence the magnitude of the rock mechanical 

properties inversion. If the borehole deformations are measured at a time after drilling, the 

estimated Young's modulus will be larger in the cases of time-dependent deformation than in 

the linear-elastic cases under the same original borehole sizes, mud pressures, and in-situ 

stresses.  

To demonstrate such an influence, a generalised Kelvin visco-elastic model was 

applied to a calculation of visco-elastic borehole deformation calculation and an inversion of 

the Young's modulus based on the parameters listed in Table 6-7.  

Table 6-7: Parameters used for inversion of the Young's modulus  

Hole 
inch 

C13 
inch 

C24 
inch 

σ 
MPa 

σh 
MPa 

Pm 
MPa 

E 
GPa 

Time after drilling 
hour 

6.1200 6.1081 6.0476 140 80 43 20-60 0-72 

 

For these new scenarios, the range of  the Young's modulus was chosen as 20-60 GPa; 

the timing for caliper logging was chosen as 0-72 hours after drilling. The weighted-sum multi-

objective function described in equation (6.3) was applied to invert the Young's modulus 

considering the time-dependent behavior of the rocks. The calculation results are listed in 

Table 6-8. 

min   0.5 × |(𝐷ଵଷ − 𝐶ଵଷ)| + 0.5 × |(𝐷ଶସ − 𝐶ଶସ)|     (6.3) 
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where C13 is the measured longer diameter length from the caliper log,  C24 is the measured 

shorter diameter length from the caliper log, D13 is the calculated longer diameter length,  D24 

is the calculated shorter diameter length.  

Table 6-8: Inverted Young's modulus using visco-elastic model 

E 
(elastic model) 

GPa 

E 
(visco-elastic model) 

GPa 

Time 
(after drilling) 

hour 

23 46 36 

 

The results in Table 6-8 indicate that the inverted Young's modulus from a visco-elstic 

model is larger than from the linear elastic calculation under the same in-situ stresses and the 

original borehole size.  The magnitude is around as twice as large as that deduced from the 

linear elastic model inversion.   

6.5 Summary 

Rock creep effects cause time-dependent borehole deformation, time-dependent breakouts 

occurrence (internal yield), and influence the inversion of in-situ stresses and rock mechanical 

parameters from borehole deformation data. 

In visco-elastic rocks, borehole diameter gradually decreases (borehole shrinkage) with 

time until the rock creep terminates. The difference between the longer and shorter diameters 

increases with time until the termination of rock creep.  

In visco-elastic rock governed by a generalized Kelvin rheological model, the 

tangential stresses on the borehole wall increase because of creep, borehole wall breakouts 

might occur before the creep reaches its terminating stage, and may lead to time-delayed 

borehole sloughing during drilling (up-hole from the drilling bit). In contrast, drilling induced 

tensile fracturing of the borehole wall is less likely to occur after drilling has occurred in the 
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case of a creeping shale described by a generalized Kelvin model. Moreover, in the case of 

hydraulic fracture initiation, it will be more difficult to reach the breakdown pressure because 

the tangential stresses have increased all around the borehole circumference. 

The visco-elastic model estimates a substantially smaller maximum in-situ stress than 

the linear-elastic calculations. However, the Young’s moduli estimated through the application 

of a visco-elastic model are much higher than those calculated from linear-elastic solutions. 

The objective functions for the longer and shorter diameter lengths are significantly 

different in the orders of magnitudes than the objective function for the in-situ stress. In such 

cases, a normalized weighted-sum multi-objective function should be used.  
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Chapter 7 

Case studies for determination of in-situ stress and  rock 

mechanics parameters from borehole deformation data  

In this chapter, six case studies are demonstrated for the inversion of the in-situ stress and rock 

mechanics parameters from borehole deformation data: the Marcellus shale, the Liard Basin, 

the Duvernay Formation, the Karamay Basin, the Montney Formation near POUCE COUPE 

of western Canada, and the Albert Formation in New Brunswick in eastern Canada.   

7.1 Marcellus shale 

The methodology of the determination of in-situ stresses and the rock mechanical parameters 

from borehole deformation data was first demonstrated by a field study in West Virginia, 

southern Appalachian Basin, USA. Drilling data and borehole geometry information collected 

from MIP 3H vertical borehole section (before it was deviated to a horizontal attitude) were 

used for the determination of rock mechanical properties and horizontal in-situ stresses. The 

location of the well is shown in Figure 6-1.  

 

Figure 7-1: Location of the MIP 3H vertical borehole 
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In this analysis, the genetic algorithm (GA), the artificial neural network (ANN) 

approach, and the statistics analysis are combined to estimate the in-situ stress and rock 

mechanical properties based on the borehole displacements. The inclusion of the ANN model 

in this example is for assessment of its use for future highly non-linear cases, where patterns 

based on the characteristic relationships between the inputs and outputs can be modeled. 

7.1.1 Data base 

The depth of the target formation in the study of MIP 3H well is the lower Marcellus Formation 

whose top is at 7538.5 feet (true vertical depth at 7536 feet). The formation was drilled using a 

drilling bit of 8.75 inches in size with a mud pressure of around 35 MPa. The vertical stress is 54 

MPa; the measured longer borehole diameter C13 is 8.9079 inches, while the measured shorter 

borehole diameter C24 is 8.8782 inches. The data are listed in Table 7-1. 

Table 7-1: Available known parameters of MIP 3H well  

Parameter 
Unit 

pm 
MPa 

v 
MPa 

Bit Size 
inch 

C13 
inch 

C24 
inch 

Value 35 54 8.75 8.9079 8.8782 

 

The input training and testing data for ANN are calculated based on the parameters 

listed in Table 7-2. A total of 1024 combinations were generated. Thus, 1024 sets of longer 

and shorter diameters, C13 and C24, were calculated using equations (2.26) and (2.27). 

Table 7-2: Parameters used for the generation of training and testing data. 

Parameter 
unit 

2r 
inch 

v 
E 

GPa 
H 

MPa 
h 

MPa 
start value 8.9250 0.16 5 40 25 
increment 0.0875 0.06 5 5 5 
end value 9.1875 0.34 20 55 40 
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7.1.2 Stress estimation combining ANN-GA-Statistics methods  

Once the ANN is trained, inverse analysis is conducted to characterize the relationship between 

input and output. Then fitness (objective function), the difference between the borehole longer 

and shorter diameters in this case, is established and GA is used as an optimization tool to 

search for solutions from a wide range of inputs that meet the established objective function. 

Solutions that have a stronger fitness are selected as the results.  

Each modeling cycle runs 100 realizations for probabilistic analysis. The first 100 

ANN-GA model realizations for five unknown input parameters are shown in Figure 7-2. 

Except for the ratio of borehole size over bit size, the remaining four parameters, the Young’s 

modulus, the Poisson’s ratio, the maximum horizontal stress, and the minimum horizontal 

stress, are evenly scattered without any obvious high frequency values.  

 
Figure 7-2: Results of 100 realizations for five parameters. 
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In the histogram of the ratio of borehole size over bit size (Figure 7-3), an obvious high 

frequency indicates a value about 1.018. The corresponding borehole size is 8.9075 inches. 

Therefore, a hole size of 8.9075 inches was then applied as a known factor for the re-calculation 

of the training data with the ranges of Young’s modulus, Poisson’s ratio, and maximum and 

minimum horizontal stresses. 

 
Figure 7-3: Histogram of the ratio of hole size over bit size 

The results of another 100 realizations of ANN-GA model with four unknown 

parameters is shown in Figure 7-4. When compared with the five parameters’ results in Figure 

7-2, the value range of each parameters becomes a bit narrower; however, the values are still 

quite scattered without showing any strongly constrained value. The histogram of these four 

parameters is shown in Figure 7-5. The highest frequency value in the Poisson’s ratio at 0.29 

is chosen as fixed, and the highest frequency value of minimum horizontal stress at 34 MPa is 

also selected. Thereafter, the input unknown parameters are reduced to two: Young’s modulus 

and maximum horizontal stress. The results of 100 new GA-ANN modeling realizations for 

the reduced unknown parameters are shown in Figure 7-6. 
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Figure 7-4: Results of 100 ANN-GA realizations for four parameters. 

 

 

 
Figure 7-5: Histogram of Poisson’s ratio, Young’s modulus, minimum horizontal stress, 

and maximum horizontal stress  
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Figure 7-6: Results of Young’s modulus and maximum horizontal stress of 100 

realizations of ANN-GA model  

Figure 7-6 shows that the calculated results for Young’s modulus and maximum 

horizontal stress are quite consistent in multiple realizations. The average value for the 

Young’s modulus is 17.1 GPa; the average value for the maximum horizontal stress is 50 MPa. 

Therefore, in the case study of the MIP 3H well, if borehole mud pressure is 35 MPa 

and vertical stress is 54 MPa, the estimated original borehole size should be 8.9075 inches. It 

was determined by a combined ANN-GA-Statistics analysis method that the maximum 

horizontal in-situ stress is 50 MPa, the minimum horizontal in-situ stress is 34 MPa, Young’s 

modulus is 17.1 GPa, and Poisson’s ratio is 0.29. 

7.1.3 Verification by forward modeling 

In order to verify the inversely calculated geomechanical properties and the horizontal in-situ 

stresses for the MIP 3H vertical borehole, a forward calculation of the borehole deformations 
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using the finite element method was conducted. Parameters used for the FEM simulation are 

listed in Table 7-3; the mesh of the finite element model is shown in Figure 7-7. 

Table 7-3: Input parameters in forward modeling 

Parameter Value 

Young’s Modulus, E (GPa) 17.1 

Poisson’s Ratio, v 0.29 

Radius of borehole, r (in) 4.454 

Maximum principal stress, H (MPa) 50 

Minimum principal stress, h (MPa) 34 

Vertical stress, v (MPa) 54 

Mud pressure, pm (MPa) 35 

 

 
Figure 7-7: Mesh of the finite element model 
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Using the estimated original borehole diameter of 8.9075 inches, the calculated shorter 

borehole diameter (C24) is 8.8801 inches for the elliptical borehole; while the calculated longer 

diameter (C13) is 8.9101 inches. The ratio of the calculated shorter diameter and longer 

diameter is 0.9966. The finite element modeling results are listed in Table 7-4. When compared 

with the measured shorter and longer diameters reported from the four-arm caliper data, which 

are 0.8782 inches and 8.9079 inches respectively, the difference is minor, and the errors are 

small (around 10−3 to 10−4). The relationship that the ANN-GA-Statistics method revealed is 

consistent with the calculations from the finite element method. 

Table 7-4: Calculated deformation from the estimated parameters using FEM 

Measured Finite Element Method Errors 
C24 

(inches) 
C13 

(inches) 
C24/C13 C24 (inches) C13 (inches) C24/C13 

C24 
(inches) 

C13 
(inches) 

C24/C13 

8.8782 8.9079 0.9967 8.8801 8.9101 0.9966 0.0019 0.0022 −0.0001 

7.1.4 Comparison with field data 

Table 6-5 shows the comparison of the ANN-GA-Statistics based inverse analysis results of 

rock mechanical properties and horizontal in-situ stresses with the reports of the field 

observations in the area and the hydraulic fracture treatment results for the well MIP 3H.  

Table 7-5: Comparison of inversion results with the field observations in Lower 

Marcellus formation 

GA-ANN Method Field Observation 

E, GPa  H, MPa h, MPa E, GPa  H, MPa h, MPa 

17.1 0.29 50 34 To be tested To be tested <54 35 (15 min after ISIP) 

 

A basin-wide stress study indicated h/ values of up to 0.7 for the corresponding 

depth at this well location (Evans, 1989); for a vertical stress of 54 MPa as listed in Table 7-5, 

the upper bound minimum horizontal stress should be 38 MPa. The estimation of minimum 
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horizontal in-situ stress as 34 MPa is consistent with the basin-wide study, given typical 

dispersion of geological data and the accuracy of the methodology herein. 

The minimum horizontal in-situ stress determined by the ANN-GA-Statistics method 

is also compared with the hydraulic fracture treatment records. The first stage of the multi-

stage hydraulic fracture treatment in this formation of the MIP 3H well reported a pressure of 

35 MPa 15 min after the instantaneous-shut-in-pressure (ISIP). The pressure is considered 

close to the fracture closure pressure, which is representative of the smallest principle in-situ 

stress, i.e., the minimum horizontal stress in this case. In this study, the estimated minimum 

horizontal stress of 34 MPa is in reasonable agreement with the field observations.  

Evans also stated in the Appalachian Stress Study Report that the magnitude of H 

varies from higher values in the northern part of the basin to lower values in the south. The 

stress state in the Devonian shale, of which the Marcellus Formation is a part, is either a strike 

slip or a normal fault regime due to the pinch-out of the underlying salt (Evans, 1989). The 

location of the studied well is around the pinch-out area (Pierce et al., 1962). Therefore, a value 

of H/ = 1 should be an upper limit. That means the maximum horizontal stress should be 

smaller than 54 MPa, which is the magnitude of the vertical stress. This also indicates that the 

maximum horizontal in-situ stress estimated by the proposed ANN-GA-Statistics method, 50 

MPa, is a reasonable value. 

7.1.5 Summary of the Marcellus Shale case study 

Demonstrably, it is possible to estimate rock mechanical properties and horizontal in-situ 

stresses from borehole deformation data. Uncertainties in results can be reduced by combining 

statistics analysis with the ANN-GA method. Since there is no direct stress measurement and 

rock mechanics test data for this well to calibrate the calculated results, future field 
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measurements or careful lab test work might be valuable to further demonstrate the usefulness 

of the methodology. 

The correct estimate of borehole size is an important factor influencing the magnitude 

of borehole displacement and must be considered different from the bit size. The original 

borehole size is treated as an unknown input and its value is estimated by inverse calculation 

from deformation data. However, the relationship between the bit size and the borehole size is 

still unknown. Additional field tests will be useful to further validate the relationship. 

In this example, histograms are used to identify high frequency values of one parameter 

in the ANN-GA realizations and use it as a known input for the subsequent ANN-GA 

modeling. In the next section of addressing a Liard Basin (British Columbia) case, instead of 

using a fixed high frequency value of a parameter for sub-sequent modeling, the use of reduced 

ranges of parameters (narrower constrain ranges) based on the high frequency interval in 

histogram for sub-sequent GA modeling will be demonstrated. 

7.2 Liard Basin 

Stress inversion using GA modeling and statistics analysis method is demonstrated by a field 

study in the Liard Basin, western Canada (Figure 7-8). Borehole deformation data was taken 

from four-arm caliper logging data of the Well A-006-C/094-O-08. Other parameters were 

taken from the report "In-situ stress orientations and magnitudes in the Liard Basin of Western 

Canada" by Bell (Bell 2015). 
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Figure 7-8: Location of Liard Basin 

7.2.1 Defining the realistic ranges for input parameters 

At the top of the Fort Simpson Formation in Well A-006-C/094-O-08 in the Liard Basin (depth 

of ~ 1409 meters), neither breakouts nor drilling-induced fractures were reported. The nominal 

bit size was 8.5 inches while drilling this section. The measured longer borehole diameter C13 

from the four-arm caliper log is 8.7100 inches;  the measured shorter borehole diameter C24 is 

8.4918 inches. The pore pressure in the area is hydrostatic and the drilling was balanced (Bell 

2015); therefore, 14 MPa is adopted as the pore pressure and the mud pressure. The vertical 

in-situ stress and Poisson's ratio were taken from the report by Bell (Bell 2015).  These known 

parameters are listed in Table 7-6.  
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Table 7-6: Available known parameters for Well A-006-C/094-O-08 

pm v Bit size C13 C24  
MPa MPa inch inch inch  
14 35 8.5 8.7100 8.4918 0.2 

 

The unknown parameters are constrained by determining corresponding realistic 

ranges. For the range of the original borehole sizes, it is assumed that it is no less than the size 

of bit, which is 8.5 inches, up to a value that is bigger than the longer diameter length (8.8 

inches was used for this scenario.   

The range of Young's modulus is chosen from literature values in gas shale rocks at 

various depths (Eshkalak et al., 2014; Gao et al., 2015; Josh et al., 2012; Dewhurst and 

Henning, 2003; Islam and Skalle, 2013).   

The ranges of the horizontal stresses are determined based on the strike-slip-fault stress 

regime which means that the vertical stress is the intermediate principal stress; the ranges are 

further constrained by the fact that neither borehole breakouts nor drilling-induced fractures 

have occurred. By referring to equations (2.8) and (2.10) in Chapter 2, which describe the 

relationship of tensile rupture, shear yield, and the stresses around the borehole wall,  the 

constraints for the horizontal stresses can be described in the following form 

 𝜎௛ < 𝜎௩ < 𝜎ு         (7.1) 

  (𝑝௠ + 𝛼𝑝 + 𝜎ு − 𝑇଴)/3 < 𝜎௛ < 𝜎௩     (7.2) 

  𝜎௩ < 𝜎ு < [𝑈𝐶𝑆 + tanଶ ቀ
గ

ସ
+

∅

ଶ
ቁ × (𝑝௠ − 𝛼𝑝) + 𝜎௛ + 𝑝௠ + 𝛼𝑝]/3  (7.3) 

where σH
 
is the far-field maximum horizontal principal stress, σh is the far-field minimum 

horizontal principal stress, σv is the vertical principal stress, pm is the mud pressure inside 
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borehole,  p is the formation pore pressure,  is the Biot coefficient,  is the friction angle of 

the borehole wall rock, T0 is the tensile strength of the borehole wall rock, and UCS is the 

unconfined compressive strength. 

Considering the strike-slip-fault stress regime, the far-field minimum horizontal 

principal stress, σh, should be smaller than 35 MPa, which is the magnitude of the vertical stress 

σv, whereas the magnitude of the far-field maximum horizontal stress, σH, should be larger than 

35 MPa. The tensile strength T0, is assumed to be zero in this analysis. The well was drilled 

with a balanced mud pressure and pore pressure, which is 14 MPa. The friction angle of quartz-

rich shale rock can be assumed ~30o. There is no UCS value reported in Bell's report, so an 

empirical estimation developed by Farrokhrouz and others (Farrokhrouz et al. 2014) was used 

for calculating the UCS value of the shale borehole wall.  The empirical equation is described 

as follows: 

   𝑈𝐶𝑆 = 6.62 ×
ாబ.ఱబమ

∅బ.రరఴ     (7.4) 

where E is the Young's modulus (in GPa) of the borehole rock, and is the porosity of the 

borehole rock. When using the upper bound of the Young's modulus range (4 GPa) and 

assuming a low porosity of 2%, the UCS value can be approximated empirically, and in turn, 

the range of the maximum horizontal stress can be estimated. The constraints for the unknown 

parameters’ ranges are listed in Table 7-7.   

Table 7-7: Ranges of unknown parameters for stress inversion in Liard Basin  

2r E σH σh 

inch GPa MPa MPa 

8.5000-8.8000 0.9-4.0 35-50 20-35 
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7.2.2 Results of GA modeling and statistic inversion 

In this case study, the linear-elastic model is considered for the calculation of the in-situ 

stresses from the borehole deformation data. Results from a total of 100 realizations of GA 

runs for four unknown input parameters (considered original borehole size, Young's modulus, 

and the two horizontal stresses) are shown in Figure 7-9.   

 

Figure 7-9: Results 100 GA realizations for Well A-006-C/094-O-08 

Each of the 100 realizations gives the borehole deformations that matches those 

measured from caliper logs. However, not all the four parameters show an obvious high 

frequency interval. To narrow the parameter ranges, histograms for all these four parameters: 

the maximum horizontal stress, the minimum horizontal stress, the Young’s modulus, and the 

hole/bit ratio, are drawn and shown in Figure 7-10, in which each parameter was sub-grouped 

into 5 subsets.  
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Figure 7-10: Histogram the four parameters of 100 GA realizations 

The frequency of each subset of a parameter is different:  

 the maximum frequency of subsets in maximum horizontal stress is 

P(H = 41~44) = 29%.  

 the maximum frequency of subsets in the ratio of borehole size over bit 

size is P(Hole/bit = 1.0235~1.0264) = 27%. The corresponding original 

borehole is 8.6955-8.7210 inches. 

 there are two maximum frequency of subsets in Young's modulus: P(E 

= 2.8~3.2) = 25% and P(E= 3.2~3.6) = 25%, which can be combined to 

P(E= 2.8~3.6) = 50%.  

 the minimum horizontal stress does not show an obvious highest 

frequency subset; three subsets in the range of 20 MPa to 28 MPa exhibit 

similar frequency.  
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Therefore, subsets having the highest probability of occurrences based on the 

histograms are used as the reduced ranges for the maximum horizontal stress, the original 

borehole size, and Young's modulus. While the range for the minimum horizontal in-situ stress 

is remained same. The reduced ranges of the unknown parameters are listed in Table 7-8. 

Table 7-8: Reduced ranges of unknown parameters for stress inversion 

2r E σH σh 
inch GPa MPa MPa 

8.6955~8.7210 2.8~3.6 41~45 20~35 

 

GA re-calculations were performed on the reduced ranges of the unknown parameters 

listed in Table 7-8. The new 100 realizations are shown in Figure 7-11.  

 

 

Figure 7-11: Re-run of GA for Well A-006-C/094-O-08 using reduced ranges 

 



 

 174 

It is observed from results of re-running 100 GA realizations with reduced ranges of 

the maximum horizontal stress, the ratio of original borehole size over bit size, and the Young's 

modulus that the variation of each estimated parameter is much smaller. Histograms of the 

maximum horizontal stress, the minimum horizontal stress, the Young's modulus, and the ratio 

of original borehole size over bit size for the re-running of the GA model are shown in Figure 

7-12. Because the variations are small in the calculated maximum and minimum horizontal 

stresses, ranges of some sub-sets in the histograms are smaller than one MPa.  

 

 

Figure 7-12: Histograms of estimation results using reduced parameters ranges 

 

It is reasonable to choose, according to the highest frequencies from the histograms, 

the maximum horizontal stress as 43 MPa, the minimum horizontal stress as 21 MPa, the 

Young’s modulus as 3.5 GPa, and the hole over bit ratio as 1.0256, which corresponds to an 

original borehole size of 8.7176 inches. The estimated results are summarized in Table 7-9.  
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Table 7-9: Results of borehole size and stress estimation 

2r E σH σh 

inch GPa MPa MPa 

8.7176 3.5 43 21 

 

The original borehole size is estimated in terms of the ratio of borehole size over the 

bit size in this case study as well as in the first case study. The purpose is to see how original 

borehole sizes are related to bit sizes. In these two examples the original borehole sizes are 

around 1.01 to 1.03 of bit sizes. Although it is difficult to find an obvious relationship because 

there are too many factors such as the lithology, erosion and damage and whirling of the bit 

influencing the original borehole size, such a ratio can serve as a reference for determining 

ranges of original borehole size inputs in future cases studies.  

7.2.3 Comparison of GA modeling and statistic estimation with field data 

Table 7-10 shows the comparison between the results of the probabilistic GA model inversion 

analysis and the results reported by Bell (Bell 2015).  The estimated maximum horizontal stress 

is in reasonable agreement with the reported maximum horizontal stress. The estimated 

minimum horizontal stress in Bell’s report is taken from the leak-off pressure, which is usually 

regarded as an upper limit for the minimum horizontal in-situ stress estimation. The GA 

method estimated the Young's modulus value is 3.5 GPa. There is no Young’s modulus value 

reported in Bell's report, but there are reports of Young's modulus values in similar ranges for 

gas shale rocks at similar depths (Eshkalak et al, 2014; Gao et al. 2015; Josh et al., 2012; 
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Dewhurst and Henning, 2003; Islam and Skalle, 2013), which have been reasonably used as a 

comparison.  

Table 7-10: Comparison between inverted and reported horizontal stresses 

GA  method Reported field data 
E σH σh E σH σh 

GPa MPa MPa GPa MPa MPa 

3.5 43 21 N/A 42 26 

 

7.2.4 Summary of the Liard Basin case study 

The Liard Basin case study demonstrates a method using GA modeling and statistics analysis 

methods for in-situ stresses and rock mechanical parameters inverse estimation. In this method, 

reduced ranges of parameters are determined based on the highest frequency interval in 

histograms for sub-sequent GA re-modeling and further statistics analysis. The GA re-

modeling results in much smaller variations in the estimated parameters. It is straightforward 

to find the highest occurrences for each parameter from the histograms based on the reduced 

ranges. The results are in reasonable agreements with the reported field observations.  

Although the GA modeling and statistics method is more time efficient than the ANN-

GA method, it still takes more than one hour to estimate in-situ stresses and rock mechanical 

parameters for a single depth. Therefore, the application of the Matlab ™ fmincon function for 

weighted-sum multi-objective optimization of in-situ stresses and rock mechanical parameters 

estimation is demonstrated in the following case study, the Duvernay Formation case.  

7.3 Duvernay Formation 

The Duvernay Formation covers an area of approximately 130000 square kilometers, or 20% 

of the area of Alberta in Western Canada as shown in Figure 7-13 (Alberta Energy Regulator, 
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2016). The Duvernay Formation was first defined by geological staff at the western division 

of Imperial Oil Limited in 1950 as dark grey to brown, bituminous shale in wells drilled near 

the town site of Duvernay. Since 2011, the development of this formation has steadily 

increased with horizontal drilling and multi-stage hydraulic fracturing treatments.   

 

Figure 7-13: Duvernay depositional extent in central Alberta, Canada  

7.3.1 Identification of borehole breakouts from four-arm caliper logs 

In the practice of estimating stresses using borehole deformation data measured from caliper 

logs, it is important to identify whether there is borehole breakout occurrence or not.  Image 

logs are the best tool to identify the occurrences of breakouts of the borehole wall.  However, 

image logs are not always available due to the relative high costs, and other methods are needed 

to identify borehole breakouts. 
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A four-arm caliper tool, as described in Chapter 2, can be applied to identify the 

occurrence of borehole breakouts (Plumb and Hickman, 1985).  The patterns of the longer and 

shorter arms of a caliper tool enable the interpretation of zones of stress-induced breakouts 

from other borehole enlargements such as washouts and key seats (Figure 7-14). To identify 

zones of breakouts and the orientations of the breakouts, the criteria (Plumb and Hickman, 

1985) listed in Table 7-11 are suggested (Reinecker et al., 2003;  Khoo et al., 2015). 

However, in this research, the purpose is to identify the depth of elastic deformations 

instead of breakouts; therefore, the criteria were modified to locate intervals that only reflect 

elastic deformations (Table 7-12).   

 

 

Figure 7-14: Types of borehole enlargement and their caliper log response 
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Table 7-11: Criteria for identification of breakouts based on four-arm caliper logs 

1. Tool rotation must cease in the zone of enlargement. 

2. There must be clear tool rotation into and out of the enlargement zone. 

3. The smaller caliper reading is close to bit size. Top and bottom of the breakout should be 
well marked. 

4. Caliper difference must exceed bit size by 10 %. 

5. The enlargement orientation should not coincide with the high side of the borehole in 
wells deviated by more than 5°. 

6. The length of the enlargement zone must be greater than 1 m. 

Table 7-12: Criteria for identifying non-breakouts borehole deformations  

1. Consider only a vertical borehole with deviation smaller than 5°. 

2. Tool rotation must cease in the zone of enlargement (indicating genuine ellipticity). 

3. The smaller caliper reading is close to bit size (i.e., no large washout).  

4. Caliper difference must no more than 10 % of bit size (i.e., no breakout). 

5. The length of the enlargement zone must be greater than 1 m (to assure a real reading). 

In order to collect sufficient four-arm caliper logging data, 21 wells with four-arm 

caliper logs were reviewed.  Among these wells, seven have drilled through the Duvernay 

Formation.  By using the criteria in Table 7-12, non-breakout intervals were identified in three 

of the seven wells. These three wells are listed in Table 7-13 and were used for the estimation 

of in-situ stresses. The locations of the three wells are shown in Figure 7-15. Borehole 

diameters measured from the four-arm caliper logs are shown in Figure 7-16 to Figure 7-21.  

Table 7-13: Available wells suitable for in-situ stress determination  

Well ID Depth (m) Bit size (inch) C24 (inch) C13 (inch) 

00-06-12-046-17W5-0  4588 8.5 8.5188 9.1339 

00-06-26-064-01W6-0  3876 6 6.0476 6.1081 

00-07-34-053-15W5-0  3205 8.75 8.8632 9.4439 
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Figure 7-15: Location of the three wells in Duvernay Formation case study 

 

 

Figure 7-16: Caliper log data of Well 00-06-12-046-17W5-0 in the Duvernay Formation 
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Figure 7-17: Non-breakout section of Well 00-06-12-046-17W5-0 

 

 

 

Figure 7-18: Caliper log data of Well 00-06-26-064-01W6-0 in the Duvernay Formation 
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Figure 7-19: Non-breakout section of Well 00-06-26-064-01W6-0 

 

 

 

Figure 7-20: Caliper log data of Well 00-07-34-053-15W5-0 in the Duvernay Formation 
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Figure 7-21: Non-breakout section of Well 00-07-34-053-15W5-0 

7.3.2 Determination of the vertical stress and the formation pore pressure 

The magnitude of the vertical stress is assumed to be equal to the weight of overlying rock and 

can be calculated from the integration of bulk density logs using the following equation: 

   𝜎௩ = 9.81 × ∫ 𝜌(𝑧)𝑑𝑧
௭

଴
     (7.5) 

where σv
  
is the vertical stress, z is the depth , (z) is the density of the rock at depth z. The pore 

pressures for the Duvernay Formation of these three wells are calculated using the Eaton's 

method as described in equation (1.14).  Density logs and acoustic slowness logs are used for 

calculating the vertical stresses and the pore pressures for each well. Because density porosities 

are too small due to the high readings of density logs in the depth section (some depths give 

zero or negative porosity values), average values of neutron porosity and density porosity will 

be used for the range estimation of maximum horizontal stresses in the next section. The results 
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of the calculated vertical stresses, the formation pore pressures, and the porosities, are listed in 

the Table 7-14. 

Table 7-14: The calculated vertical stresses and the pore pressures 

Well ID 
Depth 

(m) 

Vertical stress  Pore pressure Porosity 

Magnitude 

(MPa) 

Gradient 

(kPa/m) 

Magnitude 

(MPa) 

Gradient 

(kPa/m) 

 

(%) 
00-06-12-046-17W5-0  4588 110 24 81 18 4 

00-06-26-064-01W6-0  3876 93 24 70 18 5 

00-07-34-053-15W5-0  3205 76 24 57 18 5 

7.3.3 Known and unknown parameters 

The known parameters for the in-situ stresses and rock mechanical parameters calculation are 

listed in Table 7-15. The mud pressures are estimated from the drilling mud weight considering 

the equivalent circulation density effects. The longer and shorter diameters are read from the 

four-arm caliper logs. The Poisson's ratios are calculated from sonic log values at the 

corresponding depth for each well. 

Table 7-15: Available parameters of the wells for inverse analysis 

 Pm σv Bit size  C13 C24  

 MPa MPa inch inch inch  

00-06-12-046-17W5-0  55 110 8.5 9.1339 8.5188 0.24 

00-06-26-064-01W6-0  43 93 6 6.1081 6.0476 0.21 

00-07-34-053-15W5-0  34 76 8.75 9.4439 8.8632 0.21 

 

The far-field maximum horizontal principal stress σH, the far-field minimum horizontal 

principal stress σh, and the original borehole size 2r, are generally unknown.  As discussed in 

Chapter 2, the original borehole sizes should be slightly larger than bit sizes due to factors such 

as the lithology, erosion from fluid and cuttings, surface damage and whirling of the bit. 
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Furthermore, from the mud weight information and the estimated pore pressure data, the 

drilling of these Duvernay shale strata took place in an underbalanced condition, and it is 

therefore reasonable to assume an even larger original borehole size because of the additional 

force arising from a downward pressure gradient toward the borehole. In this study, the 

constrained range of the original borehole size is set to be from the length of the C24 caliper 

measurement to a length 1.1 times the actual bit size.  

For the range of Young's modulus, a reported Young's modulus range of 49~57 GPa 

for the Montney Formation is available (Riazi et al., 2017), so a conservative range of 1~60 

GPa is chosen for analysis.  The lower constraint range for E, down to 1 GPa, is in recognition 

that an impact of possible near-wellbore damage is to degrade the modulus (Turon et al., 2006; 

Liu et al., 2013; Bai et al., 2020). 

Considering the existence of a strike-slip fault stress regime, equations (7.1), (7.2), 

(7.3), and (7.4) are used to determine the ranges of the maximum and the minimum horizontal 

stresses. The tensile strength T0, is assumed to be zero. The dense quartzose shale rock friction 

angle is taken to be around 45o and the UCS value through equation (7.4) was determined using 

the upper bound (60 GPa) of the Young's modulus range and the measured porosities listed in 

table 7-14. As a result, the range of  the maximum horizontal stress can be estimated.  

The ranges for the unknown parameters are listed in Table 7-16.   

Table 7-16: Ranges of unknown parameters for the three wells in Duvernay Formation 

 2r E σh σH 

 inch GPa MPa MPa 

00-06-12-046-17W5-0  8.52-9.35 1-60 81-110 110-180 

00-06-26-064-01W6-0  6.05-6.60 1-60 69-93 93-156 

00-07-34-053-15W5-0  8.86-9.62 1-60 56-76 76-140 
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7.3.4 Stress inversion 

As discussed in Chapter 5, a MatlabTM function "fmincon" was used to find the optimum 

solution in the Duvernay Formation case study. Objective functions in the form of equations 

(7.6), (7.7), and (7.8) are applied to the three wells in investigation, respectively.  

min   0.5 × |(𝐶ଵଷ − 9.1339)| + 0.5 × |(𝐶ଶସ − 8.5188)|     (7.6) 

min   0.5 × |(𝐶ଵଷ − 6.1081)| + 0.5 × |(𝐶ଶସ − 6.0476)|     (7.7) 

min   0.5 × |(𝐶ଵଷ − 9.4439)| + 0.5 × |(𝐶ଶସ − 8.8632)|     (7.8) 

Here, C13 is the calculated longer diameter length,  C24 is the calculated shorter diameter length. 

Equation (7.6) is the objective function for in-situ stresses and Young’s modulus estimation 

for Well 00-06-12-046-17W5-0; numbers 9.1339 inches and 8.5188 inches are the measured 

longer and shorter diameters at the investigation depth of this well. Equation (7.7) is the 

objective function for in-situ stresses and Young’s modulus estimation for Well 00-06-12-046-

17W5-0; numbers 6.1081 inches and 6.0476 inches are the measured longer and shorter 

diameters of this well. Equation (7.8) is the objective function for in-situ stresses and Young’s 

modulus estimation for Well 00-06-12-046-17W5-0; numbers 9.4439 inches and 8.8632 inches 

are the measured longer and shorter diameters of this well. 

The analytical elastic borehole deformation solutions were applied for the calculation 

of C13 and C24. The values obtained for the horizontal in-situ stresses and the Young’s modulus 

for these three wells are listed in Tables 7-17, 7-18, and 7-19 respectively. The optimum 

solutions are shown in Table 7-20 by choosing the smallest value of the objective functions. 
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Table 7-17: Optimization results of well 00-06-12-046-17W5-0 

Initial 
input 

Objective 
Function 

C13 
inch 

C24 
inch 

E 
GPa 

σh 
MPa 

σH 
MPa 

1 1.60E-08 9.1339 8.5188 4.0 90 162 

2 3.21E-08 9.1339 8.5188 2.6 83 129 

3 9.29E-10 9.1339 8.5188 2.9 88 140 

4 3.66E-08 9.1339 8.5188 3.4 89 148 

5 5.65E-08 9.1339 8.5188 3.8 88 155 

6 2.77E-01 9.1339 9.0737 29.9 103 155 

7 5.38E-08 9.1339 8.5188 5.0 86 175 

8 0.285773 9.1339 9.0903 55.1 104 174 

 

 

 

Table 7-18: Optimization results of well 00-06-26-064-01W6-0 

Initial 
input 

Objective 
Function 

C13 
inch 

C24 
inch 

E 
GPa 

σh 
MPa 

σH 
MPa 

1 2.09E-08 6.1081 6.0476 12.7 84 117 

2 2.82E-08 6.1081 6.0476 12.3 81 113 

3 1.38E-08 6.1081 6.0476 14.9 80 119 

4 2.94E-08 6.1081 6.0476 18.1 82 129 

5 1.67E-09 6.1081 6.0476 20.1 83 135 

6 1.88E-08 6.1081 6.0476 23.9 82 144 

7 3.96E-08 6.1081 6.0476 28.1 76 149 

8 4.62E-08 6.1081 6.0476 17.3 83 128 
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Table 7-19: Optimization results of well 00-07-34-053-15W5-0 

Initial 
input 

Objective 
Function 

C13 
inch 

C24 
inch 

E 
GPa 

σh 
MPa 

σH 
MPa 

1 2.44E-07 9.4439 8.8632 3.8 63 124 

2 0.000224 9.4435 8.8632 2.3 60 96 

3 4.06E-08 9.4439 8.8632 3.2 66 116 

4 1.62E-08 9.4439 8.8632 2.8 60 105 

5 4.67E-08 9.4439 8.8632 3.9 63 125 

6 2.24E-08 9.4439 8.8632 4.3 64 132 

7 0.262476 9.4439 9.3882 39.7 69 130 

8 5.11E-08 9.4439 8.8632 4.4 60 131 

 

Table 7-20: Estimated in-situ stresses and Young’s modulus for the three wells 

Well ID 
Bit size 

inch 
E 

GPa 
σh 

MPa 
σH 

MPa 
σh   gradient 

kPa/m 

00-06-12-046-17W5-0 8.50 2.9 88 140 19.3 

00-06-26-064-01W6-0 6.00 20.1 83 135 21.4 

00-07-34-053-15W5-0 8.75 2.8 60 105 18.6 

 

The estimated minimum horizontal stress gradient is 19-21 kPa/m, which agrees with 

the reported far-field minimum horizontal principal stress gradient in the Duvernay Formation 

near Fox Creek, Alberta, which is from 17 to 22 kPa/m (Shen et al., 2018). There is no 

maximum horizontal stress magnitude reported for the area. 

The estimated Young's modulus for the well 00-06-26-064-01W6-0 makes more sense 

than the magnitudes of the Young's modulus estimated for the other two wells. The Young's 

modulus values of ~3 GPa for the rocks buried 3000-5000 meters are extremely low. However, 

they are the best estimations through the linear elastic theory constrained by the in-situ stresses 

regime and the observed borehole deformations. However, note that the deviatoric stresses in 

this region are quite high and therefore the rock mass is closer to a yield state than other 
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examples herein, and this is far more likely to lead to borehole wall damage even if no 

breakouts exist. So, if the rock is indeed strongly micro-fissured in the intervals evaluated, a 

low effective Young’s modulus could be the case for the near-wellbore rock. 

Another possible explanation is that the criterion of "caliper difference must be more 

than 10% of bit size " for identifying breakouts occurrences might be too conservative. In fact, 

if borehole wall rocks are sheared (yielded) without rock blocks falling out of the borehole 

wall (as shown in Figure 7-22), the four-arm caliper log may not be able to detect it. From the 

observation of diameters difference relative to the bit size in this case (as shown in Table 7-

21), the breakouts might have occurred even if the caliper differences are as low as 7% of bit 

size.  

 

 

Figure 7-22: Un-sloughed breakouts on a sheared vertical borehole wall 
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Table 7-21: Caliper differences over bit sizes of the three wells 

 Bit size C13 C24 (C13-C24)/bit size 

 inch inch inch  

00-06-12-046-17W5-0  8.5 9.1339 8.5188 0.07 

00-06-26-064-01W6-0  6 6.1081 6.0476 0.01 

00-07-34-053-15W5-0  8.75 9.4439 8.8632 0.07 

 

Furthermore, as discussed in Chapter 6, the borehole rock creep behavior might have 

influenced the borehole wall deformation and the potential for borehole wall breakouts, 

therefore, would impact the calculation of in-situ stresses and rock mechanical parameters. In 

the following section, in-situ stresses and Young’s modulus inversions through visco-elastic 

method are conducted and compared with those calculated through linear-elastic method. 

7.3.5 Comparison between linear-elastic and visco-elastic inversion results  

To estimate in-situ stresses and Young’s moduli from borehole deformation measurements 

considering rock creep effects, a generalised Kelvin visco-elastic model was applied to a 

calculation of visco-elastic borehole deformation calculation and an inversion of the Young's 

moduli. For comparison purpose, both the visco-elastic inversion results and the linear-elastic 

inversion results are listed in in Table 7-22. 
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Table 7-22: Results of linear-elastic inversion and visco-elastic inversion 

 Inversion through linear-elastic method 

Well ID 
E 

GPa 
σh 

MPa 
σH 

MPa 
σh gradient 
kPa/m  

σH  gradient 
kPa/m  

σH - σh 

00-06-12-046-17W5-0 2.9 88 140 19.3 30.4 52 

00-06-26-064-01W6-0 20.1 83 135 21.4 34.8 52 

00-07-34-053-15W5-0 2.8 60 105 18.6 32.6 45 

Inversion through visco-elastic method 

Well ID 
E 

GPa 
σh 

MPa 
σH 

MPa 
σh gradient 

kPa/m  
σH  gradient 

kPa/m  
σH - σh 

00-06-12-046-17W5-0 5.4 90 137 19.6 30.0 47 

00-06-26-064-01W6-0 28.6 83 120 21.5 31.0 37 

00-07-34-053-15W5-0 5.3 62 105 19.5 32.6 43 

 

It is observed that, under the same original borehole sizes, mud pressures, and measured 

longer and shorter diameters, the estimated Young's modulus will be larger in the cases of 

visco-elastic inversion than in the linear-elastic cases, the difference between maximum 

horizontal stress and the minimum horizontal stress will be smaller in the cases of visco-elastic 

inversion than in the linear-elastic cases.  

7.3.6 Calculation with more conservative criteria for identifying non-breakouts 

borehole deformations 

Considering the calculated small Young’s moduli value and the larger caliper 

difference in this case study, the fourth criterion in Table 7-12 was further modified to 

investigate the possibility of getting a higher estimated Young’s modulus value. The caliper 

difference is set to be no more than 5% of bit size rather than previous 10% of bit size. The 

modified criteria are listed in Table 7-23. According to the criteria, among the selected intervals 

for the three wells in this case study, only the Well 00-06-26-064-01W6-0 satisfies the criteria. 
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Table 7-23: Conservative criteria for identifying non-breakouts borehole deformations  

1. Consider only a vertical borehole with deviation smaller than 5°. 

2. Tool rotation must cease in the zone of enlargement (indicating genuine ellipticity). 

3. The smaller caliper reading is close to bit size (i.e., no large washout).  

4. Caliper difference must no more than 5 % of bit size (i.e., no breakout). 

5. The length of the enlargement zone must be greater than 1 m (to assure a real reading). 

 

By applying the modified criteria and further constraining the upper limit of the original 

borehole size to 1.05 times of bit size, the re-calculated Young’s modulus for the same interval 

in the Well 00-06-26-064-01W6-0 through visco-elastic method gave a Young’s modulus of 

38.7 GPa, which is larger than the previous 28.6 GPa and is closer to the expected Young’s 

modulus value. Therefore, criteria listed in Table 7-23 will be considered in the following case 

studies.  

7.3.7 Summary of Duvernay Formation case study 

The Duvernay Formation case study demonstrates the application of the Matlab™ fmincon 

function for weighted-sum multi-objective optimization of in-situ stresses and rock mechanical 

parameters estimation. In this case study, four-arm caliper data are used not only for in-situ 

stress inversion but are also used for identifying non-breakout intervals. Totally, 21 wells have 

been reviewed, among which three wells were deemed suitable for the demonstration analysis. 

In this case study, the estimated minimum horizontal stress gradient agrees well with 

the reported far-field minimum horizontal principal stress gradient in the Duvernay Formation 

near Fox Creek, Alberta. The estimated Young's modulus is, however, much lower than 

expected. This might  be a case of a low effective Young’s modulus of strongly micro-fractured 

rock in the intervals evaluated since the estimations are in-situ. It might also be the case of a 
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yielded borehole without rock blocks falling out of the borehole wall so that the four-arm 

caliper log may not be able to detect it. Availability of other log data, such as a Formation 

Micro-Imaging log or a multi-receiver dipole or quadrupole sonic log would be valuable in 

assessing this issue and providing quality control. 

The estimated Young's modulus will be larger in the cases of visco-elastic inversion 

than in the linear-elastic cases. The difference between maximum horizontal stress and the 

minimum horizontal stress will be smaller in the cases of visco-elastic inversion than in the 

linear-elastic cases. 

The Marcellus Shale case, the Liard Basin case, and the Duvernay Formation case are 

all focused on a single depth analysis. To make the method more useful in field practices, 

continues stress profiles are generated and applied for hydraulic fracturing treatment designs, 

which are demonstrated in the following case studies: the Karamay case study, the Montney 

Formation case study, and the Albert case study.   

7.4 Karamay Basin 

The area of the case study is in the Karamay Basin in Xinjiang, Northwestern China, as shown 

in Figure 7-23.  In total, 12 vertical wells (numbered well #1 to #12) with four-arm caliper data 

were provided for the in-situ stress estimation process. The target formations of the first 5 wells 

(numbered well #1 to #5) are shallow formations (formation tops are shallower than 1000 

meters) and three of them have step-rate-test (SRT) results (well #2, #4 and #5), which give an 

estimate of σh and therefore can be utilized for verification purpose. The lithologies are 

sandstones of Triassic age. Furthermore, using the same methodology, in-situ stress profiles 

are estimated for an additional seven wells in Karamay Basin for guiding fracture design at a 
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greater depth range (deeper than 1000 meters). The deeper formations are sandstones of 

Triassic, Permian, and Mississippian age.   

 
(Sun et al., 2020) 

Figure 7-23: Geographic location of case study, Xinjiang, China  

 

7.4.1 Step-rate-test 

Since the step-rate-test (SRT) results provide the only available in-situ minimum stress 

information for the wells provided (shallow depth wells #2, #4 and #5) and are used for 

verification purposes in the in-situ stresses inversion procedure in this example, it is necessary 

to have a brief review of the SRT principles. 

A SRT normally estimates fracture pressure during an injection process into a well 

(Felsenthal, 1974; Earlougher, 1977). It is nowadays used most commonly in cases where the 

rock mass has a natural leak-off rate that is too high (i.e., high permeability) to allow a standard 

hydraulic fracture-based method to be used to estimate the minimum stress.  Also, the SRT 
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can be included at the front end of a stimulation process so that it is not a costly procedure 

requiring additional trips into and out of the wellbore. 

The SRT procedure is based on injection of a fluid (most commonly water but 

sometimes a proppant-free hydraulic fracturing fluid) for defined periods and stipulated rates. 

First, a low rate of injection is used for 15 minutes (typically) and the surface injection pressure 

is monitored throughout this interval. Then, the pump rate is increased, and the process 

repeated for a series of increasing pump rates, each for 15 minutes, and there may be 7-10 

pumping stages. In tight formations (permeability at ~ 5 milliDarcy), each stage should last 60 

minutes (Felsenthal, 1974; Earlougher, 1977). A linear plot is generated with the pressure for 

each stage plotted versus the injection rate. The pressure at which hydraulic fracture occurs is 

identified as the intersection point of the two characteristic slopes of the pressure-rate curve. 

An estimation of friction loss is made, and this is subtracted from the obtained pressure at the 

intersection point to give an estimation of the minor principal stress.  

Figure 7-24 shows an idealized SRT, where there is a plot of bottom hole pressure and 

injection rate increase with time (a), and a diagram showing the identification of the fracture 

pressure by intersecting the two tangent lines on the pressure-rate curve (b). The scientific 

basis of the two slopes is that the lower injection rate slope (the steeper line) reflects porous 

media flow around the wellbore, but the flatter slope at high rates reflects the additional 

component of fracture flow.  Hence, the intersection point is taken as the pressure at which the 

system “switched” from porous medium flow to fracture enhanced porous medium flow. The 

resulting data are also used to identify key treatment parameters of the fracturing operation, 

such as the pressure and flow rates required to successfully complete the treatment and place 

the proper amount of proppant at an adequate rate into the induced fracture. 
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 The accuracy of a minimum in-situ stress estimated from an SRT largely depends on 

appropriate quantitative justification of friction losses. Therefore, some caution should be 

taken in the practice of using SRT for in-situ stress estimations, as there are many subtleties to 

the analysis including means of estimating friction losses from the data itself.  Usually, one 

may assume that the SRT data provided have been quality assured (this assurance was provided 

by the company supplying the information). 

 

 

Figure 7-24: Idealized SRT plot 

7.4.2 Stress profiles generation for shallow depth wells 

Borehole diameters measured from the four-arm caliper tools provided longer diameter (C13) 

and shorter diameter (C24) data, as well as the bit size, for the five wells drilled in shallow 

depth, and are shown in Figure 7-25 to Figure 7-29. Sections of boreholes that showed no 

evidence of breakouts are used to estimate stresses using the elastic deformations inversion 

approach; these are identified according to the criteria listed in Table 7-23 and are shown as 

green bands (QC bars or “quality controlled” bars) on the right edge of the first track (a) of 

each Figure (Figures 7-25 to 7-29). For sections that are not qualified for in-situ stress inversion 
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calculations because they do not meet the criteria, it is assumed that a stress value from the 

inversion at an adjacent depth is appropriate for interpolation.  

The Matlab™ function "fmincon" was used to find the best fitness of calculated in-situ 

horizontal stresses (σH and σh) and Young’s moduli (E) along the target depth sections. The 

profiles of σH, σh, and E of the five wells are shown in the second track (b) of each Figure 

(Figures 7-25 to 7-29) with corresponding SRT results indicated with red arrows (SRT data 

were not available for each well). The summary of obtained values of horizontal in-situ stresses 

gradients and Young’s moduli with 99% confidence range are presented in Table 7-24. The 

horizontal stresses normalized by dividing by the vertical stresses are also listed in the Table.  

 

 

Figure 7-25: Caliper log data and calculated stress profile of Well #1  
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Figure 7-26: Caliper log data and calculated stress profile of Well #2 

 

 

 

Figure 7-27: Caliper log data and calculated stress profile of Well #3 



 

 199 

 

 

Figure 7-28: Caliper log data and calculated stress profile of Well #4 

 

 

 

Figure 7-29: Caliper log data and calculated stress profile of Well #5 
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Table 7-24: Summary of calculated in-situ stress gradients and Young’s moduli for 

shallower depth wells 

Well # 
Interval 

(m) 

E 

(GPa) 

h H

gradient 
(kPa/m) 

h /V 
gradient 
(kPa/m) 

H /V 

1 750-870 1.2±0.1 15.0±0.1 0.66±0.00 21.3±0.1 0.94±0.00 

2 860-940 1.1±0.1 15.8±0.1 0.72±0.01 19.8±0.1 0.91±0.00 

3 930-950 3.0±0.4 15.5±0.1 0.67±0.00 21.6±0.2 0.94±0.00 

4 950-1024 1.7±0.1 15.4±0.1 0.66±0.00 21.1±0.1 0.90±0.00 

5 990-1022 2.3±0.2 16.0±0.2 0.69±0.01 20.7±0.1 0.89±0.01 

 

The estimated minimum horizontal stress gradient is 15-16 kPa/m (rounded to integer 

values); the estimated maximum horizontal stress gradient is 20-22 kPa/m. The results are quite 

consistent.  

It is observed that the estimated minimum horizontal stress gradient is also in 

reasonable agreement with the SRT results (16-19 kPa/m) of the three wells (#2, #4, and #5). 

The SRT values are around the upper bound of the stress profiles, which is reasonable 

considering the procedure of the SRT and the accuracy of obtaining the fracture pressure from 

SRT under field conditions. 

Table 7-25 shows the comparison between the Young's moduli estimated from four-

arm caliper data and the reported Young’s modulus from triaxial tests (Sun et al., 2020); the 

table also shows the minimum horizontal in-situ stress gradient comparison among four-arm 

caliper data inversion, SRT estimations, and those measured from Mini-FracTM tests that are 

reported by Sun et al. (2020).  
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Table 7-25: Comparison between calculated and measured results  

 Four-arm caliper Triaxial test SRT Mini-FracTM 

E (GPa) 1.1~3.0 GPa 1.8GPa @ 5MPa confinement N/A N/A 

h gradient 
(kPa/m) 

15~16 N/A 16~19 15~17 

 

It is observed from the Table that the Young's moduli estimated from four-arm caliper 

data are in good agreements with the reported triaxial test results, the minimum horizontal 

stress gradients estimated from four-arm caliper data are also in good agreement with those 

measured from Mini-FracTM tests, while they are only in reasonable agreement with those 

calculated from SRT, where the values mainly sit on the upper bound of the stress profiles 

estimated from four-arm caliper tools.   

The SRT measures the formation fracture pressure (FFP), which largely depends on the 

correct value for friction losses. Sometimes, FFP may indicate breakdown pressure if the 

formation has tensile strength that contributes to the initial fracture initiation (Earlougher, 

1977).  Furthermore, the intersection point of the slopes of the pressure-rate curve is a value 

taken while the fracturing fluid is entering the fracture (it is after the initiation of the fracture) 

and therefore it is not a static shut-in pressure or a fracture closure pressure, the latter being 

the most appropriate as an estimate of σ3. It is sometimes impossible to decide when a fracture 

is actually initiated at the wellbore wall during pressurization due to the compressibility of the 

system volume (fracturing fluid, pump, tubing, exposed borehole length) (Zoback, 2007). The 

pressure-rate curve might evidence a non-linear relationship if viscous fluids are used (Palmer 

and Veatch, 1990). For these reasons, the fracture pressure estimated in an SRT or a leak-off 

test is normally considered as an upper bound of the least principal stress estimate.  
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The Mini-FracTM test measures the fracture closure pressure, which is the best 

representative estimate of the smallest principal stress in field practice. The minimum 

horizontal stresses estimated from four-arm caliper data in this research are in good agreement 

with field measurements since the stress estimates match the Mini-FracTM test data and are 

“upper bounded” by the SRT results. 

7.4.3 Stresses profiles generation for deep Karamay Basin wells 

Seven additional wells (well #6 to #12), which were drilled targeting deeper formations, were 

provided for in-situ stresses estimates and Young’s moduli inversions using longer diameter 

(C13) and shorter diameter (C24) data measured from the four-arm caliper tools. The purpose 

of this set of analyses was to apply the new method for a quick estimation of the geomechanics 

parameters (stress, stiffness) used in guiding hydraulic fracture stimulation designs.  

Similar to previous cases, the criteria listed in Table 7-23 were used as quality control 

(or qualification) criteria to identify sections of elastic deformations suitable for inversion, and 

the same Matlab™ function "fmincon" was used to find the best fitness of calculated in-situ 

horizontal stresses (σH and σh) and Young’s moduli (E) along the target deeper depth sections.  

The left tracks (track a) of Figures 7-30 to 7-36 show the measured longer diameter 

(C13), the measured shorter diameter (C24), the bit size, the QC results. The right tracks (track 

b) of these Figures show the calculated horizontal in-situ stresses and Young’s moduli profiles. 

The summary of obtained values of horizontal in-situ stresses gradients and Young’s moduli 

with 99% confidence range are presented in Table 7-26. The horizontal stresses normalized by 

dividing by the vertical stresses are also listed in the Table.  
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Figure 7-30: Caliper log data and calculated stress profile of Well #6 

 

 

 

Figure 7-31: Caliper log data and calculated stress profile of Well #7 
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Figure 7-32: Caliper log data and calculated stress profile of Well #8 

 

 

 

Figure 7-33: Caliper log data and calculated stress profile of Well #9 
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Figure 7-34: Caliper log data and calculated stress profile of Well #10 

 

 

Figure 7-35: Caliper log data and calculated stress profile of Well #11 



 

 206 

 

 

 

Figure 7-36: Caliper log data and calculated stress profile of Well #12 

 

 

Table 7-26: Summary of calculated in-situ stress gradients and Young’s moduli for 

deeper depth wells 

Well # 
Interval 

(m) 

E 

(GPa) 

h H

gradient 
(kPa/m) 

h /V 
gradient 
(kPa/m) 

H /V 

6 1065-1110 4.1±0.3 15.0±0.1 0.66±0.00 21.3±0.1 0.94±0.00 

7 1200-1238 4.1±0.3 15.8±0.1 0.72±0.01 19.8±0.1 0.91±0.00 

8 1228-1270 4.9±0.4 14.9±0.1 0.65±0.00 21.5±0.2 0.94±0.01 

9 1598-1605 4.7±0.6 15.4±0.1 0.66±0.00 21.1±0.1 0.90±0.00 

10 1628-1654 4.3±0.4 15.0±0.1 0.66±0.00 21.3±0.1 0.94±0.00 

11 2400-2500 9.2±0.5 15.8±0.1 0.72±0.01 19.8±0.1 0.91±0.00 

12 2994-3010 10.9±0.7 14.9±0.1 0.65±0.00 21.8±0.2 0.94±0.01 
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The estimated minimum horizontal stress gradient is 15~16 kPa/m (rounded to integer 

values); the estimated maximum horizontal stress gradient is 20~22 kPa/m. The ratio of 

minimum horizontal stress over vertical stress is ~0.7; the ratio of maximum horizontal stress 

over vertical stress is ~0.9. The results are consistent with those calculated for the wells drilled 

at shallow depth. The estimated Young’s moduli for these formations vary from 4 GPa to 11 

GPa as depth increases, as expected for granular media.  

The method developed in this thesis and applied to this field case confirm that it is an 

economically modest method of stress estimation because special trips and equipment are not 

required. Particularly if there are several calibration or confirmation points in a data set of 

several wells, it is shown that the results are consistent and similar to external sources of stress 

and moduli estimates. Hence, the methodology developed herein is a reasonably effective 

engineering approach in terms of time investment in the stimulation workflow to obtain 

reasonable estimates of stresses and rock mechanics properties. 

7.4.4 Summary of Karamay Basin case study 

The Karamay case study is the first field application of the methodology that had sufficient 

information to provide continuous stress profiles with depth, with several calibration points. 

The advantages of fast calculation and the low overhead cost of the proposed workflow has 

been demonstrated. Good agreement between estimations and field test results demonstrates 

that  a broader range of practical applications of the method may be envisioned. Nevertheless, 

at this stage of development, there is still need for human involvement in the process, and this 

is likely to remain the case, especially to make quality assurance decisions and to determine 

reasonable ranges for constrained parameters. 
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7.5 Montney Formation  

The area of the Montney Formation case study is in the Western Canada Sedimentary Basin 

(WCSB), near Fort St. John and Pouce Coupe, BC, Canada, as shown in Figure 7-37.  Totally 

six vertical wells with four-arm caliper data were analyzed for the in-situ stress estimation 

process. The target formation is the Lower Triassic Montney Formation. 

 

Figure 7-37: Geographic location of the wells in the case study 

The Montney Formation is a siltstone-shale formation that covers approximately 

130,000 km² in the northeast of British Columbia and the northwest of Alberta. The Montney 

Formation in Alberta and British Columbia has been the target of oil and gas exploration since 

the 1950s and unconventional resource development began in first decade of this century by 

employing horizontal drilling and massive hydraulic fracturing. By the end of 2012, the 

recoverable natural gas resource in the Montney Formation was estimated to be 449 trillion 

cubic feet, which at that time accounted for more than 54% of the expected recoverable 
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resource for natural gas in the WCSB (Canada Energy Regulator (National Energy Board), 

2013).   

7.5.1 Geomechanics setting 

Tectonically, the area of the case study is located on the western flank of the WCSB (as shown 

in Figure 7-38), which is the foreland basin developed as a result of the forming of Rocky 

Mountain belt due to collisions between North America and oceanic terranes that were accreted 

to its western margin (Mossop and Shetsen, 1994). Such a tectonic movement applies NE-SW 

direction compressions to the basin and causes the maximum horizontal stress oriented in that 

direction, which is identified by borehole breakouts in wells drilled in the basin (Figure 7-39). 

 

Figure 7-38: Simplified terrane map showing structural location of the study area  
( modified after Mossop and Shetsen, 1994) 
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( modified after Bell et al., 1994) 

Figure 7-39: Horizontal stress trajectories determined from breakouts   
 

The stress regime at this location at the depth of the Montney Formation is considered 

a strike-slip fault stress regime, that is, the maximum horizontal stress is the major principal 

in-situ stress, the vertical stress is the medium principal in-situ stress, the minimum horizontal 

stress is the minimum principal in-situ stress (i.e., σH  > σV  > σh ) (Bell et al., 1994). This stress 

regime is used as one of the constraints in the magnitude estimations of in-situ horizontal 

stresses and Young’s modulus. 
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7.5.2 Data base 

In this case study, longer (C13) and shorter (C24) borehole diameter data measured from the 

four-arm caliper tools were used for in-situ stresses and Young’s moduli inverse calculation 

for the six wells. Some other basic logging data, such as gamma ray logs (as shown in Figure 

7-40), which cover the Montney Formation, are also examined to identify the intervals for 

stresses and Young’s moduli calculations. Density logging data are used for vertical in-situ 

stresses calculation, which will be in turn used for constraining the ranges of horizontal in-situ 

stresses.  

 

Figure 7-40: Gamma ray log data of the six wells 

 

For those wells having sonic slowness measurements, Poisson’s ratios are calculated 

and are used for in-situ stresses calculations. For those wells having no sonic slowness logging 

data, Poisson’s ratios are estimated by considering the lithology and by referring to the 

Poisson’s ratio values of the other wells. Core mechanical laboratory test data, instantaneously 

shut-in pressure (ISIP) of pre-fracturing pressure tests or during fracturing treatments, or image 

logging data, are not available for all the wells, and are used for results comparison after in-

situ stresses and Young’s moduli calculations. The availability of the data is summarized in 

Table 7-27. 
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Table 7-27: Summary of data availability  

Well ID Interval 
(m) 

Caliper GR Density Sonic Core test ISIP Image 

100041108121W600 2064-2364 Y Y Y N/A N/A Y N/A 

100142908020W600 2353-2600 Y Y Y Y Y N/A N/A 

100153408018W600 2052-2365 Y Y Y N/A N/A Y* N/A 

200A070C093P0900 2873-3209 Y Y Y Y N/A Y N/A 

100060307913W600 1964-2250 Y Y Y Y N/A N/A Y 

100010507812W600 2160-2460 Y Y Y Y N/A N/A Y 

* The ISIP values show anomaly and are not used for comparison, the hydraulic fracturing treatment was not successful in this well.  
 

7.5.3 Stress profiles generation through linear-elastic and visco-elastic 

inversion 

Stress profiles and Young’s modulus profiles were calculated using both linear-elastic and 

visco-elastic inversion methods. To maintain profiles’ vertical continuity, for sections that do 

not meet the criteria for identifying non-breakouts borehole deformations, it is assumed that 

stress values from the inversion at an adjacent depth are appropriate. 

The profiles of longer diameter (C13) and shorter diameter (C24) data measured from 

the four-arm caliper tools, QC results according to the criteria listed in Table 7-23, and the 

calculated horizontal stresses (σH, σh), and Young’s moduli E of the six wells are shown in 

Figures 7-41 to 7-47. Depths that have mechanical core test results or sections having hydraulic 

fracture stress determination test information are shown in zoomed-in sections.  

In each of these Figures, on the left track, the blue color curve stands for  longer 

diameter (C13), the orange color curve stands for shorter diameter (C24), the green QC bars 

mean that the depth has no breakouts, the yellow QC bars mean that the caliper tool rotated at 

that depth section, and the red QC bars mean that there are possible breakouts or washouts. On 

the right track, the blue color curve, the green color curve, and the orange color curve stand for 

the maximum horizontal stress, the minimum horizontal stress, and the Young’s modulus 
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calculated using the visco-elastic method. The dark gray color curve, the cyan color curve, and 

the light gray color curve stand for the maximum horizontal stress, the minimum horizontal 

stress, and the Young’s modulus calculated using the linear-elastic method. The available 

measured ISIPs are indicated by purple diamonds at the appropriate depths, and the available 

Young’s modulus data from core triaxial tests are indicated by black dots at appropriate depths.  

 

 

 

Figure 7-41: Stress profiles of Well 100041108121W600 

 



 

 214 

 

Figure 7-42: Stress profiles of Well 100142908020W600 

 

 

 

 

Figure 7-43: Stress profiles of Well 100153408018W600, upper section 

 



 

 215 

 

Figure 7-44: Stress profiles of Well 100153408018W600, lower section  

 

 

 

 

Figure 7-45: Stress profiles of Well 200A070C093P0900 
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Figure 7-46: Stress profiles of Well 100060307913W600 

 

 

 

Figure 7-47: Stress profiles of Well 100010507812W600 
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The summary of obtained horizontal in-situ stresses gradients and Young’s moduli 

from both linear-elastic and visco-elastic methods are presented in Table 7-28 (with 99% 

confidence range). The horizontal stresses normalized by dividing by the vertical stresses are 

also listed in the Table.  

Table 7-28: Summary of stress calculation results for the six wells 

UWI 
 

Linear-elastic inversion Visco-elastic inversion 

E 

GPa 

h 
gradient 
(kPa/m)

h /V H /V 
E 

GPa 

h 
gradient 
(kPa/m) 

h /V H /V

100041108121W600 15.8±0.4 21.8±0.1 0.92±0.00 1.62±0.01 22.8±0.5 21.7±0.0 0.91±0.00 1.40±0.01 

100142908020W600 17.6±0.4 22.6±0.1 0.89±0.00 1.52±0.02 23.9±0.5 22.9±0.1 0.91±0.00 1.36±0.01 

100153408018W600 6.0±0.1 22.4±0.1 0.94±0.00 1.79±0.01 11.5±0.1 22.6±0.1 0.94±0.00 1.76±0.01 

200A070C093P0900 7.0±0.1 22.2±0.1 0.89±0.01 1.69±0.02 12.4±0.2 22.2±0.1 0.89±0.00 1.60±0.01 

100060307913W600 12.8±0.2 21.9±0.1 0.89±0.00 1.69±0.01 19.1±0.2 22.0±0.0 0.89±0.00 1.52±0.04 

100010507812W600 16.2±0.4 21.5±0.2 0.90±0.00 1.58±0.02 25.3±0.6 22.2±0.1 0.90±0.00 1.47±0.04 

 

7.5.4 Results comparisons 

It is observed in this case study from Figures 7-41 to 7-47 that stress and Young’s modulus 

profiles calculated from the visco-elastic method show less fluctuation than those calculated 

from the linear-elastic method because of the addition constraints associated with rock creep 

effects.  

The ISIPs from pre-fracturing injection tests in Well 100041108121W600 and Well 

200A070C093P0900 are shown in Figure 7-41 and Figure 7-45 as purple diamonds in the 

expanded sections. It is observed from these two Figures that the calculated minimum 

horizontal in-situ stresses are in reasonable agreement with the measured ISIPs. 

As shown in Table 7-28, the estimated minimum horizontal stress gradients from both 

linear-elastic inversions and visco-elastic inversions are close (differences are smaller than 1 
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kPa/m, which is less than 5%), the ratio of minimum horizontal stress over vertical stress is 

~0.91 on average from both linear elastic inversions and visco-elastic inversions. The 

calculated minimum horizontal stress values are consistent. 

The average ratio of maximum horizontal stress over vertical stress from visco-elastic 

calculations is 1.52, which is smaller than that estimated from linear-elastic calculations (1.65 

on average).  The results indicates that the visco-elastic inversion give a lower horizontal stress 

difference.   

The triaxial static Young’s modulus data from Well 100142908020W600 are listed in 

Table 7-29 and are also shown in Figure 7-42. It is noted that, at depths of 2517 meters and 

2580 meters, the caliper data indicated the presence of breakouts, therefore no Young’s moduli 

value can be calculated. However, by referring to the Young’s moduli at adjacent depths, 

calculated from zones that met the quality criteria, the Young’s modulus curve is in reasonable 

agreement with the Young’s moduli from laboratory tests, except for the one tested under 21 

MPa confining pressure for the sample from a depth of 2537 meters. The calculated Young’s 

modulus curve using the visco-elastic method is larger than that calculated using the linear-

elastic method and is closer to the triaxial test Young’s modulus results from core.  

 

Table 7-29: Triaxial static Young’s modulus from Well 100142908020W600 

Depth (m) Confining pressure (MPa) E (GPa) 

2517 14 34.7 

2537 14 40.5 

2537 21 24.9 

2580 14 39.1 
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For all these six wells, the calculated Young’s moduli using the visco-elastic inversion 

show larger values (more than 1.4 times) than those calculated using the linear-elastic method, 

as indicated in Figures 7-41 to 7-47 and Table 7-28.  

It needs to be emphasized that the calculated stresses and the Young’s modulus profiles 

from borehole deformations measured by caliper tools are under an in-situ state in the field in 

the near-borehole wall of the well. For a vertical well drilled in flat layered laminated shale 

formations, which is the case for the Montney Formation well data, the Young’s modulus 

estimate by inversion from the radial displacement of the vertical borehole represents the 

horizontal Young’s modulus of the shale formation.    

Since the Young’s moduli estimated from four-arm caliper data are under the in-situ 

state in a deep location where there are natural fractures or incipient or minor breakouts 

(undetected by caliper tools) in the wellbore wall. Such damage almost certainly degrades the 

Young’s modulus (Turon et al., 2006; Liu et al., 2013; Bai et al., 2020) compared to data from 

core because lab tests are always conducted on intact core samples (never on fractured or 

damaged cores). Examples can be seen in the comparison of caliper logging data and image 

logging data of Well 100060307913W600 and Well 100010507812W600. 

Breakouts identified from four-arm caliper tools and breakouts interpreted from image 

logs are consistent at most depths, for example, as shown in Figure 7-48 for Well 

100010507812W600 and Figure 7-49 for Well 100060307913W600, where the left track 

shows four-arm caliper logs and QC bars, the middle track shows the calculated stresses and 

Young’s modulus curves, and the right track show the image log at the corresponding depth.  
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Figure 7-48: Comparison of four-arm caliper log and image log of Well 

100010507812W600 (depth: 2172m - 2177m)  

 

 

 

Figure 7-49: Comparison of four-arm caliper log and image log of Well 

100060307913W600 (depth: 2240m - 2250m)  
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In Figure 7-48, from depth 2173 meters to 2176 meters in Well 100010507812W600, 

possible tool rotation and breakouts are identified from four-arm caliper logging data. 

Breakouts and drilling induced fractures with apparent apertures are observed in the same 

interval in the image log. In Figure 7-49, from depth 2247 meters to 2250 meters in Well 

100060307913W600, possible tool rotation and breakouts are also identified. Again, both 

drilling induced fractures and breakouts are observed in the same interval in the image log. 

However, at depth ~2244 meters in Well 100060307913W600, the image log interpretation 

indicated a breakout occurrence which was not identified in the four-arm caliper logs because 

the breakout is small. Therefore, if the breakouts lengths are long (e.g., longer than one meter), 

the four-arm caliper tool can identify them consistently in a manner that also corresponds to 

the interpretations of images logs. For isolated small (short length)  breakouts, the four-arm 

caliper tool might not be able to identify them. 

7.5.5 Summary of Montney Formation case study 

In the Montney Formation case study, continuous in-situ stress profiles and Young’s modulus 

profiles were generated for six wells in the WCSB using both linear-elastic and visco-elastic 

inversion methods. 

The stress and Young’s modulus profiles calculated from the visco-elastic method 

show less fluctuation than those calculated from the linear-elastic method. The estimated 

minimum horizontal stress gradients are consistent from both linear-elastic inversions and 

visco-elastic inversions, with differences smaller than 1 kPa/m. The ratio of minimum 

horizontal stress over vertical stress is ~0.91 on average. The estimated maximum horizontal 

stress from visco-elastic calculations is smaller than those estimated from linear-elastic 

calculations. 
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The Young’s modulus values calculated using the visco-elastic method are larger than 

those calculated using the linear-elastic method and closer to the core triaxial tested Young’s 

modulus results. Note that lab tests are performed on intact core sections, whereas there exist 

natural fractures and perhaps some induced (and undetected) damage in the borehole wall.  

Breakouts of lengths longer than one meter can be identified from four-arm caliper 

tools and are consistent with those interpretations in images logs. Four-arm caliper tools might 

not be able to identify small breakouts of limited length. 

7.6 Albert Formation  

The Albert Formation case study is in New Brunswick, Canada. In total, 12 wells were 

reviewed; however, only one well (the EOG CORRIDOR MCCULLY H-2-Z425 Well) 

deviated less than 5 degrees from vertical direction and was used for the in-situ stress 

estimation process. The geographic location of the well is shown in Figure 7-50. The target 

formation of the well is the Albert Formation, which is a shale interbedded sandstone formation 

of Early Mississippian age in the Moncton Basin, New Brunswick, eastern Canada. The stress 

regime of the area is considered a thrust fault stress regime (Steffen et al. 2012). 

 

Figure 7-50: Geographic location of the well in the case study 
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7.6.1 Data base 

In this case study, longer (C13) and shorter (C24) borehole diameter data measured from the 

four-arm caliper tools for the target formation of the EOG CORRIDOR MCCULLY H-2-Z425 

Well are shown in Figure 7-51. In this figure, the blue color curve stands for longer diameter 

(C13), the orange color curve stands for shorter diameter (C24). According to the QC criteria 

listed in Table 7-23, non-breakouts depth sections are represented by green QC bars, the yellow 

QC bars mean that the caliper tool rotated at that depth section, and the red QC bars mean that 

there are possible breakouts or washouts that render the approach developed in this thesis 

inappropriate.  

 

 

Figure 7-51: Caliper logging data of the EOG CORRIDOR MCCULLY H-2-Z425 Well 

 



 

 224 

It is observed from Figure 7-51 that extensive breakouts and washouts occurred in the 

target formation. There is only a limited number of depth sections that satisfy the QC criteria 

for horizontal in-situ stresses and rock mechanics parameters inversion.  

The availability of some other data are investigated, such as density logging data, which 

are used for vertical in-situ stresses calculation and will be in turn used for constraining the 

ranges of horizontal in-situ stresses; sonic slowness which are used for Poisson’s ratio 

calculations; laboratory core mechanical test data, which might be used for a comparison of 

Young’s moduli after calculation; instantaneous shut-in pressure (ISIP) values, which are used 

for in-situ stresses comparison; and image logging data, which can be used for a comparison 

of breakouts that are estimated from caliper logging data. The availability of these data is 

summarized in Table 7-30. 

Table 7-30: Data availability of EOG CORRIDOR MCCULLY H-2-Z425 Well  

Interval 
(m) 

Caliper Density Sonic 
Core 

mechanical 
test 

ISIP Image 

2450-3240 Y Y Y N/A Y N/A 

 
 

7.6.2 Stress profiles generation  

Stress profiles and Young’s modulus profiles were first calculated using a thrust fault stress 

regime assumption as a constraint. The results are shown in Figure 7-52. The left part of the 

Figure shows the longer diameter (C13), the shorter diameter (C24), and the QC bars. In the 

middle of the Figure, the blue, green, and orange color curves stand for the calculated 

maximum horizontal stress, the minimum horizontal stress, and the Young’s modulus. The 

black line stands for the vertical stress calculated from density logging data. The available 

ISIPs (15 minutes after ISIP and ISIP of HF) are indicated by black dots at the appropriate 
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depths. The right part of the Figure shows two zoomed-in sections: the section where there are 

~6 meters that satisfy the QC criteria (the longest section that satisfies the criteria in the target 

formation) and the section where there are ISIP measurements. To maintain the profiles’ 

vertical continuity, for sections that do not meet the criteria for identifying non-breakouts 

borehole deformations, it is assumed that stress values from the inversion at an adjacent depth 

are appropriate. 

 

Figure 7-52: Stress profiles of the EOG CORRIDOR MCCULLY H-2-Z425 Well 

 

It is observed that the magnitudes of calculated minimum horizontal stress and the 

vertical stress are close: σV  ≈ σh  ≈ σ3. The calculated minimum horizontal stress is slightly 

larger than vertical stress (overburden weight). The ratio of minimum horizontal stress over 
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vertical stress is ~1.06 on average. The stress regime might be in transition between a strike-

slip fault stress regime and a thrust fault stress regime. The calculated ratio of maximum 

horizontal stress over vertical stress is ~1.66 on average. The average calculated Young’s 

modulus is ~29.8 GPa. 

Considering the smaller magnitude difference between the minimum horizontal stress 

and the vertical stress, it is possible that a strike-slip fault stress regime might exist in the area 

at this depth, rather than a thrust regime, as suggested by Steffen et al. (2012). Therefore, in-

situ horizontal stresses and Young’s modulus profiles were re-calculated with a wider 

minimum horizontal stress range by applying a strike-slip to thrust fault stress regime as a 

constraint. The results are shown in Figure 7-53. The minimum horizontal stress calculated 

using strike-slip to thrust fault stress regime as a constraint is slightly smaller than that 

calculated using just the thrust fault stress regime assumption and is around the same 

magnitude as the vertical stress. The comparison of obtained horizontal in-situ stress gradients 

and Young’s moduli are presented in Table 7-31 (with 99% confidence range). The horizontal 

stresses normalized by dividing by the vertical stresses are also listed in the Table.  
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Figure 7-53: Comparison of stress profiles between different stress regimes 

 

Table 7-31: Comparison of stress calculation results between different stresses regimes 

Thrust fault stress regime Strike-slip fault to thrust fault stress regime  

E 

GPa 

h 
gradient 
(kPa/m)

h /V H /V 
E 

GPa 

h 
gradient 
(kPa/m) 

h /V H /V

29.8±1.7 26.1±0.3 1.06±0.04 1.66±0.05 31.9±2.7 23.8±0.7 0.96±0.03 1.59±0.08 

 

The calculated in-situ horizontal stresses and Young’s moduli constrained either by a 

thrust fault stress regime assumption or a strike-slip to thrust fault stress regime assumption 

are reasonably similar in magnitudes. The Young’s modulus is ~30 GPa; the ratio of minimum 

horizontal stress over vertical stress is ~1.00, indicating σV  ≈ σh  ≈ σ3 (as shown in Figures 7-

52 and 7-53). Therefore, the stress regime in the area appears to be very close to the transition 
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between a strike-slip and thrust fault stress regime, where σH  > σV  ≈ σh. Further pre-HF and 

post-HF logging data, tilt meter measurements, or basin/reservoir scale 3D FEM simulation 

are needed to verify the stress regime.  

7.6.3 Summary of Albert Formation case study 

In the Albert Formation case study, continuous in-situ stress profiles and Young’s modulus 

profiles were generated for a single vertical well in the Moncton Basin, New Brunswick, 

eastern Canada. The calculated in-situ horizontal stresses indicated a strike-slip to thrust fault 

stress regime (σH  > σV  ≈ σh). Further field measurements of HF orientations are needed to 

verify this stress regime. 

7.7 Summary 

Six case studies in North America and China are developed in this chapter, using the gradually 

improved methodology that evolved from ANN-GA, GA, to a Matlab™ fmincon multi-

objective function optimization approach.  

The Marcellus Shale case, the Liard Basin case, and the Duvernay Formation case are 

based on single depth analysis because of the limited data availability. The Karamay Basin 

case, the Montney Formation case, and the Albert Formation cases are focused on the 

generation of a continuous stress profile for practical application of the methodology in 

designing hydraulic fracture treatments and as inputs to geomechanics coupled reservoir 

simulations.  

Both linear-elastic and visco-elastic inversions of in-situ stresses and Young’s moduli 

were conducted in the Montney Formation case study, giving insights about the shale creep 

effects on the estimation of in-situ stresses and rock mechanical parameters. The Albert 
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Formation case study indicated a locally different in-situ stress regime, which is strike-slip to 

thrust fault stress regime in the Moncton Basin, New Brunswick, eastern Canada.  

The in-situ stress estimation results of the case studies are in reasonable agreement with 

the reported field measurements.  
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Chapter 8 

Conclusions and recommendations 

In this research, the objective of developing a methodology to inversely calculate the in-situ 

stresses and rock mechanics parameters using borehole deformation data measured from four-

arm caliper logs has been achieved. Technically, the development and the gradual 

improvement of the method are demonstrated in part through six case studies in North America 

and in Western China. These practical engineering applications demonstrate how suitable the 

method might be for various rock types in different sedimentary basins.  

8.1 Comparison of case histories 

Before drawing conclusions in this chapter, the case histories are summarized and compared 

in Table 8-1 in terms of depth, rock type, geological age, tectonic regime, and the estimated 

results.  

The case studies range from stress and moduli estimates that are shallow, around 750 

meters, to estimates that are deeper than 4000 meters. The geological ages in these case studies 

are Devonian, Mississippian, Permian, and Triassic. The tectonic regimes that have been 

analyzed include normal fault regimes (σV = σ1), strike-slip fault regimes (σV = σ2), strike-slip 

fault to thrust fault stress regimes (σH > σV ≈ σh), and thrust fault stress regimes (σV = σ3). The 

rock types are all sedimentary rocks, including shale, siltstone-shale, and sandstone 

interbedded with shale. It is concluded that the methodology is suitable for in-situ stresses and 

rock mechanical parameters inversion regardless of depth, geological age, tectonic regime, and 

rock type, so long as there are suitable quality measurements of borehole deformations (such 

as these measured from four arm caliper tools) and appropriate constraints. 
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Table 8-1: Comparison of case histories  

 Marcellus 
shale 

Liard Basin Duvernay 
Formation 

Karamay Basin 
(shallow) 

Karamay Basin 
(deep) 

Montney 
Formation 

Albert Formation 

Depth (m) 2298 1409 3205-4588 750-1022 1065-3010 1964-3209 2450-3240 

Geological age Devonian Devonian Devonian Triassic 
Mississippian to 
Triassic 

Triassic Mississippian 

Tectonic regime Normal fault 
Strike-slip 
fault 

Strike-slip 
fault 

Normal fault Normal fault 
Strike-slip 
fault 

Strike-slip fault to 
Thrust fault 

Rock type Shale Shale Shale Sandstone Sandstone 
Siltstone-
shale 

Sandstone 
interbedded with 
shale 

h /V 

Linear-
elastic 
method 

0.62 0.60 0.79-0.89 0.66-0.72  0.65-0.68 0.89-0.94 0.96-1.06 

Visco-
elastic 
method 

N/A N/A 0.82-0.89 N/A N/A 0.89-0.94 N/A 

H /V 

Linear-
elastic 
method 

0.93 1.23 1.27-1.45 0.89-0.94 0.86-0.94 1.52-1.79 1.59-1.66 

Visco-
elastic 
method 

N/A N/A 1.25-1.38 N/A N/A 1.36-1.76 N/A 

E (GPa) 17.1 3.5 5.3-28.6 1.1-2.3 4.1-10.9 11.5-25.3 29.8-31.9 

 

The minimum horizontal stresses normalized by dividing by the vertical stresses are 

around 0.6 to 0.7 in cases under a normal fault regime (σV = σ1) , and around 0.8 to 0.9 in cases 

under a strike-slip fault regime (σV = σ2); the maximum horizontal stresses normalized by 

dividing by the vertical stresses are around 0.9 in cases under a normal fault regime (σV = σ1), 

and around 1.23 to 1.79 in cases under a strike-slip fault regime (σV = σ2). In a transitional 

strike-slip fault to thrust fault stress regime, the minimum horizontal stress is around the 

magnitude of the vertical stress (overburden weight), (σV ≈ σh). As discussed in Chapter 7, the 

estimated minimum horizontal stresses normalized by dividing by the vertical stresses from 

both linear-elastic inversions and visco-elastic inversions are close (in the cases of Duvernay 

Formation and Montney Formation). The visco-elastic inversions gave somewhat lower 

maximum horizontal stresses estimates.   
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The estimated Young’s moduli for these case studies vary from several GPa to more 

than 30 GPa, generally increasing as the inversion depth increases, a typical increase that is 

expected for porous geological media because of the increased confining stress at greater 

depth, and because of a lower porosity at greater depth. 

8.2 Conclusions 

It is concluded from the case studies in this research that:  

1. It is possible to estimate horizontal in-situ stresses and rock mechanical 

properties from the borehole deformation data. Uncertainties in the estimation results can be 

reduced by combining statistical analysis with optimization methods. The selection of the 

optimum solution in the estimation process can be made by using a normalized weighted-sum 

multi-objective function. 

2. Borehole deformation is more sensitive to some parameters than to others. In 

the linear elastic borehole deformation case, the influence of Poisson’s ratio on borehole 

deformation is the least, compared to the effects of the in-situ stress and other rock mechanical 

parameters (stiffness). For this reason, Poisson's ratio can be treated as a known parameter in 

most case studies and can be reasonably assigned a value by referring to its lithology, 

geophysical log response, and geological information for the area.  As a result, the total number 

of unknown parameters in the inversion analysis can be reduced in a reasonable manner that 

makes engineering sense (i.e., a process suited for the nature of the data and the outcomes).  

3. The simulated results of the poro-elastic borehole deformation show only a little 

bit more deformation of the borehole wall immediately after drilling than those in the linear-

elastic simulation results. The differences are around 10-2 inches in magnitude (many 

geophysical logs still report linear measurements in inches). It is also observed from the poro-
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elastic simulation results that although there are no further pressure variations on the borehole 

wall (except at the initial time step), the borehole wall deforms with time because of effective 

stresses changes within the rock mass in the near-wellbore area.  However, the magnitude of 

this change is only ~10-3 inches, which is negligible in field practice, given other sources of 

uncertainty.  

4. In a poroelastic material, the immediate tangential stress change around the 

borehole wall during drilling is influenced more by the Skempton effects due to a sudden 

pressure change in a cylindrical cavity, whereas the stable states of the stresses at long times 

are influenced more by the Biot effects. 

5. Time-dependent borehole deformation is mainly affected by the creep behavior 

of visco-elastic rocks such as shale, which depends in turn on the specific rock materials (clay 

ineral percentages), the porosity, and other factors. For material behavior that can be 

approximated by a generalized Kelvin rheological model with attenuating creep, the 

theoretically final borehole deformation after a prolonged time when creep terminates is 

approximately twice the initial instantaneous borehole deformations. 

6. Some reported analytical solutions for visco-elastic borehole displacements are 

developed for cases of salt or very soft shale with a Poisson's ratio close to 0.5. The analytical 

solution must be justified for the displacement calculations of specific rock types, as most 

shales have Poisson’s ratio values in the range of 0.2-0.35.  

7. From a geomechanics point of view, depending on the rock type and the rock 

strength, borehole wall breakouts might occur before the creep of the visco-elastic rock reaches 

its terminating stage. This is also a useful (partial) explanation for time-delayed borehole 

sloughing that is observed in the field during drilling, especially in shales. 
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8. For visco-elastic rocks, borehole breakouts development will be enhanced by 

rock creep effects because the tangential stresses increase during the creep phase; for the same 

reason, induced tensile fracturing of the borehole wall is less likely to happen during the 

process of time-dependent borehole deformations.  

9. Breakouts can occur even though the differences between the measured shorter 

diameter and the measured  longer diameter are smaller than 10% of the bit size. The reported 

criteria for identifying breakouts using four-arm caliper logs need assessment and perhaps 

some modification for specific rock types under various field conditions.  In particular, caution 

should be taken in interpreting all types of deformation and fracture initiation pressures when 

the formation rock exhibits creep behavior after drilling (Good quality control criteria must be 

developed for specific cases.) 

10. In the case of hydraulic fracture initiation, in a visco-elastic rock it will be more 

difficult to reach the breakdown pressure because the tangential stresses on the borehole wall 

increases because of creep. 

11. Stress and Young’s modulus profiles estimated from a visco-elastic method 

show fewer fluctuations than those calculated from a linear-elastic method. The estimated 

minimum horizontal stress gradient magnitudes are consistent from both linear-elastic 

inversions and visco-elastic inversions. The estimated maximum horizontal stress from visco-

elastic calculations is smaller than those estimated from linear-elastic calculations. 

12.  The Young’s modulus values calculated using the visco-elastic method are 

larger than those calculated using the linear-elastic method, and are closer to the modulus 

results obtained from core triaxial tests on core specimens.  



 

 235 

8.3 Novelty of the methodology 

The methodology is novel in that: 

1. The method of deformation inversion itself is new. The four-arm caliper 

logging tool, which is more commonly available than other expensive tools such as image 

logging tools, is generally used to identify formation dips, breakouts, and other borehole 

shapes. It has never before been used for in-situ stress estimation.   

2. The method proposed is cost-effective and of engineering value, giving 

reasonable results that appear to be consistent and useful for design. The cost is much lower 

than for other methods that are used in field tests and measurements.  

3. The method estimates in-situ stresses promptly. Four-arm caliper logs can be 

run while drilling, whereas hydraulic fracturing measurements will need a long rig standby 

time after drilling because of trips into and out of the hole. 

This research is significantly different from Zhang and Yin’s work (2014,a 2014b, 

2015). The additional contributions are: 

1. Four-arm caliper logs are used instead of six or more arm caliper tools, which 

are commonly less available than four-arm caliper tools. The limitations of the available known 

parameters are taken into consideration and optimization methods are included in the overall 

workflow to find the best solutions.  

2. The original borehole size is taken into consideration for the quantification of 

the borehole deformations, which solves the dilemma of using the default bit size as the original 

borehole sizes. The correct estimate of borehole size is an important factor influencing the 

magnitude of borehole displacement as it is always slightly different from the bit size.  
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3. The time-dependent effects on borehole deformation of poro-visco-elastic shale 

rocks are taken into consideration from a geomechanics point of view. A Matlab finite 

element method tool for the poro-visco-elastic borehole is developed to quantify such effects 

in the simulation of borehole diameter variations with time.   

4. Continuous stress and Young’s modulus profiles are generated from both the 

linear-elastic method and the visco-elastic method, in a manner that is convenient for field 

applications and design of reservoir treatments. 

8.4 Recommendations 

Possible future work or issues for further study are as follows: 

1. This study treats the original borehole size as an unknown input and estimates 

its value by an inverse calculation approach based on the borehole deformation data. However, 

the relationship between the bit size and the borehole size is still unknown and challenging to 

specify; future laboratory work and field validation are required to clarify and quantify the 

relationship. 

2. It is possible, but only with numerical methods, to extend the single layer poro-

visco-elastic model to a more complex multi-layer model where different layers have different 

mechanical properties. Furthermore, in those cases where, because of differential tectonic 

stresses, there are distinct differences in the stiffness moduli in different horizontal directions, 

a numerical model could also incorporate the effects of elastic anisotropy in the horizontal 

plane. Such anisotropy might, for example, be estimated from different acoustic velocities in 

different horizontal directions. Studying the impact of anisotropy on stress inversions will help 

understand the impacts and better define the limits of the inversion methods.  
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3. Although it is complicated, it is perhaps possible to take into consideration 

aspects such as thermal effects and chemical effects on the time-dependent borehole 

deformation analysis. Thermal effects at or near the drill bit during active drilling are usually 

associated with cooling, whereas higher in the open hole there may be heating. Chemical 

effects in the open borehole are usually associated with geochemical factors related to different 

salt compositions of the pore water in the shales and the aqueous phase of the drilling mud that 

may lead to swelling, or even to some shrinkage, particularly if the clay content is dominantly 

smectitic.   

4. Progress can be achieved as it becomes possible to carry out more laboratory 

tests on high quality core specimens and field measurements of minimum principal stresses to 

incorporate more known parameters in the optimization of in-situ stresses inversion, or at least 

to give more stringent constraint limits to the parameters used in the analyses.  

 5.  A successful application of the methodology depends on the availability of four-

arm caliper logging data and the general geology and geomechanics knowledge of the area to 

be investigated, such as the stress regime, calculation of the vertical stress, lithology, and the 

estimation of the range of the unknown parameters. As a better understanding of the geology 

and geomechanics of an area is achieved, the narrower the specified constraints on the 

objective function will be and the more accurate the estimation results are likely to be. 

Sometimes, four-arm caliper logging data and the geology and geomechanics background 

information might not be available, especially in newly developed areas. Therefore, further 

research can be conducted based on the more available LWD (Logging While Drilling) logs, 

such as the default two-arm caliper logging data, with some appropriate constraints. 
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