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Abstract

The following thesis presents experimental study of two crystalline materials which

show correlated electron phases.

The first material 1T-TaS2 is a two-dimensional van-der-Waals material. This family of

materials have been of intense research interest since the discovery of mechanical exfolia-

tion technique, which allows for fabrication of atomically thin flakes of high crystal quality.

Subsequent development in dry-transfer techniques have created the capacity to vertically

stack these flakes to get desired heterostructures. Bulk crystals of 1T-TaS2 had been previ-

ously studied and were known to undergo multiple charge density waves (CDW) transitions

as a function of temperature. In ultra-thin flakes of 1T-TaS2 the temperature hysteresis

of Nearly-Commensurate (NC) to Commensurate (C) phase transition has been shown

to widen and host states of intermediate resistivity. While such measurements provide

global information, a spatially resolved study would answer the question of distribution of

the NC-C phases in these states. Such a study would help to identify further differences

between these intermediate states and also answer questions relevant for device miniatur-

ization. In order to achieve this, we propose a vertical heterostructure geometry of the

following order h-BN/1T-TaS2/WSe2/Gr. This geometry utilizes the high photocurrent

extraction efficiency of such devices to map the phase of 1T-TaS2 in the overlap region.

A scanning laser microscopy system is used to map the photocurrent response of these

devices with diffraction limited resolution. We compare the spatial maps obtained for such

devices with relatively thick and thin 1T-TaS2 flakes as they undergo the NC-C phase

transitions. Further motivation to study this material is for its potential use in electronic

devices. Various methods have been shown to alter the phase of the material over a wide

temperature range. Applied electric field has been previously shown to control the CDW

state of the ultra-thin flakes by driving the material from the NC to C or C to NC state

in a unidirectional manner. We are able to reproduce this control and additionally able

to achieve bi-directional driving at a constant temperature. Spatial photocurrent maps of

such control provide additional information which is modeled phenomenologically by a free
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energy analysis.

The second class of materials we study are high pressure Hydrides which are known to

have the highest superconducting TC . Metallic hydrogen was first proposed to be a room

temperature superconductor by Ashcroft in 1968, but the high pressure requirement to

fabricate such material still remains beyond practical limit. Alternatively it was suggested

that hydrogen dense compounds could harbor high-temperature superconductivity at more

achievable pressures . H3S and LaH10 are two such materials that show superconductivity

at 203K and 250K respectively. While it is possible to measure electrical resistivity of these

samples, it is difficult to measure other properties of superconductivity like the Meissner ef-

fect as the samples are held at high pressures under diamond anvils. Optical measurements

that consider the presence of diamond in the beam path offer the possibility of exploring

the nature of superconductivity in these exotic samples. Previous measurements exploring

the reflectivity of H3S superconducting samples in the near-infrared regime show a dip in

the 400-650meV energy range. This matches with theoretical predictions that assign this

depression of reflectance to strong scattering from bosonic excitations. We aim to use this

result to spatially map the superconductivity in these samples using our laser scanning

setup with laser wavelength of 2300nm. In this thesis we report the initial data taken on

a H3S sample.
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Chapter 1

Introduction

Phase transitions that originate from non-trivial electronic order are interesting to inves-

tigate from both physics and device application point of view. One type of such an order

can cause metal-insulator transition materials susceptible to Charge Density Wave (CDW)

ordering. Alternatively, if electrons pair together they can condense to the same quan-

tum ground state and give rise to superconductivity. In this thesis we use light in the

visible and near-infrared (IR) spectrum to spatially map such phase transitions in differ-

ent material systems. For the CDW material we show control of the phase transition by

changing the thickness of the material and applying an external electric field. The spatial

mapping reveals important differences between intermediate states obtained upon thermal

and electrically driven transitions. The superconducting material we study is fabricated

and held at extremely high pressures which makes measurement of it’s physical properties

challenging. Our experiment intends to use the change of the reflection spectrum in the

near-IR region to spatially map the inhomogeneity of superconductivity in the sample.

We assemble a scanning laser microscopy setup to achieve our spatial mapping which is

limited by the diffraction limit of the incident light. In Chapter 2, covering experimental

techniques we present the design of this setup, which is coupled to a cryostat with electrical

contact leads that allow for simultaneous electronic measurements. This chapter also covers
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the device fabrication technique that is used to thin down and assemble nano-meter (nm)

thin 2D Van der Waals heretostructures that is used to fabricate samples of the CDW

material.

The CDW material studied is 1T-TaS2 which is know to harbor multiple CDW phases.

An overview of previous work done on these phases in the bulk crystal is presented in

Chapter 3. Recent work on thinning this material down to the nm limit is also presented

in the same chapter. Previous results from these ultra-thin flakes motivate spatial mapping

of the Nearly-Commensurate (NC) - Commensurate (C) CDW phase transition.

In Chapter 4 we present a device geometry involving a vertically stacked van der Waals

heterostructure that would enable us to do such spatial mapping using photocurrent mi-

croscopy. The proposed geometry additionally allows for electrical driving of the NC-C

CDW phases. We present the photo-current maps obtained from such devices where the

phase transition takes place either due to thermal cycling or an applied electric field. These

maps show important differences between both processes. The results obtained for electri-

cally driven transitions are unique as they achieve bi-directional electrical control over the

phase transition at a constant temperature. A phenomenological model for the electrically

driven step-wise transition from the NC to C phase is presented at the end of the chapter.

Chapter 5 deals with the reflection based scanning microscopy of high pressure Hydride

systems. These materials are currently contending to have the highest known TC for a

superconductor. Theoretical calculations predict a change in reflectivity of these samples

in the near infra-red region due to the superconducting transition. We design an experiment

by choosing a laser with wavelength in this spectral region and present initial laser scanning

reflection images taken on superconducting H3S.
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1.1 Charge Density Waves

1D
2D
3D

1

0
2kF

q
(q

) /
 

(q
=0

)

A

B

D

a0 2kF
Wavevector q

C

Wavevector q

Figure 1.1: Instability of a 1D half-filled band and the formation of CDW order. (A)

The regular lattice of equally spaced ions (black circles) and uniformly distributed charge

density (black dashed line) rearranges to create a CDW (solid red line) and distorts the

underlying lattice (red dots).(B) Formation of the CDW opens a band gap (solid red line) at

the Fermi energy in the metallic band (dashed black line). This change in density of states

(DOS) is shown in the right panel. (C) The energy of the acoustic phonon mode at twice

the Fermi wave-vector goes to zero indicating the formation of a static lattice distortion.

(D) Lindhard response function for 1D, 2D, 3D free electron gas at zero temperature. A

1D electron gas has a diverging response at the Fermi wavevector.Figure (A), (B) taken

from [49]

The instability of a 1D crystal with a half filled electron band was first discussed by

Peierls. [45] This instability causes a regularly spaced lattice and a uniformly distributed
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electron gas to develop a periodic lattice distortion (PLD) and a periodically varying charge

modulation with a wavelength λ0= π/kF (Fig 1.1(A)) where kF is the Fermi wavevector.

The lattice distortion leads to a single particle gap at the Fermi level (Fig 1.1(B)) inducing

a metal-to-insulator transition in the material. The instability of this system is attributed

to the divergent behavior of the wavelength dependent dielectric function for a 1D electron

gas as shown in Fig 1.1(D). The y-axis plots the Lindhard response function [21], which

maps the wavevector dependent response of an electron gas to a time independent potential

for 1D , 2D and 3D electron gas. The divergence of the response function at 2kF is due to

the topology of the Fermi surface of a 1D electron gas called perfect nesting [21]. Since the

transition primarily addresses a reduction in the kinetic energy by damping the scattering

at the Fermi wavevector the PLD is in general incommensurate with the underlying crystal

lattice[49]. As a consequence of the lattice distortion the phonon mode at 2kF is greatly

suppressed (Fig 1.1(C)), and is generally referred to as the Kohn anomaly [29]. It was

independently suggested by Fröhlich that the ground state of this system can carry an

electric current [19] under the influence of an applied electric field. This formulation of

CDW for a 1D crystal can be directly used to understand CDW in quasi-1D materials such

as NbSe3 [60].

In this thesis we work with a quasi-2D crystal with a much more complex CDW ordering,

where the dominant CDW modulation is in the 2D plane described by 3 symmetric 1D-

CDW wavevectors. Many members of 2-D MX2 (M = metal, X = chalcogenide) family of

transition-metal dichalcogenides show these CDW phases. Such as 1T-TaS2, 2H-TaSe2,1T-

TiSe2 [72] and more. We focus our work on 1T-TaS2 which has a rich phase diagram and is

the only member of the Tantalum dichalcogenide family to undergo a complete metal-to-

insulator transition. It has a
√

13×
√

13 CDW/PLD in-plane superstructure. Upon cooling

from 560K to 352K the CDW is incommensurate (IC), between 352K and 180K the CDW

is Nearly-commensurate(NC) and from 180K onward the CDW is commensurate with the

underlying lattice. Upon warming there is a large thermal hysteresis between the NC and

the C phase as the material comes back to the NC phase around 220K. As it is shown

in Chapter 3 thinning of the material widens this hysteresis thus motivating the study of
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the spatial evolution of the phase transition. Mapping this evolution and its control using

applied electrical field is the major topic of study in this thesis.

1.2 Superconductivity

A superconductor is a material which shows zero-resistance to electric current below a

transition temperature TC . It was discovered in 1911 by H. Kamerlingh Onnes in elemental

metals such as mercury, lead and tin at cryogenic temperatures [61]. In addition to it’s zero

resistance property these materials also exhibit perfect diamagnetism which is famously

known as the Meissner effect. Till 1986 the TC for all known superconductors was below

30K until a separate class of superconductors called Cuprate superconductors [4] were

discovered. The TC value for these copper-based materials has been reported as high as

164K [50]. The search for higher TC superconductors remains an open field of research.

Atomic Hydrogen at the extreme pressure of 500GPa was predicted by Ashcroft to be

superconducting well above room-temperature at around 300-350K.[1] The search for high-

temperature superconductivity has been consequently done using BCS theory in Migdal-

Eliashberg formulation which targets materials with high hydrogen density. Since such

a high pressure is not achievable through current technologies attention has shifted to

hydrogen rich compounds[2] such as H3S[32], LaH10[69][46] where the required pressure

below 200GPa is achievable using diamond anvil cells (DAC). It has been shown that

these materials have the characteristic sharp drop to zero-resistance near the expected

superconducting transition temperature, TC . But further measurements are limited due

to confinement of the samples within the DAC. Making use of transmissivity of diamond

it is possible to study the spectroscopic behavior of these materials. It has been predicted

using Eliashberg theory that these materials should have a drop in reflectivity after the

superconducting phase transition for light in near-infrared spectrum. This drop has been

experimentally measured [10] on superconducting H3S samples using Fourier Transform

Infra-Red (FTIR) spectroscopy. We aim to further this result by using this drop to spatially

5



map the superconducting transition and help identify the distribution of superconductive

material in these in-homogeneous samples.
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Chapter 2

Experimental Techniques

This chapter details the main experimental techniques used in this thesis. A laser scanning

microscope setup is used to study both the material systems. The design of the system was

motivated from chapter 4 of [57] which gives much of the relevant information for building

and modifying such setups. The first section of this chapter gives a brief description of this

design and later details the in-lab setup that can be used for visible and IR laser scanning

purposes. The second section shows the mechanical exfoliation process that was used to

obtain nano-meter thin flakes of 2-D materials, it is followed by the dry-pick up method

that was used to assemble the Van der Waals heterostructre. This process was used to

fabricate 1T-TaS2 samples presented in Chapter 3.

2.1 Scanning Laser Microscopy

A laser is a special source of light as it emits light which is coherent. This coherence is

usually measured for lasers in terms of spatial and temporal coherence. Spatial coherence

implies that the light emitted form a laser can travel large distances with very low di-

vergence and also allows for the light to be focused to a tight spot. Temporal coherence

implies that light emitted from a laser source can have a very narrow spectrum. In such

7



a case a tight laser spot is limited by the diffraction limit set by the wavelength that the

laser emits. A confocal laser scanning microscope (CLSM) uses these properties in combi-

nation with principles of scanning confocal microscopy to raster a diffraction limited spot

(depending on objective lens) on a given focal plane.
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(Collimated)

Beamsplitter

scan-mirror 1
scan-mirror 2

scan lens (f3)

tube lens (f2)
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2

x
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2

detector
secondary image plane
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Figure 2.1: Simplified diagram of the components of the scanning laser microscope setup.

The microscope objective focuses onto a electrically contacted sample inside a cryostat

that works between the temperature range of 4-350K.

In this thesis we use a lab assembled CLSM setup coupled with a Montana C2 cryostat
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to measure both the material systems. A schematic of the working components of our

system is presented in Fig. 2.1

Collimated laser light is incident on a beamsplitter that allows for collection of the

reflected light propagating backwards from the sample. The incident light then shines on

a pair of galvo-scanning mirrors whose angle can be controlled using an applied voltage.

The beam is then incident on a pair of lenses called the scan lens and tube lens with focal

lengths f3 and f2 respectively. These lenses are physically separated by a distance of f3 +

f2 which ensures that the light emitted from the tube lens is still collimated. This light

is then incident on an objective lens whose back focal plane lies at the focal plane of the

tube lens. The objective lens focuses the beam onto the sample. The reflected image of

this optical setup is first formed by the combination of the objective and the tube lens at

the primary image plane (Fig. 2.1). Thus the first image of our diffraction limited spot

is obtained with a magnification of M = f2/f1. If the back focal length of the objective

lens is∞ then the reflected beam should have similar collimation by the time it passes the

conjugate telecentric plane which is the recreation of the back focal plane of the objective.

The beamsplitter then allows for collection of the reflected light which is detected using an

appropriate detector.

The beam steering is achieved by controlling the angles of the two scan mirrors using

a digital-analog signal converter controlled using a computer system. For the sake of

simplicity only mirror 2 is shown moving in Fig. 2.1. When the angle of the mirror is

changed by θ′2 the angle of the beam incident on the objective lens should change by θ2.

This changes the position of the spot in the focal plane of the objective by ∆x = f1∗tan(θ2).

This change in position is also reflected in the primary image plane as ∆x′ = ∆x ∗M .

The selection of lenses for the setup is determined by physical space constraints and

the wavelength of light being used. Additionally it is important to get the ratio of f2/f3

correct with regards to the beam size as the minimum spot size is obtained by full use of

the numerical aperture (NA) of the objective. This happens only when the whole back

aperture of the lens is illuminated.
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Figure 2.2: CLSM setup based on schematics shown in Fig. 2.1. The picture on the

left shows the incident optical path in dark green. The reflected beam path after the

beamsplitter is in light green. The objective lens is not visible. The picture on the right

shows the setup over the C2 cryostat. Low working distance window allows the objective

to focus onto the sample at temperatures down to 4K.

The setup used in this thesis has been designed to accommodate mainly for two wave-

length : λ = 520nm and λ = 2300nm. Separate laser diodes were used in each case to

generate the given wavelength of light. Since the spatial profile of the emitted light were

not Gaussian they were coupled into a single mode fiber which only transmits a Gaussian

profile. It also allows us to use the same launcher(silver parabolic mirror) for both the

wavelengths. The alignment optics used can be seen in Fig. 2.2.

For λ = 520nm (green) light we used standard lenses with f3 = f2 =150mm since the

default beam size of the launcher works out with the microscope objective used. The

microscope objective used was a transmission based 50x objective with NA = 0.50 and a

focal distance of 8mm. The sample was mounted inside a Montana C2 cryostat with a low

working distance window that allows the sample to be in the objective focal plane in the
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temperature range of 4 - 350K (See Fig. 2.2).

For λ = 2300nm which is in the near IR spectrum CaF2 lenses have to be used as

scan and tube lens. Additionally a reflection based 15x objective lens with NA = 0.50 was

used to get a larger working distance (23.2mm). This enables focusing onto the hydride

samples which are roughly 10mm deep inside the DAC. Focal lengths of f3 = 75mm and f2

= 250mm were chosen to expand the beam such that it completely illuminates the small

mirror of the lens.

2.2 2-D Van-der Waals Heterostrcutures

2.2.1 Exfoliation

Scotch-tape (adhesive tapes) exfoliation has become an ubiquitous method of obtaining

atomically thin flakes of 2-D Van-der-Waals materials since the discovery of graphene [41]

in 2004. Since then it has been used to exfoliate a variety of materials [42] four of which

are used in our devices namely: few-layer-graphite(FLG),Tungsten diselenide (WSe2), 1T-

Tantalum(IV) sulfide (1T-TaS2) and hexagonal Boron nitride (h-BN).
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Figure 2.3: Exfoliation technique used to obtain thin flakes (down to the single atom limit)

of 2D materials. (A) Bulk 1T-TaS2 crystal. (B) Bulk crystal is exfoliated multiple times

onto a scotch tape inside a N2 filled glovebox. (C) SiO2/Si is a commonly used substrate

for final exfoliation. The chip on the right is pristine while the left chip has exfoliated

crystal on it.

Fig. 2.3 (A) shows a bulk 1T-TaS2 crystal. It has a characteristic metallic-golden

color. Representative of 2-D Van-der-Waals materials the bulk crystals are flat to begin

with. Since many 2-D materials including 1T-TaS2, are sensitive to ambient atmosphere

and known to oxidize almost all the exfoliation is carried out in a nitrogen filled glove box

(Inert Pure LabHe, PO2 ,PH2O < 0.1 ppm). [28] [64] For exfoliation a small bulk piece is

placed on a scotch tape and the remainder of the tape is folded and peeled over the crystal.

The intra-layer Van-der-Waals bonding is a weak bond and thus the crystal peels easily.

This process is repeated till the crystal is thinned to a desired thickness.(For 1T-TaS2 see

Fig. 2.3(B)). The tape is then pasted over the desired substrate. Substrates used in this

thesis are either SiO2(280 nm)/Si chips or poly-propylene carbonate(PPC) spin coated
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onto a glass slide. Fig. 2.3(C) shows a typical exfoliation onto a SiO2/Si substrate. The

chip on the left is a clean chip which has been cleaved to an appropriate size of around

1cm × 1cm. The cleaning process involved washing with Acetone and Iso-propanol(IPA)

and then a 30min bake in ambient atmosphere at 150-180◦C. A chip with exfoliated crystal

is shown on the right. The size of the nano-meter thin flakes is usually around ∼10µm

and are imaged and identified using a regular optical microscope. Fig. 2.4(B) shows two

such identified flakes which are then stacked vertically using a polymer baser technique

elaborated in the next chapter.

2.2.2 Polymer based transfer techniques.

Once the flakes are exfoliated they are identified under a microscope with magnification

upto 100x. Fig. 2.4(A) shows the microscope inside the glove-box with attachments

required for fabrication of vertical hetero-structures. The color of the flakes under the

mircoscope is related with the thickness of SiO2 [5], which is comparable to the wavelength

of visible light. We choose a thickness of 280nm which maximizes the contrast for thin-

ner flakes which are highly transmissive and thus difficult to locate under the reflection

geometry.
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Figure 2.4: Van-der-Waals heterostructure assembly. (A) The assembly setup consists of a

reflection microscope with a heated sample stage and a x-y-z controlled motorized arm on

which a glass slide can be attached. The microscope is used to identify and select flakes

like the ones shown in (B). They are picked using a PC/PDMS stamp an example of which

is shown on the left glass slide in (C).(D) Shows the schematic of the pick-up and release

process(top). Optical images of sequential pick-up using this method, of flakes shown in

(B) is shown in (D)(bottom).

For a fixed SiO2 thickness the color of flakes observed at a given illumination and

exposure time can be correlated with the flake thickness which can be determined using an

Atomic force Microscope. For flakes sensitive to air a protective h-BN layer is transferred

on top before removal form the glove-box. Once the flake thickness is determined flakes of

appropriate thickness and shape are selected for a required hetero-structure. Fig. 2.4(B)
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shows a h-BN flake (left) and a 1T-TaS2(right) (t ∼5-8nm) that have been selected for

fabrication of a device with geometry presented in Chapter 4.

A polycarbonate(PC) thin film is created by dripping a PC solution (6% by vol dissolved

in chloroform) onto a glass slide and then spread by a second slide put directly over the

first slide spreading out the PC. After this the two slides are immediately separated by

sliding the two slides over each other. The PC film is then left to dry and harden in air

for around 15-30 min. A piece of PC film ∼ 5mm × 5mm is then cut and transferred onto

a window made in a relatively piece of scotch tape. This window is then placed onto a ∼
3mm × 3mm × 1mm piece of polydimethylsiloxane (PDMS) sitting at one end of a glass

slide. The process of fabricating hetero-structures involves sequential pick of the crystal

flakes using this PC stamp.[78] An example of a PC stamp created in the lab is shown in

Fig. 2.4(C) (left)

The glass slide with the stamp is then attached to a x-y-z movable arm near the sample

stage. This arm is controlled from outside the glove box and is used to align the stamp

over SiO2/Si chips in order to achieve the required geometry. The sample stage is attached

to a heater that can raise the temperature up to 150◦C. For picking up flakes using the PC

stamp the PC film is gradually brought into contact with the flake. The temperature is

then raised between 60-90◦C depending on the target material to allow the PC film to relax

and conform to the flake. The temperature is then lowered to harden the PC before the

stamp is lifted in a continuous manner to pick up the flake without introducing unwanted

creases. The bottom-left panel in Fig. 2.4(D) shows an h-BN flake that has been picked

using this method. Subsequent flakes for the device can picked in a similar manner. Since

2-D materials adhere better to each other than the underlying SiO2 they are easily stacked.

The top panel of Fig. 2.4(D) shows a schematic of the pick up of a 1T-TaS2 flake using

a h-BN flake using the method described. The bottom right panel shows a 1T-TaS2 flake

picked onto the previously picked up h-BN flake. This process is repeated till the desired

stack has been made.

To make electrical contact to the samples we fabricate Au(40nm)/Ti(5nm) electrodes in

16



a class 100 clean room. Electrodes are patterned on the SiO2(280 nm)/Si chips either using

e-beam lithography with a PMMA A6 resist with writing done using a RAITH 150TWO

30kV Direct Write system or photo-lithography where the writing is done using Heidelberg

MLA 150 Direct Write UV lithography system with a Shipley positive resist. After writing,

the resist is developed in the appropriate developer solution which exposes the electrode

region for the next step. Physical vapor deposition using e-beam heating is used to deposit

the metals in a Intlvac-Nanochrome II. The resist is then dissolved in the PG-remover to

lift off the excess metal and the chip is cleaved to obtain individual set of electrodes.

The vertical stack is aligned with the electrodes and brought carefully into contact.

The temperature is raised to 150 ◦C to de-laminate the PC in contact with the chip from

the PDMS. The glass slide is lifted to release the stack with the PC onto the electrodes.

The sample is then put under a vacuum for 10 min and then washed with chloroform to

remove the PC layer.

Alternative to the PC pick-up method the crystal flakes can be exfoliated directly onto

a PPC film. A PPC solution is made by dissolving it in chloroform (15% by mass) and is

then spin-coated onto a cover-glass (30 sec, 1600 RPM). The glass is then heated at 85◦C

with PPC side up to remove all chloroform from the PC film. After this a window is made

around the PC film using tape and then flakes are exfoliated onto the film using a tape

similar to the one shown in Fig. 2.3 (B). The tape is then used to peel off the PPC window

from the glass substrate which is then placed onto a PDMS stamp ∼ 1.5cm × 1.5cm ×
1mm. An example of such a stamp is shown in Fig. 2.4(C)(right). The glass slide is then

attached to the motorized arm in the glove-box transfer setup and desired flakes are found

using the microscope. Since the glass melting temperature of PPC is lower than PC the

stacking process used is of multiple release. Each desired flake is brought into contact with

the chip(after alignment) with electrodes and the PPC is made to release by raising the

temperature to 90◦C. The chip is washed with chloroform after each release. While some

materials give better thin-flake yield when exfoliating on PPC the multiple release method

introduces more contamination between layer which can be and mostly is detrimental to

device performance especially for microscopy.
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Chapter 3

1T-TaS2 : A Charge Density Wave

Material

This chapter will review previous work reported in literature on 1T-TaS2. The main

aim will be to establish the highly correlated electron nature of the CDW phases which

are of interest both from a physics and a device engineering point of view. The crystal

structure of 1T-TaS2 was first studied in 1970’s [72] [51] using a transmission electron

microscope (TEM). Inside the TEM parallel beam of high-energy electrons are diffracted

off the crystal lattice, due to the periodic nature of the crystal the diffracted electrons come

together to form a diffraction spot at a plane bellow the sample. A image of this plane

has series of spots which correspond to the symmetry of crystal structure. In 1T-TaS2 it

reveals structural phases in the material at various temperatures which are discussed in the

first section of this chapter. These phases have been mentioned in the previous chapters

and are namely Commensurate(C), Nearly-commensurate(NC) and In-commensurate(IC)

CDW phases. The structural transition between these phases greatly affect the transport

of electrons in the material, which is evidenced in the in-plane resistivity data presented in

the next section. The TEM data motivated questions regarding the ordering of the CDW

at the mesoscopic length scale in the room-temperature NC phase. Scanning Tunneling
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Microscopy (STM) measurements done in the 1990’s [73] [59][74] established that the NC

phase has a well-ordered amplitude- and phase- modulated domain structure. These results

are presented in the third section. Further investigation of the changes in the band structure

across the NC-C transition using Angle resolved photo-emission spectroscopy (ARPES) are

presented in section 4. The evidence from the analysis of the reviewed works suggest that

electron-phonon and/or electron-electron coupling play an important role in the CDW

transitions. Also, in addition to the in-plane CDW inter-layer stacking also plays a part

in these transitions. This is most clearly evidenced by structural and electron transport

studies done on samples of thickness nearing the atomic limit. These results are presented

in section 5. Additionally it has been shown that the highly correlated electron phases

of 1T-TaS2 can be controlled electrically by an applied electric field on the ultra-thin

flakes. Electronic control of 1T-TaS2 has also been attempted using ultra-fast lasers on

bulk samples. Both of these are discussed in section 6. We conclude this chapter by

the motivation that spatial mapping of the NC-C phase transition in the ultra-thin flakes

driven thermally and electrically would help to understand the spatial evolution of the

phase transition and resolve questions relevant to device miniaturization.

3.1 1T-TaS2 Crystal Structure

TaS2 is a transition metal dichalcogenide which is formed by S-Ta-S layer sandwich layer

held together by weak Van der Waals forces. The S-Ta-S layer can have two possible

coordination of the metal atoms: octahedral(ABC packing) or trigonal prismatic(ABA

packing). They can be further stacked in various ways to get either the pure octahedral

1T, the pure trigonal prismatic 2H, 3R or mixed 2Hb, 6R polytypes. Out of these 1T

and 2H-TaS2 are the most widely studied. Also to note is that both the materials show

CDW phases [72] bellow the CDW onset temperature. The 2H phase is more stable at

room temperature while the 1T phase is stable at high temperature. Thus fabrication of

1T crystals involves quenching the crystals from above 800◦C in a chalcogen environment.
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The crystals retain this phase unless heated above 250◦C.

Figure 3.1: Crystal structure of un-distorted 1T-TaS2. (A) A 3D side view showing 2

covalently bonded 1T-TaS2 layers which are held together by Van der Waals forces. (B)

Side-view of the 3-D structure, looking down from the a-lattice vector. The intra-layer

separation is marked by the lattice vector c = 0.5883 nm[49]. (C) Top-view of the 3D

structure, looking down from the c-lattice vector. Lattice vector a and b can be identified,

they are separated by an angle of 120◦. The magnitude of their displacement is same |a|
= |b| = 0.3365nm[49]. Figure made using software [38], basic structure crystal structure

from [17].

Fig. 3.1 shows the schematic of the real space arrangement of 1T-TaS2 crystal structure.

The figure on the right shows 2 S-Ta-S layers where both layers are held together by weak

van der waals type force while each Ta atoms (orange) are covalently bonded with six S

atoms (yellow). Each S atom is in turn are bonded with 3 Ta atoms thus fulfilling the

stoichiometry of TaS2. The middle figure shows the lattice looking down from the a-lattice

vector. It clearly shows the c-lattice vector that determines the intra-layer spacing which

is 0.5883 nm in 1T-TaS2. The figure on the left shows the lattice looking down the c axis.

The vectors defining the displacement between adjacent Ta atoms are the fundamental

lattice vectors a and b respectively. The magnitude of their displacement is the same(=
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0.3365nm) while they are separated by an angle of 120◦. This crystal lattice is measured

using TEM in which diffraction images show the reciprocal space lattice vectors (Fig. 3.2).

The PLD due to the CDW creates additional satellite peaks which reveal the symmetries

of the CDW phases.

T = 340K T = 290K T = 150K

CBA

Figure 3.2: Selected area diffraction images of 1T-TaS2 taken with e-beam parallel to the c*

axis. (A) Image taken at 340K shows 1T-TaS2 in IC phase which shows very weak CDW

satellite peaks. (B) At 290 K the NC phase shows much stronger satellite peaks with

semi-regular periodicity.(C) At 150 K both the lattice and the super-lattice have uniform

intensity and ordering as the material is now in the C-CDW phase. Figure taken from [51]

The diffraction image of 1T-TaS2 taken at 340K (Fig. 3.2 (A)), show the reciprocal

image of the schematic shown in Fig. 3.1(C). The triangularly arranged bright peaks

correspond to the original un-distorted lattice. The material is in the IC phase so the

PLD superstructure is completely incommensurate with the underlying lattice. Thus,

the extra satellite peaks produced by it are very dim in comparison to the un-distorted
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lattice. As the temperature is lowered to 290K there is a large qualitative change in the

diffraction pattern. The satellite peaks become more visible with respect to the lattice

peaks. For comparison the arrow in Fig. 3.2 (A) and (B) points at peaks generating from

the same set of scattering vectors. Since the material is in the NC phase the ordering

of the satellite peaks is not completely regular. Additional spots grouped triangularly

are seen surrounding each spot from the un-distorted lattice. These spots show more

additional spots if the electron-beam is tilted slightly. This shown in the inset of Fig. 3.2

(B). Cooling down further to 150K reveals a highly ordered diffraction pattern. Tilting

the electron beam does not produce any significant alteration of the pattern. The PLD

superstructure is now completely commensurate with the lattice, 1T-TaS2 is now in the

C-CDW phase. While this description is highly qualitative for a mathematically detailed

analysis please refer to [51][72]. We will now present the main results of such an analysis.
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A B

C

Figure 3.3: Schematic detailing the changes observed in Fig. 3.2. Three symmetric vectors

describe the PLD distortion for each phase. (A) The distortion wave-vectors are parallel

to the lattice vectors since the ratio of their displacement is not an integer the CDW

is in-commensurate. (B) The distortion vectors rotate with respect to the lattice. (C)

The wave-vectors now describe a 13.9 ◦ rotated
√

13 a ×
√

13 a superstructure which is

commensurate with the lattice vectors. Figure taken from [51]

Since the satellite spots are trigonally present around spots due to the un-distorted

lattice spots, three symmetry-related distortion wave-vectors are used to model the PLD

superstructure. This is graphically presented in Fig. 3.3 with reciprocal distortion vectors

labeled as Q1i,Q2i and Q3i.(i = 1,2,3 for I,NC and C phase respectively). The symmetry of

these vectors imply that Q1i+Q2i+Q3i = 0 which is known as the triple q condition. Fig.

3.3 shows the spots marked by a triangle in Fig. 3.2 as empty dots and spots pointed by
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the arrow as filled dots. In the IC phase Fig. 3.3 (A) the distortion vectors are parallel

with the lattice vectors. The PLD is in-commensurate with the ratio of Q/a* being 0.283.

For the NC phase the Fig. 3.3 (B) the distortion vectors rotate away from a*. This

rotation is temperature dependent, being 11.6◦ at 331K and increasing to 13.1◦ at 250K.

The magnitude of the Q/a* decreases in the same temperature range goes from 0.286 to

0.282. In the C phase the distortion vectors lock-in with the lattice vectors at an angle

of 13.9◦. The ratio Q/a* becomes 0.277 which is equal to 1/
√

13. In this phase the the

distortion can be expressed in terms of the lattice vectors as, Qi3 = 3/13 a* + 1/13b* or

Qi3’ = −3/13a* + 4/13b*. The C phase gives rise to star-of-david structure which is drawn

in Fig. 3.5 (left). It is formed by a group of 13 Ta atoms in which 12 atoms move closer to

the central atom. The atomic displacement is around 0.24
◦
A and is largely in-plane. The

displacement of the S atoms is two orders smaller [51] and mostly out-of-plane. There is

also an established out-of-plane periodicity in the IC and the NC phase of 3 Ta layers. A

possible periodicity of 13 in a two-layer stacking arrangement has been discussed for the

C-phase.[56]

While the IC and the C phase have a certain explanation, the nature of the NC state at

the mesoscopic scale remained an open question [74] from TEM studies. Theoretical work

by Nakanishi and Shiba [39] predicted that the NC phase is not a uniformly incommensu-

rate CDW but has a well ordered amplitude and phase - modulated domain structure. This

was later measured and confirmed by STM measurements presented in the next section.

3.2 STM measurements of the NC phase

TEM data for the NC phase of 1T-TaS2 suggests an incommensurate CDW superstructure.

Two separate models were suggested to account for this phenomena. A uniform amplitude

and phase rotated ∼12◦ relative to the atomic lattice which is inferred form a simple

extrapolation of the TEM data. The other model was proposed by Nakanishi and Shiba

where the CDW’s define a hexagonal domain-like structure with a periodicity of 67
◦
A.
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[39] Within the domains the CDWs are commensurate and in-between domains the CDW

amplitude decreases and the CDW phase changes. [73] [59] STM imaging shown in Fig.

3.4 established that the latter model was the correct explanation.

A B

Figure 3.4: STM imaging of room temperature NC phase of 1T-TaS2. (A) Seven domains

of uniform CDW clusters are circled. The line-cut marks the spatial positions for which

the data is shown in (C). (B) Atomic resolution data of the domain structure. Lines drawn

through adjacent domains show one lattice period phase shift between them. The bottom

panel shows the normalized frequencies of experimentally determined distance between

CDW maxima at the edges of adjacent domains. Figure (A), (B) and (C) taken from [74],

figure (D) taken from [73]
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Each dot in the Fig. 3.4 (A) corresponds to a star-of-david, which is roughly 1nm in

size. Room temperature STM scans of 1T-TaS2 show a periodic oscillation in the CDW

amplitude (Fig. 3.4 (C)), showing the data from the line cut in panel (A)) with a spatial

period of ∼7nm. This modulation defines domains consisting of relatively high-amplitude

CDW’s separated by regions of lower amplitudes or domain walls.(also referred to as dis-

commensuration or DC lines) Seven such domains are identified in Fig. 3.4 (A) with white

circles. Inside the domain the CDW is in the C-phase which is determined by measuring

the CDW-lattice angle inside the domains. For the temperature range between 240-340K

this value is a constant 13.9◦. [73]. Averaging across various domains reproduces the angle

seen in the TEM measurements. This confirms the domain model presented by Nakanishi

and Shiba. The domain period grows ∼ linearly over the same temperature range from

60-90
◦
A. This growth(melting) of the these hexagonal domains upon cooling(warming) of

the NC phase of 1T-TaS2 at the larger mesoscopic scale are of interest when the NC phase

is thermally slowed down and electrically driven in ultrathin-flakes. The hexagonal-domain

is itself rotated ∼ 6◦ relative to the CDW superlattice in a single domain. This rotation im-

plies that a phase shift occurs between the CDWs in adjacent domains. Fig. 3.4 (B) shows

an atomically resolved images of the domain structure containing four domains. There are

one-lattice period phase shifts between each adjacent domains and can be seen by the dis-

placement between lines drawn across each individual domain. A more rigorous analysis of

the arrangement of adjacent domains classifies various possible cases but for simplicity the

bottom panel shows the statistical frequencies(normalized) of measured distances between

the CDW maxima of adjacent domains. The average distance is ∼ 20
◦
A which accounts

well with the one-lattice period phase shift model. A single lattice period shift thus marks

the beginning of a DC line. In order to satisfy the triple q symmetry condition of distortion

vectors this can only happen in triplets. This also applies when the period shift reveres

itself and the DC line is annihilated. Thus the nucleation and annihilation of DC lines

connecting a dislocation - antidislocation pair can happen only in triplets. This explains

the Kagome like hexagonal tiling of the C-CDW like domains in the NC phase.

While structural details reveal important information regarding the spatial information
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of the CDW, electron transport in the material is of importance from a device application

perspective. Electron transport in 1T-TaS2 is affected quite strongly by the CDW/PLD

distortion. This is explored using resistivity and ARPES measurements in the next two

sections.

3.3 Electron transport in 1T-TaS2

The onset and transitions of the CDW superstructure heavily affects the electron trans-

port behavior in 1T-TaS2. Each structural transition is accompanied by a metal-insulator

transition.
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Figure 3.5: In-plane resistance of 1T-TaS2 showing the CDW transitions. (A) The C-CDW

takes a
√

13a×
√

13a superstructure that forms Star-of-David like clusters with the outer

12 atoms moving slightly inward towards a central atom. (B) Cooling down from about

550K the material is in metal-like IC phase with low resistivity. At ∼ 350K the a first-order

transition marks the onset of the NC phase which is more resistive(red line). Cooling down

further there is a stronger metal to insulator transition from NC to the C phase at 180K

which reverses itself at around 220K upon warming(black line). The resistance of C phase

below ∼100K shows behavior of an insulator. Insets show a schematic distribution of the

star-of-david’s in C and NC phase.

Fig. 3.5 shows the resistance data taken on a ∼ 20 nm thick 1T-TaS2 flake contacted in

a lateral electrode geometry. The in-plane resistance values show the onset of the various

CDW phases as a function of temperature. The resistivity behavior above 350K in the

IC-CDW phase is more metal like. As the temprature is lowered (Fig. 3.5 red line) a sharp

metal-to-insulator transition marks the onset of the NC-CDW phase. Cooling the material
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further (Fig. 3.5 black line), the temperature dependence of the resistance of the NC

phase is more semi-metallic. At 180K the material transitions to the C-CDW phase. The

resistance jumps by an order of magnitude as reported in resistivity studies elsewhere [72]

[26]. Below the transition temperature the resistance roughly flattens until ∼100K after

which it shows an insulator like behavior. Upon warming the transitions reverse themselves

but with a hysteresis which reveals the metastability of each phase. The C-CDW phase

transitions to NC-CDW phase at around 220K showing a large hysteresis of ∼ 40K. The

NC-phase transitions to the IC phase with a much smaller hysteresis of only a few kelvin

around 350K.

Hall measurements [26] reveal the nature of the electrons at the Fermi surface. A

negative hall-coefficient (RH) at 360K indicates electron like carries in the IC-CDW phase

with a carrier concentration of ∼1022 cm−3. A sharp discontinuity marks the NC-IC

CDW transition and the hall-coefficient increases gradually that shows that the carrier

concentration decreases in the NC phase. From 350K to 200K it is reduced by roughly an

order of magnitude. The NC to C transition at 180K brings a change in the polarity of

RH and a reduction of charge carriers from ∼1021 cm−3 to ∼1019cm−3. The temperature

dependent hysteresis appears the same as the resistance data. RH increases steeply in the

C phase upon further cooldown having a maxima at 30-50K and a minimum around 4K.

This behavior is similar to that of an extrinsic semiconductor showing impurity conduction.

Low temperature electron transport has been explained using Anderson localization [13]

where the conduction is extremely sensitive to disorder.

The transport data thus suggests that the IC phase has a metal-like fermi surface and

has electron like carriers. At the transtion into the NC phase the carrier concentration de-

creases but remains fairly constant upon cooling indicating that the phase is still metal-like.

At 180K when the material transitions into the C phase the charge carrier concentration

decreases significantly and the sign of the carriers reverses. Temperature dependence in

the C-CDW phase additionally show that the material is now a semi-metal or a semi-

conductor. This indicates that a large portion of the fermi-surface has been destroyed.

This change in the fermi surface is measured using ARPES whose results are shown in the
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next section.

3.4 ARPES : Band Structure visualization

Structural transitions observed using TEM and first-order phase transitions observed in

the in-plane transport data suggest that the transition from the IC to the C CDW phase is

accompanied by a significant restructuring of the band diagram. It has been estimated that

the formation of a perfect
√

13a ×
√

13a in a closely related material, 1T-TaSe2 destroys

at-least 90% of the fermi surface. These changes can be visualized using angle resolved

photo-current emission spectroscopy or ARPES.
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B C

Figure 3.6: ARPES measurements of 1T-TaS2 visualize changes in the bandstructure close

to the fermi-surface. (A)ARPES intensity maps taken at 390K and 50K show the fermi-

surface and the underlying bands in IC and C - CDW phase respectively.(B) Band-structure

calculations of 1T-TaS2. A regular tight-binding model is shown for the IC phase(left),

a re-constructed bandstructure using the
√

13 ×
√

13 modulation. Features that carry

significant spectral weight in the C-CDW phase are highlighted in thick gray line.(C)

Density of states(DOS) of the unreconstructed(solid black line) and reconstructed(filled

gray curve) bandstructure. Figure taken from [49]
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Fig 3.6 (B) shows a tight-binding calculation for 1T-TaS2. A single Ta 5d band disperses

downward from the Brillouin zone center (Γ point) toward the M point (zone boundary) and

then back upwards along the M-K direction (zone face). It thus crosses the Fermi-surface

twice and to give an elliptical Fermi surface pocketed around the M point. This band is

visible in the ARPES data taken in the IC-CDW phase at 390K shown in Fig 3.6 (A) (left).

In the C-CDW state the band is re-arranged and the 5d band is split into sub-manifolds

shown in Fig 3.6 (B) (right). Features along the original band carry most of the spectral

weight as shown by the thick gray lines. Thus the features of the reconstructed band are

only faintly visible in the ARPES data taken at 50K (Fig 3.6 (A) right) in the C-CDW

phase. The onset of the C-phase rearranges the Ta 5d band in a Mott-Hubbard type metal-

insulator transition where the charge is localized at the center of the star-of-david pattern.

The Hubbard subband overlap creating a pseudo-gap (∼0.4eV) at the Fermi surface (EF )

[49]. This leads to the appearance of a sub-band around the Γ point at ∼0.2eV bellow EF in

the ARPES data. Thus strong electron-phonon coupling and electron-electron correlations

are present simultaneously in 1T-TaS2. While the reconstruction model presented explains

the qualitative features of the sub-manifolds, for features closer to the Fermi surface further

analysis and understanding of the bandstructure would require to include both the PLD

reconstruction and spin-orbit interactions [25]. In a recent experiment combination of

ARPES and X-Ray Diffraction (XRD) results have shown the existence of bi-layer stacking

[71] in the C-CDW phase. This would make the low-temperature state of 1T-TaS2 a band

insulator with two electrons fully occupied [30] [48] in the flat band near EF in the ARPES

data. Consequently STM spectroscopy done on the bulk sample to investigate the DOS

at an atomically sharp cleavage plane [8] [9]. Considering most of the bulk state to have

dimerized, the cleavage point is a breakdown of the bi-layer condition where the DOS

states should be metallic. But a spectral gap (smaller than paired layers) observed in the

unpaired layer can still be attributed to Mott localization.

This section ends the review of the work done on the bulk 1T-TaS2 crystal. Recent

research has focused on studying the crystal in the ultra-thin limit and achieving control

of the correlated electron state. Which will be the focus of the next two sections.
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3.5 Ultra-thin 1T-TaS2

Recent increase in the interest of the study of two-dimensional materials in the atomic

limit has focused on exploring new physics and novel electronic properties in reduced

dimensions. [20] [42] [28]. Due to it’s multiple CDW transitions 1T-TaS2 has become the

focus of study for the effect of such thinning on the stability of it’s correlated electron

phases and possible application as a memristive material.[64][76][24]. Initial studies on

flakes exfoliated in ambient conditions reported the absence of the NC-C CDW transitions

in flakes bellow a certain critical thickness.

Figure 3.7: Flakes exfoliated in ambient atmosphere develop an amorphous oxide layer,

visible in a cross section electron microscopy image(right). A TEM image of such flake

shows absence of CDW order.(left) Figure taken from [64]

This was later attested to the surface oxidation of the flakes. A cross section electron

microscopy image shows this amorphous oxide. Fig 3.7(right) Such oxidation causes suffi-

ciently strong surface pinning that destroys charge ordering in these flakes which is evident

by the absence of any satellite peaks in the TEM diffraction images (Fig. 3.7(right)) of

such flakes.

To prevent such oxidation the exfoliation of 1T-TaS2 is carried out in a N2 filled glove

box with O2 and H2O levels beneath 1-ppm. Additionally these flakes or devices made with

them are capped with a protective h-BN layer before exposure to ambient environment
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outside the glove-box.[64] Such capping has been utilized to stabilize a variety of 2-D

materials which are sensitive to oxidation since h-BN is a very well known and highly

stable 2-D material with a large band-gap (5.2eV).

A B

C

Figure 3.8: Protected ultra-thin 1T-TaS2 flakes show NC-C CDW phase transitions.(A)

Protected thin flakes with thickness down to 4nm show the NC-C thermal hysteresis in the

R vs T data. Widening of the hysteresis upon thinning is shaded. (B) TEM data of h-BN

capped 1T-TaS2 flakes of 12nm and 2nm thickness, taken at 295K(red peaks) and 100K

(blue peaks). (C) (Top) Position of the satellite peaks can be used determine periodicity

of the commensurate domains in the NC phase DNC . (Bottom) The NC to C transition

temperature is lowered with reduced thickness. Figure taken from [64]

For such protected devices the NC-C transition is seen in the in-plane transport data

for flake thickness down to the 4nm limit. Fig 3.8(A) With decreasing flake thickness the
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thermal hysteresis NC-C phase transition becomes wider. While the center of the hysteresis

does not change substantially the difference between the transition temperature to the NC

and C phase increases from ∼ 50K to ∼110K. This indicates that the thinning does not

stabilize either the NC or the C phase but increases the energy barrier separating the NC

and C phases. Thus, in thin samples the meta-stability of the NC(C) phases is increased

upon cooling(warming). This is corroborated with TEM data taken on these samples. Fig

3.8(B) shows TEM diffraction images taken for a 12nm and 2 nm h-BN protected 1T-

TaS2 flakes at 295K(red dots) and 100K(blue dots). While the protective h-BN introduces

additional diffraction spots it is still possible to identify the satellite peaks of the CDW

structure which is demarcated by white ellipses. The movement of the satellite peaks can

be related quantitatively to the to the periodicity of the the commensurate domains DNC ,

in the NC-phase.[59] A qualitative schematic is shown in Fig 3.8(C) (top). As seen in the

STM data [59][73] the room temperature DNC is ∼7 nm which is similar to what is seen for

both the thin flakes.Fig 3.8(C) (bottom) As the sample is cooled the domain size for the

12 nm flake grows to ∼ 8-9 nm after which it jumps to an arbitrarily large value indicating

the onset of the C-CDW phase. For the 2-nm flake on the other hand the flake remains

in the NC phase down to 100K but the domain size increases to 50nm indicating that the

phase transition has started to happen.

This has been explained by the increased cost of energy to remove DC’s from the NC

phase in the 2-D limit. [64] In bulk samples the intra-layer stacking of the NC domains

make the DC’s planar objects which are difficult to pin by point like impurities. In the

2-D limit they become line-like and thus more susceptible to be pinned. This would slow

down the growth and annihilation of DC’s which would appear as increased meta-stability

of the phase transitions.

These results partially motivate the study in this thesis. The sharp first-order NC-C

phase transition in the resistitvity of bulk 1T-TaS2 becomes more multi-step in ultra-thin

flakes (6nm flake resistance data around 150K on cooling Fig 3.8(A)) That combined with

the TEM results indicate the slowing down of the NC-C phase transition. Mapping the

distribution of the NC and C domains at a mesoscopic scale in these intermediate resistance
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states is the aim of our device geometry.

3.6 Electrically controlled Phase Transitions in 1T-

TaS2

Various methods have been shown to induce changes in the electronic structure of 1T-TaS2.

Superconductivity can be induced by applied pressure [53] and intercalation by Fe [31] or

Se [34] ions. Electrical pulses applied at the at the atomic scale using a STM tip shows

formation of a ‘Metal Mosaic’ [35] [12] like discommensuration structure in the C-phase at

6.5 K. Additionally, electrical pulses above a certain threshold and time scale have been

shown to drive the metal-insulator transition [67] at low temperatures.

BA C

Figure 3.9: Electrical control and manipulation of the CDW phase in 1T-TaS2. (A) Ultra-

fast optical pulse induces a metallic state in C-CDW phase of 1T-TaS2.(B) In-plane current

can suppress the NC to C transition in thin flakes. (C) Ultra-thin flakes electrically driven

into intermediate states between the NC and C-CDW phase at a temperature where the

current state is meta-stable. Figure (A) taken from [66], Figure (B), (C) taken from [64]
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Fig 3.9 (A) shows the temperature dependent resistance of a 1T-TaS2 flake with 20nm-

100nm thickness. The red and blue curve show the typical behavior for the crystal. At

low temperature a single 35-fs optical pulse above a threshold fluence drives the insulating

C-CDW into a highly conductive state with a drop in resistance of around 3 orders of

magnitude. The C phase is later recovered upon warming above 50K. Ultra-fast lasers

have also been used previously to melt and image the recovery of the CDW order in the

time scale of ∼pico-seconds [16]. This motivates that understanding the physics and the

realizing control of this strongly correlated system could enable novel device applications.

Ultra-thin samples have also motivated the control of these CDW states. Multi state

metal to insulator switching has been shown in flakes of thickness between 10-20nm.[76][24][75]

Fig 3.9 (B) shows the hysteresis curve for a h-BN capped 4nm thick 1T-TaS2 flake with

negligible current flow(black curve), which is very typical for the material. When the ma-

terial is cooled while flowing increasingly large in-plane current the NC-C phase transition

is suppressed [64]. Even when the current is switched off at low temperature the NC state

is maintained. This shows that in ultra-thin flakes it is possible to maintain the NC phase

at temperatures where it is not thermodynamically stable. Additionally if the flake is in

the NC phase at 150K it is possible to drive it into the C-phase by an applied electric field

Fig. 3.9 (C)(Top). The material initially shows typical ohmic behavior until a certain cur-

rent value after which the I-V behavior is non-linear as the current drops with increasing

voltage. Sweeping the voltage back to zero does not reverse this process as the resistance is

now larger than at the beginning. The reverse of this process can also be done by starting

with the material in the C phase at 200K (Fig. 3.9 (C), bottom).

The possibility of such driving in the ultra-thin flakes is the second motivation for our

spatial mapping of the NC-C transitions in these flakes. The distribution of the NC and

C domains in the intermediate states of electrical driving in comparison with thermally

driven intermediate states should give an insight regarding the spatial dynamics involved

in these transitions.
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Chapter 4

1T-TaS2 : Photocurrent Microscopy

Previous works on ultra-thin flakes of 1T-TaS2 motivate the study of spatial evolution of

the NC-C phases transition in such systems. In the following chapter we propose a device

geometry that would enable such a study. In the first section we discuss the working of

this geometry and present the proof of principle regarding the same. In the next section we

present the spatial evolution of the NC-C CDW phase transition upon thermal cycling as

evidenced by zero-bias photocurrent microscopy. After that we show the data for the elec-

trically driven NC-C CDW transition and the concomitant photocurrent maps in section 3.

Section 4 presents a phenomenological model for the multi-step NC to C electrically driven

transition based on past theoretical work. In section 5 we discuss the model in relation to

the experimental data obtained.
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4.1 Vertical heterostructure design for Photocurrent

Microscopy

A Id
Vs

A Ipc

WSe2

1T-TaS2

Gr

Gr WSe2 1T-TaS2

NC

Ef

C

A B

Figure 4.1: Simultaneous electrical driving and photocurrent detection of NC-C CDW

transition in 2D 1T-TaS2. (A) Schematic of device heterostructure and measurement ge-

ometry. Lateral contacts to 1T-TaS2 allow measurement of resistance and electrical driving,

whereas vertical contacts give photocurrent at zero bias. (B) Band structure diagram show-

ing mechanism of photocurrent generation. Photo-generated electron-hole pairs in WSe2

separate due to the intrinsic electric field created by the work function mismatch between

1T-TaS2 and graphite, which changes across the NC-C transition.

In order to spatially map the NC-C metal-insulator transition at the micron scale we utilize

highly efficient photo-current generation in nanometer thin WSe2. [6] A schematic of our

unique device and measurement scheme is shown in Fig 4.1 (A). A scanning, focused laser

(520 nm wavelength) impinges on a heterostructure junction consisting of (from top to

bottom) 1T-TaS2 , WSe2, and graphite (Gr) thin flakes. Photo-generated electron-hole
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pairs in WSe2 separate due to the intrinsic electric field created by the work function

mismatch between 1T-TaS2 (5.2eV) [52] and graphite(4.6eV) [58], which changes across

the NC-C transition. Fabricated devices are additionally capped with h-BN to prevent

atmospheric degradation of the 1T-TaS2 flake as shown in previous studies. [64] Large

band gap energy of h-BN ensures that it does not effect the photoelectric response of the

device.
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Figure 4.2: Photocurrent response of a typical heterostructure device.(A) I-V characteris-

tics across 1T-TaS2/WSe2/Gr junction with and without laser left to it is the schematic of

measurement geometry.(B)Zero-bias photocurrent vs. laser power incident on sample.

In the absence of light, the resistance across the WSe2 junction is relatively large

(≥100MΩ). In presence of light, the electron-hole separation yields a local, vertical pho-

tocurrent, Ipc, even when no bias is applied to the junction. This can be seen in voltage-

current characteristics presented in Fig 4.2 (a). The photocurrent Ipc changes sub-linearly

with incident laser power as shown in 4.2 (b). This is consistent with previous studies in

graphene/MoS2/graphene junctions. [6] Across the NC-C transition, the band structure of

1T-TaS2 undergoes a reconstruction, which should manifest as a change in Ipc. A cartoon

representation of such a change is shown in Fig.4.1 (b). Scanning the laser spot across our
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sample allows for the C and NC domains (as well as intermediate meta-stable states) to be

imaged spatially with diffraction-limited resolution (∼1 µm). The 1T-TaS2 is additionally

contacted with two leads laterally outside the junction area, so that its resistance (∼10

kΩ) can be monitored and the NC-C transition be driven electrically like that in previous

works [64] [75] [24]. This geometry is more complex in both fabrication and the origin of

photocurrent than the simpler and more common planar, two terminal photocurrent de-

vice geometry. [63] [44] [62] We have found them to yield less direct information on CDW

domain structure in 1T-TaS2 [B].
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Figure 4.3: (A) Optical image of a device with 5 nm-thick 1T-TaS2 with flake edges traced

out and 1T-TaS2/ WSe2/Gr junction shaded for clarity. Scale bar is 5 µm.(B)Photocurrent

map of the same sample. The discontinuity in the middle of the flake is not visible under

optical or AFM imaging but is evident in photocurrent maps taken with geometries in

which only one of the contacting lead is grounded at a time.

Fig.4.3(A) shows an optical image of a device of the proposed geometry. The 1T-TaS2

thickness is 5nm (see Fig A.1) and has a discontinuity at the narrowest region. This is most

evidently seen in photocurrent maps of the device taken with different lead combinations

Fig. 4.3(B). While this prevents any lateral electrical driving, it does not impede the

measurement of thermal evolution of the transition.
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Figure 4.4: Photocurrent map of device with 5-8 nm 1T-TaS2 flake taken with light of

reducing energy(left to right). Plotted on the same scale bar, the photocurrent generated

for light with energy bellow the WSe2 bandgap(λ = 2300nm) is negligible in comparison.

In order to confirm that the photocurrent originates from the process illustrated in

Fig.4.1 (b), we took photocurrent maps with lasers of varying energies Fig. 4.4. The direct

(indirect) bandgap for bulk WSe2 is∼1.6eV (∼1.2eV).[77] Clear photocurrent is observed at

the 1T-TaS2/WSe2/Gr junction for laser of wavelength 520nm(2.38eV) and 650nm(1.91eV)

as they have energies much larger than the WSe2 bandgap. The 2300nm(0.54eV)wavelength

laser has energy below the bandgap and thus no photocurrent signal of comparable magni-

tude is observed. Please note that the first two images (from the left) have been saturated

to compare with the third.
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Figure 4.5: Average photocurrent response of device with a 22nm 1T-TaS2 flake as a

function of temperature. The negative sign of Ipc agrees with scheme presented in Fig 4.1.

The sharp increase and decrease in the magnitude of photocurrent(left) tracks the in-plane

resistance measured simultaneously(right) indicating that our proposed geometry should

track the NC-C CDW transition.

The last confirmation of our proposed geometry is to monitor the temperature evolution

of Ipc. In Fig 4.5, we compare the temperature dependent later resistance Rsd = Vs/Id for a

device with a moderate 1T-TaS2 thickness of 22 nm, to that of photocurrent, Ipc, with laser

defocused across the junction region. Both show the abrupt and hysteretic NC-C transition

centered at ∼190 K that is characteristic of bulk like 1T-TaS2, indicating the validity of

our measurement scheme. The negative sign of Ipc indicates that photogenerated electrons

(holes) flow into Gr (1T-TaS2), consistent with the work function difference scheme.
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4.2 Photocurrent Mapping of thermal NC-C transi-

tion
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Figure 4.6: Photocurrent imaging of the temperature-induced NC-C transition in the device

shown in Fig.4.3 with 1T-TaS2 flake of 5nm thickness. (A) Photocurrent maps taken at

various temperatures across the NC-C transition for cooling and warming show formation

of micron-sized domains. Scale bar in the bottom left panel is 5 µm. (B) Temperature-

dependent photocurrent signal from four different color-coded locations marked in the

bottom-left panel of (A). Each points marks a region with distinct transition temperatures

and intermediate meta-stable states.

Photocurrent images of the junction area (with both contacts to 1T-TaS2 grounded) are

shown in Fig 4.6 as a function of temperature for both cooling and warming around the

transition temperature. Red (blue) region is where Ipc is larger (smaller) in magnitude and

corresponds to those more in the NC (C) phase. At higher temperatures, the entire area

is relatively uniform and in the NC phase, although there is a marked difference across the

discontinuity. The spotlike features are attributed to small bubbles or unwanted particles
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at the interface and likely do not reflect true features of the CDW phases. (See Appendix

Fig A.2) At lower temperature, different areas of the junction transition into the C phase

at different temperatures and to varying degrees, manifesting in formation of micron-

sized domains in the photocurrent image. In order to show the regional differences more

explicitly, the bottom-left panel shows the plot of temperature-dependent photocurrent

values at four different locations marked by the colored points in the bottom left image

at 210K. Overall, the hysteresis between cooling and warming is wider than that for the

thicker sample shown in Fig. 4.5, which is consistent with previous transport studies.[64]

Upon cooling, the temperature at which the transition into the C phase begins varies over

25 K across the four locations, while the abruptness of the transition is also different.

In particular, orange and purple traces show several metastable states with intermediate

Ipc that is absent in the gray trace. In contrast, upon warming, all locations complete

the transition into the NC phase at ∼225 K. Interestingly, the location marked in green

maintains a relatively large Ipc throughout the entire temperature range, indicating that it

remains nearly locked in the NC phase, although a small hysteresis loop is still visible. Such

an effect has also been seen in transport measurements on ultrathin samples, although no

spatial information was obtained.[64]
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Figure 4.7: Photocurrent evolution over various points in 22nm 1T-TaS2 flake shows a

smaller temperature hysteresis in accordance with the transport data. The spatial unifor-

mity of the transition is evident as all points show the transition at the same temperature.

Scale bar is 5 µm (inset)

To compare with the ultra-thin sample Fig 4.7 shows temperature evolution of Ipc for

a sample with 22 nm-thick 1T-TaS2 flake, which shows a narrower hysteresis, more abrupt

NC-C transition, and more complete transition into the C phase across the entire junction.

This is also consistent with previous nanoscale infrared imaging on a 1T-TaS2 flake with

moderate thickness.[18] These measurements demonstrate the utility of our photocurrent

scheme in deciphering spatial differences in the NC-C transition of 1T-TaS2 on the micron

scale which are relevant for electronic devices.
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4.3 Electrically driven transition
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Figure 4.8: Reversible electrical driving of metastable states across NC-C transition and

concurrent photocurrent imaging. (A) Sequential current-voltage sweeps taken at 170 K

starting in the NC phase on a 5-8 nm-thick 1T-TaS2 device. The top panel shows a gradual

decrease in conductance from sweeps 1-9. The bottom panel shows an abrupt increase

in conductance in sweep 12 and decrease again for sweep 13. (B) Photocurrent maps

taken after selected sweeps show changes following the resistance trend without domain

formation. Scale bar is 5 µm. (C) Top: lateral 1T-TaS2 resistance before each voltage

sweep measured at low bias. The multiple resistance states can be switched back and forth

repeatedly at a fixed temperature. Bottom: photocurrent change (in percent) for various

color-coded locations marked in the bottom image in (B). The traces have been offset for

clarity. All locations show photocurrent tracking the overall resistance.

In the upper panel of Fig 4.8(A), shows a series of slow, lateral current-voltage sweeps

(0.13 V/s maximum) taken on another device with 1T-TaS2 thickness of 5-8 nm starting

in the NC phase at 170 K. Initially, Id increases linearly with applied Vs until a sudden

decrease is observed at a relatively small voltage value of ∼1.4 V, after which we sweep

Vs back to zero. As the measurement is repeated, the conductance decreases after each

subsequent sweep while the current-voltage characteristics become increasingly nonlinear.

This process gradually transitions the 1T-TaS2 sample further into the C phase with higher

resistivity and nonlinear conduction.[65] The voltage needed to drive the current decrease

increases with the sweep number, although the Id-Vs characteristics appear to eventually

saturate onto a single curve (see sweep 9). The upper panel of Fig 4.8(C) plots Rsd at

low bias with sweep number before each sweep, which also begins to show a saturation

after sweep 9. Note that this saturated resistance level is 63% of the resistance of the

C phase driven by temperature at 170 K, indicating that conducting discommensurations

still remain.

In this saturated, metastable state close to the C phase, increasing Vs further to a

larger value of ∼11 V at the same temperature of 170 K induces an abrupt current rise,

as can be seen in sweep 12 in the lower panel of Fig 4.8(a). Upon sweeping Vs back to
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zero, the current abruptly decreases at a lower voltage of ∼8.5 V but does not return to

its original state. As a result, the device can be switched back toward the NC state with

higher conductance in a nonvolatile manner. We have repeated this driving procedure

with additional sweeps and the corresponding resistances are shown in the upper panel of

Fig 4.8(c), which demonstrates that 2D 1T-TaS2 can be switched bidirectionally back and

forth between the NC and C-like states at a fixed temperature.

Such electrically induced effects could potentially arise from the formation and switch-

ing of micron-sized NC or C domains, as in the case of the temperature-driven transition

shown in Fig 4.6. To address this issue, we further performed zero-bias photocurrent scans

after many of the voltage sweeps, and five selected images are shown in Fig 4.8(b). The

overall magnitude of Ipc follows the device conductance: decreasing from sweep 1 to 6 to

9, increasing from 9 to 12, and decreasing again from 12 to 13. While the images are not

completely homogeneous (perhaps due to small differences in inter-facial contact across the

junction), they do not show the characteristic domains formed during cooling or warming.

To show this more explicitly, we have tracked Ipc at five different locations across the junc-

tion (see colored points in the lower image of Fig 4.8(c)), and their normalized change with

drive number is shown in the lower panel of Fig 4.8(c) with the different traces offset for

clarity. The photocurrent change for almost all locations uniformly follows the overall 1T-

TaS2 resistance. The only exception is the orange trace, showing slightly more saturated

characteristics after sweep 9, which could be a consequence of a reduced current density or

local electric field as this position is in the corner of the flake. This indicates that if CDW

domains were created during electrical driving, their length scale should be much smaller

than 1 µm, the laser spot size.
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4.4 Free Energy Analysis of Electrically Driven NC-

to-C Transition

The NC phase consists of C phase domains separated by a lattice of discommensuration

(DC) lines that are presumably as metallic as the IC phase. The area density of DC’s, ndc,

characterizes how similar the NC phase is to the C phase or IC phase. When ndc equals

1/a2 (a: the lattice spacing), the system is in the IC phase, while when nDC is zero, the

system is in the C phase. Here, let us introduce a misfit parameter δ as :

δ =
nDC .a

2

M
(4.1)

where M is the commensurability of the C phase, and M=3 in 1T-TaS2. In terms of δ,

we have

• C-phase: δ=0,

• IC-phase:δ=1/M,

• NC-phase: otherwise.

The volume fraction of the commensurate domain in the whole sample is given by,

vc = 1− nDC .a
2 = 1−Mδ. (4.2)

We start from a Ginzburg-Landau free energy F [δ] calculated by Nakanishi and Shiba

[40], which is schematically plotted in Fig 4.9 as the dashed line. The details of the

functional form are not important for the following discussions; Ref. [40] provides further

details. The main characteristic of the free energy is the existence of local minima at

δ = 0 (the C phase) and at δ=δNC (the NC phase). At a temperature slightly below the

bulk transition temperature (as in the measurement shown in Fig 4.8 taken at 170K), the

free energy of the C phase is lower than that of the NC phase, i.e., F [0] < F [δNC ]. The
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Figure 4.9: Ginzburg-Landau free energy for the charge-density wave order in 1T-TaS2 as a

function of misfit parameter δ. When the electric field E is absent, the C phase has a local

minimum at δ = 0, while the global minimum lies in the NC phase with δNC > 0. The

dashed line ignores the effect of the nucleation process of the discommensuration lines.

The nucleation process with a potential barrier ∆G makes multiple local minima given

by the solid line. The dotted line includes the effect of electric field E, which makes the

nearly-commensurate phase less stable.
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calculation was based on a model where δ can continuously change. However, the number

of DC’s can change only by a multiple of M, through the nucleation and annihilation

process of a dislocation-antidislocation pair of DC’s (see triplet figure, inset Fig 4.12 (a)).

The detailed calculation for the energy of a dislocation-antidislocation pair is given in [23];

here, only the qualitative aspect is enough for the subsequent discussions. In Fig 4.9, we

depicted the free energy, including this discreteness of DC’s in the solid line, by adding an

activation barrier potential ∆G between two δ’s that differ by M=3.

Now we turn to the effect of the electric field on the free energy. In our experimental

setup, the system is in a non-equilibrium steady state with currents flowing through the

sample. We will not consider the kinetic energy of the currents since they are dissipating

into the substrate, and the effect of heating is negligible in experiments. We will treat

the effect of electric fields only phenomenologically by assuming that the commensurate

domain is dielectrically harder than the DC part [22]. The assumption is based on the

fact that the commensurate domain is insulating, while the DC’s are metallic as in the IC

phase. Let us write the polarization of the commensurate domain per volume as P0, and

ignore the polarization in the DC part. Then the energy density due to the polarization is

given by

Fp = −vc.P0.E = −(1−Mδ).P0.E (4.3)

where vc is the volume fraction of the commensurate domain in the whole sample.
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(A) (B)

Figure 4.10: Two characteristic electric fields ET and EM . (A) At E=ET , the thermal

transition from δN to δN−3 is activated. (B) For EM [δN ], the local minimum at δN−3

becomes equal in energy to that at δN , where the system is originally located.

The term proportional to Eδ tilts the free energy curve and makes the NC phase less

stable (the dotted line in Fig 4.9). In Fig 4.10, we depict the two characteristic electric

fields E in the process of transition from a local minimum at δN with N DC lines to the

adjacent one at δN−3 with (N-3) DC lines. The first characteristic field ET [δN ] is the

critical field that makes the energy activation barrier ∆G between δN and small enough

for the thermal activation process, i.e., ∆G ∼ kBT . We expect that this critical field is

only weakly dependent on δ, thus we assume a constant ET in the following analysis. The

second characteristic field, EM [δN ], is defined by the field, at which the free energy at δN

becomes larger than the one at the adjacent minimum at δN−3, i.e., F [δN−3] < F [δN ]. If

this inequality is not satisfied, the system is likely to go back to the original minimum δN .

Near the local minimum at δNC in Fig 4.9, the free energy is concave up (the curvature is

positive), and thus a larger critical field EM is required as δ becomes smaller,

EM [δN ] < EM [δN−3] < EM [δN−6] < · · · . (4.4)
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Depending on the temperature T, the activation potential height ∆G, and the overall

shape of the free energy F [δ], there are two possible scenarios regarding the two critical

field values: (a) EM [δ] > ET or (b)EM [δ] < ET .

(A) (B)

Figure 4.11: The transition of δ in the two scenarios as the electric field E is adiabatically

increased. (A) When EM [δ] > ET , the system experiences consecutive stepwise jumps

between adjacent local minima, until crossing over the large peak and rushing into the

commensurate phase. (B) When EM [δ] < ET , nonconsecutive jumps occur. When ET is

small (blue line), the step of the jumps is still one or two. As ET increases, the step of

the jump becomes larger (orange line), and even a direct transition to the commensurate

phase is possible (green line).

In scenario (a), as we increase the electric field, the thermal activation process first

becomes possible at E = ET . However, the local minimum at δN−3 only becomes more

stable at E = EM [δN ], leading to the transition δN → δN−3. As we further increase E,

consecutive step-wise jumps to adjacent local minimum occur (δN−3 → δN−6 → · · · ) as

the electric field passes threshold values, EM [δN−3], EM [δN−6], · · · (Fig 4.11(a). At a large

enough field value, the system will even transition fully to the C phase if the large peak

between the C phase and the NC phase can be overcome energetically. In scenario (b),

forEM [δ] < ET , the local minimum at δN becomes metastable, and the one at δN−3 becomes
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more stable. However, due to the activation barrier in between, the system remains in the

metastable state at δN . As E further increases, the location of the stable minimum shifts

incrementally: δN−3 → δN−6 → δN−9..... At E=ET , the thermal activation process is

enabled, and a non-consecutive jump to the new stable minimum occurs: δN → δN−3p,

where p is an integer (the orange line in Fig 4.11(b)). If the activation barrier between

adjacent minima is very high or the energy difference between the NC phase and the C

phase is small at E=0, it is even possible for the system to directly jump to the C phase (the

green line inFig 4.11(b)). The scenario with small or moderate value of ET qualitatively

explains our observations of discrete jumps in the I-V curves. We expect that the abrupt

first-order-like switching near E ∼ Ec is caused by the nonlinear coupling between δ and

E , which is, however, beyond the scope of our model.

4.5 Discussion

In this section we discuss the relevance of the phenomenological model presented in the

previous section in explaining the observed homogeneous switching. While the NC-to-C

transition proceeds in multiple steps, the reverse transition is abrupt. This likely reflects

different origins for the two, and so we discuss the forward and backward transitions

separately.
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A B

Figure 4.12: Proposed mechanism for bidirectional switching. (A) Free energy schematic

visualizing the effect of applied electric field E at 170 K with discommensuration (DC)

density n as the order parameter. The dashed lines represent the overall energy landscape,

and oscillations correspond to the discrete annihilation and creation of triplet DCs (see

bottom-left inset). (B) 1T-TaS2 resistance versus temperature and electric field for the

sweeps shown in Fig4.8(A) showing the difference between forward and reverse transitions

and metastable resistance states accessed. The schematics in the inset show growing C

domains with increasing Rsd in accordance with our model.

A conducting network of discommensurations (DCs) distinguishes the NC phase from
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the C phase,[43] [74][73][7] [59] and so the areal density of DCs, nDC , can be used as an

order parameter to describe the energetics of the NC-C transition[40] with nDC being zero

(nonzero) in the C (NC) phase. The free energy landscape describing the initial state is

shown by the black trace in the main panel of Fig4.12(a). At 170 K, the C phase is the

thermodynamic ground state; however, the sample remains locked in the local NC minimum

due to the activation barrier. Importantly as show nDC in the previous section, the energy

is not a smooth function of nDC , as DCs must be nucleated and annihilated discretely in

triplets in 1T-TaS2 in order to conserve the phase around a CDW dislocation.[23],[37] These

two processes are illustrated in the inset in Fig4.12(a), where the triplet DCs (represented

by lines) are shown to terminate at a pair of dislocations (represented by filled and open

circles). As the DCs are more conducting than the C regions, the latter can be more highly

polarized by an external electric field, E.[22] Applying a finite E below a critical value, Ec,

then lowers the energy more for states with smaller n, thus tilting the energy landscape to

destabilize the NC state, as shown by the blue trace in 4.12(a). For a given n, the energy

further decreases linearly with E. This allows the system to gradually transition toward the

C phase by traversing a series of local, metastable minima corresponding to a decreasing

density of DCs.

This qualitatively captures the multistep NC-to-C transitions observed in our exper-

iment, which are summarized in Fig 4.12(b). Here, we have overlaid the temperature-

dependent resistance Rsd (in black) for the 5-8 nm thick device and Rsd versus electric

field E (top x-axis) at 170 K corresponding to the forward driving (in blue) from Fig4.8(a)

for comparison. Applying relatively small fields in the NC phase allows access to multiple

metastable states within the hysteresis region of the temperature-driven transition, which

in light of our analysis and imaging we now interpret as an incremental melting of the

NC DC network that is distributed relatively uniformly across the sample (see insets in

Fig 4.12(b)). When the system is near the C phase with higher resistance, application of

E > Ec ∼ 0.7V/µm causes an abrupt reverse transition back toward a lower resistance

state. The green traces in Fig 4.12(b) show two instances of this backward driving for

comparison. In both cases, the 1T-TaS2 resistance immediately after this transition is
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very close to that of the NC phase at higher temperature under equilibrium conditions,

and so we have drawn the energy landscape in green in Fig 4.12(a) to describe this state

phenomenologically. The overall activation barrier between the starting and final states

reflects the hysteresis between ramping field up and down, which is caused by a first-order

phase transition. This may indicate additional nonlinear coupling between E and n that

is beyond the scope of our model. Nonetheless, the original NC DC network is nucleated

again in this free energy picture, resetting the system. The melting process is active again

when ramping the field back to zero, however, which leaves the system in an intermediate

state.

Abrupt voltage/current-induced transitions from the C phase into CDW states with

higher conductivity have been previously observed under various conditions. In lateral de-

vices with in-plane currents and fields, it has been attributed to a carrier-driven breakdown

of the insulating state,[24] as well as to the formation of conducting, textured domains,[68]

althoughJoule heating is also possible.[75] Indeed, mosaic-like metallic domains have been

induced on bulk 1T-TaS2 using the tip of a scanning tunneling microscope by modifying

the natural inter-layer stacking.[35] [12] However, the electric fields used in these studies

are orders of magnitude larger than our Ec which suggest a different mechanism. The NC

resistance we observe above Ec is also inconsistent with that of a random domain network.

If the transition was instead induced by Joule heating above the warming transition tem-

perature, we then expect through subsequent cooling as the voltage is ramped down that

CDW domains would appear similar to that for the temperature-driven transition shown in

Fig 4.6. The photocurrent images taken afterward are also inconsistent with this scenario

and thus point to other possibilities, such as a carrier-driven breakdown of the C phase,

although the possibility of electrically induced changes in inter-layer stacking cannot be

strictly eliminated.
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Chapter 5

Infrared microscopy of High Pressure

Hydrides

Bardeen–Cooper–Schrieffer (BCS) theory explains the superconductive phenomena by pair-

ing of electrons in a net attractive potential. [3] In conventional superconductors this

attractive potential is created by electron-phonon interactions. Thus there is no theoret-

ical upper bound on the superconducting transition temperature TC , that is if the right

conditions for the electron-phonon interactions are met.

In 1968 Ashcroft predicted that high-pressure hydrogen would be a high-temperature

superconductor due to three main arguments : (1) the light proton mass allows for high

frequency phonons. (2) simple coulomb interaction between electron-ion should provide

a strong electron-phonon coupling.(3) At high pressure the electronic DOS at the Fermi

surface should be large. [1] Further calculations that showed that metallic hydrogen would

be a superconductor at ∼300-350K in the atomic crystalline phase around 500GPa.[36]

However superconductivity in pure hydrogen has not been found mainly due to the extreme

pressure requirement. The focus has since shifted onto hydrogen dominated materials.

H2S was predicted to transform to a metal and a superconductor at a lower (and

experimentally achievable) pressure of P≈100GPa and a high TC≈80K.[32] Other materials
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with higher hydrogen content such as YH10 and LaH10 were predicted to have TC ’s of 303K

and 280K at 400GPa and 200Gpa respectively.

In this chapter the first section briefly describes the diamond anvil cell (DAC) that

is used to fabricate these samples under these extraordinary pressures. Section 2 shows

the superconductivity transitions observed in H3S [33] and LaHx [47] samples. Changes

in the reflectivity of H3S samples in the near-IR region that motivate our scanning laser

measurements in the same spectral region are shown in section 3. Section 4 shows the

preliminary data obtained by scanning laser microscopy with laser wavelength of 2300nm

on a superconducting H3S samples.
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5.1 Crystal Synthesis

Figure 5.1: Metallic hydrides fabricated inside diamond anvil cells (DAC). (A) Schematic of

a typical diamond anvil cell consists of a gasket (blue) squeezed between two diamonds. The

sample (red) is packed inside an insulating slat layer (orange) which fills a central hole in

the gasket. One of the diamond (top) has sputtered electrodes (Pt) that allow for electrical

measurements. (B) Fabrication of a metallic sulfur deuteride(top) and Lanthanum hydride

(bottom) systems at high pressures. The Lanthanum crystals require additional laser

heating to induce the transition. (C) A DAC loaded onto the C2 cryostat for optical

measurements without (top) and with (bottom) the outer covering. Figure (A) taken from

[10], Figure (B, top) taken from [15] Figure (B, bottom) taken from [14]

High pressures required to fabricate the predicted hydirdes is achieved by compressing

the precursor materials between two diamond anvils. Fig.5.1(A) shows the schematic of a

typical diamond anvil cell or DAC. A stainless steel gasket (blue) is used to hold the sample
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in the middle. The region inside the center is packed with an insulating salt such as NaCl

or CaSO4 (orange) that prevents shorting of electrodes, which are usually sputtered onto

one of the diamond anvils and also do not react with the sample materials. The sample

region is shown colored in red.

For the fabrication of H3S samples H2S gas is introduced into the sample space at

∼200K. Then the pressure is increased, Raman spectra of the sample region is monitored

simultaneously and changes in characteristic vibrational peaks signify structural phase

transitions. For ≈100GPa the samples becomes metallic and shows superconducting tran-

sition with TC <100K. Fig.5.1 (B) top, shows the sample formation as the region in center

goes from transmitting to opaque upon increase in pressure. Further increase in pressure

and and repeated annealing between room and low temperatures stabilizes the supercon-

ducting transition.

Fabrication of superconducting LaH10 a little more complex. Precursor elements involve

pure La which is put into the sample space together with an excess of hydrogen and

the pressure is increased to 120-190GPa. The sample region is then heated to make the

precursors react with one-sided pulsed radiation form a YAG laser focused onto a spot

of diameter ∼10µm. The sample is heated to ∼1000K and various LaHx compounds

are formed. In hydrogen deficient environment LaH3 is predominantly formed which is

also used as a precursor for fabrication of some samples. Fig.5.1(B) bottom show La + H2

samples before and after laser heating. X-ray diffraction is used to determine the structural

phase at the local level. for samples with LaH10 the TC of 250K has been reported.

Resistivity measurements that show the superconductivity transition in these samples

is discussed in the next section. Further information on these samples is obtained by optical

measurements done through the top diamond. We use aim to use our scanning laser setup

to map the spatial evolution of reflection at a particular wavelength. Fig.5.1(C) shows a

typical DAC mounted on our Montana C2 cryostat for such optical measurements. Bottom

image shows the sample with the protective shielding and the outer cover at a very low

temperature <100K.
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5.2 Superconductivity Transition : TC

The most direct way measuring superconductivity in the samples fabricated from the pro-

cess shown above is observing the characteristic drop in resistivity to 0 at the supercon-

ducting transition. This is measured using a standard van-der-pauw geometry of electrodes

shown in Fig.5.1(A) (bottom).

Figure 5.2: Superconductivity transitions in high pressure hydrides. (A) Typical super-

conductive steps for sulfur hydride (blue) and sulfur deuteride (red) taken during a slow

warm-up. (B) Superconductive transitions in LaH10 and LaD10 samples. For both the

class of compounds deuteride samples show a marked lowering of TC . (C) Superconduct-

ing transitions under warm-up and cool-down for applied magnetic field in LaH10 samples

reduces the onset of superconductivity. A notable step observed in the zero field transition

is removed for fields above 3T (inset). Figure (A) taken from [15], Figure (B), (C) taken

from [14]

For the H3S samples the superconducting drop in resistivity can be seen can be seen after

pressures above 107GPa. The TC increases with increasing pressure but initially pressur-

ized samples show a varying TC upon separate thermal cycles. Multiple cycles of thermal

annealing between room-temperature and 100K stabilizes the TC . Fig.5.2(A) shows the
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transition in thermally annealed Sulfur deuteride and Sulfur hydride samples upon warm-

up form 100K at the pressures of 155GPa and 141 GPa respectively. The isotope effect is

observed : TC is lowered for deuteride samples indicating phonon-assisted superconductiv-

ity. The same effect is seen in Lanthanum hydride samples shown in Fig.5.2(B).

The other proof of superconductivity is the Meissner effect which is the complete ex-

pulsion of the magnetic field from the sample after the superconducting transition which

is very hard to measure for sample under such pressures. The reduction in TC dues to an

applied magnetic field (Fig. 5.2(C)) does indicate the superconducting nature of the tran-

sition, The two step transition at 0 field (highlighted in inset) also disappears as the TC

lowered for magnetic fields of 3T and larger. This behavior is consistent for in-homogeneous

superconducting samples and is seen for samples at ambient pressures. Note that some

in-homogeneity is inevitable for samples fabricated at high pressures due to pressure and

elemental in-homogeneity.
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5.3 Bosonic Reflection Spectrum

A

B C

Figure 5.3: Reflection spectrum of superconducting hydrides. (A) Normalized reflectivity

calculated for a superconductive sample in the dirty limit normalized by the value at 200K

in the normal state. Experimentally data is overlaid for the region in the white box.

(B) Reflection spectrum measured at different temperatures normalized to the value at

600meV. (C) Calculated spectrum for the same temperatures. Figure taken from [10]

While a direct measurement of the Meissner effect remains a challenge, reflectance mea-

surements are a viable alternative to explore the physics of these samples. Reflectivity
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measurements done on the H3S samples [10] have been shown to be in agreement with

theoretical predictions based on DFT and Migdal–Eliashberg theory. A superconductor is

a perfect reflector of light upto the photon energy of ~ω = 2∆ where ∆ is the supercon-

ducting gap. Above this energy the reflection is determined by the optical scattering rate.

Calculated reflection spectrum of H3S reveals three regions of interest in this regard. The

superconducting gap region lies between 65 to 100 meV. Between 100 to 200 meV reflection

is reduced due to scattering by optically active phonons (~Ω ∼ 200 meV) and the region

between 350-500 meV (2∆+~Ω) where the reflection is reduced strongly by scattering due

to Bosonic excitation. The reflection is additionally effected by the purity of the sample.

If the electron mean free path (l) is greater than the superconducting coherence length

(ξ) then superconductor is said to be in the clean limit. If the amount of impurities in

the superconductor is high such that it reduces l of the regular metal lower than ξ then

the superconductor is said to be in the dirty limit. In the dirty limit, scattering rate of

electrons is larger than 2∆ [27] which directly effects the ratio of reflectivity between the

normal and superconducting state close to 2∆. Thus the first two features in the reflection

spectrum discussed before are more pronounced when the sample is in the dirty limit. For

our laser based measurements we are interested in the 450 to 600 meV region where boson

assisted scattering will reduces the reflectance of the sample.

Fig.5.3(A) shows the calculated normalized reflection spectrum of a dirty supercon-

ductor with a TC = 200K at 50K and 150K. The curve is normalized with the normal

state at 200K. The change in the reflection of the depression around 400 meV for lower

temperatures is quite evident. The white box represents the spectral region for which mea-

sured data (in blue) is plotted. Fig.5.3(B) shows the thermal evolution of the reflectance

in this spectral region where the plots are normalized to the value at 600meV. Theoretical

predictions for the same are shown in the Fig.5.3(C).

Motivated by this result we choose a laser wavelength of 540 meV (2300 nm) to use with

our scanning laser setup to map the spatial evolution of the superconducting transition as a

function of temperature. In the next section we present initial results of such measurement

which should hope to work as proof of principle for such measurements in the future.
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5.4 IR Laser Scanning : early results

The spatial in-homogeneity of the high-pressure hydrides can be mapped at the structural

level using X-ray diffraction measurements [14]. But an active measurement of onset of

superconductivity can be measured using reflectivity.

A

B C

11

0

μW

θ

0 50 100 150 200 250 300 350 400
Pixel No.

Si
gn

al
 (μ

W
)

2

4

6

8

10

12

BG BG

50 100 150 200 250
Temperature (K)

0.94

0.96

0.98

1.00

1.20

Av
g.

 R
ef

le
ct

io
n 

(R
/R

T=
26

0K
)

Raw
BG Corrected

Figure 5.4: IR laser reflection microscopy of high-pressure hydrides. (A) Zoomed in re-

flection image of H3S sample taken using a 2300 nm laser at temperatures across the

superconducting transition temperature. Scale bar in the first panel is 10 µm. (B) Zoomed

out image(left) taken at 260K showing the metal electrodes.Scale bar is 20 µm. Line cuts

taken at an angle are selected to obtain the uniform background(BG) signal shown in the

left panel(offset for clarity). BG signal obtained by averaging over the region in between

light and dark green line cuts which is subtracted to perform correction. (C) Normalized

reflection obtained by averaging over the region in (A), Raw(blue) and BG corrected(red)

and divided by the value at T = 260K.

By careful selection in 450 to 600meV energy range which avoids both atmospheric and
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diamond absorption we choose laser of 2300nm(540meV) wavelength. We also modifying

the scanning laser optical setup to have CaF2 lenses and the C2 cryostat to have a CaF2

optical window in order to get the best transmission for the selected wavelength. Since

the sample is located ∼15 mm bellow the top surface of the optical window we use a 15x

Schwarzschild objective (N.A. = 0.5) with a working distance of 23mm which allows the

sample to come into focus at the lowest temperatures. To optimize the signal to noise

ratio the diode laser is electronically modulated using a lock-in and the reflection signal is

collected at the same frequency. We get a signal of few a µW with a dark -room signal

of ∼nW. There is an additional problem of change in focal plane between temperatures

which is solved by taking multiple images across various points on the z-axis and selecting

for maximal signal from the sample region.

Fig.5.4 shows the reflection scans taken on a H3S sample with pressure of 148GPa (H2

vibron) and a TC = 196K upon cooldown. Fig.5.4(B) shows a typical image in which

reflection signal from both the sample region(center) and the electrodes is visible(vertical

and off-axis horizontal to the side). Fig.5.4(A) shows the cropped out images of the sample

region taken at various temperatures. Averaging the signal over this region and normal-

izing it to the signal at 260K we see that the average reflectivity of the sample starts to

decrease after 230K(blue trace Fig.5.4(C) ). In order to correct for the background signal

which is caused due to reflections of the diamond we select another region which should

have constant reflectivity. That is the region without the electrodes or the sample. We

take a off-axis line-cut across the sample Fig.5.4(B) (in green) and select the regions with

a flat signal profile that is upto 75 pixel number and beyond 325 pixel number Fig.5.3(B)

(left). Averaging this region to determine the background at each temperature we subtract

it from the raw data of the line cut before averaging. Plot for the background corrected

data is shown in the red-curve in Fig.5.4(C). This preliminary result shows a reduction

in the overall reflectivity of the sample staring at a temperature close to onset of super-

conductivity as measured by the resistance data. This is in agreement with the expected

trend and previous experimental results. Further data taken at more closely spaced tem-

peratures would give a more robust data set on which more rigorous BG correction can be
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done. Once established the can be used as a tool to establish bosonic nature of the super-

conducting transition and map spatial inhomogeneity in such samples. This will be more

relevant to other systems where laser heating is an added step to the fabrication process.

Inhomogeneity can arise due to uneven distribution of precursor material, pressure or heat

(as applied by a laser).
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Chapter 6

Summary and Outlook

6.1 Summary

In summary, a laser scanning optical setup coupled with a 4K cryostat was assembled. It

can be used to raster a diffraction limited laser spot with wavelengths ranging from 450nm

to 8µm. We used it to study spatial distribution of two correlated electron phases with

light of 520nm and 2300nm respectively.

The first material we studied is 1T-TaS2 which is a CDW material. We proposed a

novel device geometry which utilizes the recent advances made in fabrication of 2-D Van-

der-Waals heterostructures. After establishing the proof of principle we used such devices

to map the NC-C transition while changing 3 key parameters, 1T-TaS2 flake thickness,

temperature and applied electric field. For the thermally driven transitions we showed

that NC to C transition is slowed down in ultra-thin flakes in comparison to the bulk-like

thickness with clear formation of micron sized domains some of which remain frozen in the

NC phase at low temperatures. This is in contrast to the electrically driven transitions

where we do not see formation of domains down to the micron limit in states with inter-

mediate resistance values. Additionally, we show for the first time bi-drectional electrical

driving at a constant temperatures in ultra-thin flakes while accessing multiple states of
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intermediate resistance. We also present the phenomenological model of the multi-step NC

to C electrical driving which is based on previous experimental and theoretical work done

to describe the complex dynamics of the NC phase.

The second material studied is superconductive H3S under a very high pressure of

∼150GPa. Previous experiments reveal a drop in reflectivity in the near-IR spectral region

which had been theoretically predicted to arise from the bosons in the superconductive

phase. We obtain reflection images of the sample in this spectral range and show that

average reflectivity follows the theoretically predicted model.

6.2 Outlook

The results obtained for 1T-TaS2 reveal important differences in the spatial dynamics of

thermally and electrically driven flakes. The spatial uniformity of electrically driven tran-

sition allows the possibility of device miniaturization. The multi-step NC to C transition

and the ability for bi-directional driving improves the case for use of 1T-TaS2 as a reversible

multi-state-memristor material in the future. Additionally, the origin of the first-order C

to NC transition observed at high applied electric field remains to be investigated. A better

understanding of this transition would allow for a much robust control of the intermediate

states.

Early results of reflection mapping the superconductivity transitions in H3S agree well

with the theoretical predictions. [11] Recently room-temperature superconductivity has

been reported in a similar Carbonaceous Sulfur Hydride system.[54] The experimental

setup described in this thesis will be an added tool to probe these exotic materials and

would help to establish the nature of superconductivity in these samples. And would also

help the fabrication process by identifying the distribution of the superconducting phase

in relation to the crystalline phase identified using x-ray diffraction.
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Appendix A

Atomic Force Microscopy of 2-D

hetero-structures
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Figure A.1: AFM image of device in Fig 4.3

2-D van-der-waals materials conform over each other in a vertical hetero-structure ge-

ometry. This allows for measurement of 1T-TaS2 flake thickness underneath a relatively
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thicker h-BN with a good precision. Fig A.1 shows the AFM image of the device in Fig

4.3. Line cuts 1 and 2 along the 1T-TaS2 edge show that the flake thickness is 5nm.
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Figure A.2: Comparison between photocurrent (left) and atomic force microscopy (middle)

images of device shown in Fig 4.3 show close correspondence between the spot-like pho-

tocurrent features and physical bumps, which could be attributed to bubbles or unwanted

particles trapped at the interface between layers. Scale bar is 5 µm. Line profiles are

further shown on the right.
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Appendix B

Photocurrent Imaging of 1T-TaS2 in

lateral geometry

A lateral geometry consisting of a 22-nm 1T-TaS2 flake (with a thinner end) contacted

by 2 Au electrodes and capped by h-BN is a simpler heterostructure to assemble. The

photocurrent generation is dominated by the Seebeck effect between Au/1T-TaS2 and is

thus localized near the contact regions. The polarity of photocurrent changes between NC

and C phase in a reversible manner. B.1 This can be explained by the change of polarity of

majority carriers [26] across the NC-C transition. While some form of intermediate states

are observed during the transition temperatures the features are not directly interpretable.
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Figure B.1: Photocurrent images of a 1T-TaS2 device in a lateral geometry for different

temperatures across the NC-C transition during cool-down(top) and warm-up(bottom).The

left panel shows the measurement geometry overlaid on the optical image. Scale bar is 5µm.
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